1
|
Go S, Demetriou C, Valenzano G, Hughes S, Lanfredini S, Ferry H, Arbe-Barnes E, Sivakumar S, Bashford-Rogers R, Middleton MR, Mukherjee S, Morton J, Jones K, Neill EO. Tissue-resident natural killer cells support survival in pancreatic cancer through promotion of cDC1-CD8 T activity. eLife 2024; 13:RP92672. [PMID: 39656086 PMCID: PMC11630822 DOI: 10.7554/elife.92672] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
The immunosuppressive microenvironment in pancreatic ductal adenocarcinoma (PDAC) prevents tumor control and strategies to restore anti-cancer immunity (i.e. by increasing CD8 T-cell activity) have had limited success. Here, we demonstrate how inducing localized physical damage using ionizing radiation (IR) unmasks the benefit of immunotherapy by increasing tissue-resident natural killer (trNK) cells that support CD8 T activity. Our data confirms that targeting mouse orthotopic PDAC tumors with IR together with CCR5 inhibition and PD1 blockade reduces E-cadherin positive tumor cells by recruiting a hypoactive NKG2D-ve NK population, phenotypically reminiscent of trNK cells, that supports CD8 T-cell involvement. We show an equivalent population in human single-cell RNA sequencing (scRNA-seq) PDAC cohorts that represents immunomodulatory trNK cells that could similarly support CD8 T-cell levels in a cDC1-dependent manner. Importantly, a trNK signature associates with survival in PDAC and other solid malignancies revealing a potential beneficial role for trNK in improving adaptive anti-tumor responses and supporting CCR5 inhibitor (CCR5i)/αPD1 and IR-induced damage as a novel therapeutic approach.
Collapse
Affiliation(s)
- Simei Go
- Department of Oncology, University of OxfordOxfordUnited Kingdom
| | | | | | - Sophie Hughes
- Department of Oncology, University of OxfordOxfordUnited Kingdom
| | | | - Helen Ferry
- Experimental Medicine Division, University of OxfordOxfordUnited Kingdom
| | | | - Shivan Sivakumar
- Department of Oncology, University of OxfordOxfordUnited Kingdom
| | | | - Mark R Middleton
- Department of Oncology, University of OxfordOxfordUnited Kingdom
- Experimental Medicine Division, University of OxfordOxfordUnited Kingdom
- Oxford University Hospitals NHS Foundation TrustOxfordUnited Kingdom
| | - Somnath Mukherjee
- Oxford University Hospitals NHS Foundation TrustOxfordUnited Kingdom
| | - Jennifer Morton
- CRUK Beatson InstituteGlasgowUnited Kingdom
- School of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Keaton Jones
- Nuffield Department of Surgical Sciences, University of OxfordOxfordUnited Kingdom
| | - Eric O Neill
- Department of Oncology, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
2
|
de Los Rios Kobara I, Jayewickreme R, Lee MJ, Wilk AJ, Blomkalns AL, Nadeau KC, Yang S, Rogers AJ, Blish CA. Interferon-mediated NK cell activation is associated with limited neutralization breadth during SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619639. [PMID: 39484382 PMCID: PMC11527016 DOI: 10.1101/2024.10.22.619639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Best known for their ability to kill infected or malignant cells, natural killer (NK) cells are also underappreciated regulators of the antibody response to viral infection. In mice, NK cells can kill T follicular helper (Tfh) cells, decreasing somatic hypermutation and vaccine responses. Although human NK cell activation correlates with poor vaccine response, the mechanisms of human NK cell regulation of adaptive immunity are poorly understood. We found that in human ancestral SARS-CoV-2 infection, broad neutralizers, who were capable of neutralizing Alpha, Beta, and Delta, had fewer NK cells that expressed inhibitory and immaturity markers whereas NK cells from narrow neutralizers were highly activated and expressed interferon-stimulated genes (ISGs). ISG-mediated activation in NK cells from healthy donors increased cytotoxicity and functional responses to induced Tfh-like cells. This work reveals that NK cell activation and dysregulated inflammation may play a role in poor antibody response to SARS-CoV-2 and opens exciting avenues for designing improved vaccines and adjuvants to target emerging pathogens.
Collapse
|
3
|
Alekseeva NA, Boyko AA, Shevchenko MA, Grechikhina MV, Streltsova MA, Alekseeva LG, Sapozhnikov AM, Deyev SM, Kovalenko EI. Three-Dimensional Model Analysis Revealed Differential Cytotoxic Effects of the NK-92 Cell Line and Primary NK Cells on Breast and Ovarian Carcinoma Cell Lines Mediated by Variations in Receptor-Ligand Interactions and Soluble Factor Profiles. Biomedicines 2024; 12:2398. [PMID: 39457710 PMCID: PMC11504426 DOI: 10.3390/biomedicines12102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Background/objectives: The functional activity of a certain tumor determines the effectiveness of primary NK cells and NK-92 cell line-based cancer therapy; their therapeutic effectiveness against different tumors can vary. This work provides a direct simultaneous comparison of the cytotoxic effects of in vitro-activated peripheral NK (pNK) cells and NK-92 cells in spheroid models of BT-474, MCF7 and SKOV-3 carcinomas and uncovers the reasons for the differential effectiveness of NK cells against tumors. Methods: Tumor spheroids of similar size and shape, obtained from agarose molds, were incubated with NK-92 or pNK cells for 24 h. Tumor cell death was detected using flow cytometry or confocal microscopy. Cytokine production, granzyme B levels and NK cell degranulation analyses were performed, along with pNK and target-cell phenotypic characterization. Results: While NK-92 and pNK cells lysed BT-474 spheroids with comparably low efficiency, pNK cells were more capable of eliminating MCF7 and SKOV-3 spheroids than NK-92 cells were. The results of the functional and phenotypic analyses strongly support the participation of the NKG2D-NKG2DL pathway in pNK cell activation induced by the most sensitive cytotoxic attack on SKOV-3 spheroids, whereas the CX3CR1-CX3CL1 axis appears to be involved in the pNK reaction against MCF-7 spheroids. Conclusions: We provide a new approach for the preliminary identification of the most promising NK cell receptors that can alter the effectiveness of cancer therapy depending on the specific tumor type. Using this approach, NK-92 cells or pNK subsets can be selected for further accumulation and/or genetic modification to improve specificity and reactivity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Elena I. Kovalenko
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (N.A.A.); (M.A.S.); (M.V.G.); (M.A.S.); (L.G.A.); (A.M.S.); (S.M.D.)
| |
Collapse
|
4
|
Gao F, Mora MC, Constantinides M, Coënon L, Multrier C, Vaillant L, Peyroux J, Zhang T, Villalba M. Feeder cell training shapes the phenotype and function of in vitro expanded natural killer cells. MedComm (Beijing) 2024; 5:e740. [PMID: 39314886 PMCID: PMC11417427 DOI: 10.1002/mco2.740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Natural killer (NK) cells are candidates for adoptive cell therapy, and the protocols for their activation and expansion profoundly influence their function and fate. The complexity of NK cell origin and feeder cell cues impacts the heterogeneity of expanded NK (eNK) cells. To explore this, we compared the phenotype and function of peripheral blood-derived NK (PB-NK) and umbilical cord blood-derived NK (UCB-NK) cells activated by common feeder cell lines, including K562, PLH, and 221.AEH. After first encounter, most PB-NK cells showed degranulation independently of cytokines production. Meanwhile, most UCB-NK cells did both. We observed that each feeder cell line uniquely influenced the activation, expansion, and ultimate fate of PB eNK and UCB eNK cells, determining whether they became cytokine producers or killer cells. In addition, they also affected the functional performance of NK cell subsets after expansion, that is, expanded conventional NK (ecNK) and expanded FcRγ- NK (eg-NK) cells. Hence, the regulation of eNK cell function largely depends on the NK cell source and the chosen expansion system. These results underscore the significance of selecting feeder cells for NK cell expansion from various sources, notably for customized adoptive cell therapies to yield cytokine-producing or cytotoxic eNK cells.
Collapse
Affiliation(s)
- Fei Gao
- IRMBUniversity of MontpellierINSERMCHR MontpellierMontpellierFrance
- Department of PathologySchool of Basic MedicineCentral South UniversityChangshaChina
| | | | | | - Loïs Coënon
- IRMBUniversity of MontpellierINSERMCHR MontpellierMontpellierFrance
| | | | - Loïc Vaillant
- IRMBUniversity of MontpellierINSERMCHR MontpellierMontpellierFrance
| | - Julien Peyroux
- IRMBUniversity of MontpellierINSERMCHR MontpellierMontpellierFrance
| | - Tianxiang Zhang
- Department of ImmunobiologyYale University School of MedicineNew HavenConnecticutUSA
| | - Martin Villalba
- IRMBUniversity of MontpellierINSERMCHR MontpellierMontpellierFrance
- Institut du Cancer Avignon‐Provence Sainte CatherineAvignonFrance
- IRMBUniv MontpellierINSERMCHU MontpellierCNRSMontpellierFrance
| |
Collapse
|
5
|
Herault A, Mak J, de la Cruz-Chuh J, Dillon MA, Ellerman D, Go M, Cosino E, Clark R, Carson E, Yeung S, Pichery M, Gador M, Chiang EY, Wu J, Liang Y, Modrusan Z, Gampa G, Sudhamsu J, Kemball CC, Cheung V, Nguyen TTT, Seshasayee D, Piskol R, Totpal K, Yu SF, Lee G, Kozak KR, Spiess C, Walsh KB. NKG2D-bispecific enhances NK and CD8+ T cell antitumor immunity. Cancer Immunol Immunother 2024; 73:209. [PMID: 39112670 PMCID: PMC11306676 DOI: 10.1007/s00262-024-03795-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Cancer immunotherapy approaches that elicit immune cell responses, including T and NK cells, have revolutionized the field of oncology. However, immunosuppressive mechanisms restrain immune cell activation within solid tumors so additional strategies to augment activity are required. METHODS We identified the co-stimulatory receptor NKG2D as a target based on its expression on a large proportion of CD8+ tumor infiltrating lymphocytes (TILs) from breast cancer patient samples. Human and murine surrogate NKG2D co-stimulatory receptor-bispecifics (CRB) that bind NKG2D on NK and CD8+ T cells as well as HER2 on breast cancer cells (HER2-CRB) were developed as a proof of concept for targeting this signaling axis in vitro and in vivo. RESULTS HER2-CRB enhanced NK cell activation and cytokine production when co-cultured with HER2 expressing breast cancer cell lines. HER2-CRB when combined with a T cell-dependent-bispecific (TDB) antibody that synthetically activates T cells by crosslinking CD3 to HER2 (HER2-TDB), enhanced T cell cytotoxicity, cytokine production and in vivo antitumor activity. A mouse surrogate HER2-CRB (mHER2-CRB) improved in vivo efficacy of HER2-TDB and augmented NK as well as T cell activation, cytokine production and effector CD8+ T cell differentiation. CONCLUSION We demonstrate that targeting NKG2D with bispecific antibodies (BsAbs) is an effective approach to augment NK and CD8+ T cell antitumor immune responses. Given the large number of ongoing clinical trials leveraging NK and T cells for cancer immunotherapy, NKG2D-bispecifics have broad combinatorial potential.
Collapse
Affiliation(s)
- Aurelie Herault
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | - Judy Mak
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | - Josefa de la Cruz-Chuh
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA, USA
| | - Michael A Dillon
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Diego Ellerman
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - MaryAnn Go
- Department of In Vivo Pharmacology, Genentech, South San Francisco, CA, USA
| | - Ely Cosino
- Department of In Vivo Pharmacology, Genentech, South San Francisco, CA, USA
| | - Robyn Clark
- Department of In Vivo Pharmacology, Genentech, South San Francisco, CA, USA
| | - Emily Carson
- Department of In Vivo Pharmacology, Genentech, South San Francisco, CA, USA
| | - Stacey Yeung
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | - Melanie Pichery
- Immuno-Oncology-In Vitro Biology Department, Evotec, Toulouse, France
| | - Mylène Gador
- Immuno-Oncology-In Vitro Biology Department, Evotec, Toulouse, France
| | - Eugene Y Chiang
- Department of Cancer Immunology, Genentech, South San Francisco, CA, USA
| | - Jia Wu
- Department of Antibody Discovery, Genentech, South San Francisco, CA, USA
| | - Yuxin Liang
- Department of Next-GenSequencing, South San Francisco, CA, USA
| | - Zora Modrusan
- Department of Next-GenSequencing, South San Francisco, CA, USA
| | - Gautham Gampa
- Department of Development Sciences PTPK, Genentech, South San Francisco, CA, USA
| | - Jawahar Sudhamsu
- Department of Structural Biology, Genentech, South San Francisco, CA, USA
| | - Christopher C Kemball
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA, USA
| | - Victoria Cheung
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | | | - Dhaya Seshasayee
- Department of Antibody Discovery, Genentech, South San Francisco, CA, USA
| | - Robert Piskol
- Department of Bioinformatics, Genentech, South San Francisco, CA, USA
| | - Klara Totpal
- Department of In Vivo Pharmacology, Genentech, South San Francisco, CA, USA
| | - Shang-Fan Yu
- Department of In Vivo Pharmacology, Genentech, South San Francisco, CA, USA
| | - Genee Lee
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | - Katherine R Kozak
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA, USA
| | - Christoph Spiess
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Kevin B Walsh
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
6
|
Guo F, Du N, Wen X, Li Z, Guo Y, Zhou L, Hoffman AR, Li L, Hu JF, Cui J. CircARAP2 controls sMICA-induced NK cell desensitization by erasing CTCF/PRC2-induced suppression in early endosome marker RAB5A. Cell Mol Life Sci 2024; 81:307. [PMID: 39048814 PMCID: PMC11335232 DOI: 10.1007/s00018-024-05285-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/07/2024] [Accepted: 05/18/2024] [Indexed: 07/27/2024]
Abstract
Natural killer cells (NK) are the "professional killer" of tumors and play a crucial role in anti-tumor immunotherapy. NK cell desensitization is a key mechanism of tumor immune escape. Dysregulated NKG2D-NKG2DL signaling is a primary driver of this desensitization process. However, the factors that regulate NK cell desensitization remain largely uncharacterized. Here, we present the first report that circular RNA circARAP2 (hsa_circ_0069396) is involved in the soluble MICA (sMICA)-induced NKG2D endocytosis in the NK cell desensitization model. CircARAP2 was upregulated during NK cell desensitization and the loss of circARAP2 alleviated NKG2D endocytosis and NK cell desensitization. Using Chromatin isolation by RNA purification (ChIRP) and RNA pull-down approaches, we identified that RAB5A, a molecular marker of early endosomes, was its downstream target. Notably, transcription factor CTCF was an intermediate functional partner of circARAP2. Mechanistically, we discovered that circARAP2 interacted with CTCF and inhibited the recruitment of CTCF-Polycomb Repressive Complex 2 (PRC2) to the promoter region of RAB5A, thereby erasing histone H3K27 and H3K9 methylation suppression to enhance RAB5A transcription. These data demonstrate that inhibition of circARAP2 effectively alleviates sMICA-induced NKG2D endocytosis and NK cell desensitization, providing a novel target for therapeutic intervention in tumor immune evasion.
Collapse
Affiliation(s)
- Feifei Guo
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Nawen Du
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Xue Wen
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Zhaozhi Li
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Yantong Guo
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Lei Zhou
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Andrew R Hoffman
- Stanford University School of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Lingyu Li
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.
| | - Ji-Fan Hu
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.
- Stanford University School of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA.
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
7
|
Liu L, Yang Y, Wu T, Du J, Long F. NKG2D knockdown improves hypoxic-ischemic brain damage by inhibiting neuroinflammation in neonatal mice. Sci Rep 2024; 14:2326. [PMID: 38282118 PMCID: PMC10822867 DOI: 10.1038/s41598-024-52780-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/23/2024] [Indexed: 01/30/2024] Open
Abstract
Hypoxic-ischemic brain damage (HIBD) is a leading cause of neonatal death and neurological dysfunction. Neuroinflammation is identified as one of the crucial pathological mechanisms after HIBD, and natural killer group 2 member D (NKG2D) is reported to be implicated in the pathogenesis of immunoinflammatory diseases. However, the role of NKG2D in neonatal HIBD is seldomly investigated. In this study, a neonatal mice model of HIBD was induced, and the role of the NKG2D in neuroinflammation and brain injury was explored by intracerebroventricular injection of lentivirus to knockdown NKG2D in neonatal mice with HIBD. The results showed that a significant increase in NKG2D protein level in the brain of neonatal mice with HIBD. The NKG2D knockdown in the brain significantly alleviated cerebral infarction, neurobehavioral deficits, and neuronal loss in neuronal HIBD. Moreover, the neuroprotective effect of NKG2D knockdown was associated with inhibition of the activation of microglia and astrocytes, expression of NKG2D ligands (NKG2DLs) and DAP10, and the nuclear translocation of NF-κB p65. Our findings reveal NKG2D knockdown may exert anti-inflammatory and neuroprotective effects in the neonatal mice with HIBD through downregulation of NKG2D/NKG2DLs/DAP10/NF-κB pathway. These results suggest that NKG2D may be a potential target for the treatment of neonatal HIBD.
Collapse
Affiliation(s)
- Lin Liu
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Yuxin Yang
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Wu
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Junrong Du
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Fangyi Long
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Zecher BF, Ellinghaus D, Schloer S, Niehrs A, Padoan B, Baumdick ME, Yuki Y, Martin MP, Glow D, Schröder-Schwarz J, Niersch J, Brias S, Müller LM, Habermann R, Kretschmer P, Früh T, Dänekas J, Wehmeyer MH, Poch T, Sebode M, Ellinghaus E, Degenhardt F, Körner C, Hoelzemer A, Fehse B, Oldhafer KJ, Schumacher U, Sauter G, Carrington M, Franke A, Bunders MJ, Schramm C, Altfeld M. HLA-DPA1*02:01~B1*01:01 is a risk haplotype for primary sclerosing cholangitis mediating activation of NKp44+ NK cells. Gut 2024; 73:325-337. [PMID: 37788895 PMCID: PMC10850656 DOI: 10.1136/gutjnl-2023-329524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 09/11/2023] [Indexed: 10/05/2023]
Abstract
OBJECTIVE Primary sclerosing cholangitis (PSC) is characterised by bile duct strictures and progressive liver disease, eventually requiring liver transplantation. Although the pathogenesis of PSC remains incompletely understood, strong associations with HLA-class II haplotypes have been described. As specific HLA-DP molecules can bind the activating NK-cell receptor NKp44, we investigated the role of HLA-DP/NKp44-interactions in PSC. DESIGN Liver tissue, intrahepatic and peripheral blood lymphocytes of individuals with PSC and control individuals were characterised using flow cytometry, immunohistochemical and immunofluorescence analyses. HLA-DPA1 and HLA-DPB1 imputation and association analyses were performed in 3408 individuals with PSC and 34 213 controls. NK cell activation on NKp44/HLA-DP interactions was assessed in vitro using plate-bound HLA-DP molecules and HLA-DPB wildtype versus knock-out human cholangiocyte organoids. RESULTS NKp44+NK cells were enriched in livers, and intrahepatic bile ducts of individuals with PSC showed higher expression of HLA-DP. HLA-DP haplotype analysis revealed a highly elevated PSC risk for HLA-DPA1*02:01~B1*01:01 (OR 1.99, p=6.7×10-50). Primary NKp44+NK cells exhibited significantly higher degranulation in response to plate-bound HLA-DPA1*02:01-DPB1*01:01 compared with control HLA-DP molecules, which were inhibited by anti-NKp44-blocking. Human cholangiocyte organoids expressing HLA-DPA1*02:01-DPB1*01:01 after IFN-γ-exposure demonstrated significantly increased binding to NKp44-Fc constructs compared with unstimulated controls. Importantly, HLA-DPA1*02:01-DPB1*01:01-expressing organoids increased degranulation of NKp44+NK cells compared with HLA-DPB1-KO organoids. CONCLUSION Our studies identify a novel PSC risk haplotype HLA-DP A1*02:01~DPB1*01:01 and provide clinical and functional data implicating NKp44+NK cells that recognise HLA-DPA1*02:01-DPB1*01:01 expressed on cholangiocytes in PSC pathogenesis.
Collapse
Affiliation(s)
- Britta F Zecher
- Ist Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Leibniz Institute of Virology, Hamburg, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | | | | | | | | | - Yuko Yuki
- Basic Science Program, Frederick National Laboratory for Cancer Research and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Maureen P Martin
- Basic Science Program, Frederick National Laboratory for Cancer Research and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Dawid Glow
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jennifer Schröder-Schwarz
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Sébastien Brias
- Ist Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Leibniz Institute of Virology, Hamburg, Germany
| | | | | | | | | | | | - Malte H Wehmeyer
- Ist Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Poch
- Ist Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Marcial Sebode
- Ist Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Ellinghaus
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Frauke Degenhardt
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | | | - Angelique Hoelzemer
- Ist Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Leibniz Institute of Virology, Hamburg, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karl J Oldhafer
- Department of General & Abdominal Surgery, Asklepios Hospital Barmbek, Hamburg, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Andre Franke
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Madeleine J Bunders
- Leibniz Institute of Virology, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Schramm
- Ist Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Martin Zeitz Center for Rare Diseases and Hamburg Centre for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcus Altfeld
- Leibniz Institute of Virology, Hamburg, Germany
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
9
|
Aguilar OA, Qualls AE, Gonzalez-Hinojosa MDR, Obeidalla S, Kerchberger VE, Tsao T, Singer JP, Looney MR, Raymond W, Hays SR, Golden JA, Kukreja J, Shaver CM, Ware LB, Christie J, Diamond JM, Lanier LL, Greenland JR, Calabrese DR. MICB Genomic Variant Is Associated with NKG2D-mediated Acute Lung Injury and Death. Am J Respir Crit Care Med 2024; 209:70-82. [PMID: 37878820 PMCID: PMC10870895 DOI: 10.1164/rccm.202303-0472oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023] Open
Abstract
Rationale: Acute lung injury (ALI) carries a high risk of mortality but has no established pharmacologic therapy. We previously found that experimental ALI occurs through natural killer (NK) cell NKG2D receptor activation and that the cognate human ligand, MICB, was associated with ALI after transplantation. Objectives: To investigate the association of a common missense variant, MICBG406A, with ALI. Methods: We assessed MICBG406A genotypes within two multicenter observational study cohorts at risk for ALI: primary graft dysfunction (N = 619) and acute respiratory distress syndrome (N = 1,376). Variant protein functional effects were determined in cultured and ex vivo human samples. Measurements and Main Results: Recipients of MICBG406A-homozygous allografts had an 11.1% absolute risk reduction (95% confidence interval [CI], 3.2-19.4%) for severe primary graft dysfunction after lung transplantation and reduced risk for allograft failure (hazard ratio, 0.36; 95% CI, 0.13-0.98). In participants with sepsis, we observed 39% reduced odds of moderately or severely impaired oxygenation among MICBG406A-homozygous individuals (95% CI, 0.43-0.86). BAL NK cells were less frequent and less mature in participants with MICBG406A. Expression of missense variant protein MICBD136N in cultured cells resulted in reduced surface MICB and reduced NKG2D ligation relative to wild-type MICB. Coculture of variant MICBD136N cells with NK cells resulted in less NKG2D activation and less susceptibility to NK cell killing relative to the wild-type cells. Conclusions: These data support a role for MICB signaling through the NKG2D receptor in mediating ALI, suggesting a novel therapeutic approach.
Collapse
Affiliation(s)
- Oscar A. Aguilar
- Department Microbiology and Immunology
- Parker Institute for Cancer Immunotherapy
| | | | | | | | | | | | | | | | | | | | | | - Jasleen Kukreja
- Department of Surgery, University of California San Francisco, San Francisco, California
| | | | - Lorraine B. Ware
- Department Medicine and
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jason Christie
- Department Medicine and
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | | | - Lewis L. Lanier
- Department Microbiology and Immunology
- Parker Institute for Cancer Immunotherapy
| | - John R. Greenland
- Department Medicine
- San Francisco Veterans Affairs Medical Center, San Francisco, California
| | - Daniel R. Calabrese
- Department Medicine
- San Francisco Veterans Affairs Medical Center, San Francisco, California
| |
Collapse
|
10
|
Molfetta R, Petillo S, Cippitelli M, Paolini R. SUMOylation and related post-translational modifications in natural killer cell anti-cancer responses. Front Cell Dev Biol 2023; 11:1213114. [PMID: 37313439 PMCID: PMC10258607 DOI: 10.3389/fcell.2023.1213114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/17/2023] [Indexed: 06/15/2023] Open
Abstract
SUMOylation is a reversible modification that involves the covalent attachment of small ubiquitin-like modifier (SUMO) to target proteins, leading to changes in their localization, function, stability, and interactor profile. SUMOylation and additional related post-translational modifications have emerged as important modulators of various biological processes, including regulation of genomic stability and immune responses. Natural killer (NK) cells are innate immune cells that play a critical role in host defense against viral infections and tumors. NK cells can recognize and kill infected or transformed cells without prior sensitization, and their activity is tightly regulated by a balance of activating and inhibitory receptors. Expression of NK cell receptors as well as of their specific ligands on target cells is finely regulated during malignant transformation through the integration of different mechanisms including ubiquitin- and ubiquitin-like post-translational modifications. Our review summarizes the role of SUMOylation and other related pathways in the biology of NK cells with a special emphasis on the regulation of their response against cancer. The development of novel selective inhibitors as useful tools to potentiate NK-cell mediated killing of tumor cells is also briefly discussed.
Collapse
|
11
|
Milito ND, Zingoni A, Stabile H, Soriani A, Capuano C, Cippitelli M, Gismondi A, Santoni A, Paolini R, Molfetta R. NKG2D engagement on human NK cells leads to DNAM-1 hypo-responsiveness through different converging mechanisms. Eur J Immunol 2023; 53:e2250198. [PMID: 36440686 DOI: 10.1002/eji.202250198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/09/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022]
Abstract
Natural killer (NK) cell activation is regulated by activating and inhibitory receptors that facilitate diseased cell recognition. Among activating receptors, NKG2D and DNAM-1 play a pivotal role in anticancer immune responses since they bind ligands upregulated on transformed cells. During tumor progression, however, these receptors are frequently downmodulated and rendered functionally inactive. Of note, NKG2D internalization has been associated with the acquisition of a dysfunctional phenotype characterized by the cross-tolerization of unrelated activating receptors. However, our knowledge of the consequences of NKG2D engagement is still incomplete. Here, by cytotoxicity assays combined with confocal microscopy, we demonstrate that NKG2D engagement on human NK cells impairs DNAM-1-mediated killing through two different converging mechanisms: by the upregulation of the checkpoint inhibitory receptor TIGIT, that in turn suppresses DNAM-1-mediated cytotoxic function, and by direct inhibition of DNAM-1-promoted signaling. Our results highlight a novel interplay between NKG2D and DNAM-1/TIGIT receptors that may facilitate neoplastic cell evasion from NK cell-mediated clearance.
Collapse
Affiliation(s)
- Nadia D Milito
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandra Zingoni
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Helena Stabile
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandra Soriani
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Cristina Capuano
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Marco Cippitelli
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Angela Gismondi
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Angela Santoni
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Rossella Paolini
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Rosa Molfetta
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
12
|
Li X, Omonova Tuychi Qizi C, Mohamed Khamis A, Zhang C, Su Z. Nanotechnology for Enhanced Cytoplasmic and Organelle Delivery of Bioactive Molecules to Immune Cells. Pharm Res 2022; 39:1065-1083. [PMID: 35661086 DOI: 10.1007/s11095-022-03284-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/30/2022] [Indexed: 12/18/2022]
Abstract
Immune cells stand as a critical component of the immune system to maintain the internal environment homeostasis. The dysfunction of immune cells can result in various life-threatening diseases, including refractory infection, diabetes, cardiovascular disease, and cancer. Therefore, strategies to standardize or even enhance the function of immune cells are critical. Recently, nanotechnology has been highly researched and extensively applied for enhancing the cytoplasmic delivery of bioactive molecules to immune cells, providing efficient approaches to correct in vivo and in vitro dysfunction of immune cells. This review focuses on the technologies and challenges involved in improving endo-lysosomal escape, cytoplasmic release and organelle targeted delivery of different bioactive molecules in immune cells. Furthermore, it will elaborate on the broader vision of applying nanotechnology for treating immune cell-related diseases and constructing immune therapies and cytopharmaceuticals as potential treatments for diseases.
Collapse
Affiliation(s)
- Xiaoyu Li
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China
| | - Charos Omonova Tuychi Qizi
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China
| | - Amari Mohamed Khamis
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China
| | - Can Zhang
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China.
| | - Zhigui Su
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
13
|
Grewal RK, Das J. Spatially resolved in silico modeling of NKG2D signaling kinetics suggests a key role of NKG2D and Vav1 Co-clustering in generating natural killer cell activation. PLoS Comput Biol 2022; 18:e1010114. [PMID: 35584138 PMCID: PMC9154193 DOI: 10.1371/journal.pcbi.1010114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/31/2022] [Accepted: 04/18/2022] [Indexed: 11/18/2022] Open
Abstract
Natural Killer (NK) cells provide key resistance against viral infections and tumors. A diverse set of activating and inhibitory NK cell receptors (NKRs) interact with cognate ligands presented by target host cells, where integration of dueling signals initiated by the ligand-NKR interactions determines NK cell activation or tolerance. Imaging experiments over decades have shown micron and sub-micron scale spatial clustering of activating and inhibitory NKRs. The mechanistic roles of these clusters in affecting downstream signaling and activation are often unclear. To this end, we developed a predictive in silico framework by combining spatially resolved mechanistic agent based modeling, published TIRF imaging data, and parameter estimation to determine mechanisms by which formation and spatial movements of activating NKG2D microclusters affect early time NKG2D signaling kinetics in a human cell line NKL. We show co-clustering of NKG2D and the guanosine nucleotide exchange factor Vav1 in NKG2D microclusters plays a dominant role over ligand (ULBP3) rebinding in increasing production of phospho-Vav1(pVav1), an activation marker of early NKG2D signaling. The in silico model successfully predicts several scenarios of inhibition of NKG2D signaling and time course of NKG2D spatial clustering over a short (~3 min) interval. Modeling shows the presence of a spatial positive feedback relating formation and centripetal movements of NKG2D microclusters, and pVav1 production offers flexibility towards suppression of activating signals by inhibitory KIR ligands organized in inhomogeneous spatial patterns (e.g., a ring). Our in silico framework marks a major improvement in developing spatiotemporal signaling models with quantitatively estimated model parameters using imaging data. Natural Killer cells are lymphocytes of our innate immunity and provide important resistance against viral infections and tumors. NK cells scan the local environment with diverse activating and inhibitory NK cell receptors (NKRs) and remain tolerized or lyse target cells expressing cognate ligands to NKRs. NKRs have been found to form micron sized clusters (or microclusters) as they interact with cognate ligands, and mechanisms regarding how the formation and movements of these microclusters influence NK cell signaling and activation, specifically related to activating NKRs, are often unclear. To this end, we develop a predictive spatially resolved early-time NK cell signaling model to study the interplay between membrane-proximal biochemical signaling events and the kinetics of microclusters of activating NKG2D and inhibitory KIR2DL2 receptors. We used published TIRF imaging data to validate our in silico models and estimate model parameters. Predictions from multiple in silico models are tested against a variety of data obtained from published imaging experiments and immunoassays. Our analysis suggests co-clustering of NKG2D and the guanosine nucleotide exchange factor Vav1 in the microclusters plays a major role in enhancing downstream activating signals. The developed framework can be extended to describe spatiotemporal signaling for other activating NKRs including CD16.
Collapse
Affiliation(s)
- Rajdeep Kaur Grewal
- Battelle Center for Mathematical Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Jayajit Das
- Battelle Center for Mathematical Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, Ohio, United States of America
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
14
|
Vulpis E, Loconte L, Peri A, Molfetta R, Caracciolo G, Masuelli L, Tomaipitinca L, Peruzzi G, Petillo S, Petrucci MT, Fazio F, Simonelli L, Fionda C, Soriani A, Cerboni C, Cippitelli M, Paolini R, Bernardini G, Palmieri G, Santoni A, Zingoni A. Impact on NK cell functions of acute versus chronic exposure to extracellular vesicle-associated MICA: Dual role in cancer immunosurveillance. J Extracell Vesicles 2022; 11:e12176. [PMID: 34973063 PMCID: PMC8720178 DOI: 10.1002/jev2.12176] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 11/02/2021] [Accepted: 11/28/2021] [Indexed: 12/21/2022] Open
Abstract
Natural killer (NK) cells are innate cytotoxic lymphocytes that play a key role in cancer immunosurveillance thanks to their ability to recognize and kill cancer cells. NKG2D is an activating receptor that binds to MIC and ULBP molecules typically induced on damaged, transformed or infected cells. The release of NKG2D ligands (NKG2DLs) in the extracellular milieu through protease-mediated cleavage or by extracellular vesicle (EV) secretion allows cancer cells to evade NKG2D-mediated immunosurveillance. In this work, we investigated the immunomodulatory properties of the NKG2D ligand MICA*008 associated to distinct populations of EVs (i.e., small extracellular vesicles [sEVs] and medium size extracellular vesicles [mEVs]). By using as model a human MICA*008-transfected multiple myeloma (MM) cell line, we found that this ligand is present on both vesicle populations. Interestingly, our findings reveal that NKG2D is specifically involved in the uptake of vesicles expressing its cognate ligand. We provide evidence that MICA*008-expressing sEVs and mEVs are able on one hand to activate NK cells but, following prolonged stimulation induce a sustained NKG2D downmodulation leading to impaired NKG2D-mediated functions. Moreover, our findings show that MICA*008 can be transferred by vesicles to NK cells causing fratricide. Focusing on MM as a clinically and biologically relevant model of tumour-NK cell interactions, we found enrichment of EVs expressing MICA in the bone marrow of a cohort of patients. All together our results suggest that the accumulation of NKG2D ligands associated to vesicles in the tumour microenvironment could favour the suppression of NK cell activity either by NKG2D down-modulation or by fratricide of NK cell dressed with EV-derived NKG2D ligands.
Collapse
Affiliation(s)
- Elisabetta Vulpis
- Laboratory affiliated to Istituto Pasteur Italia‐Fondazione Cenci BolognettiDepartment of Molecular MedicineSapienza’ University of RomeRomeItaly
| | - Luisa Loconte
- Laboratory affiliated to Istituto Pasteur Italia‐Fondazione Cenci BolognettiDepartment of Molecular MedicineSapienza’ University of RomeRomeItaly
| | - Agnese Peri
- Laboratory affiliated to Istituto Pasteur Italia‐Fondazione Cenci BolognettiDepartment of Molecular MedicineSapienza’ University of RomeRomeItaly
| | - Rosa Molfetta
- Laboratory affiliated to Istituto Pasteur Italia‐Fondazione Cenci BolognettiDepartment of Molecular MedicineSapienza’ University of RomeRomeItaly
| | - Giulio Caracciolo
- Department of Molecular MedicineSapienza University of RomeRomeItaly
| | - Laura Masuelli
- Department of Experimental MedicineSapienza University of RomeRomeItaly
| | - Luana Tomaipitinca
- Laboratory affiliated to Istituto Pasteur Italia‐Fondazione Cenci BolognettiDepartment of Molecular MedicineSapienza’ University of RomeRomeItaly
| | - Giovanna Peruzzi
- Center for Life Nano & Neuro ScienceIstituto Italiano di TecnologiaRomeItaly
| | - Sara Petillo
- Laboratory affiliated to Istituto Pasteur Italia‐Fondazione Cenci BolognettiDepartment of Molecular MedicineSapienza’ University of RomeRomeItaly
| | - Maria Teresa Petrucci
- Department of Cellular Biotechnologies and HematologySapienza University of RomeItaly
| | - Francesca Fazio
- Department of Cellular Biotechnologies and HematologySapienza University of RomeItaly
| | - Lucilla Simonelli
- Department of Experimental MedicineSapienza University of RomeRomeItaly
| | - Cinzia Fionda
- Laboratory affiliated to Istituto Pasteur Italia‐Fondazione Cenci BolognettiDepartment of Molecular MedicineSapienza’ University of RomeRomeItaly
| | - Alessandra Soriani
- Laboratory affiliated to Istituto Pasteur Italia‐Fondazione Cenci BolognettiDepartment of Molecular MedicineSapienza’ University of RomeRomeItaly
| | - Cristina Cerboni
- Laboratory affiliated to Istituto Pasteur Italia‐Fondazione Cenci BolognettiDepartment of Molecular MedicineSapienza’ University of RomeRomeItaly
| | - Marco Cippitelli
- Laboratory affiliated to Istituto Pasteur Italia‐Fondazione Cenci BolognettiDepartment of Molecular MedicineSapienza’ University of RomeRomeItaly
| | - Rossella Paolini
- Laboratory affiliated to Istituto Pasteur Italia‐Fondazione Cenci BolognettiDepartment of Molecular MedicineSapienza’ University of RomeRomeItaly
| | - Giovanni Bernardini
- Laboratory affiliated to Istituto Pasteur Italia‐Fondazione Cenci BolognettiDepartment of Molecular MedicineSapienza’ University of RomeRomeItaly
| | | | - Angela Santoni
- Laboratory affiliated to Istituto Pasteur Italia‐Fondazione Cenci BolognettiDepartment of Molecular MedicineSapienza’ University of RomeRomeItaly
- Neuromed I.R.C.C.S.‐Istituto Neurologico MediterraneoPozzilliItaly
| | - Alessandra Zingoni
- Laboratory affiliated to Istituto Pasteur Italia‐Fondazione Cenci BolognettiDepartment of Molecular MedicineSapienza’ University of RomeRomeItaly
| |
Collapse
|
15
|
Stem cells-derived natural killer cells for cancer immunotherapy: current protocols, feasibility, and benefits of ex vivo generated natural killer cells in treatment of advanced solid tumors. Cancer Immunol Immunother 2021; 70:3369-3395. [PMID: 34218295 DOI: 10.1007/s00262-021-02975-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 05/26/2021] [Indexed: 12/13/2022]
Abstract
Nowadays, natural killer (NK) cell-based immunotherapy provides a practical therapeutic strategy for patients with advanced solid tumors (STs). This approach is adaptively conducted by the autologous and identical NK cells after in vitro expansion and overnight activation. However, the NK cell-based cancer immunotherapy has been faced with some fundamental and technical limitations. Moreover, the desirable outcomes of the NK cell therapy may not be achieved due to the complex tumor microenvironment by inhibition of intra-tumoral polarization and cytotoxicity of implanted NK cells. Currently, stem cells (SCs) technology provides a powerful opportunity to generate more effective and universal sources of the NK cells. Till now, several strategies have been developed to differentiate types of the pluripotent and adult SCs into the mature NK cells, with both feeder layer-dependent and/or feeder laye-free strategies. Higher cytokine production and intra-tumoral polarization capabilities as well as stronger anti-tumor properties are the main features of these SCs-derived NK cells. The present review article focuses on the principal barriers through the conventional NK cell immunotherapies for patients with advanced STs. It also provides a comprehensive resource of protocols regarding the generation of SCs-derived NK cells in an ex vivo condition.
Collapse
|
16
|
Qi R, Zhao Y, Guo Q, Mi X, Cheng M, Hou W, Zheng H, Hua B. Exosomes in the lung cancer microenvironment: biological functions and potential use as clinical biomarkers. Cancer Cell Int 2021; 21:333. [PMID: 34193120 PMCID: PMC8247080 DOI: 10.1186/s12935-021-01990-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 05/22/2021] [Indexed: 12/14/2022] Open
Abstract
Lung cancer is one of the most common malignant tumours worldwide. however, emerging immunotherapy and targeted therapies continue to show limited efficacy. In the search for new targets for lung cancer treatment, exosomes have become a major focus of research. Exosomes play an important role in the tumour microenvironment (TME) of lung cancer and affect invasion, metastasis, and treatment responses. This review describes our current understanding of the release of exosomes derived from different cells in the TME, the effects of exosomes on T/Tregs, myeloid-derived suppressor cells, tumour-associated macrophages, dendritic cells, and natural killer cells, and the role of exosomes in the endothelial–mesenchymal transition, angiogenesis, and cancer-associated fibroblasts. In particular, this review focuses on the potential clinical applications of exosomes in the lung cancer microenvironment and their prognostic and diagnostic value.
Collapse
Affiliation(s)
- Runzhi Qi
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Xicheng District, Beijing, China
| | - Yuwei Zhao
- Beijing University of Chinese Medicine, Chaoyang District, Beijing, China
| | - Qiujun Guo
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Xicheng District, Beijing, China
| | - Xue Mi
- Shaanxi University of Chinese Medicine, Qindu District, Xianyang, Shaanxi, China
| | - Mengqi Cheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Xicheng District, Beijing, China
| | - Wei Hou
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Xicheng District, Beijing, China
| | - Honggang Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Xicheng District, Beijing, China.
| | - Baojin Hua
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Xicheng District, Beijing, China.
| |
Collapse
|
17
|
CD8 + T Lymphocyte Coexpression Genes Correlate with Immune Microenvironment and Overall Survival in Breast Cancer. JOURNAL OF ONCOLOGY 2021; 2021:5533923. [PMID: 33854546 PMCID: PMC8019641 DOI: 10.1155/2021/5533923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/05/2021] [Accepted: 03/13/2021] [Indexed: 12/03/2022]
Abstract
Purpose To identify CD8+ T lymphocyte-related coexpressed genes that increase CD8+ T lymphocyte proportions in breast cancer and to elucidate the underlying mechanisms among relevant genes in the tumor microenvironment. Method We obtained breast cancer expression matrix data and patient phenotype following information from TCGA–BRCA FPKM. Tumor purity, immune score, stromal score, and estimate score were calculated using the estimate package in R. The CD8+ T lymphocyte proportions in each breast carcinoma sample were estimated using the CIBERSORT algorithm. The samples with p < 0.05 were considered to be significant and were taken into the weighted gene coexpression network analysis. Based on the CD8+ T lymphocyte proportion and tumor purity, we generated CD8+ T lymphocyte coexpression networks and selected the most CD8+ T lymphocyte-related module as our interested coexpression modules. We constructed a CD8+ T cell model based on the least absolute shrinkage and selection operator method (LASSO) regression model and robust model and evaluate the prediction ability in different subgroups. Results A breast carcinoma CD8+ T lymphocyte proportion coexpression yellow module was determined. The coexpression genes in the yellow module were determined to increase the CD8+ T lymphocyte proportion levels in breast cancer patients. The yellow module was significantly enriched in the antigen presentation process, cellular response to interferon-gamma, and leukocyte proliferation. Subsequently, we generated CD8+ T cell-related genes lasso regression risk model and robust model, and eight genes were taken into the risk model. The risk score showed significant prognostic ability in various subgroups. Expression levels of proteins, encoded by CD74, were lower in the breast carcinoma samples than in normal tissue, suggesting expression differences at both the mRNA and the protein levels. Conclusion These eight CD8+ T lymphocyte proportion coexpression genes increase CD8+ T lymphocyte in breast cancer by an antigen presentation process. The mechanism might suggest new pathways to improve outcomes in patients who do not benefit from immune therapy.
Collapse
|
18
|
Aissa AF, Islam ABMMK, Ariss MM, Go CC, Rader AE, Conrardy RD, Gajda AM, Rubio-Perez C, Valyi-Nagy K, Pasquinelli M, Feldman LE, Green SJ, Lopez-Bigas N, Frolov MV, Benevolenskaya EV. Single-cell transcriptional changes associated with drug tolerance and response to combination therapies in cancer. Nat Commun 2021; 12:1628. [PMID: 33712615 PMCID: PMC7955121 DOI: 10.1038/s41467-021-21884-z] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/22/2021] [Indexed: 01/31/2023] Open
Abstract
Tyrosine kinase inhibitors were found to be clinically effective for treatment of patients with certain subsets of cancers carrying somatic mutations in receptor tyrosine kinases. However, the duration of clinical response is often limited, and patients ultimately develop drug resistance. Here, we use single-cell RNA sequencing to demonstrate the existence of multiple cancer cell subpopulations within cell lines, xenograft tumors and patient tumors. These subpopulations exhibit epigenetic changes and differential therapeutic sensitivity. Recurrently overrepresented ontologies in genes that are differentially expressed between drug tolerant cell populations and drug sensitive cells include epithelial-to-mesenchymal transition, epithelium development, vesicle mediated transport, drug metabolism and cholesterol homeostasis. We show analysis of identified markers using the LINCS database to predict and functionally validate small molecules that target selected drug tolerant cell populations. In combination with EGFR inhibitors, crizotinib inhibits the emergence of a defined subset of EGFR inhibitor-tolerant clones. In this study, we describe the spectrum of changes associated with drug tolerance and inhibition of specific tolerant cell subpopulations with combination agents.
Collapse
Affiliation(s)
- Alexandre F Aissa
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Abul B M M K Islam
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Majd M Ariss
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Cammille C Go
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Alexandra E Rader
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Ryan D Conrardy
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Alexa M Gajda
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Carlota Rubio-Perez
- Biomedical Genomics Lab, Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Klara Valyi-Nagy
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Mary Pasquinelli
- Department of Medicine, Section of Hematology/Oncology, University of Illinois at Chicago, Chicago, IL, USA
| | - Lawrence E Feldman
- Department of Medicine, Section of Hematology/Oncology, University of Illinois at Chicago, Chicago, IL, USA
| | - Stefan J Green
- Genome Research Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Nuria Lopez-Bigas
- Biomedical Genomics Lab, Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Maxim V Frolov
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | | |
Collapse
|
19
|
Zhou X, Sun SC. Targeting ubiquitin signaling for cancer immunotherapy. Signal Transduct Target Ther 2021; 6:16. [PMID: 33436547 PMCID: PMC7804490 DOI: 10.1038/s41392-020-00421-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/29/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer immunotherapy has become an attractive approach of cancer treatment with tremendous success in treating various advanced malignancies. The development and clinical application of immune checkpoint inhibitors represent one of the most extraordinary accomplishments in cancer immunotherapy. In addition, considerable progress is being made in understanding the mechanism of antitumor immunity and characterizing novel targets for developing additional therapeutic approaches. One active area of investigation is protein ubiquitination, a post-translational mechanism of protein modification that regulates the function of diverse immune cells in antitumor immunity. Accumulating studies suggest that E3 ubiquitin ligases and deubiquitinases form a family of potential targets to be exploited for enhancing antitumor immunity in cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaofei Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA.
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
20
|
Maurer S, Ferrari de Andrade L. NK Cell Interaction With Platelets and Myeloid Cells in the Tumor Milieu. Front Immunol 2020; 11:608849. [PMID: 33424862 PMCID: PMC7785787 DOI: 10.3389/fimmu.2020.608849] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/23/2020] [Indexed: 01/27/2023] Open
Abstract
Natural killer (NK) cells recognize and kill tumor cells via germ-line encoded receptors and polarized degranulation of cytotoxic molecules, respectively. As such, NK cells help to inhibit the development of cancers. The activating receptor NKG2D induces NK cell-mediated killing of metastasizing tumor cells by recognition of the stress-induced ligands MICA, MICB, and ULBP1-6. However, platelets enable escape from this immune surveillance mechanism by obstructing the interactions between NK cells and tumor cells or by cleaving the stress-induced ligands. It is also being increasingly appreciated that NK cells play additional roles in cancer immunity, including chemokine-mediated recruitment of antigen presenting cells in the tumor microenvironment that is followed by generation of adaptive immunity. However, the NK cell interplays with dendritic cells, and macrophages are extremely complex and involve molecular interactions via NKG2D and cytokine receptors. Specifically, NKG2D-mediated chronic interaction between NK cells and tumor-infiltrating macrophages causes immune suppression by differentiating NK cells toward a dysfunctional state. Here we discuss the underlying mechanisms of NK cell control by platelets and myeloid cells with focus on NKG2D and its ligands, and provide a timely perspective on how to harness these pathways with novel immunotherapeutic approaches.
Collapse
Affiliation(s)
- Stefanie Maurer
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Lucas Ferrari de Andrade
- Precision Immunology Institute, Department of Oncological Sciences, and The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
21
|
Xing S, Ferrari de Andrade L. NKG2D and MICA/B shedding: a 'tag game' between NK cells and malignant cells. Clin Transl Immunology 2020; 9:e1230. [PMID: 33363734 PMCID: PMC7754731 DOI: 10.1002/cti2.1230] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/02/2020] [Accepted: 12/05/2020] [Indexed: 12/20/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes with cytotoxic functions and recognise target cells with the NK group 2D (NKG2D) receptor. Tumor cells are marked for NK‐cell‐mediated destruction upon expression of MICA and MICB (MICA/B), which are NKG2D ligands upregulated by many human cancers in response to cellular stress pathways associated with malignant transformation such as DNA damage and accumulation of misfolded proteins. However, MICA/B proteins are downregulated by tumor cells via intriguing molecular mechanisms, such as post‐translational modifications in which the external domains of MICA/B are proteolytically cleaved by surface proteases and shed into the extracellular space. MICA/B shedding by cancer cells causes effective escape from NKG2D recognition and allows the development of cancers. Patients frequently have increased concentrations of soluble MICA/B molecules shed in the blood plasmas and sera, thus indicating that MICA/B shedding is a therapeutic target in immune‐oncology. Here, we review the clinical significance of MICA/B shedding in cancer as well as novel immunotherapeutic approaches that aim to restore NKG2D‐mediated surveillance. We also briefly discuss potential roles of MICA/B shedding beyond oncology, such as in viral infections and immune tolerance. This review will help to inform the future developments of NKG2D‐based immunotherapies.
Collapse
Affiliation(s)
| | - Lucas Ferrari de Andrade
- Precision Immunology Institute New York NY USA.,Department of Oncological Sciences New York NY USA.,The Tisch Cancer Institute of the Icahn School of Medicine at Mount Sinai New York NY USA
| |
Collapse
|
22
|
Mordechay L, Le Saux G, Edri A, Hadad U, Porgador A, Schvartzman M. Mechanical Regulation of the Cytotoxic Activity of Natural Killer Cells. ACS Biomater Sci Eng 2020; 7:122-132. [DOI: 10.1021/acsbiomaterials.0c01121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Lital Mordechay
- Department of Materials Engineering, Ben-Gurion University of the Negev, 84105 Beer Sheva, Israel
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, 84105 Beer Sheva, Israel
| | - Guillaume Le Saux
- Department of Materials Engineering, Ben-Gurion University of the Negev, 84105 Beer Sheva, Israel
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, 84105 Beer Sheva, Israel
| | - Avishay Edri
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105 Beer Sheva, Israel
| | - Uzi Hadad
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, 84105 Beer Sheva, Israel
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105 Beer Sheva, Israel
| | - Mark Schvartzman
- Department of Materials Engineering, Ben-Gurion University of the Negev, 84105 Beer Sheva, Israel
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, 84105 Beer Sheva, Israel
| |
Collapse
|
23
|
Cantoni C, Wurzer H, Thomas C, Vitale M. Escape of tumor cells from the NK cell cytotoxic activity. J Leukoc Biol 2020; 108:1339-1360. [PMID: 32930468 DOI: 10.1002/jlb.2mr0820-652r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
In recent years, NK cells, initially identified as potent cytotoxic effector cells, have revealed an unexpected complexity, both at phenotypic and functional levels. The discovery of different NK cell subsets, characterized by distinct gene expression and phenotypes, was combined with the characterization of the diverse functions NK cells can exert, not only as circulating cells, but also as cells localized or recruited in lymphoid organs and in multiple tissues. Besides the elimination of tumor and virus-infected cells, these functions include the production of cytokines and chemokines, the regulation of innate and adaptive immune cells, the influence on tissue homeostasis. In addition, NK cells display a remarkable functional plasticity, being able to adapt to the environment and to develop a kind of memory. Nevertheless, the powerful cytotoxic activity of NK cells remains one of their most relevant properties, particularly in the antitumor response. In this review, the process of tumor cell recognition and killing mediated by NK cells, starting from the generation of cytolytic granules and recognition of target cell, to the establishment of the NK cell immunological synapse, the release of cytotoxic molecules, and consequent tumor cell death is described. Next, the review focuses on the heterogeneous mechanisms, either intrinsic to tumors or induced by the tumor microenvironment, by which cancer cells can escape the NK cell-mediated attack.
Collapse
Affiliation(s)
- Claudia Cantoni
- Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy.,Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Hannah Wurzer
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Clément Thomas
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Massimo Vitale
- UO Immunologia, IRCCS Ospedale Policlinico San Martino Genova, Genoa, Italy
| |
Collapse
|
24
|
Obajdin J, Davies DM, Maher J. Engineering of chimeric natural killer cell receptors to develop precision adoptive immunotherapies for cancer. Clin Exp Immunol 2020; 202:11-27. [PMID: 32544282 PMCID: PMC7488126 DOI: 10.1111/cei.13478] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/04/2020] [Accepted: 06/07/2020] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells are innate immune effectors which play a crucial role in recognizing and eliminating virally infected and cancerous cells. They effectively distinguish between healthy and distressed self through the integration of signals delivered by germline‐encoded activating and inhibitory cell surface receptors. The frequent up‐regulation of stress markers on genetically unstable cancer cells has prompted the development of novel immunotherapies that exploit such innate receptors. One prominent example entails the development of chimeric antigen receptors (CAR) that detect cell surface ligands bound by NK receptors, coupling this engagement to the delivery of tailored immune activating signals. Here, we review strategies to engineer CARs in which specificity is conferred by natural killer group 2D (NKG2D) or other NK receptor types. Multiple preclinical studies have demonstrated the remarkable ability of chimeric NK receptor‐targeted T cells and NK cells to effectively and specifically eliminate cancer cells and to reject established tumour burdens. Importantly, such systems act not only acutely but, in some cases, they also incite immunological memory. Moreover, CARs targeted with the NKG2D ligand binding domain have also been shown to disrupt the tumour microenvironment, through the targeting of suppressive T regulatory cells, myeloid‐derived suppressor cells and tumour vasculature. Collectively, these findings have led to the initiation of early‐phase clinical trials evaluating both autologous and allogeneic NKG2D‐targeted CAR T cells in the haematological and solid tumour settings.
Collapse
Affiliation(s)
- J Obajdin
- School of Cancer and Pharmaceutical Sciences, CAR Mechanics Laboratory, Guy's Cancer Centre, King's College London, London, UK
| | - D M Davies
- School of Cancer and Pharmaceutical Sciences, CAR Mechanics Laboratory, Guy's Cancer Centre, King's College London, London, UK
| | - J Maher
- School of Cancer and Pharmaceutical Sciences, CAR Mechanics Laboratory, Guy's Cancer Centre, King's College London, London, UK.,Department of Clinical Immunology and Allergy, King's College Hospital NHS Foundation Trust, London, UK.,Department of Immunology, Eastbourne Hospital, Eastbourne, UK.,Leucid Bio Ltd, Guy's Hospital, London, UK
| |
Collapse
|
25
|
Natural Killer Cell Responses in Hepatocellular Carcinoma: Implications for Novel Immunotherapeutic Approaches. Cancers (Basel) 2020; 12:cancers12040926. [PMID: 32283827 PMCID: PMC7226319 DOI: 10.3390/cancers12040926] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) still represents a significant complication of chronic liver disease, particularly when cirrhosis ensues. Current treatment options include surgery, loco-regional procedures and chemotherapy, according to specific clinical practice guidelines. Immunotherapy with check-point inhibitors, aimed at rescuing T-cells from exhaustion, has been applied as second-line therapy with limited and variable success. Natural killer (NK) cells are an essential component of innate immunity against cancer and changes in phenotype and function have been described in patients with HCC, who also show perturbations of NK activating receptor/ligand axes. Here we discuss the current status of NK cell treatment of HCC on the basis of existing evidence and ongoing clinical trials on adoptive transfer of autologous or allogeneic NK cells ex vivo or after activation with cytokines such as IL-15 and use of antibodies to target cell-expressed molecules to promote antibody-dependent cellular cytotoxicity (ADCC). To this end, bi-, tri- and tetra-specific killer cell engagers are being devised to improve NK cell recognition of tumor cells, circumventing tumor immune escape and efficiently targeting NK cells to tumors. Moreover, the exciting technique of chimeric antigen receptor (CAR)-engineered NK cells offers unique opportunities to create CAR-NK with multiple specificities along the experience gained with CAR-T cells with potentially less adverse effects.
Collapse
|
26
|
Molfetta R, Zingoni A, Santoni A, Paolini R. Post-translational Mechanisms Regulating NK Cell Activating Receptors and Their Ligands in Cancer: Potential Targets for Therapeutic Intervention. Front Immunol 2019; 10:2557. [PMID: 31736972 PMCID: PMC6836727 DOI: 10.3389/fimmu.2019.02557] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
Efficient clearance of transformed cells by Natural Killer (NK) cells is regulated by several activating receptors, including NKG2D, NCRs, and DNAM-1. Expression of these receptors as well as their specific “induced self” ligands is finely regulated during malignant transformation through the integration of different mechanisms acting on transcriptional, post-transcriptional, and post-translational levels. Among post-translational mechanisms, the release of activating ligands in the extracellular milieu through protease-mediated cleavage or by extracellular vesicle secretion represents some relevant cancer immune escape processes. Moreover, covalent modifications including ubiquitination and SUMOylation also contribute to negative regulation of NKG2D and DNAM-1 ligand surface expression resulting either in ligand intracellular retention and/or ligand degradation. All these mechanisms greatly impact on NK cell mediated recognition and killing of cancer cells and may be targeted to potentiate NK cell surveillance against tumors. Our mini review summarizes the main post-translational mechanisms regulating the expression of activating receptors and their ligands with particular emphasis on the contribution of ligand shedding and of ubiquitin and ubiquitin-like modifications in reducing target cell susceptibility to NK cell-mediated killing. Strategies aimed at inhibiting shedding of activating ligands and their modifications in order to preserve ligand expression on cancer cells will be also discussed.
Collapse
Affiliation(s)
- Rosa Molfetta
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Alessandra Zingoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Rossella Paolini
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
27
|
Abstract
The C-type lectins are a superfamily of proteins that recognize a broad repertoire of ligands and that regulate a diverse range of physiological functions. Most research attention has focused on the ability of C-type lectins to function in innate and adaptive antimicrobial immune responses, but these proteins are increasingly being recognized to have a major role in autoimmune diseases and to contribute to many other aspects of multicellular existence. Defects in these molecules lead to developmental and physiological abnormalities, as well as altered susceptibility to infectious and non-infectious diseases. In this Review, we present an overview of the roles of C-type lectins in immunity and homeostasis, with an emphasis on the most exciting recent discoveries.
Collapse
|
28
|
Sabry M, Zubiak A, Hood SP, Simmonds P, Arellano-Ballestero H, Cournoyer E, Mashar M, Pockley AG, Lowdell MW. Tumor- and cytokine-primed human natural killer cells exhibit distinct phenotypic and transcriptional signatures. PLoS One 2019; 14:e0218674. [PMID: 31242243 PMCID: PMC6594622 DOI: 10.1371/journal.pone.0218674] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/06/2019] [Indexed: 11/19/2022] Open
Abstract
An emerging cellular immunotherapy for cancer is based on the cytolytic activity of natural killer (NK) cells against a wide range of tumors. Although in vitro activation, or “priming,” of NK cells by exposure to pro-inflammatory cytokines, such as interleukin (IL)-2, has been extensively studied, the biological consequences of NK cell activation in response to target cell interactions have not been thoroughly characterized. We investigated the consequences of co-incubation with K562, CTV-1, Daudi RPMI-8226, and MCF-7 tumor cell lines on the phenotype, cytokine expression profile, and transcriptome of human NK cells. We observe the downregulation of several activation receptors including CD16, CD62L, C-X-C chemokine receptor (CXCR)-4, natural killer group 2 member D (NKG2D), DNAX accessory molecule (DNAM)-1, and NKp46 following tumor-priming. Although this NK cell phenotype is typically associated with NK cell dysfunction in cancer, we reveal the upregulation of NK cell activation markers, such as CD69 and CD25; secretion of pro-inflammatory cytokines, including macrophage inflammatory proteins (MIP-1) α /β and IL-1β/6/8; and overexpression of numerous genes associated with enhanced NK cell cytotoxicity and immunomodulatory functions, such as FAS, TNFSF10, MAPK11, TNF, and IFNG. Thus, it appears that tumor-mediated ligation of receptors on NK cells may induce a primed state which may or may not lead to full triggering of the lytic or cytokine secreting machinery. Key signaling molecules exclusively affected by tumor-priming include MAP2K3, MARCKSL1, STAT5A, and TNFAIP3, which are specifically associated with NK cell cytotoxicity against tumor targets. Collectively, these findings help define the phenotypic and transcriptional signature of NK cells following their encounters with tumor cells, independent of cytokine stimulation, and provide insight into tumor-specific NK cell responses to inform the transition toward harnessing the therapeutic potential of NK cells in cancer.
Collapse
Affiliation(s)
- May Sabry
- Department of Haematology, University College London, London, United Kingdom
| | - Agnieszka Zubiak
- Department of Haematology, University College London, London, United Kingdom
| | - Simon P. Hood
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Poppy Simmonds
- Department of Haematology, University College London, London, United Kingdom
| | | | - Eily Cournoyer
- Department of Haematology, University College London, London, United Kingdom
| | - Meghavi Mashar
- Department of Haematology, University College London, London, United Kingdom
| | - A. Graham Pockley
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Mark W. Lowdell
- Department of Haematology, University College London, London, United Kingdom
- InmuneBio Inc., La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
29
|
Campos-Silva C, Kramer MK, Valés-Gómez M. NKG2D-ligands: Putting everything under the same umbrella can be misleading. HLA 2019. [PMID: 29521021 DOI: 10.1111/tan.13246] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
NKG2D is a key receptor for the activation of immune effector cells, mainly Natural Killer cells and T lymphocytes, in infection, cancer and autoimmune diseases. Since the detection of ligands for NKG2D in sera of cancer patients is, in many human models, indicative of prognosis, a large number of studies have been undertaken to improve understanding of the biology regulating this receptor and its ligands, with the aim of translating this knowledge into clinical practice. Although it is becoming clear that the NKG2D system can be used as a tool for diagnosis and manipulated for therapy, some questions remain open due to the complexity associated with the existence of a large number of ligands, each one of them displaying distinct biological properties. In this review, we have highlighted some key aspects of this system that differ between humans and mice, including the properties of NKG2D, as well as the genetic and biochemical complexity of NKG2D-ligands. All of these features affect the characteristics of the immune response exerted by NKG2D-expressing cells and are likely to be important factors in the clearance of a tumour or the development of autoimmunity. Implementation of more global analyses, including information on genotype, transcription and protein properties (cellular vs released to the blood stream) of NKG2D-ligands expressed in patients will be necessary to fully understand the links between this system and disease progression.
Collapse
Affiliation(s)
- C Campos-Silva
- Department of Immunology and Oncology, National Centre for Biotechnology, CNB-CSIC, Madrid, Spain
| | - M K Kramer
- Department of Immunology and Oncology, National Centre for Biotechnology, CNB-CSIC, Madrid, Spain
| | - M Valés-Gómez
- Department of Immunology and Oncology, National Centre for Biotechnology, CNB-CSIC, Madrid, Spain
| |
Collapse
|
30
|
Natural killer cells involved in tumour immune escape of hepatocellular carcinomar. Int Immunopharmacol 2019; 73:10-16. [PMID: 31078921 DOI: 10.1016/j.intimp.2019.04.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/21/2019] [Accepted: 04/25/2019] [Indexed: 02/08/2023]
Abstract
Natural killer cells are the first line of host immune surveillance and play major roles in the defence against infection and tumours. Hepatic NK cells exhibit unique phenotypic and functional characteristics compared to circulating and spleen NK cells, such as higher levels of cytolytic activity and cytotoxicity mediators against tumour cells. However, the activities of NK cells may be reversed during tumour progression. Recent studies demonstrated that hepatic NK cells were exhausted in hepatocellular carcinoma (HCC) and exhibited impaired cytolytic activity and decreased production of effector cytokines. The present review discusses current knowledge on the role of exhausted NK cells in promoting HCC development and the mechanisms contributing to tumour immune escape, including an imbalance of activating and inhibitory receptors on NK cells, abnormal receptor-ligand interaction, and cross-talk with immune cells and other stromal cells in the tumour environment. We provide a fundamental basis for further study of innate immunity in tumour progression and serve the purpose of exploring new HCC treatment strategies.
Collapse
|
31
|
Molfetta R, Milito ND, Zitti B, Lecce M, Fionda C, Cippitelli M, Santoni A, Paolini R. The Ubiquitin-proteasome pathway regulates Nectin2/CD112 expression and impairs NK cell recognition and killing. Eur J Immunol 2019; 49:873-883. [PMID: 30888046 DOI: 10.1002/eji.201847848] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 02/04/2019] [Accepted: 03/14/2019] [Indexed: 12/19/2022]
Abstract
Nectin2 is a member of immunoglobulin-like cell adhesion molecules and plays a prominent role in the establishment of adherens and tight junctions. It is also upregulated on the surface of tumor and virus-infected cells where it functions as a ligand for the activating receptor CD226, thus contributing to cytotoxic lymphocyte-mediated recognition and killing of damaged cells. Little is currently known about the regulation of Nectin2 expression and, in particular, whether posttranscriptional and posttranslational mechanisms are involved. Here, we analyzed Nectin2 expression on a panel of human tumor cell lines and primary cultures and we found that Nectin2 is mainly expressed in cytoplasmic pools. Moreover, we demonstrated that ubiquitination of Nectin2 promotes its degradation and is responsible for protein intracellular retention. Indeed, inhibition of the ubiquitin pathway results in increased Nectin2 surface expression and enhances tumor cell susceptibility to NK cell cytotoxicity. Our results demonstrate a previously unknown mechanism of Nectin2 regulation revealing that the ubiquitin pathway represents a potential target of intervention in order to increase susceptibility to NK cell-mediated lysis.
Collapse
Affiliation(s)
- Rosa Molfetta
- Department of Molecular Medicine, "Sapienza" University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Nadia D Milito
- Department of Molecular Medicine, "Sapienza" University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Beatrice Zitti
- Department of Molecular Medicine, "Sapienza" University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Mario Lecce
- Department of Molecular Medicine, "Sapienza" University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Cinzia Fionda
- Department of Molecular Medicine, "Sapienza" University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Marco Cippitelli
- Department of Molecular Medicine, "Sapienza" University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, "Sapienza" University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy.,IRCCS, Neuromed, Pozzilli, Italy
| | - Rossella Paolini
- Department of Molecular Medicine, "Sapienza" University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
32
|
Cancer Exosomes as Conveyors of Stress-Induced Molecules: New Players in the Modulation of NK Cell Response. Int J Mol Sci 2019; 20:ijms20030611. [PMID: 30708970 PMCID: PMC6387166 DOI: 10.3390/ijms20030611] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/22/2019] [Accepted: 01/30/2019] [Indexed: 12/19/2022] Open
Abstract
Natural killer (NK) cells are innate lymphoid cells that play a pivotal role in tumor surveillance. Exosomes are nanovesicles released into the extracellular environment via the endosomal vesicle pathway and represent an important mode of intercellular communication. The ability of anticancer chemotherapy to enhance the immunogenic potential of malignant cells mainly relies on the establishment of the immunogenic cell death (ICD) and the release of damage-associated molecular patterns (DAMPs). Moreover, the activation of the DNA damage response (DDR) and the induction of senescence represent two crucial modalities aimed at promoting the clearance of drug-treated tumor cells by NK cells. Emerging evidence has shown that stress stimuli provoke an increased release of exosome secretion. Remarkably, tumor-derived exosomes (Tex) produced in response to stress carry distinct type of DAMPs that activate innate immune cell populations. Moreover, stress-induced ligands for the activating receptor NKG2D are transported by this class of nanovesicles. Here, we will discuss how Tex interact with NK cells and provide insight into their potential role in response to chemotherapy-induced stress stimuli. The capability of some "danger signals" carried by exosomes that indirectly affect the NK cell activity in the tumor microenvironment will be also addressed.
Collapse
|
33
|
Sheppard S, Ferry A, Guedes J, Guerra N. The Paradoxical Role of NKG2D in Cancer Immunity. Front Immunol 2018; 9:1808. [PMID: 30150983 PMCID: PMC6099450 DOI: 10.3389/fimmu.2018.01808] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
The activating receptor NKG2D and its ligands are recognized as a potent immune axis that controls tumor growth and microbial infections. With regards to cancer surveillance, various studies have demonstrated the antitumor function mediated by NKG2D on natural killer cells and on conventional and unconventional T cells. The use of NKG2D-deficient mice established the importance of NKG2D in delaying tumor development in transgenic mouse models of cancer. However, we recently demonstrated an unexpected, flip side to this coin, the ability for NKG2D to contribute to tumor growth in a model of inflammation-driven liver cancer. With a focus on the liver, here, we review current knowledge of NKG2D-mediated tumor surveillance and discuss evidence supporting a dual role for NKG2D in cancer immunity. We postulate that in certain advanced cancers, expression of ligands for NKG2D can drive cancer progression rather than rejection. We propose that the nature of the microenvironment within and surrounding tumors impacts the outcome of NKG2D activation. In a form of autoimmune attack, NKG2D promotes tissue damage, mostly in the inflamed tissue adjacent to the tumor, facilitating tumor progression while being ineffective at rejecting transformed cells in the tumor bed.
Collapse
Affiliation(s)
- Sam Sheppard
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Memorial Sloan Kettering Cancer Center, Zuckerman Research Center, New York, NY, United States
| | - Amir Ferry
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Joana Guedes
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Nadia Guerra
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
34
|
Srpan K, Ambrose A, Karampatzakis A, Saeed M, Cartwright ANR, Guldevall K, De Matos GDSC, Önfelt B, Davis DM. Shedding of CD16 disassembles the NK cell immune synapse and boosts serial engagement of target cells. J Cell Biol 2018; 217:3267-3283. [PMID: 29967280 PMCID: PMC6122987 DOI: 10.1083/jcb.201712085] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/18/2018] [Accepted: 06/18/2018] [Indexed: 01/22/2023] Open
Abstract
A long-standing unknown is how an immune synapse disassembles. In this study, Srpan et al. show that shedding of CD16 promotes the detachment of NK cells from target cells to aid serial engagement of multiple targets and to sustain NK cell viability. Natural Killer (NK) cells can engage multiple virally infected or tumor cells sequentially and deliver perforin for cytolytic killing of these targets. Using microscopy to visualize degranulation from individual NK cells, we found that repeated activation via the Fc receptor CD16 decreased the amount of perforin secreted. However, perforin secretion was restored upon subsequent activation via a different activating receptor, NKG2D. Repeated stimulation via NKG2D also decreased perforin secretion, but this was not rescued by stimulation via CD16. These different outcomes of sequential stimulation could be accounted for by shedding of CD16 being triggered by cellular activation. The use of pharmacological inhibitors and NK cells transfected to express a noncleavable form of CD16 revealed that CD16 shedding also increased NK cell motility and facilitated detachment of NK cells from target cells. Disassembly of the immune synapse caused by CD16 shedding aided NK cell survival and boosted serial engagement of target cells. Thus, counterintuitively, shedding of CD16 may positively impact immune responses.
Collapse
Affiliation(s)
- Katja Srpan
- The Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| | - Ashley Ambrose
- The Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| | - Alexandros Karampatzakis
- The Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| | - Mezida Saeed
- The Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| | - Adam N R Cartwright
- The Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| | - Karolin Guldevall
- Department of Applied Physics, Science for Life Laboratories, KTH Royal Institute of Technology, Solna, Sweden
| | | | - Björn Önfelt
- Department of Applied Physics, Science for Life Laboratories, KTH Royal Institute of Technology, Solna, Sweden.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Daniel M Davis
- The Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| |
Collapse
|
35
|
Zingoni A, Vulpis E, Cecere F, Amendola MG, Fuerst D, Saribekyan T, Achour A, Sandalova T, Nardone I, Peri A, Soriani A, Fionda C, Mariggiò E, Petrucci MT, Ricciardi MR, Mytilineos J, Cippitelli M, Cerboni C, Santoni A. MICA-129 Dimorphism and Soluble MICA Are Associated With the Progression of Multiple Myeloma. Front Immunol 2018; 9:926. [PMID: 29765374 PMCID: PMC5938351 DOI: 10.3389/fimmu.2018.00926] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/13/2018] [Indexed: 12/11/2022] Open
Abstract
Natural killer (NK) cells are immune innate effectors playing a pivotal role in the immunosurveillance of multiple myeloma (MM) since they are able to directly recognize and kill MM cells. In this regard, among activating receptors expressed by NK cells, NKG2D represents an important receptor for the recognition of MM cells, being its ligands expressed by tumor cells, and being able to trigger NK cell cytotoxicity. The MHC class I-related molecule A (MICA) is one of the NKG2D ligands; it is encoded by highly polymorphic genes and exists as membrane-bound and soluble isoforms. Soluble MICA (sMICA) is overexpressed in the serum of MM patients, and its levels correlate with tumor progression. Interestingly, a methionine (Met) to valine (Val) substitution at position 129 of the α2 heavy chain domain classifies the MICA alleles into strong (MICA-129Met) and weak (MICA-129Val) binders to NKG2D receptor. We addressed whether the genetic polymorphisms in the MICA-129 alleles could affect MICA release during MM progression. The frequencies of Val/Val, Val/Met, and Met/Met MICA-129 genotypes in a cohort of 137 MM patients were 36, 43, and 22%, respectively. Interestingly, patients characterized by a Val/Val genotype exhibited the highest levels of sMICA in the sera. In addition, analysis of the frequencies of MICA-129 genotypes among different MM disease states revealed that Val/Val patients had a significant higher frequency of relapse. Interestingly, NKG2D was downmodulated in NK cells derived from MICA-129Met/Met MM patients. Results obtained by structural modeling analysis suggested that the Met to Val dimorphism could affect the capacity of MICA to form an optimal template for NKG2D recognition. In conclusion, our findings indicate that the MICA-129Val/Val variant is associated with significantly higher levels of sMICA and the progression of MM, strongly suggesting that the usage of soluble MICA as prognostic marker has to be definitely combined with the patient MICA genotype.
Collapse
Affiliation(s)
- Alessandra Zingoni
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy.,Istituto Pasteur Italia-Cenci Bolognetti Fondazione, Rome, Italy
| | - Elisabetta Vulpis
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy.,Istituto Pasteur Italia-Cenci Bolognetti Fondazione, Rome, Italy
| | - Francesca Cecere
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Maria G Amendola
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy.,Istituto Pasteur Italia-Cenci Bolognetti Fondazione, Rome, Italy
| | - Daniel Fuerst
- German Red Cross Blood Donor Services, Baden-Wuerttemberg-Hessia, Ulm, Germany
| | - Taron Saribekyan
- German Red Cross Blood Donor Services, Baden-Wuerttemberg-Hessia, Ulm, Germany
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Tatyana Sandalova
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Ilaria Nardone
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy.,Istituto Pasteur Italia-Cenci Bolognetti Fondazione, Rome, Italy
| | - Agnese Peri
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy.,Istituto Pasteur Italia-Cenci Bolognetti Fondazione, Rome, Italy
| | - Alessandra Soriani
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy.,Istituto Pasteur Italia-Cenci Bolognetti Fondazione, Rome, Italy
| | - Cinzia Fionda
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy.,Istituto Pasteur Italia-Cenci Bolognetti Fondazione, Rome, Italy
| | - Elena Mariggiò
- Department of Cellular Biotechnologies and Hematology, "Sapienza" University of Rome, Rome, Italy
| | - Maria T Petrucci
- Department of Cellular Biotechnologies and Hematology, "Sapienza" University of Rome, Rome, Italy
| | - Maria R Ricciardi
- Department of Clinical and Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Joannis Mytilineos
- German Red Cross Blood Donor Services, Baden-Wuerttemberg-Hessia, Ulm, Germany
| | - Marco Cippitelli
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy.,Istituto Pasteur Italia-Cenci Bolognetti Fondazione, Rome, Italy
| | - Cristina Cerboni
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy.,Istituto Pasteur Italia-Cenci Bolognetti Fondazione, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy.,Istituto Pasteur Italia-Cenci Bolognetti Fondazione, Rome, Italy
| |
Collapse
|
36
|
Zingoni A, Molfetta R, Fionda C, Soriani A, Paolini R, Cippitelli M, Cerboni C, Santoni A. NKG2D and Its Ligands: "One for All, All for One". Front Immunol 2018; 9:476. [PMID: 29662484 PMCID: PMC5890157 DOI: 10.3389/fimmu.2018.00476] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/22/2018] [Indexed: 01/30/2023] Open
Abstract
The activating receptor NKG2D is peculiar in its capability to bind to numerous and highly diversified MHC class I-like self-molecules. These ligands are poorly expressed on normal cells but can be induced on damaged, transformed or infected cells, with the final NKG2D ligand expression resulting from multiple levels of regulation. Although redundant molecular mechanisms can converge in the regulation of all NKG2D ligands, different stimuli can induce specific cellular responses, leading to the expression of one or few ligands. A large body of evidence demonstrates that NK cell activation can be triggered by different NKG2D ligands, often expressed on the same cell, suggesting a functional redundancy of these molecules. However, since a number of evasion mechanisms can reduce membrane expression of these molecules both on virus-infected and tumor cells, the co-expression of different ligands and/or the presence of allelic forms of the same ligand guarantee NKG2D activation in various stressful conditions and cell contexts. Noteworthy, NKG2D ligands can differ in their ability to down-modulate NKG2D membrane expression in human NK cells supporting the idea that NKG2D transduces different signals upon binding various ligands. Moreover, whether proteolytically shed and exosome-associated soluble NKG2D ligands share with their membrane-bound counterparts the same ability to induce NKG2D-mediated signaling is still a matter of debate. Here, we will review recent studies on the NKG2D/NKG2D ligand biology to summarize and discuss the redundancy and/or diversity in ligand expression, regulation, and receptor specificity.
Collapse
Affiliation(s)
- Alessandra Zingoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Rosa Molfetta
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Cinzia Fionda
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Alessandra Soriani
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Rossella Paolini
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Marco Cippitelli
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Cristina Cerboni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
37
|
Zitti B, Molfetta R, Fionda C, Quatrini L, Stabile H, Lecce M, de Turris V, Ricciardi MR, Petrucci MT, Cippitelli M, Gismondi A, Santoni A, Paolini R. Innate immune activating ligand SUMOylation affects tumor cell recognition by NK cells. Sci Rep 2017; 7:10445. [PMID: 28874810 PMCID: PMC5585267 DOI: 10.1038/s41598-017-10403-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/08/2017] [Indexed: 01/02/2023] Open
Abstract
Natural Killer cells are innate lymphocytes involved in tumor immunosurveillance. They express activating receptors able to recognize self-molecules poorly expressed on healthy cells but up-regulated upon stress conditions, including transformation. Regulation of ligand expression in tumor cells mainly relays on transcriptional mechanisms, while the involvement of ubiquitin or ubiquitin-like modifiers remains largely unexplored. Here, we focused on the SUMO pathway and demonstrated that the ligand of DNAM1 activating receptor, PVR, undergoes SUMOylation in multiple myeloma. Concurrently, we found that PVR is preferentially located in intracellular compartments in human multiple myeloma cell lines and malignant plasma cells and that inhibition of the SUMO pathway promotes its translocation to the cell surface, increasing tumor cell susceptibility to NK cell-mediated cytolysis. Our findings provide the first evidence of an innate immune activating ligand regulated by SUMOylation, and confer to this modification a novel role in impairing recognition and killing of tumor cells.
Collapse
Affiliation(s)
- Beatrice Zitti
- Department of Molecular Medicine, "Sapienza" University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, "Viale Regina Elena 291, 00161, Rome, Italy
| | - Rosa Molfetta
- Department of Molecular Medicine, "Sapienza" University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, "Viale Regina Elena 291, 00161, Rome, Italy.
| | - Cinzia Fionda
- Department of Molecular Medicine, "Sapienza" University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, "Viale Regina Elena 291, 00161, Rome, Italy
| | - Linda Quatrini
- Department of Molecular Medicine, "Sapienza" University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, "Viale Regina Elena 291, 00161, Rome, Italy.,Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
| | - Helena Stabile
- Department of Molecular Medicine, "Sapienza" University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, "Viale Regina Elena 291, 00161, Rome, Italy
| | - Mario Lecce
- Department of Molecular Medicine, "Sapienza" University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, "Viale Regina Elena 291, 00161, Rome, Italy
| | - Valeria de Turris
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy
| | - Maria Rosaria Ricciardi
- Division of Hematology, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Teresa Petrucci
- Department of Cellular Biotechnologies and Hematology, Sapienza University of Rome, Rome, Italy
| | - Marco Cippitelli
- Department of Molecular Medicine, "Sapienza" University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, "Viale Regina Elena 291, 00161, Rome, Italy
| | - Angela Gismondi
- Department of Molecular Medicine, "Sapienza" University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, "Viale Regina Elena 291, 00161, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, "Sapienza" University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, "Viale Regina Elena 291, 00161, Rome, Italy.,Istituto Mediterraneo di Neuroscienze, Neuromed, Pozzilli, Italy
| | - Rossella Paolini
- Department of Molecular Medicine, "Sapienza" University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, "Viale Regina Elena 291, 00161, Rome, Italy.
| |
Collapse
|
38
|
Molfetta R, Quatrini L, Santoni A, Paolini R. Regulation of NKG2D-Dependent NK Cell Functions: The Yin and the Yang of Receptor Endocytosis. Int J Mol Sci 2017; 18:ijms18081677. [PMID: 28767057 PMCID: PMC5578067 DOI: 10.3390/ijms18081677] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 07/27/2017] [Accepted: 07/30/2017] [Indexed: 12/22/2022] Open
Abstract
Natural-killer receptor group 2, member D (NKG2D) is a well characterized natural killer (NK) cell activating receptor that recognizes several ligands poorly expressed on healthy cells but up-regulated upon stressing stimuli in the context of cancer or viral infection. Although NKG2D ligands represent danger signals that render target cells more susceptible to NK cell lysis, accumulating evidence demonstrates that persistent exposure to ligand-expressing cells causes the decrease of NKG2D surface expression leading to a functional impairment of NKG2D-dependent NK cell functions. Upon ligand binding, NKG2D is internalized from the plasma membrane and sorted to lysosomes for degradation. However, receptor endocytosis is not only a mechanism of receptor clearance from the cell surface, but is also required for the proper activation of signalling events leading to the functional program of NK cells. This review is aimed at providing a summary of current literature relevant to the molecular mechanisms leading to NKG2D down-modulation with particular emphasis given to the role of NKG2D endocytosis in both receptor degradation and signal propagation. Examples of chronic ligand-induced down-regulation of NK cell activating receptors other than NKG2D, including natural cytotoxicity receptors (NCRs), DNAX accessory molecule-1 (DNAM1) and CD16, will be also discussed.
Collapse
Affiliation(s)
- Rosa Molfetta
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161 Rome, Italy.
| | - Linda Quatrini
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161 Rome, Italy.
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France.
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161 Rome, Italy.
| | - Rossella Paolini
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161 Rome, Italy.
| |
Collapse
|
39
|
Mukherjee S, Jensen H, Stewart W, Stewart D, Ray WC, Chen SY, Nolan GP, Lanier LL, Das J. In silico modeling identifies CD45 as a regulator of IL-2 synergy in the NKG2D-mediated activation of immature human NK cells. Sci Signal 2017; 10:10/485/eaai9062. [PMID: 28655861 DOI: 10.1126/scisignal.aai9062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Natural killer (NK) cells perform immunosurveillance of virally infected and transformed cells, and their activation depends on the balance between signaling by inhibitory and activating receptors. Cytokine receptor signaling can synergize with activating receptor signaling to induce NK cell activation. We investigated the interplay between the signaling pathways stimulated by the cytokine interleukin-2 (IL-2) and the activating receptor NKG2D in immature (CD56bright) and mature (CD56dim) subsets of human primary NK cells using mass cytometry experiments and in silico modeling. Our analysis revealed that IL-2 changed the abundances of several key proteins, including NKG2D and the phosphatase CD45. Furthermore, we found differences in correlations between protein abundances, which were associated with the maturation state of the NK cells. The mass cytometry measurements also revealed that the signaling kinetics of key protein abundances induced by NKG2D stimulation depended on the maturation state and the pretreatment condition of the NK cells. Our in silico model, which described the multidimensional data with coupled first-order reactions, predicted that the increase in CD45 abundance was a major enhancer of NKG2D-mediated activation in IL-2-treated CD56bright NK cells but not in IL-2-treated CD56dim NK cells. This dependence on CD45 was verified by measurement of CD107a mobilization to the NK cell surface (a marker of activation). Our mathematical framework can be used to glean mechanisms underlying synergistic signaling pathways in other activated immune cells.
Collapse
Affiliation(s)
- Sayak Mukherjee
- Battelle Center for Mathematical Medicine, Research Institute at the Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Helle Jensen
- Department of Microbiology and Immunology and Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - William Stewart
- Battelle Center for Mathematical Medicine, Research Institute at the Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA.,Department of Statistics, The Ohio State University, Columbus, OH 43210, USA
| | - David Stewart
- Department of Mathematics, University of Iowa, Iowa City, IA 52242, USA
| | - William C Ray
- Battelle Center for Mathematical Medicine, Research Institute at the Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA.,Biophysics Program, The Ohio State University, Columbus, OH 43210, USA
| | - Shih-Yu Chen
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Garry P Nolan
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Lewis L Lanier
- Department of Microbiology and Immunology and Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Jayajit Das
- Battelle Center for Mathematical Medicine, Research Institute at the Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA. .,Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA.,Biophysics Program, The Ohio State University, Columbus, OH 43210, USA.,Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
40
|
Identifying novel fruit-related genes in Arabidopsis thaliana based on the random walk with restart algorithm. PLoS One 2017; 12:e0177017. [PMID: 28472169 PMCID: PMC5417634 DOI: 10.1371/journal.pone.0177017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/20/2017] [Indexed: 01/03/2023] Open
Abstract
Fruit is essential for plant reproduction and is responsible for protection and dispersal of seeds. The development and maturation of fruit is tightly regulated by numerous genetic factors that respond to environmental and internal stimulation. In this study, we attempted to identify novel fruit-related genes in a model organism, Arabidopsis thaliana, using a computational method. Based on validated fruit-related genes, the random walk with restart (RWR) algorithm was applied on a protein-protein interaction (PPI) network using these genes as seeds. The identified genes with high probabilities were filtered by the permutation test and linkage tests. In the permutation test, the genes that were selected due to the structure of the PPI network were discarded. In the linkage tests, the importance of each candidate gene was measured from two aspects: (1) its functional associations with validated genes and (2) its similarity with validated genes on gene ontology (GO) terms and KEGG pathways. Finally, 255 inferred genes were obtained, subsequent extensive analysis of important genes revealed that they mainly contribute to ubiquitination (UBQ9, UBQ8, UBQ11, UBQ10), serine hydroxymethyl transfer (SHM7, SHM5, SHM6) or glycol-metabolism (HXKL2_ARATH, CSY5, GAPCP1), suggesting essential roles during the development and maturation of fruit in Arabidopsis thaliana.
Collapse
|
41
|
3D Microfluidic model for evaluating immunotherapy efficacy by tracking dendritic cell behaviour toward tumor cells. Sci Rep 2017; 7:1093. [PMID: 28439087 PMCID: PMC5430848 DOI: 10.1038/s41598-017-01013-x] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 03/24/2017] [Indexed: 12/19/2022] Open
Abstract
Immunotherapy efficacy relies on the crosstalk within the tumor microenvironment between cancer and dendritic cells (DCs) resulting in the induction of a potent and effective antitumor response. DCs have the specific role of recognizing cancer cells, taking up tumor antigens (Ags) and then migrating to lymph nodes for Ag (cross)-presentation to naïve T cells. Interferon-α-conditioned DCs (IFN-DCs) exhibit marked phagocytic activity and the special ability of inducing Ag-specific T-cell response. Here, we have developed a novel microfluidic platform recreating tightly interconnected cancer and immune systems with specific 3D environmental properties, for tracking human DC behaviour toward tumor cells. By combining our microfluidic platform with advanced microscopy and a revised cell tracking analysis algorithm, it was possible to evaluate the guided efficient motion of IFN-DCs toward drug-treated cancer cells and the succeeding phagocytosis events. Overall, this platform allowed the dissection of IFN-DC-cancer cell interactions within 3D tumor spaces, with the discovery of major underlying factors such as CXCR4 involvement and underscored its potential as an innovative tool to assess the efficacy of immunotherapeutic approaches.
Collapse
|
42
|
Capuano C, Pighi C, Molfetta R, Paolini R, Battella S, Palmieri G, Giannini G, Belardinilli F, Santoni A, Galandrini R. Obinutuzumab-mediated high-affinity ligation of FcγRIIIA/CD16 primes NK cells for IFNγ production. Oncoimmunology 2017; 6:e1290037. [PMID: 28405525 PMCID: PMC5384385 DOI: 10.1080/2162402x.2017.1290037] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/24/2017] [Accepted: 01/26/2017] [Indexed: 01/30/2023] Open
Abstract
Natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC), based on the recognition of IgG-opsonized targets by the low-affinity receptor for IgG FcγRIIIA/CD16, represents one of the main mechanisms by which therapeutic antibodies (mAbs) mediate their antitumor effects. Besides ADCC, CD16 ligation also results in cytokine production, in particular, NK-derived IFNγ is endowed with a well-recognized role in the shaping of adaptive immune responses. Obinutuzumab is a glycoengineered anti-CD20 mAb with a modified crystallizable fragment (Fc) domain designed to increase the affinity for CD16 and consequently the killing of mAb-opsonized targets. However, the impact of CD16 ligation in optimized affinity conditions on NK functional program is not completely understood. Herein, we demonstrate that the interaction of NK cells with obinutuzumab-opsonized cells results in enhanced IFNγ production as compared with parental non-glycoengineered mAb or the reference molecule rituximab. We observed that affinity ligation conditions strictly correlate with the ability to induce CD16 down-modulation and lysosomal targeting of receptor-associated signaling elements. Indeed, a preferential degradation of FcεRIγ chain and Syk kinase was observed upon obinutuzumab stimulation independently from CD16-V158F polymorphism. Although the downregulation of FcεRIγ/Syk module leads to the impairment of cytotoxic function induced by NKp46 and NKp30 receptors, obinutuzumab-experienced cells exhibit an increased ability to produce IFNγ in response to different stimuli. These data highlight a relationship between CD16 aggregation conditions and the ability to promote a degradative pathway of CD16-coupled signaling elements associated to the shift of NK functional program.
Collapse
Affiliation(s)
- Cristina Capuano
- Department of Experimental Medicine, Laboratorio Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University , Rome, Italy
| | - Chiara Pighi
- Department of Molecular Medicine, Laboratorio Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University , Rome, Italy
| | - Rosa Molfetta
- Department of Molecular Medicine, Laboratorio Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University , Rome, Italy
| | - Rossella Paolini
- Department of Molecular Medicine, Laboratorio Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University , Rome, Italy
| | - Simone Battella
- Department of Molecular Medicine, Laboratorio Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University , Rome, Italy
| | - Gabriella Palmieri
- Department of Experimental Medicine, Laboratorio Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University , Rome, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, Laboratorio Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University , Rome, Italy
| | - Francesca Belardinilli
- Department of Molecular Medicine, Laboratorio Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University , Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Laboratorio Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Ricciarda Galandrini
- Department of Experimental Medicine, Laboratorio Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University , Rome, Italy
| |
Collapse
|
43
|
The Development and Diversity of ILCs, NK Cells and Their Relevance in Health and Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1024:225-244. [PMID: 28921473 DOI: 10.1007/978-981-10-5987-2_11] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Next to T and B cells, natural killer (NK) cells are the third largest lymphocyte population. They are recently re-categorized as innate lymphocytes (ILCs), which also include ILC1, ILC2, ILC3, and the lymphoid tissue inducer (LTi) cells. Both NK cells and ILC1 cells are designated as group 1 ILCs because they secrete interferon-γ (IFN-γ) and tumor necrosis factor (TNF). However, in contrast to ILC1 and all other ILCs, NK cells possess potent cytolytic functions that resemble cytotoxic T lymphocytes (CTL). In addition, NK cells express, in a stochastic manner, an array of germ line-encoded activating and inhibitory receptors that recognize the polymorphic regions of major histocompatibility class I (MHC-I) molecules and self-proteins. Recognition of self renders NK cell tolerance to self-healthy tissues, but fail to recognize self ('missing-self') leads to activation to neoplastic transformation and infections of certain viruses. In this chapter, we will summarize the development of NK cells in the context of ILCs, describe the diversity of phenotype and function in blood and tissues, and discuss their involvement in health and diseases in humans.
Collapse
|
44
|
Molfetta R, Zitti B, Santoni A, Paolini R. Ubiquitin and ubiquitin-like modifiers modulate NK cell-mediated recognition and killing of damaged cells. AIMS ALLERGY AND IMMUNOLOGY 2017. [DOI: 10.3934/allergy.2017.4.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
45
|
Soriani A, Borrelli C, Ricci B, Molfetta R, Zingoni A, Fionda C, Carnevale S, Abruzzese MP, Petrucci MT, Ricciardi MR, La Regina G, Di Cesare E, Lavia P, Silvestri R, Paolini R, Cippitelli M, Santoni A. p38 MAPK differentially controls NK activating ligands at transcriptional and post-transcriptional level on multiple myeloma cells. Oncoimmunology 2016; 6:e1264564. [PMID: 28197392 PMCID: PMC5283620 DOI: 10.1080/2162402x.2016.1264564] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 10/20/2022] Open
Abstract
The mechanisms that regulate the expression of the NKG2D and DNAM-1 activating ligands are only partially known, but it is now widely established that their expression is finely regulated at transcriptional, post-transcriptional and post-translational level, and involve numerous stress pathways depending on the type of ligand, stressor, and cell context. We show that treatment of Multiple Myeloma (MM) cells with sub-lethal doses of Vincristine (VCR), an anticancer drug that inhibits the assembly of microtubules, stimulates the expression of NKG2D and DNAM-1 activating ligands, rendering these cells more susceptible to NK cell-mediated killing. Herein, we focused our attention on the identification of the signaling pathways leading to de novo surface expression of ULBP-1, and to MICA and PVR upregulation on VCR-treated MM cells, both at protein and mRNA levels. We found that p38MAPK differentially regulates drug-dependent ligand upregulation at transcriptional and post-transcriptional level. More specifically, we observed that ULBP-1 expression is attributable to both increased transcriptional activity mediated by ATM-dependent p53 activation, and enhanced mRNA stability; while the p38-activated E2F1 transcription factor regulates MICA and PVR mRNA expression. All together, our findings reveal a previously unrecognized activity of VCR as anticancer agent, and indicate that in addition to its established ability to arrest cell growth, VCR can also modulate the expression of NKG2D and DNAM-1 activating ligand on tumor cells and thus promoting NK cell-mediated immunosurveillance.
Collapse
Affiliation(s)
- Alessandra Soriani
- Department of Molecular Medicine-Istituto Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Cristiana Borrelli
- Department of Molecular Medicine, Center for Life Nano Science@Sapienza, Italian Institute of Technology, Sapienza University of Rome, Rome, Italy
| | - Biancamaria Ricci
- Department of Molecular Medicine-Istituto Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
- Department of Orthopedics, Washington University School of Medicine, St. Louis, MO, USA
| | - Rosa Molfetta
- Department of Molecular Medicine-Istituto Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Alessandra Zingoni
- Department of Molecular Medicine-Istituto Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Cinzia Fionda
- Department of Molecular Medicine-Istituto Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Silvia Carnevale
- Department of Molecular Medicine-Istituto Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Maria Pia Abruzzese
- Department of Molecular Medicine-Istituto Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Maria Teresa Petrucci
- Department of Cellular Biotechnologies and Hematology, Sapienza University of Rome, Rome, Italy
| | | | - Giuseppe La Regina
- Department of Drug Chemistry and Technologies-Isituto Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Erica Di Cesare
- Institute of Molecular Biology and Pathology, Sapienza University of Rome, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Patrizia Lavia
- Institute of Molecular Biology and Pathology, Sapienza University of Rome, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Romano Silvestri
- Department of Drug Chemistry and Technologies-Isituto Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Rossella Paolini
- Department of Molecular Medicine-Istituto Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Marco Cippitelli
- Department of Molecular Medicine-Istituto Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine-Istituto Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
- Neuromed I.R.C.C.S.-Istituto Neurologico Mediterraneo, Pozzilli (IS), Italy
| |
Collapse
|
46
|
Molfetta R, Quatrini L, Zitti B, Capuano C, Galandrini R, Santoni A, Paolini R. Regulation of NKG2D Expression and Signaling by Endocytosis. Trends Immunol 2016; 37:790-802. [PMID: 27667711 DOI: 10.1016/j.it.2016.08.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 11/17/2022]
Abstract
NKG2D is an activating receptor that can bind to a large number of stress-induced ligands that are expressed in the context of cancer or viral infection. This receptor is expressed on many cytotoxic lymphocytes, and plays a crucial role in antitumor and antiviral immune responses. However, exposure to NKG2D ligand-expressing target cells promotes receptor endocytosis, ultimately leading to lysosomal receptor degradation and impairment of NKG2D-mediated functions. Interestingly, before being degraded, internalized receptors can signal from the endosomal compartment, leading to the appropriate activation of cellular functional programs. This review summarizes recent findings on ligand-induced receptor internalization, with particular emphasis on the role of endocytosis in the control of both NKG2D-mediated intracellular signaling and receptor degradation.
Collapse
Affiliation(s)
- Rosa Molfetta
- Department of Molecular Medicine, Institute Pasteur-Fondazione Cenci Bolognetti, 'Sapienza' University of Rome, 00161, Rome, Italy
| | - Linda Quatrini
- Department of Molecular Medicine, Institute Pasteur-Fondazione Cenci Bolognetti, 'Sapienza' University of Rome, 00161, Rome, Italy
| | - Beatrice Zitti
- Department of Molecular Medicine, Institute Pasteur-Fondazione Cenci Bolognetti, 'Sapienza' University of Rome, 00161, Rome, Italy
| | - Cristina Capuano
- Department of Experimental Medicine, 'Sapienza' University of Rome, 00161 Rome, Italy
| | - Ricciarda Galandrini
- Department of Experimental Medicine, 'Sapienza' University of Rome, 00161 Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Institute Pasteur-Fondazione Cenci Bolognetti, 'Sapienza' University of Rome, 00161, Rome, Italy; Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Neuromed, Pozzilli, IS, Italy.
| | - Rossella Paolini
- Department of Molecular Medicine, Institute Pasteur-Fondazione Cenci Bolognetti, 'Sapienza' University of Rome, 00161, Rome, Italy.
| |
Collapse
|
47
|
Rojas JM, Spada R, Sanz-Ortega L, Morillas L, Mejías R, Mulens-Arias V, Pérez-Yagüe S, Barber DF. PI3K p85 β regulatory subunit deficiency does not affect NK cell differentiation and increases NKG2D-mediated activation. J Leukoc Biol 2016; 100:1285-1296. [PMID: 27381007 DOI: 10.1189/jlb.1a1215-541rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 06/15/2016] [Accepted: 06/20/2016] [Indexed: 11/24/2022] Open
Abstract
Activation of NK cells depends on a balance between activating and inhibitory signals. Class Ia PI3K are heterodimeric proteins with a catalytic and a regulatory subunit and have a central role in cell signaling by associating with tyrosine kinase receptors to trigger signaling cascades. The regulatory p85 subunit participates in signaling through NKG2D, one of the main activating receptors on NK cells, via its interaction with the adaptor protein DAP10. Although the effects of inhibiting catalytic subunits or deleting the regulatory p85α subunit have been studied, little attention has focused on the role of the p85β subunit in NK cells. Using p85β knockout mice, we found that p85β deficiency does not alter NK cell differentiation and maturation in spleen or bone marrow. NK cells from p85β-/- mice nonetheless produced more IFN-γ and degranulated more effectively when stimulated with anti-NKG2D antibody. These cells also degranulated and killed NKG2D ligand-expressing target cells more efficiently. We show that p85β deficiency impaired NKG2D internalization, which could contribute to the activated phenotype. Decreasing p85β subunit protein levels might thus constitute a therapeutic target to promote NK cell activity toward NKG2D ligand-expressing cells.
Collapse
Affiliation(s)
- José M Rojas
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Roberto Spada
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Laura Sanz-Ortega
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Laura Morillas
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Raquel Mejías
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Vladimir Mulens-Arias
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Sonia Pérez-Yagüe
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Domingo F Barber
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| |
Collapse
|