1
|
Díaz-Dinamarca DA, Salazar ML, Escobar DF, Castillo BN, Valdebenito B, Díaz P, Manubens A, Salazar F, Troncoso MF, Lavandero S, Díaz J, Becker MI, Vásquez AE. Surface immunogenic protein from Streptococcus agalactiae and Fissurella latimarginata hemocyanin are TLR4 ligands and activate MyD88- and TRIF dependent signaling pathways. Front Immunol 2023; 14:1186188. [PMID: 37790926 PMCID: PMC10544979 DOI: 10.3389/fimmu.2023.1186188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/29/2023] [Indexed: 10/05/2023] Open
Abstract
The development of vaccine adjuvants is of interest for the management of chronic diseases, cancer, and future pandemics. Therefore, the role of Toll-like receptors (TLRs) in the effects of vaccine adjuvants has been investigated. TLR4 ligand-based adjuvants are the most frequently used adjuvants for human vaccines. Among TLR family members, TLR4 has unique dual signaling capabilities due to the recruitment of two adapter proteins, myeloid differentiation marker 88 (MyD88) and interferon-β adapter inducer containing the toll-interleukin-1 receptor (TIR) domain (TRIF). MyD88-mediated signaling triggers a proinflammatory innate immune response, while TRIF-mediated signaling leads to an adaptive immune response. Most studies have used lipopolysaccharide-based ligands as TLR4 ligand-based adjuvants; however, although protein-based ligands have been proven advantageous as adjuvants, their mechanisms of action, including their ability to undergo structural modifications to achieve optimal immunogenicity, have been explored less thoroughly. In this work, we characterized the effects of two protein-based adjuvants (PBAs) on TLR4 signaling via the recruitment of MyD88 and TRIF. As models of TLR4-PBAs, we used hemocyanin from Fissurella latimarginata (FLH) and a recombinant surface immunogenic protein (rSIP) from Streptococcus agalactiae. We determined that rSIP and FLH are partial TLR4 agonists, and depending on the protein agonist used, TLR4 has a unique bias toward the TRIF or MyD88 pathway. Furthermore, when characterizing gene products with MyD88 and TRIF pathway-dependent expression, differences in TLR4-associated signaling were observed. rSIP and FLH require MyD88 and TRIF to activate nuclear factor kappa beta (NF-κB) and interferon regulatory factor (IRF). However, rSIP and FLH have a specific pattern of interleukin 6 (IL-6) and interferon gamma-induced protein 10 (IP-10) secretion associated with MyD88 and TRIF recruitment. Functionally, rSIP and FLH promote antigen cross-presentation in a manner dependent on TLR4, MyD88 and TRIF signaling. However, FLH activates a specific TRIF-dependent signaling pathway associated with cytokine expression and a pathway dependent on MyD88 and TRIF recruitment for antigen cross-presentation. Finally, this work supports the use of these TLR4-PBAs as clinically useful vaccine adjuvants that selectively activate TRIF- and MyD88-dependent signaling to drive safe innate immune responses and vigorous Th1 adaptive immune responses.
Collapse
Affiliation(s)
- Diego A. Díaz-Dinamarca
- Sección de Biotecnología, Subdepartamento, Innovación, Desarrollo, Transferencia Tecnológica (I+D+T) y Evaluación de Tecnologías Sanitarias (ETESA), Instituto de Salud Pública, Santiago, Chile
- Laboratorio de Inmunología, Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Michelle L. Salazar
- Laboratorio de Inmunología, Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile
| | - Daniel F. Escobar
- Sección de Biotecnología, Subdepartamento, Innovación, Desarrollo, Transferencia Tecnológica (I+D+T) y Evaluación de Tecnologías Sanitarias (ETESA), Instituto de Salud Pública, Santiago, Chile
| | - Byron N. Castillo
- Laboratorio de Inmunología, Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile
| | - Bastián Valdebenito
- Sección de Biotecnología, Subdepartamento, Innovación, Desarrollo, Transferencia Tecnológica (I+D+T) y Evaluación de Tecnologías Sanitarias (ETESA), Instituto de Salud Pública, Santiago, Chile
| | - Pablo Díaz
- Sección de Biotecnología, Subdepartamento, Innovación, Desarrollo, Transferencia Tecnológica (I+D+T) y Evaluación de Tecnologías Sanitarias (ETESA), Instituto de Salud Pública, Santiago, Chile
| | | | - Fabián Salazar
- Laboratorio de Inmunología, Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile
- Investigación y Desarrollo, BIOSONDA S.A., Santiago, Chile
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Mayarling F. Troncoso
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmacéuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmacéuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Janepsy Díaz
- Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago, Chile
| | - María Inés Becker
- Laboratorio de Inmunología, Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile
- Investigación y Desarrollo, BIOSONDA S.A., Santiago, Chile
| | - Abel E. Vásquez
- Sección de Biotecnología, Subdepartamento, Innovación, Desarrollo, Transferencia Tecnológica (I+D+T) y Evaluación de Tecnologías Sanitarias (ETESA), Instituto de Salud Pública, Santiago, Chile
- Facultad de Ciencias de la Salud, Escuela de Medicina, Universidad del Alba, Santiago, Chile
| |
Collapse
|
2
|
Bauer DL, Bachnak L, Limbert VM, Horowitz RM, Baudier RL, D'Souza SJ, Immethun VE, Kurtz JR, Grant SB, McLachlan JB. The Adjuvant Combination of dmLT and Monophosphoryl Lipid A Activates the Canonical, Nonpyroptotic NLRP3 Inflammasome in Dendritic Cells and Significantly Interacts to Expand Antigen-Specific CD4 T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1519-1530. [PMID: 37023458 PMCID: PMC10159919 DOI: 10.4049/jimmunol.2200221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 03/08/2023] [Indexed: 04/08/2023]
Abstract
Adjuvants are often essential additions to vaccines that enhance the activation of innate immune cells, leading to more potent and protective T and B cell responses. Only a few vaccine adjuvants are currently used in approved vaccine formulations in the United States. Combinations of one or more adjuvants have the potential to increase the efficacy of existing and next-generation vaccines. In this study, we investigated how the nontoxic double mutant Escherichia coli heat-labile toxin R192G/L211A (dmLT), when combined with the TLR4 agonist monophosphoryl lipid A (MPL-A), impacted innate and adaptive immune responses to vaccination in mice. We found that the combination of dmLT and MPL-A induced an expansion of Ag-specific, multifaceted Th1/2/17 CD4 T cells higher than that explained by adding responses to either adjuvant alone. Furthermore, we observed more robust activation of primary mouse bone marrow-derived dendritic cells in the combination adjuvant-treated group via engagement of the canonical NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome complex. This was marked by a multiplicative increase in the secretion of active IL-1β that was independent of classical gasdermin D-mediated pyroptosis. Moreover, the combination adjuvant increased the production of the secondary messengers cAMP and PGE2 in dendritic cells. These results demonstrate how certain adjuvant combinations could be used to potentiate better vaccine responses to combat a variety of pathogens.
Collapse
Affiliation(s)
- David L Bauer
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA
| | - Louay Bachnak
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA
| | - Vanessa M Limbert
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA
| | - Rebecca M Horowitz
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA
| | - Robin L Baudier
- Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, LA
| | - Shaina J D'Souza
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA
| | - Victoria E Immethun
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA
| | - Jonathan R Kurtz
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA
| | - Samuel B Grant
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA
| | - James B McLachlan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA
| |
Collapse
|
3
|
Spurrier MA, Jennings-Gee JE, Haas KM. Type I IFN Receptor Signaling on B Cells Promotes Antibody Responses to Polysaccharide Antigens. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:148-157. [PMID: 36458995 PMCID: PMC9812919 DOI: 10.4049/jimmunol.2200538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/07/2022] [Indexed: 01/03/2023]
Abstract
We previously reported monophosphoryl lipid A (MPL) and synthetic cord factor trehalose-6,6'-dicorynomycolate (TDCM) significantly increase Ab responses to T cell-independent type 2 Ags (TI-2 Ags) in a manner dependent on B cell-intrinsic TLR4 expression, as well as MyD88 and TRIF proteins. Given the capacity of MPL to drive type I IFN production, we aimed to investigate the extent to which type I IFN receptor (IFNAR) signaling was required for TI-2 responses and adjuvant effects. Using Ifnar1-/- mice and IFNAR1 Ab blockade, we found that IFNAR signaling is required for optimal early B cell activation, expansion, and Ab responses to nonadjuvanted TI-2 Ags, including the pneumococcal vaccine. Further study demonstrated that B cell-intrinsic type I IFN signaling on B cells was essential for normal TI-2 Ab responses. In particular, TI-2 Ag-specific B-1b cell activation and expansion were significantly impaired in Ifnar1-/- mice; moreover, IFNAR1 Ab blockade similarly reduced activation, expansion, and differentiation of IFNAR1-sufficient B-1b cells in Ifnar1-/- recipient mice, indicating that B-1b cell-expressed IFNAR supports TI-2 Ab responses. Consistent with these findings, type I IFN significantly increased the survival of TI-2 Ag-activated B-1b cells ex vivo and promoted plasmablast differentiation. Nonetheless, MPL/TDCM adjuvant effects, which were largely carried out through innate B cells (B-1b and splenic CD23- B cells), were independent of type I IFN signaling. In summary, our study highlights an important role for B-1b cell-expressed IFNAR in promoting responses to nonadjuvanted TI-2 Ags, but it nonetheless demonstrates that adjuvants which support innate B cell responses may bypass this requirement.
Collapse
Affiliation(s)
- M Ariel Spurrier
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Jamie E Jennings-Gee
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Karen M Haas
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC
| |
Collapse
|
4
|
Ding J, Maxwell A, Adzibolosu N, Hu A, You Y, Liao A, Mor G. Mechanisms of immune regulation by the placenta: Role of type I interferon and interferon-stimulated genes signaling during pregnancy. Immunol Rev 2022; 308:9-24. [PMID: 35306673 PMCID: PMC9189063 DOI: 10.1111/imr.13077] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 12/18/2022]
Abstract
Pregnancy is a unique condition where the maternal immune system is continuously adapting in response to the stages of fetal development and signals from the environment. The placenta is a key mediator of the fetal/maternal interaction by providing signals that regulate the function of the maternal immune system as well as provides protective mechanisms to prevent the exposure of the fetus to dangerous signals. Bacterial and/or viral infection during pregnancy induce a unique immunological response by the placenta, and type I interferon is one of the crucial signaling pathways in the trophoblast cells. Basal expression of type I interferon-β and downstream ISGs harbors physiological functions to maintain the homeostasis of pregnancy, more importantly, provides the placenta with the adequate awareness to respond to infections. The disruption of type I interferon signaling in the placenta will lead to pregnancy complications and can compromise fetal development. In this review, we focus the important role of placenta-derived type I interferon and its downstream ISGs in the regulation of maternal immune homeostasis and protection against viral infection. These studies are helping us to better understand placental immunological functions and provide a new perspective for developing better approaches to protect mother and fetus during infections.
Collapse
Affiliation(s)
- Jiahui Ding
- C.S Mott center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Anthony Maxwell
- C.S Mott center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
- Department of Physiology, Wayne State University, Detroit, MI, USA
| | - Nicholas Adzibolosu
- C.S Mott center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
- Department of Physiology, Wayne State University, Detroit, MI, USA
| | - Anna Hu
- C.S Mott center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Yuan You
- C.S Mott center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Aihua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Gil Mor
- C.S Mott center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
5
|
Firmal P, Shah VK, Pant R, Chattopadhyay S. RING finger protein TOPORS modulates the expression of tumor suppressor SMAR1 in colorectal cancer via the TLR4-TRIF pathway. Mol Oncol 2021; 16:1523-1540. [PMID: 34689394 PMCID: PMC8978522 DOI: 10.1002/1878-0261.13126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
TOP1‐binding arginine/serine‐rich protein (TOPORS), a really interesting new gene finger protein, has the ability to bind to a palindromic consensus DNA sequence that enables it to function as a potential transcriptional regulator. However, its role in regulating the transcription of cancer‐associated genes is yet to be explored. As Toll‐like receptor 4 (TLR4) agonists are known to regress solid tumors, we observed that lipopolysaccharide (LPS) induces TOPORS via a TLR4‐TIR domain‐containing adapter‐inducing interferon‐β‐dependent pathway, which in turn modulates the transcription of tumor suppressor scaffold/matrix attachment region‐binding protein 1 (SMAR1, also known as BANP). ChIP analysis showed that TOPORS binds on the SMAR1 promoter and its occupancy increases upon LPS treatment. A previous study from our laboratory revealed that SMAR1 acts as a repressor of signal transducer and activator of transcription 3 (STAT3) transcription. Tumor growth, as well as tumor‐associated macrophage polarization, depends on the status of the STAT1:STAT3 ratio. LPS‐induced SMAR1 expression decreases STAT3 expression and also skews the macrophage polarization toward M1 phenotype. In contrast, LPS failed to polarize tumor‐associated macrophages to M1 phenotype in a SMAR1‐silenced condition, which shows the involvement of SMAR1 in dictating the fate of colorectal cancer progression. Identification of the molecular mechanism behind LPS‐mediated tumor regression would be crucial for designing cancer treatment strategies involving bacterial components.
Collapse
Affiliation(s)
- Priyanka Firmal
- National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind, Pune, 411007
| | - Vibhuti Kumar Shah
- National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind, Pune, 411007
| | - Richa Pant
- National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind, Pune, 411007
| | - Samit Chattopadhyay
- National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind, Pune, 411007.,Department of Biological Sciences, BITS Pilani, K. K. Birla Goa Campus, NH 17B, Zuarinagar, Goa, 403726.,Indian Institute of Chemical Biology, Raja S C Mullick Road, Jadavpur, Kolkata, 700032
| |
Collapse
|
6
|
Stegelmeier AA, Darzianiazizi M, Hanada K, Sharif S, Wootton SK, Bridle BW, Karimi K. Type I Interferon-Mediated Regulation of Antiviral Capabilities of Neutrophils. Int J Mol Sci 2021; 22:4726. [PMID: 33946935 PMCID: PMC8125486 DOI: 10.3390/ijms22094726] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/09/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Interferons (IFNs) are induced by viruses and are the main regulators of the host antiviral response. They balance tissue tolerance and immune resistance against viral challenges. Like all cells in the human body, neutrophils possess the receptors for IFNs and contribute to antiviral host defense. To combat viruses, neutrophils utilize various mechanisms, such as viral sensing, neutrophil extracellular trap formation, and antigen presentation. These mechanisms have also been linked to tissue damage during viral infection and inflammation. In this review, we presented evidence that a complex cross-regulatory talk between IFNs and neutrophils initiates appropriate antiviral immune responses and regulates them to minimize tissue damage. We also explored recent exciting research elucidating the interactions between IFNs, neutrophils, and severe acute respiratory syndrome-coronavirus-2, as an example of neutrophil and IFN cross-regulatory talk. Dissecting the IFN-neutrophil paradigm is needed for well-balanced antiviral therapeutics and development of novel treatments against many major epidemic or pandemic viral infections, including the ongoing pandemic of the coronavirus disease that emerged in 2019.
Collapse
Affiliation(s)
| | | | | | | | | | - Byram W. Bridle
- Correspondence: (B.W.B.); (K.K.); Tel.: +1-(519)-824-4120 (ext. 54657) (B.W.B.); +1-(519)-824-4120 (ext. 54668) (K.K.)
| | - Khalil Karimi
- Correspondence: (B.W.B.); (K.K.); Tel.: +1-(519)-824-4120 (ext. 54657) (B.W.B.); +1-(519)-824-4120 (ext. 54668) (K.K.)
| |
Collapse
|
7
|
Microbial Lipid A Remodeling Controls Cross-Presentation Efficiency and CD8 T Cell Priming by Modulating Dendritic Cell Function. Infect Immun 2021; 89:IAI.00335-20. [PMID: 33257533 DOI: 10.1128/iai.00335-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022] Open
Abstract
The majority of Gram-negative bacteria elicit a potent immune response via recognition of lipid A expressed on the outer bacterial membrane by the host immune receptor Toll-like receptor 4 (TLR4). However, some Gram-negative bacteria evade detection by TLR4 or alter the outcome of TLR4 signaling by modification of lipid A species. Although the role of lipid A modifications on host innate immunity has been examined in some detail, it is currently unclear how lipid A remodeling influences host adaptive immunity. One prototypic Gram-negative bacterium that modifies its lipid A structure is Porphyromonas gingivalis, an anaerobic pathobiont that colonizes the human periodontium and induces chronic low-grade inflammation that is associated with periodontal disease as well as a number of systemic inflammatory disorders. P. gingivalis produces dephosphorylated and deacylated lipid A structures displaying altered activities at TLR4. Here, we explored the functional role of P. gingivalis lipid A modifications on TLR4-dependent innate and adaptive immune responses in mouse bone marrow-derived dendritic cells (BMDCs). We discovered that lipid A 4'-phosphate removal is required for P. gingivalis to evade BMDC-dependent proinflammatory cytokine responses and markedly limits the bacterium's capacity to induce beta interferon (IFN-β) production. In addition, lipid A 4'-phosphatase activity prevents canonical bacterium-induced delay in antigen degradation, which leads to inefficient antigen cross-presentation and a failure to cross-prime CD8 T cells specific for a P. gingivalis-associated antigen. We propose that lipid A modifications produced by this bacterium alter host TLR4-dependent adaptive immunity to establish chronic infections associated with a number of systemic inflammatory disorders.
Collapse
|
8
|
Richard K, Perkins DJ, Harberts EM, Song Y, Gopalakrishnan A, Shirey KA, Lai W, Vlk A, Mahurkar A, Nallar S, Hawkins LD, Ernst RK, Vogel SN. Dissociation of TRIF bias and adjuvanticity. Vaccine 2020; 38:4298-4308. [PMID: 32389496 PMCID: PMC7302928 DOI: 10.1016/j.vaccine.2020.04.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/03/2020] [Accepted: 04/18/2020] [Indexed: 02/08/2023]
Abstract
Toll-like receptors (TLRs), a family of "pattern recognition receptors," bind microbial and host-derived molecules, leading to intracellular signaling and proinflammatory gene expression. TLR4 is unique in that ligand-mediated activation requires the co-receptor myeloid differentiation 2 (MD2) to initiate two signaling cascades: the MyD88-dependent pathway is initiated at the cell membrane, and elicits rapid MAP kinase and NF-κB activation, while the TIR-domain containing adaptor inducing interferon-β (TRIF)-dependent pathway is initiated from TLR4-containing endosomes and results in IRF3 activation. Previous studies associated inflammation with the MyD88 pathway and adjuvanticity with the TRIF pathway. Gram-negative lipopolysaccharide (LPS) is a potent TLR4 agonist, and structurally related molecules signal through TLR4 to differing extents. Herein, we compared monophosphoryl lipid A (sMPL) and E6020, two synthetic, non-toxic LPS lipid A analogs used as vaccine adjuvants, for their capacities to activate TLR4-mediated innate immune responses and to enhance antibody production. In mouse macrophages, high dose sMPL activates MyD88-dependent signaling equivalently to E6020, while E6020 exhibits significantly more activation of the TRIF pathway (a "TRIF bias") than sMPL. Eritoran, a TLR4/MD2 antagonist, competitively inhibited sMPL more strongly than E6020. Despite these differences, sMPL and E6020 adjuvants enhanced antibody responses to comparable extents, with balanced immunoglobulin (Ig) isotypes in two immunization models. These data indicate that a TRIF bias is not necessarily predictive of superior adjuvanticity.
Collapse
Affiliation(s)
- Katharina Richard
- Department of Microbiology and Immunology, University of Maryland School of Medicine (UMSOM), Baltimore, MD, United States
| | - Darren J Perkins
- Department of Microbiology and Immunology, University of Maryland School of Medicine (UMSOM), Baltimore, MD, United States
| | - Erin M Harberts
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry (UMSOD), Baltimore, MD, United States
| | - Yang Song
- Genome Informatics Core, Institute for Genome Sciences (IGS), UMSOM, Baltimore, MD, United States
| | - Archana Gopalakrishnan
- Department of Microbiology and Immunology, University of Maryland School of Medicine (UMSOM), Baltimore, MD, United States
| | - Kari Ann Shirey
- Department of Microbiology and Immunology, University of Maryland School of Medicine (UMSOM), Baltimore, MD, United States
| | - Wendy Lai
- Department of Microbiology and Immunology, University of Maryland School of Medicine (UMSOM), Baltimore, MD, United States
| | - Alexandra Vlk
- Department of Microbiology and Immunology, University of Maryland School of Medicine (UMSOM), Baltimore, MD, United States
| | - Anup Mahurkar
- Genome Informatics Core, Institute for Genome Sciences (IGS), UMSOM, Baltimore, MD, United States
| | - Shreeram Nallar
- Department of Microbiology and Immunology, University of Maryland School of Medicine (UMSOM), Baltimore, MD, United States
| | | | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry (UMSOD), Baltimore, MD, United States
| | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland School of Medicine (UMSOM), Baltimore, MD, United States.
| |
Collapse
|
9
|
Zhang YH, Aldo P, You Y, Ding J, Kaislasuo J, Petersen JF, Lokkegaard E, Peng G, Paidas MJ, Simpson S, Pal L, Guller S, Liu H, Liao AH, Mor G. Trophoblast-secreted soluble-PD-L1 modulates macrophage polarization and function. J Leukoc Biol 2020; 108:983-998. [PMID: 32386458 DOI: 10.1002/jlb.1a0420-012rr] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/22/2022] Open
Abstract
Decidual macrophages are in close contact with trophoblast cells during placenta development, and an appropriate crosstalk between these cellular compartments is crucial for the establishment and maintenance of a healthy pregnancy. During different phases of gestation, macrophages undergo dynamic changes to adjust to the different stages of fetal development. Trophoblast-secreted factors are considered the main modulators responsible for macrophage differentiation and function. However, the phenotype of these macrophages induced by trophoblast-secreted factors and the factors responsible for their polarization has not been elucidated. In this study, we characterized the phenotype and function of human trophoblast-induced macrophages. Using in vitro models, we found that human trophoblast-educated macrophages were CD14+ CD206+ CD86- and presented an unusual transcriptional profile in response to TLR4/LPS activation characterized by the expression of type I IFN-β expression. IFN-β further enhances the constitutive production of soluble programmed cell death ligand 1 (PD-L1) from trophoblast cells. PD-1 blockage inhibited trophoblast-induced macrophage differentiation. Soluble PD-L1 (sPD-L1) was detected in the blood of pregnant women and increased throughout the gestation. Collectively, our data suggest the existence of a regulatory circuit at the maternal fetal interface wherein IFN-β promotes sPD-L1 expression/secretion by trophoblast cells, which can then initiate a PD-L1/PD-1-mediated macrophage polarization toward an M2 phenotype, consequently decreasing inflammation. Macrophages then maintain the expression of sPD-L1 by the trophoblasts through IFN-β production induced through TLR4 ligation.
Collapse
Affiliation(s)
- Yong-Hong Zhang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA.,Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Paulomi Aldo
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Yuan You
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Jiahui Ding
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Janina Kaislasuo
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Obstetrics and Gynecology, University of Helsinki and the Helsinki University Hospital, Helsinki, Finland
| | - Jesper F Petersen
- Department of Obstetrics and Gynecology, North Zealand Hospital, Hilleroed, Denmark
| | - Ellen Lokkegaard
- Department of Obstetrics and Gynecology, North Zealand Hospital, Hilleroed, Denmark
| | - Gang Peng
- Department of Biostatistics, School of Public Health, Yale University, New Haven, Connecticut, USA
| | - Michael J Paidas
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Samantha Simpson
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Lubna Pal
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Seth Guller
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Hong Liu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Ai Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Gil Mor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA.,C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
10
|
Dyevoich AM, Haas KM. Type I IFN, Ly6C + cells, and Phagocytes Support Suppression of Peritoneal Carcinomatosis Elicited by a TLR and CLR Agonist Combination. Mol Cancer Ther 2020; 19:1232-1242. [PMID: 32188623 DOI: 10.1158/1535-7163.mct-19-0885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 02/25/2020] [Accepted: 03/12/2020] [Indexed: 01/13/2023]
Abstract
Metastatic cancer involving spread to the peritoneal cavity is referred to as peritoneal carcinomatosis and has a very poor prognosis. Our previous study demonstrated a Toll-like receptor and C-type lectin receptor agonist pairing of monophosphoryl lipid A (MPL) and trehalose-6,6'-dicorynomycolate (TDCM) effectively inhibits tumor growth and ascites development following TA3-Ha and EL4 challenge through a mechanism dependent on B-1a cell-produced natural IgM and complement. In this study, we investigated additional players in the MPL/TDCM-elicited response. MPL/TDCM treatment rapidly increased type I IFN levels in the peritoneal cavity along with myeloid cell numbers, including macrophages and Ly6Chi monocytes. Type I IFN receptor (IFNAR1-/-) mice produced tumor-reactive IgM following MPL/TDCM treatment, but failed to recruit Ly6C+ monocytes and were not afforded protection during tumor challenges. Clodronate liposome depletion of phagocytic cells, as well as targeted depletion of Ly6C+ cells, also ablated MPL/TDCM-induced protection. Cytotoxic mediators known to be produced by these cells were required for effects. TNFα was required for effective TA3-Ha killing and nitric oxide was required for EL4 killing. Collectively, these data reveal a model whereby MPL/TDCM-elicited antitumor effects strongly depend on innate cell responses, with B-1a cell-produced tumor-reactive IgM and complement pairing with myeloid cell-produced cytotoxic mediators to effectively eradicate tumors in the peritoneal cavity.
Collapse
Affiliation(s)
- Allison M Dyevoich
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Karen M Haas
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina.
| |
Collapse
|
11
|
Deveci Ozkan A, Kaleli S, Onen HI, Sarihan M, Guney Eskiler G, Kalayci Yigin A, Akdogan M. Anti-inflammatory effects of nobiletin on TLR4/TRIF/IRF3 and TLR9/IRF7 signaling pathways in prostate cancer cells. Immunopharmacol Immunotoxicol 2020; 42:93-100. [PMID: 32048561 DOI: 10.1080/08923973.2020.1725040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Background: Toll-like receptors (TLRs) are often expressed in natural immune cells as well as in tumor cells. TLR4 exhibits both tumor promoting and tumor-suppressing roles and higher TLR9 expression is an important marker of poor prognosis in prostate cancer (PCa). Nobiletin (NOB) is an O-methylated flavonoid and NOB has been proven to have anti-cancer effect in PCa cells. However, there is no study in the literature investigating the potential anti-inflammatory effects of NOB on the TLR signaling pathways in cancer. Therefore, we aimed to explore the potential anti-inflammatory effects of NOB on the TLR4/TRIF/IRF3 and TLR9/IRF7 signaling pathways in different types of PCa cell lines, for the first time.Material and methods: In the current study, the cytotoxic effect of NOB PC-3 (hormone-independent and metastatic) and LNCaP cells (hormone-dependent) was evaluated by WST-1 assay. Furthermore, the inhibitory effects of NOB on TLR4/TRIF/IRF3 and TLR9/IRF7signaling pathway were determined by RT-PCR, western blotting and ELISA analysis.Results: NOB demonstrated an inhibitory effect on PCa cell growth and LNCaP cells were more sensitive to NOB than PC-3 cells due to androjen receptor status. Furthermore, NOB alone could suppress TLR4/TRIF/IRF3 and TLR9/IRF7 signaling pathways through the downregulation of their associated pathways (mRNA and related protein levels) and the release of IFN-α and IFN-β compared to LPS or CpG-ODN stimulated PCa cells.Conclusions: NOB potentially inhibited TLR4 and TL9-dependent signaling pathway in PCa cells. However, the efficacy of NOB was different in PCa cells due to the hormone status and aggressive features.
Collapse
Affiliation(s)
- Asuman Deveci Ozkan
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Suleyman Kaleli
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Hacer Ilke Onen
- Department of Medical Biology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Mehmet Sarihan
- Department of Medical Biology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Gamze Guney Eskiler
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Aysel Kalayci Yigin
- Department of Medical Genetic, Cerrahpaşa Medical Faculty, İstanbul University, Istanbul, Turkey
| | - Mehmet Akdogan
- Department of Medical Biochemistry, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| |
Collapse
|
12
|
Diaz-Dinamarca DA, Manzo RA, Soto DA, Avendaño-Valenzuela MJ, Bastias DN, Soto PI, Escobar DF, Vasquez-Saez V, Carrión F, Pizarro-Ortega MS, Wilson CAM, Berrios J, Kalergis AM, Vasquez AE. Surface Immunogenic Protein of Streptococcus Group B is an Agonist of Toll-Like Receptors 2 and 4 and a Potential Immune Adjuvant. Vaccines (Basel) 2020; 8:vaccines8010029. [PMID: 31963234 PMCID: PMC7157747 DOI: 10.3390/vaccines8010029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/20/2019] [Accepted: 01/02/2020] [Indexed: 12/19/2022] Open
Abstract
Vaccine-induced protection against pathogens, especially subunit-based vaccines, are related to antigen properties but mainly in their ability to stimulate the immune system by the use of an adjuvant. Modern vaccines are formulated with a high level of antigen purity, where an efficient adjuvant is necessary. In this context, the use of protein Toll-Like Receptor (TLR) agonists as vaccine adjuvants has been highlighted because of their optimal immunogenicity and minimal toxicity. The Surface Immunogenic Protein (SIP) from Group B Streptococcus (GBS) has gained importance as a new potential protein-based vaccine. Recently, we reported that recombinant SIP (rSIP) expressed by E. coli and purified by High Performance Liquid Chromatography (HPLC) alone induces a protective humoral immune response. In this study, we present the immunomodulatory properties of rSIP as a protein-based adjuvant, as an agonist of TLR. To this end, we showed that C57BL/6 bone marrow-derived dendritic cells pulsed by rSIP resulted in enhanced CD40, CD80, CD86, and Major Histocompatibility Complex (MHC) class II as well as increased secretion proinflammatory cytokines Interleukin (IL)-6, Interferon (IFN)-γ, Tumor Necrosis Factor (TNF)-α, and IL-10. Next, we investigated the in vivo effect of rSIP in the absence or presence of ovalbumin (OVA) on antigen-specific antibody secretion in C57BL/6 mice. Immunization with rSIP plus OVA showed that anti-OVA IgG2a and IgG1a increased significantly compared with OVA alone in C57BL/6 mice. Also, the immunization of rSIP plus OVA generates increased serum cytokines levels characterized by IL-12p70, IL-10, IL-4, and IFN-γ. Interestingly, we observed that rSIP stimulate Toll Like Receptor (TLR)2 and TLR4, individually expressed by Human embryonic kidney (HEK) 293-derived TLR reporter cells. These findings suggest that rSIP is a new potential protein TLR agonist adjuvant and may be employed in the development of new vaccines.
Collapse
Affiliation(s)
- Diego A. Diaz-Dinamarca
- Seccion de Biotecnologia, Instituto de Salud Publica de Chile, Santiago 7780050, Chile; (D.A.D.-D.); (R.A.M.); (D.A.S.); (M.J.A.-V.); (D.N.B.); (P.I.S.); (D.F.E.); (V.V.-S.)
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (M.S.P.-O.); (A.M.K.)
| | - Ricardo A. Manzo
- Seccion de Biotecnologia, Instituto de Salud Publica de Chile, Santiago 7780050, Chile; (D.A.D.-D.); (R.A.M.); (D.A.S.); (M.J.A.-V.); (D.N.B.); (P.I.S.); (D.F.E.); (V.V.-S.)
| | - Daniel A. Soto
- Seccion de Biotecnologia, Instituto de Salud Publica de Chile, Santiago 7780050, Chile; (D.A.D.-D.); (R.A.M.); (D.A.S.); (M.J.A.-V.); (D.N.B.); (P.I.S.); (D.F.E.); (V.V.-S.)
| | - María José Avendaño-Valenzuela
- Seccion de Biotecnologia, Instituto de Salud Publica de Chile, Santiago 7780050, Chile; (D.A.D.-D.); (R.A.M.); (D.A.S.); (M.J.A.-V.); (D.N.B.); (P.I.S.); (D.F.E.); (V.V.-S.)
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (M.S.P.-O.); (A.M.K.)
| | - Diego N. Bastias
- Seccion de Biotecnologia, Instituto de Salud Publica de Chile, Santiago 7780050, Chile; (D.A.D.-D.); (R.A.M.); (D.A.S.); (M.J.A.-V.); (D.N.B.); (P.I.S.); (D.F.E.); (V.V.-S.)
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (M.S.P.-O.); (A.M.K.)
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Santo Tomas, Santiago 8320000, Chile
| | - Paulina I. Soto
- Seccion de Biotecnologia, Instituto de Salud Publica de Chile, Santiago 7780050, Chile; (D.A.D.-D.); (R.A.M.); (D.A.S.); (M.J.A.-V.); (D.N.B.); (P.I.S.); (D.F.E.); (V.V.-S.)
| | - Daniel F. Escobar
- Seccion de Biotecnologia, Instituto de Salud Publica de Chile, Santiago 7780050, Chile; (D.A.D.-D.); (R.A.M.); (D.A.S.); (M.J.A.-V.); (D.N.B.); (P.I.S.); (D.F.E.); (V.V.-S.)
| | - Valeria Vasquez-Saez
- Seccion de Biotecnologia, Instituto de Salud Publica de Chile, Santiago 7780050, Chile; (D.A.D.-D.); (R.A.M.); (D.A.S.); (M.J.A.-V.); (D.N.B.); (P.I.S.); (D.F.E.); (V.V.-S.)
| | - Flavio Carrión
- Programa de Inmunología Traslacional, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 8320000, Chile;
| | - Magdalena S. Pizarro-Ortega
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (M.S.P.-O.); (A.M.K.)
| | - Christian A. M. Wilson
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8320000, Chile;
| | - Julio Berrios
- Escuela de Ingeniería en Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile;
| | - Alexis M. Kalergis
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (M.S.P.-O.); (A.M.K.)
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
| | - Abel E. Vasquez
- Seccion de Biotecnologia, Instituto de Salud Publica de Chile, Santiago 7780050, Chile; (D.A.D.-D.); (R.A.M.); (D.A.S.); (M.J.A.-V.); (D.N.B.); (P.I.S.); (D.F.E.); (V.V.-S.)
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Santo Tomas, Santiago 8320000, Chile
- Facultad de Ciencia, Universidad San Sebastián, Providencia, Santiago 8320000, Chile
- Correspondence: ; Tel.: +56-2-2575-5513
| |
Collapse
|
13
|
Hu Q, Gilley RP, Dube PH. House dust mite exposure attenuates influenza A infection in a mouse model of pulmonary allergic inflammation. Microb Pathog 2019; 129:242-249. [PMID: 30776411 DOI: 10.1016/j.micpath.2019.02.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 11/16/2022]
Abstract
Environmental allergens elicit complex immune responses in the lungs that can promote the development of asthma or exacerbate preexisting asthma in susceptible individuals. House dust mites are one of the most common indoor allergens and are a significant driver of allergic disease. Respiratory infections are known factors in acute exacerbations of asthma but the impact of allergen on the pathogen is not well understood. We investigated the pathogenesis of influenza A infection following exposure to house dust mites. Mice exposed to house dust mites lose less weight following infection and had more transcription of interferon-lambda than controls. These data correlated with less transcription of the influenza polymerase acidic gene suggesting diminished viral replication in house dust mite exposed mice. Altogether, these data suggest that exposure to environmental allergens can influence the pathogenesis of influenza infection.
Collapse
Affiliation(s)
- Qiyao Hu
- Department of Microbiology, Immunology and Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA; Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410000, PR China
| | - Ryan P Gilley
- Department of Microbiology, Immunology and Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Peter H Dube
- Department of Microbiology, Immunology and Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
14
|
Relevance of placental type I interferon beta regulation for pregnancy success. Cell Mol Immunol 2018; 15:1010-1026. [PMID: 29907882 DOI: 10.1038/s41423-018-0050-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/16/2018] [Indexed: 12/21/2022] Open
Abstract
Pregnancy is a unique immunologic and microbial condition that requires an adequate level of awareness to provide a fast and protective response against pathogens as well as to maintain a state of tolerance to paternal antigens. Dysregulation of inflammatory pathways in the placenta triggered by pathogens is one of the main factors responsible for pregnancy complications. Type I IFNs are key molecules modulating immune responses at the level of the placenta and are crucial for protection of the pregnancy via their antiviral and immune modulatory properties. In this study, we elucidate the mechanisms controlling the basal expression of IFNβ and its negative feedback. Using in vitro and in vivo animal models, we found that TLR signaling maintains basal IFNβ levels through the TLR4-MyD88-independent TBK/IRF3 signaling pathway. We describe the role of the TAM receptor Axl in the regulation of IFNβ function in human and mouse trophoblast cells. The absence of TAM receptors in vivo is associated with fetal demise due to dysregulation of IFNβ expression and its pro-apoptotic downstream effectors. Collectively, our data describe a feedback signaling pathway controlling the expression and function of IFNβ in the trophoblast that is essential for an effective response during viral and microbial infections.
Collapse
|
15
|
Eom SH, Jin SJ, Jeong HY, Song Y, Lim YJ, Kim JI, Lee YH, Kang H. Kudzu Leaf Extract Suppresses the Production of Inducible Nitric Oxide Synthase, Cyclooxygenase-2, Tumor Necrosis Factor-Alpha, and Interleukin-6 via Inhibition of JNK, TBK1 and STAT1 in Inflammatory Macrophages. Int J Mol Sci 2018; 19:E1536. [PMID: 29786649 PMCID: PMC5983698 DOI: 10.3390/ijms19051536] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 12/21/2022] Open
Abstract
Kudzu (Pueraria montana var. lobata (Willd.) Sanjappa & Pradeep) is a perennial leguminous vine, and its root and flower have been used for herbal medicine in Asia for a long time. Most dietary flavonoids are reported to be concentrated in its root, not in its aerial parts including leaves. In this study, we investigated whether kudzu leaf and its major constituent, robinin (kaempferol-3-O-robinoside-7-O-rhanmoside) possessed anti-inflammatory activity. To test this hypothesis, we used peritoneal macrophages isolated from BALB/c mice and stimulated the cells with lipopolysaccharide (LPS) or LPS plus interferon (IFN)-γ. Compared with kudzu root extract, its leaf extract was more potent in inhibiting the production of inducible nitric oxide synthase (iNOS), cyclooxygenase-2, tumor necrosis factor-α, and interleukin-6. Kudzu leaf extract decreased LPS-induced activation of c-Jun N-terminal kinase (JNK) and TANK-binding kinase 1(TBK1) with no effects on nuclear factor-κB and activator protein 1 transcriptional activity. Also, kudzu leaf extract inhibited LPS/IFN-γ-induced signal transducer and activator of transcription 1 (STAT1) activation partly via an altered level of STAT1 expression. Robinin, being present in 0.46% of dry weight of leaf extract, but almost undetected in the root, decreased iNOS protein involving modulation of JNK and STAT1 activation. However, robinin showed no impact on other inflammatory markers. Our data provide evidence that kudzu leaf is an excellent food source of as yet unknown anti-inflammatory constituents.
Collapse
Affiliation(s)
- Seok Hyun Eom
- Department of Horticultural Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Korea.
| | - So-Jung Jin
- Department of Horticultural Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Korea.
| | - Hee-Yeong Jeong
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea.
| | - Youngju Song
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - You Jin Lim
- Department of Horticultural Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Korea.
| | - Jong-In Kim
- Division of Acupuncture and Moxibustion Medicine, Kyung Hee Korean Medicine Hospital, Kyung Hee University, Seoul 02447, Korea.
| | - Youn-Hyung Lee
- Department of Horticultural Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Korea.
| | - Hee Kang
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea.
| |
Collapse
|
16
|
Abstract
In humans and other mammals, recognition of endotoxins—abundant surface lipopolysaccharides (LPS) of Gram-negative bacteria—provides a potent stimulus for induction of inflammation and mobilization of host defenses. The structurally unique lipid A region of LPS is the principal determinant of this pro-inflammatory activity. This region of LPS is normally buried within the bacterial outer membrane and aggregates of purified LPS, making even more remarkable its picomolar potency and the ability of discrete variations in lipid A structure to markedly alter the pro-inflammatory activity of LPS. Two recognition systems—MD-2/TLR4 and “LPS-sensing” cytosolic caspases—together confer LPS responsiveness at the host cell surface, within endosomes, and at sites physically accessible to the cytosol. Understanding how the lipid A of LPS is delivered and recognized at these diverse sites is crucial to understanding how the magnitude and character of the inflammatory responses are regulated.
Collapse
Affiliation(s)
- Jerrold Weiss
- Inflammation Program and Departments of Internal Medicine and Microbiology, University of Iowa, Iowa City, Iowa, USA.,Veterans Affairs Medical Center, Iowa City, Iowa, USA
| | - Jason Barker
- Inflammation Program and Departments of Internal Medicine and Microbiology, University of Iowa, Iowa City, Iowa, USA.,Veterans Affairs Medical Center, Iowa City, Iowa, USA
| |
Collapse
|
17
|
Chang MY, Kang I, Gale M, Manicone AM, Kinsella MG, Braun KR, Wigmosta T, Parks WC, Altemeier WA, Wight TN, Frevert CW. Versican is produced by Trif- and type I interferon-dependent signaling in macrophages and contributes to fine control of innate immunity in lungs. Am J Physiol Lung Cell Mol Physiol 2017; 313:L1069-L1086. [PMID: 28912382 PMCID: PMC5814701 DOI: 10.1152/ajplung.00353.2017] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/07/2017] [Accepted: 09/07/2017] [Indexed: 01/08/2023] Open
Abstract
Growing evidence suggests that versican is important in the innate immune response to lung infection. Our goal was to understand the regulation of macrophage-derived versican and the role it plays in innate immunity. We first defined the signaling events that regulate versican expression, using bone marrow-derived macrophages (BMDMs) from mice lacking specific Toll-like receptors (TLRs), TLR adaptor molecules, or the type I interferon receptor (IFNAR1). We show that LPS and polyinosinic-polycytidylic acid [poly(I:C)] trigger a signaling cascade involving TLR3 or TLR4, the Trif adaptor, type I interferons, and IFNAR1, leading to increased expression of versican by macrophages and implicating versican as an interferon-stimulated gene. The signaling events regulating versican are distinct from those for hyaluronan synthase 1 (HAS1) and syndecan-4 in macrophages. HAS1 expression requires TLR2 and MyD88. Syndecan-4 requires TLR2, TLR3, or TLR4 and both MyD88 and Trif. Neither HAS1 nor syndecan-4 is dependent on type I interferons. The importance of macrophage-derived versican in lungs was determined with LysM/Vcan-/- mice. These studies show increased recovery of inflammatory cells in the bronchoalveolar lavage fluid of poly(I:C)-treated LysM/Vcan-/- mice compared with control mice. IFN-β and IL-10, two important anti-inflammatory molecules, are significantly decreased in both poly(I:C)-treated BMDMs from LysM/Vcan-/- mice and bronchoalveolar lavage fluid from poly(I:C)-treated LysM/Vcan-/- mice compared with control mice. In short, type I interferon signaling regulates versican expression, and versican is necessary for type I interferon production. These findings suggest that macrophage-derived versican is an immunomodulatory molecule with anti-inflammatory properties in acute pulmonary inflammation.
Collapse
Affiliation(s)
- Mary Y Chang
- Comparative Pathology Program, Department of Comparative Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Inkyung Kang
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Michael Gale
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington
| | - Anne M Manicone
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington; and
| | - Michael G Kinsella
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Kathleen R Braun
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Tara Wigmosta
- Comparative Pathology Program, Department of Comparative Medicine, University of Washington School of Medicine, Seattle, Washington
| | - William C Parks
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington; and
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - William A Altemeier
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington; and
| | - Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Charles W Frevert
- Comparative Pathology Program, Department of Comparative Medicine, University of Washington School of Medicine, Seattle, Washington;
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington; and
| |
Collapse
|
18
|
Brook B, Harbeson D, Ben-Othman R, Viemann D, Kollmann TR. Newborn susceptibility to infection vs. disease depends on complex in vivo interactions of host and pathogen. Semin Immunopathol 2017; 39:615-625. [PMID: 29098373 DOI: 10.1007/s00281-017-0651-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 09/01/2017] [Indexed: 02/07/2023]
Abstract
The burden of newborn infectious disease has long been recognized as the highest across the entire human life span. The precise underlying cause is unfortunately still far from clear. A substantial body of data derived mostly from in vitro experimentation indicates "lower" host immune responses in early vs. adult life and is briefly summarized within this review. However, emerging data derived mostly from in vivo experimentation reveal that the newborn host also exhibits an exuberant immune and inflammatory response following infection when compared to the adult. In this context, it is important to emphasize that "infection" does not equate "infectious disease," as for many infections it is the host response to the infection that causes disease. This simple insight readily arranges existing evidence into cause-effect relationships that explain much of the increase in clinical suffering from infection in early life. We here briefly summarize the evidence in support of this paradigm and highlight the important implications it has for efforts to ameliorate the suffering and dying from infection in early life.
Collapse
Affiliation(s)
- Byron Brook
- Department of Experimental Medicine, University of British Columbia, UBC, BCCHRI A5-175, 950 W 28th Ave, Vancouver, BC, V5Z4H4, Canada
| | - Danny Harbeson
- Department of Experimental Medicine, University of British Columbia, UBC, BCCHRI A5-175, 950 W 28th Ave, Vancouver, BC, V5Z4H4, Canada
| | - Rym Ben-Othman
- Department of Pediatrics, Division of Infectious Diseases, University of British Columbia, Vancouver, Canada
| | - Dorothee Viemann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Tobias R Kollmann
- Department of Experimental Medicine, University of British Columbia, UBC, BCCHRI A5-175, 950 W 28th Ave, Vancouver, BC, V5Z4H4, Canada. .,Department of Pediatrics, Division of Infectious Diseases, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
19
|
Zou J, Zhou L, Hu C, Jing P, Guo X, Liu S, Lei Y, Yang S, Deng J, Zhang H. IL-8 and IP-10 expression from human bronchial epithelial cells BEAS-2B are promoted by Streptococcus pneumoniae endopeptidase O (PepO). BMC Microbiol 2017; 17:187. [PMID: 28836948 PMCID: PMC5571634 DOI: 10.1186/s12866-017-1081-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/31/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The bronchial epithelium serves as the first defendant line of host against respiratory inhaled pathogens, mainly through releasing chemokines (e.g. interleukin-8 (IL-8), interferon-induced protein 10 (IP-10) etc.) responsible for neutrophil or lymphocyte recruitment to promote the clearance of inhaled pathogens including Streptococcus pneumoniae (S. pneumoniae). Previous studies have shown that IL-8 expression is induced by pneumococcal virulence factors (e.g. pneumolysin, peptidoglycan-polysaccharides, pneumococcal surface protein A (PspA) etc.), which contributes to the pathogenesis of pneumonia. Whether other pneumococcal virulence factors are involved in inducing chemokines expression in epithelium is still unknown. RESULTS We studied the effect of PepO, a widely expressed and newly discovered pneumococcal virulence protein, on the release of proinflammatory cytokines, IL-8 and IP-10, from human bronchial epithelial cell line BEAS-2B and identified the relevant signaling pathways. Incubation of BEAS-2B with PepO resulted in increased synthesis and release of IL-8 and IP-10 in a dose and time independent manner. We also detected the increased and sustained expression of TLR2 and TLR4 transcripts in BEAS-2B stimulated by PepO. PepO activation leaded to the phosphorylation of MAPKs, Akt and p65. Pharmacologic inhibitors of MAPKs, PI3K and IκB-α phosphorylation attenuated IL-8 release, while IP-10 production was just suppressed by inhibitors of IκB-α phosphorylation, PI3K and P38 MAPK. CONCLUSION These results suggest that PepO enhances IL-8 and IP-10 production in BEAS-2B in a MAPKs-PI3K/Akt-p65 dependent manner, which may play critical roles in the pathogenesis of pneumonia.
Collapse
Affiliation(s)
- Jiaqiong Zou
- Department of Laboratory Medicine, The Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Shunqing District, Nanchong, Sichuan, 637000, China.,Department of Laboratory Medicine, North Sichuan Medical College; Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Long Zhou
- Department of Laboratory Medicine, Chongqing Three Gorges Central Hospital, Wanzhou, Chongqing, 404100, China
| | - Chunlan Hu
- Department of General Medicine, Chongqing Three Gorges Central Hospital, Wanzhou, Chongqing, 404100, China
| | - Peng Jing
- Department of Laboratory Medicine, The Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Shunqing District, Nanchong, Sichuan, 637000, China.,Department of Laboratory Medicine, North Sichuan Medical College; Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiaolan Guo
- Department of Pediatric Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Sulan Liu
- Department of Laboratory Medicine, The Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Shunqing District, Nanchong, Sichuan, 637000, China.,Department of Laboratory Medicine, North Sichuan Medical College; Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yan Lei
- Department of Laboratory Medicine, The Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Shunqing District, Nanchong, Sichuan, 637000, China.,Department of Laboratory Medicine, North Sichuan Medical College; Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Shangyu Yang
- Department of Laboratory Medicine, The Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Shunqing District, Nanchong, Sichuan, 637000, China.,Department of Laboratory Medicine, North Sichuan Medical College; Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jiankang Deng
- Department of Laboratory Medicine, The Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Shunqing District, Nanchong, Sichuan, 637000, China. .,Department of Laboratory Medicine, North Sichuan Medical College; Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan, China.
| | - Hong Zhang
- Department of Laboratory Medicine, The Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Shunqing District, Nanchong, Sichuan, 637000, China. .,Department of Laboratory Medicine, North Sichuan Medical College; Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan, China.
| |
Collapse
|
20
|
Camp JV, Jonsson CB. A Role for Neutrophils in Viral Respiratory Disease. Front Immunol 2017; 8:550. [PMID: 28553293 PMCID: PMC5427094 DOI: 10.3389/fimmu.2017.00550] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 04/24/2017] [Indexed: 12/23/2022] Open
Abstract
Neutrophils are immune cells that are well known to be present during many types of lung diseases associated with acute respiratory distress syndrome (ARDS) and may contribute to acute lung injury. Neutrophils are poorly studied with respect to viral infection, and specifically to respiratory viral disease. Influenza A virus (IAV) infection is the cause of a respiratory disease that poses a significant global public health concern. Influenza disease presents as a relatively mild and self-limiting although highly pathogenic forms exist. Neutrophils increase in the respiratory tract during infection with mild seasonal IAV, moderate and severe epidemic IAV infection, and emerging highly pathogenic avian influenza (HPAI). During severe influenza pneumonia and HPAI infection, the number of neutrophils in the lower respiratory tract is correlated with disease severity. Thus, comparative analyses of the relationship between IAV infection and neutrophils provide insights into the relative contribution of host and viral factors that contribute to disease severity. Herein, we review the contribution of neutrophils to IAV disease pathogenesis and to other respiratory virus infections.
Collapse
Affiliation(s)
- Jeremy V Camp
- Institute of Virology, University of Veterinary Medicine at Vienna, Vienna, Austria
| | - Colleen B Jonsson
- Department of Microbiology, University of Tennessee-Knoxville, Knoxville, TN, USA
| |
Collapse
|
21
|
S100-alarmin-induced innate immune programming protects newborn infants from sepsis. Nat Immunol 2017; 18:622-632. [PMID: 28459433 DOI: 10.1038/ni.3745] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/11/2017] [Indexed: 12/22/2022]
Abstract
The high risk of neonatal death from sepsis is thought to result from impaired responses by innate immune cells; however, the clinical observation of hyperinflammatory courses of neonatal sepsis contradicts this concept. Using transcriptomic, epigenetic and immunological approaches, we demonstrated that high amounts of the perinatal alarmins S100A8 and S100A9 specifically altered MyD88-dependent proinflammatory gene programs. S100 programming prevented hyperinflammatory responses without impairing pathogen defense. TRIF-adaptor-dependent regulatory genes remained unaffected by perinatal S100 programming and responded strongly to lipopolysaccharide, but were barely expressed. Steady-state expression of TRIF-dependent genes increased only gradually during the first year of life in human neonates, shifting immune regulation toward the adult phenotype. Disruption of this critical sequence of transient alarmin programming and subsequent reprogramming of regulatory pathways increased the risk of hyperinflammation and sepsis. Collectively these data suggest that neonates are characterized by a selective, transient microbial unresponsiveness that prevents harmful hyperinflammation in the delicate neonate while allowing for sufficient immunological protection.
Collapse
|
22
|
Watkins HC, Rappazzo CG, Higgins JS, Sun X, Brock N, Chau A, Misra A, Cannizzo JPB, King MR, Maines TR, Leifer CA, Whittaker GR, DeLisa MP, Putnam D. Safe Recombinant Outer Membrane Vesicles that Display M2e Elicit Heterologous Influenza Protection. Mol Ther 2017; 25:989-1002. [PMID: 28215994 DOI: 10.1016/j.ymthe.2017.01.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 01/02/2017] [Accepted: 01/06/2017] [Indexed: 01/10/2023] Open
Abstract
Recombinant, Escherichia coli-derived outer membrane vesicles (rOMVs), which display heterologous protein subunits, have potential as a vaccine adjuvant platform. One drawback to rOMVs is their lipopolysaccharide (LPS) content, limiting their translatability to the clinic due to potential adverse effects. Here, we explore a unique rOMV construct with structurally remodeled lipids containing only the lipid IVa portion of LPS, which does not stimulate human TLR4. The rOMVs are derived from a genetically engineered B strain of E. coli, ClearColi, which produces lipid IVa, and which was further engineered in our laboratory to hypervesiculate and make rOMVs. We report that rOMVs derived from this lipid IVa strain have substantially attenuated pyrogenicity yet retain high levels of immunogenicity, promote dendritic cell maturation, and generate a balanced Th1/Th2 humoral response. Additionally, an influenza A virus matrix 2 protein-based antigen displayed on these rOMVs resulted in 100% survival against a lethal challenge with two influenza A virus strains (H1N1 and H3N2) in mice with different genetic backgrounds (BALB/c, C57BL/6, and DBA/2J). Additionally, a two-log reduction of lung viral titer was achieved in a ferret model of influenza infection with human pandemic H1N1. The rOMVs reported herein represent a potentially safe and simple subunit vaccine delivery platform.
Collapse
Affiliation(s)
- Hannah C Watkins
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - C Garrett Rappazzo
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jaclyn S Higgins
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 USA
| | - Xiangjie Sun
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Nicole Brock
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Annie Chau
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 USA
| | - Aditya Misra
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Joseph P B Cannizzo
- College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Michael R King
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Taronna R Maines
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Cynthia A Leifer
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Gary R Whittaker
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Matthew P DeLisa
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - David Putnam
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA; Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
23
|
Ding X, Jin S, Tong Y, Jiang X, Chen Z, Mei S, Zhang L, Billiar TR, Li Q. TLR4 signaling induces TLR3 up-regulation in alveolar macrophages during acute lung injury. Sci Rep 2017; 7:34278. [PMID: 28198368 PMCID: PMC5309825 DOI: 10.1038/srep34278] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 09/08/2016] [Indexed: 01/05/2023] Open
Abstract
Acute lung injury is a life-threatening inflammatory response caused by severe infection. Toll-like receptors in alveolar macrophages (AMΦ) recognize the molecular constituents of pathogens and activate the host's innate immune responses. Numerous studies have documented the importance of TLR-TLR cross talk, but few studies have specifically addressed the relationship between TLR4 and TLR3. We explored a novel mechanism of TLR3 up-regulation that is induced by LPS-TLR4 signaling in a dose- and time-dependent manner in AMΦ from C57BL/6 mice, while the LPS-induced TLR3 expression was significantly reduced in TLR4-/- and Myd88-/- mice and following pretreatment with a NF-κB inhibitor. The enhanced TLR3 up-regulation in AMΦ augmented the expression of cytokines and chemokines in response to sequential challenges with LPS and Poly I:C, a TLR3 ligand, which was physiologically associated with amplified AMΦ-induced PMN migration into lung alveoli. Our study demonstrates that the synergistic effect between TLR4 and TLR3 in macrophages is an important determinant in acute lung injury and, more importantly, that TLR3 up-regulation is dependent on TLR4-MyD88-NF-κB signaling. These results raise the possibility that bacterial infections can induce sensitivity to viral infections, which may have important implications for the therapeutic manipulation of the innate immune system.
Collapse
Affiliation(s)
- Xibing Ding
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuqing Jin
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yao Tong
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xi Jiang
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhixia Chen
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuya Mei
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liming Zhang
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, 200 Lothrop St, Pittsburgh, PA 15213, USA
| | - Quan Li
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Zeuner MT, Krüger CL, Volk K, Bieback K, Cottrell GS, Heilemann M, Widera D. Biased signalling is an essential feature of TLR4 in glioma cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:3084-3095. [PMID: 27669113 DOI: 10.1016/j.bbamcr.2016.09.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 01/19/2023]
Abstract
A distinct feature of the Toll-like receptor 4 (TLR4) is its ability to trigger both MyD88-dependent and MyD88-independent signalling, culminating in activation of pro-inflammatory NF-κB and/or the antiviral IRF3. Although TLR4 agonists (lipopolysaccharides; LPSs) derived from different bacterial species have different endotoxic activity, the impact of LPS chemotype on the downstream signalling is not fully understood. Notably, different TLR4 agonists exhibit anti-tumoural activity in animal models of glioma, but the underlying molecular mechanisms are largely unknown. Thus, we investigated the impact of LPS chemotype on the signalling events in the human glioma cell line U251. We found that LPS of Escherichia coli origin (LPSEC) leads to NF-κB-biased downstream signalling compared to Salmonella minnesota-derived LPS (LPSSM). Exposure of U251 cells to LPSEC resulted in faster nuclear translocation of the NF-κB subunit p65, higher NF-κB-activity and expression of its targets genes, and higher amount of secreted IL-6 compared to LPSSM. Using super-resolution microscopy we showed that the biased agonism of TLR4 in glioma cells is neither a result of differential regulation of receptor density nor of formation of higher order oligomers. Consistent with previous reports, LPSEC-mediated NF-κB activation led to significantly increased U251 proliferation, whereas LPSSM-induced IRF3 activity negatively influenced their invasiveness. Finally, treatment with methyl-β-cyclodextrin (MCD) selectively increased LPSSM-induced nuclear translocation of p65 and NF-κB activity without affecting IRF3. Our data may explain how TLR4 agonists differently affect glioma cell proliferation and migration.
Collapse
Affiliation(s)
- Marie-Theres Zeuner
- Stem Cell Biology and Regenerative Medicine, School of Pharmacy, University of Reading, Reading, United Kingdom
| | - Carmen L Krüger
- Institute of Physical and Theoretical Chemistry, Goethe-University, Frankfurt, Germany
| | - Katharina Volk
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Graeme S Cottrell
- Cellular and Molecular Neuroscience, School of Pharmacy, University of Reading, Reading, United Kingdom
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe-University, Frankfurt, Germany
| | - Darius Widera
- Stem Cell Biology and Regenerative Medicine, School of Pharmacy, University of Reading, Reading, United Kingdom.
| |
Collapse
|
25
|
Sakuranetin Inhibits Inflammatory Enzyme, Cytokine, and Costimulatory Molecule Expression in Macrophages through Modulation of JNK, p38, and STAT1. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:9824203. [PMID: 27668006 PMCID: PMC5030420 DOI: 10.1155/2016/9824203] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/10/2016] [Accepted: 08/14/2016] [Indexed: 01/14/2023]
Abstract
Sakuranetin is flavonoid phytoalexin that serves as a plant antibiotic and exists in Prunus and several other plant species. Recently, we identified the anti-inflammatory effect of Prunus yedoensis and found that there were few studies on the potential anti-inflammatory activity of sakuranetin, one of the main constituents of Prunus yedoensis. Here, we isolated peritoneal macrophages from thioglycollate-injected mice and examined whether sakuranetin affected the response of the macrophages in response to lipopolysaccharide (LPS) plus interferon- (IFN-) γ or LPS only. Sakuranetin suppressed the synthesis of iNOS and COX2 in LPS/IFN-γ stimulated cells and the secretion of TNF-α, IL-6, and IL-12 in LPS stimulated cells. The surface expression of the costimulatory molecules, CD86 and CD40, was also decreased. Among the LPS-induced signaling molecules, STAT1, JNK, and p38 phosphorylation was attenuated. These findings are evidence that sakuranetin acts as anti-inflammatory flavonoid and further study is required to evaluate its in vivo efficacy.
Collapse
|
26
|
SenGupta S, Hittle LE, Ernst RK, Uriarte SM, Mitchell TC. A Pseudomonas aeruginosa hepta-acylated lipid A variant associated with cystic fibrosis selectively activates human neutrophils. J Leukoc Biol 2016; 100:1047-1059. [PMID: 27538572 DOI: 10.1189/jlb.4vma0316-101r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/20/2016] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa (PA) infection in cystic fibrosis (CF) lung disease causes airway neutrophilia and hyperinflammation without effective bacterial clearance. We evaluated the immunostimulatory activities of lipid A, the membrane anchor of LPS, isolated from mutants of PA that synthesize structural variants, present in the airways of patients with CF, to determine if they correlate with disease severity and progression. In a subset of patients with a severe late stage of CF disease, a unique hepta-acylated lipid A, hepta-1855, is synthesized. In primary human cell cultures, we found that hepta-1855 functioned as a potent TLR4 agonist by priming neutrophil respiratory burst and stimulating strong IL-8 from monocytes and neutrophils. hepta-1855 also had a potent survival effect on neutrophils. However, it was less efficient in stimulating neutrophil granule exocytosis and also less potent in triggering proinflammatory TNF-α response from monocytes. In PA isolates that do not synthesize hepta-1855, a distinct CF-specific adaptation favors synthesis of a penta-1447 and hexa-1685 LPS mixture. We found that penta-1447 lacked immunostimulatory activity but interfered with inflammatory IL-8 synthesis in response to hexa-1685. Together, these observations suggest a potential contribution of hepta-1855 to maintenance of the inflammatory burden in late-stage CF by recruiting neutrophils via IL-8 and promoting their survival, an effect presumably amplified by the absence of penta-1447. Moreover, the relative inefficiency of hepta-1855 in triggering neutrophil degranulation may partly explain the persistence of PA in CF disease, despite extensive airway neutrophilia.
Collapse
Affiliation(s)
- Shuvasree SenGupta
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Lauren E Hittle
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Silvia M Uriarte
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA; .,Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA; and
| | - Thomas C Mitchell
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA;
| |
Collapse
|
27
|
Type I Interferon Counters or Promotes Coxiella burnetii Replication Dependent on Tissue. Infect Immun 2016; 84:1815-1825. [PMID: 27068091 DOI: 10.1128/iai.01540-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/01/2016] [Indexed: 01/09/2023] Open
Abstract
Coxiella burnetii is an intracellular pathogen and the cause of Q fever. Gamma interferon (IFN-γ) is critical for host protection from infection, but a role for type I IFN in C. burnetii infection has not been determined. Type I IFN supports host protection from a related pathogen, Legionella pneumophila, and we hypothesized that it would be similarly protective in C. burnetii infection. In contrast to our prediction, IFN-α receptor-deficient (IFNAR(-/-)) mice were protected from C. burnetii-induced infection. Therefore, the role of type I IFN in C. burnetii infection was distinct from that in L. pneumophila Mice treated with a double-stranded-RNA mimetic were protected from C. burnetii-induced weight loss through an IFNAR-independent pathway. We next treated mice with recombinant IFN-α (rIFN-α). When rIFN-α was injected by the intraperitoneal route during infection, disease-induced weight loss was exacerbated. Mice that received rIFN-α by this route had dampened interleukin 1β (IL-1β) expression in bronchoalveolar lavage fluids. However, when rIFN-α was delivered to the lung, bacterial replication was decreased in all tissues. Thus, the presence of type I IFN in the lung protected from infection, but when delivered to the periphery, type I IFN enhanced disease, potentially by dampening inflammatory cytokines. To better characterize the capacity for type I IFN induction by C. burnetii, we assessed expression of IFN-β transcripts by human macrophages following stimulation with lipopolysaccharide (LPS) from C. burnetii Understanding innate responses in C. burnetii infection will support the discovery of novel therapies that may be alternative or complementary to the current antibiotic treatment.
Collapse
|
28
|
Ullah MO, Sweet MJ, Mansell A, Kellie S, Kobe B. TRIF-dependent TLR signaling, its functions in host defense and inflammation, and its potential as a therapeutic target. J Leukoc Biol 2016; 100:27-45. [PMID: 27162325 DOI: 10.1189/jlb.2ri1115-531r] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 04/04/2016] [Indexed: 12/16/2022] Open
Abstract
Toll/IL-1R domain-containing adaptor-inducing IFN-β (TRIF)-dependent signaling is required for TLR-mediated production of type-I IFN and several other proinflammatory mediators. Various pathogens target the signaling molecules and transcriptional regulators acting in the TRIF pathway, thus demonstrating the importance of this pathway in host defense. Indeed, the TRIF pathway contributes to control of both viral and bacterial pathogens through promotion of inflammatory mediators and activation of antimicrobial responses. TRIF signaling also has both protective and pathologic roles in several chronic inflammatory disease conditions, as well as an essential function in wound-repair processes. Here, we review our current understanding of the regulatory mechanisms that control TRIF-dependent TLR signaling, the role of the TRIF pathway in different infectious and noninfectious pathologic states, and the potential for manipulating TRIF-dependent TLR signaling for therapeutic benefit.
Collapse
Affiliation(s)
- M Obayed Ullah
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia; Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia; Institute for Molecular Bioscience, Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia; and
| | - Ashley Mansell
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Monash University, Melbourne, Victoria, Australia
| | - Stuart Kellie
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia; Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia; Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia;
| |
Collapse
|
29
|
Monophosphoryl lipid A-induced pro-inflammatory cytokine expression does not require CD14 in primary human dendritic cells. Inflamm Res 2016; 65:449-58. [PMID: 26994069 DOI: 10.1007/s00011-016-0927-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 02/07/2016] [Accepted: 02/10/2016] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To elucidate if TLR4-mediated MyD88 and TRIF signalling by the clinically applicable Lipopolysaccharide (LPS)-derivative monophosphoryl lipid A (MPLA) in primary human dendritic cells requires LPS cofactors LPS-binding protein (LBP) and CD14. METHODS Cytokine production by monocyte-derived DCs stimulated with MPLA or LPS was determined using ELISA. To investigate involvement of CD14 for action of LPS or MPLA, CD14 was inhibited using blocking antibodies or down-modulated using specific siRNA. To assess involvement of LBP monocyte-derived DCs were stimulated in serum-free culture medium in absence or presence of purified LBP. RESULTS LBP and CD14 are not required for and do not enhance the capacity of MPLA to induce MyD88- and TRIF-dependent pro-inflammatory IL-6 and TNF-α. Interestingly, although CD14 is required for TRIF-dependent downstream events in mice, we show that in human CD14 is redundant for MPLA-induced TRIF-dependent chemokine production. CONCLUSIONS These findings provide novel insight in the modes of action of MPLA in human and show that, compared to LPS, MyD88 and TRIF signalling in dendritic cells by MPLA is not mediated nor amplified by TLR4 cofactors. This gives insight why MPLA induces immune activation without provoking toxicity in human and clarifies why MPLA can be used as activating compound for clinically applicable immuno-activatory cellular products grown in serum-free regimens.
Collapse
|
30
|
Zhang H, Kang L, Yao H, He Y, Wang X, Xu W, Song Z, Yin Y, Zhang X. Streptococcus pneumoniae Endopeptidase O (PepO) Elicits a Strong Innate Immune Response in Mice via TLR2 and TLR4 Signaling Pathways. Front Cell Infect Microbiol 2016; 6:23. [PMID: 26973817 PMCID: PMC4770053 DOI: 10.3389/fcimb.2016.00023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/12/2016] [Indexed: 11/13/2022] Open
Abstract
Interaction between virulence factors of Streptococcus pneumoniae and innate immune receptors elicits host responses through specific signaling pathways during infection. Insights into the signaling events may provide a better knowledge of the starting events for host-pathogen interaction. Here we demonstrated a significant induction of innate immune response elicited by recombinant S. pneumoniae endopeptidase O (rPepO), a newer pneumococcal virulence protein, both in vivo and in vitro. Intratracheal instillation of rPepO protein resulted in significant increase of cytokines production and neutrophils infiltration in mouse lungs. TLR2 or TLR4 deficient mice subjected to rPepO treatment showed decreased cytokines production, reduced neutrophils infiltration and intensified tissue injury as compared with WT mice. Upon stimulation, cytokines TNF-α, IL-6, CXCL1, and CXCL10 were produced by peritoneal exudate macrophages (PEMs) in a TLR2 and TLR4 dependent manner. rPepO-induced cytokines production was markedly decreased in TLR2 or TLR4 deficient PEMs. Further study revealed that cytokines induction relied on the rapid phosphorylation of p38, Akt and p65, not the activation of ERK or JNK. While in TLR2 or TLR4 deficient PEMs the activation of p65 was undetectable. Taken together, these results indicate for the first time that the newer pneumococcal virulence protein PepO activates host innate immune response partially through TLR2 and TLR4 signaling pathways.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University Chongqing, China
| | - Lihua Kang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University Chongqing, China
| | - Hua Yao
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University Chongqing, China
| | - Yujuan He
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University Chongqing, China
| | - Xiaofang Wang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University Chongqing, China
| | - Wenchun Xu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University Chongqing, China
| | - Zhixin Song
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University Chongqing, China
| | - Yibing Yin
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University Chongqing, China
| | - Xuemei Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University Chongqing, China
| |
Collapse
|
31
|
Iribarren K, Bloy N, Buqué A, Cremer I, Eggermont A, Fridman WH, Fucikova J, Galon J, Špíšek R, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunostimulation with Toll-like receptor agonists in cancer therapy. Oncoimmunology 2015; 5:e1088631. [PMID: 27141345 DOI: 10.1080/2162402x.2015.1088631] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 12/19/2022] Open
Abstract
Accumulating preclinical evidence indicates that Toll-like receptor (TLR) agonists efficiently boost tumor-targeting immune responses (re)initiated by most, if not all, paradigms of anticancer immunotherapy. Moreover, TLR agonists have been successfully employed to ameliorate the efficacy of various chemotherapeutics and targeted anticancer agents, at least in rodent tumor models. So far, only three TLR agonists have been approved by regulatory agencies for use in cancer patients. Moreover, over the past decade, the interest of scientists and clinicians in these immunostimulatory agents has been fluctuating. Here, we summarize recent advances in the preclinical and clinical development of TLR agonists for cancer therapy.
Collapse
Affiliation(s)
- Kristina Iribarren
- INSERM, U1138, Paris, France; Equipe 13, Center de Recherche des Cordeliers, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Norma Bloy
- INSERM, U1138, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
| | - Aitziber Buqué
- INSERM, U1138, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
| | - Isabelle Cremer
- INSERM, U1138, Paris, France; Equipe 13, Center de Recherche des Cordeliers, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France
| | | | - Wolf Hervé Fridman
- INSERM, U1138, Paris, France; Equipe 13, Center de Recherche des Cordeliers, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Jitka Fucikova
- Sotio, Prague, Czech Republic; Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Laboratory of Integrative Cancer Immunology, Center de Recherche des Cordeliers, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
| | - Radek Špíšek
- Sotio, Prague, Czech Republic; Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1015, CICBT507, Villejuif, France
| | - Guido Kroemer
- INSERM, U1138, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- INSERM, U1138, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
32
|
Szabo A. Psychedelics and Immunomodulation: Novel Approaches and Therapeutic Opportunities. Front Immunol 2015; 6:358. [PMID: 26236313 PMCID: PMC4500993 DOI: 10.3389/fimmu.2015.00358] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 06/30/2015] [Indexed: 12/12/2022] Open
Abstract
Classical psychedelics are psychoactive substances, which, besides their psychopharmacological activity, have also been shown to exert significant modulatory effects on immune responses by altering signaling pathways involved in inflammation, cellular proliferation, and cell survival via activating NF-κB and mitogen-activated protein kinases. Recently, several neurotransmitter receptors involved in the pharmacology of psychedelics, such as serotonin and sigma-1 receptors, have also been shown to play crucial roles in numerous immunological processes. This emerging field also offers promising treatment modalities in the therapy of various diseases including autoimmune and chronic inflammatory conditions, infections, and cancer. However, the scarcity of available review literature renders the topic unclear and obscure, mostly posing psychedelics as illicit drugs of abuse and not as physiologically relevant molecules or as possible agents of future pharmacotherapies. In this paper, the immunomodulatory potential of classical serotonergic psychedelics, including N,N-dimethyltryptamine (DMT), 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT), lysergic acid diethylamide (LSD), 2,5-dimethoxy-4-iodoamphetamine, and 3,4-methylenedioxy-methamphetamine will be discussed from a perspective of molecular immunology and pharmacology. Special attention will be given to the functional interaction of serotonin and sigma-1 receptors and their cross-talk with toll-like and RIG-I-like pattern-recognition receptor-mediated signaling. Furthermore, novel approaches will be suggested feasible for the treatment of diseases with chronic inflammatory etiology and pathology, such as atherosclerosis, rheumatoid arthritis, multiple sclerosis, schizophrenia, depression, and Alzheimer’s disease.
Collapse
Affiliation(s)
- Attila Szabo
- Department of Immunology, Faculty of Medicine, University of Debrecen , Debrecen , Hungary
| |
Collapse
|
33
|
|