1
|
Breitwieser GE, Cippitelli A, Wang Y, Pelletier O, Dershem R, Wei J, Toll L, Fakhoury B, Brunori G, Metpally R, Carey DJ, Robishaw J. Rare GPR37L1 Variants Reveal Potential Association between GPR37L1 and Disorders of Anxiety and Migraine. J Neurosci 2024; 44:e1226232024. [PMID: 38569927 PMCID: PMC11089846 DOI: 10.1523/jneurosci.1226-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
GPR37L1 is an orphan receptor that couples through heterotrimeric G-proteins to regulate physiological functions. Since its role in humans is not fully defined, we used an unbiased computational approach to assess the clinical significance of rare G-protein-coupled receptor 37-like 1 (GPR37L1) genetic variants found among 51,289 whole-exome sequences from the DiscovEHR cohort. Rare GPR37L1 coding variants were binned according to predicted pathogenicity and analyzed by sequence kernel association testing to reveal significant associations with disease diagnostic codes for epilepsy and migraine, among others. Since associations do not prove causality, rare GPR37L1 variants were functionally analyzed in SK-N-MC cells to evaluate potential signaling differences and pathogenicity. Notably, receptor variants exhibited varying abilities to reduce cAMP levels, activate mitogen-activated protein kinase (MAPK) signaling, and/or upregulate receptor expression in response to the agonist prosaptide (TX14(A)), as compared with the wild-type receptor. In addition to signaling changes, knock-out (KO) of GPR37L1 or expression of certain rare variants altered cellular cholesterol levels, which were also acutely regulated by administration of the agonist TX14(A) via activation of the MAPK pathway. Finally, to simulate the impact of rare nonsense variants found in the large patient cohort, a KO mouse line lacking Gpr37l1 was generated. Although KO animals did not recapitulate an acute migraine phenotype, the loss of this receptor produced sex-specific changes in anxiety-related disorders often seen in chronic migraineurs. Collectively, these observations define the existence of rare GPR37L1 variants associated with neuropsychiatric conditions in the human population and identify the signaling changes contributing to pathological processes.
Collapse
Affiliation(s)
- Gerda E Breitwieser
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Andrea Cippitelli
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Yingcai Wang
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Oliver Pelletier
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Ridge Dershem
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Jianning Wei
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Lawrence Toll
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Bianca Fakhoury
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Gloria Brunori
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | | | - David J Carey
- Geisinger, Weis Center for Research, Danville, Pennsylvania
| | - Janet Robishaw
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
- College of Veterinary Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
2
|
Bang S, Jiang C, Xu J, Chandra S, McGinnis A, Luo X, He Q, Li Y, Wang Z, Ao X, Parisien M, Fernandes de Araujo LO, Esfahan SJ, Zhang Q, Tonello R, Berta T, Diatchenko L, Ji RR. Satellite glial GPR37L1 regulates maresin and potassium channel signaling for pain control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.03.569787. [PMID: 38106084 PMCID: PMC10723316 DOI: 10.1101/2023.12.03.569787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
G protein coupled receptor 37-like 1 (GPR37L1) is an orphan GPCR and its function remains largely unknown. Here we report that GPR37L1 transcript is highly expressed compared to all known GPCRs in mouse and human dorsal root ganglia (DRGs) and selectively expressed in satellite glial cells (SGCs). Peripheral neuropathy following diabetes and chemotherapy by streptozotocin and paclitaxel resulted in downregulations of surface GPR37L1 in mouse and human DRGs. Transgenic mice with Gpr37l1 deficiency exhibited impaired resolution of neuropathic pain symptom (mechanical allodynia), whereas overexpression of Gpr37l1 in mouse DRGs can reverse neuropathic pain. Notably, GPR37L1 is co-expressed and coupled with potassium channels in SGCs. We found striking species differences in potassium channel expression in SGCs, with predominant expression of KCNJ10 and KCNJ3 in mouse and human SGCs, respectively. GPR37L1 regulates the surface expression and function of KCNJ10 and KCNJ3. We identified the pro-resolving lipid mediator maresin 1 (MaR1) as a GPR37L1 ligand. MaR1 increases KCNJ10/KCNJ3-mediated potassium influx in SGCs via GPR37L1. MaR1 protected chemotherapy-induced suppression of KCNJ13/KCNJ10 expression and function in SGCs. Finally, genetic analysis revealed that the GPR37L1-E296K variant is associated with increased chronic pain risk by destabilizing the protein. Thus, GPR37L1 in SGCs offers a new target for neuropathy protection and pain control.
Collapse
|
3
|
Bolinger AA, Frazier A, La JH, Allen JA, Zhou J. Orphan G Protein-Coupled Receptor GPR37 as an Emerging Therapeutic Target. ACS Chem Neurosci 2023; 14:3318-3334. [PMID: 37676000 PMCID: PMC11144446 DOI: 10.1021/acschemneuro.3c00479] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are successful druggable targets, making up around 35% of all FDA-approved medications. However, a large number of receptors remain orphaned, with no known endogenous ligand, representing a challenging but untapped area to discover new therapeutic targets. Among orphan GPCRs (oGPCRs) of interest, G protein-coupled receptor 37 (GPR37) is highly expressed in the central nervous system (CNS), particularly in the spinal cord and oligodendrocytes. While its cellular signaling mechanisms and endogenous receptor ligands remain elusive, GPR37 has been implicated in several important neurological conditions, including Parkinson's disease (PD), inflammation, pain, autism, and brain tumors. GPR37 structure, signaling, emerging physiology, and pharmacology are reviewed while integrating a discussion on potential therapeutic indications and opportunities.
Collapse
Affiliation(s)
- Andrew A. Bolinger
- Department of Pharmacology and Toxicology, Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Andrew Frazier
- Department of Pharmacology and Toxicology, Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jun-Ho La
- Department of Neurobiology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - John A. Allen
- Department of Pharmacology and Toxicology, Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jia Zhou
- Department of Pharmacology and Toxicology, Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
4
|
Nguyen TT, Camp CR, Doan JK, Traynelis SF, Sloan SA, Hall RA. GPR37L1 controls maturation and organization of cortical astrocytes during development. Glia 2023; 71:1921-1946. [PMID: 37029775 PMCID: PMC10315172 DOI: 10.1002/glia.24375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 02/24/2023] [Accepted: 03/24/2023] [Indexed: 04/09/2023]
Abstract
Astrocyte maturation is crucial to proper brain development and function. This maturation process includes the ramification of astrocytic morphology and the establishment of astrocytic domains. While this process has been well-studied, the mechanisms by which astrocyte maturation is initiated are not well understood. GPR37L1 is an astrocyte-specific G protein-coupled receptor (GPCR) that is predominantly expressed in mature astrocytes and has been linked to the modulation of seizure susceptibility in both humans and mice. To investigate the role of GPR37L1 in astrocyte biology, RNA-seq analyses were performed on astrocytes immunopanned from P7 Gpr37L1-/- knockout (L1KO) mouse cortex and compared to those from wild-type (WT) mouse cortex. These RNA-seq studies revealed that pathways involved in central nervous system development were altered and that L1KO cortical astrocytes express lower amounts of mature astrocytic genes compared to WT astrocytes. Immunohistochemical studies of astrocytes from L1KO mouse brain revealed that these astrocytes exhibit overall shorter total process length, and are also less complex and spaced further apart from each other in the mouse cortex. This work sheds light on how GPR37L1 regulates cellular processes involved in the control of astrocyte biology and maturation.
Collapse
Affiliation(s)
| | - Chad R. Camp
- Emory University School of Medicine, Department of Pharmacology and Chemical Biology
| | - Juleva K. Doan
- Emory University School of Medicine, Department of Pharmacology and Chemical Biology
| | - Stephen F. Traynelis
- Emory University School of Medicine, Department of Pharmacology and Chemical Biology
| | - Steven A. Sloan
- Emory University School of Medicine, Department of Human Genetics
| | - Randy A. Hall
- Emory University School of Medicine, Department of Pharmacology and Chemical Biology
| |
Collapse
|
5
|
Breitwieser GE, Cippitelli A, Wang Y, Pelletier O, Dershem R, Wei J, Toll L, Fakhoury B, Brunori G, Metpally R, Carey DJ, Robishaw J. Rare GPR37L1 variants reveal potential roles in anxiety and migraine disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547546. [PMID: 37461723 PMCID: PMC10349990 DOI: 10.1101/2023.07.05.547546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
GPR37L1 is an orphan receptor that couples through heterotrimeric G-proteins to regulate physiological functions. Since its role in humans is not fully defined, we used an unbiased computational approach to assess the clinical significance of rare GPR37L1 genetic variants found among 51,289 whole exome sequences from the DiscovEHR cohort. Briefly, rare GPR37L1 coding variants were binned according to predicted pathogenicity, and analyzed by Sequence Kernel Association testing to reveal significant associations with disease diagnostic codes for epilepsy and migraine, among others. Since associations do not prove causality, rare GPR37L1 variants were then functionally analyzed in SK-N-MC cells to evaluate potential signaling differences and pathogenicity. Notably, receptor variants exhibited varying abilities to reduce cAMP levels, activate MAPK signaling, and/or upregulate receptor expression in response to the agonist prosaptide (TX14(A)), as compared to the wild-type receptor. In addition to signaling changes, knockout of GPR37L1 or expression of certain rare variants altered cellular cholesterol levels, which were also acutely regulated by administration of the agonist TX14(A) via activation of the MAPK pathway. Finally, to simulate the impact of rare nonsense variants found in the large patient cohort, a knockout (KO) mouse line lacking Gpr37L1 was generated, revealing loss of this receptor produced sex-specific changes implicated in migraine-related disorders. Collectively, these observations define the existence of rare GPR37L1 variants in the human population that are associated with neuropsychiatric conditions and identify the underlying signaling changes that are implicated in the in vivo actions of this receptor in pathological processes leading to anxiety and migraine. SIGNIFICANCE STATEMENT G-protein coupled receptors (GPCRs) represent a diverse group of membrane receptors that contribute to a wide range of diseases and serve as effective drug targets. However, a number of these receptors have no identified ligands or functions, i.e., orphan receptors. Over the past decade, advances have been made, but there is a need for identifying new strategies to reveal their roles in health and disease. Our results highlight the utility of rare variant analyses of orphan receptors for identifying human disease associations, coupled with functional analyses in relevant cellular and animal systems, to ultimately reveal their roles as novel drug targets for treatment of neurological disorders that lack wide-spread efficacy.
Collapse
|
6
|
Armando I, Cuevas S, Fan C, Kumar M, Izzi Z, Jose PA, Konkalmatt PR. G Protein-Coupled Receptor 37L1 Modulates Epigenetic Changes in Human Renal Proximal Tubule Cells. Int J Mol Sci 2022; 23:ijms232214456. [PMID: 36430934 PMCID: PMC9698582 DOI: 10.3390/ijms232214456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/19/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022] Open
Abstract
Renal luminal sodium transport is essential for physiological blood pressure control, and abnormalities in this process are strongly implicated in the pathogenesis of essential hypertension. Renal G protein-coupled receptors (GPCRs) are critical for the regulation of the reabsorption of essential nutrients, ions, and water from the glomerular filtrate. Recently, we showed that GPCR 37L1 (GPR37L1) is expressed on the apical membrane of renal proximal tubules (RPT) and regulates luminal sodium transport and blood pressure by modulating the function of the sodium proton exchanger 3 (NHE3). However, little is known about GPR37L1 intracellular signaling. Here, we show that GPR37L1 is localized to the nuclear membrane, in addition to the plasma membrane in human RPT cells. Furthermore, GPR37L1 signals via the PI3K/AKT/mTOR pathway to decrease the expression of DNA (cytosine-5)-methyltransferase 1 (DNMT1) and enhance NHE3 transcription. Overall, we demonstrate the direct role of a nuclear membrane GPCR in the regulation of renal sodium through epigenetic gene regulation.
Collapse
|
7
|
An J, Zhang Y, Fudge AD, Lu H, Richardson WD, Li H. G protein-coupled receptor GPR37-like 1 regulates adult oligodendrocyte generation. Dev Neurobiol 2021; 81:975-984. [PMID: 34601807 DOI: 10.1002/dneu.22854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/12/2021] [Accepted: 09/29/2021] [Indexed: 02/01/2023]
Abstract
Oligodendrocytes (OLs) continue to be generated from OL precursors (OPs) in the adult mammalian brain. Adult-born OLs are believed to contribute to neural plasticity, learning and memory through a process of "adaptive myelination," but how adult OL generation and adaptive myelination are regulated remains unclear. Here, we report that the glia-specific G protein-coupled receptor 37-like 1 (GPR37L1) is expressed in subsets of OPs and newly formed immature OLs in adult mouse brain. We found that OP proliferation and differentiation are inhibited in the corpus callosum of adult Gpr37l1 knockout mice, leading to a reduction in the number of adult-born OLs. Our data raise the possibility that GPR37L1 is mechanistically involved in adult OL generation and adaptive myelination, and suggest that GPR37L1 might be a useful functional marker of OPs that are committed to OL differentiation.
Collapse
Affiliation(s)
- Jing An
- Faculty of Medical Sciences, Division of Medicine, Wolfson Institute for Biomedical Research, University College London, London, UK.,School of Basic Medical Sciences, Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yumeng Zhang
- Faculty of Medical Sciences, Division of Medicine, Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Alexander D Fudge
- Faculty of Medical Sciences, Division of Medicine, Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Haixia Lu
- School of Basic Medical Sciences, Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - William D Richardson
- Faculty of Medical Sciences, Division of Medicine, Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Huiliang Li
- Faculty of Medical Sciences, Division of Medicine, Wolfson Institute for Biomedical Research, University College London, London, UK
| |
Collapse
|
8
|
Sinsky J, Pichlerova K, Hanes J. Tau Protein Interaction Partners and Their Roles in Alzheimer's Disease and Other Tauopathies. Int J Mol Sci 2021; 22:9207. [PMID: 34502116 PMCID: PMC8431036 DOI: 10.3390/ijms22179207] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Tau protein plays a critical role in the assembly, stabilization, and modulation of microtubules, which are important for the normal function of neurons and the brain. In diseased conditions, several pathological modifications of tau protein manifest. These changes lead to tau protein aggregation and the formation of paired helical filaments (PHF) and neurofibrillary tangles (NFT), which are common hallmarks of Alzheimer's disease and other tauopathies. The accumulation of PHFs and NFTs results in impairment of physiological functions, apoptosis, and neuronal loss, which is reflected as cognitive impairment, and in the late stages of the disease, leads to death. The causes of this pathological transformation of tau protein haven't been fully understood yet. In both physiological and pathological conditions, tau interacts with several proteins which maintain their proper function or can participate in their pathological modifications. Interaction partners of tau protein and associated molecular pathways can either initiate and drive the tau pathology or can act neuroprotective, by reducing pathological tau proteins or inflammation. In this review, we focus on the tau as a multifunctional protein and its known interacting partners active in regulations of different processes and the roles of these proteins in Alzheimer's disease and tauopathies.
Collapse
Affiliation(s)
| | | | - Jozef Hanes
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia; (J.S.); (K.P.)
| |
Collapse
|
9
|
Nguyen TT, Dammer EB, Owino SA, Giddens MM, Madaras NS, Duong DM, Seyfried NT, Hall RA. Quantitative Proteomics Reveal an Altered Pattern of Protein Expression in Brain Tissue from Mice Lacking GPR37 and GPR37L1. J Proteome Res 2021; 19:744-755. [PMID: 31903766 DOI: 10.1021/acs.jproteome.9b00622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
GPR37 and GPR37L1 are glia-enriched G protein-coupled receptors that have been implicated in several neurological and neurodegenerative diseases. To gain insight into the potential molecular mechanisms by which GPR37 and GPR37L1 regulate cellular physiology, proteomic analyses of whole mouse brain tissue from wild-type (WT) versus GPR37/GPR37L1 double knockout (DKO) mice were performed in order to identify proteins regulated by the absence versus presence of these receptors (data are available via ProteomeXchange with identifier PXD015202). These analyses revealed a number of proteins that were significantly increased or decreased by the absence of GPR37 and GPR37L1. One of the most decreased proteins in the DKO versus WT brain tissue was S100A5, a calcium-binding protein, and the reduction of S100A5 expression in KO brain tissue was validated via Western blot. Coexpression of S100A5 with either GPR37 or GPR37L1 in HEK293T cells did not result in any change in S100A5 expression but did robustly increase secretion of S100A5. To dissect the mechanism by which S100A5 secretion was enhanced, cells coexpressing S100A5 with the receptors were treated with different pharmacological reagents. These studies revealed that calcium is essential for the secretion of S100A5 downstream of GPR37 and GPR37L1 signaling, as treatment with BAPTA-AM, an intracellular Ca2+ chelator, reduced S100A5 secretion from transfected HEK293T cells. Collectively, these findings provide a panoramic view of proteomic changes resulting from loss of GPR37 and GPR37L1 and also impart mechanistic insight into the regulation of S100A5 by these receptors, thereby shedding light on the functions of GPR37 and GPR37L1 in brain tissue.
Collapse
Affiliation(s)
- TrangKimberly Thu Nguyen
- Department of Pharmacology and Chemical Biology , Emory University School of Medicine , Atlanta 30322 , Georgia , United States
| | - Eric B Dammer
- Department of Biochemistry , Emory University School of Medicine , Atlanta 30345 , Georgia , United States
| | - Sharon A Owino
- Department of Pharmacology and Chemical Biology , Emory University School of Medicine , Atlanta 30322 , Georgia , United States
| | - Michelle M Giddens
- Department of Pharmacology and Chemical Biology , Emory University School of Medicine , Atlanta 30322 , Georgia , United States
| | - Nora S Madaras
- Department of Pharmacology and Chemical Biology , Emory University School of Medicine , Atlanta 30322 , Georgia , United States
| | - Duc M Duong
- Department of Biochemistry , Emory University School of Medicine , Atlanta 30345 , Georgia , United States
| | - Nicholas T Seyfried
- Department of Biochemistry , Emory University School of Medicine , Atlanta 30345 , Georgia , United States
| | - Randy A Hall
- Department of Pharmacology and Chemical Biology , Emory University School of Medicine , Atlanta 30322 , Georgia , United States
| |
Collapse
|
10
|
Ngo T, Wilkins BP, So SS, Keov P, Chahal KK, Finch AM, Coleman JLJ, Kufareva I, Smith NJ. Orphan receptor GPR37L1 remains unliganded. Nat Chem Biol 2021; 17:383-386. [PMID: 33649602 DOI: 10.1038/s41589-021-00748-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/25/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Tony Ngo
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Brendan P Wilkins
- Molecular Pharmacology Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.,Orphan Receptor Pharmacology Laboratory, School of Medical Sciences, UNSW Sydney, Kensington, New South Wales, Australia
| | - Sean S So
- Molecular Pharmacology Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.,Orphan Receptor Pharmacology Laboratory, School of Medical Sciences, UNSW Sydney, Kensington, New South Wales, Australia
| | - Peter Keov
- Molecular Pharmacology Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Kirti K Chahal
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Angela M Finch
- G Protein-Coupled Receptor Laboratory, School of Medical Sciences, UNSW Sydney, Kensington, New South Wales, Australia
| | - James L J Coleman
- Molecular Pharmacology Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| | - Nicola J Smith
- Molecular Pharmacology Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia. .,Orphan Receptor Pharmacology Laboratory, School of Medical Sciences, UNSW Sydney, Kensington, New South Wales, Australia.
| |
Collapse
|
11
|
Sarkar S, Homma T, Onouchi S, Shimizu Y, Shiina T, Nabeka H, Matsuda S, Saito S. Expression of the G protein-coupled receptor (GPR) 37 and GPR37L1 in the mouse digestive system. J Vet Med Sci 2020; 83:1-8. [PMID: 33208571 PMCID: PMC7870391 DOI: 10.1292/jvms.20-0603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
G protein-coupled receptor (GPR) 37 and GPR37L1 are known to modulate the dopaminergic neuron activity, and recently, they are identified as candidate prosaposin receptors. Intercellular prosaposin is proteolytically processed into four saposins, each of which acts as a sphingolipid hydrolase activator in the lysosome. In contrast, extracellular prosaposin exerts a trophic effect on neurons via GPR37 and GPR37L1. In this study, the expression patterns of GPR37 and GPR37L1 in the mouse digestive system were examined immunohistochemically. The islets of Langerhans of the pancreas showed intense immunoreactivity for GPR37 and GPR37L1. Weak immunoreactivity for GPR37 and GPR37L1 was found in the nerve plexuses of the esophagus and small and large intestines. Colocalization of GPR37 and tyrosine hydroxylase immunoreactivity was observed in the neuron of the nerve plexus of the large intestine. This study suggests the possibility that prosaposin affects the function of islet-secreting cells. Also, the expression of GPR37 and GPR37L1 in the nerve plexus suggests that prosaposin exerts a trophic effect not only in the central nervous system, but also in the enteric nervous system.
Collapse
Affiliation(s)
- Sonjoy Sarkar
- Laboratory of Veterinary Anatomy, The United Graduate School of Veterinary Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Takeshi Homma
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Sawa Onouchi
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Yasutake Shimizu
- Laboratory of Veterinary Physiology, The Joint Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan
| | - Takahiko Shiina
- Laboratory of Veterinary Physiology, The Joint Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan
| | - Hiroaki Nabeka
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Seiji Matsuda
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Shouichiro Saito
- Laboratory of Veterinary Anatomy, The United Graduate School of Veterinary Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.,Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan.,Laboratory of Veterinary Anatomy, The Joint Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
12
|
The N-terminus of GPR37L1 is proteolytically processed by matrix metalloproteases. Sci Rep 2020; 10:19995. [PMID: 33203955 PMCID: PMC7673139 DOI: 10.1038/s41598-020-76384-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022] Open
Abstract
GPR37L1 is an orphan G protein-coupled receptor expressed exclusively in the brain and linked to seizures, neuroprotection and cardiovascular disease. Based upon the observation that fragments of the GPR37L1 N-terminus are found in human cerebrospinal fluid, we hypothesized that GPR37L1 was subject to post-translational modification. Heterologous expression of GPR37L1-eYFP in either HEK293 or U87 glioblastoma cells yielded two cell surface species of approximately equivalent abundance, the larger of which is N-glycosylated at Asn105. The smaller species is produced by matrix metalloprotease/ADAM-mediated proteolysis (shown by the use of pharmacological inhibitors) and has a molecular weight identical to that of a mutant lacking the entire N-terminus, Δ122 GPR37L1. Serial truncation of the N-terminus prevented GPR37L1 expression except when the entire N-terminus was removed, narrowing the predicted site of N-terminal proteolysis to residues 105–122. Using yeast expressing different G protein chimeras, we found that wild type GPR37L1, but not Δ122 GPR37L1, coupled constitutively to Gpa1/Gαs and Gpa1/Gα16 chimeras, in contrast to previous studies. We tested the peptides identified in cerebrospinal fluid as well as their putative newly-generated N-terminal ‘tethered’ counterparts in both wild type and Δ122 GPR37L1 Gpa1/Gαs strains but saw no effect, suggesting that GPR37L1 does not signal in a manner akin to the protease-activated receptor family. We also saw no evidence of receptor activation or regulation by the reported GPR37L1 ligand, prosaptide/TX14A. Finally, the proteolytically processed species predominated both in vivo and ex vivo in organotypic cerebellar slice preparations, suggesting that GPR37L1 is rapidly processed to a signaling-inactive form. Our data indicate that the function of GPR37L1 in vivo is tightly regulated by metalloprotease-dependent N-terminal cleavage.
Collapse
|
13
|
Sinsky J, Majerova P, Kovac A, Kotlyar M, Jurisica I, Hanes J. Physiological Tau Interactome in Brain and Its Link to Tauopathies. J Proteome Res 2020; 19:2429-2442. [PMID: 32357304 DOI: 10.1021/acs.jproteome.0c00137] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) and most of the other tauopathies are incurable neurodegenerative diseases with unpleasant symptoms and consequences. The common hallmark of all of these diseases is tau pathology, but its connection with disease progress has not been completely understood so far. Therefore, uncovering novel tau-interacting partners and pathology affected molecular pathways can reveal the causes of diseases as well as potential targets for the development of AD treatment. Despite the large number of known tau-interacting partners, a limited number of studies focused on in vivo tau interactions in disease or healthy conditions are available. Here, we applied an in vivo cross-linking approach, capable of capturing weak and transient protein-protein interactions, to a unique transgenic rat model of progressive tau pathology similar to human AD. We have identified 175 potential novel and known tau-interacting proteins by MALDI-TOF mass spectrometry. Several of the most promising candidates for possible drug development were selected for validation by coimmunoprecipitation and colocalization experiments in animal and cellular models. Three proteins, Baiap2, Gpr37l1, and Nptx1, were confirmed as novel tau-interacting partners, and on the basis of their known functions and implications in neurodegenerative or psychiatric disorders, we proposed their potential role in tau pathology.
Collapse
Affiliation(s)
- Jakub Sinsky
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 84510, Slovakia
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 84510, Slovakia.,AXON Neuroscience R&D Services SE, Dvorakovo nabrezie 10, Bratislava 811 02, Slovakia
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 84510, Slovakia.,AXON Neuroscience R&D Services SE, Dvorakovo nabrezie 10, Bratislava 811 02, Slovakia
| | - Max Kotlyar
- Krembil Research Institute, UHN, 60 Leonard Avenue, Toronto, Ontario M5T 0S8, Canada
| | - Igor Jurisica
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 84510, Slovakia.,Krembil Research Institute, UHN, 60 Leonard Avenue, Toronto, Ontario M5T 0S8, Canada.,Departments of Medical Biophysics and Computer Science, University of Toronto, 27 King's College Circle, Toronto, Ontario ON M5S, Canada
| | - Jozef Hanes
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 84510, Slovakia.,AXON Neuroscience R&D Services SE, Dvorakovo nabrezie 10, Bratislava 811 02, Slovakia
| |
Collapse
|
14
|
Affiliation(s)
- James L. J. Coleman
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
- St Vincent’s Clinical School, University of New South Wales, Darlinghurst, New South Wales 2010, Australia
| | - Tony Ngo
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
- St Vincent’s Clinical School, University of New South Wales, Darlinghurst, New South Wales 2010, Australia
| | - Johannes Schmidt
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Nadine Mrad
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Chu Kong Liew
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Nicole M. Jones
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Kensington, New South Wales 2033, Australia
| | - Robert M. Graham
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
- St Vincent’s Clinical School, University of New South Wales, Darlinghurst, New South Wales 2010, Australia
| | - Nicola J. Smith
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
- St Vincent’s Clinical School, University of New South Wales, Darlinghurst, New South Wales 2010, Australia
| |
Collapse
|
15
|
Liu Y, Wang M, Marcora EM, Zhang B, Goate AM. Promoter DNA hypermethylation - Implications for Alzheimer's disease. Neurosci Lett 2019; 711:134403. [PMID: 31351091 PMCID: PMC6759378 DOI: 10.1016/j.neulet.2019.134403] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 07/12/2019] [Accepted: 07/23/2019] [Indexed: 12/31/2022]
Abstract
Recent methylome-wide association studies (MWAS) in humans have solidified the concept that aberrant DNA methylation is associated with Alzheimer's disease (AD). We summarize these findings to improve the understanding of mechanisms governing DNA methylation pertinent to transcriptional regulation, with an emphasis of AD-associated promoter DNA hypermethylation, which establishes an epigenetic barrier for transcriptional activation. By considering brain cell type specific expression profiles that have been published only for non-demented individuals, we detail functional activities of selected neuron, microglia, and astrocyte-enriched genes (AGAP2, DUSP6 and GPR37L1, respectively), which are DNA hypermethylated at promoters in AD. We highlight future directions in MWAS including experimental confirmation, functional relevance to AD, cell type-specific temporal characterization, and mechanism investigation.
Collapse
Affiliation(s)
- Yiyuan Liu
- Department of Neuroscience and Department of Genetics and Genomic Sciences, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.
| | - Edoardo M Marcora
- Department of Neuroscience and Department of Genetics and Genomic Sciences, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
| | - Alison M Goate
- Department of Neuroscience and Department of Genetics and Genomic Sciences, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| |
Collapse
|
16
|
Zheng X, Asico LD, Ma X, Konkalmatt PR. G protein-coupled receptor 37L1 regulates renal sodium transport and blood pressure. Am J Physiol Renal Physiol 2018; 316:F506-F516. [PMID: 30566002 DOI: 10.1152/ajprenal.00289.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
G protein-coupled receptors (GPCRs) in the kidney regulate the reabsorption of essential nutrients, ions, and water from the glomerular filtrate. Abnormalities in renal epithelial ion transport play important roles in the pathogenesis of essential hypertension. The orphan G protein-coupled receptor 37L1 (GPR37L1), also known as endothelin receptor type B-like protein (ETBR-LP2), is expressed in several regions in the brain, but its expression profile and function in peripheral tissues are poorly understood. We found that GPR37L1 mRNA expression is highest in the brain, followed by the stomach, heart, testis, and ovary, with moderate expression in the kidney, pancreas, skeletal muscle, liver, lung, and spleen. Immunofluorescence analyses revealed the expression of GPR37L1 in specific regions within some organs. In the kidney, GPR37L1 is expressed in the apical membrane of renal proximal tubule cells. In human renal proximal tubule cells, the transient expression of GPR37LI increased intracellular sodium, whereas the silencing of GPR37LI decreased intracellular sodium. Inhibition of Na+/H+ exchanger isoform 3 (NHE3) activity abrogated the GPR37L1-mediated increase in intracellular sodium. Renal-selective silencing of Gpr37l1 in mice increased urine output and sodium excretion and decreased systolic and diastolic blood pressures. The renal-selective silencing of GPR37L1 decreased the protein expression of NHE3 but not the expression of Na+-K+-ATPase or sodium-glucose cotransporter 2. Our findings show that in the kidney, GPR37L1 participates in renal proximal tubule luminal sodium transport and regulation of blood pressure by increasing the renal expression and function of NHE3 by decreasing cAMP production. The role of GPR37L1, expressed in specific cell types in organs other than the kidney, remains to be determined.
Collapse
Affiliation(s)
- Xiaoxu Zheng
- Department of Medicine, The George Washington University , Washington, District of Columbia
| | - Laureano D Asico
- Department of Medicine, The George Washington University , Washington, District of Columbia
| | - Xiaobo Ma
- Department of Medicine, The George Washington University , Washington, District of Columbia
| | - Prasad R Konkalmatt
- Department of Medicine, The George Washington University , Washington, District of Columbia
| |
Collapse
|
17
|
Liu B, Mosienko V, Vaccari Cardoso B, Prokudina D, Huentelman M, Teschemacher AG, Kasparov S. Glio- and neuro-protection by prosaposin is mediated by orphan G-protein coupled receptors GPR37L1 and GPR37. Glia 2018; 66:2414-2426. [PMID: 30260505 PMCID: PMC6492175 DOI: 10.1002/glia.23480] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 02/01/2023]
Abstract
Discovery of neuroprotective pathways is one of the major priorities for neuroscience. Astrocytes are natural neuroprotectors and it is likely that brain resilience can be enhanced by mobilizing their protective potential. Among G‐protein coupled receptors expressed by astrocytes, two highly related receptors, GPR37L1 and GPR37, are of particular interest. Previous studies suggested that these receptors are activated by a peptide Saposin C and its neuroactive fragments (prosaptide TX14(A)), which were demonstrated to be neuroprotective in various animal models by several groups. However, pairing of Saposin C or prosaptides with GPR37L1/GPR37 has been challenged and presently GPR37L1/GPR37 have regained their orphan status. Here, we demonstrate that in their natural habitat, astrocytes, these receptors mediate a range of effects of TX14(A), including protection from oxidative stress. The Saposin C/GPR37L1/GPR37 pathway is also involved in the neuroprotective effect of astrocytes on neurons subjected to oxidative stress. The action of TX14(A) is at least partially mediated by Gi‐proteins and the cAMP‐PKA axis. On the other hand, when recombinant GPR37L1 or GPR37 are expressed in HEK293 cells, they are not functional and do not respond to TX14(A), which explains unsuccessful attempts to confirm the ligand‐receptor pairing. Therefore, this study identifies GPR37L1/GPR37 as the receptors for TX14(A), and, by extension of Saposin C, and paves the way for the development of neuroprotective therapeutics acting via these receptors. A video abstract of this article can be found at: https://www.youtube.com/watch?v=qTn13My9Sz8
Collapse
Affiliation(s)
- Beihui Liu
- Department of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Valentina Mosienko
- Department of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Barbara Vaccari Cardoso
- Department of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom
| | | | | | - Anja G Teschemacher
- Department of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Sergey Kasparov
- Department of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
18
|
El Buri A, Adams DR, Smith D, Tate RJ, Mullin M, Pyne S, Pyne NJ. The sphingosine 1-phosphate receptor 2 is shed in exosomes from breast cancer cells and is N-terminally processed to a short constitutively active form that promotes extracellular signal regulated kinase activation and DNA synthesis in fibroblasts. Oncotarget 2018; 9:29453-29467. [PMID: 30034630 PMCID: PMC6047680 DOI: 10.18632/oncotarget.25658] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/04/2018] [Indexed: 12/21/2022] Open
Abstract
We demonstrate here that the G protein-coupled receptor (GPCR), sphingosine 1-phosphate receptor 2 (S1P2, Mr = 40 kDa) is shed in hsp70+ and CD63+ containing exosomes from MDA-MB-231 breast cancer cells. The receptor is taken up by fibroblasts, where it is N-terminally processed to a shorter form (Mr = 36 kDa) that appears to be constitutively active and able to stimulate the extracellular signal regulated kinase-1/2 (ERK-1/2) pathway and DNA synthesis. An N-terminally truncated construct of S1P2, which may correspond to the processed form of the receptor generated in fibroblasts, was found to be constitutively active when over-expressed in HEK293 cells. Analysis based on the available crystal structure of the homologous S1P1 receptor suggests that, in the inactive-state, the N-terminus of S1P2 may tension TM1 so as to maintain a compressive action on TM7. This in turn may stabilise a closed basal state interface between the intracellular ends of TM7 and TM6. Cleavage and removal of the S1P2 N-terminal peptide is postulated to facilitate relaxation of TM1 and accompanying separation of TM6 and TM7. The latter transition is one of the key elements of G protein engagement and is required to open the intracellular coupling interface beneath the GPCR helix bundle. Therefore, removal at the N-terminus of S1P2 is likely to enhance G protein coupling. These findings provide the first evidence that S1P2 is released from breast cancer cells in exosomes and is processed by fibroblasts to promote ERK signaling and proliferation of these cells.
Collapse
Affiliation(s)
- Ashref El Buri
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - David R Adams
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, Scotland, UK
| | - Douglas Smith
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Rothwelle J Tate
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Margaret Mullin
- Electron Microscopy Facility, School of Life Sciences, MVLS, Joseph Black Building, University of Glasgow, Glasgow, Scotland, UK
| | - Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Nigel J Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| |
Collapse
|
19
|
Orphan receptor GPR37L1 contributes to the sexual dimorphism of central cardiovascular control. Biol Sex Differ 2018; 9:14. [PMID: 29625592 PMCID: PMC5889568 DOI: 10.1186/s13293-018-0173-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/27/2018] [Indexed: 11/29/2022] Open
Abstract
Background Over 100 mammalian G protein-coupled receptors are yet to be matched with endogenous ligands; these so-called orphans are prospective drug targets for the treatment of disease. GPR37L1 is one such orphan, abundant in the brain and detectable as mRNA in the heart and kidney. GPR37L1 ablation was reported to cause hypertension and left ventricular hypertrophy, and thus, we sought to further define the role of GPR37L1 in blood pressure homeostasis. Methods We investigated the cardiovascular effects of GPR37L1 using wild-type (GPR37L1wt/wt) and null (GPR37L1KO/KO) mice established on a C57BL/6J background, both under baseline conditions and during AngII infusion. We profiled GPR37L1 tissue expression, examining the endogenous receptor by immunoblotting and a β-galactosidase reporter mouse by immunohistochemistry. Results GPR37L1 protein was abundant in the brain but not detectable in the heart and kidney. We measured blood pressure in GPR37L1wt/wt and GPR37L1KO/KO mice and found that deletion of GPR37L1 causes a female-specific increase in systolic, diastolic, and mean arterial pressures. When challenged with short-term AngII infusion, only male GPR37L1KO/KO mice developed exacerbated left ventricular hypertrophy and evidence of heart failure, while the female GPR37L1KO/KO mice were protected from cardiac fibrosis. Conclusions Despite its absence in the heart and kidney, GPR37L1 regulates baseline blood pressure in female mice and is crucial for cardiovascular compensatory responses in males. The expression of GPR37L1 in the brain, yet absence from peripheral cardiovascular tissues, suggests this orphan receptor is a hitherto unknown contributor to central cardiovascular control. Electronic supplementary material The online version of this article (10.1186/s13293-018-0173-y) contains supplementary material, which is available to authorized users.
Collapse
|
20
|
Fine-Tuning Limited Proteolysis: A Major Role for Regulated Site-Specific O-Glycosylation. Trends Biochem Sci 2018; 43:269-284. [PMID: 29506880 DOI: 10.1016/j.tibs.2018.02.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/26/2018] [Accepted: 02/02/2018] [Indexed: 11/23/2022]
Abstract
Limited proteolytic processing is an essential and ubiquitous post-translational modification (PTM) affecting secreted proteins; failure to regulate the process is often associated with disease. Glycosylation is also a ubiquitous protein PTM and site-specific O-glycosylation in close proximity to sites of proteolysis can regulate and direct the activity of proprotein convertases, a disintegrin and metalloproteinases (ADAMs), and metalloproteinases affecting the activation or inactivation of many classes of proteins, including G-protein-coupled receptors (GPCRs). Here, we summarize the emerging data that suggest O-glycosylation to be a key regulator of limited proteolysis, and highlight the potential for crosstalk between multiple PTMs.
Collapse
|
21
|
The G protein-coupled receptors deorphanization landscape. Biochem Pharmacol 2018; 153:62-74. [PMID: 29454621 DOI: 10.1016/j.bcp.2018.02.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 02/13/2018] [Indexed: 12/14/2022]
Abstract
G protein-coupled receptors (GPCRs) are usually highlighted as being both the largest family of membrane proteins and the most productive source of drug targets. However, most of the GPCRs are understudied and hence cannot be used immediately for innovative therapeutic strategies. Besides, there are still around 100 orphan receptors, with no described endogenous ligand and no clearly defined function. The race to discover new ligands for these elusive receptors seems to be less intense than before. Here, we present an update of the various strategies employed to assign a function to these receptors and to discover new ligands. We focus on the recent advances in the identification of endogenous ligands with a detailed description of newly deorphanized receptors. Replication being a key parameter in these endeavors, we also discuss the latest controversies about problematic ligand-receptor pairings. In this context, we propose several recommendations in order to strengthen the reporting of new ligand-receptor pairs.
Collapse
|
22
|
Jolly S, Bazargani N, Quiroga AC, Pringle NP, Attwell D, Richardson WD, Li H. G protein-coupled receptor 37-like 1 modulates astrocyte glutamate transporters and neuronal NMDA receptors and is neuroprotective in ischemia. Glia 2017; 66:47-61. [PMID: 28795439 PMCID: PMC5724489 DOI: 10.1002/glia.23198] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 07/05/2017] [Accepted: 07/13/2017] [Indexed: 12/21/2022]
Abstract
We show that the G protein‐coupled receptor GPR37‐like 1 (GPR37L1) is expressed in most astrocytes and some oligodendrocyte precursors in the mouse central nervous system. This contrasts with GPR37, which is mainly in mature oligodendrocytes. Comparison of wild type and Gpr37l1–/– mice showed that loss of GPR37L1 did not affect the input resistance or resting potential of astrocytes or neurons in the hippocampus. However, GPR37L1‐mediated signalling inhibited astrocyte glutamate transporters and – surprisingly, given its lack of expression in neurons – reduced neuronal NMDA receptor (NMDAR) activity during prolonged activation of the receptors as occurs in ischemia. This effect on NMDAR signalling was not mediated by a change in the release of D‐serine or TNF‐α, two astrocyte‐derived agents known to modulate NMDAR function. After middle cerebral artery occlusion, Gpr37l1 expression was increased around the lesion. Neuronal death was increased by ∼40% in Gpr37l1–/– brain compared to wild type in an in vitro model of ischemia. Thus, GPR37L1 protects neurons during ischemia, presumably by modulating extracellular glutamate concentration and NMDAR activation.
Collapse
Affiliation(s)
- Sarah Jolly
- Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, United Kingdom
| | - Narges Bazargani
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, United Kingdom
| | - Alejandra C Quiroga
- Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, United Kingdom
| | - Nigel P Pringle
- Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, United Kingdom
| | - David Attwell
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, United Kingdom
| | - William D Richardson
- Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, United Kingdom
| | - Huiliang Li
- Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, United Kingdom
| |
Collapse
|
23
|
GPR37L1 modulates seizure susceptibility: Evidence from mouse studies and analyses of a human GPR37L1 variant. Neurobiol Dis 2017; 106:181-190. [PMID: 28688853 DOI: 10.1016/j.nbd.2017.07.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/23/2017] [Accepted: 07/04/2017] [Indexed: 12/28/2022] Open
Abstract
Progressive myoclonus epilepsies (PMEs) are disorders characterized by myoclonic and generalized seizures with progressive neurological deterioration. While several genetic causes for PMEs have been identified, the underlying causes remain unknown for a substantial portion of cases. Here we describe several affected individuals from a large, consanguineous family presenting with a novel PME in which symptoms begin in adolescence and result in death by early adulthood. Whole exome analyses revealed that affected individuals have a homozygous variant in GPR37L1 (c.1047G>T [Lys349Asn]), an orphan G protein-coupled receptor (GPCR) expressed predominantly in the brain. In vitro studies demonstrated that the K349N substitution in Gpr37L1 did not grossly alter receptor expression, surface trafficking or constitutive signaling in transfected cells. However, in vivo studies revealed that a complete loss of Gpr37L1 function in mice results in increased seizure susceptibility. Mice lacking the related receptor Gpr37 also exhibited an increase in seizure susceptibility, while genetic deletion of both receptors resulted in an even more dramatic increase in vulnerability to seizures. These findings provide evidence linking GPR37L1 and GPR37 to seizure etiology and demonstrate an association between a GPR37L1 variant and a novel progressive myoclonus epilepsy.
Collapse
|
24
|
Smith BM, Giddens MM, Neil J, Owino S, Nguyen TT, Duong D, Li F, Hall RA. Mice lacking Gpr37 exhibit decreased expression of the myelin-associated glycoprotein MAG and increased susceptibility to demyelination. Neuroscience 2017. [PMID: 28642167 DOI: 10.1016/j.neuroscience.2017.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
GPR37 is an orphan G protein-coupled receptor that is predominantly expressed in the brain and found at particularly high levels in oligodendrocytes. GPR37 has been shown to exert effects on oligodendrocyte differentiation and myelination during development, but the molecular basis of these actions is incompletely understood and moreover nothing is known about the potential role(s) of this receptor under demyelinating conditions. To shed light on the fundamental biology of GPR37, we performed proteomic studies comparing protein expression levels in the brains of mice lacking GPR37 and its close relative GPR37-like 1 (GPR37L1). These studies revealed that one of the proteins most sharply decreased in the brains of Gpr37/Gpr37L1 double knockout mice is the myelin-associated glycoprotein MAG. Follow-up Western blot studies confirmed this finding and demonstrated that genetic deletion of Gpr37, but not Gpr37L1, results in strikingly decreased brain expression of MAG. Further in vitro studies demonstrated that GPR37 and MAG form a complex when expressed together in cells. As loss of MAG has previously been shown to result in increased susceptibility to brain insults, we additionally assessed Gpr37-knockout (Gpr37-/-) vs. wild-type mice in the cuprizone model of demyelination. These studies revealed that Gpr37-/- mice exhibit dramatically increased loss of myelin in response to cuprizone, yet do not show any increased loss of oligodendrocyte precursor cells or mature oligodendrocytes. These findings reveal that loss of GPR37 alters oligodendrocyte physiology and increases susceptibility to demyelination, indicating that GPR37 could be a potential drug target for the treatment of demyelinating diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Brilee M Smith
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Michelle M Giddens
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jessica Neil
- Neurorepair Therapeutics, Inc., Research Triangle Park, NC, USA
| | - Sharon Owino
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Duc Duong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Fengqiao Li
- Neurorepair Therapeutics, Inc., Research Triangle Park, NC, USA
| | - Randy A Hall
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
25
|
Leinartaité L, Svenningsson P. Folding Underlies Bidirectional Role of GPR37/Pael-R in Parkinson Disease. Trends Pharmacol Sci 2017. [PMID: 28629580 DOI: 10.1016/j.tips.2017.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Since conformational flexibility, which is required for the function of a protein, comes at the expense of structural stability, many proteins, including G-protein-coupled receptors (GPCRs), are under constant risk of misfolding and aggregation. In this regard GPR37 (also named PAEL-R and ETBR-LP-1) takes a prominent role, particularly in relation to Parkinson disease (PD). GPR37 is a substrate for parkin and accumulates abnormally in autosomal recessive juvenile parkinsonism, contributing to endoplasmic reticulum stress and death of dopaminergic neurons. GPR37 also constitutes a core structure of Lewy bodies, demonstrating a more general involvement in PD pathology. However, if folded and matured properly, GPR37 seems to be neuroprotective. Moreover, GPR37 modulates functionality of the dopamine transporter and the dopamine D2 receptor and stimulates dopamine neurotransmission. Here we review the multiple roles of GPR37 with relevance to potential disease modification and symptomatic therapies of PD and highlight unsolved issues in this field.
Collapse
Affiliation(s)
- Lina Leinartaité
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, SE-171 76, Stockholm, Sweden.
| | - Per Svenningsson
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, SE-171 76, Stockholm, Sweden.
| |
Collapse
|
26
|
Goth CK, Tuhkanen HE, Khan H, Lackman JJ, Wang S, Narimatsu Y, Hansen LH, Overall CM, Clausen H, Schjoldager KT, Petäjä-Repo UE. Site-specific O-Glycosylation by Polypeptide N-Acetylgalactosaminyltransferase 2 (GalNAc-transferase T2) Co-regulates β 1-Adrenergic Receptor N-terminal Cleavage. J Biol Chem 2017; 292:4714-4726. [PMID: 28167537 PMCID: PMC5377785 DOI: 10.1074/jbc.m116.730614] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 01/29/2017] [Indexed: 01/08/2023] Open
Abstract
The β1-adrenergic receptor (β1AR) is a G protein-coupled receptor (GPCR) and the predominant adrenergic receptor subtype in the heart, where it mediates cardiac contractility and the force of contraction. Although it is the most important target for β-adrenergic antagonists, such as β-blockers, relatively little is yet known about its regulation. We have shown previously that β1AR undergoes constitutive and regulated N-terminal cleavage participating in receptor down-regulation and, moreover, that the receptor is modified by O-glycosylation. Here we demonstrate that the polypeptide GalNAc-transferase 2 (GalNAc-T2) specifically O-glycosylates β1AR at five residues in the extracellular N terminus, including the Ser-49 residue at the location of the common S49G single-nucleotide polymorphism. Using in vitro O-glycosylation and proteolytic cleavage assays, a cell line deficient in O-glycosylation, GalNAc-T-edited cell line model systems, and a GalNAc-T2 knock-out rat model, we show that GalNAc-T2 co-regulates the metalloproteinase-mediated limited proteolysis of β1AR. Furthermore, we demonstrate that impaired O-glycosylation and enhanced proteolysis lead to attenuated receptor signaling, because the maximal response elicited by the βAR agonist isoproterenol and its potency in a cAMP accumulation assay were decreased in HEK293 cells lacking GalNAc-T2. Our findings reveal, for the first time, a GPCR as a target for co-regulatory functions of site-specific O-glycosylation mediated by a unique GalNAc-T isoform. The results provide a new level of β1AR regulation that may open up possibilities for new therapeutic strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Christoffer K Goth
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Hanna E Tuhkanen
- the Medical Research Center Oulu, Research Unit of Biomedicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland
| | - Hamayun Khan
- the Medical Research Center Oulu, Research Unit of Biomedicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland
| | - Jarkko J Lackman
- the Medical Research Center Oulu, Research Unit of Biomedicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland
| | - Shengjun Wang
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Yoshiki Narimatsu
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Lasse H Hansen
- the Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen Ø, Denmark and
| | - Christopher M Overall
- the Centre for Blood Research, Department of Oral Biological and Medical Sciences, and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Henrik Clausen
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Katrine T Schjoldager
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark,
| | - Ulla E Petäjä-Repo
- the Medical Research Center Oulu, Research Unit of Biomedicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland,
| |
Collapse
|
27
|
Coleman JLJ, Ngo T, Smith NJ. The G protein-coupled receptor N-terminus and receptor signalling: N-tering a new era. Cell Signal 2017; 33:1-9. [PMID: 28188824 DOI: 10.1016/j.cellsig.2017.02.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 01/22/2023]
Abstract
G protein-coupled receptors (GPCRs) are a vast family of membrane-traversing proteins, essential to the ability of eukaryotic life to detect, and mount an intracellular response to, a diverse range of extracellular stimuli. GPCRs have evolved with archetypal features including an extracellular N-terminus and intracellular C-terminus that flank a transmembrane structure of seven sequential helices joined by intracellular and extracellular loops. These structural domains contribute to the ability of a GPCR to be correctly synthesised and inserted into the cell membrane, to interact with its cognate ligand(s) and to couple with signal-transducing heterotrimeric G proteins, allowing the activated receptor to selectively modulate a number of signalling cascades. Whilst well known for its importance in receptor translation and trafficking, the GPCR N-terminus is underexplored as a participant in receptor signalling. This review aims to discuss and integrate recent advances in knowledge of the vital roles of the GPCR N-terminus in receptor signalling.
Collapse
Affiliation(s)
- James L J Coleman
- Molecular Pharmacology Group, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia.
| | - Tony Ngo
- Molecular Pharmacology Group, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia
| | - Nicola J Smith
- Molecular Pharmacology Group, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia.
| |
Collapse
|
28
|
Orphan receptor ligand discovery by pickpocketing pharmacological neighbors. Nat Chem Biol 2016; 13:235-242. [PMID: 27992882 DOI: 10.1038/nchembio.2266] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 10/11/2016] [Indexed: 12/20/2022]
Abstract
Understanding the pharmacological similarity of G protein-coupled receptors (GPCRs) is paramount for predicting ligand off-target effects, drug repurposing, and ligand discovery for orphan receptors. Phylogenetic relationships do not always correctly capture pharmacological similarity. Previous family-wide attempts to define pharmacological relationships were based on three-dimensional structures and/or known receptor-ligand pairings, both unavailable for orphan GPCRs. Here, we present GPCR-CoINPocket, a novel contact-informed neighboring pocket metric of GPCR binding-site similarity that is informed by patterns of ligand-residue interactions observed in crystallographically characterized GPCRs. GPCR-CoINPocket is applicable to receptors with unknown structure or ligands and accurately captures known pharmacological relationships between GPCRs, even those undetected by phylogeny. When applied to orphan receptor GPR37L1, GPCR-CoINPocket identified its pharmacological neighbors, and transfer of their pharmacology aided in discovery of the first surrogate ligands for this orphan with a 30% success rate. Although primarily designed for GPCRs, the method is easily transferable to other protein families.
Collapse
|