1
|
Hoytema van Konijnenburg DP, Nigrovic PA, Zanoni I. Regional specialization within the mammalian respiratory immune system. Trends Immunol 2024; 45:871-891. [PMID: 39438172 PMCID: PMC11560516 DOI: 10.1016/j.it.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
The respiratory tract is exposed to infection from inhaled pathogens, including viruses, bacteria, and fungi. So far, a comprehensive assessment that integrates common and distinct aspects of the immune response along different areas of the respiratory tract has been lacking. Here, we discuss key recent findings regarding anatomical, functional, and microbial factors driving regional immune adaptation in the mammalian respiratory system, how they differ between mice and humans, and the similarities and differences with the gastrointestinal tract. We demonstrate that, under evolutionary pressure, mammals evolved spatially organized immune defenses that vary between the upper and lower respiratory tract. Overall, we propose that the functional specialization of the immune response along the respiratory tract has fundamental implications for the management of infectious or inflammatory diseases.
Collapse
Affiliation(s)
| | - Peter A Nigrovic
- Division of Immunology, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA; Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA
| | - Ivan Zanoni
- Division of Immunology, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA; Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
2
|
Xiang X, Zhu Y, Wang T, Ding P, Cheng K, Ming Y. Association between salivary microbiota and tacrolimus pharmacokinetic variability in kidney transplant. Genomics 2024; 116:110952. [PMID: 39426572 DOI: 10.1016/j.ygeno.2024.110952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/02/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Kidney transplantation (KT) serves as a highly effective treatment for end-stage renal disease (ESRD). Nonetheless, the administration of tacrolimus, a commonly used immunosuppressant in KT, faces challenges due to the lack of dependable biomarkers for its efficacy and the considerable variability in tacrolimus pharmacokinetics (TacIPV). In this study, 183 saliva samples from 48 KT recipients under tacrolimus therapy, alongside 9 healthy control samples, were subjected to 16S rRNA sequencing. The analysis revealed significant differences in the composition of salivary microbiota among KT recipients, patients with ESRD, and healthy controls. Moreover, trough blood concentrations (C0) of tacrolimus were associated with alterations in microbiota composition. Notably, Capnocytophage consistently exhibited a negative correlation in both group-level and individual trends. Furthermore, distinct taxa were identified that effectively distinguished recipients with varying TacIPV, as demonstrated by a cross-validation random forest model (mean AUC = 0.7560), with Anaerolinea emerging as a prominent contributor to the classifier. These findings suggest that salivary microbiota is closely linked to tacrolimus C0 levels and could aid clinicians in differentiating KT recipients based on TacIPV.
Collapse
Affiliation(s)
- Xuyu Xiang
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha 410013, China; Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Yi Zhu
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha 410013, China; Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Tianyin Wang
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha 410013, China; Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Peng Ding
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha 410013, China; Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Ke Cheng
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha 410013, China; Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Yingzi Ming
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha 410013, China; Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China.
| |
Collapse
|
3
|
Yang Z, Liu M, Chang Z, Du C, Yang Y, Zhang C, Hu L. Myeloid-derived growth factor promotes M2 macrophage polarization and attenuates Sjögren's syndrome via suppression of the CX3CL1/CX3CR1 axis. Front Immunol 2024; 15:1465938. [PMID: 39497829 PMCID: PMC11532040 DOI: 10.3389/fimmu.2024.1465938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/26/2024] [Indexed: 11/07/2024] Open
Abstract
Introduction Primary Sjögren syndrome (pSS) is a systemic autoimmune disease that is characterized by the infiltration of immune cells into the salivary glands. The re-establishment of salivary glands (SGs) function in pSS remains a clinical challenge. Myeloid-derived growth factor (MYDGF) has anti-inflammatory, immunomodulatory, and tissue-functional restorative abilities. However, its potential to restore SGs function during pSS has not yet been investigated. Methods Nonobese diabetic (NOD)/LtJ mice (pSS model) were intravenously administered with adeno-associated viruses carrying MYDGF at 11 weeks of age. Salivary flow rates were determined before and after treatment. Mice were killed 5 weeks after MYDGF treatment, and submandibular glands were collected for analyses of histological disease scores, inflammatory cell infiltration, PCR determination of genes, and Western blotting of functional proteins. Furthermore, mRNA sequencing and bioinformatics were used to predict the mechanism underlying the therapeutic effect of MYDGF. Results Treatment of NOD/LtJ mice with MYDGF alleviated pSS, as indicated by increased salivary flow rate, reduced lymphocyte infiltration, attenuated glandular inflammation, and enhanced AQP5 and NKCC1 expression. The gene expression levels of cytokines and chemokines, including Ccl12, Ccl3, Il1r1, Ccr2, Cx3cr1, Il7, Mmp2, Mmp14, Il1b, and Il7, significantly decreased after treatment with MYDGF, as determined by RNA sequencing. Meanwhile, MYDGF inhibits infiltration of macrophages (Mϕ) in SGs, induces polarization of M2ϕ, and suppresses C-X3C motif ligand 1 (CX3CL1)/C-X3C motif receptor 1 (CX3CR1) axis. Conclusions Our findings showed that MYDGF could revitalize the SGs function of pSS, inhibit infiltration of Mϕ, and promote M2ϕ polarization via suppression of the CX3CL1/CX3CR1 axis, which has implications for potential therapy for pSS.
Collapse
Affiliation(s)
- Zi Yang
- Department of Endodontics, School of Stomatology, Capital Medical University, Beijing, China
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology and Beijing Laboratory of Oral Health, Beijing, China
| | - Mangnan Liu
- Department of Endodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhichao Chang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology and Beijing Laboratory of Oral Health, Beijing, China
| | - Conglin Du
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology and Beijing Laboratory of Oral Health, Beijing, China
| | - Yang Yang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology and Beijing Laboratory of Oral Health, Beijing, China
- Department of Oral and Maxillofacial & Head and Neck Oncology, School of Stomatology, Capital Medical University, Beijing, China
| | - Chen Zhang
- Department of Endodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Liang Hu
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology and Beijing Laboratory of Oral Health, Beijing, China
- Outpatient Department of Oral and Maxillofacial Surgery, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Zhao T, Zhang R, Li Z, Qin D, Wang X. A comprehensive review of Sjögren's syndrome: Classification criteria, risk factors, and signaling pathways. Heliyon 2024; 10:e36220. [PMID: 39286095 PMCID: PMC11403439 DOI: 10.1016/j.heliyon.2024.e36220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune disease that affects the exocrine glands and may lead to a range of systemic symptoms that impact various organs. Both innate and adaptive immune pathways might trigger the disease. Studying the signaling pathways underlying SS is crucial for enhancing diagnostic and therapeutic effectiveness. SS poses an ongoing challenge for medical professionals owing to the limited therapeutic options available. This review offers a comprehensive understanding of the intricate nature of SS, encompassing disease classification criteria, risk factors, and signaling pathways in immunity and inflammation. The advancements summarized herein have the potential to spark new avenues of research into SS.
Collapse
Affiliation(s)
- Ting Zhao
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, 650500, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Runrun Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Zhaofu Li
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Dongdong Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, 650500, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Xinchang Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| |
Collapse
|
5
|
van de Wall S, Anthony SM, Hancox LS, Pewe LL, Langlois RA, Zehn D, Badovinac VP, Harty JT. Dynamic landscapes and protective immunity coordinated by influenza-specific lung-resident memory CD8 + T cells revealed by intravital imaging. Immunity 2024; 57:1878-1892.e5. [PMID: 39043185 DOI: 10.1016/j.immuni.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/09/2024] [Accepted: 06/28/2024] [Indexed: 07/25/2024]
Abstract
Lung-tissue-resident memory (TRM) CD8+ T cells are critical for heterosubtypic immunity against influenza virus (IAV) reinfection. How TRM cells surveil the lung, respond to infection, and interact with other cells remains unresolved. Here, we used IAV infection of mice in combination with intravital and static imaging to define the spatiotemporal dynamics of lung TRM cells before and after recall infection. CD69+CD103+ TRM cells preferentially localized to lung sites of prior IAV infection, where they exhibited patrolling behavior. After rechallenge, lung TRM cells formed tight clusters in an antigen-dependent manner. Transcriptomic analysis of IAV-specific TRM cells revealed the expression of several factors that regulate myeloid cell biology. In vivo rechallenge experiments demonstrated that protection elicited by TRM cells is orchestrated in part by interferon (IFN)-γ-mediated recruitment of inflammatory monocytes into the lungs. Overall, these data illustrate the dynamic landscapes of CD103+ lung TRM cells that mediate early protective immunity against IAV infection.
Collapse
Affiliation(s)
- Stephanie van de Wall
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Scott M Anthony
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Lisa S Hancox
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Lecia L Pewe
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ryan A Langlois
- University of Minnesota, Department of Microbiology and Immunology and the Center for Immunology, Minneapolis, MN, USA
| | - Dietmar Zehn
- TUM Center for Infection Prevention (ZIP) and Division of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Vladimir P Badovinac
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - John T Harty
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
6
|
Costa-da-Silva AC, Villapudua CU, Hoffman MP, Aure MH. Immunomodulation of salivary gland function due to cancer therapy. Oral Dis 2024:10.1111/odi.14972. [PMID: 38696474 PMCID: PMC11530405 DOI: 10.1111/odi.14972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 05/04/2024]
Abstract
Functional salivary glands (SG) are essential for maintaining oral health, and salivary dysfunction is a persistent major clinical challenge. Several cancer therapies also have off-target effects leading to SG dysfunction. Recent advances highlight the role of SG immune populations in homeostasis, dysfunction and gland regeneration. Here, we review what is known about SG immune populations during development and postnatal homeostasis. We summarize recent findings of immune cell involvement in SG dysfunction following cancer treatments such as irradiation (IR) for head and neck cancers, immune transplant leading to graft-versus-host-disease (GVHD) and immune checkpoint inhibitor (ICI) treatment. The role of immune cells in SG in both homeostasis and disease, is an emerging field of research that may provide important clues to organ dysfunction and lead to novel therapeutic targets.
Collapse
Affiliation(s)
- Ana C. Costa-da-Silva
- Oral Immunobiology Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Carlos U. Villapudua
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Matthew P. Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Marit H. Aure
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
7
|
Chang L, Zheng Z, Zhou Y, Liu K, Li Y, Zhong B, Zhao Z, Chen C, Qian C, Ni Q, Zou Q, Wu Y, Li J, Zou L. B cell receptor repertoire analysis in primary Sjogren's syndrome salivary glands identifies repertoire features associated with clinical activity. Arthritis Res Ther 2024; 26:62. [PMID: 38454506 PMCID: PMC10918881 DOI: 10.1186/s13075-024-03283-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/31/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Primary Sjogren's syndrome (pSS) is a complex autoimmune disease featuring damage to salivary and lacrimal glands, with the possibility of manifestations across multiple organs. Antibody-producing B cells have long been appreciated to play a significant role in pSS pathogenesis, with a number of autoreactive antibody species having been identified to be elevated in pSS patients. While several studies have attempted to characterize the BCR repertoires of peripheral blood B cells in pSS patients, much remains unknown about the repertoire characteristics of gland-infiltrating B cells. METHODS Through paired scRNAseq and scBCRseq, we profiled the BCR repertoires of both infiltrating and circulating B cells in a small cohort of patients. We further utilize receptor reconstruction analyses to further investigate repertoire characteristics in a wider cohort of pSS patients previously profiled through RNAseq. RESULTS Via integrated BCR and transcriptome analysis of B cell clones, we generate a trajectory progression pattern for infiltrated memory B cells in pSS. We observe significant differences in BCR repertoires between the peripheral blood and labial gland B cells of pSS patients in terms of relative expansion, isotype usage, and BCR clustering. We further observe significant decreases in IgA2 isotype usage among pSS patient labial and parotid gland B cells these analyses relative to controls as well as a positive correlation between kappa/lambda light chain usage and clinical disease activity. CONCLUSIONS Through BCR repertoire analysis of pSS patient salivary glands, we identify a number of novel repertoire characteristics that may serve as useful indicators of clinical disease and disease activity. By collecting these BCR repertoires into an accessible database, we hope to also enable comparative analysis of patient repertoires in pSS and potentially other autoimmune disorders.
Collapse
Affiliation(s)
- Ling Chang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Zihan Zheng
- Biomedical Analysis Center, Army Medical University, Chongqing, China
- Department of Autoimmune Diseases, Chongqing International Institute for Immunology, Chongqing, China
| | - Yiwen Zhou
- Institute of Immunology PLA, Army Medical University, Army Medical University, 30 Gaotanyan Avenue, Shapingba District, Chongqing, 400000, China
| | - Kun Liu
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Yinong Li
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Bing Zhong
- Department of Rheumatology and Immunology, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Zihua Zhao
- Institute of Immunology PLA, Army Medical University, Army Medical University, 30 Gaotanyan Avenue, Shapingba District, Chongqing, 400000, China
| | - Chengshun Chen
- Department of Rheumatology and Immunology, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Can Qian
- Department of Rheumatology and Immunology, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Qingshan Ni
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Qinghua Zou
- Department of Rheumatology and Immunology, First Affiliated Hospital of Army Medical University, Chongqing, China.
| | - Yuzhang Wu
- Institute of Immunology PLA, Army Medical University, Army Medical University, 30 Gaotanyan Avenue, Shapingba District, Chongqing, 400000, China.
| | - Jingyi Li
- Department of Rheumatology and Immunology, First Affiliated Hospital of Army Medical University, Chongqing, China.
| | - Liyun Zou
- Department of Rheumatology and Immunology, First Affiliated Hospital of Army Medical University, Chongqing, China.
- Institute of Immunology PLA, Army Medical University, Army Medical University, 30 Gaotanyan Avenue, Shapingba District, Chongqing, 400000, China.
| |
Collapse
|
8
|
Ruef N, Martínez Magdaleno J, Ficht X, Purvanov V, Palayret M, Wissmann S, Pfenninger P, Stolp B, Thelen F, Barreto de Albuquerque J, Germann P, Sharpe J, Abe J, Legler DF, Stein JV. Exocrine gland-resident memory CD8 + T cells use mechanosensing for tissue surveillance. Sci Immunol 2023; 8:eadd5724. [PMID: 38134242 DOI: 10.1126/sciimmunol.add5724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/09/2023] [Indexed: 12/24/2023]
Abstract
Tissue-resident CD8+ T cells (TRM) continuously scan peptide-MHC (pMHC) complexes in their organ of residence to intercept microbial invaders. Recent data showed that TRM lodged in exocrine glands scan tissue in the absence of any chemoattractant or adhesion receptor signaling, thus bypassing the requirement for canonical migration-promoting factors. The signals eliciting this noncanonical motility and its relevance for organ surveillance have remained unknown. Using mouse models of viral infections, we report that exocrine gland TRM autonomously generated front-to-back F-actin flow for locomotion, accompanied by high cortical actomyosin contractility, and leading-edge bleb formation. The distinctive mode of exocrine gland TRM locomotion was triggered by sensing physical confinement and was closely correlated with nuclear deformation, which acts as a mechanosensor via an arachidonic acid and Ca2+ signaling pathway. By contrast, naïve CD8+ T cells or TRM surveilling microbe-exposed epithelial barriers did not show mechanosensing capacity. Inhibition of nuclear mechanosensing disrupted exocrine gland TRM scanning and impaired their ability to intercept target cells. These findings indicate that confinement is sufficient to elicit autonomous T cell surveillance in glands with restricted chemokine expression and constitutes a scanning strategy that complements chemosensing-dependent migration.
Collapse
Affiliation(s)
- Nora Ruef
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jose Martínez Magdaleno
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Xenia Ficht
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 22, 4058 Basel, Switzerland
| | - Vladimir Purvanov
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, 8280 Kreuzlingen, Switzerland
| | - Matthieu Palayret
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Stefanie Wissmann
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Petra Pfenninger
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Bettina Stolp
- Department for Infectious Diseases, Integrative Virology, Center for Integrative Infectious Disease Research, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Flavian Thelen
- Department of Medical Oncology and Hematology, University of Zürich and University Hospital Zürich, 8091 Zürich, Switzerland
| | | | - Philipp Germann
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
| | - James Sharpe
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
- European Molecular Biology Laboratory (EMBL) Barcelona, 08003 Barcelona, Spain
- Institucio' Catalana de Recerca i Estudis Avancats (ICREA), 08010 Barcelona, Spain
| | - Jun Abe
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, 8280 Kreuzlingen, Switzerland
- Faculty of Biology, University of Konstanz, 78464 Konstanz, Germany
- Theodor Kocher Institute, University of Bern, 3011 Bern, Switzerland
| | - Jens V Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
9
|
McKendrick JG, Jones GR, Elder SS, Watson E, T'Jonck W, Mercer E, Magalhaes MS, Rocchi C, Hegarty LM, Johnson AL, Schneider C, Becher B, Pridans C, Mabbott N, Liu Z, Ginhoux F, Bajenoff M, Gentek R, Bain CC, Emmerson E. CSF1R-dependent macrophages in the salivary gland are essential for epithelial regeneration after radiation-induced injury. Sci Immunol 2023; 8:eadd4374. [PMID: 37922341 DOI: 10.1126/sciimmunol.add4374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/03/2023] [Indexed: 11/05/2023]
Abstract
The salivary glands often become damaged in individuals receiving radiotherapy for head and neck cancer, resulting in chronic dry mouth. This leads to detrimental effects on their health and quality of life, for which there is no regenerative therapy. Macrophages are the predominant immune cell in the salivary glands and are attractive therapeutic targets due to their unrivaled capacity to drive tissue repair. Yet, the nature and role of macrophages in salivary gland homeostasis and how they may contribute to tissue repair after injury are not well understood. Here, we show that at least two phenotypically and transcriptionally distinct CX3CR1+ macrophage populations are present in the adult salivary gland, which occupy anatomically distinct niches. CD11c+CD206-CD163- macrophages typically associate with gland epithelium, whereas CD11c-CD206+CD163+ macrophages associate with blood vessels and nerves. Using a suite of complementary fate mapping systems, we show that there are highly dynamic changes in the ontogeny and composition of salivary gland macrophages with age. Using an in vivo model of radiation-induced salivary gland injury combined with genetic or antibody-mediated depletion of macrophages, we demonstrate an essential role for macrophages in clearance of cells with DNA damage. Furthermore, we show that epithelial-associated macrophages are indispensable for effective tissue repair and gland function after radiation-induced injury, with their depletion resulting in reduced saliva production. Our data, therefore, provide a strong case for exploring the therapeutic potential of manipulating macrophages to promote tissue repair and thus minimize salivary gland dysfunction after radiotherapy.
Collapse
Affiliation(s)
- John G McKendrick
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Gareth-Rhys Jones
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Sonia S Elder
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Erin Watson
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Wouter T'Jonck
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Ella Mercer
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Marlene S Magalhaes
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Cecilia Rocchi
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Lizi M Hegarty
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Amanda L Johnson
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | | | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Clare Pridans
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Neil Mabbott
- Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Marc Bajenoff
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, INSERM, U1104, CNRS UMR7280, Marseille 13288, France
| | - Rebecca Gentek
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Calum C Bain
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Elaine Emmerson
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| |
Collapse
|
10
|
Zong Y, Yang Y, Zhao J, Li L, Luo D, Hu J, Gao Y, Wei L, Li N, Jiang L. Characterisation of macrophage infiltration and polarisation based on integrated transcriptomic and histological analyses in Primary Sjögren's syndrome. Front Immunol 2023; 14:1292146. [PMID: 38022546 PMCID: PMC10656691 DOI: 10.3389/fimmu.2023.1292146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Background Primary Sjögren's syndrome (pSS) is a progressive inflammatory autoimmune disease. Immune cell infiltration into glandular lobules and ducts and glandular destruction are the pathophysiological hallmarks of pSS. Macrophages are one of the most important cells involved in the induction and regulation of an inflammatory microenvironment. Although studies have reported that an abnormal tissue microenvironment alters the metabolic reprogramming and polarisation status of macrophages, the mechanisms driving macrophage infiltration and polarisation in pSS remain unclear. Methods Immune cell subsets were characterised using the single-cell RNA sequencing (scRNA-seq) data of peripheral blood mononuclear cells (PBMCs) from patients with pSS (n = 5) and healthy individuals (n = 5) in a public dataset. To evaluate macrophage infiltration and polarisation in target tissues, labial salivary gland biopsy tissues were subjected to histological staining and bulk RNA-seq (pSS samples, n = 24; non-pSS samples, n = 12). RNA-seq data were analysed for the construction of macrophage co-expression modules, enrichment of biological processes and deconvolution-based screening of immune cell types. Results Detailed mapping of PBMCs using scRNA-seq revealed five major immune cell subsets in pSS, namely, T cells, B cells, natural killer (NK) cells, dendritic cells (DCs) and monocyte-macrophages. The monocyte-macrophage subset was large and had strong inflammatory gene signatures. This subset was found to play an important role in the generation of reactive oxygen species and communicate with other innate and adaptive immune cells. Histological staining revealed that the number of tissue-resident macrophages was high in damaged glandular tissues, with the cells persistently surrounding the tissues. Analysis of RNA-seq data using multiple algorithms demonstrated that the high abundance of pro-inflammatory M1 macrophages was accompanied by the high abundance of other infiltrating immune cells, senescence-associated secretory phenotype and evident metabolic reprogramming. Conclusion Macrophages are among the most abundant innate immune cells in PBMCs and glandular tissues in patients with pSS. A bidirectional relationship exists between macrophage polarisation and the inflammatory microenvironment, which may serve as a therapeutic target for pSS.
Collapse
Affiliation(s)
- Yuan Zong
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Yang
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiawen Zhao
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danyang Luo
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiawei Hu
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yiming Gao
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Li Wei
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Li
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Liting Jiang
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Xing F, Dong H, Yang J, Fan C, Hou M, Zhang P, Hu F, Zhou J, Chen L, Pan L, Xu J. Mesenchymal Migration on Adhesive-Nonadhesive Alternate Surfaces in Macrophages. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301337. [PMID: 37211690 PMCID: PMC10427406 DOI: 10.1002/advs.202301337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/14/2023] [Indexed: 05/23/2023]
Abstract
Mesenchymal migration usually happens on adhesive substrates, while cells adopt amoeboid migration on low/nonadhesive surfaces. Protein-repelling reagents, e.g., poly(ethylene) glycol (PEG), are routinely employed to resist cell adhering and migrating. Contrary to these perceptions, this work discovers a unique locomotion of macrophages on adhesive-nonadhesive alternate substrates in vitro that they can overcome nonadhesive PEG gaps to reach adhesive regions in the mesenchymal mode. Adhering to extracellular matrix regions is a prerequisite for macrophages to perform further locomotion on the PEG regions. Podosomes are found highly enriched on the PEG region in macrophages and support their migration across the nonadhesive regions. Increasing podosome density through myosin IIA inhibition facilitates cell motility on adhesive-nonadhesive alternate substrates. Moreover, a developed cellular Potts model reproduces this mesenchymal migration. These findings together uncover a new migratory behavior on adhesive-nonadhesive alternate substrates in macrophages.
Collapse
Affiliation(s)
- Fulin Xing
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, 300071, China
| | - Hao Dong
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, 300071, China
| | - Jianyu Yang
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, 300071, China
| | - Chunhui Fan
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, 300071, China
| | - Mengdi Hou
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, 300071, China
| | - Ping Zhang
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, 300071, China
| | - Fen Hu
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, 300071, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, National Biomedical Imaging Center, Center for Life Sciences, School of Future Technology, Peking University, Beijing, 100871, China
| | - Leiting Pan
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300071, China
- Shenzhen Research Institute of Nankai University, Shenzhen, Guangdong, 518083, China
| | - Jingjun Xu
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, 300071, China
- Shenzhen Research Institute of Nankai University, Shenzhen, Guangdong, 518083, China
| |
Collapse
|
12
|
Zhao Q, Pan S, Zhang L, Zhang Y, Shahsavari A, Lotey P, Baetge C, Deveau M, Gregory C, Kapler G, Liu F. A Salivary Gland Resident Macrophage Subset Regulating Radiation Responses. J Dent Res 2023; 102:536-545. [PMID: 36883649 PMCID: PMC10150438 DOI: 10.1177/00220345221150005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Radiotherapy of head and neck cancers frequently leads to irreversible hypofunction of salivary glands, which severely compromises the quality of life and is extremely difficult to treat. We found recently that salivary gland resident macrophages are sensitive to radiation and interact with epithelial progenitors and endothelial cells through homeostatic paracrine factors. Heterogeneous subpopulations of resident macrophages are present in other organs with distinct functions, whereas subpopulations of salivary gland resident macrophages with distinct functions or transcriptional profiles have not been reported yet. Using single-cell RNA sequencing, we found that mouse submandibular glands (SMGs) contain 2 distinct self-renewing resident macrophage subsets, an MHC-IIhi subset present in many other organs and an uncommon Csf2r+ subset. The main source of Csf2 in SMGs are innate lymphoid cells (ILCs) that rely on IL15 for maintenance, while the main source of IL15 protein is Csf2r+ resident macrophages, indicating a homeostatic paracrine interaction between these cells. Csf2r+ resident macrophages are the major source of hepatocyte growth factor (Hgf) that regulates homeostasis of SMG epithelial progenitors. Meanwhile, Csf2r+ resident macrophages are responsive to Hedgehog signaling that can rescue salivary function impaired by radiation. Consistently, irradiation persistently decreased numbers of ILCs and levels of IL15 and Csf2 in SMGs, which were all recovered by transient activation of Hedgehog signaling after radiation. Csf2r+ resident macrophages and MHC-IIhi resident macrophages share transcriptome profiles of perivascular macrophages and macrophages associated with nerves and/or epithelial cells in other organs, respectively, and such niche preferences were supported by lineage tracing and immunofluorescent staining. These findings reveal an uncommon resident macrophage subset that regulates the homeostasis of the salivary gland and is promising as the target to restore salivary gland function impaired by radiation.
Collapse
Affiliation(s)
- Q. Zhao
- Cell Biology and Genetics Department, College
of Medicine, Texas A&M University Health Science Center, College Station, TX, USA
| | - S. Pan
- Cell Biology and Genetics Department, College
of Medicine, Texas A&M University Health Science Center, College Station, TX, USA
| | - L. Zhang
- Cell Biology and Genetics Department, College
of Medicine, Texas A&M University Health Science Center, College Station, TX, USA
| | - Y. Zhang
- Cell Biology and Genetics Department, College
of Medicine, Texas A&M University Health Science Center, College Station, TX, USA
| | - A. Shahsavari
- Cell Biology and Genetics Department, College
of Medicine, Texas A&M University Health Science Center, College Station, TX, USA
| | - P. Lotey
- Cell Biology and Genetics Department, College
of Medicine, Texas A&M University Health Science Center, College Station, TX, USA
| | - C.L. Baetge
- Department of Small Animal Clinical Sciences,
College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College
Station, TX, USA
| | - M.A. Deveau
- Department of Small Animal Clinical Sciences,
College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College
Station, TX, USA
| | - C.A. Gregory
- Cell Biology and Genetics Department, College
of Medicine, Texas A&M University Health Science Center, College Station, TX, USA
| | - G.M. Kapler
- Cell Biology and Genetics Department, College
of Medicine, Texas A&M University Health Science Center, College Station, TX, USA
| | - F. Liu
- Cell Biology and Genetics Department, College
of Medicine, Texas A&M University Health Science Center, College Station, TX, USA
| |
Collapse
|
13
|
Sun Y, Nascimento Da Conceicao V, Chauhan A, Sukumaran P, Chauhan P, Ambrus JL, Vissink A, Kroese FGM, Muniswamy M, Mishra BB, Singh BB. Targeting alarmin release reverses Sjogren's syndrome phenotype by revitalizing Ca 2+ signalling. Clin Transl Med 2023; 13:e1228. [PMID: 37006181 PMCID: PMC10068318 DOI: 10.1002/ctm2.1228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND Primary Sjogren's syndrome (pSS) is a systemic autoimmune disease that is embodied by the loss of salivary gland function and immune cell infiltration, but the mechanism(s) are still unknown. The aim of this study was to understand the mechanisms and identify key factors that leads to the development and progression of pSS. METHODS Immunohistochemistry staining, FACS analysis and cytokine levels were used to detect immune cells infiltration and activation in salivary glands. RNA sequencing was performed to identify the molecular mechanisms involved in the development of pSS. The function assays include in vivo saliva collection along with calcium imaging and electrophysiology on isolated salivary gland cells in mice models of pSS. Western blotting, real-time PCR, alarmin release, and immunohistochemistry was performed to identify the channels involved in salivary function in pSS. RESULTS We provide evidence that loss of Ca2+ signaling precedes a decrease in saliva secretion and/or immune cell infiltration in IL14α, a mouse model for pSS. We also showed that Ca2+ homeostasis was mediated by transient receptor potential canonical-1 (TRPC1) channels and inhibition of TRPC1, resulting in the loss of salivary acinar cells, which promoted alarmin release essential for immune cell infiltration/release of pro-inflammatory cytokines. In addition, both IL14α and samples from human pSS patients showed a decrease in TRPC1 expression and increased acinar cell death. Finally, paquinimod treatment in IL14α restored Ca2+ homeostasis that inhibited alarmin release thereby reverting the pSS phenotype. CONCLUSIONS These results indicate that loss of Ca2+ signaling is one of the initial factors, which induces loss of salivary gland function along with immune infiltration that exaggerates pSS. Importantly, restoration of Ca2+ signaling upon paquinimod treatment reversed the pSS phenotype thereby inhibiting the progressive development of pSS.
Collapse
Affiliation(s)
- Yuyang Sun
- Department of PeriodonticsSchool of DentistryUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
| | | | - Arun Chauhan
- Department of Developmental DentistrySchool of DentistryUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
| | - Pramod Sukumaran
- Department of PeriodonticsSchool of DentistryUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
| | - Pooja Chauhan
- Department of Developmental DentistrySchool of DentistryUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
| | - Julian L. Ambrus
- Division of Allergy, Immunology, and RheumatologyDepartment of MedicineSchool of Medicine and Biomedical SciencesState University of New YorkBuffaloNew YorkUSA
| | - Arjan Vissink
- Department of Oral and Maxillofacial SurgeryUniversity of Groningen and University Medical Center GroningenGroningenThe Netherlands
| | - Frans G. M. Kroese
- Department of Rheumatology and Clinical ImmunologyUniversity of Groningen and University Medical Center GroningenGroningenThe Netherlands
| | - Madesh Muniswamy
- Department of MedicineUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
| | - Bibhuti B. Mishra
- Department of Developmental DentistrySchool of DentistryUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
- Department of Biomedical SciencesSchool of Medicine and Health SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
| | - Brij B. Singh
- Department of PeriodonticsSchool of DentistryUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
| |
Collapse
|
14
|
Arizono M, Idziak A, Quici F, Nägerl UV. Getting sharper: the brain under the spotlight of super-resolution microscopy. Trends Cell Biol 2023; 33:148-161. [PMID: 35906123 DOI: 10.1016/j.tcb.2022.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 01/25/2023]
Abstract
Brain cells such as neurons and astrocytes exhibit an extremely elaborate morphology, and their functional specializations like synapses and glial processes often fall below the resolution limit of conventional light microscopy. This is a huge obstacle for neurobiologists because the nanoarchitecture critically shapes fundamental functions like synaptic transmission and Ca2+ signaling. Super-resolution microscopy can overcome this problem, offering the chance to visualize the structural and molecular organization of brain cells in a living and dynamic tissue context, unlike traditional methods like electron microscopy or atomic force microscopy. This review covers the basic principles of the main super-resolution microscopy techniques in use today and explains how their specific strengths can illuminate the nanoscale mechanisms that govern brain physiology.
Collapse
Affiliation(s)
- Misa Arizono
- Interdisciplinary Institute for Neuroscience, University of Bordeaux and CNRS, Bordeaux, France; Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Agata Idziak
- Interdisciplinary Institute for Neuroscience, University of Bordeaux and CNRS, Bordeaux, France
| | - Federica Quici
- Interdisciplinary Institute for Neuroscience, University of Bordeaux and CNRS, Bordeaux, France
| | - U Valentin Nägerl
- Interdisciplinary Institute for Neuroscience, University of Bordeaux and CNRS, Bordeaux, France.
| |
Collapse
|
15
|
Microbiota-dependent and -independent postnatal development of salivary immunity. Cell Rep 2023; 42:111981. [PMID: 36640306 DOI: 10.1016/j.celrep.2022.111981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/12/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
While saliva regulates the interplay between the microbiota and the oral immune system, the mechanisms establishing postnatal salivary immunity are ill-defined. Here, we show that high levels of neutrophils and neonatal Fc receptor (FcRn)-transferred maternal IgG are temporarily present in the neonatal murine salivary glands in a microbiota-independent manner. During weaning, neutrophils, FcRn, and IgG decrease in the salivary glands, while the polymeric immunoglobulin receptor (pIgR) is upregulated in a growth arrest-specific 6 (GAS6)-dependent manner independent of the microbiota. Production of salivary IgA begins following weaning and relies on CD4-help, IL-17, and the microbiota. The weaning phase is characterized by a transient accumulation of dendritic cells capable of migrating from the oral mucosa to the salivary glands upon exposure to microbial challenges and activating T cells. This study reveals the postnatal mechanisms developed in the salivary glands to induce immunity and proposes the salivary glands as an immune inductive site.
Collapse
|
16
|
von Werdt D, Gungor B, Barreto de Albuquerque J, Gruber T, Zysset D, Kwong Chung CKC, Corrêa-Ferreira A, Berchtold R, Page N, Schenk M, Kehrl JH, Merkler D, Imhof BA, Stein JV, Abe J, Turchinovich G, Finke D, Hayday AC, Corazza N, Mueller C. Regulator of G-protein signaling 1 critically supports CD8 + T RM cell-mediated intestinal immunity. Front Immunol 2023; 14:1085895. [PMID: 37153600 PMCID: PMC10158727 DOI: 10.3389/fimmu.2023.1085895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/13/2023] [Indexed: 05/09/2023] Open
Abstract
Members of the Regulator of G-protein signaling (Rgs) family regulate the extent and timing of G protein signaling by increasing the GTPase activity of Gα protein subunits. The Rgs family member Rgs1 is one of the most up-regulated genes in tissue-resident memory (TRM) T cells when compared to their circulating T cell counterparts. Functionally, Rgs1 preferentially deactivates Gαq, and Gαi protein subunits and can therefore also attenuate chemokine receptor-mediated immune cell trafficking. The impact of Rgs1 expression on tissue-resident T cell generation, their maintenance, and the immunosurveillance of barrier tissues, however, is only incompletely understood. Here we report that Rgs1 expression is readily induced in naïve OT-I T cells in vivo following intestinal infection with Listeria monocytogenes-OVA. In bone marrow chimeras, Rgs1 -/- and Rgs1 +/+ T cells were generally present in comparable frequencies in distinct T cell subsets of the intestinal mucosa, mesenteric lymph nodes, and spleen. After intestinal infection with Listeria monocytogenes-OVA, however, OT-I Rgs1 +/+ T cells outnumbered the co-transferred OT-I Rgs1- /- T cells in the small intestinal mucosa already early after infection. The underrepresentation of the OT-I Rgs1 -/- T cells persisted to become even more pronounced during the memory phase (d30 post-infection). Remarkably, upon intestinal reinfection, mice with intestinal OT-I Rgs1 +/+ TRM cells were able to prevent the systemic dissemination of the pathogen more efficiently than those with OT-I Rgs1 -/- TRM cells. While the underlying mechanisms are not fully elucidated yet, these data thus identify Rgs1 as a critical regulator for the generation and maintenance of tissue-resident CD8+ T cells as a prerequisite for efficient local immunosurveillance in barrier tissues in case of reinfections with potential pathogens.
Collapse
Affiliation(s)
- Diego von Werdt
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Bilgi Gungor
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | | | - Thomas Gruber
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Daniel Zysset
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Cheong K. C. Kwong Chung
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
- Department of Gastrointestinal Health, Immunology, Nestlé Research, Lausanne, Switzerland
| | - Antonia Corrêa-Ferreira
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Regina Berchtold
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Nicolas Page
- Department of Pathology, Division of Clinical Pathology, University & University Hospitals of Geneva, Geneva, Switzerland
| | - Mirjam Schenk
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - John H. Kehrl
- National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Doron Merkler
- Department of Pathology, Division of Clinical Pathology, University & University Hospitals of Geneva, Geneva, Switzerland
| | - Beat A. Imhof
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
- Department of Pathology and Immunology, Centre Medical Universitaire, University of Geneva, Geneva, Switzerland
| | - Jens V. Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Jun Abe
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Gleb Turchinovich
- Department of Biomedicine, and University Children’s Hospital Basel, University of Basel, Basel, Switzerland
| | - Daniela Finke
- Department of Biomedicine, and University Children’s Hospital Basel, University of Basel, Basel, Switzerland
| | - Adrian C. Hayday
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Nadia Corazza
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
- *Correspondence: Christoph Mueller, ; Nadia Corazza,
| | - Christoph Mueller
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
- Department of Biomedicine, and University Children’s Hospital Basel, University of Basel, Basel, Switzerland
- *Correspondence: Christoph Mueller, ; Nadia Corazza,
| |
Collapse
|
17
|
Scheele CLGJ, Herrmann D, Yamashita E, Celso CL, Jenne CN, Oktay MH, Entenberg D, Friedl P, Weigert R, Meijboom FLB, Ishii M, Timpson P, van Rheenen J. Multiphoton intravital microscopy of rodents. NATURE REVIEWS. METHODS PRIMERS 2022; 2:89. [PMID: 37621948 PMCID: PMC10449057 DOI: 10.1038/s43586-022-00168-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 08/26/2023]
Abstract
Tissues are heterogeneous with respect to cellular and non-cellular components and in the dynamic interactions between these elements. To study the behaviour and fate of individual cells in these complex tissues, intravital microscopy (IVM) techniques such as multiphoton microscopy have been developed to visualize intact and live tissues at cellular and subcellular resolution. IVM experiments have revealed unique insights into the dynamic interplay between different cell types and their local environment, and how this drives morphogenesis and homeostasis of tissues, inflammation and immune responses, and the development of various diseases. This Primer introduces researchers to IVM technologies, with a focus on multiphoton microscopy of rodents, and discusses challenges, solutions and practical tips on how to perform IVM. To illustrate the unique potential of IVM, several examples of results are highlighted. Finally, we discuss data reproducibility and how to handle big imaging data sets.
Collapse
Affiliation(s)
- Colinda L. G. J. Scheele
- Laboratory for Intravital Imaging and Dynamics of Tumor Progression, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - David Herrmann
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Department, Sydney, New South Wales, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Erika Yamashita
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Cristina Lo Celso
- Department of Life Sciences and Centre for Hematology, Imperial College London, London, UK
- Sir Francis Crick Institute, London, UK
| | - Craig N. Jenne
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Maja H. Oktay
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - David Entenberg
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Peter Friedl
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
- David H. Koch Center for Applied Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Franck L. B. Meijboom
- Department of Population Health Sciences, Sustainable Animal Stewardship, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- Faculty of Humanities, Ethics Institute, Utrecht University, Utrecht, Netherlands
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Paul Timpson
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Department, Sydney, New South Wales, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jacco van Rheenen
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
18
|
Sphingosine-1-Phosphate Alleviates Irradiation Induced Salivary Gland Hypofunction through Preserving Endothelial Cells and Resident Macrophages. Antioxidants (Basel) 2022; 11:antiox11102050. [PMID: 36290773 PMCID: PMC9598384 DOI: 10.3390/antiox11102050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/25/2022] Open
Abstract
Radiotherapy for head-and-neck cancers frequently causes long-term hypofunction of salivary glands that severely compromises quality of life and is difficult to treat. Here, we studied effects and mechanisms of Sphingosine-1-phosphate (S1P), a versatile signaling sphingolipid, in preventing irreversible dry mouth caused by radiotherapy. Mouse submandibular glands (SMGs) were irradiated with or without intra-SMG S1P pretreatment. The saliva flow rate was measured following pilocarpine stimulation. The expression of genes related to S1P signaling and radiation damage was examined by flow cytometry, immunohistochemistry, quantitative RT-PCR, Western blotting, and/or single-cell RNA-sequencing. S1P pretreatment ameliorated irradiation-induced salivary dysfunction in mice through a decrease in irradiation-induced oxidative stress and consequent apoptosis and cellular senescence, which is related to the enhancement of Nrf2-regulated anti-oxidative response. In mouse SMGs, endothelial cells and resident macrophages are the major cells capable of producing S1P and expressing the pro-regenerative S1P receptor S1pr1. Both mouse SMGs and human endothelial cells are protected from irradiation damage by S1P pretreatment, likely through the S1pr1/Akt/eNOS axis. Moreover, intra-SMG-injected S1P did not affect the growth and radiosensitivity of head-and-neck cancer in a mouse model. These data indicate that S1P signaling pathway is a promising target for alleviating irradiation-induced salivary gland hypofunction.
Collapse
|
19
|
Thompson SB, Waldman MM, Jacobelli J. Polymerization power: effectors of actin polymerization as regulators of T lymphocyte migration through complex environments. FEBS J 2022; 289:6154-6171. [PMID: 34273243 PMCID: PMC8761786 DOI: 10.1111/febs.16130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/24/2021] [Accepted: 07/16/2021] [Indexed: 11/26/2022]
Abstract
During their life span, T cells are tasked with patrolling the body for potential pathogens. To do so, T cells migrate through numerous distinct anatomical sites and tissue environments with different biophysical characteristics. To migrate through these different environments, T cells use various motility strategies that rely on actin network remodeling to generate shape changes and mechanical forces. In this review, we initially discuss the migratory journey of T cells and then cover the actin polymerization effectors at play in T cells, and finally, we focus on the function of these effectors of actin cytoskeleton remodeling in mediating T-cell migration through diverse tissue environments. Specifically, we will discuss the current state of the field pertaining to our understanding of the roles in T-cell migration played by members of the three main families of actin polymerization machinery: the Arp2/3 complex; formin proteins; and Ena/VASP proteins.
Collapse
Affiliation(s)
- Scott B. Thompson
- Department of Immunology and Microbiology, University of Colorado School of Medicine
| | - Monique M. Waldman
- Department of Immunology and Microbiology, University of Colorado School of Medicine
- Barbara Davis Research Center, University of Colorado School of Medicine
| | - Jordan Jacobelli
- Department of Immunology and Microbiology, University of Colorado School of Medicine
- Barbara Davis Research Center, University of Colorado School of Medicine
| |
Collapse
|
20
|
Dithranol as novel co-adjuvant for non-invasive dermal vaccination. NPJ Vaccines 2022; 7:112. [PMID: 36153349 PMCID: PMC9509335 DOI: 10.1038/s41541-022-00530-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Transcutaneous immunization (TCI) utilizing the TLR7 agonist imiquimod (IMQ-TCI) induces T cell-driven protective immunity upon application onto intact skin. In our present work, we combine the anti-psoriatic agent dithranol with IMQ-TCI to boost vaccination efficacy (Dithranol/IMQ-based transcutaneous vaccination (DIVA)). Using ovalbumin-derived peptides as model antigens in mice, DIVA induced superior cytolytic CD8+ T cells and CD4+ T cells with a TH1 cytokine profile in the priming as well as in the memory phase. Regarding the underlying mechanisms, dithranol induced an oxidant-dependent, monocyte-attracting inflammatory milieu in the skin boosting TLR7-dependent activation of dendritic cells and macrophages leading to superior T cell priming and protective immunity in vaccinia virus infection. In conclusion, we introduce the non-invasive vaccination method DIVA to induce strong primary and memory T cell responses upon a single local treatment. This work provides relevant insights in cutaneous vaccination approaches, paving the way for clinical development in humans.
Collapse
|
21
|
Topographical Distribution and Phenotype of Resident Meibomian Gland Orifice Immune Cells (MOICs) in Mice and the Effects of Topical Benzalkonium Chloride (BAK). Int J Mol Sci 2022; 23:ijms23179589. [PMID: 36077001 PMCID: PMC9455816 DOI: 10.3390/ijms23179589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Meibomian gland orifices (MGOs) are located along the eyelid margin and secrete meibum into the tear film. The profile of resident innate immune cells (ICs) at this site is not well understood. The distribution and phenotype of resident ICs around MGOs in mice was investigated and herein defined as MGO-associated immune cells (MOICs). The effect of topical 0.1% benzalkonium chloride (BAK) on MOICs was also assessed. Eyelids from healthy CD11ceYFP and Cx3cr1gfp/gfp mice aged three or seven months were compared. ICs were identified as CD11c+, Cx3cr1+, and MHC-II+ using four-colour immunostaining and confocal microscopy. MOIC density was variable but clustered around MGOs. There were more CD11c+ MOICs in three-month-old compared with seven-month-old mice (three-month-old: 893 ± 449 cells/mm2 vs. seven-month-old: 593 ± 493 cells/mm2, p = 0.004). Along the eyelid margin, there was a decreasing gradient of CD11c+ MOIC density in three-month-old mice (nasal: 1003 ± 369 cells/mm2, vs. central: 946 ± 574 cells/mm2, vs. temporal: 731 ± 353 cells/mm2, p = 0.044). Cx3cr1-deficient mice had two-fold fewer MHC-II+ MOICs, suggesting a role for Cx3cr1 receptor signaling in meibomian gland surveillance. CD11c+ MOIC density was lower in BAK-exposed eyes compared to saline-treated controls, suggesting a change in homeostasis. This study provides novel insight into resident ICs located at MGOs, and their contribution to MG homeostasis.
Collapse
|
22
|
Biodistribution of a Mitochondrial Metabolic Tracer, [ 18F]F-AraG, in Healthy Volunteers. Mol Imaging 2022; 2022:3667417. [PMID: 36072652 PMCID: PMC9400547 DOI: 10.1155/2022/3667417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022] Open
Abstract
Purpose [18F]F-AraG is a radiolabeled nucleoside analog that shows relative specificity for activated T cells. The aim of this study was to investigate the biodistribution of [18F]F-AraG in healthy volunteers and assess the preliminary safety and radiation dosimetry. Methods Six healthy subjects (three female and three male) between the ages of 24 and 60 participated in the study. Each subject received a bolus venous injection of [18F]F-AraG (dose range: 244.2-329.3 MBq) prior to four consecutive PET/MR whole-body scans. Blood samples were collected at regular intervals and vital signs monitored before and after tracer administration. Regions of interest were delineated for multiple organs, and the area under the time-activity curves was calculated for each organ and used to derive time-integrated activity coefficient (TIAC). TIACs were input for absorbed dose and effective dose calculations using OLINDA. Results PET/MR examination was well tolerated, and no adverse effects to the administration of [18F]F-AraG were noted by the study participants. The biodistribution was generally reflective of the expression and activity profiles of the enzymes involved in [18F]F-AraG's cellular accumulation, mitochondrial kinase dGK, and SAMHD1. The highest uptake was observed in the kidneys and liver, while the brain, lung, bone marrow, and muscle showed low tracer uptake. The estimated effective dose for [18F]F-AraG was 0.0162 mSv/MBq (0.0167 mSv/MBq for females and 0.0157 mSv/MBq for males). Conclusion Biodistribution of [18F]F-AraG in healthy volunteers was consistent with its association with mitochondrial metabolism. PET/MR [18F]F-AraG imaging was well tolerated, with a radiation dosimetry profile similar to other commonly used [18F]-labeled tracers. [18F]F-AraG's connection with mitochondrial biogenesis and favorable biodistribution characteristics make it an attractive tracer with a variety of potential applications.
Collapse
|
23
|
Sudarsanam H, Buhmann R, Henschler R. Influence of Culture Conditions on Ex Vivo Expansion of T Lymphocytes and Their Function for Therapy: Current Insights and Open Questions. Front Bioeng Biotechnol 2022; 10:886637. [PMID: 35845425 PMCID: PMC9277485 DOI: 10.3389/fbioe.2022.886637] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/16/2022] [Indexed: 01/03/2023] Open
Abstract
Ex vivo expansion of T lymphocytes is a central process in the generation of cellular therapies targeted at tumors and other disease-relevant structures, which currently cannot be reached by established pharmaceuticals. The influence of culture conditions on T cell functions is, however, incompletely understood. In clinical applications of ex vivo expanded T cells, so far, a relatively classical standard cell culture methodology has been established. The expanded cells have been characterized in both preclinical models and clinical studies mainly using a therapeutic endpoint, for example antitumor response and cytotoxic function against cellular targets, whereas the influence of manipulations of T cells ex vivo including transduction and culture expansion has been studied to a much lesser detail, or in many contexts remains unknown. This includes the circulation behavior of expanded T cells after intravenous application, their intracellular metabolism and signal transduction, and their cytoskeletal (re)organization or their adhesion, migration, and subsequent intra-tissue differentiation. This review aims to provide an overview of established T cell expansion methodologies and address unanswered questions relating in vivo interaction of ex vivo expanded T cells for cellular therapy.
Collapse
Affiliation(s)
| | | | - Reinhard Henschler
- Institute of Transfusion Medicine, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
24
|
Pro- and anti-inflammatory bioactive lipids imbalance contributes to the pathobiology of autoimmune diseases. Eur J Clin Nutr 2022:10.1038/s41430-022-01173-8. [PMID: 35701524 DOI: 10.1038/s41430-022-01173-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/22/2022] [Accepted: 05/26/2022] [Indexed: 12/27/2022]
Abstract
Autoimmune diseases are driven by TH17 cells that secrete pro-inflammatory cytokines, especially IL-17. Under normal physiological conditions, autoreactive T cells are suppressed by TGF-β and IL-10 secreted by microglia and dendritic cells. When this balance is upset due to injury, infection and other causes, leukocyte recruitment and macrophage activation occurs resulting in secretion of pro-inflammatory IL-6, TNF-α, IL-17 and PGE2, LTs (leukotrienes) accompanied by a deficiency of anti-inflammatory LXA4, resolvins, protecting, and maresins. PGE2 facilitates TH1 cell differentiation and promotes immune-mediated inflammation through TH17 expansion. There is evidence to suggest that autoimmune diseases can be suppressed by anti-inflammatory bioactive lipids LXA4, resolvins, protecting, and maresins. These results imply that systemic and/or local application of LXA4, resolvins, protecting, and maresins and administration of their precursors AA/EPA/DHA could form a potential therapeutic approach in the prevention and treatment of autoimmune diseases.
Collapse
|
25
|
Abstract
In this review, we summarize and discuss recent advances in understanding the characteristics of tissue-resident memory T cells (TRMs) in the context of solid organ transplantation (SOT). We first introduce the traditionally understood noncirculating features of TRMs and the key phenotypic markers that define this population, then provide a detailed discussion of emerging concepts on the recirculation and plasticity of TRM in mice and humans. We comment on the potential heterogeneity of transient, temporary resident, and permanent resident T cells and potential interchangeable phenotypes between TRM and effector T cells in nonlymphoid tissues. We review the literature on the distribution of TRM in human nonlymphoid organs and association of clinical outcomes in different types of SOT, including intestine, lung, liver, kidney, and heart. We focus on both tissue-specific and organ-shared features of donor- and recipient-derived TRMs after transplantation whenever applicable. Studies with comprehensive sample collection, including longitudinal and cross-sectional controls, and applied advanced techniques such as multicolor flow cytometry to distinguish donor and recipient TRMs, bulk, and single-cell T-cell receptor sequencing to track clonotypes and define transcriptome profiles, and functional readouts to define alloreactivity and proinflammatory/anti-inflammatory activities are emphasized. We also discuss important findings on the tissue-resident features of regulatory αβ T cells and unconventional γδ T cells after transplantation. Understanding of TRM in SOT is a rapidly growing field that urges future studies to address unresolved questions regarding their heterogeneity, plasticity, longevity, alloreactivity, and roles in rejection and tolerance.
Collapse
Affiliation(s)
- Jianing Fu
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, United States
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, United States
- Department of Surgery, Columbia University, New York, United States
- Department of Microbiology & Immunology, Columbia University, New York, United States
| |
Collapse
|
26
|
Mateu-Albero T, Marcos-Jimenez A, Wissmann S, Loscertales J, Terrón F, Stein JV, Muñoz-Calleja C, Cuesta-Mateos C. Ibrutinib Does Not Impact CCR7-Mediated Homeostatic Migration in T-Cells from Chronic Lymphocytic Leukemia Patients. Cancers (Basel) 2022; 14:cancers14112729. [PMID: 35681706 PMCID: PMC9179528 DOI: 10.3390/cancers14112729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 12/10/2022] Open
Abstract
Bruton's tyrosine kinase inhibitor ibrutinib has significantly changed treatment landscape in chronic lymphocytic leukemia (CLL). Growing evidence supports ibrutinib to work beyond the effect on tumor cells by means of, for example, restoring functionality of the T-cell compartment and increasing circulating T-cell numbers. Recent evidence suggests T-cell enhanced expansion, rather than increased egress from secondary lymphoid organs (SLO), as a root cause for ibrutinib-induced lymphocytosis. However, whether the latter physiological change is also a consequence of a forced retention in blood remains undisclosed. Since CCR7 is the main chemokine receptor taking over the homing of T-cells from peripheral compartments to lymph nodes and other SLO, we aimed to investigate the impact of ibrutinib on CCR7 functionality in T-cells. To this end, we documented receptor expression in T-cells from a large cohort of ibrutinib-treated CLL patients, and performed different in vivo and in vitro migration models. Overall, our data confirm that CCR7 expression or receptor-mediated migration in CLL T-cells is not affected by ibrutinib. Furthermore, it does not modulate CCR7-driven homing nor nodal interstitial migration. Together, our results support that ibrutinib-induced CLL T-cell accumulation in the blood stream is not derived from an impairment of CCR7-driven recirculation between the SLO and bloodstream, and therefore T-cell expansion is the most plausible cause.
Collapse
Affiliation(s)
- Tamara Mateu-Albero
- Immunology Department, Hospital Universitario de La Princesa, IIS-IP, 28006 Madrid, Spain; (T.M.-A.); (A.M.-J.); (C.M.-C.)
| | - Ana Marcos-Jimenez
- Immunology Department, Hospital Universitario de La Princesa, IIS-IP, 28006 Madrid, Spain; (T.M.-A.); (A.M.-J.); (C.M.-C.)
- Department of Oncology, Microbiology and Immunology, University of Fribourg, CH-1700 Freiburg, Switzerland; (S.W.); (J.V.S.)
| | - Stefanie Wissmann
- Department of Oncology, Microbiology and Immunology, University of Fribourg, CH-1700 Freiburg, Switzerland; (S.W.); (J.V.S.)
| | - Javier Loscertales
- Hematology Department, Hospital Universitario de La Princesa, IIS-IP, 28006 Madrid, Spain;
| | - Fernando Terrón
- IMMED S.L., Immunological and Medicinal Products, C/Velázquez 57, 6º derecha, 28001 Madrid, Spain;
- Catapult Therapeutics, 8243 RC Lelystad, The Netherlands
| | - Jens V. Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, CH-1700 Freiburg, Switzerland; (S.W.); (J.V.S.)
| | - Cecilia Muñoz-Calleja
- Immunology Department, Hospital Universitario de La Princesa, IIS-IP, 28006 Madrid, Spain; (T.M.-A.); (A.M.-J.); (C.M.-C.)
- School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Carlos Cuesta-Mateos
- Immunology Department, Hospital Universitario de La Princesa, IIS-IP, 28006 Madrid, Spain; (T.M.-A.); (A.M.-J.); (C.M.-C.)
- IMMED S.L., Immunological and Medicinal Products, C/Velázquez 57, 6º derecha, 28001 Madrid, Spain;
- Catapult Therapeutics, 8243 RC Lelystad, The Netherlands
- Correspondence: or ; Tel.: +34-91-534-43-14
| |
Collapse
|
27
|
Abdeljaoued S, Arfa S, Kroemer M, Ben Khelil M, Vienot A, Heyd B, Loyon R, Doussot A, Borg C. Tissue-resident memory T cells in gastrointestinal cancer immunology and immunotherapy: ready for prime time? J Immunother Cancer 2022; 10:jitc-2021-003472. [PMID: 35470231 PMCID: PMC9039405 DOI: 10.1136/jitc-2021-003472] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Tissue-resident memory T (TRM) cells have emerged as immune sentinels that patrol the tissue microenvironment and orchestrate localized antitumor immunity in various solid cancers. Recent studies have revealed that TRM cells are key players in cancer immunosurveillance, and their involvement has been linked to favorable responses to immunotherapy as well as general better clinical outcome in cancer patients. In this review, we provide an overview of the major advances and recent findings regarding TRM cells phenotype, transcriptional and epigenetic regulation in cancer with a special focus on gastrointestinal tumors. Finally, we highlight the exciting clinical implication of TRM cells in these types of tumors.
Collapse
Affiliation(s)
- Syrine Abdeljaoued
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Besançon, France .,Clinical Investigational Center, CIC-1431, Besançon, France
| | - Sara Arfa
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Besançon, France.,Department of Digestive and Oncologic Surgery, Liver Transplantation Unit, University Hospital of Besançon, Besançon, France
| | - Marie Kroemer
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Besançon, France.,Clinical Investigational Center, CIC-1431, Besançon, France.,Department of Pharmacy, University Hospital of Besançon, Besançon, France
| | - Myriam Ben Khelil
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Besançon, France
| | - Angélique Vienot
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Besançon, France.,Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Bruno Heyd
- Department of Digestive and Oncologic Surgery, Liver Transplantation Unit, University Hospital of Besançon, Besançon, France
| | - Romain Loyon
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Besançon, France
| | - Alexandre Doussot
- Department of Digestive and Oncologic Surgery, Liver Transplantation Unit, University Hospital of Besançon, Besançon, France
| | - Christophe Borg
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Besançon, France.,Clinical Investigational Center, CIC-1431, Besançon, France.,Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| |
Collapse
|
28
|
Akhmanova M, Emtenani S, Krueger D, Gyoergy A, Guarda M, Vlasov M, Vlasov F, Akopian A, Ratheesh A, De Renzis S, Siekhaus DE. Cell division in tissues enables macrophage infiltration. Science 2022; 376:394-396. [PMID: 35446632 DOI: 10.1101/2021.04.19.438995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Cells migrate through crowded microenvironments within tissues during normal development, immune response, and cancer metastasis. Although migration through pores and tracks in the extracellular matrix (ECM) has been well studied, little is known about cellular traversal into confining cell-dense tissues. We find that embryonic tissue invasion by Drosophila macrophages requires division of an epithelial ectodermal cell at the site of entry. Dividing ectodermal cells disassemble ECM attachment formed by integrin-mediated focal adhesions next to mesodermal cells, allowing macrophages to move their nuclei ahead and invade between two immediately adjacent tissues. Invasion efficiency depends on division frequency, but reduction of adhesion strength allows macrophage entry independently of division. This work demonstrates that tissue dynamics can regulate cellular infiltration.
Collapse
Affiliation(s)
- Maria Akhmanova
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Shamsi Emtenani
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Daniel Krueger
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Attila Gyoergy
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Mariana Guarda
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | | | - Fedor Vlasov
- Bundesgymnasium Klosterneuburg, Klosterneuburg, Austria
| | | | - Aparna Ratheesh
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Stefano De Renzis
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Daria E Siekhaus
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| |
Collapse
|
29
|
Paterson N, Lämmermann T. Macrophage network dynamics depend on haptokinesis for optimal local surveillance. eLife 2022; 11:e75354. [PMID: 35343899 PMCID: PMC8963880 DOI: 10.7554/elife.75354] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/20/2022] [Indexed: 02/06/2023] Open
Abstract
Macrophages are key immune cells with important roles for tissue surveillance in almost all mammalian organs. Cellular networks made up of many individual macrophages allow for optimal removal of dead cell material and pathogens in tissues. However, the critical determinants that underlie these population responses have not been systematically studied. Here, we investigated how cell shape and the motility of individual cells influences macrophage network responses in 3D culture settings and in mouse tissues. We show that surveying macrophage populations can tolerate lowered actomyosin contractility, but cannot easily compensate for a lack of integrin-mediated adhesion. Although integrins were dispensable for macrophage chemotactic responses, they were crucial to control cell movement and protrusiveness for optimal surveillance by a macrophage population. Our study reveals that β1 integrins are important for maintaining macrophage shape and network sampling efficiency in mammalian tissues, and sets macrophage motility strategies apart from the integrin-independent 3D migration modes of many other immune cell subsets.
Collapse
Affiliation(s)
- Neil Paterson
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM)FreiburgGermany
- Faculty of Biology, University of FreiburgFreiburgGermany
| | - Tim Lämmermann
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| |
Collapse
|
30
|
Konjar Š, Ficht X, Iannacone M, Veldhoen M. Heterogeneity of Tissue Resident Memory T cells. Immunol Lett 2022; 245:1-7. [DOI: 10.1016/j.imlet.2022.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/13/2022] [Accepted: 02/21/2022] [Indexed: 12/24/2022]
|
31
|
Hasan MH, Beura LK. Cellular interactions in resident memory T cell establishment and function. Curr Opin Immunol 2022; 74:68-75. [PMID: 34794039 PMCID: PMC8901561 DOI: 10.1016/j.coi.2021.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 02/03/2023]
Abstract
Tissue resident memory T cells (TRM) are enriched in non-lymphoid tissues and represent a formidable barrier against invading pathogens and tumors. TRM are armed with deployment ready effector molecules which combined with their frontline location allows them to be early organizing centers of our immune defense. Despite their autonomous nature, TRM rely on careful collaboration with other immune and non-immune cells located within the barrier organ to exert their superior protective role. Here, we highlight recent studies focusing on cellular interactions that regulate TRM establishment and function. A deeper understanding of these processes is instrumental in designing new means to target TRM for desirable outcomes in infectious diseases, cancers and autoimmunity.
Collapse
Affiliation(s)
- Mohammad H. Hasan
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, United States
| | - Lalit K. Beura
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, United States,Corresponding author Please send all correspondence to
| |
Collapse
|
32
|
Differential expression of CD11c defines two types of tissue-resident macrophages with different origins in steady-state salivary glands. Sci Rep 2022; 12:931. [PMID: 35042931 PMCID: PMC8766464 DOI: 10.1038/s41598-022-04941-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/04/2022] [Indexed: 12/24/2022] Open
Abstract
Gland macrophages are primed for gland development and functions through interactions within their niche. However, the phenotype, ontogeny, and function of steady-state salivary gland (SG) macrophages remain unclear. We herein identified CD11c+ and CD11c- subsets among CD64+ macrophages in steady-state murine SGs. CD11c- macrophages were predominant in the SGs of embryonic and newborn mice and decreased with advancing age. CD11c+ macrophages were rarely detected in the embryonic period, but rapidly expanded after birth. CD11c+, but not CD11c-, macrophage numbers decreased in mice treated with a CCR2 antagonist, suggesting that CD11c+ macrophages accumulate from bone marrow-derived progenitors in a CCR2-dependent manner, whereas CD11c- macrophages were derived from embryonic progenitors in SGs. CD11c+ and CD11c- macrophages strongly expressed colony-stimulating factor (CSF)-1 receptor, the injection of an anti-CSF-1 receptor blocking antibody markedly reduced both subsets, and SGs strongly expressed CSF-1, indicating the dependency of SG resident macrophage development on CSF-1. The phagocytic activity of SG macrophages was extremely weak; however, the gene expression profile of SG macrophages indicated that SG macrophages regulate gland development and functions in SGs. These results suggest that SG CD11c+ and CD11c- macrophages are developed and instructed to perform SG-specific functions in steady-state SGs.
Collapse
|
33
|
McKendrick JG, Emmerson E. The role of salivary gland macrophages in infection, disease and repair. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 368:1-34. [PMID: 35636925 DOI: 10.1016/bs.ircmb.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Macrophages are mononuclear innate immune cells which have become of increasing interest in the fields of disease and regeneration, as their non-classical functions have been elucidated in addition to their classical inflammatory functions. Macrophages can regulate tissue remodeling, by both mounting and reducing inflammatory responses; and exhibit direct communication with other cells to drive tissue turnover and cell replacement. Furthermore, macrophages have recently become an attractive therapeutic target to drive tissue regeneration. The major salivary glands are glandular tissues that are exposed to pathogens through their close connection with the oral cavity. Moreover, there are a number of diseases that preferentially destroy the salivary glands, causing irreversible injury, highlighting the need for a regenerative strategy. However, characterization of macrophages in the mouse and human salivary glands is sparse and has been mostly determined from studies in infection or autoimmune pathologies. In this review, we describe the current literature around salivary gland macrophages, and speculate about the niches they inhabit and how their role in development, regeneration and cancer may inform future therapeutic advances.
Collapse
Affiliation(s)
- John G McKendrick
- The Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Elaine Emmerson
- The Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
34
|
Transient Activation of Hedgehog Signaling Inhibits Cellular Senescence and Inflammation in Radiated Swine Salivary Glands through Preserving Resident Macrophages. Int J Mol Sci 2021; 22:ijms222413493. [PMID: 34948290 PMCID: PMC8708934 DOI: 10.3390/ijms222413493] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/11/2022] Open
Abstract
Salivary gland function is commonly and irreversibly damaged by radiation therapy for head and neck cancer. This damage greatly decreases the patient’s quality of life and is difficult to remedy. Previously, we found that the transient activation of Hedgehog signaling alleviated salivary hypofunction after radiation in both mouse and pig models through the inhibition of radiation-induced cellular senescence that is mediated by resident macrophages in mouse submandibular glands. Here we report that in swine parotid glands sharing many features with humans, the Hedgehog receptor PTCH1 is mainly expressed in macrophages, and levels of PTCH1 and multiple macrophage markers are significantly decreased by radiation but recovered by transient Hedgehog activation. These parotid macrophages mainly express the M2 macrophage marker ARG1, while radiation promotes expression of pro-inflammatory cytokine that is reversed by transient Hedgehog activation. Hedgehog activation likely preserves parotid macrophages after radiation through inhibition of P53 signaling and consequent cellular senescence. Consistently, VEGF, an essential anti-senescence cytokine downstream of Hedgehog signaling, is significantly decreased by radiation but recovered by transient Hedgehog activation. These findings indicate that in the clinically-relevant swine model, transient Hedgehog activation restores the function of irradiated salivary glands through the recovery of resident macrophages and the consequent inhibition of cellular senescence and inflammation.
Collapse
|
35
|
CD4 T Cell-Mediated Immune Control of Cytomegalovirus Infection in Murine Salivary Glands. Pathogens 2021; 10:pathogens10121531. [PMID: 34959486 PMCID: PMC8704252 DOI: 10.3390/pathogens10121531] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 12/24/2022] Open
Abstract
CD4 T cells are well known for their supportive role in CD8 T cell and B cell responses during viral infection. However, during murine cytomegalovirus (MCMV) infection in the salivary glands (SGs), CD4 T cells exhibit direct antiviral effector functions to control the infection. In this mucosal organ, opposed to other infected tissues, MCMV establishes a sustained lytic replication that lasts for several weeks. While the protective function of CD4 T cells is exerted through the production of the pro-inflammatory cytokines interferon gamma (IFNγ) and tumor necrosis factor alpha (TNF), the reasons for their markedly delayed control of lytic MCMV infection remain elusive. Here, we review the current knowledge on the dynamics and mechanisms of the CD4 T cell-mediated control of MCMV-infected SGs, including their localization in the SG in relation to MCMV infected cells and other immune cells, their mode of action, and their regulation.
Collapse
|
36
|
Reina-Campos M, Scharping NE, Goldrath AW. CD8 + T cell metabolism in infection and cancer. Nat Rev Immunol 2021; 21:718-738. [PMID: 33981085 PMCID: PMC8806153 DOI: 10.1038/s41577-021-00537-8] [Citation(s) in RCA: 268] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 02/03/2023]
Abstract
Cytotoxic CD8+ T cells play a key role in the elimination of intracellular infections and malignant cells and can provide long-term protective immunity. In the response to infection, CD8+ T cell metabolism is coupled to transcriptional, translational and epigenetic changes that are driven by extracellular metabolites and immunological signals. These programmes facilitate the adaptation of CD8+ T cells to the diverse and dynamic metabolic environments encountered in the circulation and in the tissues. In the setting of disease, both cell-intrinsic and cell-extrinsic metabolic cues contribute to CD8+ T cell dysfunction. In addition, changes in whole-body metabolism, whether through voluntary or disease-induced dietary alterations, can influence CD8+ T cell-mediated immunity. Defining the metabolic adaptations of CD8+ T cells in specific tissue environments informs our understanding of how these cells protect against pathogens and tumours and maintain tissue health at barrier sites. Here, we highlight recent findings revealing how metabolic networks enforce specific CD8+ T cell programmes and discuss how metabolism is integrated with CD8+ T cell differentiation and function and determined by environmental cues.
Collapse
Affiliation(s)
- Miguel Reina-Campos
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Nicole E. Scharping
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Ananda W. Goldrath
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA.,
| |
Collapse
|
37
|
Fowell DJ, Kim M. The spatio-temporal control of effector T cell migration. Nat Rev Immunol 2021; 21:582-596. [PMID: 33627851 PMCID: PMC9380693 DOI: 10.1038/s41577-021-00507-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 02/08/2023]
Abstract
Effector T cells leave the lymph nodes armed with specialized functional attributes. Their antigenic targets may be located anywhere in the body, posing the ultimate challenge: how to efficiently identify the target tissue, navigate through a complex tissue matrix and, ultimately, locate the immunological insult. Recent advances in real-time in situ imaging of effector T cell migratory behaviour have revealed a great degree of mechanistic plasticity that enables effector T cells to push and squeeze their way through inflamed tissues. This process is shaped by an array of 'stop' and 'go' guidance signals including target antigens, chemokines, integrin ligands and the mechanical cues of the inflamed microenvironment. Effector T cells must sense and interpret these competing signals to correctly position themselves to mediate their effector functions for complete and durable responses in infectious disease and malignancy. Tuning T cell migration therapeutically will require a new understanding of this complex decision-making process.
Collapse
Affiliation(s)
- Deborah J. Fowell
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute for Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY.,Department of Microbiology and Immunology, Cornell University, Ithaca, NY
| | - Minsoo Kim
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute for Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
38
|
Smith CJ, Snyder CM. Inhibitory Molecules PD-1, CD73 and CD39 Are Expressed by CD8 + T Cells in a Tissue-Dependent Manner and Can Inhibit T Cell Responses to Stimulation. Front Immunol 2021; 12:704862. [PMID: 34335618 PMCID: PMC8320728 DOI: 10.3389/fimmu.2021.704862] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/29/2021] [Indexed: 12/16/2022] Open
Abstract
The salivary gland is an important tissue for persistence and transmission of multiple viruses. Previous work showed that salivary gland tissue-resident CD8+ T cells elicited by viruses were poorly functional ex vivo. Using a model of persistent murine cytomegalovirus (MCMV) infection, we now show that CD8+ T cells in the salivary gland and other non-lymphoid tissues of mice express multiple molecules associated with T cell exhaustion including PD-1, CD73 and CD39. Strikingly however, these molecules were expressed independently of virus or antigen. Rather, PD-1-expressing T cells remained PD-1+ after migration into tissues regardless of infection, while CD73 was activated on CD8+ T cells by TGF-β signaling. Blockade of PD-L1, but not CD73, improved cytokine production by salivary gland T cells ex vivo and increased the expression of granzyme B after stimulation within the salivary gland. Nevertheless, salivary-gland localized CD8+ T cells could kill PD-L1-expressing targets in vivo, albeit with modest efficiency, and this was not improved by PD-L1 blockade. Moreover, the impact of PD-L1 blockade on granzyme B expression waned with time. In contrast, the function of kidney-localized T cells was improved by CD73 blockade, but was unaffected by PD-L1 blockade. These data show that tissue localization per se is associated with expression of inhibitory molecules that can impact T cell function, but that the functional impact of this expression is context- and tissue-dependent.
Collapse
Affiliation(s)
- Corinne J Smith
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Christopher M Snyder
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
39
|
van Gisbergen KPJM, Zens KD, Münz C. T-cell memory in tissues. Eur J Immunol 2021; 51:1310-1324. [PMID: 33837521 DOI: 10.1002/eji.202049062] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/01/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022]
Abstract
Immunological memory equips our immune system to respond faster and more effectively against reinfections. This acquired immunity was originally attributed to long-lived, memory T and B cells with body wide access to peripheral and secondary lymphoid tissues. In recent years, it has been realized that both innate and adaptive immunity to a large degree depends on resident immune cells that act locally in barrier tissues including tissue-resident memory T cells (Trm). Here, we will discuss the phenotype of these Trm in mice and humans, the tissues and niches that support them, and their function, plasticity, and transcriptional control. Their unique properties enable Trm to achieve long-lived immunological memory that can be deposited in nearly every organ in response to acute and persistent infection, and in response to cancer. However, Trm may also induce substantial immunopathology in allergic and autoimmune disease if their actions remain unchecked. Therefore, inhibitory and activating stimuli appear to balance the actions of Trm to ensure rapid proinflammatory responses upon infection and to prevent damage to host tissues under steady state conditions.
Collapse
Affiliation(s)
- Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Kyra D Zens
- Viral Immunobiology, University of Zurich, Zurich, Switzerland.,Department of Public and Global Health, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland.,Department of Infectious Diseases and Hospital Epidemiology, University Hospital, Zurich, Switzerland
| | - Christian Münz
- Viral Immunobiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
40
|
Verstappen GM, Pringle S, Bootsma H, Kroese FGM. Epithelial-immune cell interplay in primary Sjögren syndrome salivary gland pathogenesis. Nat Rev Rheumatol 2021; 17:333-348. [PMID: 33911236 PMCID: PMC8081003 DOI: 10.1038/s41584-021-00605-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2021] [Indexed: 02/08/2023]
Abstract
In primary Sjögren syndrome (pSS), the function of the salivary glands is often considerably reduced. Multiple innate immune pathways are likely dysregulated in the salivary gland epithelium in pSS, including the nuclear factor-κB pathway, the inflammasome and interferon signalling. The ductal cells of the salivary gland in pSS are characteristically surrounded by a CD4+ T cell-rich and B cell-rich infiltrate, implying a degree of communication between epithelial cells and immune cells. B cell infiltrates within the ducts can initiate the development of lymphoepithelial lesions, including basal ductal cell hyperplasia. Vice versa, the epithelium provides chronic activation signals to the glandular B cell fraction. This continuous stimulation might ultimately drive the development of mucosa-associated lymphoid tissue lymphoma. This Review discusses changes in the cells of the salivary gland epithelium in pSS (including acinar, ductal and progenitor cells), and the proposed interplay of these cells with environmental stimuli and the immune system. Current therapeutic options are insufficient to address both lymphocytic infiltration and salivary gland dysfunction. Successful rescue of salivary gland function in pSS will probably demand a multimodal therapeutic approach and an appreciation of the complicity of the salivary gland epithelium in the development of pSS.
Collapse
Affiliation(s)
- Gwenny M Verstappen
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Sarah Pringle
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Hendrika Bootsma
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.
| | - Frans G M Kroese
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
41
|
Uhl B, Braun C, Dominik J, Luft J, Canis M, Reichel CA. A Novel Experimental Approach for In Vivo Analyses of the Salivary Gland Microvasculature. Front Immunol 2021; 11:604470. [PMID: 33679695 PMCID: PMC7925411 DOI: 10.3389/fimmu.2020.604470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/21/2020] [Indexed: 12/28/2022] Open
Abstract
Microvascular dysfunction plays a fundamental role in the pathogenesis of salivary gland disorders. Restoring and preserving microvascular integrity might therefore represent a promising strategy for the treatment of these pathologies. The mechanisms underlying microvascular dysfunction in salivary glands, however, are still obscure, partly due to the unavailability of adequate in vivo models. Here, we present a novel experimental approach that allows comprehensive in vivo analyses of the salivary gland microvasculature in mice. For this purpose, we employed different microscopy techniques including multi-photon in vivo microscopy to quantitatively analyze interactions of distinct immune cell subsets in the submandibular gland microvasculature required for their infiltration into the surrounding parenchyma and their effects on microvascular function. Confocal microscopy and multi-channel flow cytometry in tissue sections/homogenates complemented these real-time analyses by determining the molecular phenotype of the participating cells. To this end, we identified key adhesion and signaling molecules that regulate the subset- and tissue-specific trafficking of leukocytes into inflamed glands and control the associated microvascular leakage. Hence, we established an experimental approach that allows in vivo analyses of microvascular processes in healthy and diseased salivary glands. This enables us to delineate distinct pathogenetic factors as novel therapeutic targets in salivary gland diseases.
Collapse
Affiliation(s)
- Bernd Uhl
- Department of Otorhinolaryngology—Head and Neck Surgery, Ludwig-Maximilians-Universität München, Munich, Germany
- Walter Brendel Centre for Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Constanze Braun
- Walter Brendel Centre for Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Julian Dominik
- Walter Brendel Centre for Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Joshua Luft
- Walter Brendel Centre for Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology—Head and Neck Surgery, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christoph A. Reichel
- Department of Otorhinolaryngology—Head and Neck Surgery, Ludwig-Maximilians-Universität München, Munich, Germany
- Walter Brendel Centre for Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
42
|
Stein JV, Ruef N, Wissmann S. Organ-Specific Surveillance and Long-Term Residency Strategies Adapted by Tissue-Resident Memory CD8 + T Cells. Front Immunol 2021; 12:626019. [PMID: 33659008 PMCID: PMC7917134 DOI: 10.3389/fimmu.2021.626019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/26/2021] [Indexed: 01/27/2023] Open
Abstract
Tissue-resident CD8+ T cells (CD8+ TRM) populate lymphoid and non-lymphoid tissues after infections as first line of defense against re-emerging pathogens. To achieve host protection, CD8+ TRM have developed surveillance strategies that combine dynamic interrogation of pMHC complexes on local stromal and hematopoietic cells with long-term residency. Factors mediating CD8+ TRM residency include CD69, a surface receptor opposing the egress-promoting S1P1, CD49a, a collagen-binding integrin, and CD103, which binds E-cadherin on epithelial cells. Moreover, the topography of the tissues of residency may influence TRM retention and surveillance strategies. Here, we provide a brief summary of these factors to examine how CD8+ TRM reconcile constant migratory behavior with their long-term commitment to local microenvironments, with a focus on epithelial barrier organs and exocrine glands with mixed connective-epithelial tissue composition.
Collapse
Affiliation(s)
- Jens V Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Nora Ruef
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Stefanie Wissmann
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
43
|
Das UN. "Cell Membrane Theory of Senescence" and the Role of Bioactive Lipids in Aging, and Aging Associated Diseases and Their Therapeutic Implications. Biomolecules 2021; 11:biom11020241. [PMID: 33567774 PMCID: PMC7914625 DOI: 10.3390/biom11020241] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Lipids are an essential constituent of the cell membrane of which polyunsaturated fatty acids (PUFAs) are the most important component. Activation of phospholipase A2 (PLA2) induces the release of PUFAs from the cell membrane that form precursors to both pro- and ant-inflammatory bioactive lipids that participate in several cellular processes. PUFAs GLA (gamma-linolenic acid), DGLA (dihomo-GLA), AA (arachidonic acid), EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) are derived from dietary linoleic acid (LA) and alpha-linolenic acid (ALA) by the action of desaturases whose activity declines with age. Consequently, aged cells are deficient in GLA, DGLA, AA, AA, EPA and DHA and their metabolites. LA, ALA, AA, EPA and DHA can also be obtained direct from diet and their deficiency (fatty acids) may indicate malnutrition and deficiency of several minerals, trace elements and vitamins some of which are also much needed co-factors for the normal activity of desaturases. In many instances (patients) the plasma and tissue levels of GLA, DGLA, AA, EPA and DHA are low (as seen in patients with hypertension, type 2 diabetes mellitus) but they do not have deficiency of other nutrients. Hence, it is reasonable to consider that the deficiency of GLA, DGLA, AA, EPA and DHA noted in these conditions are due to the decreased activity of desaturases and elongases. PUFAs stimulate SIRT1 through protein kinase A-dependent activation of SIRT1-PGC1α complex and thus, increase rates of fatty acid oxidation and prevent lipid dysregulation associated with aging. SIRT1 activation prevents aging. Of all the SIRTs, SIRT6 is critical for intermediary metabolism and genomic stability. SIRT6-deficient mice show shortened lifespan, defects in DNA repair and have a high incidence of cancer due to oncogene activation. SIRT6 overexpression lowers LDL and triglyceride level, improves glucose tolerance, and increases lifespan of mice in addition to its anti-inflammatory effects at the transcriptional level. PUFAs and their anti-inflammatory metabolites influence the activity of SIRT6 and other SIRTs and thus, bring about their actions on metabolism, inflammation, and genome maintenance. GLA, DGLA, AA, EPA and DHA and prostaglandin E2 (PGE2), lipoxin A4 (LXA4) (pro- and anti-inflammatory metabolites of AA respectively) activate/suppress various SIRTs (SIRt1 SIRT2, SIRT3, SIRT4, SIRT5, SIRT6), PPAR-γ, PARP, p53, SREBP1, intracellular cAMP content, PKA activity and peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1-α). This implies that changes in the metabolism of bioactive lipids as a result of altered activities of desaturases, COX-2 and 5-, 12-, 15-LOX (cyclo-oxygenase and lipoxygenases respectively) may have a critical role in determining cell age and development of several aging associated diseases and genomic stability and gene and oncogene activation. Thus, methods designed to maintain homeostasis of bioactive lipids (GLA, DGLA, AA, EPA, DHA, PGE2, LXA4) may arrest aging process and associated metabolic abnormalities.
Collapse
Affiliation(s)
- Undurti N. Das
- UND Life Sciences, 2221 NW 5th St, Battle Ground, WA 98604, USA; ; Tel.: +508-904-5376
- BioScience Research Centre and Department of Medicine, GVP Medical College and Hospital, Visakhapatnam 530048, India
- International Research Centre, Biotechnologies of the third Millennium, ITMO University, 191002 Saint-Petersburg, Russia
| |
Collapse
|
44
|
Rocchi C, Barazzuol L, Coppes RP. The evolving definition of salivary gland stem cells. NPJ Regen Med 2021; 6:4. [PMID: 33526786 PMCID: PMC7851389 DOI: 10.1038/s41536-020-00115-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
Dysfunction of the salivary gland and irreversible hyposalivation are the main side effects of radiotherapy treatment for head and neck cancer leading to a drastic decrease of the quality of life of the patients. Approaches aimed at regenerating damaged salivary glands have been proposed as means to provide long-term restoration of tissue function in the affected patients. In studies to elucidate salivary gland regenerative mechanisms, more and more evidence suggests that salivary gland stem/progenitor cell behavior, like many other adult tissues, does not follow that of the hard-wired professional stem cells of the hematopoietic system. In this review, we provide evidence showing that several cell types within the salivary gland epithelium can serve as stem/progenitor-like cells. While these cell populations seem to function mostly as lineage-restricted progenitors during homeostasis, we indicate that upon damage specific plasticity mechanisms might be activated to take part in regeneration of the tissue. In light of these insights, we provide an overview of how recent developments in the adult stem cell research field are changing our thinking of the definition of salivary gland stem cells and their potential plasticity upon damage. These new perspectives may have important implications on the development of new therapeutic approaches to rescue radiation-induced hyposalivation.
Collapse
Affiliation(s)
- Cecilia Rocchi
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands. .,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, 9700 RB, Groningen, The Netherlands. .,Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK.
| | - Lara Barazzuol
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, 9700 RB, Groningen, The Netherlands
| | - Rob P Coppes
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, 9700 RB, Groningen, The Netherlands
| |
Collapse
|
45
|
Bijnen M, Bajénoff M. Gland Macrophages: Reciprocal Control and Function within Their Niche. Trends Immunol 2021; 42:120-136. [PMID: 33423933 DOI: 10.1016/j.it.2020.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 11/30/2022]
Abstract
The human body contains dozens of endocrine and exocrine glands, which regulate physiological processes by secreting hormones and other factors. Glands can be subdivided into contiguous tissue modules, each consisting of an interdependent network of cells that together perform particular tissue functions. Among those cells are macrophages, a diverse type of immune cells endowed with trophic functions. In this review, we discuss recent findings on how resident macrophages support tissue modules within glands via the creation of mutually beneficial cell-cell circuits. A better comprehension of gland macrophage function and local control within their niche is essential to achieve a refined understanding of gland physiology in homeostasis and disease.
Collapse
Affiliation(s)
- Mitchell Bijnen
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
| | - Marc Bajénoff
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
46
|
Sadjadi Z, Zhao R, Hoth M, Qu B, Rieger H. Migration of Cytotoxic T Lymphocytes in 3D Collagen Matrices. Biophys J 2020; 119:2141-2152. [PMID: 33264597 PMCID: PMC7732778 DOI: 10.1016/j.bpj.2020.10.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/27/2022] Open
Abstract
CD8+ cytotoxic T lymphocytes (CTL) and natural killer cells are the main cytotoxic killer cells of the human body to eliminate pathogen-infected or tumorigenic cells (also known as target cells). To find their targets, they have to navigate and migrate through complex biological microenvironments, a key component of which is the extracellular matrix (ECM). The mechanisms underlying killer cell's navigation are not well understood. To mimic an ECM, we use a matrix formed by different collagen concentrations and analyze migration trajectories of primary human CTLs. Different migration patterns are observed and can be grouped into three motility types: slow, fast, and mixed. The dynamics are well described by a two-state persistent random walk model, which allows cells to switch between slow motion with low persistence and fast motion with high persistence. We hypothesize that the slow motility mode describes CTLs creating channels through the collagen matrix by deforming and tearing apart collagen fibers and that the fast motility mode describes CTLs moving within these channels. Experimental evidence supporting this scenario is presented by visualizing migrating T cells following each other on exactly the same track and showing cells moving quickly in channel-like cavities within the surrounding collagen matrix. Consequently, the efficiency of the stochastic search process of CTLs in the ECM should strongly be influenced by a dynamically changing channel network produced by the killer cells themselves.
Collapse
Affiliation(s)
- Zeinab Sadjadi
- Department of Theoretical Physics and Center for Biophysics, Universität des Saarlandes, Saarbrücken, Saarland, Germany.
| | - Renping Zhao
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Universität des Saarlandes, Homburg, Saarland, Germany
| | - Markus Hoth
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Universität des Saarlandes, Homburg, Saarland, Germany
| | - Bin Qu
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Universität des Saarlandes, Homburg, Saarland, Germany; Leibniz Institute for New Materials, Saarbrücken, Germany
| | - Heiko Rieger
- Department of Theoretical Physics and Center for Biophysics, Universität des Saarlandes, Saarbrücken, Saarland, Germany
| |
Collapse
|
47
|
Barrows CM, Wu D, Farach-Carson MC, Young S. Building a Functional Salivary Gland for Cell-Based Therapy: More than Secretory Epithelial Acini. Tissue Eng Part A 2020; 26:1332-1348. [PMID: 32829674 PMCID: PMC7759264 DOI: 10.1089/ten.tea.2020.0184] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/20/2020] [Indexed: 11/13/2022] Open
Abstract
A few treatment options exist for patients experiencing xerostomia due to hyposalivation that occurs as a result of disease or injury to the gland. An opportunity for a permanent solution lies in the field of salivary gland replacement through tissue engineering. Recent success emboldens in the vision of producing a tissue-engineered salivary gland composed of differentiated salivary epithelial cells that are able to differentiate to form functional units that produce and deliver saliva to the oral cavity. This vision is augmented by advances in understanding cellular mechanisms that guide branching morphogenesis and salivary epithelial cell polarization in both acinar and ductal structures. Growth factors and other guidance cues introduced into engineered constructs help to develop a more complex glandular structure that seeks to mimic native salivary gland tissue. This review describes the separate epithelial phenotypes that make up the gland, and it describes their relationship with the other cell types such as nerve and vasculature that surround them. The review is organized around the links between the native components that form and contribute to various aspects of salivary gland development, structure, and function and how this information can drive the design of functional tissue-engineered constructs. In addition, we discuss the attributes of various biomaterials commonly used to drive function and form in engineered constructs. The review also contains a current description of the state-of-the-art of the field, including successes and challenges in creating materials for preclinical testing in animal models. The ability to integrate biomolecular cues in combination with a range of materials opens the door to the design of increasingly complex salivary gland structures that, once accomplished, can lead to breakthroughs in other fields of tissue engineering of epithelial-based exocrine glands or oral tissues.
Collapse
Affiliation(s)
- Caitlynn M.L. Barrows
- Department of Diagnostic and Biomedical Sciences and The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, USA
- Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, USA
| | - Danielle Wu
- Department of Diagnostic and Biomedical Sciences and The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, USA
| | - Mary C. Farach-Carson
- Department of Diagnostic and Biomedical Sciences and The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, USA
- Department of Biosciences and Rice University, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Simon Young
- Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, USA
| |
Collapse
|
48
|
Paik DH, Farber DL. Anti-viral protective capacity of tissue resident memory T cells. Curr Opin Virol 2020; 46:20-26. [PMID: 33130326 DOI: 10.1016/j.coviro.2020.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
It has become increasingly clear that a subset of T cells which persist at diverse infection sites, known as tissue-resident memory T cells (TRM), can mediate efficacious protective immunity against many types of viral infections. Recent studies have elucidated the mechanisms by which TRM coordinate enhanced viral clearance in different sites through rapid production of effector cytokines and cytolytic mediators, in situ expansion, differentiation to circulating effector cells, and immune cell recruitment. This tissue-localized response also includes enhancement at the local lymphoid sites which contribute to fortifying TRM-mediated protection. Understanding how these responses occur in a tissue-wide context will provide key insights for development of vaccines and therapeutics.
Collapse
Affiliation(s)
- Daniel H Paik
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, United States; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, United States
| | - Donna L Farber
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, United States; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, United States; Department of Surgery, Columbia University Medical Center, New York, NY 10032, United States.
| |
Collapse
|
49
|
Ficht X, Iannacone M. Immune surveillance of the liver by T cells. Sci Immunol 2020; 5:5/51/eaba2351. [PMID: 32887842 DOI: 10.1126/sciimmunol.aba2351] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
The liver is the target of several infectious, inflammatory, and neoplastic diseases, which affect hundreds of millions of people worldwide and cause an estimated death toll of more than 2 million people each year. Dysregulation of T cell responses has been implicated in the pathogenesis of these diseases; hence, it is critically important to understand the function and fate of T cells in the liver. Here, we provide an overview of the current knowledge on liver immune surveillance by conventional and invariant T cells and explore the complex cross-talk between immune cell subsets that determines the balance between hepatic immunity and tolerance.
Collapse
Affiliation(s)
- Xenia Ficht
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy. .,Vita-Salute San Raffaele University, 20132 Milan, Italy.,Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
50
|
Woyciechowski S, Weißert K, Ammann S, Aichele P, Pircher H. NK1.1 + innate lymphoid cells in salivary glands inhibit establishment of tissue-resident memory CD8 + T cells in mice. Eur J Immunol 2020; 50:1952-1958. [PMID: 32734619 DOI: 10.1002/eji.202048741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/06/2020] [Accepted: 07/29/2020] [Indexed: 12/21/2022]
Abstract
NK1.1+ cells found in salivary glands (SG) represent a unique cell population of innate lymphoid cells (ILC) with characteristics of both conventional NK cells and ILC1. Here, we demonstrate that these NK1.1+ cells limit the accumulation and differentiation of virus-specific tissue-resident memory CD8+ T cells (TRM cells) in SG of mice infected with lymphocytic choriomeningitis virus (LCMV). The negative regulation of LCMV-specific CD8+ TRM cells by NK1.1+ cells in SG is independent of NKG2D, NKp46, TRAIL, and perforin. Moreover, analysis of NKp46iCre+ Eomesfl/fl mice revealed that Eomes-dependent conventional NK cells are dispensable for negative regulation. Since the SG are prone to autoimmune reactions, regulation of TRM cells by tissue-resident ILC may be particularly important to prevent immunopathology in this organ.
Collapse
Affiliation(s)
- Sandra Woyciechowski
- Institute for Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kristoffer Weißert
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Sandra Ammann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Aichele
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hanspeter Pircher
- Institute for Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|