1
|
Prosser AC, Klenerman P, Lucas M. Understanding Liver Transplantation Outcomes Through the Lens of Its Tissue-resident Immunobiome. Transplantation 2025:00007890-990000000-00973. [PMID: 39780303 DOI: 10.1097/tp.0000000000005303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Tissue-resident lymphocytes (TRLs) provide a front-line immunological defense mechanism uniquely placed to detect perturbations in tissue homeostasis. The heterogeneous TRL population spans the innate to adaptive immune continuum, with roles during normal physiology in homeostatic maintenance, tissue repair, pathogen detection, and rapid mounting of immune responses. TRLs are especially enriched in the liver, with every TRL subset represented, including liver-resident natural killer cells; tissue-resident memory B cells; conventional tissue-resident memory CD8, CD4, and regulatory T cells; and unconventional gamma-delta, natural killer, and mucosal-associated invariant T cells. The importance of donor- and recipient-derived TRLs after transplantation is becoming increasingly recognized, although it has not been examined in detail after liver transplantation. This review summarizes the evidence for the roles of TRLs in liver transplant immunology, focusing on their features, functions, and potential for their harnessing to improve transplant outcomes.
Collapse
Affiliation(s)
- Amy C Prosser
- Medical School, University of Western Australia, Perth, WA, Australia
| | - Paul Klenerman
- Translational Gastroenterology and Liver Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Michaela Lucas
- Medical School, University of Western Australia, Perth, WA, Australia
- Department of Immunology, PathWest Laboratory Medicine, Perth, WA, Australia
- Department of Immunology, Sir Charles Gairdner Hospital, Perth, WA, Australia
- Department of Immunology, Perth Children's Hospital, Perth, WA, Australia
| |
Collapse
|
2
|
Xia X, Fan X, Jiang S, Liao Y, Sun Y. Unveiling the intricate interplay: Exploring biological bridges between renal ischemia-reperfusion injury and T cell-mediated immune rejection in kidney transplantation. PLoS One 2024; 19:e0311661. [PMID: 39715172 DOI: 10.1371/journal.pone.0311661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/22/2024] [Indexed: 12/25/2024] Open
Abstract
Although the link between ischemia-reperfusion injury (IRI) and T cell-mediated rejection (TCMR) in kidney transplantation (KT) is well known, the mechanism remains unclear. We investigated essential genes and biological processes involved in interactions between IRI and TCMR. METHODS Renal IRI and TCMR datasets were obtained from the Gene Expression Omnibus database. IRI and TCMR co-expression networks were built using weighted gene co-expression network analysis, and essential modules were identified to acquire shared genes and conduct functional enrichment analysis. Shared genes were used for TCMR consensus clustering, differentially expressed genes (DEGs) were identified, and gene set enrichment analysis (GSEA) was conducted. Three machine learning algorithms screened for hub genes, which underwent miRNA prediction and transcription factor analysis. Hub gene expression was verified, and survival analysis was performed using Kaplan-Meier curves. RESULTS IRI and TCMR shared 84 genes. Functional enrichment analysis revealed that inflammation played a significant role. Based on shared genes, TCMR was divided into two clusters. GSEA revealed that graft rejection-related pathways varied between the two clusters. TCMR hub genes, guanylate-binding protein 1 (GBP1) and CD69, showed increased expression. Decreased survival rates were found in patients who had undergone KT and had high GBP1 and CD69 levels. CONCLUSIONS The study demonstrates that renal IRI has a potential role in renal TCMR and the pathogenic pathways are potentially inflammation-related.
Collapse
Affiliation(s)
- Xinyi Xia
- Department of Cardiology, Union Hospital, Huazhong University of Science and Technology and Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Tongji Medical College, Wuhan, China
| | - Xinrui Fan
- Faculty of Psychology, Sleep and NeuroImaging Center, Southwest University, Chongqing, China
| | - Shan Jiang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhan Liao
- Department of Cardiology, Union Hospital, Huazhong University of Science and Technology and Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Tongji Medical College, Wuhan, China
| | - Yang Sun
- Department of Medical Records Management and Statistics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Vats D, Rani G, Arora A, Sharma V, Rathore I, Mubeen SA, Singh A. Tuberculosis and T cells: Impact of T cell diversity in tuberculosis infection. Tuberculosis (Edinb) 2024; 149:102567. [PMID: 39305817 DOI: 10.1016/j.tube.2024.102567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 11/30/2024]
Abstract
Tuberculosis is a global threat and is still a leading cause of death due to an infectious agent. The infection is spread through inhalation of M. tb containing aerosol droplets. Bacteria after reaching the lung alveoli are engulfed by alveolar macrophages, leading to an immune response. Then, pro-inflammatory cytokines are released by these macrophages, recruiting other antigen-presenting cells like dendritic cells. These cells phagocytose the bacteria and present mycobacterial antigens to naïve T cells. After activation by DCs, T cells differentiate into various T cells subsets, viz. CD4+, CD8+, Th17, Treg, Tfh cells and others display enormous diversification in their characteristics and functions. This review comprises a comprehensive literature on conventional and unconventional T cells, highlighting the polyfunctional T cells as well, their role in controlling TB infection, and their implications in the spectrum of TB infection. While some subsets such as CD4+ T cells are extensively studied, some T cell subsets such as gamma delta T cells and Tfh cells remain poorly understood in the pathophysiology of tuberculosis, despite having significant potential implications. The goal of TB eradication can be assisted by development of better vaccines against TB, which can effectively induce a robust and long-term T cells memory. The same has been discussed in the latter part of this review. BCG being the standalone commercialised TB vaccine so far has its limitations. Strategies for the enhancement of BCG along with novel studies in vaccine development, has also been discussed in great detail. Lastly, T cells display a complex interplay of an adaptive immune response against TB, with activation and enhancement of the innate immune responses. Therefore, it is critical to fully understand the role of various T cells subsets in pathophysiology of tuberculosis to provide better therapeutic inventions and improve patient care.
Collapse
Affiliation(s)
- Deepak Vats
- All India Institute of Medical Sciences, New Delhi, India
| | - Geeta Rani
- All India Institute of Medical Sciences, New Delhi, India
| | - Alisha Arora
- All India Institute of Medical Sciences, New Delhi, India
| | - Vidushi Sharma
- All India Institute of Medical Sciences, New Delhi, India
| | - Isha Rathore
- All India Institute of Medical Sciences, New Delhi, India
| | | | - Archana Singh
- All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
4
|
Song EY, Barrow BE, Cendales LC. Vascular changes in vascularized composite allotransplantation. Curr Opin Organ Transplant 2024; 29:363-367. [PMID: 39492790 DOI: 10.1097/mot.0000000000001184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
PURPOSE OF REVIEW Allograft vasculopathy in vascularized composite allografts (VCA) remains understudied. This review explores the vascular changes in VCA, focused on recent literature. RECENT FINDINGS Allograft vasculopathy in VCA generally includes progressive concentric myointimal thickening and luminal narrowing of arterial vessels through endothelial deterioration and proliferation of smooth muscle cells. Microvascular changes are also noted, with thrombosis and lumen narrowing in microvessels of the skin even in the absence of large vessel vasculopathy. Histopathologic reports of skin containing VCA rejection document arteriosclerosis in deep vessels that are not always reflected in skin punch biopsies. The first revision of the Banff VCA scoring system 2022 was developed to include vascular changes in VCA. The scoring system for chronic changes and antibody mediated rejection continues to be under development. SUMMARY The study of vascular changes in VCA continues to progress. Important data and advances in experimental and clinical VCA have been reported and continue to take place. Challenges ahead include capture of clinical data that will evolve beyond transient report forms and approaching on the problem of graft failure well grounded in sound scientific methodology.
Collapse
Affiliation(s)
- Ethan Y Song
- Division of Plastic, Oral, and Maxillofacial Surgery
| | | | - Linda C Cendales
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
5
|
Meng F, Fu Y, Xie H, Wang H. Nanoparticle-assisted Targeting Delivery Technologies for Preventing Organ Rejection. Transplantation 2024; 108:2174-2185. [PMID: 38597913 DOI: 10.1097/tp.0000000000005025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Although organ transplantation is a life-saving medical procedure, the challenge of posttransplant rejection necessitates safe and effective immune modulation strategies. Nanodelivery approaches may have the potential to overcome the limitations of small-molecule immunosuppressive drugs, achieving efficacious treatment options for transplant tolerance without compromising overall host immunity. This review highlights recent advances in biomaterial-assisted formulations and technologies for targeted nanodrug delivery with transplant organ- or immune cell-level precision for treating graft rejection after transplantation. We provide an overview of the mechanism of transplantation rejection, current clinically approved immunosuppressive drugs, and their relevant limitations. Finally, we discuss the targeting principles and advantages of organ- and immune cell-specific delivery technologies. The development of biomaterial-assisted novel therapeutic strategies holds considerable promise for treating organ rejection and clinical translation.
Collapse
Affiliation(s)
- Fanchao Meng
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province, People's Republic of China
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Yang Fu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Haiyang Xie
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Hangxiang Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province, People's Republic of China
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
6
|
Ding Q, Wu Y, Triglia ET, Gommerman JL, Subramanian A, Kuchroo VK, Rothstein DM. TIM-4 Identifies Effector B Cells Expressing a RORγt-Driven Proinflammatory Cytokine Module That Promotes Immune Responsiveness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.22.558524. [PMID: 37790513 PMCID: PMC10542535 DOI: 10.1101/2023.09.22.558524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
B cells can express pro-inflammatory cytokines that promote a wide variety of immune responses. Here we show that B cells expressing the phosphatidylserine receptor TIM-4, preferentially express IL-17A, as well as IL-22, IL-6, IL-1β, and GM-CSF - a collection of cytokines reminiscent of pathogenic Th17 cells. Expression of this proinflammatory module requires IL-23R signaling and selective expression of RORγt and IL-17A by TIM-4+ B cells. TIM-4+ B cell-derived-IL-17A not only enhances the severity of experimental autoimmune encephalomyelitis (EAE) and promotes allograft rejection, but also acts in an autocrine manner to prevent their conversion into IL-10-expressing B cells with regulatory function. Thus, IL-17A acts as an inflammatory mediator and also enforces the proinflammatory activity of TIM-4+ B cells. Thus, TIM-4 serves as a broad marker for RORγt+ effector B cells (Beff) and allows further study of the signals regulating Beff differentiation and effector molecule expression.
Collapse
Affiliation(s)
- Qing Ding
- Thomas E. Starzl Transplantation Institute; University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yufan Wu
- Klarman Cell Observatory, Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | - Elena Torlai Triglia
- Klarman Cell Observatory, Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | | | - Ayshwarya Subramanian
- Klarman Cell Observatory, Broad Institute of MIT and Harvard; Cambridge, MA, USA
- The Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | - Vijay K. Kuchroo
- Klarman Cell Observatory, Broad Institute of MIT and Harvard; Cambridge, MA, USA
- The Broad Institute of MIT and Harvard; Cambridge, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
| | - David M. Rothstein
- Thomas E. Starzl Transplantation Institute; University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
7
|
Zhang J, Zhan H, Song Z, Liu S. Immune reactions following intestinal transplantation: Mechanisms and prevention. Asian J Surg 2024; 47:3819-3826. [PMID: 38431471 DOI: 10.1016/j.asjsur.2024.02.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
For patients with intestinal failure, small bowel transplantation remains one of the most effective treatments despite continuous advancements in parenteral nutrition techniques. Long-term use of parenteral nutrition can result in serious complications that lead to metabolic dysfunction and organ failure. However, the small intestine is a highly immunogenic organ with a large amount of mucosa-associated lymphoid tissue and histocompatibility antigens; therefore, the small intestine is highly susceptible to severe immune rejection. This article discusses the mechanisms underlying immune rejection after small bowel transplantation and presents various options for prevention and treatment. Our findings offer new insights into the development of small bowel transplantation.
Collapse
Affiliation(s)
- Junhao Zhang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hanxiang Zhan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zifang Song
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shanglong Liu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
8
|
Saha I, Chawla AS, Oliveira APBN, Elfers EE, Warrick K, Meibers HE, Jain VG, Hagan T, Katz JD, Pasare C. Alloreactive memory CD4 T cells promote transplant rejection by engaging DCs to induce innate inflammation and CD8 T cell priming. Proc Natl Acad Sci U S A 2024; 121:e2401658121. [PMID: 39136987 PMCID: PMC11348247 DOI: 10.1073/pnas.2401658121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/10/2024] [Indexed: 08/15/2024] Open
Abstract
Alloreactive memory T cells have been implicated as central drivers of transplant rejection. Perplexingly, innate cytokines, such as IL-6, IL-1β, and IL-12, are also associated with rejection of organ transplants. However, the pathways of innate immune activation in allogeneic transplantation are unclear. While the role of microbial and cell death products has been previously described, we identified alloreactive memory CD4 T cells as the primary triggers of innate inflammation. Memory CD4 T cells engaged MHC II-mismatched dendritic cells (DCs), leading to the production of innate inflammatory cytokines. This innate inflammation was independent of several pattern recognition receptors and was primarily driven by TNF superfamily ligands expressed by alloreactive memory CD4 T cells. Blocking of CD40L and TNFα resulted in dampened inflammation, and mice genetically deficient in these molecules exhibited prolonged survival of cardiac allografts. Furthermore, myeloid cell and CD8 T cell infiltration into cardiac transplants was compromised in both CD40L- and TNFα-deficient recipients. Strikingly, we found that priming of naive alloreactive CD8 T cells was dependent on licensing of DCs by memory CD4 T cells. This study unravels the key mechanisms by which alloreactive memory CD4 T cells contribute to destructive pathology and transplant rejection.
Collapse
Affiliation(s)
- Irene Saha
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
| | - Amanpreet Singh Chawla
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
| | - Ana Paula B. N. Oliveira
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
| | - Eileen E. Elfers
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
| | - Kathrynne Warrick
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
- Immunology Graduate Program, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH45220
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH45229
| | - Hannah E. Meibers
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
- Immunology Graduate Program, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH45220
| | - Viral G. Jain
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Thomas Hagan
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH45220
| | - Jonathan D. Katz
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH45220
| | - Chandrashekhar Pasare
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH45220
| |
Collapse
|
9
|
Li X, Li S, Wang Y, Zhou X, Wang F, Muhammad I, Luo Y, Sun Y, Liu D, Wu B, Teng D, Wang J, Zhao K, Ling Q, Cai J. Single cell RNA-sequencing delineates CD8 + tissue resident memory T cells maintaining rejection in liver transplantation. Theranostics 2024; 14:4844-4860. [PMID: 39239518 PMCID: PMC11373625 DOI: 10.7150/thno.96928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/03/2024] [Indexed: 09/07/2024] Open
Abstract
Rationale: Understanding the immune mechanisms associated with liver transplantation (LT), particularly the involvement of tissue-resident memory T cells (TRMs), represents a significant challenge. Methods: This study employs a multi-omics approach to analyse liver transplant samples from both human (n = 17) and mouse (n = 16), utilizing single-cell RNA sequencing, bulk RNA sequencing, and immunological techniques. Results: Our findings reveal a comprehensive T cell-centric landscape in LT across human and mouse species, involving 235,116 cells. Notably, we found a substantial increase in CD8+ TRMs within rejected grafts compared to stable ones. The elevated presence of CD8+ TRMs is characterised by a distinct expression profile, featuring upregulation of tissue-residency markers (CD69, CXCR6, CD49A and CD103+/-,), immune checkpoints (PD1, CTLA4, and TIGIT), cytotoxic markers (GZMB and IFNG) and proliferative markers (PCNA and TOP2A) during rejection. Furthermore, there is a high expression of transcription factors such as EOMES and RUNX3. Functional assays and analyses of cellular communication underscore the active role of CD8+ TRMs in interacting with other tissue-resident cells, particularly Kupffer cells, especially during rejection episodes. Conclusions: These insights into the distinctive activation and interaction patterns of CD8+ TRMs suggest their potential utility as biomarkers for graft rejection, paving the way for novel therapeutic strategies aimed at enhancing graft tolerance and improving overall transplant outcomes.
Collapse
Affiliation(s)
- Xinqiang Li
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Organ Donation and Transplantation, Medical College of Qingdao University, Qingdao, China
| | - Shipeng Li
- Department of Hepatopancreaticobiliary Surgery, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Yan Wang
- First Hospital/First Clinical College of Shanxi Medical University, Taiyuan, China
| | - Xin Zhou
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Organ Donation and Transplantation, Medical College of Qingdao University, Qingdao, China
| | - Feng Wang
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Organ Donation and Transplantation, Medical College of Qingdao University, Qingdao, China
| | - Imran Muhammad
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Organ Donation and Transplantation, Medical College of Qingdao University, Qingdao, China
| | - Yurong Luo
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Organ Donation and Transplantation, Medical College of Qingdao University, Qingdao, China
| | - Yandong Sun
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Organ Donation and Transplantation, Medical College of Qingdao University, Qingdao, China
| | - Dan Liu
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Organ Donation and Transplantation, Medical College of Qingdao University, Qingdao, China
| | - Bin Wu
- Organ Transplant Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Dahong Teng
- Organ Transplant Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jinshan Wang
- Organ Transplant Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Kai Zhao
- Organ Transplant Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Qi Ling
- Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinzhen Cai
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Organ Donation and Transplantation, Medical College of Qingdao University, Qingdao, China
- Organ Transplant Center, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
10
|
Wang X, Zhang J, Zhong P, Wei X. Exhaustion of T cells after renal transplantation. Front Immunol 2024; 15:1418238. [PMID: 39165360 PMCID: PMC11333218 DOI: 10.3389/fimmu.2024.1418238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
Renal transplantation is a life-saving treatment for patients with end-stage renal disease. However, the challenge of transplant rejection and the complications associated with immunosuppressants necessitates a deeper understanding of the underlying immune mechanisms. T cell exhaustion, a state characterized by impaired effector functions and sustained expression of inhibitory receptors, plays a dual role in renal transplantation. While moderate T cell exhaustion can aid in graft acceptance by regulating alloreactive T cell responses, excessive exhaustion may impair the recipient's ability to control viral infections and tumors, posing significant health risks. Moreover, drugs targeting T cell exhaustion to promote graft tolerance and using immune checkpoint inhibitors for cancer treatment in transplant recipients are areas deserving of further attention and research. This review aims to provide a comprehensive understanding of the changes in T cell exhaustion levels after renal transplantation and their implications for graft survival and patient outcomes. We discuss the molecular mechanisms underlying T cell exhaustion, the role of specific exhaustion markers, the potential impact of immunosuppressive therapies, and the pharmaceutical intervention on T cell exhaustion levels. Additionally, we demonstrate the potential to modulate T cell exhaustion favorably, enhancing graft survival. Future research should focus on the distinctions of T cell exhaustion across different immune states and subsets, as well as the interactions between exhausted T cells and other immune cells. Understanding these dynamics is crucial for optimizing transplant outcomes and ensuring long-term graft survival while maintaining immune competence.
Collapse
Affiliation(s)
- Xiujia Wang
- Department of 1st Urology Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jinghui Zhang
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Pingshan Zhong
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Xiuwang Wei
- Department of 1st Urology Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
11
|
Hullegie-Peelen DM, Tejeda-Mora H, Dieterich M, Heidt S, Bindels EMJ, Hoogduijn MJ, Hesselink DA, Baan CC. Tissue-resident memory T cells in human kidney transplants have alloreactive potential. Am J Transplant 2024; 24:1406-1413. [PMID: 38447886 DOI: 10.1016/j.ajt.2024.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
The extent to which tissue-resident memory T (TRM) cells in transplanted organs possess alloreactivity is uncertain. This study investigates the alloreactive potential of TRM cells in kidney explants from 4 patients who experienced severe acute rejection leading to graft loss. Alloreactive T cell receptor (TCR) clones were identified in pretransplant blood samples through mixed lymphocyte reactions, followed by single-cell RNA and TCR sequencing of the proliferated recipient T cells. Subsequently, these TCR clones were traced in the TRM cells of kidney explants, which were also subjected to single-cell RNA and TCR sequencing. The proportion of recipient-derived TRM cells expressing an alloreactive TCR in the 4 kidney explants varied from 0% to 9%. Notably, these alloreactive TCRs were predominantly found among CD4+ and CD8+ TRM cells with an effector phenotype. Intriguingly, these clones were present not only in recipient-derived TRM cells but also in donor-derived TRM cells, constituting up to 4% of the donor population, suggesting the presence of self-reactive TRM cells. Overall, our study demonstrates that T cells with alloreactive potential present in the peripheral blood prior to transplantation can infiltrate the kidney transplant and adopt a TRM phenotype.
Collapse
Affiliation(s)
- Daphne M Hullegie-Peelen
- Erasmus Medical Center Transplant Institute, Department of Internal Medicine, Nephrology and Transplantation, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Hector Tejeda-Mora
- Erasmus Medical Center Transplant Institute, Department of Internal Medicine, Nephrology and Transplantation, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Marjolein Dieterich
- Erasmus Medical Center Transplant Institute, Department of Internal Medicine, Nephrology and Transplantation, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Eric M J Bindels
- Department of Haematology, University Medical Center, Rotterdam, the Netherlands
| | - Martin J Hoogduijn
- Erasmus Medical Center Transplant Institute, Department of Internal Medicine, Nephrology and Transplantation, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Dennis A Hesselink
- Erasmus Medical Center Transplant Institute, Department of Internal Medicine, Nephrology and Transplantation, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Carla C Baan
- Erasmus Medical Center Transplant Institute, Department of Internal Medicine, Nephrology and Transplantation, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
12
|
Wu C, Yu H, Liang F, Huang X, Jiang B, Lou Z, Liu Y, Wu Z, Wang Q, Shen H, Chen M, Wu P, Wu M. Hypoxia inhibits the iMo/cDC2/CD8+ TRMs immune axis in the tumor microenvironment of human esophageal cancer. J Immunother Cancer 2024; 12:e008889. [PMID: 38964786 PMCID: PMC11227851 DOI: 10.1136/jitc-2024-008889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Esophageal cancer (ESCA) is a form of malignant tumor associated with chronic inflammation and immune dysregulation. However, the specific immune status and key mechanisms of immune regulation in this disease require further exploration. METHODS To investigate the features of the human ESCA tumor immune microenvironment and its possible regulation, we performed mass cytometry by time of flight, single-cell RNA sequencing, multicolor fluorescence staining of tissue, and flow cytometry analyses on tumor and paracancerous tissue from treatment-naïve patients. RESULTS We depicted the immune landscape of the ESCA and revealed that CD8+ (tissue-resident memory CD8+ T cells (CD8+ TRMs) were closely related to disease progression. We also revealed the heterogeneity of CD8+ TRMs in the ESCA tumor microenvironment (TME), which was associated with their differentiation and function. Moreover, the subset of CD8+ TRMs in tumor (called tTRMs) that expressed high levels of granzyme B and immune checkpoints was markedly decreased in the TME of advanced ESCA. We showed that tTRMs are tumor effector cells preactivated in the TME. We then demonstrated that conventional dendritic cells (cDC2s) derived from intermediate monocytes (iMos) are essential for maintaining the proliferation of CD8+ TRMs in the TME. Our preliminary study showed that hypoxia can promote the apoptosis of iMos and impede the maturation of cDC2s, which in turn reduces the proliferative capacity of CD8+ TRMs, thereby contributing to the progression of cancer. CONCLUSIONS Our study revealed the essential antitumor roles of CD8+ TRMs and preliminarily explored the regulation of the iMo/cDC2/CD8+ TRM immune axis in the human ESCA TME.
Collapse
Affiliation(s)
- Chuanqiang Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine,Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Laboratory of Clinical Research Center of Zhejiang Province, The Second Affiliated Hospital Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Huan Yu
- Department of Thoracic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine,Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Fuxiang Liang
- Department of Thoracic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine,Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Xiancong Huang
- Department of Thoracic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine,Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Department of Thoracic Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| | - Bin Jiang
- Department of Thoracic Surgery, Shandong Provincial Hospital, Jinan, Shandong Province, People's Republic of China
| | - Zhiling Lou
- Department of Thoracic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine,Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Yafei Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine,Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Zixiang Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine,Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Qi Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine,Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Hong Shen
- Department of Medical Oncology, The Second Affiliated Hospital Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Pin Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine,Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Ming Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine,Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Laboratory of Clinical Research Center of Zhejiang Province, The Second Affiliated Hospital Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
13
|
Zhang G, Feizi N, Zhao D, Halesha L, Williams AL, Randhawa PS, Abou-Daya KI, Oberbarnscheidt MH. Lymphotoxin β receptor and tertiary lymphoid organs shape acute and chronic allograft rejection. JCI Insight 2024; 9:e177555. [PMID: 38954463 PMCID: PMC11383591 DOI: 10.1172/jci.insight.177555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/20/2024] [Indexed: 07/04/2024] Open
Abstract
Solid organ transplantation remains the life-saving treatment for end-stage organ failure, but chronic rejection remains a major obstacle to long-term allograft outcomes and has not improved substantially. Tertiary lymphoid organs (TLOs) are ectopic lymphoid structures that form under conditions of chronic inflammation, and evidence from human transplantation suggests that TLOs regularly form in allografts undergoing chronic rejection. In this study, we utilized a mouse renal transplantation model and manipulation of the lymphotoxin αβ/lymphotoxin β receptor (LTαβ/LTβR) pathway, which is essential for TLO formation, to define the role of TLOs in transplantation. We showed that intragraft TLOs are sufficient to activate the alloimmune response and mediate graft rejection in a model where the only lymphoid organs are TLOs in the allograft. When transplanted to recipients with a normal set of secondary lymphoid organs, the presence of graft TLOs or LTα overexpression accelerated rejection. If the LTβR pathway was disrupted in the donor graft, TLO formation was abrogated, and graft survival was prolonged. Intravital microscopy of renal TLOs demonstrated that local T and B cell activation in TLOs is similar to that observed in secondary lymphoid organs. In summary, we demonstrated that immune activation in TLOs contributes to local immune responses, leading to earlier allograft failure. TLOs and the LTαβ/LTβR pathway are therefore prime targets to limit local immune responses and prevent allograft rejection. These findings are applicable to other diseases, such as autoimmune diseases or tumors, where either limiting or boosting local immune responses is beneficial and improves disease outcomes.
Collapse
Affiliation(s)
- Gang Zhang
- Department of Surgery, Thomas E. Starzl Transplantation Institute, Pittsburgh, Pennsylvania, USA
- Center of Organ Transplantation, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Neda Feizi
- Department of Surgery, Thomas E. Starzl Transplantation Institute, Pittsburgh, Pennsylvania, USA
| | - Daqiang Zhao
- Department of Surgery, Thomas E. Starzl Transplantation Institute, Pittsburgh, Pennsylvania, USA
| | - Latha Halesha
- Department of Surgery, Thomas E. Starzl Transplantation Institute, Pittsburgh, Pennsylvania, USA
| | - Amanda L Williams
- Department of Surgery, Thomas E. Starzl Transplantation Institute, Pittsburgh, Pennsylvania, USA
| | - Parmjeet S Randhawa
- Department of Surgery, Thomas E. Starzl Transplantation Institute, Pittsburgh, Pennsylvania, USA
- Division of Transplant Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Khodor I Abou-Daya
- Department of Surgery, Thomas E. Starzl Transplantation Institute, Pittsburgh, Pennsylvania, USA
| | - Martin H Oberbarnscheidt
- Department of Surgery, Thomas E. Starzl Transplantation Institute, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
14
|
Sato H, Meng S, Hara T, Tsuji Y, Arao Y, Sasaki K, Kobayashi S, di Luccio E, Hirotsu T, Satoh T, Doki Y, Eguchi H, Ishii H. Tissue-Resident Memory T Cells in Gastrointestinal Cancers: Prognostic Significance and Therapeutic Implications. Biomedicines 2024; 12:1342. [PMID: 38927549 PMCID: PMC11202222 DOI: 10.3390/biomedicines12061342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Gastrointestinal cancers, which include a variety of esophageal and colorectal malignancies, present a global health challenge and require effective treatment strategies. In the evolving field of cancer immunotherapy, tissue-resident memory T cells (Trm cells) have emerged as important players in the immune response within nonlymphoid tissues. In this review, we summarize the characteristics and functions of Trm cells and discuss their profound implications for patient outcomes in gastrointestinal cancers. Positioned strategically in peripheral tissues, Trm cells have functions beyond immune surveillance, affecting tumor progression, prognosis, and response to immunotherapy. Studies indicate that Trm cells are prognostic markers and correlate positively with enhanced survival. Their presence in the tumor microenvironment has sparked interest in their therapeutic potential, particularly with respect to immune checkpoint inhibitors, which may improve cancer treatment. Understanding how Trm cells work will not only help to prevent cancer spread through effective treatment but will also contribute to disease prevention at early stages as well as vaccine development. The role of Trm cells goes beyond just cancer, and they have potential applications in infectious and autoimmune diseases. This review provides a thorough analysis of Trm cells in gastrointestinal cancers, which may lead to personalized and effective cancer therapies.
Collapse
Affiliation(s)
- Hiromichi Sato
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan; (H.S.)
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan
| | - Sikun Meng
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan; (H.S.)
| | - Tomoaki Hara
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan; (H.S.)
| | - Yoshiko Tsuji
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan; (H.S.)
| | - Yasuko Arao
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan; (H.S.)
| | - Kazuki Sasaki
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan; (H.S.)
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan
| | - Eric di Luccio
- Hirotsu Bio Science Inc., Chiyoda-Ku, Tokyo 102-0094, Japan
| | | | - Taroh Satoh
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan
| | - Hideshi Ishii
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan; (H.S.)
| |
Collapse
|
15
|
Iijima N. The emerging role of effector functions exerted by tissue-resident memory T cells. OXFORD OPEN IMMUNOLOGY 2024; 5:iqae006. [PMID: 39193473 PMCID: PMC11213632 DOI: 10.1093/oxfimm/iqae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/14/2024] [Accepted: 06/04/2024] [Indexed: 08/29/2024] Open
Abstract
The magnitude of the effector functions of memory T cells determines the consequences of the protection against invading pathogens and tumor development or the pathogenesis of autoimmune and allergic diseases. Tissue-resident memory T cells (TRM cells) are unique T-cell populations that persist in tissues for long periods awaiting re-encounter with their cognate antigen. Although TRM cell reactivation primarily requires the presentation of cognate antigens, recent evidence has shown that, in addition to the conventional concept, TRM cells can be reactivated without the presentation of cognate antigens. Non-cognate TRM cell activation is triggered by cross-reactive antigens or by several combinations of cytokines, including interleukin (IL)-2, IL-7, IL-12, IL-15 and IL-18. The activation mode of TRM cells reinforces their cytotoxic activity and promotes the secretion of effector cytokines (such as interferon-gamma and tumor necrosis factor-alpha). This review highlights the key features of TRM cell maintenance and reactivation and discusses the importance of effector functions that TRM cells exert upon being presented with cognate and/or non-cognate antigens, as well as cytokines secreted by TRM and non-TRM cells within the tissue microenvironment.
Collapse
Affiliation(s)
- Norifumi Iijima
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBN), Ibaraki, Osaka, Japan
| |
Collapse
|
16
|
Yoon B, Kim H, Jung SW, Park J. Single-cell lineage tracing approaches to track kidney cell development and maintenance. Kidney Int 2024; 105:1186-1199. [PMID: 38554991 DOI: 10.1016/j.kint.2024.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/06/2023] [Accepted: 01/09/2024] [Indexed: 04/02/2024]
Abstract
The kidney is a complex organ consisting of various cell types. Previous studies have aimed to elucidate the cellular relationships among these cell types in developing and mature kidneys using Cre-loxP-based lineage tracing. However, this methodology falls short of fully capturing the heterogeneous nature of the kidney, making it less than ideal for comprehensively tracing cellular progression during kidney development and maintenance. Recent technological advancements in single-cell genomics have revolutionized lineage tracing methods. Single-cell lineage tracing enables the simultaneous tracing of multiple cell types within complex tissues and their transcriptomic profiles, thereby allowing the reconstruction of their lineage tree with cell state information. Although single-cell lineage tracing has been successfully applied to investigate cellular hierarchies in various organs and tissues, its application in kidney research is currently lacking. This review comprehensively consolidates the single-cell lineage tracing methods, divided into 4 categories (clustered regularly interspaced short palindromic repeat [CRISPR]/CRISPR-associated protein 9 [Cas9]-based, transposon-based, Polylox-based, and native barcoding methods), and outlines their technical advantages and disadvantages. Furthermore, we propose potential future research topics in kidney research that could benefit from single-cell lineage tracing and suggest suitable technical strategies to apply to these topics.
Collapse
Affiliation(s)
- Baul Yoon
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Hayoung Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Su Woong Jung
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul, Republic of Korea; Division of Nephrology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea.
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
| |
Collapse
|
17
|
Ruddle NH. Posttransplant Tertiary Lymphoid Organs. Transplantation 2024; 108:1090-1099. [PMID: 37917987 PMCID: PMC11042531 DOI: 10.1097/tp.0000000000004812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/20/2023] [Accepted: 07/07/2023] [Indexed: 11/04/2023]
Abstract
Tertiary lymphoid organs (TLOs), also known as tertiary or ectopic lymphoid structures or tissues, are accumulations of lymphoid cells in sites other than canonical lymphoid organs, that arise through lymphoid neogenesis during chronic inflammation in autoimmunity, microbial infection, cancer, aging, and transplantation, the focus of this review. Lymph nodes and TLOs are compared regarding their cellular composition, organization, vascular components, and migratory signal regulation. These characteristics of posttransplant TLOs (PT-TLOs) are described with individual examples in a wide range of organs including heart, kidney, trachea, lung, artery, skin, leg, hand, and face, in many species including human, mouse, rat, and monkey. The requirements for induction and maintenance of TLOs include sustained exposure to autoantigens, alloantigens, tumor antigens, ischemic reperfusion, nephrotoxic agents, and aging. Several staging schemes have been put forth regarding their function in organ rejection. PT-TLOs most often are associated with organ rejection, but in some cases contribute to tolerance. The role of PT-TLOs in cancer is considered in the case of immunosuppression. Furthermore, TLOs can be associated with development of lymphomas. Challenges for PT-TLO research are considered regarding staging, imaging, and opportunities for their therapeutic manipulation to inhibit rejection and encourage tolerance.
Collapse
Affiliation(s)
- Nancy H. Ruddle
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT
| |
Collapse
|
18
|
Lothert PK, Fedyshyn B, Girard S, Chakraborty R, Norgan AP, Enninga EAL. Spatial proteomics reveals phenotypic and functional differences in T cell and macrophage subsets during villitis of unknown etiology. Sci Rep 2024; 14:914. [PMID: 38195710 PMCID: PMC10776790 DOI: 10.1038/s41598-024-51545-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/06/2024] [Indexed: 01/11/2024] Open
Abstract
Villitis of unknown etiology (VUE) is a prevalent inflammatory pathology of the placenta characterized by infiltration of maternal T cells and accumulation of fetal macrophages into chorionic villi. VUE is associated with a variety of adverse clinical outcomes, including fetal growth restriction and fetal demise. Evaluation of the phenotypic and functional differences between two immune cell types associated with this pathology, namely T cells and macrophages, was completed to gain a deeper understanding of the immuno-pathogenesis of VUE. GeoMx Digital Spatial Profiling was performed on placental tissue from 4 high grade VUE cases and 4 controls with no underlying pathology. Placental tissues were fluorescently labeled with CD3 and CD68 antibodies and oligo-conjugated antibodies against 48 protein targets. Overall, T cells in VUE exhibited upregulated markers of activation, memory, and antigen experience compared to controls and were altered based on placental location (villi vs. decidua). Additionally, villous macrophages in VUE upregulated costimulatory and major histocompatibility complex class I and II molecules compared to controls and macrophage subtypes in the decidua. Data herein provides new mechanistic insights into T cell and macrophage biology in VUE which contribute to this abnormal immune response to pregnancy.
Collapse
Affiliation(s)
- Petra K Lothert
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Bohdana Fedyshyn
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA
| | - Sylvie Girard
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA
| | - Rana Chakraborty
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Andrew P Norgan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Elizabeth Ann L Enninga
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
19
|
Alexander KL, Ford ML. The Entangled World of Memory T Cells and Implications in Transplantation. Transplantation 2024; 108:137-147. [PMID: 37271872 PMCID: PMC10696133 DOI: 10.1097/tp.0000000000004647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Memory T cells that are specific for alloantigen can arise from a variety of stimuli, ranging from direct allogeneic sensitization from prior transplantation, blood transfusion, or pregnancy to the elicitation of pathogen-specific T cells that are cross-reactive with alloantigen. Regardless of the mechanism by which they arise, alloreactive memory T cells possess key metabolic, phenotypic, and functional properties that render them distinct from naive T cells. These properties affect the immune response to transplantation in 2 important ways: first, they can alter the speed, location, and effector mechanisms with which alloreactive T cells mediate allograft rejection, and second, they can alter T-cell susceptibility to immunosuppression. In this review, we discuss recent developments in understanding these properties of memory T cells and their implications for transplantation.
Collapse
Affiliation(s)
| | - Mandy L. Ford
- Emory Transplant Center, Emory University, Atlanta, GA
| |
Collapse
|
20
|
Ahuja HK, Azim S, Maluf D, Mas VR. Immune landscape of the kidney allograft in response to rejection. Clin Sci (Lond) 2023; 137:1823-1838. [PMID: 38126208 DOI: 10.1042/cs20230493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Preventing kidney graft dysfunction and rejection is a critical step in addressing the nationwide organ shortage and improving patient outcomes. While kidney transplants (KT) are performed more frequently, the overall number of patients on the waitlist consistently exceeds organ availability. Despite improved short-term outcomes in KT, comparable progress in long-term allograft survival has not been achieved. Major cause of graft loss at 5 years post-KT is chronic allograft dysfunction (CAD) characterized by interstitial fibrosis and tubular atrophy (IFTA). Accordingly, proactive prevention of CAD requires a comprehensive understanding of the immune mechanisms associated with either further dysfunction or impaired repair. Allograft rejection is primed by innate immune cells and carried out by adaptive immune cells. The rejection process is primarily facilitated by antibody-mediated rejection (ABMR) and T cell-mediated rejection (TCMR). It is essential to better elucidate the actions of individual immune cell subclasses (e.g. B memory, Tregs, Macrophage type 1 and 2) throughout the rejection process, rather than limiting our understanding to broad classes of immune cells. Embracing multi-omic approaches may be the solution in acknowledging these intricacies and decoding these enigmatic pathways. A transition alongside advancing technology will better allow organ biology to find its place in this era of precision and personalized medicine.
Collapse
Affiliation(s)
- Harsimar Kaur Ahuja
- Surgical Sciences Division, Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, U.S.A
| | - Shafquat Azim
- Surgical Sciences Division, Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, U.S.A
| | - Daniel Maluf
- Program of Transplantation, School of Medicine, 29S Greene St, University of Maryland, Baltimore, MD 21201, U.S.A
| | - Valeria R Mas
- Surgical Sciences Division, Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, U.S.A
| |
Collapse
|
21
|
Hullegie-Peelen DM, Tejeda Mora H, Hesselink DA, Bindels EM, van den Bosch TP, Clahsen-van Groningen MC, Dieterich M, Heidt S, Minnee RC, Verjans GM, Hoogduijn MJ, Baan CC. Virus-specific TRM cells of both donor and recipient origin reside in human kidney transplants. JCI Insight 2023; 8:e172681. [PMID: 37751288 PMCID: PMC10721264 DOI: 10.1172/jci.insight.172681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023] Open
Abstract
Tissue-resident lymphocytes (TRLs) are critical for local protection against viral pathogens in peripheral tissue. However, it is unclear if TRLs perform a similar role in transplanted organs under chronic immunosuppressed conditions. In this study, we aimed to characterize the TRL compartment in human kidney transplant nephrectomies and examine its potential role in antiviral immunity. The TRL compartment of kidney transplants contained diverse innate, innate-like, and adaptive TRL populations expressing the canonical residency markers CD69, CD103, and CD49a. Chimerism of donor and recipient cells was present in 43% of kidney transplants and occurred in all TRL subpopulations. Paired single-cell transcriptome and T cell receptor (TCR) sequencing showed that donor and recipient tissue-resident memory T (TRM) cells exhibit striking similarities in their transcriptomic profiles and share numerous TCR clonotypes predicted to target viral pathogens. Virus dextramer staining further confirmed that CD8 TRM cells of both donor and recipient origin express TCRs with specificities against common viruses, including CMV, EBV, BK polyomavirus, and influenza A. Overall, the study results demonstrate that a diverse population of TRLs resides in kidney transplants and offer compelling evidence that TRM cells of both donor and recipient origin reside within this TRL population and may contribute to local protection against viral pathogens.
Collapse
Affiliation(s)
- Daphne M. Hullegie-Peelen
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus University Medical Center (Erasmus MC) Transplant Institute
| | - Hector Tejeda Mora
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus University Medical Center (Erasmus MC) Transplant Institute
| | - Dennis A. Hesselink
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus University Medical Center (Erasmus MC) Transplant Institute
| | | | - Thierry P.P. van den Bosch
- Department of Pathology, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Marian C. Clahsen-van Groningen
- Department of Pathology, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
- Institute of Experimental Medicine and Systems Biology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Marjolein Dieterich
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus University Medical Center (Erasmus MC) Transplant Institute
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Robert C. Minnee
- Department of Surgery, Division of Hepatopancreatobiliary and Transplant Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Georges M.G.M. Verjans
- HerpeslabNL of the Department of Viroscience, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Martin J. Hoogduijn
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus University Medical Center (Erasmus MC) Transplant Institute
| | - Carla C. Baan
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus University Medical Center (Erasmus MC) Transplant Institute
| |
Collapse
|
22
|
Wassmer CH, El Hajji S, Papazarkadas X, Compagnon P, Tabrizian P, Lacotte S, Toso C. Immunotherapy and Liver Transplantation: A Narrative Review of Basic and Clinical Data. Cancers (Basel) 2023; 15:4574. [PMID: 37760542 PMCID: PMC10526934 DOI: 10.3390/cancers15184574] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have improved the management of patients with intermediate- and advanced-stage HCC, even making some of them potential candidates for liver transplantation. However, acute rejection has been observed after ICI therapy, challenging its safety in transplant settings. We summarize the key basic impact of immune checkpoints on HCC and liver transplantation. We analyze the available case reports and case series on the use of ICI therapy prior to and after liver transplantation. A three-month washout period is desirable between ICI therapy and liver transplantation to reduce the risk of acute rejection. Whenever possible, ICIs should be avoided after liver transplantation, and especially so early after a transplant. Globally, more robust prospective data in the field are required.
Collapse
Affiliation(s)
- Charles-Henri Wassmer
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (S.E.H.); (X.P.); (S.L.); (C.T.)
| | - Sofia El Hajji
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (S.E.H.); (X.P.); (S.L.); (C.T.)
| | - Xenofon Papazarkadas
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (S.E.H.); (X.P.); (S.L.); (C.T.)
| | - Philippe Compagnon
- Division of Transplantation, Department of Surgery, Faculty of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland;
| | - Parissa Tabrizian
- Mount Sinai Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA;
| | - Stéphanie Lacotte
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (S.E.H.); (X.P.); (S.L.); (C.T.)
| | - Christian Toso
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (S.E.H.); (X.P.); (S.L.); (C.T.)
| |
Collapse
|
23
|
Guo M, Xiong M, Peng J, Guan T, Su H, Huang Y, Yang CG, Li Y, Boraschi D, Pillaiyar T, Wang G, Yi C, Xu Y, Chen C. Multi-omics for COVID-19: driving development of therapeutics and vaccines. Natl Sci Rev 2023; 10:nwad161. [PMID: 37936830 PMCID: PMC10627145 DOI: 10.1093/nsr/nwad161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 11/09/2023] Open
Abstract
The ongoing COVID-19 pandemic caused by SARS-CoV-2 has raised global concern for public health and economy. The development of therapeutics and vaccines to combat this virus is continuously progressing. Multi-omics approaches, including genomics, transcriptomics, proteomics, metabolomics, epigenomics and metallomics, have helped understand the structural and molecular features of the virus, thereby assisting in the design of potential therapeutics and accelerating vaccine development for COVID-19. Here, we provide an up-to-date overview of the latest applications of multi-omics technologies in strategies addressing COVID-19, in order to provide suggestions towards the development of highly effective knowledge-based therapeutics and vaccines.
Collapse
Affiliation(s)
- Mengyu Guo
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Muya Xiong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinying Peng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Tong Guan
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haixia Su
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyi Huang
- Biomedical Pioneering Innovation Centre, Peking University, Beijing 100871, China
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 528107, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Li
- Laboratory of Immunology and Nanomedicine, and China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Diana Boraschi
- Laboratory of Immunology and Nanomedicine, and China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Institute of Biochemistry and Cell Biology, National Research Council, Napoli 80131, Italy
| | - Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Guanbo Wang
- Biomedical Pioneering Innovation Centre, Peking University, Beijing 100871, China
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 528107, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yechun Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunying Chen
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, China
| |
Collapse
|
24
|
DeWolf S, Elhanati Y, Nichols K, Waters NR, Nguyen CL, Slingerland JB, Rodriguez N, Lyudovyk O, Giardina PA, Kousa AI, Andrlová H, Ceglia N, Fei T, Kappagantula R, Li Y, Aleynick N, Baez P, Murali R, Hayashi A, Lee N, Gipson B, Rangesa M, Katsamakis Z, Dai A, Blouin AG, Arcila M, Masilionis I, Chaligne R, Ponce DM, Landau HJ, Politikos I, Tamari R, Hanash AM, Jenq RR, Giralt SA, Markey KA, Zhang Y, Perales MA, Socci ND, Greenbaum BD, Iacobuzio-Donahue CA, Hollmann TJ, van den Brink MR, Peled JU. Tissue-specific features of the T cell repertoire after allogeneic hematopoietic cell transplantation in human and mouse. Sci Transl Med 2023; 15:eabq0476. [PMID: 37494469 PMCID: PMC10758167 DOI: 10.1126/scitranslmed.abq0476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/06/2023] [Indexed: 07/28/2023]
Abstract
T cells are the central drivers of many inflammatory diseases, but the repertoire of tissue-resident T cells at sites of pathology in human organs remains poorly understood. We examined the site-specificity of T cell receptor (TCR) repertoires across tissues (5 to 18 tissues per patient) in prospectively collected autopsies of patients with and without graft-versus-host disease (GVHD), a potentially lethal tissue-targeting complication of allogeneic hematopoietic cell transplantation, and in mouse models of GVHD. Anatomic similarity between tissues was a key determinant of TCR repertoire composition within patients, independent of disease or transplant status. The T cells recovered from peripheral blood and spleens in patients and mice captured a limited portion of the TCR repertoire detected in tissues. Whereas few T cell clones were shared across patients, motif-based clustering revealed shared repertoire signatures across patients in a tissue-specific fashion. T cells at disease sites had a tissue-resident phenotype and were of donor origin based on single-cell chimerism analysis. These data demonstrate the complex composition of T cell populations that persist in human tissues at the end stage of an inflammatory disorder after lymphocyte-directed therapy. These findings also underscore the importance of studying T cell in tissues rather than blood for tissue-based pathologies and suggest the tissue-specific nature of both the endogenous and posttransplant T cell landscape.
Collapse
Affiliation(s)
- Susan DeWolf
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yuval Elhanati
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katherine Nichols
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicholas R. Waters
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chi L. Nguyen
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John B. Slingerland
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Natasia Rodriguez
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Olga Lyudovyk
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paul A. Giardina
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anastasia I. Kousa
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hana Andrlová
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nick Ceglia
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Teng Fei
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rajya Kappagantula
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yanyun Li
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nathan Aleynick
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Priscilla Baez
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rajmohan Murali
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Akimasa Hayashi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Kyorin University, Mitaka City, Tokyo, Japan
| | - Nicole Lee
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brianna Gipson
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Madhumitha Rangesa
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zoe Katsamakis
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anqi Dai
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amanda G. Blouin
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria Arcila
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ignas Masilionis
- Program for Computational and System Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronan Chaligne
- Program for Computational and System Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Doris M. Ponce
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Heather J. Landau
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Ioannis Politikos
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Roni Tamari
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Alan M. Hanash
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert R. Jenq
- Departments of Genomic Medicine and Stem Cell Transplantation Cellular Therapy, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sergio A. Giralt
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Kate A. Markey
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Division of Medical Oncology, University of Washington; Seattle, WA, USA
| | - Yanming Zhang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Nicholas D. Socci
- Bioinformatics Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benjamin D. Greenbaum
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Physiology, Biophysics & Systems Biology, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | - Travis J. Hollmann
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Bristol Myers Squibb, Lawrenceville, NJ 08540
| | - Marcel R.M. van den Brink
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Jonathan U. Peled
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
25
|
Cheon IS, Son YM, Sun J. Tissue-resident memory T cells and lung immunopathology. Immunol Rev 2023; 316:63-83. [PMID: 37014096 PMCID: PMC10524334 DOI: 10.1111/imr.13201] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
Rapid reaction to microbes invading mucosal tissues is key to protect the host against disease. Respiratory tissue-resident memory T (TRM ) cells provide superior immunity against pathogen infection and/or re-infection, due to their presence at the site of pathogen entry. However, there has been emerging evidence that exuberant TRM -cell responses contribute to the development of various chronic respiratory conditions including pulmonary sequelae post-acute viral infections. In this review, we have described the characteristics of respiratory TRM cells and processes underlying their development and maintenance. We have reviewed TRM -cell protective functions against various respiratory pathogens as well as their pathological activities in chronic lung conditions including post-viral pulmonary sequelae. Furthermore, we have discussed potential mechanisms regulating the pathological activity of TRM cells and proposed therapeutic strategies to alleviate TRM -cell-mediated lung immunopathology. We hope that this review provides insights toward the development of future vaccines or interventions that can harness the superior protective abilities of TRM cells, while minimizing the potential for immunopathology, a particularly important topic in the era of coronavirus disease 2019 (COVID-19) pandemic.
Collapse
Affiliation(s)
- In Su Cheon
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Young Min Son
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea 17546
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
26
|
Tieu R, Zeng Q, Zhao D, Zhang G, Feizi N, Manandhar P, Williams AL, Popp B, Wood-Trageser MA, Demetris AJ, Tso JY, Johnson AJ, Kane LP, Abou-Daya KI, Shlomchik WD, Oberbarnscheidt MH, Lakkis FG. Tissue-resident memory T cell maintenance during antigen persistence requires both cognate antigen and interleukin-15. Sci Immunol 2023; 8:eadd8454. [PMID: 37083450 PMCID: PMC10334460 DOI: 10.1126/sciimmunol.add8454] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 03/29/2023] [Indexed: 04/22/2023]
Abstract
Our understanding of tissue-resident memory T (TRM) cell biology has been largely developed from acute infection models in which antigen is cleared and sterilizing immunity is achieved. Less is known about TRM cells in the context of chronic antigen persistence and inflammation. We investigated factors that underlie TRM maintenance in a kidney transplantation model in which TRM cells drive rejection. In contrast to acute infection, we found that TRM cells declined markedly in the absence of cognate antigen, antigen presentation, or antigen sensing by the T cells. Depletion of graft-infiltrating dendritic cells or interruption of antigen presentation after TRM cells were established was sufficient to disrupt TRM maintenance and reduce allograft pathology. Likewise, removal of IL-15 transpresentation or of the IL-15 receptor on T cells during TRM maintenance led to a decline in TRM cells, and IL-15 receptor blockade prevented chronic rejection. Therefore, antigen and IL-15 presented by dendritic cells play nonredundant key roles in CD8 TRM cell maintenance in settings of antigen persistence and inflammation. These findings provide insights that could lead to improved treatment of chronic transplant rejection and autoimmunity.
Collapse
Affiliation(s)
- Roger Tieu
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
| | - Qiang Zeng
- Nationwide Children’s Hospital, Columbus, Ohio 43205, USA
| | - Daqiang Zhao
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
| | - Gang Zhang
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
| | - Neda Feizi
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
| | - Priyanka Manandhar
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Amanda L. Williams
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
| | - Benjamin Popp
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
- Division of Transplant Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Michelle A. Wood-Trageser
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
- Division of Transplant Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Anthony J. Demetris
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
- Division of Transplant Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - J. Yun Tso
- JN Biosciences, Mountain View, California 94043, USA
| | - Aaron J. Johnson
- Departments of Immunology, Neurology, and Molecular Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Lawrence P. Kane
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Khodor I. Abou-Daya
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
| | - Warren D. Shlomchik
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Martin H. Oberbarnscheidt
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
| | - Fadi G. Lakkis
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
27
|
Feng X, Chen Z, Liu Z, Fu X, Song H, Zhang Q. Self-delivery photodynamic-hypoxia alleviating nanomedicine synergizes with anti-PD-L1 for cancer immunotherapy. Int J Pharm 2023; 639:122970. [PMID: 37084832 DOI: 10.1016/j.ijpharm.2023.122970] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/29/2023] [Accepted: 04/15/2023] [Indexed: 04/23/2023]
Abstract
The low level of T-lymphocyte infiltration in tumor is a key issue in cancer immunotherapy. Stimulating anti-tumor immune responses and improving the tumor microenvironment are essential for enhancing anti-PD-L1 immunotherapy. Herein, atovaquone (ATO), protoporphyrin IX (PpIX), and stabilizer (ATO/PpIX NPs) were constructed to self-assemble with hydrophobic interaction and passively targeted to tumor for the first time. The studies have indicated that PpIX-mediated photodynamic induction of immunogenic cell death combined with relieving tumor hypoxia by ATO, leading to maturation of dendritic cells, polarization of M2-type tumor-associated macrophages (TAMs) towards M1-type TAMs, infiltration of cytotoxic T lymphocytes, reduction of regulatory T cells, release of pro-inflammatory cytokines, resulting in an effective anti-tumor immune response synergized with anti-PD-L1 against primary tumor and pulmonary metastasis. Taken together, the combined nanoplatform may be a promising strategy to enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Xianquan Feng
- The School of Pharmacy, Fujian Medical University, Fuzhou 350108, PR China; Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, PR China
| | - Zhenzhen Chen
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, PR China
| | - Zhihong Liu
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, PR China
| | - Xiaoling Fu
- The School of Pharmacy, Fujian Medical University, Fuzhou 350108, PR China
| | - Hongtao Song
- The School of Pharmacy, Fujian Medical University, Fuzhou 350108, PR China; Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, PR China
| | - Qian Zhang
- The School of Pharmacy, Fujian Medical University, Fuzhou 350108, PR China.
| |
Collapse
|
28
|
Lee CAA, Wang D, Kauke-Navarro M, Russell-Goldman E, Xu S, Mucciarone KN, Sohrabi S, Lian CG, Pomahac B, Murphy GF. Insights from Immunoproteomic Profiling of a Rejected Full Face Transplant. Am J Transplant 2023:S1600-6135(23)00405-7. [PMID: 37037378 DOI: 10.1016/j.ajt.2023.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/24/2023] [Accepted: 04/05/2023] [Indexed: 04/12/2023]
Abstract
Vascularized composite allografts (VCAs) of faces and extremities are subject to chronic rejection that is incompletely understood. Here we report on immunoproteomic evaluation of a full facial VCA removed 88 months after transplantation due to chronic rejection. CD8-positive T cells of donor (graft) origin infiltrating deep intragraft arteries in apposition to degenerating endothelium of chimeric recipient origin in association with arteriosclerotic alterations. Digital spatial proteomic profiling highlighted proteins expressed by activated cytotoxic T cells and macrophages as well as pathway components involved in atherogenic responses, including IDO1 and STING. Chronic facial VCA rejection thus involves T cell/macrophage-mediated accelerated arteriosclerosis not normally represented in punch biopsies and potentially driven by persistent graft-resident effector T cells and recipient target endothelium that chimerically repopulates graft arteries.
Collapse
Affiliation(s)
- Catherine A A Lee
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Diana Wang
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | - Shuyun Xu
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kyla N Mucciarone
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Sadaf Sohrabi
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Christine G Lian
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Bohdan Pomahac
- Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - George F Murphy
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Liu X, Li H, Li S, Yuan J, Pang Y. Maintenance and recall of memory T cell populations against tuberculosis: Implications for vaccine design. Front Immunol 2023; 14:1100741. [PMID: 37063832 PMCID: PMC10102482 DOI: 10.3389/fimmu.2023.1100741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
Despite the widespread use of standardised drug regimens, advanced diagnostics, and Mycobacterium bovis Bacille-Calmette-Guérin (BCG) vaccines, the global tuberculosis (TB) epidemic remains uncontrollable. To address this challenge, improved vaccines are urgently required that can elicit persistent immunologic memory, the hallmark of successful vaccines. Nonetheless, the processes underlying the induction and maintenance of immunologic memory are not entirely understood. Clarifying how memory T cells (Tm cells) are created and survive long term may be a crucial step towards the development of effective T cell–targeted vaccines. Here, we review research findings on the memory T cell response, which involves mobilization of several distinct Tm cell subsets that are required for efficient host suppression of M. tuberculosis (Mtb) activity. We also summaries current knowledge related to the T cell response-based host barrier against Mtb infection and discuss advantages and disadvantages of novel TB vaccine candidates.
Collapse
Affiliation(s)
| | | | | | | | - Yu Pang
- *Correspondence: Jinfeng Yuan, ; Yu Pang,
| |
Collapse
|
30
|
Jiang B, Wang S, Song G, Jiang Q, Fan M, Fang C, Li X, Soh CL, Manes TD, Cheru N, Qin L, Ren P, Jortner B, Wang Q, Quaranta E, Yoo P, Geirsson A, Davis RP, Tellides G, Pober JS, Jane-Wit D. Hedgehog-induced ZFYVE21 promotes chronic vascular inflammation by activating NLRP3 inflammasomes in T cells. Sci Signal 2023; 16:eabo3406. [PMID: 36943921 PMCID: PMC10061549 DOI: 10.1126/scisignal.abo3406] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/24/2023] [Indexed: 03/23/2023]
Abstract
The zinc finger protein ZFYVE21 is involved in immune signaling. Using humanized mouse models, primary human cells, and patient samples, we identified a T cell-autonomous role for ZFYVE21 in promoting chronic vascular inflammation associated with allograft vasculopathy. Ischemia-reperfusion injury (IRI) stimulated endothelial cells to produce Hedgehog (Hh) ligands, which in turn induced the production of ZFYVE21 in a population of T memory cells with high amounts of the Hh receptor PTCH1 (PTCHhi cells, CD3+CD4+CD45RO+PTCH1hiPD-1hi), vigorous recruitment to injured endothelia, and increased effector responses in vivo. After priming by interferon-γ (IFN-γ), Hh-induced ZFYVE21 activated NLRP3 inflammasome activity in T cells, which potentiated IFN-γ responses. Hh-induced NLRP3 inflammasomes and T cell-specific ZFYVE21 augmented the vascular sequelae of chronic inflammation in mice engrafted with human endothelial cells or coronary arteries that had been subjected to IRI before engraftment. Moreover, the population of PTCHhi T cells producing high amounts of ZFYVE21 was expanded in patients with renal transplant-associated IRI, and sera from these patients expanded this population in control T cells in a manner that depended on Hh signaling. We conclude that Hh-induced ZFYVE21 activates NLRP3 inflammasomes in T cells, thereby promoting chronic inflammation.
Collapse
Affiliation(s)
- Bo Jiang
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shaoxun Wang
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA
- Division of Cardiology, West Haven VA Medical Center, West Haven, CT 06516, USA
| | - Guiyu Song
- Division of Cardiology, West Haven VA Medical Center, West Haven, CT 06516, USA
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Quan Jiang
- Division of Cardiology, West Haven VA Medical Center, West Haven, CT 06516, USA
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Matthew Fan
- Division of Cardiology, West Haven VA Medical Center, West Haven, CT 06516, USA
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Caodi Fang
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xue Li
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Chien Lin Soh
- University of Cambridge, School of Clinical Medicine, Hills Rd., Cambridge CB2 0SP, UK
| | - Thomas D Manes
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Nardos Cheru
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lingfeng Qin
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Pengwei Ren
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Bianca Jortner
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Qianxun Wang
- Division of Cardiology, West Haven VA Medical Center, West Haven, CT 06516, USA
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Emma Quaranta
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Peter Yoo
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Arnar Geirsson
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Robert P Davis
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | - George Tellides
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jordan S Pober
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Dan Jane-Wit
- Division of Cardiology, West Haven VA Medical Center, West Haven, CT 06516, USA
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
31
|
Rumbo M, Oltean M. Intestinal Transplant Immunology and Intestinal Graft Rejection: From Basic Mechanisms to Potential Biomarkers. Int J Mol Sci 2023; 24:ijms24054541. [PMID: 36901975 PMCID: PMC10003356 DOI: 10.3390/ijms24054541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Intestinal transplantation (ITx) remains a lifesaving option for patients suffering from irreversible intestinal failure and complications from total parenteral nutrition. Since its inception, it became obvious that intestinal grafts are highly immunogenic, due to their high lymphoid load, the abundance in epithelial cells and constant exposure to external antigens and microbiota. This combination of factors and several redundant effector pathways makes ITx immunobiology unique. To this complex immunologic situation, which leads to the highest rate of rejection among solid organs (>40%), there is added the lack of reliable non-invasive biomarkers, which would allow for frequent, convenient and reliable rejection surveillance. Numerous assays, of which several were previously used in inflammatory bowel disease, have been tested after ITx, but none have shown sufficient sensibility and/or specificity to be used alone for diagnosing acute rejection. Herein, we review and integrate the mechanistic aspects of graft rejection with the current knowledge of ITx immunobiology and summarize the quest for a noninvasive biomarker of rejection.
Collapse
Affiliation(s)
- Martin Rumbo
- Instituto de Estudios Inmunológicos y Fisiopatológicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata—CONICET, Boulevard 120 y 62, La Plata 1900, Argentina
| | - Mihai Oltean
- The Transplant Institute, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
- Department of Surgery at Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, 413 90 Gothenburg, Sweden
- Correspondence:
| |
Collapse
|
32
|
Habib JG, Liu D, Crepeau RM, Wagener ME, Ford ML. Selective CD28 blockade impacts T cell differentiation during homeostatic reconstitution following lymphodepletion. Front Immunol 2023; 13:1081163. [PMID: 36761170 PMCID: PMC9904166 DOI: 10.3389/fimmu.2022.1081163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/28/2022] [Indexed: 01/26/2023] Open
Abstract
Introduction Costimulation blockade targeting the CD28 pathway provides improved long-term renal allograft survival compared to calcineurin inhibitors but may be limited as CTLA-4-Ig (abatacept, belatacept) blocks both CD28 costimulation and CTLA-4 coinhibition. Directly targeting CD28 while leaving CTLA-4 intact may provide a mechanistic advantage. Fc-silent non-crosslinking CD28 antagonizing domain antibodies (dAb) are currently in clinical trials for renal transplantation. Given the current standard of care in renal transplantation at most US centers, it is likely that lymphodepletion via thymoglobulin induction therapy could be used in patients treated with CD28 antagonists. Thus, we investigated the impact of T cell depletion (TCD) on T cell phenotype following homeostatic reconstitution in a murine model of skin transplantation treated with anti-CD28dAb. Methods Skin from BALB/cJ donors was grafted onto C56BL/6 recipients which were treated with or without 0.2mg anti-CD4 and 10μg anti-CD8 one day prior to transplant and with or without 100μg anti-CD28dAb on days 0, 2, 4, 6, and weekly thereafter. Mice were euthanized six weeks post-transplant and lymphoid cells were analyzed by flow cytometry. Results Anti-CD28dAb reversed lymphopenia-induced differentiation of memory CD4+ T cells in the spleen and lymph node compared to TCD alone. Mice treated with TCD+anti-CD28dAb exhibited significantly improved skin graft survival compared to anti-CD28dAb alone, which was also improved compared to no treatment. In addition, the expression of CD69 was reduced on CD4+ and CD8+ T cells in the spleen and lymph node from mice that received TCD+anti-CD28dAb compared to TCD alone. While a reduced frequency of CD4+FoxP3+ T cells was observed in anti-CD28dAb treated mice relative to untreated controls, this was balanced by an increased frequency of CD8+Foxp3+ T cells that was observed in the blood and kidney of mice given TCD+anti-CD28dAb compared to TCD alone. Discussion These data demonstrate that CD28 signaling impacts the differentiation of both CD4+ and CD8+ T cells during homeostatic reconstitution following lymphodepletion, resulting in a shift towards fewer activated memory T cells and more CD8+FoxP3+ T cells, a profile that may underpin the observed prolongation in allograft survival.
Collapse
|
33
|
Gerace D, Zhou Q, Kenty JHR, Veres A, Sintov E, Wang X, Boulanger KR, Li H, Melton DA. Engineering human stem cell-derived islets to evade immune rejection and promote localized immune tolerance. Cell Rep Med 2023; 4:100879. [PMID: 36599351 PMCID: PMC9873825 DOI: 10.1016/j.xcrm.2022.100879] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/02/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023]
Abstract
Immunological protection of transplanted stem cell-derived islet (SC-islet) cells is yet to be achieved without chronic immunosuppression or encapsulation. Existing genetic engineering approaches to produce immune-evasive SC-islet cells have so far shown variable results. Here, we show that targeting human leukocyte antigens (HLAs) and PD-L1 alone does not sufficiently protect SC-islet cells from xenograft (xeno)- or allograft (allo)-rejection. As an addition to these approaches, we genetically engineer SC-islet cells to secrete the cytokines interleukin-10 (IL-10), transforming growth factor β (TGF-β), and modified IL-2 such that they promote a tolerogenic local microenvironment by recruiting regulatory T cells (Tregs) to the islet grafts. Cytokine-secreting human SC-β cells resist xeno-rejection and correct diabetes for up to 8 weeks post-transplantation in non-obese diabetic (NOD) mice. Thus, genetically engineering human embryonic SCs (hESCs) to induce a tolerogenic local microenvironment represents a promising approach to provide SC-islet cells as a cell replacement therapy for diabetes without the requirement for encapsulation or immunosuppression.
Collapse
Affiliation(s)
- Dario Gerace
- Department of Stem Cell and Regenerative Biology, Harvard University, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston, MA, USA
| | - Quan Zhou
- Department of Stem Cell and Regenerative Biology, Harvard University, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston, MA, USA
| | - Jennifer Hyoje-Ryu Kenty
- Department of Stem Cell and Regenerative Biology, Harvard University, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston, MA, USA
| | - Adrian Veres
- Department of Stem Cell and Regenerative Biology, Harvard University, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston, MA, USA
| | - Elad Sintov
- Department of Stem Cell and Regenerative Biology, Harvard University, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston, MA, USA
| | - Xi Wang
- Department of Stem Cell and Regenerative Biology, Harvard University, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston, MA, USA
| | - Kyle R Boulanger
- Department of Stem Cell and Regenerative Biology, Harvard University, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston, MA, USA
| | - Hongfei Li
- Department of Stem Cell and Regenerative Biology, Harvard University, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston, MA, USA
| | - Douglas A Melton
- Department of Stem Cell and Regenerative Biology, Harvard University, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston, MA, USA.
| |
Collapse
|
34
|
Lu J, Liang T, Li P, Yin Q. Regulatory effects of IRF4 on immune cells in the tumor microenvironment. Front Immunol 2023; 14:1086803. [PMID: 36814912 PMCID: PMC9939821 DOI: 10.3389/fimmu.2023.1086803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/18/2023] [Indexed: 02/09/2023] Open
Abstract
The tumor microenvironment (TME) is implicated in tumorigenesis, chemoresistance, immunotherapy failure and tumor recurrence. Multiple immunosuppressive cells and soluble secreted cytokines together drive and accelerate TME disorders, T cell immunodeficiency and tumor growth. Thus, it is essential to comprehensively understand the TME status, immune cells involved and key transcriptional factors, and extend this knowledge to therapies that target dysfunctional T cells in the TME. Interferon regulatory factor 4 (IRF4) is a unique IRF family member that is not regulated by interferons, instead, is mainly induced upon T-cell receptor signaling, Toll-like receptors and tumor necrosis factor receptors. IRF4 is largely restricted to immune cells and plays critical roles in the differentiation and function of effector cells and immunosuppressive cells, particularly during clonal expansion and the effector function of T cells. However, in a specific biological context, it is also involved in the transcriptional process of T cell exhaustion with its binding partners. Given the multiple effects of IRF4 on immune cells, especially T cells, manipulating IRF4 may be an important therapeutic target for reversing T cell exhaustion and TME disorders, thus promoting anti-tumor immunity. This study reviews the regulatory effects of IRF4 on various immune cells in the TME, and reveals its potential mechanisms, providing a novel direction for clinical immune intervention.
Collapse
Affiliation(s)
- Jing Lu
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Taotao Liang
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Ping Li
- Department of Hematology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Qingsong Yin
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| |
Collapse
|
35
|
Abstract
Single-cell technologies open up new opportunities to explore the behavior of cells at the individual level. For solid organ transplantation, single-cell technologies can provide in-depth insights into the underlying mechanisms of the immunological processes involved in alloimmune responses after transplantation by investigating the role of individual cells in tolerance and rejection. Here, we review the value of single-cell technologies, including cytometry by time-of-flight and single-cell RNA sequencing, in the context of solid organ transplantation research. Various applications of single-cell technologies are addressed, such as the characterization and identification of immune cell subsets involved in rejection or tolerance. In addition, we explore the opportunities for analyzing specific alloreactive T- or B-cell clones by linking phenotype data to T- or B-cell receptor data, and for distinguishing donor- from recipient-derived immune cells. Moreover, we discuss the use of single-cell technologies in biomarker identification and risk stratification, as well as the remaining challenges. Together, this review highlights that single-cell approaches contribute to a better understanding of underlying immunological mechanisms of rejection and tolerance, thereby potentially accelerating the development of new or improved therapies to avoid allograft rejection.
Collapse
|
36
|
Wang G, Sui W, Xue W, Zhang J, Yang X, Mo C, Pan X, Ou M, Hou X. Comprehensive analysis of B and T cell receptor repertoire in patients after kidney transplantation by high-throughput sequencing. Clin Immunol 2022; 245:109162. [DOI: 10.1016/j.clim.2022.109162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/08/2022] [Accepted: 10/09/2022] [Indexed: 11/03/2022]
|
37
|
He A, Sarwar A, Thole LML, Siegle J, Sattler A, Ashraf MI, Proß V, Stahl C, Dornieden T, Bergmann Y, Ritschl PV, Ebner S, Hublitz KW, Stamatiades EG, Bülow RD, Boor P, Kotsch K. Renal inflamm-aging provokes intra-graft inflammation following experimental kidney transplantation. Am J Transplant 2022; 22:2529-2547. [PMID: 35851547 DOI: 10.1111/ajt.17154] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 06/14/2022] [Accepted: 07/14/2022] [Indexed: 01/25/2023]
Abstract
Donor age is a major risk factor for allograft outcome in kidney transplantation. The underlying cellular mechanisms and the recipient's immune response within an aged allograft have yet not been analyzed. A comprehensive immunophenotyping of naïve and transplanted young versus aged kidneys revealed that naïve aged murine kidneys harbor significantly higher frequencies of effector/memory T cells, whereas regulatory T cells were reduced. Aged kidney-derived CD8+ T cells produced more IFNγ than their young counterparts. Senescent renal CD8+ T and NK cells upregulated the cytotoxicity receptor NKG2D and the enrichment of memory-like CD49a+ CXCR6+ NK cells was documented in aged naïve kidneys. In the C57BL/6 to BALB/c kidney transplantation model, recipient-derived T cells infiltrating an aged graft produced significantly more IFNγ, granzyme B and perforin on day 7 post-transplantation, indicating an enhanced inflammatory, cytotoxic response towards the graft. Pre-treatment of aged kidney donors with the senolytic drug ABT-263 changed the recipient-derived effector molecule profile to significantly reduced levels of IFNγ and IL-10 compared to controls. Graft function after ABT-263 pre-treatment was significantly improved 28 days post kidney transplantation. In conclusion, renal senescence also occurs at the immunological level (inflamm-aging) and aged organs provoke an altered recipient-dominated immune response in the graft.
Collapse
Affiliation(s)
- An He
- Department of General- and Visceral Surgery, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Attia Sarwar
- Department of General- and Visceral Surgery, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Linda Marie Laura Thole
- Department of General- and Visceral Surgery, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Janine Siegle
- Department of General- and Visceral Surgery, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Arne Sattler
- Department of General- and Visceral Surgery, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Muhammad Imtiaz Ashraf
- Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Vanessa Proß
- Department of General- and Visceral Surgery, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Carolin Stahl
- Department of General- and Visceral Surgery, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Theresa Dornieden
- Department of General- and Visceral Surgery, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Yasmin Bergmann
- Department of General- and Visceral Surgery, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Paul Viktor Ritschl
- Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Susanne Ebner
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Karolin Wiebke Hublitz
- Institute of Microbiology, Infectious Diseases and Immunology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Efstathios Gregorios Stamatiades
- Institute of Microbiology, Infectious Diseases and Immunology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Roman David Bülow
- Institute of Pathology & Department of Nephrology, University Clinic of RWTH Aachen, Aachen, Germany
| | - Peter Boor
- Institute of Pathology & Department of Nephrology, University Clinic of RWTH Aachen, Aachen, Germany
| | - Katja Kotsch
- Department of General- and Visceral Surgery, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
38
|
Liu Z, Liao F, Zhu J, Zhou D, Heo GS, Leuhmann HP, Scozzi D, Parks A, Hachem R, Byers DE, Tague LK, Kulkarni HS, Cano M, Wong BW, Li W, Huang HJ, Krupnick AS, Kreisel D, Liu Y, Gelman AE. Reprogramming alveolar macrophage responses to TGF-β reveals CCR2+ monocyte activity that promotes bronchiolitis obliterans syndrome. J Clin Invest 2022; 132:159229. [PMID: 36189800 PMCID: PMC9525120 DOI: 10.1172/jci159229] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Bronchiolitis obliterans syndrome (BOS) is a major impediment to lung transplant survival and is generally resistant to medical therapy. Extracorporeal photophoresis (ECP) is an immunomodulatory therapy that shows promise in stabilizing BOS patients, but its mechanisms of action are unclear. In a mouse lung transplant model, we show that ECP blunts alloimmune responses and inhibits BOS through lowering airway TGF-β bioavailability without altering its expression. Surprisingly, ECP-treated leukocytes were primarily engulfed by alveolar macrophages (AMs), which were reprogrammed to become less responsive to TGF-β and reduce TGF-β bioavailability through secretion of the TGF-β antagonist decorin. In untreated recipients, high airway TGF-β activity stimulated AMs to express CCL2, leading to CCR2+ monocyte-driven BOS development. Moreover, we found TGF-β receptor 2-dependent differentiation of CCR2+ monocytes was required for the generation of monocyte-derived AMs, which in turn promoted BOS by expanding tissue-resident memory CD8+ T cells that inflicted airway injury through Blimp-1-mediated granzyme B expression. Thus, through studying the effects of ECP, we have identified an AM functional plasticity that controls a TGF-β-dependent network that couples CCR2+ monocyte recruitment and differentiation to alloimmunity and BOS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ramsey Hachem
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Derek E. Byers
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Laneshia K. Tague
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hrishikesh S. Kulkarni
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Marlene Cano
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | - Howard J. Huang
- Houston Methodist J.C. Walter Jr. Transplant Center, Houston, Texas, USA
| | - Alexander S. Krupnick
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Daniel Kreisel
- Department of Surgery
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yongjian Liu
- Houston Methodist J.C. Walter Jr. Transplant Center, Houston, Texas, USA
| | - Andrew E. Gelman
- Department of Surgery
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
39
|
Wienke J, Veldkamp SR, Struijf EM, Yousef Yengej FA, van der Wal MM, van Royen-Kerkhof A, van Wijk F. T cell interaction with activated endothelial cells primes for tissue-residency. Front Immunol 2022; 13:827786. [PMID: 36172363 PMCID: PMC9510578 DOI: 10.3389/fimmu.2022.827786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Tissue-resident memory T cells (TRM) are suspected drivers of chronic inflammation, but their induction remains unclear. Since endothelial cells (EC) are obligate interaction partners for T cells trafficking into inflamed tissues, they may play a role in TRM development. Here, we used an in vitro co-culture system of human cytokine-activated EC and FACS-sorted T cells to study the effect of EC on T(RM) cell differentiation. T cell phenotypes were assessed by flow cytometry, including proliferation measured by CellTrace Violet dilution assay. Soluble mediators were analyzed by multiplex immunoassay. Co-culture of T cells with cytokine-activated, but not resting EC induced CD69 expression without activation (CD25, Ki67) or proliferation. The dynamic of CD69 expression induced by EC was distinct from that induced by TCR triggering, with rapid induction and stable expression over 7 days. CD69 induction by activated EC was higher in memory than naive T cells, and most pronounced in CD8+ effector memory T cells. Early CD69 induction was mostly mediated by IL-15, whereas later effects were also mediated by interactions with ICAM-1 and/or VCAM-1. CD69+ T cells displayed a phenotype associated with tissue-residency, with increased CD49a, CD103, CXCR6, PD-1 and CD57 expression, and decreased CD62L and S1PR1. EC-induced CD69+ T cells were poised for high production of pro-inflammatory cytokines and showed increased expression of T-helper 1 transcription factor T-bet. Our findings demonstrate that activated EC can induce functional specialization in T cells with sustained CD69 expression, increased cytokine response and a phenotypic profile reminiscent of TRM. Interaction with activated EC during transmigration into (inflamed) tissues thus contributes to TRM-residency priming.
Collapse
Affiliation(s)
- Judith Wienke
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Saskia R. Veldkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Eva M. Struijf
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Fjodor A. Yousef Yengej
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - M. Marlot van der Wal
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Annet van Royen-Kerkhof
- Pediatric Rheumatology and Immunology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Femke van Wijk
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
- *Correspondence: Femke van Wijk,
| |
Collapse
|
40
|
Al Moussawy M, Abdelsamed HA. Non-cytotoxic functions of CD8 T cells: “repentance of a serial killer”. Front Immunol 2022; 13:1001129. [PMID: 36172358 PMCID: PMC9511018 DOI: 10.3389/fimmu.2022.1001129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/25/2022] [Indexed: 12/01/2022] Open
Abstract
Cytotoxic CD8 T cells (CTLs) are classically described as the “serial killers” of the immune system, where they play a pivotal role in protective immunity against a wide spectrum of pathogens and tumors. Ironically, they are critical drivers of transplant rejection and autoimmune diseases, a scenario very similar to the famous novel “The strange case of Dr. Jekyll and Mr. Hyde”. Until recently, it has not been well-appreciated whether CTLs can also acquire non-cytotoxic functions in health and disease. Several investigations into this question revealed their non-cytotoxic functions through interactions with various immune and non-immune cells. In this review, we will establish a new classification for CD8 T cell functions including cytotoxic and non-cytotoxic. Further, we will discuss this novel concept and speculate on how these functions could contribute to homeostasis of the immune system as well as immunological responses in transplantation, cancer, and autoimmune diseases.
Collapse
Affiliation(s)
- Mouhamad Al Moussawy
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hossam A. Abdelsamed
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Liver Research Center, School of Medicine, Pittsburgh, PA, United States
- *Correspondence: Hossam A. Abdelsamed,
| |
Collapse
|
41
|
Cai X, Li H, Wang M, Chu E, Wei N, Lin J, Hu Y, Dai J, Chen A, Zheng H, Zhang Q, Zhong Y, Chang R, Wu S, Xiao Y, Liu C. mTOR Participates in the Formation, Maintenance, and Function of Memory CD8 +T Cells Regulated by Glycometabolism. Biochem Pharmacol 2022; 204:115197. [PMID: 35926651 DOI: 10.1016/j.bcp.2022.115197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/02/2022]
Abstract
Memory CD8+T cells participate in the fight against infection and tumorigenesis as well as in autoimmune disease progression because of their efficient and rapid immune response, long-term survival, and continuous differentiation. At each stage of their formation, maintenance, and function, the cell metabolism must be adjusted to match the functional requirements of the specific stage. Notably, enhanced glycolytic metabolism can generate sufficient levels of adenosine triphosphate (ATP) to form memory CD8+T cells, countering the view that glycolysis prevents the formation of memory CD8+T cells. This review focuses on how glycometabolism regulates memory CD8+T cells and highlights the key mechanisms through which the mammalian target of rapamycin (mTOR) signaling pathway affects memory CD8+T cell formation, maintenance, and function by regulating glycometabolism. In addition, different subpopulations of memory CD8+T cells exhibit different metabolic flexibility during their formation, survival, and functional stages, during which the energy metabolism may be critical. These findings which may explain why enhanced glycolytic metabolism can give rise to memory CD8+T cells. Modulating the metabolism of memory CD8+T cells to influence specific cell fates may be useful for disease treatment.
Collapse
Affiliation(s)
- Xuepei Cai
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Haokun Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Manyi Wang
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Edward Chu
- Department of Oncology and Cancer Therapeutics Program, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ning Wei
- Department of Oncology and Cancer Therapeutics Program, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jiayu Lin
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yun Hu
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Jingtao Dai
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Aijie Chen
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Hua Zheng
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qianbing Zhang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yuxia Zhong
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ruoshui Chang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Sha Wu
- Department of Immunology, School of Basic Medical Sciences, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Key Laboratory of Functional Proteomics of Guangdong Province, Guangzhou, China; National Demonstration Center for Experimental Education of Basic Medical Sciences of China, Guangzhou, China.
| | - Yaomu Xiao
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| | - Chufeng Liu
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
42
|
A Novel Technique for the Generation of Substantial Numbers of Functional Resident T Cells from Kidney Tissue. Cells 2022; 11:cells11142233. [PMID: 35883676 PMCID: PMC9321143 DOI: 10.3390/cells11142233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022] Open
Abstract
Studying functionality and antigen-specificity of resident kidney T cells derived from a kidney biopsy is hampered by the lack of sufficient numbers of T cells obtained by the standard method of enzymatic tissue dissociation. Enzymatic dissociation of kidney tissue was compared to a novel method of whole kidney tissue culture allowing T cells to migrate into the medium in the presence of exogenous IL-2 and IL-15. T cell numbers were quantified and phenotype of resident T cells (CD69+CD103+/−), TCR Vβ repertoire and functional characteristics were analyzed with multi-parameter flow cytometry. Renal tissue culture for four weeks in the presence of exogenous IL-2 and IL-15 yielded significantly higher numbers of T cells (1.3 × 104/mm3) when compared to cultures without exogenous cytokines (71/mm3) or direct isolation by enzymatic dissociation (662/mm3 T cells, p < 0.05). The proportion of T cells with a resident phenotype did not change in the tissue culture; percentages amounted to 87.2% and 85.1%, respectively. In addition, frequencies of CD4+, CD8+, CD4−CD8−, T cells and MAIT T cells remained similar. For both CD4+ and CD8+, T cells had a more differentiated memory phenotype after tissue culture, but the distribution of TCR Vβ families did not change. In addition, the predominant Th1 cytokine secretion profile and poly-functionality of resident kidney T cell remained intact. T cell proliferation potential was not affected, excluding exhaustion and enrichment of BKV- and CMV-reactive resident T cells was observed. In conclusion, the kidney tissue culture method yields significantly increased numbers of resident T cells without major effects on composition and functionality.
Collapse
|
43
|
Michel E, Galen Hartwig M, Sommer W. Lung Retransplantation. Thorac Surg Clin 2022; 32:259-268. [PMID: 35512943 DOI: 10.1016/j.thorsurg.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lung retransplantation remains the standard treatment of irreversible lung allograft failure. The most common indications for lung retransplantation are acute graft failure, chronic lung allograft dysfunction, and postoperative airway complications. Careful patient selection with regards to indications, anatomy, extrapulmonary organ dysfunction (specifically renal dysfunction), and immunologic consideration are of utmost importance. The conduct of the lung retransplantation operation is arduous with special considerations given to operative approach, type of surgery (single vs bilateral), use of extracorporeal circulatory support, and hematological management. Outcomes have improved significantly for most patients, nearing short and midterm outcomes of primary lung recipients in select cases.
Collapse
Affiliation(s)
- Eriberto Michel
- Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, 55 Fruit Street, Cox 630, Boston, MA 02114, USA
| | - Matthew Galen Hartwig
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University School of Medicine, DUMC 3863, Durham, NC 27710, USA.
| | - Wiebke Sommer
- Department of Cardiac Surgery, University of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
| |
Collapse
|
44
|
Snyder ME, Moghbeli K, Bondonese A, Craig A, Popescu I, Fan L, Tabib T, Lafyatis R, Chen K, Trejo Bittar HE, Lendermon E, Pilewski J, Johnson B, Kilaru S, Zhang Y, Sanchez PG, Alder JK, Sims PA, McDyer JF. Modulation of tissue resident memory T cells by glucocorticoids after acute cellular rejection in lung transplantation. J Exp Med 2022; 219:e20212059. [PMID: 35285873 PMCID: PMC8924935 DOI: 10.1084/jem.20212059] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/13/2021] [Accepted: 02/04/2022] [Indexed: 01/01/2023] Open
Abstract
Acute cellular rejection is common after lung transplantation and is associated with an increased risk of early chronic rejection. We present combined single-cell RNA and TCR sequencing on recipient-derived T cells obtained from the bronchoalveolar lavage of three lung transplant recipients with rejection and compare them with T cells obtained from the same patients after treatment of rejection with high-dose systemic glucocorticoids. At the time of rejection, we found an oligoclonal expansion of cytotoxic CD8+ T cells that all persisted as tissue resident memory T cells after successful treatment. Persisting CD8+ allograft-resident T cells have reduced gene expression for cytotoxic mediators after therapy with glucocorticoids but accumulate around airways. This clonal expansion is discordant with circulating T cell clonal expansion at the time of rejection, suggesting in situ expansion. We thus highlight the accumulation of cytotoxic, recipient-derived tissue resident memory T cells within the lung allograft that persist despite the administration of high-dose systemic glucocorticoids. The long-term clinical consequences of this persistence have yet to be characterized.
Collapse
Affiliation(s)
- Mark E. Snyder
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
- Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Kaveh Moghbeli
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Anna Bondonese
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Andrew Craig
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Iulia Popescu
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Li Fan
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Tracy Tabib
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Robert Lafyatis
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Kong Chen
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | | | | | - Joseph Pilewski
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Bruce Johnson
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Silpa Kilaru
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Yingze Zhang
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | | | | | - Peter A. Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY
| | - John F. McDyer
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
45
|
Tian Q, Zhang Z, Tan L, Yang F, Xu Y, Guo Y, Wei D, Wu C, Cao P, Ji J, Wang W, Xie X, Zhao Y. Skin and heart allograft rejection solely by long-lived alloreactive T RM cells in skin of severe combined immunodeficient mice. SCIENCE ADVANCES 2022; 8:eabk0270. [PMID: 35080985 PMCID: PMC8791614 DOI: 10.1126/sciadv.abk0270] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Whether induced tissue-resident memory T (TRM) cells in nonlymphoid organs alone can mediate allograft rejection is unknown. By grafting alloskin or heart into severe combined immunodeficient or Rag2KO mice in which a piece of induced CD4+ and/or CD8+ TRM cell-containing MHC-matched or syngeneic skin was transplanted in advance, we addressed this issue. The induced CD4+ TRM cells in the skin alone acutely rejected alloskin or heart grafts. RNA-seq analysis showed that induced CD4+ TRM cells in skin favorably differentiated into TH17-like polarization during the secondary immune response. Inhibition of the key TH17 signaling molecule RORγt attenuated TRM cell-mediated graft rejection. Thus, we offer a unique mouse model to specifically study TRM cell-mediated allograft rejection without the involvement of lymphocytes in lymphoid organs and tissues. Our study provides strong evidence supporting the hypothesis that long-lived alloreactive TRM cells resident in other organs/tissues substantially contribute to organ allograft rejection.
Collapse
Affiliation(s)
- Qianchuan Tian
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoqi Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liang Tan
- Department of Urological Organ Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Fan Yang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Xu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yinan Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Dong Wei
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Changhong Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng Cao
- Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China
| | - Jiawei Ji
- Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China
| | - Wei Wang
- Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China
- Corresponding author. (Y.Z.); (X.X.); (W.W.)
| | - Xubiao Xie
- Department of Urological Organ Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
- Corresponding author. (Y.Z.); (X.X.); (W.W.)
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Corresponding author. (Y.Z.); (X.X.); (W.W.)
| |
Collapse
|
46
|
Asada N, Ginsberg P, Gagliani N, Mittrücker HW, Panzer U. Tissue-resident memory T cells in the kidney. Semin Immunopathol 2022; 44:801-811. [PMID: 35411437 PMCID: PMC9708805 DOI: 10.1007/s00281-022-00927-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/28/2022] [Indexed: 12/15/2022]
Abstract
The identification of tissue-resident memory T cells (TRM cells) has significantly improved our understanding of immunity. In the last decade, studies have demonstrated that TRM cells are induced after an acute T-cell response, remain in peripheral organs for several years, and contribute to both an efficient host defense and autoimmune disease. TRM cells are found in the kidneys of healthy individuals and patients with various kidney diseases. A better understanding of these cells and their therapeutic targeting might provide new treatment options for infections, autoimmune diseases, graft rejection, and cancer. In this review, we address the definition, phenotype, and developmental mechanisms of TRM cells. Then, we further discuss the current understanding of TRM cells in kidney diseases, such as infection, autoimmune disease, cancer, and graft rejection after transplantation.
Collapse
Affiliation(s)
- Nariaki Asada
- grid.13648.380000 0001 2180 3484III. Department of Medicine, Division of Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Pauline Ginsberg
- grid.13648.380000 0001 2180 3484III. Department of Medicine, Division of Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Gagliani
- grid.13648.380000 0001 2180 3484Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany ,grid.13648.380000 0001 2180 3484Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany ,grid.13648.380000 0001 2180 3484I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany ,grid.24381.3c0000 0000 9241 5705Immunology and Allergy Unit, Department of Medicine, SolnaKarolinska Institute and University Hospital, Stockholm, Sweden
| | - Hans-Willi Mittrücker
- grid.13648.380000 0001 2180 3484Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany ,grid.13648.380000 0001 2180 3484Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulf Panzer
- grid.13648.380000 0001 2180 3484III. Department of Medicine, Division of Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany ,grid.13648.380000 0001 2180 3484Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
47
|
Requena T, Pérez Martínez G. Probiotics, Prebiotics, Synbiotics, Postbiotics and Other Biotics. What's Next? COMPREHENSIVE GUT MICROBIOTA 2022:197-210. [DOI: 10.1016/b978-0-12-819265-8.00094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
48
|
Tuong ZK, Stewart BJ, Guo SA, Clatworthy MR. Epigenetics and tissue immunity-Translating environmental cues into functional adaptations. Immunol Rev 2021; 305:111-136. [PMID: 34821397 DOI: 10.1111/imr.13036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/21/2022]
Abstract
There is an increasing appreciation that many innate and adaptive immune cell subsets permanently reside within non-lymphoid organs, playing a critical role in tissue homeostasis and defense. The best characterized are macrophages and tissue-resident T lymphocytes that work in concert with organ structural cells to generate appropriate immune responses and are functionally shaped by organ-specific environmental cues. The interaction of tissue epithelial, endothelial and stromal cells is also required to attract, differentiate, polarize and maintain organ immune cells in their tissue niche. All of these processes require dynamic regulation of cellular transcriptional programmes, with epigenetic mechanisms playing a critical role, including DNA methylation and post-translational histone modifications. A failure to appropriately regulate immune cell transcription inevitably results in inadequate or inappropriate immune responses and organ pathology. Here, with a focus on the mammalian kidney, an organ which generates differing regional environmental cues (including hypersalinity and hypoxia) due to its physiological functions, we will review the basic concepts of tissue immunity, discuss the technologies available to profile epigenetic modifications in tissue immune cells, including those that enable single-cell profiling, and consider how these mechanisms influence the development, phenotype, activation and function of different tissue immune cell subsets, as well as the immunological function of structural cells.
Collapse
Affiliation(s)
- Zewen Kelvin Tuong
- Molecular Immunity Unit, Department of Medicine, MRC-Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Benjamin J Stewart
- Molecular Immunity Unit, Department of Medicine, MRC-Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Shuang Andrew Guo
- Molecular Immunity Unit, Department of Medicine, MRC-Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Menna R Clatworthy
- Molecular Immunity Unit, Department of Medicine, MRC-Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK.,Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK
| |
Collapse
|
49
|
Kempkes RWM, Issa F. Research Highlights. Transplantation 2021; 105:1635-1636. [PMID: 37779261 DOI: 10.1097/tp.0000000000003874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Rosalie W M Kempkes
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Fadi Issa
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|