1
|
Rathakrishnan P, McShan AC. In silico identification and characterization of small molecule binding to the CD1d immunoreceptor. J Biomol Struct Dyn 2025; 43:2929-2947. [PMID: 38109194 DOI: 10.1080/07391102.2023.2294388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
CD1 immunoreceptors are a non-classical major histocompatibility complex (MHC) that present antigens to T cells to elucidate immune responses against disease. The antigen repertoire of CD1 has been composed primarily of lipids until recently when CD1d-restricted T cells were shown to be activated by non-lipidic small molecules, such as phenyl pentamethyl dihydrobenzofuran sulfonate (PPBF) and related benzofuran sulfonates. To date structural insights into PPBF/CD1d interactions are lacking, so it is unknown whether small molecule and lipid antigens are presented and recognized through similar mechanisms. Furthermore, it is unknown whether CD1d can bind to and present a broader range of small molecule metabolites to T cells, acting out functions analogous to the MHC class I related protein MR1. Here, we perform in silico docking and molecular dynamics simulations to structurally characterize small molecule interactions with CD1d. PPBF was supported to be presented to T cell receptors through the CD1d F' pocket. Virtual screening of CD1d against more than 17,000 small molecules with diverse geometry and chemistry identified several novel scaffolds, including phytosterols, cholesterols, triterpenes, and carbazole alkaloids, that serve as candidate CD1d antigens. Protein-ligand interaction profiling revealed conserved residues in the CD1d F' pocket that similarly anchor small molecules and lipids. Our results suggest that CD1d could have the intrinsic ability to bind and present a broad range of small molecule metabolites to T cells to carry out its function beyond lipid antigen presentation.
Collapse
Affiliation(s)
| | - Andrew C McShan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
2
|
Peyneau M, Zeller M, Paulet V, Noël B, Damiens MH, Szely N, Natsch A, Pallardy M, Chollet-Martin S, de Chaisemartin L, Kerdine-Römer S. Quaternary ammoniums activate human dendritic cells and induce a specific T-cell response in vitro. Allergol Int 2025; 74:105-114. [PMID: 39237430 DOI: 10.1016/j.alit.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/25/2024] [Accepted: 07/11/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND In many countries, neuro-muscular blocking agents (NMBAs) are the first cause of perioperative anaphylaxis. Epidemiological studies identified pholcodine, a quaternary ammonium-containing opiate as one of the sensitization sources. However, NMBA anaphylaxis exists in countries where pholcodine was unavailable, prompting the hypothesis of other sensitizing molecules, most likely quaternary ammonium compounds (QACs). Indeed, QACs are commonly used as disinfectants, antiseptics, preservatives, and detergents. Occupational exposure to QACs has been reported as a risk factor for NMBA anaphylaxis, but little is known about the sensitization mechanism and the capacity of these molecules to elicit an immune response. We aimed to establish the immunogenicity of QACs representative of the main existing chemical structures. METHODS We measured the sensitization potential of seven QACs (two polyquaterniums, three alkyl-ammoniums and two aromatic ammoniums) by using two standard dendritic cells (DCs) models (THP-1 cell line and monocyte derived-dendritic cells). The allergenicity of the sensitizing compounds was further tested in heterologous and autologous T-cell-DC co-culture models. RESULTS Amongst the seven molecules tested, four could modulate activation markers on DCs, and thus can be classified as chemical sensitizers (polyquaterniums-7 and -10, ethylhexadecyldimethylammonium and benzethonium). This activation was accompanied by the secretion of pro-inflammatory and maturation cytokines. Furthermore, activation by polyquaternium-7 could induce T-cell proliferation in heterologous and autologous coculture models, demonstrating that this molecule can induce a specific CD4+ T cell response. CONCLUSIONS We provide evidence at the cellular level that some QACs can elicit an immune response, which could be in line with the hypothesis of these molecules' role in NMBA sensitization.
Collapse
Affiliation(s)
- Marine Peyneau
- Université Paris-Saclay, Inserm, Inflammation, Microbiome & Immunosurveillance, Orsay, France; AP-HP, Service d'Immunologie Biologique, DMU BIOGEM, Hôpital Bichat, Paris, France
| | - Mathilde Zeller
- Université Paris-Saclay, Inserm, Inflammation, Microbiome & Immunosurveillance, Orsay, France
| | - Virginie Paulet
- Université Paris-Saclay, Inserm, Inflammation, Microbiome & Immunosurveillance, Orsay, France
| | - Benoît Noël
- Université Paris-Saclay, Inserm, Inflammation, Microbiome & Immunosurveillance, Orsay, France
| | - Marie-Hélène Damiens
- Université Paris-Saclay, Inserm, Inflammation, Microbiome & Immunosurveillance, Orsay, France
| | - Natacha Szely
- Université Paris-Saclay, Inserm, Inflammation, Microbiome & Immunosurveillance, Orsay, France
| | | | - Marc Pallardy
- Université Paris-Saclay, Inserm, Inflammation, Microbiome & Immunosurveillance, Orsay, France
| | - Sylvie Chollet-Martin
- Université Paris-Saclay, Inserm, Inflammation, Microbiome & Immunosurveillance, Orsay, France; AP-HP, Service d'Immunologie Biologique, DMU BIOGEM, Hôpital Bichat, Paris, France
| | - Luc de Chaisemartin
- Université Paris-Saclay, Inserm, Inflammation, Microbiome & Immunosurveillance, Orsay, France; AP-HP, Service d'Immunologie Biologique, DMU BIOGEM, Hôpital Bichat, Paris, France
| | - Saadia Kerdine-Römer
- Université Paris-Saclay, Inserm, Inflammation, Microbiome & Immunosurveillance, Orsay, France.
| |
Collapse
|
3
|
Almeida CF, Gully BS, Jones CM, Kedzierski L, Gunasinghe SD, Rice MT, Berry R, Gherardin NA, Nguyen TT, Mok YF, Reijneveld JF, Moody DB, Van Rhijn I, La Gruta NL, Uldrich AP, Rossjohn J, Godfrey DI. Direct recognition of an intact foreign protein by an αβ T cell receptor. Nat Commun 2024; 15:8816. [PMID: 39394178 PMCID: PMC11470135 DOI: 10.1038/s41467-024-51897-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 08/21/2024] [Indexed: 10/13/2024] Open
Abstract
αβ T cell receptors (αβTCRs) co-recognise antigens when bound to Major Histocompatibility Complex (MHC) or MHC class I-like molecules. Additionally, some αβTCRs can bind non-MHC molecules, but how much intact antigen reactivities are achieved remains unknown. Here, we identify an αβ T cell clone that directly recognises the intact foreign protein, R-phycoerythrin (PE), a multimeric (αβ)6γ protein complex. This direct αβTCR-PE interaction occurs in an MHC-independent manner, yet triggers T cell activation and bound PE with an affinity comparable to αβTCR-peptide-MHC interactions. The crystal structure reveals how six αβTCR molecules simultaneously engage the PE hexamer, mediated by the complementarity-determining regions (CDRs) of the αβTCR. Here, the αβTCR mainly binds to two α-helices of the globin fold in the PE α-subunit, which is analogous to the antigen-binding platform of the MHC molecule. Using retrogenic mice expressing this TCR, we show that it supports intrathymic T cell development, maturation, and exit into the periphery as mature CD4/CD8 double negative (DN) T cells with TCR-mediated functional capacity. Accordingly, we show how an αβTCR can recognise an intact foreign protein in an antibody-like manner.
Collapse
MESH Headings
- Animals
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Mice
- Phycoerythrin/metabolism
- Phycoerythrin/chemistry
- Lymphocyte Activation/immunology
- Protein Binding
- Crystallography, X-Ray
- Mice, Inbred C57BL
- Humans
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Complementarity Determining Regions/chemistry
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/metabolism
- Models, Molecular
Collapse
Affiliation(s)
- Catarina F Almeida
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Benjamin S Gully
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Claerwen M Jones
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Lukasz Kedzierski
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Sachith D Gunasinghe
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- European Molecular Biology Laboratory (EMBL) Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, New South Wales, Australia
| | - Michael T Rice
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Richard Berry
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Nicholas A Gherardin
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Trang T Nguyen
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Yee-Foong Mok
- Melbourne Protein Characterisation Platform, Bio21 Molecular Science and Biotechnology Institute, Melbourne, VIC, Australia
| | - Josephine F Reijneveld
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - D Branch Moody
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ildiko Van Rhijn
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Nicole L La Gruta
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Adam P Uldrich
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK.
| | - Dale I Godfrey
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
4
|
Cao TP, Shahine A, Cox LR, Besra GS, Moody DB, Rossjohn J. A structural perspective of how T cell receptors recognize the CD1 family of lipid antigen-presenting molecules. J Biol Chem 2024; 300:107511. [PMID: 38945451 PMCID: PMC11780374 DOI: 10.1016/j.jbc.2024.107511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024] Open
Abstract
The CD1 family of antigen-presenting molecules adopt a major histocompatibility complex class I (MHC-I) fold. Whereas MHC molecules present peptides, the CD1 family has evolved to bind self- and foreign-lipids. The CD1 family of antigen-presenting molecules comprises four members-CD1a, CD1b, CD1c, and CD1d-that differ in their architecture around the lipid-binding cleft, thereby enabling diverse lipids to be accommodated. These CD1-lipid complexes are recognized by T cell receptors (TCRs) expressed on T cells, either through dual recognition of CD1 and lipid or in a new model whereby the TCR directly contacts CD1, thereby triggering an immune response. Chemical syntheses of lipid antigens, and analogs thereof, have been crucial in understanding the underlying specificity of T cell-mediated lipid immunity. This review will focus on our current understanding of how TCRs interact with CD1-lipid complexes, highlighting how it can be fundamentally different from TCR-MHC-peptide corecognition.
Collapse
Affiliation(s)
- Thinh-Phat Cao
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria, Australia
| | - Adam Shahine
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria, Australia
| | - Liam R Cox
- School of Chemistry, University of Birmingham, Birmingham, United Kingdom
| | - Gurdyal S Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - D Branch Moody
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria, Australia; Institute of Infection and Immunity, Cardiff University, School of Medicine, Cardiff, UK.
| |
Collapse
|
5
|
Maerz MD, Cross DL, Seshadri C. Functional and biological implications of clonotypic diversity among human donor-unrestricted T cells. Immunol Cell Biol 2024; 102:474-486. [PMID: 38659280 PMCID: PMC11236517 DOI: 10.1111/imcb.12751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/04/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
T cells express a T-cell receptor (TCR) heterodimer that is the product of germline rearrangement and junctional editing resulting in immense clonotypic diversity. The generation of diverse TCR repertoires enables the recognition of pathogen-derived peptide antigens presented by polymorphic major histocompatibility complex (MHC) molecules. However, T cells also recognize nonpeptide antigens through nearly monomorphic antigen-presenting systems, such as cluster of differentiation 1 (CD1), MHC-related protein 1 (MR1) and butyrophilins (BTNs). This potential for shared immune responses across genetically diverse populations led to their designation as donor-unrestricted T cells (DURTs). As might be expected, some CD1-, MR1- and BTN-restricted T cells express a TCR that is conserved across unrelated individuals. However, several recent studies have reported unexpected diversity among DURT TCRs, and increasing evidence suggests that this diversity has functional consequences. Recent reports also challenge the dogma that immune cells are either innate or adaptive and suggest that DURT TCRs may act in both capacities. Here, we review this evidence and propose an expanded view of the role for clonotypic diversity among DURTs in humans, including new perspectives on how DURT TCRs may integrate their adaptive and innate immune functions.
Collapse
Affiliation(s)
- Megan D Maerz
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, Molecular Medicine and Mechanisms of Disease Program, University of Washington, Seattle, WA, USA
| | - Deborah L Cross
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Chetan Seshadri
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
6
|
Aleksic M, Meng X. Protein Haptenation and Its Role in Allergy. Chem Res Toxicol 2024; 37:850-872. [PMID: 38834188 PMCID: PMC11187640 DOI: 10.1021/acs.chemrestox.4c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
Humans are exposed to numerous electrophilic chemicals either as medicines, in the workplace, in nature, or through use of many common cosmetic and household products. Covalent modification of human proteins by such chemicals, or protein haptenation, is a common occurrence in cells and may result in generation of antigenic species, leading to development of hypersensitivity reactions. Ranging in severity of symptoms from local cutaneous reactions and rhinitis to potentially life-threatening anaphylaxis and severe hypersensitivity reactions such as Stephen-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN), all these reactions have the same Molecular Initiating Event (MIE), i.e. haptenation. However, not all individuals who are exposed to electrophilic chemicals develop symptoms of hypersensitivity. In the present review, we examine common chemistry behind the haptenation reactions leading to formation of neoantigens. We explore simple reactions involving single molecule additions to a nucleophilic side chain of proteins and complex reactions involving multiple electrophilic centers on a single molecule or involving more than one electrophilic molecule as well as the generation of reactive molecules from the interaction with cellular detoxification mechanisms. Besides generation of antigenic species and enabling activation of the immune system, we explore additional events which result directly from the presence of electrophilic chemicals in cells, including activation of key defense mechanisms and immediate consequences of those reactions, and explore their potential effects. We discuss the factors that work in concert with haptenation leading to the development of hypersensitivity reactions and those that may act to prevent it from developing. We also review the potential harnessing of the specificity of haptenation in the design of potent covalent therapeutic inhibitors.
Collapse
Affiliation(s)
- Maja Aleksic
- Safety
and Environmental Assurance Centre, Unilever,
Colworth Science Park, Sharnbrook, Bedford MK44
1LQ, U.K.
| | - Xiaoli Meng
- MRC
Centre for Drug Safety Science, Department of Molecular and Clinical
Pharmacology, The University of Liverpool, Liverpool L69 3GE, U.K.
| |
Collapse
|
7
|
Poddar J, Rangasamy SB, Pahan K. Therapeutic efficacy of cinnamein, a component of balsam of Tolu/Peru, in controlled cortical impact mouse model of TBI. Neurochem Int 2024; 176:105742. [PMID: 38641028 DOI: 10.1016/j.neuint.2024.105742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024]
Abstract
Traumatic brain injury (TBI) remains a major health concern which causes long-term neurological disability particularly in war veterans, athletes and young adults. In spite of intense clinical and research investigations, there is no effective therapy to cease the pathogenesis of the disease. It is believed that axonal injury during TBI is potentiated by neuroinflammation and demyelination and/or failure to remyelination. This study highlights the use of naturally available cinnamein, also chemically known as benzyl cinnamate, in inhibiting neuroinflammation, promoting remyelination and combating the disease process of controlled cortical impact (CCI)-induced TBI in mice. Oral delivery of cinnamein through gavage brought down the activation of microglia and astrocytes to decrease the expression of inducible nitric oxide synthase (iNOS), glial fibrillary acidic protein (GFAP) and ionized calcium binding adaptor molecule 1 (Iba1) in hippocampus and cortex of TBI mice. Cinnamein treatment also stimulated remyelination in TBI mice as revealed by PLP and A2B5 double-labeling, luxol fast blue (LFB) staining and axonal double-labeling for neurofilament and MBP. Furthermore, oral cinnamein reduced the size of lesion cavity in the brain, improved locomotor functions and restored memory and learning in TBI mice. These results suggest a new neuroprotective property of cinnamein that may be valuable in the treatment of TBI.
Collapse
Affiliation(s)
- Jit Poddar
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Suresh B Rangasamy
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Kalipada Pahan
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
8
|
McKay M, Gorai S, Paidi RK, Mondal S, Pahan K. Identification of Cinnamein, a Component of Balsam of Tolu/Peru, as a New Ligand of PPARα for Plaque Reduction and Memory Protection in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis Rep 2024; 8:903-922. [PMID: 38910936 PMCID: PMC11191634 DOI: 10.3233/adr-230179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/15/2024] [Indexed: 06/25/2024] Open
Abstract
Background Despite intense investigations, no effective treatment is yet available to reduce plaques and protect memory and learning in patients with Alzheimer's disease (AD), the most common neurodegenerative disorder. Therefore, it is important to identify a non-toxic, but effective, treatment option for AD. Objective Cinnamein, a nontoxic compound, is naturally available in Balsam of Peru and Tolu Balsam. We examined whether cinnamein treatment could decrease plaques and improve cognitive functions in 5XFAD mouse model of AD. Methods We employed in silico analysis, time-resolved fluorescence energy transfer assay, thermal shift assay, primary neuron isolation, western blot, immunostaining, immunohistochemistry, Barnes maze, T maze, and open field behavior. Results Oral administration of cinnamein led to significant reduction in amyloid-β plaque deposits in the brain and protection of spatial learning and memory in 5XFAD mice. Peroxisome proliferator-activated receptor alpha (PPARα), a nuclear hormone receptor, is involved in plaque lowering and increase in hippocampal plasticity. While investigating underlying mechanisms, we found that cinnamein served as a ligand of PPARα. Accordingly, oral cinnamein upregulated the level of PPARα, but not PPARβ, in the hippocampus, and remained unable to decrease plaques from the hippocampus and improve memory and learning in 5XFAD mice lacking PPARα. While A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) is one of the drivers of nonamyloidogenic pathway, transcription factor EB (TFEB) is considered as the master regulator of autophagy. Cinnamein treatment was found to upregulate both ADAM10 and TFEB in the brain of 5XFAD mice via PPARα. Conclusions Our results suggest that this balsam component may have therapeutic importance in AD.
Collapse
Affiliation(s)
- Mary McKay
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
| | - Sukhamoy Gorai
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
| | - Ramesh K. Paidi
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, USA
| | - Susanta Mondal
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, USA
| |
Collapse
|
9
|
Mandeville J, Alkhalaf Z, Joannidis C, Ryan M, Nelson D, Quiros-Alcala L, Gribble MO, Pollack AZ. Risk perception and use of personal care products by race and ethnicity among a diverse population. UCL OPEN. ENVIRONMENT 2024; 6:e3038. [PMID: 38757092 PMCID: PMC11098005 DOI: 10.14324/111.444/ucloe.3038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/26/2024] [Indexed: 05/18/2024]
Abstract
Personal care products can contain phthalates, parabens and other endocrine-disrupting chemicals. However, information on perception of risks from personal care product use and how use varies by race and ethnicity is limited. We evaluated differences in personal care product use and risk perception in a diverse sample of participants recruited from a US college campus and online. A self-administered questionnaire captured information on sociodemographic factors, personal care product use trends and perception of risk associated with them. Pearson's chi-square and Fisher's exact tests were used to determine differences in personal care product use and risk perception by race and ethnicity. Ordered logistic regressions were performed to measure associations between personal care product use frequency across racial/ethnic categories. Participant (n = 770) mean age was 22.8 years [standard deviation ± 6.0]. Daily use of make-up (eye = 29.3%; other = 38.0%; all = 33.7%) and skincare products (55%) was most frequently reported among Middle Eastern and North African participants. Non-Hispanic Black participants reported the highest daily use of hairstyling products (52%) and lotion (78%). Daily make-up use was more frequently reported among females (41%) than males (24.6%). Levels of agreement were similar across racial and ethnic groups, that personal care product manufacturers should be required to list all ingredients (≥87%). There were significant associations between the frequency of use of some personal care products and racial/ethnic categories when the use frequencies of participants from other racial/ethnic categories were compared to the use frequency of non-Hispanic White participants. There were significant differences in daily use frequency, levels of trust, perception of safety and health risks associated with personal care products by race and ethnicity, underscoring that there may be different sources of exposure to chemicals in personal care products by race and ethnicity.
Collapse
Affiliation(s)
- Julia Mandeville
- Department of Global and Community Health, College of Public Health, George Mason University, Fairfax, VA, USA
| | - Zeina Alkhalaf
- Department of Global and Community Health, College of Public Health, George Mason University, Fairfax, VA, USA
| | - Charlotte Joannidis
- Department of Global and Community Health, College of Public Health, George Mason University, Fairfax, VA, USA
| | - Michelle Ryan
- Department of Global and Community Health, College of Public Health, George Mason University, Fairfax, VA, USA
| | - Devon Nelson
- Department of Global and Community Health, College of Public Health, George Mason University, Fairfax, VA, USA
| | - Lesliam Quiros-Alcala
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Matthew O. Gribble
- Division of Occupational, Environmental & Climate Medicine, University of California, San Francisco, CA, USA
| | - Anna Z. Pollack
- Department of Global and Community Health, College of Public Health, George Mason University, Fairfax, VA, USA
| |
Collapse
|
10
|
Ye JH, Chen YL, Ogg G. CD1a and skin T cells: a pathway for therapeutic intervention. Clin Exp Dermatol 2024; 49:450-458. [PMID: 38173286 PMCID: PMC11037390 DOI: 10.1093/ced/llad460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/28/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
The CD1 and MR1 protein families present lipid antigens and small molecules to T cells, complementing well-studied major histocompatibility complex-peptide mechanisms. The CD1a subtype is highly and continuously expressed within the skin, most notably on Langerhans cells, and has been demonstrated to present self and foreign lipids to T cells, highlighting its cutaneous sentinel role. Alteration of CD1a-dependent T-cell responses has recently been discovered to contribute to the pathogenesis of several inflammatory skin diseases. In this review, we overview the structure and role of CD1a and outline the current evidence implicating CD1a in the development of psoriasis, atopic dermatitis and allergic contact dermatitis.
Collapse
Affiliation(s)
- John H Ye
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Yi-Ling Chen
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Graham Ogg
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Bryan E, Teague JE, Eligul S, Arkins WC, Moody DB, Clark RA, Van Rhijn I. Human Skin T Cells Express Conserved T-Cell Receptors that Cross-React with Staphylococcal Superantigens and CD1a. J Invest Dermatol 2024; 144:833-843.e3. [PMID: 37951348 DOI: 10.1016/j.jid.2023.09.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/06/2023] [Accepted: 09/30/2023] [Indexed: 11/14/2023]
Abstract
Human Langerhans cells highly express CD1a antigen-presenting molecules. To understand the functions of CD1a in human skin, we used CD1a tetramers to capture T cells and determine their effector functions and TCR patterns. Skin T cells from all donors showed CD1a tetramer staining, which in three cases exceeded 10% of skin T cells. CD1a tetramer-positive T cells produced diverse cytokines, including IL-2, IL-4, IL-5, IL-9, IL-17, IL-22, and IFN-γ. Conserved TCRs often recognize nonpolymorphic antigen-presenting molecules, but no TCR motifs are known for CD1a. We detected highly conserved TCRs that used TRAV34 and TRBV28 variable genes, which is a known motif for recognition of staphylococcal enterotoxin B, a superantigen associated with atopic dermatitis. We found that these conserved TCRs did not respond to superantigen presented by CD1a, but instead showed a cross-reactive response with two targets: CD1a and staphylococcal enterotoxin B presented by classical major histocompatibility complex II. These studies identify a conserved human TCR motif for CD1a-reactive T cells. Furthermore, the demonstrated cross-reaction of T cells with two common skin-specific stimuli suggests a candidate mechanism by which CD1a and skin flora could synergize during natural immune response and in Staphylococcus-associated skin diseases.
Collapse
Affiliation(s)
- Elizabeth Bryan
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jessica E Teague
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sezin Eligul
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wellington C Arkins
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - D Branch Moody
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rachael A Clark
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ildiko Van Rhijn
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
12
|
Kobiela A, Hewelt-Belka W, Frąckowiak JE, Kordulewska N, Hovhannisyan L, Bogucka A, Etherington R, Piróg A, Dapic I, Gabrielsson S, Brown SJ, Ogg GS, Gutowska-Owsiak D. Keratinocyte-derived small extracellular vesicles supply antigens for CD1a-resticted T cells and promote their type 2 bias in the context of filaggrin insufficiency. Front Immunol 2024; 15:1369238. [PMID: 38585273 PMCID: PMC10995404 DOI: 10.3389/fimmu.2024.1369238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/07/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Exosome-enriched small extracellular vesicles (sEVs) are nanosized organelles known to participate in long distance communication between cells, including in the skin. Atopic dermatitis (AD) is a chronic inflammatory skin disease for which filaggrin (FLG) gene mutations are the strongest genetic risk factor. Filaggrin insufficiency affects multiple cellular function, but it is unclear if sEV-mediated cellular communication originating from the affected keratinocytes is also altered, and if this influences peptide and lipid antigen presentation to T cells in the skin. Methods Available mRNA and protein expression datasets from filaggrin-insufficient keratinocytes (shFLG), organotypic models and AD skin were used for gene ontology analysis with FunRich tool. sEVs secreted by shFLG and control shC cells were isolated from conditioned media by differential centrifugation. Mass spectrometry was carried out for lipidomic and proteomic profiling of the cells and sEVs. T cell responses to protein, peptide, CD1a lipid antigens, as well as phospholipase A2-digested or intact sEVs were measured by ELISpot and ELISA. Results Data analysis revealed extensive remodeling of the sEV compartment in filaggrin insufficient keratinocytes, 3D models and the AD skin. Lipidomic profiles of shFLGsEV showed a reduction in the long chain (LCFAs) and polyunsaturated fatty acids (PUFAs; permissive CD1a ligands) and increased content of the bulky headgroup sphingolipids (non-permissive ligands). This resulted in a reduction of CD1a-mediated interferon-γ T cell responses to the lipids liberated from shFLG-generated sEVs in comparison to those induced by sEVs from control cells, and an increase in interleukin 13 secretion. The altered sEV lipidome reflected a generalized alteration in the cellular lipidome in filaggrin-insufficient cells and the skin of AD patients, resulting from a downregulation of key enzymes implicated in fatty acid elongation and desaturation, i.e., enzymes of the ACSL, ELOVL and FADS family. Discussion We determined that sEVs constitute a source of antigens suitable for CD1a-mediated presentation to T cells. Lipids enclosed within the sEVs secreted on the background of filaggrin insufficiency contribute to allergic inflammation by reducing type 1 responses and inducing a type 2 bias from CD1a-restricted T cells, thus likely perpetuating allergic inflammation in the skin.
Collapse
Affiliation(s)
- Adrian Kobiela
- Laboratory of Experimental and Translational Immunology, Intercollegiate Faculty of Biotechnology of the University of Gdańsk and the Medical University of Gdańsk, Gdańsk, Poland
| | - Weronika Hewelt-Belka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Joanna E. Frąckowiak
- Laboratory of Experimental and Translational Immunology, Intercollegiate Faculty of Biotechnology of the University of Gdańsk and the Medical University of Gdańsk, Gdańsk, Poland
| | - Natalia Kordulewska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
| | - Lilit Hovhannisyan
- Laboratory of Experimental and Translational Immunology, Intercollegiate Faculty of Biotechnology of the University of Gdańsk and the Medical University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Bogucka
- The Mass Spectrometry Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Rachel Etherington
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Artur Piróg
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Irena Dapic
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Susanne Gabrielsson
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Sara J. Brown
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Graham S. Ogg
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Danuta Gutowska-Owsiak
- Laboratory of Experimental and Translational Immunology, Intercollegiate Faculty of Biotechnology of the University of Gdańsk and the Medical University of Gdańsk, Gdańsk, Poland
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Ogg GS, Rossjohn J, Clark RA, Moody DB. CD1a and bound lipids drive T-cell responses in human skin disease. Eur J Immunol 2023; 53:e2250333. [PMID: 37539748 PMCID: PMC10592190 DOI: 10.1002/eji.202250333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/05/2023]
Abstract
In addition to serving as the main physical barrier with the outside world, human skin is abundantly infiltrated with resident αβ T cells that respond differently to self, infectious, microbiome, and noxious stimuli. To study skin T cells during infection and inflammation, experimental biologists track T-cell surface phenotypes and effector functions, which are often interpreted with the untested assumption that MHC proteins and peptide antigens drive measured responses. However, a broader perspective is that CD1 proteins also activate human T cells, and in skin, Langerhans cells (LCs) are abundant antigen presenting cells that express extremely high levels of CD1a. The emergence of new experimental tools, including CD1a tetramers carrying endogenous lipids, now show that CD1a-reactive T cells comprise a large population of resident T cells in human skin. Here, we review studies showing that skin-derived αβ T cells directly recognize CD1a proteins, and certain bound lipids, such as contact dermatitis allergens, trigger T-cell responses. Other natural skin lipids inhibit CD1a-mediated T-cell responses, providing an entry point for the development of therapeutic lipids that block T-cell responses. Increasing evidence points to a distinct role of CD1a in type 2 and 22 T-cell responses, providing new insights into psoriasis, contact dermatitis, and other T-cell-mediated skin diseases.
Collapse
Affiliation(s)
- Graham S. Ogg
- Medical Research Council Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK
| | - Rachael A. Clark
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - D. Branch Moody
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School
| |
Collapse
|
14
|
Kim S, Cho S, Kim JH. CD1-mediated immune responses in mucosal tissues: molecular mechanisms underlying lipid antigen presentation system. Exp Mol Med 2023; 55:1858-1871. [PMID: 37696897 PMCID: PMC10545705 DOI: 10.1038/s12276-023-01053-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 09/13/2023] Open
Abstract
The cluster of differentiation 1 (CD1) molecule differs from major histocompatibility complex class I and II because it presents glycolipid/lipid antigens. Moreover, the CD1-restricted T cells that recognize these self and foreign antigens participate in both innate and adaptive immune responses. CD1s are constitutively expressed by professional and nonprofessional antigen-presenting cells in mucosal tissues, namely, the skin, lung, and intestine. This suggests that CD1-reactive T cells are involved in the immune responses of these tissues. Indeed, evidence suggests that these cells play important roles in diverse diseases, such as inflammation, autoimmune disease, and infection. Recent studies elucidating the molecular mechanisms by which CD1 presents lipid antigens suggest that defects in these mechanisms could contribute to the activities of CD1-reactive T cells. Thus, improving our understanding of these mechanisms could lead to new and effective therapeutic approaches to CD1-associated diseases. In this review, we discuss the CD1-mediated antigen presentation system and its roles in mucosal tissue immunity.
Collapse
Affiliation(s)
- Seohyun Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Sumin Cho
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Ji Hyung Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
15
|
Shahine A, Van Rhijn I, Rossjohn J, Moody DB. CD1 displays its own negative regulators. Curr Opin Immunol 2023; 83:102339. [PMID: 37245411 PMCID: PMC10527790 DOI: 10.1016/j.coi.2023.102339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/30/2023]
Abstract
After two decades of the study of lipid antigens that activate CD1-restricted T cells, new studies show how autoreactive αβ T-cell receptors (TCRs) can directly recognize the outer surface of CD1 proteins in ways that are lipid-agnostic. Most recently, this lipid agnosticism has turned to negativity, with the discovery of natural CD1 ligands that dominantly negatively block autoreactive αβ TCR binding to CD1a and CD1d. This review highlights the basic differences between positive and negative regulation of cellular systems. We outline strategies to discover lipid inhibitors of CD1-reactive T cells, whose roles in vivo are becoming clear, especially in CD1-mediated skin disease.
Collapse
Affiliation(s)
- Adam Shahine
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Ildiko Van Rhijn
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| | - D Branch Moody
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Peter N, Lichter J, Hagvall L, Bock U, Blömeke B. Common fragrance chemicals activate dendritic cells in coculture with keratinocytes. Contact Dermatitis 2023. [PMID: 37088539 DOI: 10.1111/cod.14324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/05/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND Fragrances are important contact allergens; however, investigation of their skin sensitization potency has been challenging in new approach methods (NAMs). Many fragrance chemicals are susceptible to autoxidation or can be metabolized by enzymes constitutively expressed in skin keratinocytes. Strong sensitizers can be formed in both of these processes. Further, keratinocytes can modulate the dendritic cell (DC) activation and maturation potential, a key event in the acquisition of contact allergy. OBJECTIVES To evaluate the 2D coculture model consisting of keratinocytes and DCs using different weak to moderate sensitizing fragrance chemicals. Further, to investigate fragrances and related oxidation products in the in vitro model and compare to in vivo data. METHODS Chemicals were tested in the coculture activation test (COCAT), consisting of HaCaT keratinocytes and THP-1 cells. THP-1 cell surface expression of costimulatory and adhesion molecules (CD86 and CD54) collected after 24 h incubation with the chemicals was analysed using flow cytometry. RESULTS Twenty-four molecules were tested positive, three were negative (n = 27). Four pairs were evaluated, with aldehydes showing a 6- to 13-fold stronger responses compared to their corresponding alcohols. CONCLUSIONS Results provide insight into the activation of DC in their natural environment of keratinocytes. α,β-Unsaturated alcohols were classified as weaker sensitizers compared to their corresponding aldehydes. In sum, testing of fragrances retrieved results in good agreement with in vivo data.
Collapse
Affiliation(s)
- Niklas Peter
- Department of Environmental Toxicology, Trier University, Trier, Germany
| | - Jutta Lichter
- Department of Environmental Toxicology, Trier University, Trier, Germany
| | - Lina Hagvall
- Department of Dermatology and Venereology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Udo Bock
- Department of Environmental Toxicology, Trier University, Trier, Germany
| | - Brunhilde Blömeke
- Department of Environmental Toxicology, Trier University, Trier, Germany
| |
Collapse
|
17
|
Farquhar R, Van Rhijn I, Moody DB, Rossjohn J, Shahine A. αβ T-cell receptor recognition of self-phosphatidylinositol presented by CD1b. J Biol Chem 2023; 299:102849. [PMID: 36587766 PMCID: PMC9900620 DOI: 10.1016/j.jbc.2022.102849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
CD1 glycoproteins present lipid-based antigens to T-cell receptors (TCRs). A role for CD1b in T-cell-mediated autoreactivity was proposed when it was established that CD1b can present self-phospholipids with short alkyl chains (∼C34) to T cells; however, the structural characteristics of this presentation and recognition are unclear. Here, we report the 1.9 Å resolution binary crystal structure of CD1b presenting a self-phosphatidylinositol-C34:1 and an endogenous scaffold lipid. Moreover, we also determined the 2.4 Å structure of CD1b-phosphatidylinositol complexed to an autoreactive αβ TCR, BC8B. We show that the TCR docks above CD1b and directly contacts the presented antigen, selecting for both the phosphoinositol headgroup and glycerol neck region via antigen remodeling within CD1b and allowing lateral escape of the inositol moiety through a channel formed by the TCR α-chain. Furthermore, through alanine scanning mutagenesis and surface plasmon resonance, we identified key CD1b residues mediating this interaction, with Glu-80 abolishing TCR binding. We in addition define a role for both CD1b α1 and CD1b α2 molecular domains in modulating this interaction. These findings suggest that the BC8B TCR contacts both the presented phospholipid and the endogenous scaffold lipid via a dual mechanism of corecognition. Taken together, these data expand our understanding into the molecular mechanisms of CD1b-mediated T-cell autoreactivity.
Collapse
Affiliation(s)
- Rachel Farquhar
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ildiko Van Rhijn
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA; Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - D Branch Moody
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Institute of Infection and Immunity, Cardiff University, School of Medicine, Cardiff, United Kingdom.
| | - Adam Shahine
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
18
|
Pahan S, Raha S, Dasarathi S, Pahan K. Cinnamein Inhibits the Induction of Nitric Oxide and Proinflammatory Cytokines in Macrophages, Microglia and Astrocytes. JOURNAL OF CLINICAL & EXPERIMENTAL IMMUNOLOGY 2023; 8:520-529. [PMID: 36848307 PMCID: PMC9949320 DOI: 10.33140/jcei.08.01.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Chronic inflammation driven by proinflammatory cytokines (TNFα, IL-1β, IL-6, etc.), and nitric oxide (NO) plays an important role in the pathogenesis of several autoimmune, inflammatory as well as neurodegenerative disorders like rheumatoid arthritis, multiple sclerosis, Alzheimer's disease, Parkinson's disease, Huntington's disease, etc. Therefore, identification of nontoxic anti-inflammatory drugs may be beneficial for these autoimmune, inflammatory and neurodegenerative disorders. Cinnamein, an ester derivative of cinnamic acid and benzyl alcohol, is used as a flavoring agent and for its antifungal and antibacterial properties. This study underlines the importance of cinnamein in inhibiting the induction of proinflammatory molecules in RAW 264.7 macrophages and primary mouse microglia and astrocytes. Stimulation of RAW 264.7 macrophages with lipopolysaccharide (LPS) and interferon γ (IFNγ) led to marked production of NO. However, cinnamein pretreatment significantly inhibited LPS- and IFNγ-induced production of NO in RAW 264.7 macrophages. Cinnamein also reduced the mRNA expression of inducible nitric oxide synthase (iNOS) and TNFα in RAW cells. Accordingly, LPS and viral double-stranded RNA mimic polyinosinic: polycytidylic acid (polyIC) stimulated the production of TNFα, IL-1β and IL-6 in primary mouse microglia, which was inhibited by cinnamein pretreatment. Similarly, cinnamein also inhibited polyIC-induced production of TNFα and IL-6 in primary mouse astrocytes. These results suggest that cinnamein may be used to control inflammation in different autoimmune, inflammatory and neurodegenerative disorders.
Collapse
Affiliation(s)
- Swarupa Pahan
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, USA
| | - Sumita Raha
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, USA.,Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
| | - Sridevi Dasarathi
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
| | - Kalipada Pahan
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, USA.,Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
| |
Collapse
|
19
|
Hardman CS, Chen YL, Wegrecki M, Ng SW, Murren R, Mangat D, Silva JP, Munro R, Chan WY, O'Dowd V, Doyle C, Mori P, Popplewell A, Rossjohn J, Lightwood D, Ogg GS. CD1a promotes systemic manifestations of skin inflammation. Nat Commun 2022; 13:7535. [PMID: 36477177 PMCID: PMC9729296 DOI: 10.1038/s41467-022-35071-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammatory skin conditions are increasingly recognised as being associated with systemic inflammation. The mechanisms connecting the cutaneous and systemic disease are not well understood. CD1a is a virtually monomorphic major histocompatibility complex (MHC) class I-like molecule, highly expressed by skin and mucosal Langerhans cells, and presents lipid antigens to T-cells. Here we show an important role for CD1a in linking cutaneous and systemic inflammation in two experimental disease models. In human CD1a transgenic mice, the toll-like receptor (TLR)7 agonist imiquimod induces more pronounced splenomegaly, expansion of the peripheral blood and spleen T cell compartments, and enhanced neutrophil and eosinophil responses compared to the wild-type, accompanied by elevated skin and plasma cytokine levels, including IL-23, IL-1α, IL-1β, MCP-1 and IL-17A. Similar systemic escalation is shown in MC903-induced skin inflammation. The exacerbated inflammation could be counter-acted by CD1a-blocking antibodies, developed and screened in our laboratories. The beneficial effect is epitope dependent, and we further characterise the five best-performing antibodies for their capacity to modulate CD1a-expressing cells and ameliorate CD1a-dependent systemic inflammatory responses. In summary, we show that a therapeutically targetable CD1a-dependent pathway may play a role in the systemic spread of cutaneous inflammation.
Collapse
Affiliation(s)
- Clare S Hardman
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Yi-Ling Chen
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Marcin Wegrecki
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Soo Weei Ng
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | - Carl Doyle
- UCB Pharma, 208 Bath Road, Slough, SL1 3WE, UK
| | | | | | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | | | - Graham S Ogg
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
20
|
Elinson MN, Vereshchagin AN, Ryzhkova YE, Karpenko KA, Ryzhkov FV, Egorov MP. Electrocatalytic Cascade Selective Approach to 3-Aryl-2' H,3 H,4 H-Spiro{Furo[2,3- с]Chromene-2,5'-Pyrimidine}-2',4,4',6'(1' H,3' H)Tetraones and Its Automatic Screening Docking Studies. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2149568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Affiliation(s)
- Michail N. Elinson
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Anatoly N. Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Yuliya E. Ryzhkova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Kirill A. Karpenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Fedor V. Ryzhkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Mikhail P. Egorov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
21
|
LeBlanc G, Kreissl F, Melamed J, Sobel AL, Constantinides MG. The role of unconventional T cells in maintaining tissue homeostasis. Semin Immunol 2022; 61-64:101656. [PMID: 36306662 PMCID: PMC9828956 DOI: 10.1016/j.smim.2022.101656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/01/2022] [Accepted: 09/21/2022] [Indexed: 01/12/2023]
Affiliation(s)
- Gabrielle LeBlanc
- Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA,These authors contributed equally
| | - Felix Kreissl
- Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA,These authors contributed equally
| | - Jonathan Melamed
- Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA,These authors contributed equally
| | - Adam L. Sobel
- Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA,These authors contributed equally
| | | |
Collapse
|
22
|
Peyneau M, de Chaisemartin L, Gigant N, Chollet-Martin S, Kerdine-Römer S. Quaternary ammonium compounds in hypersensitivity reactions. FRONTIERS IN TOXICOLOGY 2022; 4:973680. [PMID: 36211198 PMCID: PMC9534575 DOI: 10.3389/ftox.2022.973680] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Quaternary ammonium compounds (QAC) are commonly used disinfectants, antiseptics, preservatives, and detergents due to their antibacterial property and represent the first used biocides before phenolic or nitrogen products. Their common structure consists of one or more quaternary ammonium bound with four lateral substituents. Their amphiphilic structure allows them to intercalate into microorganism surfaces which induces an unstable and porous membrane that explains their antimicrobial activity towards bacteria, fungi, and viruses. QAC are thus found in many areas, such as household products, medicines, hygiene products, cosmetics, agriculture, or industrial products but are also used in medical practice as disinfectants and antiseptics and in health care facilities where they are used for cleaning floors and walls. QAC exposure has already been involved in occupational asthma in healthcare workers or professional cleaners by many authors. They also have been suggested to play a role in contact dermatitis (CD) and urticaria in workers using cosmetics such as hairdressers or healthcare workers, inciting reglementary agencies to make recommendations regarding those products. However, distinguishing the irritant or sensitizing properties of chemicals is complex and as a result, the sensitizing property of QAC is still controverted. Moreover, the precise mechanisms underlying the possible sensitization effect are still under investigation, and to date, only a few studies have documented an immunological mechanism. Besides, QAC have been suggested to be responsible for neuromuscular blocking agents (NMBA) sensitization by cross-reactivity. This hypothesis is supported by a higher prevalence of quaternary ammonium (QA)-specific IgE in the professionally exposed populations, such as hairdressers, cleaners, or healthcare workers, suggesting that the sensitization happens with structurally similar compounds present in the environment. This review summarizes the newest knowledge about QAC and their role in hypersensitivities. After describing the different QAC, their structure and use, the most relevant studies about the effects of QAC on the immune system will be reviewed and discussed.
Collapse
Affiliation(s)
- Marine Peyneau
- Université Paris-Saclay, Inserm, Inflammation microbiome immunosurveillance, Châtenay-Malabry, France
- Department « Autoimmunité, Hypersensibilités et Biothérapies », DMU BioGeM, APHP, Hôpital Bichat, Paris, France
- *Correspondence: Marine Peyneau,
| | - Luc de Chaisemartin
- Université Paris-Saclay, Inserm, Inflammation microbiome immunosurveillance, Châtenay-Malabry, France
- Department « Autoimmunité, Hypersensibilités et Biothérapies », DMU BioGeM, APHP, Hôpital Bichat, Paris, France
| | - Nicolas Gigant
- CNRS, BioCIS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Sylvie Chollet-Martin
- Université Paris-Saclay, Inserm, Inflammation microbiome immunosurveillance, Châtenay-Malabry, France
- Department « Autoimmunité, Hypersensibilités et Biothérapies », DMU BioGeM, APHP, Hôpital Bichat, Paris, France
| | - Saadia Kerdine-Römer
- Université Paris-Saclay, Inserm, Inflammation microbiome immunosurveillance, Châtenay-Malabry, France
| |
Collapse
|
23
|
Knox S, Hagvall L, Malmberg P, O'Boyle NM. Topical Application of Metal Allergens Induces Changes to Lipid Composition of Human Skin. FRONTIERS IN TOXICOLOGY 2022; 4:867163. [PMID: 36004357 PMCID: PMC9393847 DOI: 10.3389/ftox.2022.867163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
Lipids are an important constituent of skin and are known to be modified in many skin diseases including psoriasis and atopic dermatitis. The direct effects of common metallic contact allergens on the lipid composition of skin has never been investigated, to the best of our knowledge. We describe skin lipid profiles in the stratum corneum and viable epidermis of ex vivo human skin from a female donor upon exposure to three metal allergens (nickel, cobalt and chromium) visualised using time-of-flight secondary ion mass spectrometry (ToF-SIMS), which allows for simultaneous visualisation of both the allergen and skin components such as lipids. Multivariate analysis using partial least squares discriminant analysis (PLS-DA) indicated that the lipid profile of metal-treated skin was different to non-treated skin. Analysis of individual ions led to the discovery that cobalt and chromium induced increases in the content of diacylglycerols (DAG) in stratum corneum. Cobalt also induced increases in cholesterol in both the stratum corneum and viable epidermis, as well as monoacylglycerols (MAG) in the viable epidermis. Chromium caused an increase in DAG in viable epidermis in addition to the stratum corneum. In contrast, nickel decreased MAG and DAG levels in viable epidermis. Our results indicate that skin lipid content is likely to be altered upon topical exposure to metals. This discovery has potential implications for the molecular mechanisms by which contact allergens cause skin sensitization.
Collapse
Affiliation(s)
- Sophie Knox
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, Dublin, Ireland
| | - Lina Hagvall
- Department of Dermatology and Venereology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Per Malmberg
- Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Niamh M. O'Boyle
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, Dublin, Ireland
- *Correspondence: Niamh M. O'Boyle,
| |
Collapse
|
24
|
Janssen-Weets B, Kerff F, Swiontek K, Kler S, Czolk R, Revets D, Kuehn A, Bindslev-Jensen C, Ollert M, Hilger C. Mammalian derived lipocalin and secretoglobin respiratory allergens strongly bind ligands with potentially immune modulating properties. FRONTIERS IN ALLERGY 2022; 3:958711. [PMID: 35991307 PMCID: PMC9385959 DOI: 10.3389/falgy.2022.958711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Allergens from furry animals frequently cause sensitization and respiratory allergic diseases. Most relevant mammalian respiratory allergens belong either to the protein family of lipocalins or secretoglobins. Their mechanism of sensitization remains largely unresolved. Mammalian lipocalin and secretoglobin allergens are associated with a function in chemical communication that involves abundant secretion into the environment, high stability and the ability to transport small volatile compounds. These properties are likely to contribute concomitantly to their allergenic potential. In this study, we aim to further elucidate the physiological function of lipocalin and secretoglobin allergens and link it to their sensitizing capacity, by analyzing their ligand-binding characteristics. We produced eight major mammalian respiratory allergens from four pet species in E.coli and compared their ligand-binding affinities to forty-nine ligands of different chemical classes by using a fluorescence-quenching assay. Furthermore, we solved the crystal-structure of the major guinea pig allergen Cav p 1, a typical lipocalin. Recombinant lipocalin and secretoglobin allergens are of high thermal stability with melting temperatures ranging from 65 to 90°C and strongly bind ligands with dissociation constants in the low micromolar range, particularly fatty acids, fatty alcohols and the terpene alcohol farnesol, that are associated with potential semiochemical and/or immune-modulating functions. Through the systematic screening of respiratory mammalian lipocalin and secretoglobin allergens with a large panel of potential ligands, we observed that total amino acid composition, as well as cavity shape and volume direct affinities to ligands of different chemical classes. Therefore, we were able to categorize lipocalin allergens over their ligand-binding profile into three sub-groups of a lipocalin clade that is associated with functions in chemical communication, thus strengthening the function of major mammalian respiratory allergens as semiochemical carriers. The promiscuous binding capability of hydrophobic ligands from environmental sources warrants further investigation regarding their impact on a molecule's allergenicity.
Collapse
Affiliation(s)
- Bente Janssen-Weets
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Frédéric Kerff
- Laboratory of Crystallography, Center for Protein Engineering-InBioS, University of Liège, Liège, Belgium
| | - Kyra Swiontek
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Stéphanie Kler
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Dominique Revets
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Carsten Bindslev-Jensen
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- *Correspondence: Christiane Hilger
| |
Collapse
|
25
|
Wegrecki M, Ocampo TA, Gunasinghe SD, von Borstel A, Tin SY, Reijneveld JF, Cao TP, Gully BS, Le Nours J, Moody DB, Van Rhijn I, Rossjohn J. Atypical sideways recognition of CD1a by autoreactive γδ T cell receptors. Nat Commun 2022; 13:3872. [PMID: 35790773 PMCID: PMC9256601 DOI: 10.1038/s41467-022-31443-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 06/16/2022] [Indexed: 01/04/2023] Open
Abstract
CD1a is a monomorphic antigen-presenting molecule on dendritic cells that presents lipids to αβ T cells. Whether CD1a represents a ligand for other immune receptors remains unknown. Here we use CD1a tetramers to show that CD1a is a ligand for Vδ1+ γδ T cells. Functional studies suggest that two γδ T cell receptors (TCRs) bound CD1a in a lipid-independent manner. The crystal structures of three Vγ4Vδ1 TCR-CD1a-lipid complexes reveal that the γδ TCR binds at the extreme far side and parallel to the long axis of the β-sheet floor of CD1a's antigen-binding cleft. Here, the γδ TCR co-recognises the CD1a heavy chain and β2 microglobulin in a manner that is distinct from all other previously observed γδ TCR docking modalities. The 'sideways' and lipid antigen independent mode of autoreactive CD1a recognition induces TCR clustering on the cell surface and proximal T cell signalling as measured by CD3ζ phosphorylation. In contrast with the 'end to end' binding of αβ TCRs that typically contact carried antigens, autoreactive γδ TCRs support geometrically diverse approaches to CD1a, as well as antigen independent recognition.
Collapse
Affiliation(s)
- Marcin Wegrecki
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Tonatiuh A Ocampo
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, US
| | - Sachith D Gunasinghe
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- European Molecular Biology Laboratory (EMBL) Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Anouk von Borstel
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Shin Yi Tin
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Josephine F Reijneveld
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, US
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Thinh-Phat Cao
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Benjamin S Gully
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jérôme Le Nours
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - D Branch Moody
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, US.
| | - Ildiko Van Rhijn
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, US.
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK.
| |
Collapse
|
26
|
Markowska-Szczupak A, Wesołowska A, Borowski T, Sołoducha D, Paszkiewicz O, Kordas M, Rakoczy R. Effect of pine essential oil and rotating magnetic field on antimicrobial performance. Sci Rep 2022; 12:9712. [PMID: 35690675 PMCID: PMC9188566 DOI: 10.1038/s41598-022-13908-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/30/2022] [Indexed: 11/15/2022] Open
Abstract
This work presents the results ofa study which concerns the influence of rotating magnetic field (RMF) on the antibacterial performance of commercial pine essential oil. A suspension of essential oil in saline solution and Escherichia coli were exposed to the rotating magnetic Afield (the frequency of electrical current supplied by a RMF generator f = 1–50 Hz; the averaged values of magnetic induction in the cross-section of the RMF generator B = 13.13 to − 19.92 mT, time of exposure t = 160 min, temperature of incubation 37 °C). The chemical composition of pine (Pinus sylvestris L.) essential oil was determined by gas chromatography coupled with mass spectrometry (GC–MS). The main constituents were α-pinene (28.58%), β-pinene (17.79%), δ-3-carene (14.17%) and limonene (11.58%). The present study indicates the exposition to the RMF, as compared to the unexposed controls causing an increase in the efficacy of antibacterial properties of pine oil. We have shown that rotating magnetic fields (RMF) at a frequency, f, between 25 Hz to and 50 Hz increased the antimicrobial efficiency of oil a concentration lower than 50%.
Collapse
Affiliation(s)
- Agata Markowska-Szczupak
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065, Szczecin, Poland.
| | - Aneta Wesołowska
- Department of Organic and Physical Chemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065, Szczecin, Poland
| | - Tomasz Borowski
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065, Szczecin, Poland
| | - Dawid Sołoducha
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065, Szczecin, Poland
| | - Oliwia Paszkiewicz
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065, Szczecin, Poland
| | - Marian Kordas
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065, Szczecin, Poland
| | - Rafał Rakoczy
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065, Szczecin, Poland
| |
Collapse
|
27
|
Genardi S, Morgun E, Wang CR. CD1-Restricted T Cells in Inflammatory Skin Diseases. J Invest Dermatol 2022; 142:768-773. [PMID: 34130802 PMCID: PMC8665943 DOI: 10.1016/j.jid.2021.03.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 12/14/2022]
Abstract
Autoimmunity results from the breaking of immune tolerance, leading to inflammation and pathology. Although well studied in the conventional T-cell field, the role of nonconventional T cells in autoimmunity is less understood. CD1-restricted T cells recognize lipid antigens rather than peptide antigens and have been implicated in various autoimmune skin conditions, including psoriasis and atopic dermatitis. In this review, we will discuss the self-lipids that CD1-restricted T cells recognize and how these T cells become aberrantly regulated in pathogenic skin conditions.
Collapse
Affiliation(s)
- Samantha Genardi
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Eva Morgun
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Chyung-Ru Wang
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
28
|
Aparicio-Soto M, Curato C, Riedel F, Thierse HJ, Luch A, Siewert K. In Vitro Monitoring of Human T Cell Responses to Skin Sensitizing Chemicals-A Systematic Review. Cells 2021; 11:cells11010083. [PMID: 35011644 PMCID: PMC8750770 DOI: 10.3390/cells11010083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Chemical allergies are T cell-mediated diseases that often manifest in the skin as allergic contact dermatitis (ACD). To prevent ACD on a public health scale and avoid elicitation reactions at the individual patient level, predictive and diagnostic tests, respectively, are indispensable. Currently, there is no validated in vitro T cell assay available. The main bottlenecks concern the inefficient generation of T cell epitopes and the detection of rare antigen-specific T cells. Methods: Here, we systematically review original experimental research papers describing T cell activation to chemical skin sensitizers. We focus our search on studies published in the PubMed and Scopus databases on non-metallic allergens in the last 20 years. Results: We identified 37 papers, among them 32 (86%) describing antigen-specific human T cell activation to 31 different chemical allergens. The remaining studies measured the general effects of chemical allergens on T cell function (five studies, 14%). Most antigen-specific studies used peripheral blood mononuclear cells (PBMC) as antigen-presenting cells (APC, 75%) and interrogated the blood T cell pool (91%). Depending on the individual chemical properties, T cell epitopes were generated either by direct administration into the culture medium (72%), separate modification of autologous APC (29%) or by use of hapten-modified model proteins (13%). Read-outs were mainly based on proliferation (91%), often combined with cytokine secretion (53%). The analysis of T cell clones offers additional opportunities to elucidate the mechanisms of epitope formation and cross-reactivity (13%). The best researched allergen was p-phenylenediamine (PPD, 12 studies, 38%). For this and some other allergens, stronger immune responses were observed in some allergic patients (15/31 chemicals, 48%), illustrating the in vivo relevance of the identified T cells while detection limits remain challenging in many cases. Interpretation: Our results illustrate current hardships and possible solutions to monitoring T cell responses to individual chemical skin sensitizers. The provided data can guide the further development of T cell assays to unfold their full predictive and diagnostic potential, including cross-reactivity assessments.
Collapse
Affiliation(s)
- Marina Aparicio-Soto
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (F.R.); (H.-J.T.); (A.L.)
| | - Caterina Curato
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (F.R.); (H.-J.T.); (A.L.)
| | - Franziska Riedel
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (F.R.); (H.-J.T.); (A.L.)
- Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Hermann-Josef Thierse
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (F.R.); (H.-J.T.); (A.L.)
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (F.R.); (H.-J.T.); (A.L.)
- Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Katherina Siewert
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (F.R.); (H.-J.T.); (A.L.)
- Correspondence: ; Tel.: +49-(0)30-18412-57001
| |
Collapse
|
29
|
Almeida CF, Smith DGM, Cheng TY, Harpur CM, Batleska E, Nguyen-Robertson CV, Nguyen T, Thelemann T, Reddiex SJJ, Li S, Eckle SBG, Van Rhijn I, Rossjohn J, Uldrich AP, Moody DB, Williams SJ, Pellicci DG, Godfrey DI. Benzofuran sulfonates and small self-lipid antigens activate type II NKT cells via CD1d. Proc Natl Acad Sci U S A 2021; 118:e2104420118. [PMID: 34417291 PMCID: PMC8403964 DOI: 10.1073/pnas.2104420118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Natural killer T (NKT) cells detect lipids presented by CD1d. Most studies focus on type I NKT cells that express semi-invariant αβ T cell receptors (TCR) and recognize α-galactosylceramides. However, CD1d also presents structurally distinct lipids to NKT cells expressing diverse TCRs (type II NKT cells), but our knowledge of the antigens for type II NKT cells is limited. An early study identified a nonlipidic NKT cell agonist, phenyl pentamethyldihydrobenzofuransulfonate (PPBF), which is notable for its similarity to common sulfa drugs, but its mechanism of NKT cell activation remained unknown. Here, we demonstrate that a range of pentamethylbenzofuransulfonates (PBFs), including PPBF, activate polyclonal type II NKT cells from human donors. Whereas these sulfa drug-like molecules might have acted pharmacologically on cells, here we demonstrate direct contact between TCRs and PBF-treated CD1d complexes. Further, PBF-treated CD1d tetramers identified type II NKT cell populations expressing αβTCRs and γδTCRs, including those with variable and joining region gene usage (TRAV12-1-TRAJ6) that was conserved across donors. By trapping a CD1d-type II NKT TCR complex for direct mass-spectrometric analysis, we detected molecules that allow the binding of CD1d to TCRs, finding that both selected PBF family members and short-chain sphingomyelin lipids are present in these complexes. Furthermore, the combination of PPBF and short-chain sphingomyelin enhances CD1d tetramer staining of PPBF-reactive T cell lines over either molecule alone. This study demonstrates that nonlipidic small molecules, which resemble sulfa drugs implicated in systemic hypersensitivity and drug allergy reactions, are targeted by a polyclonal population of type II NKT cells in a CD1d-restricted manner.
Collapse
Affiliation(s)
- Catarina F Almeida
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia;
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Dylan G M Smith
- School of Chemistry, The University of Melbourne, Melbourne, VIC 3052, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Tan-Yun Cheng
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Boston, MA 02115
| | - Chris M Harpur
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Elena Batleska
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Catriona V Nguyen-Robertson
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Tram Nguyen
- School of Chemistry, The University of Melbourne, Melbourne, VIC 3052, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Tamara Thelemann
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Scott J J Reddiex
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Shihan Li
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Sidonia B G Eckle
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Ildiko Van Rhijn
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Boston, MA 02115
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, University Utrecht, 3584CL Utrecht, Netherlands
| | - Jamie Rossjohn
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Adam P Uldrich
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - D Branch Moody
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Boston, MA 02115;
| | - Spencer J Williams
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Melbourne, VIC 3010, Australia;
- School of Chemistry, The University of Melbourne, Melbourne, VIC 3052, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Daniel G Pellicci
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia;
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Melbourne, VIC 3010, Australia
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia;
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
30
|
Cotton RN, Wegrecki M, Cheng TY, Chen YL, Veerapen N, Le Nours J, Orgill DP, Pomahac B, Talbot SG, Willis R, Altman JD, de Jong A, Van Rhijn I, Clark RA, Besra GS, Ogg G, Rossjohn J, Moody DB. CD1a selectively captures endogenous cellular lipids that broadly block T cell response. J Exp Med 2021; 218:e20202699. [PMID: 33961028 PMCID: PMC8111460 DOI: 10.1084/jem.20202699] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/12/2021] [Accepted: 03/17/2021] [Indexed: 12/24/2022] Open
Abstract
We optimized lipidomics methods to broadly detect endogenous lipids bound to cellular CD1a proteins. Whereas membrane phospholipids dominate in cells, CD1a preferentially captured sphingolipids, especially a C42, doubly unsaturated sphingomyelin (42:2 SM). The natural 42:2 SM but not the more common 34:1 SM blocked CD1a tetramer binding to T cells in all human subjects tested. Thus, cellular CD1a selectively captures a particular endogenous lipid that broadly blocks its binding to TCRs. Crystal structures show that the short cellular SMs stabilized a triad of surface residues to remain flush with CD1a, but the longer lipids forced the phosphocholine group to ride above the display platform to hinder TCR approach. Whereas nearly all models emphasize antigen-mediated T cell activation, we propose that the CD1a system has intrinsic autoreactivity and is negatively regulated by natural endogenous inhibitors selectively bound in its cleft. Further, the detailed chemical structures of natural blockers could guide future design of therapeutic blockers of CD1a response.
Collapse
Affiliation(s)
- Rachel N. Cotton
- Graduate Program in Immunology, Harvard Medical School, Boston, MA
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Marcin Wegrecki
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Tan-Yun Cheng
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Yi-Ling Chen
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, National Institute for Health Research, Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Natacha Veerapen
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Jérôme Le Nours
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Dennis P. Orgill
- Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Bohdan Pomahac
- Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Simon G. Talbot
- Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Richard Willis
- National Institutes of Health Tetramer Core Facility, Emory University, Atlanta, GA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - John D. Altman
- National Institutes of Health Tetramer Core Facility, Emory University, Atlanta, GA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - Annemieke de Jong
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY
| | - Ildiko Van Rhijn
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Rachael A. Clark
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Gurdyal S. Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Graham Ogg
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, National Institute for Health Research, Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK
| | - D. Branch Moody
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
31
|
Gapin L. CD1a autoreactivity: When size does matter. J Exp Med 2021; 218:e20210531. [PMID: 34014254 PMCID: PMC8142285 DOI: 10.1084/jem.20210531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
CD1a-autoreactive T cells represent a significant proportion of circulating αβ T cells in humans and appear to be enriched in the skin. How their autoreactivity is regulated remains unclear. In this issue of JEM, Cotton et al. (2021. J. Exp. Med.https://doi.org/10.1084/jem.20202699) show that CD1a molecules do not randomly survey cellular lipids but instead capture certain lipid classes that broadly interfere with the binding of autoreactive T cell antigen receptors to the target CD1a. These findings provide new potential therapeutic avenues for manipulating CD1a autoreactive T cell responses.
Collapse
Affiliation(s)
- Laurent Gapin
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO
| |
Collapse
|
32
|
Yoo HJ, Kim NY, Kim JH. Current Understanding of the Roles of CD1a-Restricted T Cells in the Immune System. Mol Cells 2021; 44:310-317. [PMID: 33980746 PMCID: PMC8175153 DOI: 10.14348/molcells.2021.0059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022] Open
Abstract
Cluster of differentiation 1 (CD1) is a family of cell-surface glycoproteins that present lipid antigens to T cells. Humans have five CD1 isoforms. CD1a is distinguished by the small volume of its antigen-binding groove and its stunted A' pocket, its high and exclusive expression on Langerhans cells, and its localization in the early endosomal and recycling intracellular trafficking compartments. Its ligands originate from self or foreign sources. There are three modes by which the T-cell receptors of CD1a-restricted T cells interact with the CD1a:lipid complex: they bind to both the CD1a surface and the antigen or to only CD1a itself, which activates the T cell, or they are unable to bind because of bulky motifs protruding from the antigen-binding groove, which might inhibit autoreactive T-cell activation. Recently, several studies have shown that by producing TH2 or TH17 cytokines, CD1a-restricted T cells contribute to inflammatory skin disorders, including atopic dermatitis, psoriasis, allergic contact dermatitis, and wasp/bee venom allergy. They may also participate in other diseases, including pulmonary disorders and cancer, because CD1a-expressing dendritic cells are also located in non-skin tissues. In this mini-review, we discuss the current knowledge regarding the biology of CD1a-reactive T cells and their potential roles in disease.
Collapse
Affiliation(s)
- Hyun Jung Yoo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Na Young Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Ji Hyung Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| |
Collapse
|
33
|
Scheinman PL, Vocanson M, Thyssen JP, Johansen JD, Nixon RL, Dear K, Botto NC, Morot J, Goldminz AM. Contact dermatitis. Nat Rev Dis Primers 2021; 7:38. [PMID: 34045488 DOI: 10.1038/s41572-021-00271-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 02/04/2023]
Abstract
Contact dermatitis (CD) is among the most common inflammatory dermatological conditions and includes allergic CD, photoallergic CD, irritant CD, photoirritant CD (also called phototoxic CD) and protein CD. Occupational CD can be of any type and is the most prevalent occupational skin disease. Each CD type is characterized by different immunological mechanisms and/or requisite exposures. Clinical manifestations of CD vary widely and multiple subtypes may occur simultaneously. The diagnosis relies on clinical presentation, thorough exposure assessment and evaluation with techniques such as patch testing and skin-prick testing. Management is based on patient education, avoidance strategies of specific substances, and topical treatments; in severe or recalcitrant cases, which can negatively affect the quality of life of patients, systemic medications may be needed.
Collapse
Affiliation(s)
- Pamela L Scheinman
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, USA
| | - Marc Vocanson
- CIRI - Centre International de Recherche en Infectiologie, INSERM, U1111; Univ Lyon; Université Claude Bernard Lyon 1; Ecole Normale Supérieure de Lyon; CNRS, UMR, 5308, Lyon, France
| | - Jacob P Thyssen
- National Allergy Research Centre, Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jeanne Duus Johansen
- National Allergy Research Centre, Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Rosemary L Nixon
- Skin Health Institute - Occupational Dermatology Research and Education Centre, Carlton, VIC, Australia
| | - Kate Dear
- Skin Health Institute - Occupational Dermatology Research and Education Centre, Carlton, VIC, Australia
| | - Nina C Botto
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Johanna Morot
- CIRI - Centre International de Recherche en Infectiologie, INSERM, U1111; Univ Lyon; Université Claude Bernard Lyon 1; Ecole Normale Supérieure de Lyon; CNRS, UMR, 5308, Lyon, France
| | - Ari M Goldminz
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
34
|
Weiß KT, Schreiver I, Siewert K, Luch A, Haslböck B, Berneburg M, Bäumler W. Tattoos – mehr als nur kolorierte Haut? Auf der Suche nach Tattoo‐Allergenen. J Dtsch Dermatol Ges 2021; 19:657-671. [PMID: 33979044 DOI: 10.1111/ddg.14436_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/14/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Katharina T Weiß
- Klinik und Poliklinik für Dermatologie, Universitätsklinikum Regensburg
| | - Ines Schreiver
- Abteilung Chemikalien- und Produktsicherheit, Bundesinstitut für Risikobewertung (BfR), Berlin
| | - Katherina Siewert
- Abteilung Chemikalien- und Produktsicherheit, Bundesinstitut für Risikobewertung (BfR), Berlin
| | - Andreas Luch
- Abteilung Chemikalien- und Produktsicherheit, Bundesinstitut für Risikobewertung (BfR), Berlin
| | - Birgit Haslböck
- Klinik und Poliklinik für Dermatologie, Universitätsklinikum Regensburg
| | - Mark Berneburg
- Klinik und Poliklinik für Dermatologie, Universitätsklinikum Regensburg
| | - Wolfgang Bäumler
- Klinik und Poliklinik für Dermatologie, Universitätsklinikum Regensburg
| |
Collapse
|
35
|
Weiß KT, Schreiver I, Siewert K, Luch A, Haslböck B, Berneburg M, Bäumler W. Tattoos - more than just colored skin? Searching for tattoo allergens. J Dtsch Dermatol Ges 2021; 19:657-669. [PMID: 33955682 DOI: 10.1111/ddg.14436] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022]
Abstract
During tattooing, a high amount of ink is injected into the skin. Tattoo inks contain numerous substances such as the coloring pigments, impurities, solvents, emulsifiers, and preservatives. Black amorphous carbon particles (carbon black), white titanium dioxide, azo or polycyclic pigments create all varieties of color shades in the visible spectrum. Some ingredients of tattoo inks might be hazardous and allergenic chemicals of unknown potential. In Germany, about 20 % of the general population is tattooed and related adverse reactions are increasingly reported. Since tattoo needles inevitably harm the skin, microorganisms can enter the wound and may cause infections. Non-allergic inflammatory reactions (for example cutaneous granuloma and pseudolymphoma) as well as allergic reactions may emerge during or after wound healing. Especially with allergies occurring after weeks, months or years, it remains difficult to identify the specific ingredient(s) that trigger the reaction. This review summarizes possible adverse effects related to tattooing with a focus on the development of tattoo-mediated allergies. To date, relevant allergens were only identified in rare cases. Here we present established methods and discuss current experimental approaches to identify culprit allergens in tattoo inks - via testing of the patient and in vitro approaches.
Collapse
Affiliation(s)
- Katharina T Weiß
- Department of Dermatology and Allergology, University of Regensburg, Regensburg, Germany
| | - Ines Schreiver
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Katherina Siewert
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Birgit Haslböck
- Department of Dermatology and Allergology, University of Regensburg, Regensburg, Germany
| | - Mark Berneburg
- Department of Dermatology and Allergology, University of Regensburg, Regensburg, Germany
| | - Wolfgang Bäumler
- Department of Dermatology and Allergology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
36
|
Novel Molecular Insights into Human Lipid-Mediated T Cell Immunity. Int J Mol Sci 2021; 22:ijms22052617. [PMID: 33807663 PMCID: PMC7961386 DOI: 10.3390/ijms22052617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/17/2022] Open
Abstract
T cells represent a critical arm of our immune defense against pathogens. Over the past two decades, considerable inroads have been made in understanding the fundamental principles underpinning the molecular presentation of peptide-based antigens by the Major Histocompatibility Complex molecules (MHC-I and II), and their molecular recognition by specialized subsets of T cells. However, some T cells can recognize lipid-based antigens presented by MHC-I-like molecules that belong to the Cluster of Differentiation 1 (CD1) family. Here, we will review the advances that have been made in the last five years to understand the molecular mechanisms orchestrating the presentation of novel endogenous and exogenous lipid-based antigens by the CD1 glycoproteins and their recognition by specific populations of CD1-reactive T cells.
Collapse
|
37
|
Abstract
The high expression of CD1a on Langerhans cells in normal human skin suggests a central role for this lipid antigen presenting molecule in skin homeostasis and immunity. Although the lipid antigen presenting function of CD1a has been known for years, the physiological and pathological functions of the CD1a system in human skin remain incompletely understood. This review provides an overview of this active area of investigation, and discusses recent insights into the functions of CD1a, CD1a-restricted T cells, and lipid antigens in inflammatory and allergic skin disease. We include recent publications and work presented at the biennial CD1-MR1 EMBO workshop held in 2019 in Oxford, regarding lipids that increase and those that decrease T cell responses to CD1a.
Collapse
Affiliation(s)
- Annemieke de Jong
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, USA.
| | - Graham Ogg
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, Oxford National Institute for Health Research Biomedical Research Centre, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
38
|
Cotton RN, Cheng TY, Wegrecki M, Le Nours J, Orgill DP, Pomahac B, Talbot SG, Willis RA, Altman JD, de Jong A, Ogg G, Van Rhijn I, Rossjohn J, Clark RA, Moody DB. Human skin is colonized by T cells that recognize CD1a independently of lipid. J Clin Invest 2021; 131:140706. [PMID: 33393500 PMCID: PMC7773353 DOI: 10.1172/jci140706] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022] Open
Abstract
CD1a-autoreactive T cells contribute to skin disease, but the identity of immunodominant self-lipid antigens and their mode of recognition are not yet solved. In most models, MHC and CD1 proteins serve as display platforms for smaller antigens. Here, we showed that CD1a tetramers without added antigen stained large T cell pools in every subject tested, accounting for approximately 1% of skin T cells. The mechanism of tetramer binding to T cells did not require any defined antigen. Binding occurred with approximately 100 lipid ligands carried by CD1a proteins, but could be tuned upward or downward with certain natural self-lipids. TCR recognition mapped to the outer A' roof of CD1a at sites remote from the antigen exit portal, explaining how TCRs can bind CD1a rather than carried lipids. Thus, a major antigenic target of CD1a T cell autoreactivity in vivo is CD1a itself. Based on their high frequency and prevalence among donors, we conclude that CD1a-specific, lipid-independent T cells are a normal component of the human skin T cell repertoire. Bypassing the need to select antigens and effector molecules, CD1a tetramers represent a simple method to track such CD1a-specific T cells from tissues and in any clinical disease.
Collapse
Affiliation(s)
- Rachel N. Cotton
- Graduate Program in Immunology, Harvard Medical School, Boston, Massachusetts, USA
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tan-Yun Cheng
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marcin Wegrecki
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Jérôme Le Nours
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Dennis P. Orgill
- Division of Plastic and Reconstructive Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston Massachusetts, USA
| | - Bohdan Pomahac
- Division of Plastic and Reconstructive Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston Massachusetts, USA
| | - Simon G. Talbot
- Division of Plastic and Reconstructive Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston Massachusetts, USA
| | - Richard A. Willis
- NIH Tetramer Core Facility, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - John D. Altman
- NIH Tetramer Core Facility, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Annemieke de Jong
- Department of Dermatology, Columbia University Irving Medical Center, New York, New York, USA
| | - Graham Ogg
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, United Kingdom
| | - Ildiko Van Rhijn
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- School of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Rachael A. Clark
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - D. Branch Moody
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
39
|
Morgun E, Cao L, Wang CR. Role of Group 1 CD1-Restricted T Cells in Host Defense and Inflammatory Diseases. Crit Rev Immunol 2021; 41:1-21. [PMID: 35381140 PMCID: PMC10128144 DOI: 10.1615/critrevimmunol.2021040089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Group 1 CD1-restricted T cells are members of the unconventional T cell family that recognize lipid antigens presented by CD1a, CD1b, and CD1c molecules. Although they developmentally mirror invariant natural killer T cells, they have diverse antigen specificity and functional capacity, with both anti-microbial and autoreactive targets. The role of group 1 CD1-restricted T cells has been best established in Mycobacterium tuberculosis (Mtb) infection in which a wide variety of lipid antigens have been identified and their ability to confer protection against Mtb infection in a CD1 transgenic mouse model has been shown. Group 1 CD1-restricted T cells have also been implicated in other infections, inflammatory conditions, and malignancies. In particular, autoreactive group 1 CD1-restricted T cells have been shown to play a role in several skin inflammatory conditions. The prevalence of group 1 CD1 autoreactive T cells in healthy individuals suggests the presence of regulatory mechanisms to suppress autoreactivity in homeostasis. The more recent use of group 1 CD1 tetramers and mouse models has allowed for better characterization of their phenotype, functional capacity, and underlying mechanisms of antigen-specific and autoreactive activation. These discoveries may pave the way for the development of novel vaccines and immunotherapies that target group 1 CD1-restricted T cells.
Collapse
Affiliation(s)
- Eva Morgun
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Liang Cao
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
40
|
de Lima Moreira M, Souter MNT, Chen Z, Loh L, McCluskey J, Pellicci DG, Eckle SBG. Hypersensitivities following allergen antigen recognition by unconventional T cells. Allergy 2020; 75:2477-2490. [PMID: 32181878 PMCID: PMC11056244 DOI: 10.1111/all.14279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/24/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023]
Abstract
Conventional T cells recognise protein-derived antigens in the context of major histocompatibility complex (MHC) class Ia and class II molecules and provide anti-microbial and anti-tumour immunity. Conventional T cells have also been implicated in type IV (also termed delayed-type or T cell-mediated) hypersensitivity reactions in response to protein-derived allergen antigens. In addition to conventional T cells, subsets of unconventional T cells exist, which recognise non-protein antigens in the context of monomorphic MHC class I-like molecules. These include T cells that are restricted to the cluster of differentiation 1 (CD1) family members, known as CD1-restricted T cells, and mucosal-associated invariant T cells (MAIT cells) that are restricted to the MHC-related protein 1 (MR1). Compared with conventional T cells, much less is known about the immune functions of unconventional T cells and their role in hypersensitivities. Here, we review allergen antigen presentation by MHC-I-like molecules, their recognition by unconventional T cells, and the potential role of unconventional T cells in hypersensitivities. We also speculate on possible scenarios of allergen antigen presentation by MHC-I-like molecules to unconventional T cells, the hallmarks of such responses, and the expected frequencies of hypersensitivities within the human population.
Collapse
Affiliation(s)
- Marcela de Lima Moreira
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic., Australia
| | - Michael N. T. Souter
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic., Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Vic., Australia
| | - Zhenjun Chen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic., Australia
| | - Liyen Loh
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic., Australia
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic., Australia
| | | | - Sidonia B. G. Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
41
|
The Global Rise and the Complexity of Sesame Allergy: Prime Time to Regulate Sesame in the United States of America? ALLERGIES 2020. [DOI: 10.3390/allergies1010001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sesame allergy is a life-threatening disease that has been growing globally with poorly understood mechanisms. To protect sensitive consumers, sesame is regulated in many countries. There were four research goals for this work on sesame allergy: (i) to map the timeline, and the extent of its global rise; (ii) to dissect the complexity of the disease, and its mechanisms; (iii) to analyze the global regulation of sesame; and (iv) to map the directions for future research and regulation. We performed a literature search on PubMed and Google Scholar, using combinations of key words and analyzed the output. Regulatory information was obtained from the government agencies. Information relevant to the above goals was used to make interpretations. We found that: (i) the reports appeared first in 1950s, and then rapidly rose globally from 1990s; (ii) sesame contains protein and lipid allergens, a unique feature not found in other allergenic foods; (iii) it is linked to five types of diseases with understudied mechanisms; and (iv) it is a regulated allergen in 32 advanced countries excluding the USA. We also provide directions for filling gaps in the research and identify implications of possible regulation of sesame in the USA.
Collapse
|