1
|
Härm J, Fan YT, Brenner D. Navigating the metabolic landscape of regulatory T cells: from autoimmune diseases to tumor microenvironments. Curr Opin Immunol 2025; 92:102511. [PMID: 39674060 DOI: 10.1016/j.coi.2024.102511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/16/2024]
Abstract
Regulatory T cells (Tregs) are essential for maintaining immune homeostasis, playing crucial roles in modulating autoimmune conditions and contributing to the suppressive tumor microenvironment. Their cellular metabolism governs their generation, stability, proliferation, and suppressive function. Enhancing Treg metabolism to boost their suppressive function offers promising therapeutic potential for alleviating inflammatory symptoms in autoimmune diseases. Conversely, inhibiting Treg metabolism to reduce their suppressive function can enhance the efficacy of traditional immunotherapy in cancer patients. This review explores recent advances in targeting Treg metabolism in autoimmune diseases and the metabolic adaptations of Tregs within the tumor microenvironment that increase their immunosuppressive function.
Collapse
Affiliation(s)
- Janika Härm
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Yu-Tong Fan
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Dirk Brenner
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
2
|
Bosteels V, Janssens S. Striking a balance: new perspectives on homeostatic dendritic cell maturation. Nat Rev Immunol 2025; 25:125-140. [PMID: 39289483 DOI: 10.1038/s41577-024-01079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2024] [Indexed: 09/19/2024]
Abstract
Dendritic cells (DCs) are crucial gatekeepers of the balance between immunity and tolerance. They exist in two functional states, immature or mature, that refer to an information-sensing versus an information-transmitting state, respectively. Historically, the term DC maturation was used to describe the acquisition of immunostimulatory capacity by DCs following their triggering by pathogens or tissue damage signals. As such, immature DCs were proposed to mediate tolerance, whereas mature DCs were associated with the induction of protective T cell immunity. Later studies have challenged this view and unequivocally demonstrated that two distinct modes of DC maturation exist, homeostatic and immunogenic DC maturation, each with a distinct functional outcome. Therefore, the mere expression of maturation markers cannot be used to predict immunogenicity. How DCs become activated in homeostatic conditions and maintain tolerance remains an area of intense debate. Several recent studies have shed light on the signals driving the homeostatic maturation programme, especially in the conventional type 1 DC (cDC1) compartment. Here, we highlight our growing understanding of homeostatic DC maturation and the relevance of this process for immune tolerance.
Collapse
Affiliation(s)
- Victor Bosteels
- Laboratory for ER Stress and Inflammation, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sophie Janssens
- Laboratory for ER Stress and Inflammation, VIB Center for Inflammation Research, Ghent, Belgium.
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
| |
Collapse
|
3
|
Kantheti U, Forward TS, Lucas ED, Schafer JB, Tamburini PJ, Burchill MA, Tamburini BAJ. PD-L1-CD80 interactions are required for intracellular signaling necessary for dendritic cell migration. SCIENCE ADVANCES 2025; 11:eadt3044. [PMID: 39879305 PMCID: PMC11777207 DOI: 10.1126/sciadv.adt3044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/26/2024] [Indexed: 01/31/2025]
Abstract
Programmed cell death protein 1 (PD-1) and programmed death ligand 1 (PD-L1) interactions are targets for immunotherapies aimed to reinvigorate T cell function. Recently, it was documented that PD-L1 regulates dendritic cell (DC) migration through intracellular signaling events. In this study, we find that both preclinical murine and clinically available human PD-L1 antibodies limit DC migration. We show that cis interactions between PD-L1 and CD80 are critical for promoting migration and define specific regions within these proteins necessary for migration. Furthermore, we demonstrate that αPD-L1 significantly impedes DC migration in a B16 melanoma tumor model. Last, we outline how blocking cis PD-L1:CD80 interactions or mutation of the intracellular domain of PD-L1, in an imiquimod-induced murine model of psoriasis, limits DC migration to the lymph node, decreases interleukin-17 production by CD4+ T cells in the lymph node, and reduces epidermal thickening. Therefore, PD-L1 and CD80 interactions are important regulators of DC migration to the draining lymph node.
Collapse
Affiliation(s)
- Uma Kantheti
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
- Immunology Graduate Program, University of Colorado School of Medicine, Aurora, CO, USA
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Tadg S. Forward
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Erin D. Lucas
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
- Immunology Graduate Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Johnathon B. Schafer
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Pierce J. Tamburini
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Matthew A. Burchill
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Beth Ann Jirón Tamburini
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
- Immunology Graduate Program, University of Colorado School of Medicine, Aurora, CO, USA
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
4
|
Bozward AG, Davies SP, Morris SM, Kayani K, Oo YH. Cellular interactions in self-directed immune mediated liver diseases. J Hepatol 2025:S0168-8278(25)00006-6. [PMID: 39793614 DOI: 10.1016/j.jhep.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/18/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
The lymphocyte population must traverse a complex path throughout their journey to the liver. The signals which these cells must detect, including cytokines, chemokines and other soluble factors, steer their course towards further crosstalk with other hepatic immune cells, hepatocytes and biliary epithelial cells. A series of specific chemokine receptors and adhesion molecules drive not only the recruitment, migration, and retention of these cells within the liver, but also their localisation. Perturbation of these interactions and failure of self-recognition drives the development of several autoimmune liver diseases. Understanding the nature of these interactions develops our understanding of immune mediated liver disease pathogenesis, providing new opportunities for intervention to resolve uncontrolled inflammation. In this review, we provide an overview of the complex recruitment pathways and cellular interactions which position lymphocyte populations in the liver. We discuss how these are disrupted in autoimmune diseases and highlight the mechanism of immune cells inside hepatocytes (emperipolesis) in autoimmune hepatitis and immune cells inside biliary epithelial cells (intra-epithelial lymphocyte) in primary biliary cholangitis as well as avenues to manipulate these pathways for therapy. We also cover the immune mediated tissue injury mechanisms impacted by checkpoint inhibitors, leading to checkpoint inhibitor-induced liver injury (CHILI). Finally, we describe emerging immune-based therapies, including regulatory T cell, anti-cytokine and anti-chemokine therapies, cytokine supplementation such as interleukin-2 as well as numerous modalities of co-inhibitory molecule manipulation, including bispecific T cell engagers (BiTEs) and checkpoint inhibitor bispecific T cell engagers (CiTEs) and discuss their potential application in the treatment of autoimmune liver diseases. Immune-mediated liver disease encompasses two broad categories: autoimmune and inflammatory liver injury, the former resulting from a breakdown in immunological self-tolerance. These share common features, namely histologically dense immune infiltrates, autoantibody positivity and immunoglobulin elevation. Whilst well defined in their epidemiology, presentation and diagnostic evaluation, their treatment remains an unmet clinical need. Our incomplete understanding of the mechanisms leading to breakdown in immunological self-tolerance and our inability to restore immune homeostasis hampers present progress in treatment. This review summarises recent advances in our understanding of the loss of hepatic tolerance and the cellular interactions leading to this, including immune cell invasion towards hepatocytes and biliary epithelial cells, checkpoint-induced immune-mediated liver injury (CHILI) and concludes with current progress in treatment strategies.
Collapse
Affiliation(s)
- Amber G Bozward
- Centre for Liver and Gastroenterology research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; National Institute of Health Research Biomedical Research Centre, University of Birmingham and University Hospital Birmingham NHS Foundation Trust, Birmingham, UK; Centre for Rare Diseases, European Reference Network on Hepatological Diseases (ERN-RARE-LIVER) centre, University of Birmingham, Birmingham, UK.
| | - Scott P Davies
- Centre for Liver and Gastroenterology research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; National Institute of Health Research Biomedical Research Centre, University of Birmingham and University Hospital Birmingham NHS Foundation Trust, Birmingham, UK; Centre for Rare Diseases, European Reference Network on Hepatological Diseases (ERN-RARE-LIVER) centre, University of Birmingham, Birmingham, UK
| | - Sean M Morris
- Centre for Liver and Gastroenterology research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; National Institute of Health Research Biomedical Research Centre, University of Birmingham and University Hospital Birmingham NHS Foundation Trust, Birmingham, UK; Centre for Rare Diseases, European Reference Network on Hepatological Diseases (ERN-RARE-LIVER) centre, University of Birmingham, Birmingham, UK
| | - Kayani Kayani
- Centre for Liver and Gastroenterology research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; National Institute of Health Research Biomedical Research Centre, University of Birmingham and University Hospital Birmingham NHS Foundation Trust, Birmingham, UK; Centre for Rare Diseases, European Reference Network on Hepatological Diseases (ERN-RARE-LIVER) centre, University of Birmingham, Birmingham, UK
| | - Ye H Oo
- Centre for Liver and Gastroenterology research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; National Institute of Health Research Biomedical Research Centre, University of Birmingham and University Hospital Birmingham NHS Foundation Trust, Birmingham, UK; Centre for Rare Diseases, European Reference Network on Hepatological Diseases (ERN-RARE-LIVER) centre, University of Birmingham, Birmingham, UK; Liver Transplant and Hepatobiliary department, Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK.
| |
Collapse
|
5
|
Jamison BL, Lawrance M, Wang CJ, DeBerg HA, Ziegler LJ, Sansom DM, Gavin MA, Walker LSK, Campbell DJ. An IL-2 mutein increases regulatory T cell suppression of dendritic cells via IL-10 and CTLA-4 to promote T cell anergy. Cell Rep 2024; 43:114938. [PMID: 39488830 PMCID: PMC11602548 DOI: 10.1016/j.celrep.2024.114938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 08/15/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
Interleukin-2 (IL-2) variants with increased CD25 dependence that selectively expand Foxp3+ regulatory T (TR) cells are in clinical trials for treating inflammatory diseases. Using an Fc-fused IL-2 mutein (Fc.IL-2 mutein) we developed that prevents diabetes in non-obese diabetic (NOD) mice, we show that Fc.IL-2 mutein induced an activated TR population with elevated proliferation, a transcriptional program associated with Stat5- and T cell receptor-dependent gene modules, and high IL-10 and CTLA-4 expression. Increased IL-10 signaling limited surface major histocompatibility complex class II upregulation during conventional dendritic cell (cDC) maturation, while increased CTLA-4-dependent transendocytosis led to the transfer of CD80 and CD86 co-stimulatory ligands from maturing cDCs to TR cells. In NOD mice, Fc.IL-2 mutein treatment promoted the suppression of cDCs in the inflamed pancreas and pancreatic lymph nodes, resulting in T cell anergy. Thus, IL-2 mutein-expanded TR cells have enhanced functional properties and restrict cDC function, offering promise for targeted immunotherapy use in autoimmune disease.
Collapse
Affiliation(s)
- Braxton L Jamison
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98126, USA
| | - Matthew Lawrance
- Center for Systems Immunology, Benaroya Research Institute, Seattle, WA 98126, USA
| | - Chun Jing Wang
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection & Immunity, London NW3 2PP, UK
| | - Hannah A DeBerg
- Center for Systems Immunology, Benaroya Research Institute, Seattle, WA 98126, USA
| | - Lauren J Ziegler
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98126, USA
| | - David M Sansom
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection & Immunity, London NW3 2PP, UK
| | - Marc A Gavin
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA 98126, USA
| | - Lucy S K Walker
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection & Immunity, London NW3 2PP, UK
| | - Daniel J Campbell
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98126, USA; Department of Immunology, University of Washington School of Medicine, Seattle, WA 981098, USA.
| |
Collapse
|
6
|
Geiselhöringer AL, Kolland D, Patt AJ, Hammann L, Köhler A, Kreft L, Wichmann N, Hils M, Ruedl C, Riemann M, Biedermann T, Anz D, Diefenbach A, Voehringer D, Schmidt-Weber CB, Straub T, Pasztoi M, Ohnmacht C. Dominant immune tolerance in the intestinal tract imposed by RelB-dependent migratory dendritic cells regulates protective type 2 immunity. Nat Commun 2024; 15:9143. [PMID: 39443450 PMCID: PMC11500181 DOI: 10.1038/s41467-024-53112-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
Dendritic cells (DCs) are crucial for initiating protective immune responses and have also been implicated in the generation and regulation of Foxp3+ regulatory T cells (Treg cells). Here, we show that in the lamina propria of the small intestine, the alternative NF-κB family member RelB is necessary for the differentiation of cryptopatch and isolated lymphoid follicle-associated DCs (CIA-DCs). Moreover, single-cell RNA sequencing reveals a RelB-dependent signature in migratory DCs in mesenteric lymph nodes favoring DC-Treg cell interaction including elevated expression and release of the chemokine CCL22 from RelB-deficient conventional DCs (cDCs). In line with the key role of CCL22 to facilitate DC-Treg cell interaction, RelB-deficient DCs have a selective advantage to interact with Treg cells in an antigen-specific manner. In addition, DC-specific RelB knockout animals show increased total Foxp3+ Treg cell numbers irrespective of inflammatory status. Consequently, DC-specific RelB knockout animals fail to mount protective Th2-dominated immune responses in the intestine after infection with Heligmosomoides polygyrus bakeri. Thus, RelB expression in cDCs acts as a rheostat to establish a tolerogenic set point that is maintained even during strong type 2 immune conditions and thereby is a key regulator of intestinal homeostasis.
Collapse
Affiliation(s)
- Anna-Lena Geiselhöringer
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Daphne Kolland
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Arisha Johanna Patt
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Linda Hammann
- Division of Clinical Pharmacology, LMU University Hospital, LMU, Munich, Germany
| | - Amelie Köhler
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Luisa Kreft
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076, Tuebingen, Germany
| | - Nina Wichmann
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Miriam Hils
- Department of Dermatology and Allergy Biederstein, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Christiane Ruedl
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | - Marc Riemann
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - David Anz
- Division of Clinical Pharmacology, LMU University Hospital, LMU, Munich, Germany
- Department of Medicine II, LMU University Hospital, LMU, Munich, Germany
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, 12203, Berlin, Germany
- Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Association, 10117, Berlin, Germany
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, 91054, Germany
| | - Carsten B Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
- Member of the German Center of Lung Research (DZL), Partner Site Munich, Munich, Germany
| | - Tobias Straub
- Bioinformatics Core Unit, Biomedical Center, Ludwig-Maximilians-University, 82152, Planegg, Germany
| | - Maria Pasztoi
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Caspar Ohnmacht
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany.
| |
Collapse
|
7
|
Anastasiou P, Moore C, Rana S, Tomaschko M, Pillsbury CE, de Castro A, Boumelha J, Mugarza E, de Carné Trécesson S, Mikolajczak A, Blaj C, Goldstone R, Smith JAM, Quintana E, Molina-Arcas M, Downward J. Combining RAS(ON) G12C-selective inhibitor with SHP2 inhibition sensitises lung tumours to immune checkpoint blockade. Nat Commun 2024; 15:8146. [PMID: 39322643 PMCID: PMC11424635 DOI: 10.1038/s41467-024-52324-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024] Open
Abstract
Mutant selective drugs targeting the inactive, GDP-bound form of KRASG12C have been approved for use in lung cancer, but resistance develops rapidly. Here we use an inhibitor, (RMC-4998) that targets RASG12C in its active, GTP-bound form, to treat KRAS mutant lung cancer in various immune competent mouse models. RAS pathway reactivation after RMC-4998 treatment could be delayed using combined treatment with a SHP2 inhibitor, which not only impacts tumour cell RAS signalling but also remodels the tumour microenvironment to be less immunosuppressive. In an immune inflamed model, RAS and SHP2 inhibitors in combination drive durable responses by suppressing tumour relapse and inducing development of immune memory. In an immune excluded model, combined RAS and SHP2 inhibition sensitises tumours to immune checkpoint blockade, leading to efficient tumour immune rejection. These preclinical results demonstrate the potential of the combination of RAS(ON) G12C-selective inhibitors with SHP2 inhibitors to sensitize tumours to immune checkpoint blockade.
Collapse
Affiliation(s)
| | | | - Sareena Rana
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK
| | - Mona Tomaschko
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK
| | | | - Andrea de Castro
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK
| | - Jesse Boumelha
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK
| | - Edurne Mugarza
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK
| | | | - Ania Mikolajczak
- Experimental Histopathology, Francis Crick Institute, London, UK
| | | | - Robert Goldstone
- Bioinformatics & Biostatistics Science Technology Platform, Francis Crick Institute, London, UK
| | | | | | | | - Julian Downward
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK.
| |
Collapse
|
8
|
Fu J, Mao L, Jiao Y, Mei D, Chen Y. Elucidating CTLA-4's role in tumor immunity: a comprehensive overview of targeted antibody therapies and clinical developments. Mol Divers 2024:10.1007/s11030-024-10917-6. [PMID: 38985379 DOI: 10.1007/s11030-024-10917-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024]
Abstract
Cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) emerges as a key single-chain transmembrane glycoprotein predominantly expressed in effector T cells and regulatory T cells. It plays a crucial role in tumor immunity by modulating T cell responses. Specifically, CTLA-4 dampens T cell activation and proliferation while bolstering the survival of regulatory T cell through its competitive interaction with B7 family molecules, thereby aiding tumor cells in eluding immune detection. Given CTLA-4's significant influence on tumor immune dynamics, an array of anti-CTLA-4 antibody therapeutics have been clinically developed to combat various malignancies, including melanoma, renal cell carcinoma, colorectal carcinoma, hepatocellular carcinoma, non-small cell lung carcinoma, and pleural mesothelioma, demonstrating notable clinical therapeutic effects. This paper aims to delve into CTLA-4's integral role in tumor immunity and to encapsulate the latest advancements in the clinical research of anti-CTLA-4 antibody.
Collapse
Affiliation(s)
- Juan Fu
- Suzhou Guo Kuang Pharmaceutical Technology Co, Sichuan, China
- College of Science, China Pharmaceutical University, Nanjing, China
| | - Lin Mao
- College of Science, China Pharmaceutical University, Nanjing, China
| | - Yu Jiao
- College of Science, China Pharmaceutical University, Nanjing, China
| | - Desheng Mei
- Suzhou Guo Kuang Pharmaceutical Technology Co, Sichuan, China.
| | - Yadong Chen
- College of Science, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
9
|
Qiu J, Cheng Z, Jiang Z, Gan L, Zhang Z, Xie Z. Immunomodulatory Precision: A Narrative Review Exploring the Critical Role of Immune Checkpoint Inhibitors in Cancer Treatment. Int J Mol Sci 2024; 25:5490. [PMID: 38791528 PMCID: PMC11122264 DOI: 10.3390/ijms25105490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
An immune checkpoint is a signaling pathway that regulates the recognition of antigens by T-cell receptors (TCRs) during an immune response. These checkpoints play a pivotal role in suppressing excessive immune responses and maintaining immune homeostasis against viral or microbial infections. There are several FDA-approved immune checkpoint inhibitors (ICIs), including ipilimumab, pembrolizumab, and avelumab. These ICIs target cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), programmed cell death protein 1 (PD-1), and programmed death ligand 1 (PD-L1). Furthermore, ongoing efforts are focused on developing new ICIs with emerging potential. In comparison to conventional treatments, ICIs offer the advantages of reduced side effects and durable responses. There is growing interest in the potential of combining different ICIs with chemotherapy, radiation therapy, or targeted therapies. This article comprehensively reviews the classification, mechanism of action, application, and combination strategies of ICIs in various cancers and discusses their current limitations. Our objective is to contribute to the future development of more effective anticancer drugs targeting immune checkpoints.
Collapse
Affiliation(s)
- Junyu Qiu
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (J.Q.); (Z.C.); (Z.J.); (L.G.); (Z.Z.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Zilin Cheng
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (J.Q.); (Z.C.); (Z.J.); (L.G.); (Z.Z.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Zheng Jiang
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (J.Q.); (Z.C.); (Z.J.); (L.G.); (Z.Z.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Luhan Gan
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (J.Q.); (Z.C.); (Z.J.); (L.G.); (Z.Z.)
- Huan Kui School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Zixuan Zhang
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (J.Q.); (Z.C.); (Z.J.); (L.G.); (Z.Z.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Zhenzhen Xie
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (J.Q.); (Z.C.); (Z.J.); (L.G.); (Z.Z.)
| |
Collapse
|
10
|
Zheng R, Liu X, Zhang Y, Liu Y, Wang Y, Guo S, Jin X, Zhang J, Guan Y, Liu Y. Frontiers and future of immunotherapy for pancreatic cancer: from molecular mechanisms to clinical application. Front Immunol 2024; 15:1383978. [PMID: 38756774 PMCID: PMC11096556 DOI: 10.3389/fimmu.2024.1383978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Pancreatic cancer is a highly aggressive malignant tumor, that is becoming increasingly common in recent years. Despite advances in intensive treatment modalities including surgery, radiotherapy, biological therapy, and targeted therapy, the overall survival rate has not significantly improved in patients with pancreatic cancer. This may be attributed to the insidious onset, unknown pathophysiology, and poor prognosis of the disease. It is therefore essential to identify and develop more effective and safer treatments for pancreatic cancer. Tumor immunotherapy is the new and fourth pillar of anti-tumor therapy after surgery, radiotherapy, and chemotherapy. Significant progress has made in the use of immunotherapy for a wide variety of malignant tumors in recent years; a breakthrough has also been made in the treatment of pancreatic cancer. This review describes the advances in immune checkpoint inhibitors, cancer vaccines, adoptive cell therapy, oncolytic virus, and matrix-depletion therapies for the treatment of pancreatic cancer. At the same time, some new potential biomarkers and potential immunotherapy combinations for pancreatic cancer are discussed. The molecular mechanisms of various immunotherapies have also been elucidated, and their clinical applications have been highlighted. The current challenges associated with immunotherapy and proposed strategies that hold promise in overcoming these limitations have also been discussed, with the aim of offering new insights into immunotherapy for pancreatic cancer.
Collapse
Affiliation(s)
- Rui Zheng
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Xiaobin Liu
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Yufu Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Yongxian Liu
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Yaping Wang
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Shutong Guo
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Xiaoyan Jin
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Jing Zhang
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Yuehong Guan
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Yusi Liu
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| |
Collapse
|
11
|
Carbone F, Russo C, Colamatteo A, La Rocca C, Fusco C, Matarese A, Procaccini C, Matarese G. Cellular and molecular signaling towards T cell immunological self-tolerance. J Biol Chem 2024; 300:107134. [PMID: 38432631 PMCID: PMC10981134 DOI: 10.1016/j.jbc.2024.107134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024] Open
Abstract
The binding of a cognate antigen to T cell receptor (TCR) complex triggers a series of intracellular events controlling T cell activation, proliferation, and differentiation. Upon TCR engagement, different negative regulatory feedback mechanisms are rapidly activated to counterbalance T cell activation, thus preventing excessive signal propagation and promoting the induction of immunological self-tolerance. Both positive and negative regulatory processes are tightly controlled to ensure the effective elimination of foreign antigens while limiting surrounding tissue damage and autoimmunity. In this context, signals deriving from co-stimulatory molecules (i.e., CD80, CD86), co-inhibitory receptors (PD-1, CTLA-4), the tyrosine phosphatase CD45 and cytokines such as IL-2 synergize with TCR-derived signals to guide T cell fate and differentiation. The balance of these mechanisms is also crucial for the generation of CD4+ Foxp3+ regulatory T cells, a cellular subset involved in the control of immunological self-tolerance. This review provides an overview of the most relevant pathways induced by TCR activation combined with those derived from co-stimulatory and co-inhibitory molecules implicated in the cell-intrinsic modulation of T cell activation. In addition to the latter, we dissected mechanisms responsible for T cell-mediated suppression of immune cell activation through regulatory T cell generation, homeostasis, and effector functions. We also discuss how imbalanced signaling derived from TCR and accessory molecules can contribute to autoimmune disease pathogenesis.
Collapse
Affiliation(s)
- Fortunata Carbone
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy; Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, Roma, Italy
| | - Claudia Russo
- D.A.I. Medicina di Laboratorio e Trasfusionale, Azienda Ospedaliera Universitaria "Federico II", Napoli, Italy
| | - Alessandra Colamatteo
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Claudia La Rocca
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy
| | - Clorinda Fusco
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Alessandro Matarese
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Claudio Procaccini
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy; Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, Roma, Italy.
| | - Giuseppe Matarese
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy; Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy.
| |
Collapse
|
12
|
Hardtke-Wolenski M, Landwehr-Kenzel S. Tipping the balance in autoimmunity: are regulatory t cells the cause, the cure, or both? Mol Cell Pediatr 2024; 11:3. [PMID: 38507159 PMCID: PMC10954601 DOI: 10.1186/s40348-024-00176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
Regulatory T cells (Tregs) are a specialized subgroup of T-cell lymphocytes that is crucial for maintaining immune homeostasis and preventing excessive immune responses. Depending on their differentiation route, Tregs can be subdivided into thymically derived Tregs (tTregs) and peripherally induced Tregs (pTregs), which originate from conventional T cells after extrathymic differentiation at peripheral sites. Although the regulatory attributes of tTregs and pTregs partially overlap, their modes of action, protein expression profiles, and functional stability exhibit specific characteristics unique to each subset. Over the last few years, our knowledge of Treg differentiation, maturation, plasticity, and correlations between their phenotypes and functions has increased. Genetic and functional studies in patients with numeric and functional Treg deficiencies have contributed to our mechanistic understanding of immune dysregulation and autoimmune pathologies. This review provides an overview of our current knowledge of Treg biology, discusses monogenetic Treg pathologies and explores the role of Tregs in various other autoimmune disorders. Additionally, we discuss novel approaches that explore Tregs as targets or agents of innovative treatment options.
Collapse
Affiliation(s)
- Matthias Hardtke-Wolenski
- Hannover Medical School, Department of Gastroenterology Hepatology, Infectious Diseases and Endocrinology, Carl-Neuberg-Str. 1, Hannover, 30625, Germany
- University Hospital Essen, Institute of Medical Microbiology, University Duisburg-Essen, Hufelandstraße 55, Essen, 45122, Germany
| | - Sybille Landwehr-Kenzel
- Hannover Medical School, Department of Pediatric Pneumology, Allergology and Neonatology, Carl-Neuberg-Str. 1, Hannover, 30625, Germany.
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Carl-Neuberg-Str. 1, Hannover, 30625, Germany.
| |
Collapse
|
13
|
Palmeri JR, Lax BM, Peters JM, Duhamel L, Stinson JA, Santollani L, Lutz EA, Pinney W, Bryson BD, Dane Wittrup K. CD8 + T cell priming that is required for curative intratumorally anchored anti-4-1BB immunotherapy is constrained by Tregs. Nat Commun 2024; 15:1900. [PMID: 38429261 PMCID: PMC10907589 DOI: 10.1038/s41467-024-45625-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 01/30/2024] [Indexed: 03/03/2024] Open
Abstract
Although co-stimulation of T cells with agonist antibodies targeting 4-1BB (CD137) improves antitumor immune responses in preclinical studies, clinical success has been limited by on-target, off-tumor activity. Here, we report the development of a tumor-anchored ɑ4-1BB agonist (ɑ4-1BB-LAIR), which consists of a ɑ4-1BB antibody fused to the collagen-binding protein LAIR. While combination treatment with an antitumor antibody (TA99) shows only modest efficacy, simultaneous depletion of CD4+ T cells boosts cure rates to over 90% of mice. Mechanistically, this synergy depends on ɑCD4 eliminating tumor draining lymph node regulatory T cells, resulting in priming and activation of CD8+ T cells which then infiltrate the tumor microenvironment. The cytotoxic program of these newly primed CD8+ T cells is then supported by the combined effect of TA99 and ɑ4-1BB-LAIR. The combination of TA99 and ɑ4-1BB-LAIR with a clinically approved ɑCTLA-4 antibody known for enhancing T cell priming results in equivalent cure rates, which validates the mechanistic principle, while the addition of ɑCTLA-4 also generates robust immunological memory against secondary tumor rechallenge. Thus, our study establishes the proof of principle for a clinically translatable cancer immunotherapy.
Collapse
Affiliation(s)
- Joseph R Palmeri
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Brianna M Lax
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Joshua M Peters
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Lauren Duhamel
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Jordan A Stinson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Luciano Santollani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Emi A Lutz
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - William Pinney
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Bryan D Bryson
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - K Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
| |
Collapse
|
14
|
Romberg N, Le Coz C. Common variable immunodeficiency, cross currents, and prevailing winds. Immunol Rev 2024; 322:233-243. [PMID: 38014621 DOI: 10.1111/imr.13291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Common variable immunodeficiency (CVID) is a heterogenous disease category created to distinguish late-onset antibody deficiencies from early-onset diseases like agammaglobulinemia or more expansively dysfunctional combined immunodeficiencies. Opinions vary on which affected patients should receive a CVID diagnosis which confuses clinicians and erects reproducibility barriers for researchers. Most experts agree that CVID's most indeliable feature is defective germinal center (GC) production of isotype-switched, affinity-maturated antibodies. Here, we review the biological factors contributing to CVID-associated GC dysfunction including genetic, epigenetic, tolerogenic, microbiome, and regulatory abnormalities. We also discuss the consequences of these biological phenomena to the development of non-infectious disease complications. Finally, we opine on topics and lines of investigation we think hold promise for expanding our mechanistic understanding of this protean condition and for improving the lives of affected patients.
Collapse
Affiliation(s)
- Neil Romberg
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Carole Le Coz
- Infinity, Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, CNRS, Inserm, Toulouse, France
| |
Collapse
|
15
|
Burke KP, Chaudhri A, Freeman GJ, Sharpe AH. The B7:CD28 family and friends: Unraveling coinhibitory interactions. Immunity 2024; 57:223-244. [PMID: 38354702 PMCID: PMC10889489 DOI: 10.1016/j.immuni.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
Immune responses must be tightly regulated to ensure both optimal protective immunity and tolerance. Costimulatory pathways within the B7:CD28 family provide essential signals for optimal T cell activation and clonal expansion. They provide crucial inhibitory signals that maintain immune homeostasis, control resolution of inflammation, regulate host defense, and promote tolerance to prevent autoimmunity. Tumors and chronic pathogens can exploit these pathways to evade eradication by the immune system. Advances in understanding B7:CD28 pathways have ushered in a new era of immunotherapy with effective drugs to treat cancer, autoimmune diseases, infectious diseases, and transplant rejection. Here, we discuss current understanding of the mechanisms underlying the coinhibitory functions of CTLA-4, PD-1, PD-L1:B7-1 and PD-L2:RGMb interactions and less studied B7 family members, including HHLA2, VISTA, BTNL2, and BTN3A1, as well as their overlapping and unique roles in regulating immune responses, and the therapeutic potential of these insights.
Collapse
Affiliation(s)
- Kelly P Burke
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Apoorvi Chaudhri
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Arlene H Sharpe
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Agbakwuru D, Wetzel SA. The Biological Significance of Trogocytosis. Results Probl Cell Differ 2024; 73:87-129. [PMID: 39242376 PMCID: PMC11784324 DOI: 10.1007/978-3-031-62036-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Trogocytosis is the intercellular transfer of membrane and membrane-associated proteins between cells. Trogocytosis is an underappreciated phenomenon that has historically routinely been dismissed as an artefact. With a greater understanding of the process and the implications it has on biological systems, trogocytosis has the potential to become a paradigm changer. The presence on a cell of molecules they don't endogenously express can alter the biological activity of the cell and could also lead to the acquisition of new functions. To better appreciate this phenomenon, it is important to understand how these intercellular membrane exchanges influence the function and activity of the donor and the recipient cells. In this chapter, we will examine how the molecules acquired by trogocytosis influence the biology of a variety of systems including mammalian fertilization, treatment of hemolytic disease of the newborn, viral and parasitic infections, cancer immunotherapy, and immune modulation.
Collapse
Affiliation(s)
- Deborah Agbakwuru
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| | - Scott A Wetzel
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA.
- Division of Biological Sciences, University of Montana, Missoula, MT, USA.
| |
Collapse
|
17
|
Kawakami R, Sakaguchi S. Regulatory T Cells for Control of Autoimmunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:67-82. [PMID: 38467973 DOI: 10.1007/978-981-99-9781-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Regulatory T (Treg) cells, which specifically express the master transcription factor FoxP3, are indispensable for the maintenance of immunological self-tolerance and homeostasis. Their functional or numerical anomalies can be causative of autoimmune and other inflammatory diseases. Recent advances in the research of the cellular and molecular basis of how Treg cells develop, exert suppression, and maintain their function have enabled devising various ways for controlling physiological and pathological immune responses by targeting Treg cells. It is now envisaged that Treg cells as a "living drug" are able to achieve antigen-specific immune suppression of various immune responses and reestablish immunological self-tolerance in the clinic.
Collapse
Affiliation(s)
- Ryoji Kawakami
- Kyoto University, Kyoto, Japan
- Osaka University, Osaka, Japan
| | | |
Collapse
|
18
|
Paterson CW, Fay KT, Chen CW, Klingensmith NJ, Gutierrez MB, Liang Z, Coopersmith CM, Ford ML. CTLA-4 Checkpoint Inhibition Improves Sepsis Survival in Alcohol-Exposed Mice. Immunohorizons 2024; 8:74-88. [PMID: 38226924 PMCID: PMC10835704 DOI: 10.4049/immunohorizons.2300060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024] Open
Abstract
Chronic alcohol use increases morbidity and mortality in the setting of sepsis. Both chronic alcohol use and sepsis are characterized by immune dysregulation, including overexpression of T cell coinhibitory molecules. We sought to characterize the role of CTLA-4 during sepsis in the setting of chronic alcohol exposure using a murine model of chronic alcohol ingestion followed by cecal ligation and puncture. Results indicated that CTLA-4 expression is increased on CD4+ T cells isolated from alcohol-drinking septic mice as compared with either alcohol-drinking sham controls or water-drinking septic mice. Moreover, checkpoint inhibition of CTLA-4 improved sepsis survival in alcohol-drinking septic mice, but not water-drinking septic mice. Interrogation of the T cell compartments in these animals following pharmacologic CTLA-4 blockade, as well as following conditional Ctla4 deletion in CD4+ T cells, revealed that CTLA-4 deficiency promoted the activation and proliferation of effector regulatory T cells and the generation of conventional effector memory CD4+ T cells. These data highlight an important role for CTLA-4 in mediating mortality during sepsis in the setting of chronic alcohol exposure and may inform future approaches to develop targeted therapies for this patient population.
Collapse
Affiliation(s)
- Cameron W. Paterson
- Department of Surgery, Emory Critical Care Center, Emory University School of Medicine, Atlanta GA
- Lieutenant, Medical Corps, Naval Reserve Officer Training Corp, United States Navy, Atlanta, GA
| | - Katherine T. Fay
- Department of Surgery, Emory Critical Care Center, Emory University School of Medicine, Atlanta GA
| | - Ching-Wen Chen
- Department of Surgery, Emory Critical Care Center, Emory University School of Medicine, Atlanta GA
| | - Nathan J. Klingensmith
- Department of Surgery, Emory Critical Care Center, Emory University School of Medicine, Atlanta GA
| | - Melissa B. Gutierrez
- Department of Surgery, Emory Critical Care Center, Emory University School of Medicine, Atlanta GA
| | - Zhe Liang
- Department of Surgery, Emory Critical Care Center, Emory University School of Medicine, Atlanta GA
| | - Craig M. Coopersmith
- Department of Surgery, Emory Critical Care Center, Emory University School of Medicine, Atlanta GA
| | - Mandy L. Ford
- Department of Surgery, Emory Transplant Center, Emory University School of Medicine, Atlanta GA
| |
Collapse
|
19
|
Janssens S, Rennen S, Agostinis P. Decoding immunogenic cell death from a dendritic cell perspective. Immunol Rev 2024; 321:350-370. [PMID: 38093416 DOI: 10.1111/imr.13301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Dendritic cells (DCs) are myeloid cells bridging the innate and adaptive immune system. By cross-presenting tumor-associated antigens (TAAs) liberated upon spontaneous or therapy-induced tumor cell death to T cells, DCs occupy a pivotal position in the cancer immunity cycle. Over the last decades, the mechanisms linking cancer cell death to DC maturation, have been the focus of intense research. Growing evidence supports the concept that the mere transfer of TAAs during the process of cell death is insufficient to drive immunogenic DC maturation unless this process is coupled with the release of immunomodulatory signals by dying cancer cells. Malignant cells succumbing to a regulated cell death variant called immunogenic cell death (ICD), foster a proficient interface with DCs, enabling their immunogenic maturation and engagement of adaptive immunity against cancer. This property relies on the ability of ICD to exhibit pathogen-mimicry hallmarks and orchestrate the emission of a spectrum of constitutively present or de novo-induced danger signals, collectively known as damage-associated molecular patterns (DAMPs). In this review, we discuss how DCs perceive and decode danger signals emanating from malignant cells undergoing ICD and provide an outlook of the major signaling and functional consequences of this interaction for DCs and antitumor immunity.
Collapse
Affiliation(s)
- Sophie Janssens
- Laboratory for ER Stress and Inflammation, Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sofie Rennen
- Laboratory for ER Stress and Inflammation, Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Patrizia Agostinis
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
20
|
Turnbull C, Bones J, Stanley M, Medhavy A, Wang H, Lorenzo AMD, Cappello J, Shanmuganandam S, Pandey A, Seneviratne S, Brown GJ, Meng X, Fulcher D, Burgio G, Man SM, de Lucas Collantes C, Gasior M, López Granados E, Martin P, Jiang SH, Cook MC, Ellyard JI, Athanasopoulos V, Corry B, Canete PF, Vinuesa CG. DECTIN-1: A modifier protein in CTLA-4 haploinsufficiency. SCIENCE ADVANCES 2023; 9:eadi9566. [PMID: 38055819 PMCID: PMC10699772 DOI: 10.1126/sciadv.adi9566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/06/2023] [Indexed: 12/08/2023]
Abstract
Autosomal dominant loss-of-function (LoF) variants in cytotoxic T-lymphocyte associated protein 4 (CTLA4) cause immune dysregulation with autoimmunity, immunodeficiency and lymphoproliferation (IDAIL). Incomplete penetrance and variable expressivity are characteristic of IDAIL caused by CTLA-4 haploinsufficiency (CTLA-4h), pointing to a role for genetic modifiers. Here, we describe an IDAIL proband carrying a maternally inherited pathogenic CTLA4 variant and a paternally inherited rare LoF missense variant in CLEC7A, which encodes for the β-glucan pattern recognition receptor DECTIN-1. The CLEC7A variant led to a loss of DECTIN-1 dimerization and surface expression. Notably, DECTIN-1 stimulation promoted human and mouse regulatory T cell (Treg) differentiation from naïve αβ and γδ T cells, even in the absence of transforming growth factor-β. Consistent with DECTIN-1's Treg-boosting ability, partial DECTIN-1 deficiency exacerbated the Treg defect conferred by CTL4-4h. DECTIN-1/CLEC7A emerges as a modifier gene in CTLA-4h, increasing expressivity of CTLA4 variants and acting in functional epistasis with CTLA-4 to maintain immune homeostasis and tolerance.
Collapse
Affiliation(s)
- Cynthia Turnbull
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Josiah Bones
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Maurice Stanley
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Arti Medhavy
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Hao Wang
- The Francis Crick Institute, London, UK
| | - Ayla May D. Lorenzo
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jean Cappello
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Somasundhari Shanmuganandam
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Abhimanu Pandey
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Sandali Seneviratne
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Grant J Brown
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Xiangpeng Meng
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - David Fulcher
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Gaetan Burgio
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Si Ming Man
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | | | - Mercedes Gasior
- Hematology Department, Hospital Universitario La Paz, Madrid, Spain
| | - Eduardo López Granados
- Clinical Immunology Department, Hospital Universitario La Paz, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases, Madrid, Spain
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research, Madrid, Spain
| | - Pilar Martin
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro de Investigacion Biomedica En Rad, Madrid, Spain
| | - Simon H. Jiang
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Matthew C. Cook
- Cambridge Institute for Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK
| | - Julia I. Ellyard
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Vicki Athanasopoulos
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ben Corry
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Pablo F. Canete
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- Frazer Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Carola G. Vinuesa
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- The Francis Crick Institute, London, UK
| |
Collapse
|
21
|
Jamison BL, Lawrance M, Wang CJ, DeBerg HA, Sansom DM, Gavin MA, Walker LS, Campbell DJ. An IL-2 mutein increases IL-10 and CTLA-4-dependent suppression of dendritic cells by regulatory T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569613. [PMID: 38106196 PMCID: PMC10723345 DOI: 10.1101/2023.12.01.569613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Interleukin-2 (IL-2) variants with increased CD25 dependence that selectively expand Foxp3+ regulatory T (TR) cells are in clinical trials for treating inflammatory diseases. Using an Fc-fused IL-2 mutein (Fc.IL-2 mutein) we developed that prevents diabetes in non-obese diabetic (NOD) mice, we show that Fc.IL-2 mutein induced an activated TR population with elevated proliferation, a transcriptional program associated with Stat5- and TCR-dependent gene modules, and high IL-10 and CTLA-4 expression. Increased IL-10 signaling limited surface MHC class II upregulation during conventional dendritic cell (cDC) maturation, while increased CTLA-4-dependent transendocytosis led to the transfer of CD80 and CD86 costimulatory ligands from maturing cDCs to TR cells. In NOD mice, Fc.IL-2 mutein treatment promoted the suppression of cDCs in the inflamed pancreas and pancreatic lymph nodes resulting in T cell anergy. Thus, IL-2 mutein-expanded TR cells have enhanced functional properties and restrict cDC function, offering promise for targeted immunotherapy use in autoimmune disease.
Collapse
Affiliation(s)
- Braxton L. Jamison
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA
| | | | - Chun Jing Wang
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection & Immunity, London, UK
| | | | - David M. Sansom
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection & Immunity, London, UK
| | | | - Lucy S.K. Walker
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection & Immunity, London, UK
| | - Daniel J. Campbell
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA
- Department of Immunology, University of Washington, Seattle, WA
| |
Collapse
|
22
|
Tuomela K, Salim K, Levings MK. Eras of designer Tregs: Harnessing synthetic biology for immune suppression. Immunol Rev 2023; 320:250-267. [PMID: 37522861 DOI: 10.1111/imr.13254] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
Since their discovery, CD4+ CD25hi FOXP3hi regulatory T cells (Tregs) have been firmly established as a critical cell type for regulating immune homeostasis through a plethora of mechanisms. Due to their immunoregulatory power, delivery of polyclonal Tregs has been explored as a therapy to dampen inflammation in the settings of transplantation and autoimmunity. Evidence shows that Treg therapy is safe and well-tolerated, but efficacy remains undefined and could be limited by poor persistence in vivo and lack of antigen specificity. With the advent of new genetic engineering tools, it is now possible to create bespoke "designer" Tregs that not only overcome possible limitations of polyclonal Tregs but also introduce new features. Here, we review the development of designer Tregs through the perspective of three 'eras': (1) the era of FOXP3 engineering, in which breakthroughs in the biological understanding of this transcription factor enabled the conversion of conventional T cells to Tregs; (2) the antigen-specificity era, in which transgenic T-cell receptors and chimeric antigen receptors were introduced to create more potent and directed Treg therapies; and (3) the current era, which is harnessing advanced genome-editing techniques to introduce and refine existing and new engineering approaches. The year 2022 marked the entry of "designer" Tregs into the clinic, with exciting potential for application and efficacy in a wide variety of immune-mediated diseases.
Collapse
Affiliation(s)
- Karoliina Tuomela
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Salim
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
23
|
Churov AV, Chegodaev YS, Khotina VA, Ofitserov VP, Orekhov AN. Regulatory T Cells in Atherosclerosis: Is Adoptive Cell Therapy Possible? Life (Basel) 2023; 13:1931. [PMID: 37763334 PMCID: PMC10532736 DOI: 10.3390/life13091931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Atherosclerosis is an insidious vascular disease with an asymptomatic debut and development over decades. The aetiology and pathogenesis of atherosclerosis are not completely clear. However, chronic inflammation and autoimmune reactions play a significant role in the natural course of atherosclerosis. The pathogenesis of atherosclerosis involves damage to the intima, immune cell recruitment and infiltration of cells such as monocytes/macrophages, neutrophils, and lymphocytes into the inner layer of vessel walls, and the accumulation of lipids, leading to vascular inflammation. The recruited immune cells mainly have a pro-atherogenic effect, whereas CD4+ regulatory T (Treg) cells are another heterogeneous group of cells with opposite functions that suppress the pathogenic immune responses. Present in low numbers in atherosclerotic plaques, Tregs serve a protective role, maintaining immune homeostasis and tolerance by suppressing pro-inflammatory immune cell subsets. Compelling experimental data suggest that various Treg cell-based approaches may be important in the treatment of atherosclerosis. Here we highlight the most recent advances in our understanding of the roles of FOXP3-expressing CD4+ Treg cells in the atherogenic process and discuss potential translational strategies for the treatment of atherosclerosis by Treg manipulation.
Collapse
Affiliation(s)
- Alexey V. Churov
- Institute on Aging Research, Russian Gerontology Clinical Research Center, Pirogov Russian National Research Medical University, 129226 Moscow, Russia
| | - Yegor S. Chegodaev
- Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
| | - Victoria A. Khotina
- Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
| | - Vladimir P. Ofitserov
- Moscow Aviation Institute, National Research University, 4 Volokolamskoe Shosse, 125993 Moscow, Russia
| | - Alexander N. Orekhov
- Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
| |
Collapse
|
24
|
Que W, Ueta H, Hu X, Morita-Nakagawa M, Fujino M, Ueda D, Tokuda N, Huang W, Guo WZ, Zhong L, Li XK. Temporal and spatial dynamics of immune cells in spontaneous liver transplant tolerance. iScience 2023; 26:107691. [PMID: 37694154 PMCID: PMC10485166 DOI: 10.1016/j.isci.2023.107691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/11/2023] [Accepted: 08/17/2023] [Indexed: 09/12/2023] Open
Abstract
The liver has long been deemed a tolerogenic organ. We employed high-dimensional mass cytometry and immunohistochemistry to depict the temporal and spatial dynamics of immune cells in the spleen and liver in a murine model of spontaneous liver allograft acceptance. We depicted the immune landscape of spontaneous liver tolerance throughout the rejection and acceptance stages after liver transplantation and highlighted several points of importance. Of note, the CD4+/CD8+ T cell ratio remained low, even in the tolerance phase. Furthermore, a PhenoGraph clustering analysis revealed that exhausted CD8+ T cells were the most dominant metacluster in graft-infiltrating lymphocytes (GILs), which highly expressed the costimulatory molecule CD86. The temporal and spatial dynamics of immune cells revealed by high-dimensional analyses enable a fine-grained analysis of GIL subsets, contribute to new insights for the discovery of immunological mechanisms of liver tolerance, and provide potential ways to achieve clinical operational tolerance after liver transplantation.
Collapse
Affiliation(s)
- Weitao Que
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hisashi Ueta
- Department of Anatomy, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Xin Hu
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Miwa Morita-Nakagawa
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka 814-0175, Japan
| | - Masayuki Fujino
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Daisuke Ueda
- Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto 606-8303, Japan
| | - Nobuko Tokuda
- Department of Anatomy, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Wenxin Huang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Lin Zhong
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xiao-Kang Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| |
Collapse
|
25
|
Spanier JA, Fung V, Wardell CM, Alkhatib MH, Chen Y, Swanson LA, Dwyer AJ, Weno ME, Silva N, Mitchell JS, Orban PC, Mojibian M, Verchere CB, Fife BT, Levings MK. Tregs with an MHC class II peptide-specific chimeric antigen receptor prevent autoimmune diabetes in mice. J Clin Invest 2023; 133:e168601. [PMID: 37561596 PMCID: PMC10503798 DOI: 10.1172/jci168601] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023] Open
Abstract
Adoptive immunotherapy with Tregs is a promising approach for preventing or treating type 1 diabetes. Islet antigen-specific Tregs have more potent therapeutic effects than polyclonal cells, but their low frequency is a barrier for clinical application. To generate Tregs that recognize islet antigens, we engineered a chimeric antigen receptor (CAR) derived from a monoclonal antibody with specificity for the insulin B chain 10-23 peptide presented in the context of the IAg7 MHC class II allele present in NOD mice. Peptide specificity of the resulting InsB-g7 CAR was confirmed by tetramer staining and T cell proliferation in response to recombinant or islet-derived peptide. The InsB-g7 CAR redirected NOD Treg specificity such that insulin B 10-23-peptide stimulation enhanced suppressive function, measured via reduction of proliferation and IL-2 production by BDC2.5 T cells and CD80 and CD86 expression on dendritic cells. Cotransfer of InsB-g7 CAR Tregs prevented adoptive transfer diabetes by BDC2.5 T cells in immunodeficient NOD mice. In WT NOD mice, InsB-g7 CAR Tregs prevented spontaneous diabetes. These results show that engineering Treg specificity for islet antigens using a T cell receptor-like CAR is a promising therapeutic approach for the prevention of autoimmune diabetes.
Collapse
Affiliation(s)
- Justin A. Spanier
- Center for Immunology
- Center for Autoimmune Disease Research, and
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Vivian Fung
- Department of Surgery and
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christine M. Wardell
- Department of Surgery and
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mohannad H. Alkhatib
- Center for Immunology
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Yixin Chen
- Center for Immunology
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Linnea A. Swanson
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Alexander J. Dwyer
- Center for Immunology
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Matthew E. Weno
- Center for Immunology
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Nubia Silva
- Center for Immunology
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Jason S. Mitchell
- Center for Immunology
- Center for Autoimmune Disease Research, and
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Paul C. Orban
- Department of Surgery and
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Majid Mojibian
- Department of Surgery and
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - C. Bruce Verchere
- Department of Surgery and
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian T. Fife
- Center for Immunology
- Center for Autoimmune Disease Research, and
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Megan K. Levings
- Department of Surgery and
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
26
|
Lax BM, Palmeri JR, Lutz EA, Sheen A, Stinson JA, Duhamel L, Santollani L, Kennedy A, Rothschilds AM, Spranger S, Sansom DM, Wittrup KD. Both intratumoral regulatory T cell depletion and CTLA-4 antagonism are required for maximum efficacy of anti-CTLA-4 antibodies. Proc Natl Acad Sci U S A 2023; 120:e2300895120. [PMID: 37487077 PMCID: PMC10400942 DOI: 10.1073/pnas.2300895120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023] Open
Abstract
Anti-CTLA-4 antibodies have successfully elicited durable tumor regression in the clinic; however, long-term benefit is limited to a subset of patients for select cancer indications. The incomplete understanding of their mechanism of action has hindered efforts at improvement, with conflicting hypotheses proposing either antagonism of the CTLA-4:B7 axis or Fc effector-mediated regulatory T cell (Treg) depletion governing efficacy. Here, we report the engineering of a nonantagonistic CTLA-4 binding domain (b1s1e2) that depletes intratumoral Tregs as an Fc fusion. Comparison of b1s1e2-Fc to 9d9, an antagonistic anti-CTLA-4 antibody, allowed for interrogation of the separate contributions of CTLA-4 antagonism and Treg depletion to efficacy. Despite equivalent levels of intratumoral Treg depletion, 9d9 achieved more long-term cures than b1s1e2-Fc in MC38 tumors, demonstrating that CTLA-4 antagonism provided additional survival benefit. Consistent with prior reports that CTLA-4 antagonism enhances priming, treatment with 9d9, but not b1s1e2-Fc, increased the percentage of activated T cells in the tumor-draining lymph node (tdLN). Treg depletion with either construct was restricted to the tumor due to insufficient surface CTLA-4 expression on Tregs in other compartments. Through intratumoral administration of diphtheria toxin in Foxp3-DTR mice, we show that depletion of both intratumoral and nodal Tregs provided even greater survival benefit than 9d9, consistent with Treg-driven restraint of priming in the tdLN. Our data demonstrate that anti-CTLA-4 therapies require both CTLA-4 antagonism and intratumoral Treg depletion for maximum efficacy-but that potential future therapies also capable of depleting nodal Tregs could show efficacy in the absence of CTLA-4 antagonism.
Collapse
Affiliation(s)
- Brianna M. Lax
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Joseph R. Palmeri
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Emi A. Lutz
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Allison Sheen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Jordan A. Stinson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Lauren Duhamel
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Luciano Santollani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Alan Kennedy
- Institute of Immunity and Transplantation, University College London, LondonNW3 2PP, United Kingdom
| | - Adrienne M. Rothschilds
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Stefani Spranger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - David M. Sansom
- Institute of Immunity and Transplantation, University College London, LondonNW3 2PP, United Kingdom
| | - K. Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
27
|
McManus CM, Maizels RM. Regulatory T cells in parasite infections: susceptibility, specificity and specialisation. Trends Parasitol 2023; 39:547-562. [PMID: 37225557 DOI: 10.1016/j.pt.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 05/26/2023]
Abstract
Regulatory T cells (Tregs) are essential to control immune system responses to innocuous self-specificities, intestinal and environmental antigens. However, they may also interfere with immunity to parasites, particularly in chronic infection. Susceptibility to many parasite infections is, to a greater or lesser extent, controlled by Tregs, but often they play a more prominent role in moderating the immunopathological consequences of parasitism, and dampening bystander reactions in an antigen-nonspecific manner. More recently, Treg subtypes have been defined which may preferentially act in different contexts; we also discuss the degree to which this specialisation is now being mapped onto how Tregs maintain the delicate balance between tolerance, immunity, and pathology in infection.
Collapse
Affiliation(s)
- Caitlin M McManus
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Rick M Maizels
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK.
| |
Collapse
|
28
|
Xiao Z, Wang R, Wang X, Yang H, Dong J, He X, Yang Y, Guo J, Cui J, Zhou Z. Impaired function of dendritic cells within the tumor microenvironment. Front Immunol 2023; 14:1213629. [PMID: 37441069 PMCID: PMC10333501 DOI: 10.3389/fimmu.2023.1213629] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Dendritic cells (DCs), a class of professional antigen-presenting cells, are considered key factors in the initiation and maintenance of anti-tumor immunity due to their powerful ability to present antigen and stimulate T-cell responses. The important role of DCs in controlling tumor growth and mediating potent anti-tumor immunity has been demonstrated in various cancer models. Accordingly, the infiltration of stimulatory DCs positively correlates with the prognosis and response to immunotherapy in a variety of solid tumors. However, accumulating evidence indicates that DCs exhibit a significantly dysfunctional state, ultimately leading to an impaired anti-tumor immune response due to the effects of the immunosuppressive tumor microenvironment (TME). Currently, numerous preclinical and clinical studies are exploring immunotherapeutic strategies to better control tumors by restoring or enhancing the activity of DCs in tumors, such as the popular DC-based vaccines. In this review, an overview of the role of DCs in controlling tumor progression is provided, followed by a summary of the current advances in understanding the mechanisms by which the TME affects the normal function of DCs, and concluding with a brief discussion of current strategies for DC-based tumor immunotherapy.
Collapse
Affiliation(s)
- Zhihua Xiao
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Ruiqi Wang
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Xuyan Wang
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Haikui Yang
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Jiamei Dong
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Xin He
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Yang Yang
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Jiahao Guo
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Jiawen Cui
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhiling Zhou
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| |
Collapse
|
29
|
Guo S, Yao Y, Tang Y, Xin Z, Wu D, Ni C, Huang J, Wei Q, Zhang T. Radiation-induced tumor immune microenvironments and potential targets for combination therapy. Signal Transduct Target Ther 2023; 8:205. [PMID: 37208386 DOI: 10.1038/s41392-023-01462-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/21/2023] [Accepted: 04/27/2023] [Indexed: 05/21/2023] Open
Abstract
As one of the four major means of cancer treatment including surgery, radiotherapy (RT), chemotherapy, immunotherapy, RT can be applied to various cancers as both a radical cancer treatment and an adjuvant treatment before or after surgery. Although RT is an important modality for cancer treatment, the consequential changes caused by RT in the tumor microenvironment (TME) have not yet been fully elucidated. RT-induced damage to cancer cells leads to different outcomes, such as survival, senescence, or death. During RT, alterations in signaling pathways result in changes in the local immune microenvironment. However, some immune cells are immunosuppressive or transform into immunosuppressive phenotypes under specific conditions, leading to the development of radioresistance. Patients who are radioresistant respond poorly to RT and may experience cancer progression. Given that the emergence of radioresistance is inevitable, new radiosensitization treatments are urgently needed. In this review, we discuss the changes in irradiated cancer cells and immune cells in the TME under different RT regimens and describe existing and potential molecules that could be targeted to improve the therapeutic effects of RT. Overall, this review highlights the possibilities of synergistic therapy by building on existing research.
Collapse
Affiliation(s)
- Siyu Guo
- Department of Radiation Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Yihan Yao
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Tang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Zengfeng Xin
- Department of Orthopedic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Dang Wu
- Department of Radiation Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Chao Ni
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Huang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
| | - Qichun Wei
- Department of Radiation Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
| | - Ting Zhang
- Department of Radiation Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
30
|
Bosteels V, Maréchal S, De Nolf C, Rennen S, Maelfait J, Tavernier SJ, Vetters J, Van De Velde E, Fayazpour F, Deswarte K, Lamoot A, Van Duyse J, Martens L, Bosteels C, Roelandt R, Emmaneel A, Van Gassen S, Boon L, Van Isterdael G, Guillas I, Vandamme N, Höglinger D, De Geest BG, Le Goff W, Saeys Y, Ravichandran KS, Lambrecht BN, Janssens S. LXR signaling controls homeostatic dendritic cell maturation. Sci Immunol 2023; 8:eadd3955. [PMID: 37172103 DOI: 10.1126/sciimmunol.add3955] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Dendritic cells (DCs) mature in an immunogenic or tolerogenic manner depending on the context in which an antigen is perceived, preserving the balance between immunity and tolerance. Whereas the pathways driving immunogenic maturation in response to infectious insults are well-characterized, the signals that drive tolerogenic maturation during homeostasis are still poorly understood. We found that the engulfment of apoptotic cells triggered homeostatic maturation of type 1 conventional DCs (cDC1s) within the spleen. This maturation process could be mimicked by engulfment of empty, nonadjuvanted lipid nanoparticles (LNPs), was marked by intracellular accumulation of cholesterol, and was highly specific to cDC1s. Engulfment of either apoptotic cells or cholesterol-rich LNPs led to the activation of the liver X receptor (LXR) pathway, which promotes the efflux of cellular cholesterol, and repressed genes associated with immunogenic maturation. In contrast, simultaneous engagement of TLR3 to mimic viral infection via administration of poly(I:C)-adjuvanted LNPs repressed the LXR pathway, thus delaying cellular cholesterol efflux and inducing genes that promote T cell-mediated immunity. These data demonstrate that conserved cellular cholesterol efflux pathways are differentially regulated in tolerogenic versus immunogenic cDC1s and suggest that administration of nonadjuvanted cholesterol-rich LNPs may be an approach for inducing tolerogenic DC maturation.
Collapse
Affiliation(s)
- Victor Bosteels
- Laboratory for ER Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sandra Maréchal
- Laboratory for ER Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Clint De Nolf
- Laboratory for ER Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Barriers in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Sofie Rennen
- Laboratory for ER Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Jonathan Maelfait
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Molecular Signaling and Cell Death, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Simon J Tavernier
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Primary Immune Deficiency Research Lab, Department of Internal Medicine and Pediatrics, Centre for Primary Immunodeficiency Ghent, Ghent University Hospital, Ghent, Belgium
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Jessica Vetters
- Laboratory for ER Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Evelien Van De Velde
- Laboratory for ER Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Farzaneh Fayazpour
- Laboratory for ER Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Kim Deswarte
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | | | - Julie Van Duyse
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Flow Core, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Liesbet Martens
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Cédric Bosteels
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Ria Roelandt
- Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- VIB Single Cell Core, VIB, Ghent-Leuven, Belgium
| | - Annelies Emmaneel
- Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Sofie Van Gassen
- Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Louis Boon
- Polpharma Biologics, Utrecht, Netherlands
| | - Gert Van Isterdael
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Flow Core, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Isabelle Guillas
- Sorbonne Université, Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Paris F-75013, France
| | - Niels Vandamme
- Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- VIB Single Cell Core, VIB, Ghent-Leuven, Belgium
| | - Doris Höglinger
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | | | - Wilfried Le Goff
- Sorbonne Université, Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Paris F-75013, France
| | - Yvan Saeys
- Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Kodi S Ravichandran
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Unit for Cell Clearance in Health and Disease, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Center for Cell Clearance, Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Bart N Lambrecht
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Sophie Janssens
- Laboratory for ER Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| |
Collapse
|
31
|
Abstract
The incomplete removal of T cells that are reactive against self-proteins during their differentiation in the thymus requires mechanisms of tolerance that prevent their effector function within the periphery. A further challenge is imposed by the need to establish tolerance to the holobiont self, which comprises a highly complex community of commensal microorganisms. Here, we review recent advances in the investigation of peripheral T cell tolerance, focusing on new insights into mechanisms of tolerance to the gut microbiota, including tolerogenic antigen-presenting cell types and immunomodulatory lymphocytes, and their layered ontogeny that underlies developmental windows for establishing intestinal tolerance. While emphasizing the intestine as a model tissue for studying peripheral T cell tolerance, we highlight overlapping and distinct pathways that underlie tolerance to self-antigens versus commensal antigens within a broader framework for immune tolerance.
Collapse
|
32
|
Spanier JA, Fung V, Wardell CM, Alkhatib MH, Chen Y, Swanson LA, Dwyer AJ, Weno ME, Silva N, Mitchell JS, Orban PC, Mojibian M, Verchere CB, Fife BT, Levings MK. Insulin B peptide-MHC class II-specific chimeric antigen receptor-Tregs prevent autoimmune diabetes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529737. [PMID: 36865264 PMCID: PMC9980092 DOI: 10.1101/2023.02.23.529737] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Adoptive immunotherapy with Tregs is a promising approach for prevention or treatment of type 1 diabetes. Islet antigen-specific Tregs have more potent therapeutic effects than polyclonal cells, but their low frequency is a barrier for clinical application. To generate Tregs that recognize islet antigens, we engineered a chimeric antigen receptor (CAR) derived from a monoclonal antibody with specificity for the insulin B-chain 10-23 peptide presented in the context of the IA g7 MHC class II allele present in NOD mice. Peptide specificity of the resulting InsB-g7 CAR was confirmed by tetramer staining and T cell proliferation in response to recombinant or islet-derived peptide. The InsB-g7 CAR re-directed NOD Treg specificity such that insulin B 10-23-peptide stimulation enhanced suppressive function, measured via reduction of proliferation and IL-2 production by BDC2.5 T cells and CD80 and CD86 expression on dendritic cells. Co-transfer of InsB-g7 CAR Tregs prevented adoptive transfer diabetes by BDC2.5 T cells in immunodeficient NOD mice. In wild type NOD mice, InsB-g7 CAR Tregs stably expressed Foxp3 and prevented spontaneous diabetes. These results show that engineering Treg specificity for islet antigens using a T cell receptor-like CAR is a promising new therapeutic approach for the prevention of autoimmune diabetes. Brief Summary Chimeric antigen receptor Tregs specific for an insulin B-chain peptide presented by MHC class II prevent autoimmune diabetes.
Collapse
Affiliation(s)
- Justin A. Spanier
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Center for Autoimmune Disease Research, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Vivian Fung
- Dept of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Christine M. Wardell
- Dept of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Mohannad H. Alkhatib
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Yixin Chen
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Linnea A. Swanson
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Alexander J. Dwyer
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Matthew E. Weno
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Nubia Silva
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Jason S. Mitchell
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Center for Autoimmune Disease Research, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Paul C. Orban
- Dept of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Majid Mojibian
- Dept of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - C. Bruce Verchere
- Dept of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Brian T. Fife
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Center for Autoimmune Disease Research, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Megan K. Levings
- Dept of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
33
|
Palmeri JR, Lax BM, Peters JM, Duhamel L, Stinson JA, Santollani L, Lutz EA, Pinney W, Bryson BD, Wittrup KD. Tregs constrain CD8 + T cell priming required for curative intratumorally anchored anti-4-1BB immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526116. [PMID: 36778460 PMCID: PMC9915483 DOI: 10.1101/2023.01.30.526116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although co-stimulation of T cells with agonist antibodies targeting 4-1BB (CD137) improves antitumor immune responses in preclinical studies, clinical development has been hampered by on-target, off-tumor toxicity. Here, we report the development of a tumor-anchored ɑ4-1BB agonist (ɑ4-1BB-LAIR), which consists of an ɑ4-1BB antibody fused to the collagen binding protein LAIR. While combination treatment with an antitumor antibody (TA99) displayed only modest efficacy, simultaneous depletion of CD4+ T cells boosted cure rates to over 90% of mice. We elucidated two mechanisms of action for this synergy: ɑCD4 eliminated tumor draining lymph node Tregs, enhancing priming and activation of CD8+ T cells, and TA99 + ɑ4-1BB-LAIR supported the cytotoxic program of these newly primed CD8+ T cells within the tumor microenvironment. Replacement of ɑCD4 with ɑCTLA-4, a clinically approved antibody that enhances T cell priming, produced equivalent cure rates while additionally generating robust immunological memory against secondary tumor rechallenge.
Collapse
Affiliation(s)
- Joseph R Palmeri
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Chemical Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| | - Brianna M Lax
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Chemical Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| | - Joshua M Peters
- Department of Biological Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
- Ragon Institute of MIT, MGH, and Harvard; Cambridge, MA
| | - Lauren Duhamel
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Biological Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| | - Jordan A Stinson
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Biological Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| | - Luciano Santollani
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Chemical Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| | - Emi A Lutz
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Biological Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| | - William Pinney
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Biological Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| | - Bryan D Bryson
- Department of Biological Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
- Ragon Institute of MIT, MGH, and Harvard; Cambridge, MA
| | - K Dane Wittrup
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Chemical Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
- Department of Biological Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| |
Collapse
|
34
|
Edner NM, Ntavli E, Petersone L, Wang CJ, Fabri A, Kogimtzis A, Ovcinnikovs V, Ross EM, Heuts F, Elfaki Y, Houghton LP, Talbot T, Sheri A, Pender A, Chao D, Walker LSK. Stratification of PD-1 blockade response in melanoma using pre- and post-treatment immunophenotyping of peripheral blood. IMMUNOTHERAPY ADVANCES 2023; 3:ltad001. [PMID: 36818683 PMCID: PMC9929715 DOI: 10.1093/immadv/ltad001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Efficacy of checkpoint inhibitor therapies in cancer varies greatly, with some patients showing complete responses while others do not respond and experience progressive disease. We aimed to identify correlates of response and progression following PD-1-directed therapy by immunophenotyping peripheral blood samples from 20 patients with advanced malignant melanoma before and after treatment with the PD-1 blocking antibody pembrolizumab. Our data reveal that individuals responding to PD-1 blockade were characterised by increased CD8 T cell proliferation following treatment, while progression was associated with an increase in CTLA-4-expressing Treg. Remarkably, unsupervised clustering analysis of pre-treatment T cell subsets revealed differences in individuals that went on to respond to PD-1 blockade compared to individuals that did not. These differences mapped to expression of the proliferation marker Ki67 and the costimulatory receptor CD28 as well as the inhibitory molecules 2B4 and KLRG1. While these results require validation in larger patient cohorts, they suggest that flow cytometric analysis of a relatively small number of T cell markers in peripheral blood could potentially allow stratification of PD-1 blockade treatment response prior to therapy initiation.
Collapse
Affiliation(s)
- Natalie M Edner
- Institute of Immunity & Transplantation, University College London Division of Infection & Immunity, London, UK
| | - Elisavet Ntavli
- Institute of Immunity & Transplantation, University College London Division of Infection & Immunity, London, UK
| | - Lina Petersone
- Institute of Immunity & Transplantation, University College London Division of Infection & Immunity, London, UK
| | - Chun Jing Wang
- Institute of Immunity & Transplantation, University College London Division of Infection & Immunity, London, UK
| | - Astrid Fabri
- Institute of Immunity & Transplantation, University College London Division of Infection & Immunity, London, UK
| | - Alexandros Kogimtzis
- Institute of Immunity & Transplantation, University College London Division of Infection & Immunity, London, UK
| | - Vitalijs Ovcinnikovs
- Institute of Immunity & Transplantation, University College London Division of Infection & Immunity, London, UK
| | - Ellen M Ross
- Institute of Immunity & Transplantation, University College London Division of Infection & Immunity, London, UK
| | - Frank Heuts
- Institute of Immunity & Transplantation, University College London Division of Infection & Immunity, London, UK
| | - Yassin Elfaki
- Institute of Immunity & Transplantation, University College London Division of Infection & Immunity, London, UK
| | - Luke P Houghton
- Institute of Immunity & Transplantation, University College London Division of Infection & Immunity, London, UK
| | - Toby Talbot
- Royal Cornwall Hospitals NHS Trust, Truro, UK
| | - Amna Sheri
- Department of Oncology, Royal Free London NHS Foundation Trust, London, UK
| | - Alexandra Pender
- Department of Oncology, Royal Free London NHS Foundation Trust, London, UK
| | - David Chao
- Department of Oncology, Royal Free London NHS Foundation Trust, London, UK
| | - Lucy S K Walker
- Institute of Immunity & Transplantation, University College London Division of Infection & Immunity, London, UK
| |
Collapse
|
35
|
Molecular mechanisms underlying the role of HLA-DQ in systemic immune activation in severe aplastic anemia. Blood Cells Mol Dis 2023; 98:102708. [DOI: 10.1016/j.bcmd.2022.102708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/12/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
|
36
|
Becker-Gotot J, Meissner M, Kotov V, Jurado-Mestre B, Maione A, Pannek A, Albert T, Flores C, Schildberg FA, Gleeson PA, Reipert BM, Oldenburg J, Kurts C. Immune tolerance against infused FVIII in hemophilia A is mediated by PD-L1+ Tregs. J Clin Invest 2022; 132:e159925. [PMID: 36107620 PMCID: PMC9663153 DOI: 10.1172/jci159925] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/13/2022] [Indexed: 11/03/2023] Open
Abstract
A major complication of hemophilia A therapy is the development of alloantibodies (inhibitors) that neutralize intravenously administered coagulation factor VIII (FVIII). Immune tolerance induction therapy (ITI) by repetitive FVIII injection can eradicate inhibitors, and thereby reduce morbidity and treatment costs. However, ITI success is difficult to predict and the underlying immunological mechanisms are unknown. Here, we demonstrated that immune tolerance against FVIII under nonhemophilic conditions was maintained by programmed death (PD) ligand 1-expressing (PD-L1-expressing) regulatory T cells (Tregs) that ligated PD-1 on FVIII-specific B cells, causing them to undergo apoptosis. FVIII-deficient mice injected with FVIII lacked such Tregs and developed inhibitors. Using an ITI mouse model, we found that repetitive FVIII injection induced FVIII-specific PD-L1+ Tregs and reengaged removal of inhibitor-forming B cells. We also demonstrated the existence of FVIII-specific Tregs in humans and showed that such Tregs upregulated PD-L1 in patients with hemophilia after successful ITI. Simultaneously, FVIII-specific B cells upregulated PD-1 and became killable by Tregs. In summary, we showed that PD-1-mediated B cell tolerance against FVIII operated in healthy individuals and in patients with hemophilia A without inhibitors, and that ITI reengaged this mechanism. These findings may impact monitoring of ITI success and treatment of patients with hemophilia A.
Collapse
Affiliation(s)
- Janine Becker-Gotot
- Institute of Molecular Medicine and Experimental Immunology (IMMEI), Rheinische Friedrich-Wilhelms-Universität, Venusberg Campus 1, Bonn, Germany
| | - Mirjam Meissner
- Institute of Molecular Medicine and Experimental Immunology (IMMEI), Rheinische Friedrich-Wilhelms-Universität, Venusberg Campus 1, Bonn, Germany
| | - Vadim Kotov
- Institute of Molecular Medicine and Experimental Immunology (IMMEI), Rheinische Friedrich-Wilhelms-Universität, Venusberg Campus 1, Bonn, Germany
| | - Blanca Jurado-Mestre
- Institute of Molecular Medicine and Experimental Immunology (IMMEI), Rheinische Friedrich-Wilhelms-Universität, Venusberg Campus 1, Bonn, Germany
| | - Andrea Maione
- Institute of Molecular Medicine and Experimental Immunology (IMMEI), Rheinische Friedrich-Wilhelms-Universität, Venusberg Campus 1, Bonn, Germany
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Andreas Pannek
- Institute of Molecular Medicine and Experimental Immunology (IMMEI), Rheinische Friedrich-Wilhelms-Universität, Venusberg Campus 1, Bonn, Germany
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Thilo Albert
- Institute for Experimental Hematology and Transfusion Medicine (IHT), Rheinische Friedrich-Wilhelms-Universität, Venusberg Campus 1, Bonn, Germany
| | - Chrystel Flores
- Institute of Molecular Medicine and Experimental Immunology (IMMEI), Rheinische Friedrich-Wilhelms-Universität, Venusberg Campus 1, Bonn, Germany
| | - Frank A. Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Paul A. Gleeson
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Johannes Oldenburg
- Institute for Experimental Hematology and Transfusion Medicine (IHT), Rheinische Friedrich-Wilhelms-Universität, Venusberg Campus 1, Bonn, Germany
| | - Christian Kurts
- Institute of Molecular Medicine and Experimental Immunology (IMMEI), Rheinische Friedrich-Wilhelms-Universität, Venusberg Campus 1, Bonn, Germany
| |
Collapse
|
37
|
Massa D, Tosi A, Rosato A, Guarneri V, Dieci MV. Multiplexed In Situ Spatial Protein Profiling in the Pursuit of Precision Immuno-Oncology for Patients with Breast Cancer. Cancers (Basel) 2022; 14:4885. [PMID: 36230808 PMCID: PMC9562913 DOI: 10.3390/cancers14194885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of many solid tumors. In breast cancer (BC), immunotherapy is currently approved in combination with chemotherapy, albeit only in triple-negative breast cancer. Unfortunately, most patients only derive limited benefit from ICIs, progressing either upfront or after an initial response. Therapeutics must engage with a heterogeneous network of complex stromal-cancer interactions that can fail at imposing cancer immune control in multiple domains, such as in the genomic, epigenomic, transcriptomic, proteomic, and metabolomic domains. To overcome these types of heterogeneous resistance phenotypes, several combinatorial strategies are underway. Still, they can be predicted to be effective only in the subgroups of patients in which those specific resistance mechanisms are effectively in place. As single biomarker predictive performances are necessarily suboptimal at capturing the complexity of this articulate network, precision immune-oncology calls for multi-omics tumor microenvironment profiling in order to identify unique predictive patterns and to proactively tailor combinatorial treatments. Multiplexed single-cell spatially resolved tissue analysis, through precise epitope colocalization, allows one to infer cellular functional states in view of their spatial organization. In this review, we discuss-through the lens of the cancer-immunity cycle-selected, established, and emerging markers that may be evaluated in multiplexed spatial protein panels to help identify prognostic and predictive patterns in BC.
Collapse
Affiliation(s)
- Davide Massa
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
- Division of Oncology 2, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| | - Anna Tosi
- Immunology and Molecular Oncology Diagnostics, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
- Immunology and Molecular Oncology Diagnostics, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| | - Valentina Guarneri
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
- Division of Oncology 2, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| | - Maria Vittoria Dieci
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
- Division of Oncology 2, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| |
Collapse
|
38
|
van der Vegt SA, Wang YJ, Polonchuk L, Wang K, Waters SL, Baker RE. A model-informed approach to assess the risk of immune checkpoint inhibitor-induced autoimmune myocarditis. Front Pharmacol 2022; 13:966180. [PMID: 36249751 PMCID: PMC9555336 DOI: 10.3389/fphar.2022.966180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs), as a novel immunotherapy, are designed to modulate the immune system to attack malignancies. Despite their promising benefits, immune-related adverse events (IRAEs) may occur, and incidences are bound to increase with surging demand of this class of drugs in treating cancer. Myocarditis, although rare compared to other IRAEs, has a significantly higher fatal frequency. Due to the overwhelming complexity of the immune system, this condition is not well understood, despite the significant research efforts devoted to it. To better understand the development and progression of autoimmune myocarditis and the roles of ICIs therein, we suggest a new approach: mathematical modelling. Mathematical modelling of myocarditis has enormous potential to determine which parts of the immune system are critical to the development and progression of the disease, and therefore warrant further investigation. We provide the immunological background needed to develop a mathematical model of this disease and review relevant existing models of immunology that serve as the mathematical inspiration needed to develop this field.
Collapse
Affiliation(s)
- Solveig A. van der Vegt
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
- *Correspondence: Solveig A. van der Vegt,
| | - Ying-Jie Wang
- Department of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Centre of Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Liudmila Polonchuk
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Ken Wang
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Sarah L. Waters
- Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Ruth E. Baker
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
39
|
Muckenhuber M, Wekerle T, Schwarz C. Costimulation blockade and Tregs in solid organ transplantation. Front Immunol 2022; 13:969633. [PMID: 36119115 PMCID: PMC9478950 DOI: 10.3389/fimmu.2022.969633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022] Open
Abstract
Regulatory T cells (Tregs) play a critical role in maintaining self-tolerance and in containing allo-immune responses in the context of transplantation. Recent advances yielded the approval of the first pharmaceutical costimulation blockers (abatacept and belatacept), with more of them in the pipeline. These costimulation blockers inhibit effector cells with high clinical efficacy to control disease activity, but might inadvertently also affect Tregs. Treg homeostasis is controlled by a complex network of costimulatory and coinhibitory signals, including CD28, the main target of abatacept/belatacept, and CTLA4, PD-1 and ICOS. This review shall give an overview on what effects the therapeutic manipulation of costimulation has on Treg function in transplantation.
Collapse
Affiliation(s)
- Moritz Muckenhuber
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Wekerle
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
- *Correspondence: Thomas Wekerle, ; Christoph Schwarz,
| | - Christoph Schwarz
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
- *Correspondence: Thomas Wekerle, ; Christoph Schwarz,
| |
Collapse
|
40
|
Kennedy A, Waters E, Rowshanravan B, Hinze C, Williams C, Janman D, Fox TA, Booth C, Pesenacker AM, Halliday N, Soskic B, Kaur S, Qureshi OS, Morris EC, Ikemizu S, Paluch C, Huo J, Davis SJ, Boucrot E, Walker LSK, Sansom DM. Differences in CD80 and CD86 transendocytosis reveal CD86 as a key target for CTLA-4 immune regulation. Nat Immunol 2022; 23:1365-1378. [PMID: 35999394 PMCID: PMC9477731 DOI: 10.1038/s41590-022-01289-w] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/15/2022] [Indexed: 01/07/2023]
Abstract
CD28 and CTLA-4 (CD152) play essential roles in regulating T cell immunity, balancing the activation and inhibition of T cell responses, respectively. Although both receptors share the same ligands, CD80 and CD86, the specific requirement for two distinct ligands remains obscure. In the present study, we demonstrate that, although CTLA-4 targets both CD80 and CD86 for destruction via transendocytosis, this process results in separate fates for CTLA-4 itself. In the presence of CD80, CTLA-4 remained ligand bound, and was ubiquitylated and trafficked via late endosomes and lysosomes. In contrast, in the presence of CD86, CTLA-4 detached in a pH-dependent manner and recycled back to the cell surface to permit further transendocytosis. Furthermore, we identified clinically relevant mutations that cause autoimmune disease, which selectively disrupted CD86 transendocytosis, by affecting either CTLA-4 recycling or CD86 binding. These observations provide a rationale for two distinct ligands and show that defects in CTLA-4-mediated transendocytosis of CD86 are associated with autoimmunity.
Collapse
Affiliation(s)
- Alan Kennedy
- UCL Institute of Immunity and Transplantation, London, UK
| | - Erin Waters
- UCL Institute of Immunity and Transplantation, London, UK
| | | | - Claudia Hinze
- UCL Institute of Immunity and Transplantation, London, UK
| | | | - Daniel Janman
- UCL Institute of Immunity and Transplantation, London, UK
| | - Thomas A Fox
- UCL Institute of Immunity and Transplantation, London, UK
| | - Claire Booth
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | | | - Neil Halliday
- UCL Institute of Immunity and Transplantation, London, UK
| | - Blagoje Soskic
- UCL Institute of Immunity and Transplantation, London, UK
| | - Satdip Kaur
- School of Immunity and Infection, Institute of Biomedical Research, University of Birmingham Medical School, Birmingham, UK
| | | | - Emma C Morris
- UCL Institute of Immunity and Transplantation, London, UK
| | - Shinji Ikemizu
- Division of Structural Biology, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Christopher Paluch
- Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Jiandong Huo
- Structural Biology, The Rosalind Franklin Institute, Didcot, UK
- Division of Structural Biology, University of Oxford, Oxford, UK
- Wellcome Trust Centre for Human Genetics, Oxford, UK
- Protein Production UK, The Rosalind Franklin Institute-Diamond Light Source, The Research Complex at Harwell, Didcot, UK
| | - Simon J Davis
- Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Emmanuel Boucrot
- Institute of Structural and Molecular Biology, University College London, London, UK
| | | | - David M Sansom
- UCL Institute of Immunity and Transplantation, London, UK.
| |
Collapse
|
41
|
van Pul KM, Notohardjo JCL, Fransen MF, Koster BD, Stam AGM, Chondronasiou D, Lougheed SM, Bakker J, Kandiah V, van den Tol MP, Jooss K, Vuylsteke RJCLM, van den Eertwegh AJM, de Gruijl TD. Local delivery of low-dose anti–CTLA-4 to the melanoma lymphatic basin leads to systemic T
reg
reduction and effector T cell activation. Sci Immunol 2022; 7:eabn8097. [DOI: 10.1126/sciimmunol.abn8097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Preclinical studies show that locoregional CTLA-4 blockade is equally effective in inducing tumor eradication as systemic delivery, without the added risk of immune-related side effects. This efficacy is related to access of the CTLA-4 blocking antibodies to tumor-draining lymph nodes (TDLNs). Local delivery of anti–CTLA-4 after surgical removal of primary melanoma, before sentinel lymph node biopsy (SLNB), provides a unique setting to clinically assess the role of TDLN in the biological efficacy of locoregional CTLA-4 blockade. Here, we have evaluated the safety, tolerability, and immunomodulatory effects in the SLN and peripheral blood of a single dose of tremelimumab [a fully human immunoglobulin gamma-2 (IgG2) mAb directed against CTLA-4] in a dose range of 2 to 20 mg, injected intradermally at the tumor excision site 1 week before SLNB in 13 patients with early-stage melanoma (phase 1 trial; NCT04274816). Intradermal delivery was safe and well tolerated and induced activation of migratory dendritic cell (DC) subsets in the SLN. It also induced profound and durable decreases in regulatory T cell (T
reg
) frequencies and activation of effector T cells in both SLN and peripheral blood. Moreover, systemic T cell responses against NY-ESO-1 or MART-1 were primed or boosted (
N
= 7), in association with T cell activation and central memory T cell differentiation. These findings indicate that local administration of anti–CTLA-4 may offer a safe and promising adjuvant treatment strategy for patients with early-stage melanoma. Moreover, our data demonstrate a central role for TDLN in the biological efficacy of CTLA-4 blockade and support TDLN-targeted delivery methods.
Collapse
Affiliation(s)
- Kim M. van Pul
- Amsterdam UMC location Vrije Universiteit, Medical Oncology, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
- Amsterdam UMC location Vrije Universiteit, Surgical Oncology, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunology, Cancer Immunology, Amsterdam, Netherlands
| | - Jessica C. L. Notohardjo
- Amsterdam UMC location Vrije Universiteit, Medical Oncology, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunology, Cancer Immunology, Amsterdam, Netherlands
| | - Marieke F. Fransen
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunology, Cancer Immunology, Amsterdam, Netherlands
- Amsterdam UMC location Vrije Universiteit, Pulmonary Diseases, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
| | - Bas D. Koster
- Amsterdam UMC location Vrije Universiteit, Medical Oncology, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunology, Cancer Immunology, Amsterdam, Netherlands
| | - Anita G. M. Stam
- Amsterdam UMC location Vrije Universiteit, Medical Oncology, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunology, Cancer Immunology, Amsterdam, Netherlands
| | - Dafni Chondronasiou
- Amsterdam UMC location Vrije Universiteit, Medical Oncology, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunology, Cancer Immunology, Amsterdam, Netherlands
| | - Sinéad M. Lougheed
- Amsterdam UMC location Vrije Universiteit, Medical Oncology, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunology, Cancer Immunology, Amsterdam, Netherlands
| | - Joyce Bakker
- Amsterdam UMC location Vrije Universiteit, Medical Oncology, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunology, Cancer Immunology, Amsterdam, Netherlands
| | - Vinitha Kandiah
- Amsterdam UMC location Vrije Universiteit, Medical Oncology, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunology, Cancer Immunology, Amsterdam, Netherlands
| | - M. Petrousjka van den Tol
- Amsterdam UMC location Vrije Universiteit, Surgical Oncology, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunology, Cancer Immunology, Amsterdam, Netherlands
| | | | | | - Alfons J. M. van den Eertwegh
- Amsterdam UMC location Vrije Universiteit, Medical Oncology, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunology, Cancer Immunology, Amsterdam, Netherlands
| | - Tanja D. de Gruijl
- Amsterdam UMC location Vrije Universiteit, Medical Oncology, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunology, Cancer Immunology, Amsterdam, Netherlands
| |
Collapse
|
42
|
Yu D, Walker LSK, Liu Z, Linterman MA, Li Z. Targeting T FH cells in human diseases and vaccination: rationale and practice. Nat Immunol 2022; 23:1157-1168. [PMID: 35817844 DOI: 10.1038/s41590-022-01253-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/24/2022] [Indexed: 12/13/2022]
Abstract
The identification of CD4+ T cells localizing to B cell follicles has revolutionized the knowledge of how humoral immunity is generated. Follicular helper T (TFH) cells support germinal center (GC) formation and regulate clonal selection and differentiation of memory and antibody-secreting B cells, thus controlling antibody affinity maturation and memory. TFH cells are essential in sustaining protective antibody responses necessary for pathogen clearance in infection and vaccine-mediated protection. Conversely, aberrant and excessive TFH cell responses mediate and sustain pathogenic antibodies to autoantigens, alloantigens, and allergens, facilitate lymphomagenesis, and even harbor viral reservoirs. TFH cell generation and function are determined by T cell antigen receptor (TCR), costimulation, and cytokine signals, together with specific metabolic and survival mechanisms. Such regulation is crucial to understanding disease pathogenesis and informing the development of emerging therapies for disease or novel approaches to boost vaccine efficacy.
Collapse
Affiliation(s)
- Di Yu
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia. .,Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| | - Lucy S K Walker
- Institute of Immunity & Transplantation, Division of Infection & Immunity, University College London, Royal Free Campus, London, UK
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Zhanguo Li
- Department of Rheumatology & Immunology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
43
|
Wieland J, Buchan S, Sen Gupta S, Mantzouratou A. Genomic instability and the link to infertility: A focus on microsatellites and genomic instability syndromes. Eur J Obstet Gynecol Reprod Biol 2022; 274:229-237. [PMID: 35671666 DOI: 10.1016/j.ejogrb.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 12/01/2022]
Abstract
Infertility is associated to multiple types of different genomic instabilities and is a genetic feature of genomic instability syndromes. While the mismatch repair machinery contributes to the maintenance of genome integrity, surprisingly its potential role in infertility is overlooked. Defects in mismatch repair mechanisms contribute to microsatellite instability and genomic instability syndromes, due to the inability to repair newly replicated DNA. This article reviews the literature to date to elucidate the contribution of microsatellite instability to genomic instability syndromes and infertility. The key findings presented reveal microsatellite instability is poorly researched in genomic instability syndromes and infertility.
Collapse
Affiliation(s)
- Jack Wieland
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole BH12 5BB, UK.
| | - Sarah Buchan
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole BH12 5BB, UK.
| | - Sioban Sen Gupta
- Institute for Women's Health, 86-96 Chenies Mews, University College London, London WC1E 6HX, UK.
| | - Anna Mantzouratou
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole BH12 5BB, UK.
| |
Collapse
|
44
|
Laoubi L, Lacoffrette M, Valsesia S, Lenief V, Guironnet-Paquet A, Mosnier A, Dubois G, Cartier A, Monti L, Marvel J, Espinosa E, Malissen B, Henri S, Mondoulet L, Sampson HA, Nosbaum A, Nicolas JF, Dioszeghy V, Vocanson M. Epicutaneous allergen immunotherapy induces a profound and selective modulation in skin dendritic cell subsets. J Allergy Clin Immunol 2022; 150:1194-1208. [PMID: 35779666 DOI: 10.1016/j.jaci.2022.05.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/03/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Epicutaneous immunotherapy (EPIT) protocols have recently been developed to restore tolerance in patients with food allergy (FA). The mechanisms by which EPIT protocols promote desensitization rely on a profound immune deviation of pathogenic T and B cell responses. OBJECTIVE To date, little is known about the contribution of skin dendritic cells (skDCs) to T cell remodeling and EPIT efficacy. METHODS We capitalized on a preclinical model of food allergy to ovalbumin (OVA) to characterize the phenotype and functions of OVA+ skDCs throughout the course of EPIT. RESULTS Our results showed that both Langerhans cells (LCs) and dermal conventional cDC1 and cDC2 subsets retained their ability to capture OVA in the skin and to migrate toward the skin-draining lymph nodes during EPIT. However, their activation/maturation status was significantly impaired, as evidenced by the gradual and selective reduction of CD86, CD40, and OVA protein expression in respective subsets. Phenotypic changes during EPIT were also characterized by a progressive diversification of single cell gene signatures within each DC subset. Interestingly, we observed that OVA+ LCs progressively lost their capacity to prime CD4+ TEFF, but gained TREG stimulatory properties. In contrast, cDC1 were inefficient in priming CD4+ TEFF or in reactivating TMEMin vitro, while cDC2 retained moderate stimulatory properties, and progressively biased type-2 immunity toward type-1 and type-17 responses. CONCLUSIONS Our results therefore emphasize that the acquisition of distinct phenotypic and functional specializations by skDCs during EPIT is at the cornerstone of the desensitization process.
Collapse
Affiliation(s)
- Léo Laoubi
- CIRI-Centre International de Recherche en Infectiologie; INSERM, U1111; Univ Lyon; Université de Lyon 1; Ecole Normale Supérieure de Lyon; CNRS, UMR 5308, Lyon, France; DBV Technologies, Montrouge, France
| | - Morgane Lacoffrette
- CIRI-Centre International de Recherche en Infectiologie; INSERM, U1111; Univ Lyon; Université de Lyon 1; Ecole Normale Supérieure de Lyon; CNRS, UMR 5308, Lyon, France
| | - Séverine Valsesia
- CIRI-Centre International de Recherche en Infectiologie; INSERM, U1111; Univ Lyon; Université de Lyon 1; Ecole Normale Supérieure de Lyon; CNRS, UMR 5308, Lyon, France
| | - Vanina Lenief
- CIRI-Centre International de Recherche en Infectiologie; INSERM, U1111; Univ Lyon; Université de Lyon 1; Ecole Normale Supérieure de Lyon; CNRS, UMR 5308, Lyon, France
| | - Aurélie Guironnet-Paquet
- CIRI-Centre International de Recherche en Infectiologie; INSERM, U1111; Univ Lyon; Université de Lyon 1; Ecole Normale Supérieure de Lyon; CNRS, UMR 5308, Lyon, France
| | - Amandine Mosnier
- CIRI-Centre International de Recherche en Infectiologie; INSERM, U1111; Univ Lyon; Université de Lyon 1; Ecole Normale Supérieure de Lyon; CNRS, UMR 5308, Lyon, France
| | - Gwendoline Dubois
- CIRI-Centre International de Recherche en Infectiologie; INSERM, U1111; Univ Lyon; Université de Lyon 1; Ecole Normale Supérieure de Lyon; CNRS, UMR 5308, Lyon, France
| | - Anna Cartier
- CIRI-Centre International de Recherche en Infectiologie; INSERM, U1111; Univ Lyon; Université de Lyon 1; Ecole Normale Supérieure de Lyon; CNRS, UMR 5308, Lyon, France
| | - Laurine Monti
- CIRI-Centre International de Recherche en Infectiologie; INSERM, U1111; Univ Lyon; Université de Lyon 1; Ecole Normale Supérieure de Lyon; CNRS, UMR 5308, Lyon, France
| | - Jacqueline Marvel
- CIRI-Centre International de Recherche en Infectiologie; INSERM, U1111; Univ Lyon; Université de Lyon 1; Ecole Normale Supérieure de Lyon; CNRS, UMR 5308, Lyon, France
| | - Eric Espinosa
- Inserm, U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Toulouse F-31037, France; Université de Toulouse, Université Paul Sabatier, Toulouse, F-31062, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Sandrine Henri
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | | | - Hugh A Sampson
- DBV Technologies, Montrouge, France; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Audrey Nosbaum
- CIRI-Centre International de Recherche en Infectiologie; INSERM, U1111; Univ Lyon; Université de Lyon 1; Ecole Normale Supérieure de Lyon; CNRS, UMR 5308, Lyon, France; Allergology and Clinical Immunology Department, Lyon Sud University Hospital, Pierre Bénite, France
| | - Jean-François Nicolas
- CIRI-Centre International de Recherche en Infectiologie; INSERM, U1111; Univ Lyon; Université de Lyon 1; Ecole Normale Supérieure de Lyon; CNRS, UMR 5308, Lyon, France; Allergology and Clinical Immunology Department, Lyon Sud University Hospital, Pierre Bénite, France
| | | | - Marc Vocanson
- CIRI-Centre International de Recherche en Infectiologie; INSERM, U1111; Univ Lyon; Université de Lyon 1; Ecole Normale Supérieure de Lyon; CNRS, UMR 5308, Lyon, France.
| |
Collapse
|
45
|
Luo Y, Liu S, Li H, Hou J, Lin W, Xu Z, Lu T, Li Y, Peng B, Zhang S, Han X, Kuang Z, Wen Y, Cai J, Liu F, Chen XL. Mass Cytometry and Single-Cell Transcriptome Analyses Reveal the Immune Cell Characteristics of Ulcerative Colitis. Front Mol Biosci 2022; 9:859645. [PMID: 35813827 PMCID: PMC9260076 DOI: 10.3389/fmolb.2022.859645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/02/2022] [Indexed: 12/31/2022] Open
Abstract
Background: The pathogenesis of ulcerative colitis (UC) is closely related to immunity. The immune characteristic differences between active UC (UCa) and inactive UC (UCin) have not been completely explained. Mass cytometry (CyTOF) and single-cell RNA sequencing (scRNA-seq) were used to analyze the immune cells of UCa, UCin and healthy control (HC) subjects to determine the specific immune characteristics. Methods: The immune cell subsets among UCa, UCin, HC were distinguished using CyTOF analysis. scRNA-seq analysis was used to validate the results of CyTOF. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to understand the roles of differential immune cell subsets. Results: After CyTOF analysis and validation of scRNA-seq analysis, differential immune cell subsets mainly contained TNF+IL-17A++ effector memory (EM) Tregs, CXCR3+CTLA4+ EM Tregs, CXCR3++CCR7+ B cells, HLA-DR+CCR7+ dendritic cells (DCs) and CTLA-4+ natural killer (NK) cells. In comparison to HC, CCR6+TNF+CD161+ EM T cells were highly enriched in UCa and UCin. Besides, UCa was characterized by an increase in CD38+TNF+ EM Tregs, CXCR3+CCR4+ naïve B cells, HLA-DR+CD14+IL21+ macrophages/monocytes, HLA-DR+CCR7+ DCs, AHR+CD14+ cytotoxic NK (cNK) cells and CD8A+IFNG+ cNK cells. Decreases in CD38+CD27+ plasmablasts, CXCR3+CD38+ regulatory NK cells, and CXCR3+CCR7+ tolerant NK cells in UCa were discovered. Conclusions: Novel immune cell subsets which was used to distinguish UCa, UCin and HC were identified. This information might be utilized to distinguish the patients with UCa and UCin.
Collapse
Affiliation(s)
- Yongxin Luo
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shiying Liu
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huibiao Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiangtao Hou
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjia Lin
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zewen Xu
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tianyu Lu
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanwu Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Pi-Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bin Peng
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shijing Zhang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue Han
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zuoliang Kuang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Wen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiazhong Cai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Pi-Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengbin Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Fengbin Liu, ; Xin-Lin Chen,
| | - Xin-Lin Chen
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Fengbin Liu, ; Xin-Lin Chen,
| |
Collapse
|
46
|
Lam AJ, Haque M, Ward-Hartstonge KA, Uday P, Wardell CM, Gillies JK, Speck M, Mojibian M, Klein Geltink RI, Levings MK. PTEN is required for human Treg suppression of costimulation in vitro. Eur J Immunol 2022; 52:1482-1497. [PMID: 35746855 DOI: 10.1002/eji.202249888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/18/2022] [Accepted: 06/10/2022] [Indexed: 11/07/2022]
Abstract
Regulatory T cell (Treg) therapy is under clinical investigation for the treatment of transplant rejection, autoimmune disease, and graft-versus-host disease. With the advent of genome editing, attention has turned to reinforcing Treg function for therapeutic benefit. A hallmark of Tregs is dampened activation of PI3K-AKT signalling, of which PTEN is a major negative regulator. Loss-of-function studies of PTEN, however, have not conclusively shown a requirement for PTEN in upholding Treg function and stability. Using CRISPR-based genome editing in human Tregs, we show that PTEN ablation does not cause a global defect in Treg function and stability; rather, it selectively blocks their ability to suppress antigen-presenting cells. PTEN-KO Tregs exhibit elevated glycolytic activity, upregulate FOXP3, maintain a Treg phenotype, and have no discernable defects in lineage stability. Functionally, PTEN is dispensable for human Treg-mediated inhibition of T cell activity in vitro and in vivo, but is required for suppression of costimulatory molecule expression by antigen-presenting cells. These data are the first to define a role for a signalling pathway in controlling a subset of human Treg activity. Moreover, they point to the functional necessity of PTEN-regulated PI3K-AKT activity for optimal human Treg function. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Avery J Lam
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Manjurul Haque
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Kirsten A Ward-Hartstonge
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Prakruti Uday
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Christine M Wardell
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Jana K Gillies
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Madeleine Speck
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Majid Mojibian
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Ramon I Klein Geltink
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada.,Department of Molecular Oncology, BC Cancer Research, Vancouver, BC, V5Z 1L3, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, V6T 1Z3, Canada
| |
Collapse
|
47
|
Khaliq AM, Erdogan C, Kurt Z, Turgut SS, Grunvald MW, Rand T, Khare S, Borgia JA, Hayden DM, Pappas SG, Govekar HR, Kam AE, Reiser J, Turaga K, Radovich M, Zang Y, Qiu Y, Liu Y, Fishel ML, Turk A, Gupta V, Al-Sabti R, Subramanian J, Kuzel TM, Sadanandam A, Waldron L, Hussain A, Saleem M, El-Rayes B, Salahudeen AA, Masood A. Refining colorectal cancer classification and clinical stratification through a single-cell atlas. Genome Biol 2022; 23:113. [PMID: 35538548 PMCID: PMC9092724 DOI: 10.1186/s13059-022-02677-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/21/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) consensus molecular subtypes (CMS) have different immunological, stromal cell, and clinicopathological characteristics. Single-cell characterization of CMS subtype tumor microenvironments is required to elucidate mechanisms of tumor and stroma cell contributions to pathogenesis which may advance subtype-specific therapeutic development. We interrogate racially diverse human CRC samples and analyze multiple independent external cohorts for a total of 487,829 single cells enabling high-resolution depiction of the cellular diversity and heterogeneity within the tumor and microenvironmental cells. RESULTS Tumor cells recapitulate individual CMS subgroups yet exhibit significant intratumoral CMS heterogeneity. Both CMS1 microsatellite instability (MSI-H) CRCs and microsatellite stable (MSS) CRC demonstrate similar pathway activations at the tumor epithelial level. However, CD8+ cytotoxic T cell phenotype infiltration in MSI-H CRCs may explain why these tumors respond to immune checkpoint inhibitors. Cellular transcriptomic profiles in CRC exist in a tumor immune stromal continuum in contrast to discrete subtypes proposed by studies utilizing bulk transcriptomics. We note a dichotomy in tumor microenvironments across CMS subgroups exists by which patients with high cancer-associated fibroblasts (CAFs) and C1Q+TAM content exhibit poor outcomes, providing a higher level of personalization and precision than would distinct subtypes. Additionally, we discover CAF subtypes known to be associated with immunotherapy resistance. CONCLUSIONS Distinct CAFs and C1Q+ TAMs are sufficient to explain CMS predictive ability and a simpler signature based on these cellular phenotypes could stratify CRC patient prognosis with greater precision. Therapeutically targeting specific CAF subtypes and C1Q + TAMs may promote immunotherapy responses in CRC patients.
Collapse
Affiliation(s)
- Ateeq M Khaliq
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cihat Erdogan
- Isparta University of Applied Sciences, Isparta, Turkey
| | - Zeyneb Kurt
- Northumbria University, Newcastle Upon Tyne, UK
| | | | | | - Tim Rand
- Tempus Labs, Inc., Chicago, IL, USA
| | | | | | | | - Sam G Pappas
- Rush University Medical Center, Chicago, IL, USA
| | | | - Audrey E Kam
- Rush University Medical Center, Chicago, IL, USA
| | | | | | - Milan Radovich
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yong Zang
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yingjie Qiu
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yunlong Liu
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Anita Turk
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Vineet Gupta
- Rush University Medical Center, Chicago, IL, USA
| | - Ram Al-Sabti
- Rush University Medical Center, Chicago, IL, USA
| | | | | | | | - Levi Waldron
- CUNY Graduate School of Public Health and Health Policy, New York, NY, USA
| | - Arif Hussain
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | | | - Bassel El-Rayes
- University of Alabama, O'Neil Comprehensive Cancer Institute, Birmingham, AL, USA
| | | | - Ashiq Masood
- Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
48
|
Eschweiler S, Ramírez-Suástegui C, Li Y, King E, Chudley L, Thomas J, Wood O, von Witzleben A, Jeffrey D, McCann K, Simon H, Mondal M, Wang A, Dicker M, Lopez-Guadamillas E, Chou TF, Dobbs NA, Essame L, Acton G, Kelly F, Halbert G, Sacco JJ, Schache AG, Shaw R, McCaul JA, Paterson C, Davies JH, Brennan PA, Singh RP, Loadman PM, Wilson W, Hackshaw A, Seumois G, Okkenhaug K, Thomas GJ, Jones TM, Ay F, Friberg G, Kronenberg M, Vanhaesebroeck B, Vijayanand P, Ottensmeier CH. Intermittent PI3Kδ inhibition sustains anti-tumour immunity and curbs irAEs. Nature 2022; 605:741-746. [PMID: 35508656 PMCID: PMC9132770 DOI: 10.1038/s41586-022-04685-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/24/2022] [Indexed: 12/12/2022]
Abstract
Phosphoinositide 3-kinase δ (PI3Kδ) has a key role in lymphocytes, and inhibitors that target this PI3K have been approved for treatment of B cell malignancies1-3. Although studies in mouse models of solid tumours have demonstrated that PI3Kδ inhibitors (PI3Kδi) can induce anti-tumour immunity4,5, its effect on solid tumours in humans remains unclear. Here we assessed the effects of the PI3Kδi AMG319 in human patients with head and neck cancer in a neoadjuvant, double-blind, placebo-controlled randomized phase II trial (EudraCT no. 2014-004388-20). PI3Kδ inhibition decreased the number of tumour-infiltrating regulatory T (Treg) cells and enhanced the cytotoxic potential of tumour-infiltrating T cells. At the tested doses of AMG319, immune-related adverse events (irAEs) required treatment to be discontinued in 12 out of 21 of patients treated with AMG319, suggestive of systemic effects on Treg cells. Accordingly, in mouse models, PI3Kδi decreased the number of Treg cells systemically and caused colitis. Single-cell RNA-sequencing analysis revealed a PI3Kδi-driven loss of tissue-resident colonic ST2 Treg cells, accompanied by expansion of pathogenic T helper 17 (TH17) and type 17 CD8+ T (TC17) cells, which probably contributed to toxicity; this points towards a specific mode of action for the emergence of irAEs. A modified treatment regimen with intermittent dosing of PI3Kδi in mouse models led to a significant decrease in tumour growth without inducing pathogenic T cells in colonic tissue, indicating that alternative dosing regimens might limit toxicity.
Collapse
Affiliation(s)
| | | | - Yingcong Li
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Emma King
- CRUK and NIHR Experimental Cancer Medicine Center, University of Southampton, Southampton, UK
- Dorset Cancer Centre, Poole Hospital NHS Foundation Trust, Poole, UK
| | - Lindsey Chudley
- Liverpool Head and Neck Center and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Jaya Thomas
- CRUK and NIHR Experimental Cancer Medicine Center, University of Southampton, Southampton, UK
| | - Oliver Wood
- CRUK and NIHR Experimental Cancer Medicine Center, University of Southampton, Southampton, UK
| | - Adrian von Witzleben
- CRUK and NIHR Experimental Cancer Medicine Center, University of Southampton, Southampton, UK
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Danielle Jeffrey
- CRUK and NIHR Experimental Cancer Medicine Center, University of Southampton, Southampton, UK
| | - Katy McCann
- CRUK and NIHR Experimental Cancer Medicine Center, University of Southampton, Southampton, UK
| | - Hayley Simon
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Alice Wang
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | | | | | - Nicola A Dobbs
- Centre for Drug Development, Cancer Research UK, London, UK
| | - Louisa Essame
- Centre for Drug Development, Cancer Research UK, London, UK
| | - Gary Acton
- Centre for Drug Development, Cancer Research UK, London, UK
| | - Fiona Kelly
- Centre for Drug Development, Cancer Research UK, London, UK
| | - Gavin Halbert
- Cancer Research UK Formulation Unit, University of Strathclyde, Glasgow, UK
| | - Joseph J Sacco
- Liverpool Head and Neck Center and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Clatterbridge Cancer Centre NHS Foundation Trust and Liverpool Cancer Research UK Experimental Cancer Medicine Center Liverpool, Liverpool, UK
| | - Andrew Graeme Schache
- Liverpool Head and Neck Center and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Richard Shaw
- Liverpool Head and Neck Center and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | | | | | - Joseph H Davies
- Dorset Cancer Centre, Poole Hospital NHS Foundation Trust, Poole, UK
| | | | - Rabindra P Singh
- Southampton University Hospitals NHS Foundation Trust, Southampton, UK
| | - Paul M Loadman
- University of Bradford, Institute of Cancer Therapeutics, Bradford, UK
| | - William Wilson
- Cancer Research UK and UCL Cancer Trials Centre, London, UK
| | - Allan Hackshaw
- Cancer Research UK and UCL Cancer Trials Centre, London, UK
| | | | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Gareth J Thomas
- CRUK and NIHR Experimental Cancer Medicine Center, University of Southampton, Southampton, UK
| | - Terry M Jones
- Liverpool Head and Neck Center and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Ferhat Ay
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Mitchell Kronenberg
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | | | - Pandurangan Vijayanand
- La Jolla Institute for Immunology, La Jolla, CA, USA.
- Liverpool Head and Neck Center and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Christian H Ottensmeier
- La Jolla Institute for Immunology, La Jolla, CA, USA.
- CRUK and NIHR Experimental Cancer Medicine Center, University of Southampton, Southampton, UK.
- Liverpool Head and Neck Center and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
- Clatterbridge Cancer Centre NHS Foundation Trust and Liverpool Cancer Research UK Experimental Cancer Medicine Center Liverpool, Liverpool, UK.
| |
Collapse
|
49
|
Cosway EJ, White AJ, Parnell SM, Schweighoffer E, Jolin HE, Bacon A, Rodewald HR, Tybulewicz V, McKenzie ANJ, Jenkinson WE, Anderson G. Eosinophils are an essential element of a type 2 immune axis that controls thymus regeneration. Sci Immunol 2022; 7:eabn3286. [PMID: 35275754 PMCID: PMC7612579 DOI: 10.1126/sciimmunol.abn3286] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Therapeutic interventions used for cancer treatment provoke thymus damage and limit the recovery of protective immunity. Here, we show that eosinophils are an essential part of an intrathymic type 2 immune network that enables thymus recovery after ablative therapy. Within hours of damage, the thymus undergoes CCR3-dependent colonization by peripheral eosinophils, which reestablishes the epithelial microenvironments that control thymopoiesis. Eosinophil regulation of thymus regeneration occurs via the concerted action of NKT cells that trigger CCL11 production via IL4 receptor signaling in thymic stroma, and ILC2 that represent an intrathymic source of IL5, a cytokine that therapeutically boosts thymus regeneration after damage. Collectively, our findings identify an intrathymic network composed of multiple innate immune cells that restores thymus function during reestablishment of the adaptive immune system.
Collapse
Affiliation(s)
- Emilie J. Cosway
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Andrea J. White
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Sonia M. Parnell
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | | | | | - Andrea Bacon
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Victor Tybulewicz
- Francis Crick Institute, London NW1 1AT, UK,Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | | | - W. E. Jenkinson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Graham Anderson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK,Correspondence to: Professor Graham Anderson, Institute for Immunology and Immunotherapy, Floor 4 Institute for Biomedical Research, Medical School, University of Birmingham, B15 2TT, United Kingdom. Tel: (44)1214146817.
| |
Collapse
|
50
|
Abstract
Follicular helper T (TFH) cells provide help to B cells, supporting the formation of germinal centres that allow affinity maturation of antibody responses. Although usually located in secondary lymphoid organs, T cells bearing features of TFH cells can also be identified in human blood, and their frequency and phenotype are often altered in people with autoimmune diseases. In this Perspective article, I discuss the increase in circulating TFH cells seen in autoimmune settings and explore potential explanations for this phenomenon. I consider the multistep regulation of TFH cell differentiation by the CTLA4 and IL-2 pathways as well as by regulatory T cells and highlight that these same pathways are crucial for regulating autoimmune diseases. The propensity of infection to serve as a cue for TFH cell differentiation and a potential trigger for autoimmune disease development is also discussed. Overall, I postulate that alterations in pathways that regulate autoimmunity are coupled to alterations in TFH cell homeostasis, suggesting that this population may serve as a core sentinel of dysregulated immunity.
Collapse
|