1
|
Chen Y, Su R, Hu Y, Luo J, Yi C, Zhu Y, Feng Q, Yan X, Ma M, Feng W. The active components and potential mechanisms of Li-Chong-Xiao-Zhen granules in the treatment of ovarian cancer: An integrated metabolomics, proteomics, network pharmacology and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 343:119474. [PMID: 39938763 DOI: 10.1016/j.jep.2025.119474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Li-Chong-Xiao-Zhen granules (LCXZG) has the effect of " activate blood and resolve stasis," " soften hardness and dissipate binds " properties, and was widely used in the clinic for decades to treat uterine fibroids and ovarian cancer (OC), which is called "zheng jia" in traditional Chinese medicine. AIM OF THE STUDY The aim of this study is to identify the active components of LCXZG and elucidate the mechanism of LCXZG in ovarian cancer by combining network pharmacology, metabolomics and proteomics. MATERIAL AND METHODS The absorbed compounds in serum of LCXZG was identified by liquid chromatography-mass spectrometry. Network pharmacology was used to predict the active components and target genes of LCXZG. The therapy mechanism of LCXZG on OC were determined by establishing a nude mouse xenograft tumor model and using combined metabolomics and proteomics analysis. RESULTS A total of 218 absorbed compounds in serum of LCXZG were identified by UPLC-MS. Network pharmacology results showed that lipid and atherosclerosis, chemical carcinoma-receptor activation and PI3K-AKT signaling were potential target pathways of LCXZG in the treatment of OC. Further metabolomics and proteomics studies demonstrated that LCXZG altered glycerophospholipid metabolism in ovarian cancer. CONCLUSIONS This study demonstrated that most of the active Compound of LCXZG are Paeoniflorin, Turanose, Amygdalin and Benzoylpaeoniflorin, which may exert their anti-tumor effects by regulating glycerophospholipid metabolism in ovarian cancer.
Collapse
Affiliation(s)
- Yiliu Chen
- School of Traditional Chinese Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Ran Su
- School of Traditional Chinese Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Yunguang Hu
- Guangdong Yi-fang Pharmaceutical Co. Ltd, Jinan University, 528200, Foshan, Guangdong, China
| | - Jiali Luo
- School of Traditional Chinese Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Chu Yi
- School of Traditional Chinese Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Yinbin Zhu
- School of Traditional Chinese Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Qing Feng
- School of Traditional Chinese Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Xianxin Yan
- School of Traditional Chinese Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Min Ma
- School of Traditional Chinese Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Weifeng Feng
- The First Affiliated Hospital of Jinan University, 510632, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Zheng D, Tao J, Jiang L, Zhang X, He H, Shen X, Sang Y, Liu Y, Yang Z, Nie Z. Efficient Cytosolic Delivery of Single-Chain Polymeric Artificial Enzymes for Intracellular Catalysis and Chemo-Dynamic Therapy. J Am Chem Soc 2025; 147:998-1007. [PMID: 39780388 DOI: 10.1021/jacs.4c14264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Designing artificial enzymes for in vivo catalysis presents a great challenge due to biomacromolecule contamination, poor biodistribution, and insufficient substrate interaction. Herein, we developed single-chain polymeric nanoparticles with Cu/N-heterocyclic carbene active sites (SCNP-Cu) to function as peroxidase mimics for in vivo catalysis and chemo-dynamic therapy (CDT). Compared with the enzyme mimics based on unfolded linear polymer scaffold and multichain cross-linked scaffold, SCNP-Cu exhibits improved tumor accumulation and CDT efficiency both in vitro and in vivo. Protein-like size of the SCNP scaffold promotes passive diffusion, whereas positive surface charge allows its active transcytosis for deep tumor penetration and hence accumulation in the tumor site. The submolecular compartments of the SCNP scaffold effectively protect the active sites from protein bindings, thereby providing a "cleaner" microenvironment for catalysis within a living system. The folded structure of SCNP-Cu facilitates their cytosolic delivery of and free diffusion within cytosol, ensuring efficient contact with endogenous H2O2, in situ generation of toxic hydroxyl radicals (·OH), and effective damage of intracellular targets (i.e., lipids, nucleic acids). This work establishes versatile SCNP-based nanoplatforms for developing artificial enzymes for in vivo catalysis.
Collapse
Affiliation(s)
- Di Zheng
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R China
| | - Jing Tao
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R China
| | - Liping Jiang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R China
| | - Xinyue Zhang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R China
| | - Huibin He
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R China
| | - Xiaoxue Shen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R China
| | - Yutao Sang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R China
| | - Yunen Liu
- Shuren International College, Shenyang Medical College, Shenyang 110034, P. R. China
| | - Zhenzhong Yang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Zhihong Nie
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R China
| |
Collapse
|
3
|
Ghorasaini M, Costa D, Tyrrell VJ, Protty M, Giera M, O'Donnell VB. A Method for Analysis of Oxidized Phospholipids from Biological Samples Using Mass Spectrometry. Methods Mol Biol 2025; 2855:155-169. [PMID: 39354307 DOI: 10.1007/978-1-0716-4116-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Oxidized phospholipids (oxPLs) are generated during innate immunity and inflammation, where they play a variety of biological roles, including regulation of autoimmunity and coagulation. Some are generated by enzymatic reactions, leading to stereo- and regiospecificity, while many others can be formed through nonenzymatic oxidation and truncation and can be used as biomarkers of oxidative stress. Mass spectrometry methods have been developed over many years for oxPL analysis, which can provide robust estimations of molecular species and amounts, where standards are available. Here we present a method used for the analysis of enzymatically-generated oxPL (eoxPL), which allows quantification of mono-hydroxy oxylipin-containing species. We also show profiling of many other partially characterized structures in tissue samples and provide typical chromatograms obtained.
Collapse
Affiliation(s)
- Mohan Ghorasaini
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Daniela Costa
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Victoria J Tyrrell
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Majd Protty
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Valerie B O'Donnell
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
4
|
Nemri J, Morales C, Gilbert NC, Majewski J, Newcomer ME, Vander Zanden CM. Structure of a model lipid membrane oxidized by human 15-lipoxygenase-2. Biochem Biophys Res Commun 2024; 737:150533. [PMID: 39142138 DOI: 10.1016/j.bbrc.2024.150533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
Enzyme-mediated lipid oxidation is an important regulatory event in cell signaling, with oxidized lipids being potent signaling molecules that can illicit dramatic changes in cell behavior. For example, peroxidation of an arachidonoyl poly-unsaturated fatty acid by the human enzyme 15-lipoxygenase-2 (15-LOX-2) has been associated with formation of atherosclerotic plaques. Previous work on synthetically oxidized membranes has shown that oxidized lipid tails will change their conformation to facilitate interactions between the peroxide group and the lipid headgroups. However, this phenomenon has not been directly observed for a lipid membrane that has undergone enzyme-catalyzed oxidation. In this study, we report on the structure of a model lipid membrane before and after oxidation by 15-LOX-2. A model lipid membrane monolayer at the air-liquid interface was constructed from 1-stearoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (SAPC) in a Langmuir trough, and X-ray reflectivity measurements were conducted to determine the electron density profile of the system. Exposure to 15-LOX-2 caused a dramatic change in the SAPC structure, namely a blurred distinction between the lipid tail/head layers and shortening of the average lipid tail length by ∼3 Å. The electron density profile of the oxidized SAPC monolayer is similar to that of a synthetically oxidized substrate mimic. Overall, this reported observation of an enzymatically-oxidized membrane structure in situ is helping to bridge a gap in the literature between structural studies on synthetically oxidized membranes and cellular studies aiming to understand physiological responses.
Collapse
Affiliation(s)
- Jamil Nemri
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, 1420 Austin Bluffs Pwky, Colorado Springs, CO, 80918, USA.
| | - Cosme Morales
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, 1420 Austin Bluffs Pwky, Colorado Springs, CO, 80918, USA.
| | - Nathaniel C Gilbert
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA, 70803, USA.
| | - Jaroslaw Majewski
- Division of Molecular and Cellular Biosciences, National Science Foundation, Alexandria, VA, USA; Theoretical Biology and Biophysics at Los Alamos National Laboratory, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA; Department of Chemical and Biological Engineering and Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Marcia E Newcomer
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA, 70803, USA.
| | - Crystal M Vander Zanden
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, 1420 Austin Bluffs Pwky, Colorado Springs, CO, 80918, USA.
| |
Collapse
|
5
|
Song Q, Zhang Y, Hu H, Yang X, Xing X, Wu J, Zhu Y, Zhang Y. Augment of Ferroptosis with Photothermal Enhanced Fenton Reaction and Glutathione Inhibition for Tumor Synergistic Nano-Catalytic Therapy. Int J Nanomedicine 2024; 19:11923-11940. [PMID: 39574433 PMCID: PMC11579141 DOI: 10.2147/ijn.s480586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024] Open
Abstract
Introduction Ferroptosis-driven tumor ablation strategies based on nanotechnology could be achieved by elevating intracellular iron levels or inhibiting glutathione peroxidase 4 (GPX4) activity. However, the intracellular antioxidative defense mechanisms endow tumor cells with ferroptosis resistance capacity. The purpose of this study was to develop a synergistic therapeutic platform to enhance the efficacy of ferroptosis-based tumor therapy. Methods In this study, a multifunctional nano-catalytic therapeutic platform (mFeB@PDA-FA) based on chemodynamic therapy (CDT) and photothermal therapy (PTT) was developed to effectively trigger ferroptosis in tumor. In our work, iron-based mesoporous Fe3O4 nanoparticles (mFe3O4 NPs) were employed for the encapsulation of L-buthionine sulfoximine (BSO), followed by the modification of folic acid-functionalized polydopamine (PDA) coating on the periphery. Then, the antitumor effect of mFeB@PDA-FA NPs was evaluated using Human OS cells (MNNG/HOS) and a subcutaneous xenograft model of osteosarcoma. Results mFe3O4 harboring multivalent elements (Fe2+/3+) could catalyze hydrogen peroxide (H2O2) into highly cytotoxic ˙OH, while the tumor microenvironment (TME)-responsive released BSO molecules inhibit the biosynthesis of GSH, thus achieving the deactivation of GPX4 and the enhancement of ferroptosis. Moreover, thanks to the remarkable photothermal conversion performance of mFe3O4 and PDA shell, PTT further synergistically enhanced the efficacy of CDT and facilitated ferroptosis. Both in vivo and in vitro experiments confirmed that this synergistic therapy could achieve excellent tumor inhibition effects. Conclusion The nanotherapeutic platform mFeB@PDA-FA could effectively disrupted the redox homeostasis in tumor cells for boosting ferroptosis through the combination of CDT, PTT and GSH elimination, which provided a new perspective for the treatment of ferroptosis sensitive tumors.
Collapse
Affiliation(s)
- Qingcheng Song
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Orthopaedic Institution of Hebei Province, Shijiazhuang, Hebei, People’s Republic of China
| | - Yiran Zhang
- School of Medicine, Nankai University, Tianjin, People’s Republic of China
| | - Hongzhi Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Xuemei Yang
- The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei, People’s Republic of China
| | - Xin Xing
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Orthopaedic Institution of Hebei Province, Shijiazhuang, Hebei, People’s Republic of China
| | - Jianhua Wu
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Yanbin Zhu
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Orthopaedic Institution of Hebei Province, Shijiazhuang, Hebei, People’s Republic of China
| | - Yingze Zhang
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Orthopaedic Institution of Hebei Province, Shijiazhuang, Hebei, People’s Republic of China
| |
Collapse
|
6
|
Hodzic A, Gesslbauer B, Bochkov V, Oskolkova OV. Cooperative induction of CXCL chemokines by inflammatory cytokines and oxidized phospholipids. Immunology 2024; 173:286-295. [PMID: 38468451 DOI: 10.1111/imm.13773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/19/2024] [Indexed: 03/13/2024] Open
Abstract
Inflammation is initiated and driven by a mixture of mediators, which modify effects of each other. This study analysed in vitro pro-inflammatory activity of inflammatory cytokines (TNFα and IL-1β) in a combination with a lipid DAMP molecule, oxidized palmitoyl-arachidonoyl-phosphatidylcholine (OxPAPC). The study was performed on endothelial and monocytic cell lines. The cells were treated with different concentrations of TNFα or IL-1β, OxPAPC and their combinations, either in the presence or absence of drugs regulating inflammation. Pro-inflammatory effects of TNFα/IL-1β and OxPAPC were estimated by analysis of chemokines CXCL8, CXCL2 and CXCL3 by ELISA and RT-PCR. Toxicity was determined by analysis of metabolic activity. Statistical significance was estimated by ANOVA and Dunnett's test. OxPAPC was a much weaker chemokine inducer as compared to TNFα or IL-1β. However, OxPAPC and TNFα/IL-1β together induced effects that were significantly stronger than the arithmetical sum of individual effects. This cooperative action of OxPAPC and TNFα was reversed by inhibitors of p38 MAPK. We hypothesise that the boosting of TNFα and IL-1β effects by OxPAPC may be more pathologically important than the action of the lipid alone. Inhibitors of p38 MAPK may become a tool for analysis of pathological role of oxidized phospholipids.
Collapse
Affiliation(s)
- Alma Hodzic
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Bernd Gesslbauer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Valery Bochkov
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Olga V Oskolkova
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Graz, Austria
| |
Collapse
|
7
|
Santos M, Melo T, Maurício T, Ferreira H, Domingues P, Domingues R. The non-enzymatic oxidation of phosphatidylethanolamine and phosphatidylserine and their intriguing roles in inflammation dynamics and diseases. FEBS Lett 2024; 598:2174-2189. [PMID: 39097985 DOI: 10.1002/1873-3468.14992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/14/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024]
Abstract
Phosphatidylethanolamine (PE) and phosphatidylserine (PS), along with phosphatidylcholine (PC), are key phospholipids (PL) in cell membranes and lipoproteins, prone to oxidative modifications. Their oxidized forms, OxPE and OxPS, play significant roles in inflammation and immune response. This review explores their structural oxidative changes under non-enzymatic conditions and their roles in physiological and pathological contexts, influencing inflammation, and immunity. Specific oxidations of PE and PS significantly alter their physicochemical properties, leading to enhanced biological functions, reduced activity, or inactivation. OxPE may show pro-inflammatory actions, similar to well-documented OxPC, while the OxPS pro-inflammatory effects are less noted. However, OxPS and OxPE have also shown an antagonistic effect against lipopolysaccharides (LPS), suggesting a protective role against exacerbated immune responses, similar to OxPC. Further research is needed to deepen our understanding of these less-studied OxPL classes. The role of OxPE and OxPS in disease pathogenesis remains largely unexplored, with limited studies linking them to Alzheimer's disease, diabetes, rheumatoid arthritis, traumatic brain injury, and skin inflammation. These findings highlight the potential of OxPE and OxPS as biomarkers for disease diagnosis, monitoring, and therapeutic targeting.
Collapse
Affiliation(s)
- Matilde Santos
- Department of Chemistry, Mass Spectrometry Center, LAQV-REQUIMTE, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Tânia Melo
- Department of Chemistry, Mass Spectrometry Center, LAQV-REQUIMTE, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- Department of Chemistry, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Tatiana Maurício
- Department of Chemistry, Mass Spectrometry Center, LAQV-REQUIMTE, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Helena Ferreira
- Department of Chemistry, Mass Spectrometry Center, LAQV-REQUIMTE, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Pedro Domingues
- Department of Chemistry, Mass Spectrometry Center, LAQV-REQUIMTE, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Rosário Domingues
- Department of Chemistry, Mass Spectrometry Center, LAQV-REQUIMTE, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- Department of Chemistry, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| |
Collapse
|
8
|
Yapici FI, Bebber CM, von Karstedt S. A guide to ferroptosis in cancer. Mol Oncol 2024; 18:1378-1396. [PMID: 38590214 PMCID: PMC11161738 DOI: 10.1002/1878-0261.13649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/20/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
Ferroptosis is a newly identified iron-dependent type of regulated cell death that can also be regarded as death caused by the specific collapse of the lipid antioxidant defence machinery. Ferroptosis has gained increasing attention as a potential therapeutic strategy for therapy-resistant cancer types. However, many ferroptosis-inducing small molecules do not reach the pharmacokinetic requirements for their effective clinical use yet. Nevertheless, their clinical optimization is under development. In this review, we summarize the current understanding of molecular pathways regulating ferroptosis, how cells protect themselves from the induction of ferroptotic cell death, and how a better understanding of cancer cell metabolism can represent vulnerabilities for ferroptosis-based therapies. Lastly, we discuss the context-dependent effect of ferroptosis on various cell types within the tumor microenvironment and address controversies on how tissue ferroptosis might impact systemic cancer immunity in a paracrine manner.
Collapse
Affiliation(s)
- Fatma Isil Yapici
- Department of Translational Genomics, Faculty of Medicine and University Hospital CologneUniversity of CologneGermany
- CECAD Cluster of ExcellenceUniversity of CologneGermany
| | - Christina M. Bebber
- Department of Translational Genomics, Faculty of Medicine and University Hospital CologneUniversity of CologneGermany
- CECAD Cluster of ExcellenceUniversity of CologneGermany
| | - Silvia von Karstedt
- Department of Translational Genomics, Faculty of Medicine and University Hospital CologneUniversity of CologneGermany
- CECAD Cluster of ExcellenceUniversity of CologneGermany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital CologneUniversity of CologneGermany
| |
Collapse
|
9
|
Godzien J, Lopez-Lopez A, Sieminska J, Jablonowski K, Pietrowska K, Kisluk J, Mojsak M, Dzieciol-Anikiej Z, Barbas C, Reszec J, Kozlowski M, Moniuszko M, Kretowski A, Niklinski J, Ciborowski M. Exploration of oxidized phosphocholine profile in non-small-cell lung cancer. Front Mol Biosci 2024; 10:1279645. [PMID: 38288337 PMCID: PMC10824250 DOI: 10.3389/fmolb.2023.1279645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/20/2023] [Indexed: 01/31/2024] Open
Abstract
Introduction: Lung cancer is one of the most frequently studied types of cancer and represents the most common and lethal neoplasm. Our previous research on non-small cell lung cancer (NSCLC) has revealed deep lipid profile reprogramming and redox status disruption in cancer patients. Lung cell membranes are rich in phospholipids that are susceptible to oxidation, leading to the formation of bioactive oxidized phosphatidylcholines (oxPCs). Persistent and elevated levels of oxPCs have been shown to induce chronic inflammation, leading to detrimental effects. However, recent reports suggest that certain oxPCs possess anti-inflammatory, pro-survival, and endothelial barrier-protective properties. Thus, we aimed to measure the levels of oxPCs in NSCLC patients and investigate their potential role in lung cancer. Methods: To explore the oxPCs profiles in lung cancer, we performed in-depth, multi-level metabolomic analyses of nearly 350 plasma and lung tissue samples from 200 patients with NSCLC, including adenocarcinoma (ADC) and squamous cell carcinoma (SCC), the two most prevalent NSCLC subtypes and COPD patients as a control group. First, we performed oxPC profiling of plasma samples. Second, we analyzed tumor and non-cancerous lung tissues collected during the surgical removal of NSCLC tumors. Because of tumor tissue heterogeneity, subsequent analyses covered the surrounding healthy tissue and peripheral and central tumors. To assess whether the observed phenotypic changes in the patients were associated with measured oxPC levels, metabolomics data were augmented with data from medical records. Results: We observed a predominance of long-chain oxPCs in plasma samples and of short-chain oxPCs in tissue samples from patients with NSCLC. The highest concentration of oxPCs was observed in the central tumor region. ADC patients showed higher levels of oxPCs compared to the control group, than patients with SCC. Conclusion: The detrimental effects associated with the accumulation of short-chain oxPCs suggest that these molecules may have greater therapeutic utility than diagnostic value, especially given that elevated oxPC levels are a hallmark of multiple types of cancer.
Collapse
Affiliation(s)
- Joanna Godzien
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Angeles Lopez-Lopez
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Julia Sieminska
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Kacper Jablonowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Karolina Pietrowska
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Kisluk
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| | - Malgorzata Mojsak
- Independent Laboratory of Molecular Imaging, Medical University of Bialystok, Bialystok, Poland
| | | | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Joanna Reszec
- Department of Medical Pathomorphology, Medical University of Bialystok, Bialystok, Poland
| | - Miroslaw Kozlowski
- Department of Thoracic Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| | - Adam Kretowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Jacek Niklinski
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| | - Michal Ciborowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
10
|
Camargo-Escalante MO, Balcázar-López E, Albores Méndez EM, Winkler R, Herrera-Estrella A. LOX1- and PLP1-dependent transcriptional reprogramming is essential for injury-induced conidiophore development in a filamentous fungus. Microbiol Spectr 2023; 11:e0260723. [PMID: 37943049 PMCID: PMC10714772 DOI: 10.1128/spectrum.02607-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/04/2023] [Indexed: 11/10/2023] Open
Abstract
IMPORTANCE In addition to being considered a biocontrol agent, the fungus Trichoderma atroviride is a relevant model for studying mechanisms of response to injury conserved in plants and animals that opens a new landscape in relation to regeneration and cell differentiation mechanisms. Here, we reveal the co-functionality of a lipoxygenase and a patatin-like phospholipase co-expressed in response to wounding in fungi. This pair of enzymes produces oxidized lipids that can function as signaling molecules or oxidative stress signals that, in ascomycetes, induce asexual development. Furthermore, we determined that both genes participate in the regulation of the synthesis of 13-HODE and the establishment of the physiological responses necessary for the formation of reproductive aerial mycelium ultimately leading to asexual development. Our results suggest an injury-induced pathway to produce oxylipins and uncovered physiological mechanisms regulated by LOX1 and PLP1 to induce conidiation, opening new hypotheses for the novo regeneration mechanisms of filamentous fungi.
Collapse
Affiliation(s)
- Martín O. Camargo-Escalante
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav, Irapuato, Guanajuato, Mexico
| | - Edgar Balcázar-López
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav, Irapuato, Guanajuato, Mexico
| | - Exsal M. Albores Méndez
- Escuela Militar de Graduados de Sanidad, Universidad del Ejército y Fuerza Aérea Mexicanos, Secretaría de la Defensa Nacional, Mexico City, Mexico
| | - Robert Winkler
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav, Irapuato, Guanajuato, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav, Irapuato, Guanajuato, Mexico
| |
Collapse
|
11
|
Phillips ME, Adekanye O, Borazjani A, Crow JA, Ross MK. CES1 Releases Oxylipins from Oxidized Triacylglycerol (oxTAG) and Regulates Macrophage oxTAG/TAG Accumulation and PGE 2/IL-1β Production. ACS Chem Biol 2023; 18:1564-1581. [PMID: 37348046 PMCID: PMC11131412 DOI: 10.1021/acschembio.3c00194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Triacylglycerols (TAGs) are storage forms of fat, primarily found in cytoplasmic lipid droplets in cells. TAGs are broken down to their component free fatty acids by lipolytic enzymes when fuel reserves are required. However, polyunsaturated fatty acid (PUFA)-containing TAGs are susceptible to nonenzymatic oxidation reactions, leading to the formation of oxylipins that are esterified to the glycerol backbone (termed oxTAGs). Human carboxylesterase 1 (CES1) is a member of the serine hydrolase superfamily and defined by its ability to catalyze the hydrolysis of carboxyl ester bonds in both toxicants and lipids. CES1 is a bona fide TAG hydrolase, but it is unclear which specific fatty acids are preferentially released during lipolysis. To better understand the biochemical function of CES1 in immune cells, such as macrophages, its substrate selectivity when it encounters oxidized PUFAs in TAG lipid droplets requires study. We sought to identify those esterified oxidized fatty acids liberated from oxTAGs by CES1 because their release can activate signaling pathways that enforce the development of lipid-driven inflammation. Gaining this knowledge will help fill data gaps that exist between CES1 and the lipid-sensing nuclear receptors, PPARγ and LXRα, which are important drivers of lipid metabolism and inflammation in macrophages. Oxidized forms of triarachidonoylglycerol (oxTAG20:4) or trilinoleoylglycerol (oxTAG18:2), which contain physiologically relevant levels of oxidized PUFAs (<5 mol %), were incubated with recombinant CES1 to release oxylipins and nonoxidized arachidonic acid (AA) or linoleic acid (LA). CES1 hydrolyzed each oxTAG, yielding regioisomers of hydroxyeicosatetraenoic acids (5-, 11-, 12-, and 15-HETE) and hydroxyoctadecadienoic acids (9- and 13-HODE). Furthermore, human THP-1 macrophages with deficient CES1 levels exhibited a differential response to extracellular stimuli (oxTAGs, lipopolysaccharide, and 15-HETE) as compared to those with normal CES1 levels, including enhanced oxTAG/TAG lipid accumulation and altered cytokine and prostaglandin E2 profiles. This study suggests that CES1 can metabolize oxTAG lipids to release oxylipins and PUFAs, and it further specifies the substrate selectivity of CES1 in the metabolism of bioactive lipid mediators. We suggest that the accumulation of oxTAGs/TAGs within lipid droplets that arise due to CES1 deficiency enforces an inflammatory phenotype in macrophages.
Collapse
Affiliation(s)
- Maggie E Phillips
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi 39762, United States
| | - Oluwabori Adekanye
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi 39762, United States
| | - Abdolsamad Borazjani
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi 39762, United States
| | - J Allen Crow
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi 39762, United States
| | - Matthew K Ross
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi 39762, United States
| |
Collapse
|
12
|
Sikorskaya TV. Coral Lipidome: Molecular Species of Phospholipids, Glycolipids, Betaine Lipids, and Sphingophosphonolipids. Mar Drugs 2023; 21:335. [PMID: 37367660 DOI: 10.3390/md21060335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Coral reefs are the most biodiversity-rich ecosystems in the world's oceans. Coral establishes complex interactions with various microorganisms that constitute an important part of the coral holobiont. The best-known coral endosymbionts are Symbiodiniaceae dinoflagellates. Each member of the coral microbiome contributes to its total lipidome, which integrates many molecular species. The present study summarizes available information on the molecular species of the plasma membrane lipids of the coral host and its dinoflagellates (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), ceramideaminoethylphosphonate, and diacylglyceryl-3-O-carboxyhydroxymethylcholine), and the thylakoid membrane lipids of dinoflagellates (phosphatidylglycerol (PG) and glycolipids). Alkyl chains of PC and PE molecular species differ between tropical and cold-water coral species, and features of their acyl chains depend on the coral's taxonomic position. PS and PI structural features are associated with the presence of an exoskeleton in the corals. The dinoflagellate thermosensitivity affects the profiles of PG and glycolipid molecular species, which can be modified by the coral host. Coral microbiome members, such as bacteria and fungi, can also be the source of the alkyl and acyl chains of coral membrane lipids. The lipidomics approach, providing broader and more detailed information about coral lipid composition, opens up new opportunities in the study of biochemistry and ecology of corals.
Collapse
Affiliation(s)
- Tatyana V Sikorskaya
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, 690041 Vladivostok, Russia
| |
Collapse
|
13
|
Sun B, Wang X, Ye Z, Zhang J, Chen X, Zhou N, Zhang M, Yao C, Wu F, Shen J. Designing Single-Atom Active Sites on sp 2 -Carbon Linked Covalent Organic Frameworks to Induce Bacterial Ferroptosis-Like for Robust Anti-Infection Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207507. [PMID: 36847061 PMCID: PMC10161020 DOI: 10.1002/advs.202207507] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/03/2023] [Indexed: 05/06/2023]
Abstract
With the threat posed by drug-resistant pathogenic bacteria, developing non-antibiotic strategies for eradicating clinically prevalent superbugs remains challenging. Ferroptosis is a newly discovered form of regulated cell death that can overcome drug resistance. Emerging evidence shows the potential of triggering ferroptosis-like for antibacterial therapy, but the direct delivery of iron species is inefficient and may cause detrimental effects. Herein, an effective strategy to induce bacterial nonferrous ferroptosis-like by coordinating single-atom metal sites (e.g., Ir and Ru) into the sp2 -carbon-linked covalent organic framework (sp2 c-COF-Ir-ppy2 and sp2 c-COF-Ru-bpy2 ) is reported. Upon activating by light irradiation or hydrogen peroxide, the as-constructed Ir and Ru single-atom catalysts (SACs) can significantly expedite intracellular reactive oxygen species burst, enhance glutathione depletion-related glutathione peroxidase 4 deactivation, and disturb the nitrogen and respiratory metabolisms, leading to lipid peroxidation-driven ferroptotic damage. Both SAC inducers show potent antibacterial activity against Gram-positive bacteria, Gram-negative bacteria, clinically isolated methicillin-resistant Staphylococcus aureus (MRSA), and biofilms, as well as excellent biocompatibility and strong therapeutic and preventive potential in MRSA-infected wounds and abscesses. This delicate nonferrous ferroptosis-like strategy may open up new insights into the therapy of drug-resistant pathogen infection.
Collapse
Affiliation(s)
- Baohong Sun
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
- School of Chemistry and Molecular EngineeringNanjing Tech UniversityNanjing211816P. R. China
| | - Xinye Wang
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Ziqiu Ye
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Juyang Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Xiong Chen
- School of Chemistry and Molecular EngineeringNanjing Tech UniversityNanjing211816P. R. China
| | - Ninglin Zhou
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Ming Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Cheng Yao
- School of Chemistry and Molecular EngineeringNanjing Tech UniversityNanjing211816P. R. China
| | - Fan Wu
- Key Laboratory of Cardiovascular and Cerebrovascular MedicineSchool of PharmacyNanjing Medical UniversityNanjing211166P. R. China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
- Jiangsu Engineering Research Center of Interfacial ChemistryNanjing UniversityNanjing210023P. R. China
| |
Collapse
|
14
|
Bayır H, Dixon SJ, Tyurina YY, Kellum JA, Kagan VE. Ferroptotic mechanisms and therapeutic targeting of iron metabolism and lipid peroxidation in the kidney. Nat Rev Nephrol 2023; 19:315-336. [PMID: 36922653 DOI: 10.1038/s41581-023-00689-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 03/17/2023]
Abstract
Ferroptosis is a mechanism of regulated necrotic cell death characterized by iron-dependent, lipid peroxidation-driven membrane destruction that can be inhibited by glutathione peroxidase 4. Morphologically, it is characterized by cellular, organelle and cytoplasmic swelling and the loss of plasma membrane integrity, with the release of intracellular components. Ferroptosis is triggered in cells with dysregulated iron and thiol redox metabolism, whereby the initial robust but selective accumulation of hydroperoxy polyunsaturated fatty acid-containing phospholipids is further propagated through enzymatic and non-enzymatic secondary mechanisms, leading to formation of oxidatively truncated electrophilic species and their adducts with proteins. Thus, ferroptosis is dependent on the convergence of iron, thiol and lipid metabolic pathways. The kidney is particularly susceptible to redox imbalance. A growing body of evidence has linked ferroptosis to acute kidney injury in the context of diverse stimuli, such as ischaemia-reperfusion, sepsis or toxins, and to chronic kidney disease, suggesting that ferroptosis may represent a novel therapeutic target for kidney disease. However, further work is needed to address gaps in our understanding of the triggers, execution and spreading mechanisms of ferroptosis.
Collapse
Affiliation(s)
- Hülya Bayır
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Free Radical and Antioxidant Health, Departments of Environmental Health, Pharmacology and Chemical Biology, Chemistry, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Pediatrics, Division of Critical Care and Hospital Medicine, Redox Health Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, Departments of Environmental Health, Pharmacology and Chemical Biology, Chemistry, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - John A Kellum
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health, Departments of Environmental Health, Pharmacology and Chemical Biology, Chemistry, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
15
|
Akiyama H, Carter BZ, Andreeff M, Ishizawa J. Molecular Mechanisms of Ferroptosis and Updates of Ferroptosis Studies in Cancers and Leukemia. Cells 2023; 12:1128. [PMID: 37190037 PMCID: PMC10136912 DOI: 10.3390/cells12081128] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Ferroptosis is a mode of cell death regulated by iron-dependent lipid peroxidation. Growing evidence suggests ferroptosis induction as a novel anti-cancer modality that could potentially overcome therapy resistance in cancers. The molecular mechanisms involved in the regulation of ferroptosis are complex and highly dependent on context. Therefore, a comprehensive understanding of its execution and protection machinery in each tumor type is necessary for the implementation of this unique cell death mode to target individual cancers. Since most of the current evidence for ferroptosis regulation mechanisms is based on solid cancer studies, the knowledge of ferroptosis with regard to leukemia is largely lacking. In this review, we summarize the current understanding of ferroptosis-regulating mechanisms with respect to the metabolism of phospholipids and iron as well as major anti-oxidative pathways that protect cells from ferroptosis. We also highlight the diverse impact of p53, a master regulator of cell death and cellular metabolic processes, on the regulation of ferroptosis. Lastly, we discuss recent ferroptosis studies in leukemia and provide a future perspective for the development of promising anti-leukemia therapies implementing ferroptosis induction.
Collapse
Affiliation(s)
| | | | | | - Jo Ishizawa
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (H.A.); (B.Z.C.); (M.A.)
| |
Collapse
|
16
|
Wölk M, Prabutzki P, Fedorova M. Analytical Toolbox to Unlock the Diversity of Oxidized Lipids. Acc Chem Res 2023; 56:835-845. [PMID: 36943749 DOI: 10.1021/acs.accounts.2c00842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
ConspectusLipids are diverse class of small biomolecules represented by a large variety of chemical structures. In addition to the classical biosynthetic routes, lipids can undergo numerous modifications via introduction of small chemical moieties forming hydroxyl, phospho, and nitro derivatives, among others. Such modifications change the physicochemical properties of a parent lipid and usually result in new functionalities either by mediating signaling events or by changing the biophysical properties of lipid membranes. Over the last decades, a large body of evidence indicated the involvement of lipid modifications in a variety of physiological and pathological events. For instance, lipid (per)oxidation for a long time was considered as a hallmark of oxidative stress and related proinflammatory signaling. Recently, however, with the burst in the development of the redox biology field, oxidative modifications of lipids are also recognized as a part of regulatory and adaptive events that are highly specific for particular cell types, tissues, and conditions.The initial diversity of lipid species and the variety of possible lipid modifications result in an extremely large chemical space of the epilipidome, the subset of the natural lipidome formed by enzymatic and non-enzymatic lipid modifications occurring in biological systems. Together with their low natural abundance, structural annotation of modified lipids represents a major analytical challenge limiting the discovery of their natural variety and functions. Furthermore, the number of available chemically characterized standards representing various modified lipid species remains limited, making analytical and functional studies very challenging. Over the past decade we have developed and implemented numerous analytical methods to study lipid modifications and applied them in the context of different biological conditions. In this Account, we outline the development and evolution of modern mass-spectrometry-based techniques for the structural elucidation of modified/oxidized lipids and corresponding applications. Research of our group is mostly focused on redox biology, and thus, our primary interest was always the analysis of lipid modifications introduced by redox disbalance, including lipid peroxidation (LPO), oxygenation, nitration, and glycation. To this end, we developed an array of analytical solutions to measure carbonyls derived from LPO, oxidized and nitrated fatty acid derivatives, and oxidized and glycated complex lipids. We will briefly describe the main analytical challenges along with corresponding solutions developed by our group toward deciphering the complexity of natural epilipdomes, starting from in vitro-oxidized lipid mixtures, artificial membranes, and lipid droplets, to illustrate the diversity of lipid modifications in the context of metabolic diseases and ferroptotic cell death.
Collapse
Affiliation(s)
- Michele Wölk
- Center of Membrane Biochemistry and Lipid Research, Faculty of Medicine Carl Gustav Carus of TU Dresden, 01307 Dresden, Germany
| | - Patricia Prabutzki
- Institute for Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, 04107 Leipzig, Germany
| | - Maria Fedorova
- Center of Membrane Biochemistry and Lipid Research, Faculty of Medicine Carl Gustav Carus of TU Dresden, 01307 Dresden, Germany
| |
Collapse
|
17
|
Fan L, Chen J, Pan L, Xin X, Geng B, Yang L, Wang Q, Ma W, Lou Y, Bian J, Cui X, Li J, Wang L, Chen Z, Wang W, Cui C, Li S, Gao Q, Song Q, Deng Y, Fan J, Yu J, Zhang H, Li Y, Cai J. Alterations of Gut Microbiome, Metabolome, and Lipidome in Takayasu Arteritis. Arthritis Rheumatol 2023; 75:266-278. [PMID: 36054683 DOI: 10.1002/art.42331] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 07/27/2022] [Accepted: 08/11/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Mounting evidence has linked microbiome and metabolome to systemic autoimmunity and cardiovascular diseases (CVDs). Takayasu arteritis (TAK) is a rare disease that shares features of immune-related inflammatory diseases and CVDs, about which there is relatively limited information. This study was undertaken to characterize gut microbial dysbiosis and its crosstalk with phenotypes in TAK. METHODS To address the discriminatory signatures, we performed shotgun sequencing of fecal metagenome across a discovery cohort (n = 97) and an independent validation cohort (n = 75) including TAK patients, healthy controls, and controls with Behçet's disease (BD). Interrogation of untargeted metabolomics and lipidomics profiling of plasma and fecal samples were also used to refine features mediating associations between microorganisms and TAK phenotypes. RESULTS A combined model of bacterial species, including unclassified Escherichia, Veillonella parvula, Streptococcus parasanguinis, Dorea formicigenerans, Bifidobacterium adolescentis, Lachnospiraceae bacterium 7 1 58FAA, Escherichia coli, Streptococcus salivarius, Klebsiella pneumoniae, Bifidobacterium longum, and Lachnospiraceae Bacterium 5 1 63FAA, distinguished TAK patients from controls with areas under the curve (AUCs) of 87.8%, 85.9%, 81.1%, and 71.1% in training, test, and validation sets including healthy or BD controls, respectively. Diagnostic species were directly or indirectly (via metabolites or lipids) correlated with TAK phenotypes of vascular involvement, inflammation, discharge medication, and prognosis. External validation against publicly metagenomic studies (n = 184) on hypertension, atrial fibrillation, and healthy controls, confirmed the diagnostic accuracy of the model for TAK. CONCLUSION This study first identifies the discriminatory gut microbes in TAK. Dysbiotic microbes are also linked to TAK phenotypes directly or indirectly via metabolic and lipid modules. Further explorations of the microbiome-metagenome interface in TAK subtype prediction and pathogenesis are suggested.
Collapse
Affiliation(s)
- Luyun Fan
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junru Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China, and Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Lili Pan
- Department of Rheumatology and Immunology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaohong Xin
- Department of Nephrology, Precision Medicine Center, The Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Bin Geng
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lirui Yang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Qian Wang
- Department of Nephrology, Precision Medicine Center, The Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Wenjun Ma
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Lou
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jin Bian
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Cui
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Li
- Heart Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing Key Laboratory of Hypertension, Beijing, China
| | - Lu Wang
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhenzhen Chen
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenjie Wang
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changting Cui
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuangyue Li
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiannan Gao
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qirui Song
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue Deng
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiali Fan
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiachen Yu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huimin Zhang
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yafeng Li
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Core Laboratory, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Shanxi Provincial Key Laboratory of Kidney Disease, and Academy of Microbial Ecology, Shanxi Medical University, Taiyuan, China
| | - Jun Cai
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
18
|
Hellauer K, Oskolkova OV, Gesslbauer B, Bochkov V. Pharmacological heat-shock protein inducers and chemical chaperones inhibit upregulation of interleukin-8 by oxidized phospholipids. Inflammopharmacology 2023; 31:1319-1327. [PMID: 36692663 DOI: 10.1007/s10787-022-01124-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/17/2022] [Indexed: 01/25/2023]
Abstract
Oxidised phospholipids such as oxidised palmitoyl-arachidonoyl-phosphatidylcholine (OxPAPC) are increasingly recognised as danger-associated molecular patterns (DAMPs) inducing cyto- and chemokines. The pathological impact of oxidised phosphatidylcholine in vivo has been demonstrated in several animal models, as well as in human association studies. In this work, we have tested a number of small molecules with known or potential anti-inflammatory properties for their ability to inhibit secretion of interleukin-8 by OxPAPC-treated endothelial cells. Six compounds capable of inhibiting the induction of IL-8 were selected. Analysis of gene expression has shown that all these substances reduced the OxPAPC-induced elevation of IL-8 mRNA but potentiated induction of heat-shock proteins (HSPs). We further found that drug-like HSP inducers also prevented the induction of IL-8 by OxPAPC. Similar inhibitory action was demonstrated by two chemical chaperones, which stabilise proteins through physicochemical mechanisms thus mimicking effects of HSPs. Our data suggest that proteostatic stress plays an important mechanistic role in the pro-inflammatory effects of OxPAPC and that stabilisation of proteome by overexpression of HSPs or by chemical chaperones can reduce the pro-inflammatory effects of OxPLs.
Collapse
Affiliation(s)
- Klara Hellauer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Humboldtstrasse 46/III, 8010, Graz, Austria
| | - Olga V Oskolkova
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Humboldtstrasse 46/III, 8010, Graz, Austria
| | - Bernd Gesslbauer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Humboldtstrasse 46/III, 8010, Graz, Austria
| | - Valery Bochkov
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Humboldtstrasse 46/III, 8010, Graz, Austria. .,Field of Excellence BioHealth, University of Graz, Graz, Austria.
| |
Collapse
|
19
|
Damiani T, Bonciarelli S, Thallinger GG, Koehler N, Krettler CA, Salihoğlu AK, Korf A, Pauling JK, Pluskal T, Ni Z, Goracci L. Software and Computational Tools for LC-MS-Based Epilipidomics: Challenges and Solutions. Anal Chem 2023; 95:287-303. [PMID: 36625108 PMCID: PMC9835057 DOI: 10.1021/acs.analchem.2c04406] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Tito Damiani
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Praha 6, Czech Republic
| | - Stefano Bonciarelli
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Gerhard G. Thallinger
- Institute
of Biomedical Informatics, Graz University
of Technology, 8010 Graz, Austria,
| | - Nikolai Koehler
- LipiTUM,
Chair of Experimental Bioinformatics, Technical
University of Munich, Maximus-von-Imhof Forum 3, 85354 Freising, Germany
| | | | - Arif K. Salihoğlu
- Department
of Physiology, Faculty of Medicine and Institute of Health Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Ansgar Korf
- Bruker Daltonics
GmbH & Co. KG, Fahrenheitstraße 4, 28359 Bremen, Germany
| | - Josch K. Pauling
- LipiTUM,
Chair of Experimental Bioinformatics, Technical
University of Munich, Maximus-von-Imhof Forum 3, 85354 Freising, Germany
| | - Tomáš Pluskal
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Praha 6, Czech Republic
| | - Zhixu Ni
- Center of
Membrane Biochemistry and Lipid Research, University Hospital and Faculty of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy,
| | - Laura Goracci
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy,
| |
Collapse
|
20
|
Knock-out of 5-lipoxygenase in overexpressing tumor cells-consequences on gene expression and cellular function. Cancer Gene Ther 2023; 30:108-123. [PMID: 36114329 PMCID: PMC9842508 DOI: 10.1038/s41417-022-00531-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/05/2022] [Accepted: 08/26/2022] [Indexed: 01/21/2023]
Abstract
5-Lipoxygenase (5-LO), the central enzyme in the biosynthesis of leukotrienes, is frequently expressed in human solid malignancies even though the enzyme is not present in the corresponding healthy tissues. There is little knowledge on the consequences of this expression for the tumor cells regarding gene expression and cellular function. We established a knockout (KO) of 5-LO in different cancer cell lines (HCT-116, HT-29, U-2 OS) and studied the consequences on global gene expression using next generation sequencing. Furthermore, cell viability, proliferation, migration and multicellular tumor spheroid (MCTS) formation were studied in these cells. Our results show that 5-LO influences the gene expression and cancer cell function in a cell type-dependent manner. The enzyme affected genes involved in cell adhesion, extracellular matrix formation, G protein signaling and cytoskeleton organization. Furthermore, absence of 5-LO elevated TGFβ2 expression in HCT-116 cells while MCP-1, fractalkine and platelet-derived growth factor expression was attenuated in U-2 OS cells suggesting that tumor cell-derived 5-LO shapes the tumor microenvironment. In line with the gene expression data, KO of 5-LO had an impact on cell proliferation, motility and MCTS formation. Interestingly, pharmacological inhibition of 5-LO only partly mimicked the KO suggesting that also noncanonical functions are involved.
Collapse
|
21
|
Bagayoko S, Meunier E. Emerging roles of ferroptosis in infectious diseases. FEBS J 2022; 289:7869-7890. [PMID: 34670020 DOI: 10.1111/febs.16244] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/06/2021] [Accepted: 10/20/2021] [Indexed: 01/14/2023]
Abstract
In living organisms, lipid peroxidation is a continuously occurring cellular process and therefore involved in various physiological and pathological contexts. Among the broad variety of lipids, polyunsaturated fatty acids (PUFA) constitute a major target of oxygenation either when released as mediators by phospholipases or when present in membranous phospholipids. The last decade has seen the characterization of an iron- and lipid peroxidation-dependent cell necrosis, namely, ferroptosis, that involves the accumulation of peroxidized PUFA-containing phospholipids. Further studies could link ferroptosis in a very large body of (physio)-pathological processes, including cancer, neurodegenerative, and metabolic diseases. In this review, we mostly focus on the emerging involvement of lipid peroxidation-driven ferroptosis in infectious diseases, and the immune consequences. We also discuss the putative ability of microbial virulence factors to exploit or to dampen ferroptosis regulatory pathways to their own benefit.
Collapse
Affiliation(s)
- Salimata Bagayoko
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, France
| | - Etienne Meunier
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, France
| |
Collapse
|
22
|
Criscuolo A, Nepachalovich P, Garcia-del Rio DF, Lange M, Ni Z, Baroni M, Cruciani G, Goracci L, Blüher M, Fedorova M. Analytical and computational workflow for in-depth analysis of oxidized complex lipids in blood plasma. Nat Commun 2022; 13:6547. [PMID: 36319635 PMCID: PMC9626469 DOI: 10.1038/s41467-022-33225-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 09/05/2022] [Indexed: 11/06/2022] Open
Abstract
Lipids are a structurally diverse class of biomolecules which can undergo a variety of chemical modifications. Among them, lipid (per)oxidation attracts most of the attention due to its significance in the regulation of inflammation, cell proliferation and death programs. Despite their apparent regulatory significance, the molecular repertoire of oxidized lipids remains largely elusive as accurate annotation of lipid modifications is complicated by their low abundance and often unknown, biological context-dependent structural diversity. Here, we provide a workflow based on the combination of bioinformatics and LC-MS/MS technologies to support identification and relative quantification of oxidized complex lipids in a modification type- and position-specific manner. The developed methodology is used to identify epilipidomics signatures of lean and obese individuals with and without type 2 diabetes. The characteristic signature of lipid modifications in lean individuals, dominated by the presence of modified octadecanoid acyl chains in phospho- and neutral lipids, is drastically shifted towards lipid peroxidation-driven accumulation of oxidized eicosanoids, suggesting significant alteration of endocrine signalling by oxidized lipids in metabolic disorders.
Collapse
Affiliation(s)
- Angela Criscuolo
- grid.9647.c0000 0004 7669 9786Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, 04013 Leipzig, Germany ,grid.9647.c0000 0004 7669 9786Center for Biotechnology and Biomedicine, University of Leipzig, 04013 Leipzig, Germany ,grid.424957.90000 0004 0624 9165Thermo Fisher Scientific, 63303 Dreieich, Germany
| | - Palina Nepachalovich
- grid.4488.00000 0001 2111 7257Center of Membrane Biochemistry and Lipid Research, Faculty of Medicine Carl Gustav Carus of TU Dresden, 01307 Dresden, Germany ,grid.9647.c0000 0004 7669 9786Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, 04013 Leipzig, Germany ,grid.9647.c0000 0004 7669 9786Center for Biotechnology and Biomedicine, University of Leipzig, 04013 Leipzig, Germany
| | - Diego Fernando Garcia-del Rio
- grid.9647.c0000 0004 7669 9786Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, 04013 Leipzig, Germany ,grid.9647.c0000 0004 7669 9786Center for Biotechnology and Biomedicine, University of Leipzig, 04013 Leipzig, Germany
| | - Mike Lange
- grid.9647.c0000 0004 7669 9786Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, 04013 Leipzig, Germany ,grid.9647.c0000 0004 7669 9786Center for Biotechnology and Biomedicine, University of Leipzig, 04013 Leipzig, Germany
| | - Zhixu Ni
- grid.4488.00000 0001 2111 7257Center of Membrane Biochemistry and Lipid Research, Faculty of Medicine Carl Gustav Carus of TU Dresden, 01307 Dresden, Germany ,grid.9647.c0000 0004 7669 9786Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, 04013 Leipzig, Germany ,grid.9647.c0000 0004 7669 9786Center for Biotechnology and Biomedicine, University of Leipzig, 04013 Leipzig, Germany
| | - Massimo Baroni
- grid.452579.8Molecular Discovery, Kinetic Business Centre, Borehamwood, WD6 4PJ Hertfordshire UK
| | - Gabriele Cruciani
- grid.9027.c0000 0004 1757 3630Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Laura Goracci
- grid.9027.c0000 0004 1757 3630Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Matthias Blüher
- grid.9647.c0000 0004 7669 9786Medical Department III (Endocrinology, Nephrology and Rheumatology), University of Leipzig, 04103 Leipzig, Germany ,grid.411339.d0000 0000 8517 9062Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Maria Fedorova
- grid.4488.00000 0001 2111 7257Center of Membrane Biochemistry and Lipid Research, Faculty of Medicine Carl Gustav Carus of TU Dresden, 01307 Dresden, Germany ,grid.9647.c0000 0004 7669 9786Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, 04013 Leipzig, Germany ,grid.9647.c0000 0004 7669 9786Center for Biotechnology and Biomedicine, University of Leipzig, 04013 Leipzig, Germany
| |
Collapse
|
23
|
Endo-Umeda K, Kim E, Thomas DG, Liu W, Dou H, Yalcinkaya M, Abramowicz S, Xiao T, Antonson P, Gustafsson JÅ, Makishima M, Reilly MP, Wang N, Tall AR. Myeloid LXR (Liver X Receptor) Deficiency Induces Inflammatory Gene Expression in Foamy Macrophages and Accelerates Atherosclerosis. Arterioscler Thromb Vasc Biol 2022; 42:719-731. [PMID: 35477277 PMCID: PMC9162499 DOI: 10.1161/atvbaha.122.317583] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 03/21/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cholesterol loaded macrophage foam cells are a prominent feature of atherosclerotic plaques. Single-cell RNA sequencing has identified foam cells as TREM2 (triggering receptor expressed on myeloid cells 2) positive populations with low expression of inflammatory genes, resembling the TREM2 positive microglia of neurodegenerative diseases. Cholesterol loading of macrophages in vitro results in activation of LXR (liver X receptor) transcription factors and suppression of inflammatory genes. METHODS To test the hypothesis that LXRs mediate anti-inflammatory effects in Trem2 expressing atherosclerotic plaque foam cells, we performed RNA profiling on plaque cells from hypercholesterolemic mice with myeloid LXR deficiency. RESULTS Myeloid LXR deficiency led to a dramatic increase in atherosclerosis with increased monocyte entry, foam cell formation, and plaque inflammation. Bulk cell-RNA profiling of plaque myeloid cells showed prominent upregulation of inflammatory mediators including oxidative, chemokine, and chemotactic genes. Single-cell RNA sequencing revealed increased numbers of foamy TREM2-expressing macrophages; however, these cells had reduced expression of the Trem2 gene expression module, including phagocytic and cholesterol efflux genes, and had switched to a proinflammatory and proliferative phenotype. Expression of Trem2 was suppressed by inflammatory signals but not directly affected by LXR activation in bone marrow-derived macrophages. CONCLUSIONS Our current studies reveal the key role of macrophage LXRs in promoting the Trem2 gene expression program and in suppressing inflammation in foam cells of atherosclerotic plaques.
Collapse
Affiliation(s)
- Kaori Endo-Umeda
- Division of Molecular Medicine, Department of Medicine,
Columbia University, New York, NY 10032, USA
- Division of Biochemistry, Department of Biomedical
Sciences, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Eunyoung Kim
- Division of Molecular Medicine, Department of Medicine,
Columbia University, New York, NY 10032, USA
- Division of Cardiology, Department of Medicine, Columbia
University, New York, NY 10032, USA
| | - David G. Thomas
- Division of Molecular Medicine, Department of Medicine,
Columbia University, New York, NY 10032, USA
- Present Address: Department of Medicine, New York
Presbyterian Hospital/Weill Cornell Medicine, New York, NY, USA
| | - Wenli Liu
- Division of Molecular Medicine, Department of Medicine,
Columbia University, New York, NY 10032, USA
| | - Huijuan Dou
- Division of Molecular Medicine, Department of Medicine,
Columbia University, New York, NY 10032, USA
| | - Mustafa Yalcinkaya
- Division of Molecular Medicine, Department of Medicine,
Columbia University, New York, NY 10032, USA
| | - Sandra Abramowicz
- Division of Molecular Medicine, Department of Medicine,
Columbia University, New York, NY 10032, USA
| | - Tong Xiao
- Division of Molecular Medicine, Department of Medicine,
Columbia University, New York, NY 10032, USA
| | - Per Antonson
- Department of Biosciences and Nutrition, Karolinska
Institute, Huddinge, SE-14157, Sweden
| | - Jan-Åke Gustafsson
- Department of Biosciences and Nutrition, Karolinska
Institute, Huddinge, SE-14157, Sweden
- Center for Nuclear Receptors and Cell Signaling, University
of Houston, Houston, TX 77204, USA
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical
Sciences, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Muredach P. Reilly
- Division of Cardiology, Department of Medicine, Columbia
University, New York, NY 10032, USA
| | - Nan Wang
- Division of Molecular Medicine, Department of Medicine,
Columbia University, New York, NY 10032, USA
| | - Alan R. Tall
- Division of Molecular Medicine, Department of Medicine,
Columbia University, New York, NY 10032, USA
| |
Collapse
|
24
|
Wang P, Lu YQ. Ferroptosis: A Critical Moderator in the Life Cycle of Immune Cells. Front Immunol 2022; 13:877634. [PMID: 35619718 PMCID: PMC9127082 DOI: 10.3389/fimmu.2022.877634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022] Open
Abstract
Ferroptosis is a form of programmed cell death that was only recognized in 2012. Until recently, numerous researchers have turned their attention to the mechanism and function of ferroptosis. A large number of studies have shown potential links between cell ferroptosis and infection, inflammation, and tumor. At the same time, immune cells are vital players in these above-mentioned processes. To date, there is no comprehensive literature review to summarize the relationship between ferroptosis and immune cells. Therefore, it is of great significance to explore the functional relationship between the two. This review will attempt to explain the link between ferroptosis and various immune cells, as well as determine the role ferroptosis plays in infection, inflammation, and malignancies. From this, we may find the potential therapeutic targets of these diseases.
Collapse
Affiliation(s)
- Ping Wang
- Department of Emergency Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, China
| | - Yuan-Qiang Lu
- Department of Emergency Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
25
|
Abstract
Oxidized phospholipids that result from tissue injury operate as immunomodulatory signals that, depending on the context, lead to proinflammatory or anti-inflammatory responses. In this Perspective, we posit that cells of the innate immune system use the presence of oxidized lipids as a generic indicator of threat to the host. Similarly to how pathogen-associated molecular patterns represent general indicators of microbial encounters, oxidized lipids may be the most common molecular feature of an injured tissue. Therefore, microbial detection in the absence of oxidized lipids may indicate encounters with avirulent microorganisms. By contrast, microbial detection and detection of oxidized lipids would indicate encounters with replicating microorganisms, thereby inducing a heightened inflammatory and defensive response. Here we review recent studies supporting this idea. We focus on the biology of oxidized phosphocholines, which have emerged as context-dependent regulators of immunity. We highlight emerging functions of oxidized phosphocholines in dendritic cells and macrophages that drive unique inflammasome and migratory activities and hypermetabolic states. We describe how these lipids hyperactivate dendritic cells to stimulate antitumour CD8+ T cell immunity and discuss the potential implications of the newly described activities of oxidized phosphocholines in host defence.
Collapse
Affiliation(s)
- Dania Zhivaki
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
26
|
Zhu L, Lian W, Yao Z, Yang X, Wang Z, Lai Y, Xu S, Zhao B, Liu K. Integrated Analysis of Ferroptosis and Immunity-Related Genes Associated with Intestinal Ischemia/Reperfusion Injury. J Inflamm Res 2022; 15:2397-2411. [PMID: 35444445 PMCID: PMC9015787 DOI: 10.2147/jir.s351990] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/01/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Intestinal ischemia/reperfusion (I/R) injury is an unresolved clinical challenge due to its high prevalence, difficulty in diagnosis, and lack of clinically effective therapeutic agents. Ferroptosis is a novel form of cell-regulated death that has been shown to play a role in various I/R models and has been shown to be immune-related. Further unraveling the molecular mechanisms associated with ferroptosis and immunity in intestinal I/R injury may lead to the discovery of potentially effective drugs. Methods We obtained differentially expressed mRNAs (DEGs) in mouse intestinal tissues following intestinal I/R injury or sham surgery. Then, we extracted ferroptosis-related DEGs (FRGs) and immune-related DEGs (IRGs) from the DEGs. In addition, we performed functional analysis of FRGs and IRGs. Next, we used transcriptome sequencing from patients with intestinal I/R injury to validate the results. Then, we constructed transcription factors (TFs)-gene networks and gene-drug networks using mouse and human co-expressed FRGs (coFRG) and mouse and human co-expressed IRGs (coIRG). We also analyzed the composition of immune cells to reveal correlations between FRGs signatures and immune cells in the mouse and human gut. Finally, we validated these results through animal experiments. Results We extracted 61 FRGs and 294 IRGs from mouse samples and performed PPI and functional analyses. We extracted 45 FRGs and 200 IRGs from human samples for validation, and identified 24 coFRGs,100 coIRGs and 6 hub genes (HSPA5, GDF15, TNFAIP3, HMOX1, CXCL2 and IL6) in both. We also predicted potential TF-gene networks for coFRGs and coIRGs, as well as predicted gene-drug pairs for hub genes. In addition, we found that the immune cells were altered in the early stages of intestinal I/R injury and that FRGs were closely associated with immune cells in mice and humans. Finally, we validated the hub genes in mouse samples. Conclusion In conclusion, we identified ferroptosis and immunity-related genes to predict their correlations in intestinal I/R injury. We also predicated potential TF-genes network and potential therapeutic targets (HSPA5, GDF15, TNFAIP3, HMOX1, CXCL2 and IL6) to provide clues for further investigation of intestinal I/R injury.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Wanyi Lian
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Zhiwen Yao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Xiao Yang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Ziyi Wang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Yupei Lai
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Shiting Xu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Bingcheng Zhao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Kexuan Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Correspondence: Kexuan Liu; Bingcheng Zhao, Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China, Tel/Fax +86 020 61641881, Email ;
| |
Collapse
|
27
|
Protty MB, Jenkins PV, Collins PW, O'Donnell VB. The role of procoagulant phospholipids on the surface of circulating blood cells in thrombosis and haemostasis. Open Biol 2022; 12:210318. [PMID: 35440201 PMCID: PMC9019515 DOI: 10.1098/rsob.210318] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/21/2022] [Indexed: 01/09/2023] Open
Abstract
Phospholipids (PLs) are found in all cell types and are required for structural support and cell activation signalling pathways. In resting cells, PLs are asymmetrically distributed throughout the plasma membrane with native procoagulant aminophospholipids (aPLs) being actively maintained in the inner leaflet of the membrane. Upon platelet activation, aPLs rapidly externalize to the outer leaflet and are essential for supporting the coagulation cascade by providing binding sites for factors in the cell-based model. More recent work has uncovered a role for enzymatically oxidized PLs (eoxPLs) in facilitating coagulation, working in concert with native aPLs. Despite this, the role of aPLs and eoxPLs in thrombo-inflammatory conditions, such as arterial and venous thrombosis, has not been fully elucidated. In this review, we describe the biochemical structures, distribution and regulation of aPL externalization and summarize the literature on eoxPL generation in circulating blood cells. We focus on the currently understood role of these lipids in mediating coagulation reactions in vitro, in vivo and in human thrombotic disease. Finally, we highlight gaps in our understanding in how these lipids vary in health and disease, which may place them as future therapeutic targets for the management of thrombo-inflammatory conditions.
Collapse
Affiliation(s)
- Majd B. Protty
- Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - P. Vince Jenkins
- Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - Peter W. Collins
- Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | | |
Collapse
|
28
|
O'Donnell VB. New appreciation for an old pathway: the Lands Cycle moves into new arenas in health and disease. Biochem Soc Trans 2022; 50:1-11. [PMID: 35225335 PMCID: PMC9022965 DOI: 10.1042/bst20210579] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 02/08/2023]
Abstract
The Lands Pathway is a fundamental biochemical process named for its discovery by William EM Lands and revealed in a series of seminal papers published in the Journal of Biological Chemistry between 1958-65. It describes the selective placement in phospholipids of acyl chains, by phospholipid acyltransferases. This pathway has formed a core component of our knowledge of phospholipid and also diglyceride metabolism in mammalian tissues for over 60 years now. Our understanding of how the Lands pathways are enzymatically mediated via large families of related gene products that display both substrate and tissue specificity has grown exponentially since. Recent studies building on this are starting to reveal key roles for the Lands pathway in specific scenarios, in particular inflammation, immunity and inflammation. This review will cover the Lands cycle from historical perspectives first, then present new information on how this important cycle forms a central regulatory node connecting fatty acyl and phospholipid metabolism and how its altered regulation may present new opportunities for therapeutic intervention in human disease.
Collapse
Affiliation(s)
- Valerie B. O'Donnell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4SN, U.K
| |
Collapse
|
29
|
Demuynck R, Efimova I, Naessens F, Krysko DV. Immunogenic ferroptosis and where to find it? J Immunother Cancer 2021; 9:jitc-2021-003430. [PMID: 34903554 PMCID: PMC8671998 DOI: 10.1136/jitc-2021-003430] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2021] [Indexed: 12/15/2022] Open
Abstract
Ferroptosis is a recently discovered form of regulated cell death that is morphologically, genetically, and biochemically distinct from apoptosis and necroptosis, and its potential use in anticancer therapy is emerging. The strong immunogenicity of (early) ferroptotic cancer cells broadens the current concept of immunogenic cell death and opens up new possibilities for cancer treatment. In particular, induction of immunogenic ferroptosis could be beneficial for patients with cancers resistant to apoptosis and necroptosis. However, ferroptotic cancer cells may be a rich source of oxidized lipids, which contribute to decreased phagocytosis and antigen cross-presentation by dendritic cells and thus may favor tumor evasion. This could explain the non-immunogenicity of late ferroptotic cells. Besides the presence of lactate in the tumor microenvironment, acidification and hypoxia are essential factors promoting ferroptosis resistance and affecting its immunogenicity. Here, we critically discuss the crucial mediators controlling the immunogenicity of ferroptosis that modulate the induction of antitumor immunity. We emphasize that it will be necessary to also identify the tolerogenic (ie, immunosuppressive) nature of ferroptosis, which can lead to tumor evasion.
Collapse
Affiliation(s)
- Robin Demuynck
- Cell Death Investigation and Therapy Lab, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Iuliia Efimova
- Cell Death Investigation and Therapy Lab, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Faye Naessens
- Cell Death Investigation and Therapy Lab, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Dmitri V Krysko
- Cell Death Investigation and Therapy Lab, Department of Human Structure and Repair, Ghent University, Ghent, Belgium .,Cancer Research Institute Ghent, Ghent, Belgium.,Department of Pathophysiology, I M Sechenov First Moscow State Medical University, Moskva, Russian Federation.,Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Niznij Novgorod, Russian Federation
| |
Collapse
|
30
|
Wu C, Liu Z, Chen Z, Xu D, Chen L, Lin H, Shi J. A nonferrous ferroptosis-like strategy for antioxidant inhibition-synergized nanocatalytic tumor therapeutics. SCIENCE ADVANCES 2021; 7:eabj8833. [PMID: 34550744 PMCID: PMC8457667 DOI: 10.1126/sciadv.abj8833] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Ferroptosis, an emerging type of cell death found in the past decades, features specifically lipid peroxidation during the cell death process commonly by iron accumulation. Unfortunately, however, the direct delivery of iron species may trigger undesired detrimental effects such as anaphylactic reactions in normal tissues. Up to date, reports on the cellular ferroptosis by using nonferrous metal elements can be rarely found. In this work, we propose a nonferrous ferroptosis-like strategy based on hybrid CoMoO4-phosphomolybdic acid nanosheet (CPMNS)–enabled lipid peroxide (LOOH) accumulation via accelerated Mo(V)-Mo(VI) transition, elevated GSH depletion for GPX4 enzyme deactivation, and ROS burst, for efficient ferroptosis and chemotherapy. Both in vitro and in vivo outcomes demonstrate the notable anticancer ferroptosis efficacy, suggesting the high feasibility of this CPMNS-enabled ferroptosis-like therapeutic concept. It is highly expected that such ferroptosis-like design in nanocatalytic medicine would be beneficial to future advances in the field of cancer-therapeutic regimens.
Collapse
Affiliation(s)
- Chenyao Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Zhonglong Liu
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital and College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Zhixin Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Deliang Xu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Lisong Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Han Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Corresponding author. (J.S.); (H.L.)
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Corresponding author. (J.S.); (H.L.)
| |
Collapse
|
31
|
Berglund L, Kim K, Zhang W, Prakash N, Truax K, Anuurad E, Enkhmaa B. Lp(a)-Associated Oxidized Phospholipids in Healthy Black and White Participants in Relation to apo(a) Size, Age, and Family Structure. J Am Heart Assoc 2021; 10:e020158. [PMID: 34431330 PMCID: PMC8649226 DOI: 10.1161/jaha.120.020158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Lp(a) (lipoprotein(a)) is the major lipoprotein carrier of oxidized phospholipids (OxPL) and this function mediates Lp(a) atherogenicity. However, the relationship between OxPL, Lp(a), and genetic and biological characteristics remains poorly understood. We assessed the relationship between Lp(a)‐bound OxPL, apolipoprotein(a) (apo(a)) size, age, and family structure in 2 racial groups. Methods and Results Healthy Black and White families were recruited from the general population (age: 6–74 years, n=267). OxPL and Lp(a) levels were assayed enzymatically; apo(a) isoform, LPA allele sizes, and allele‐specific Lp(a) levels were determined. Lp(a)‐OxPL levels did not differ significantly by racial and age groups. Lp(a)‐OxPL levels were associated with total plasma Lp(a) in all participants and in race‐specific analyses. Further, OxPL levels were significantly associated with allele‐specific Lp(a) levels carried by the smaller apo(a) size in all participants (β=0.33, P=0.0003) as well as separately for Black (β=0.50, P=0.0032) and White (β=0.26, P=0.0181) participants. A significant association of OxPL with allele‐specific Lp(a) levels for larger apo(a) sizes was seen only in Black participants (β=0.53, P=0.0076). In this group, Lp(a)‐OxPL levels were also heritable (h2=0.29, P=0.0235), resulting in a significant interracial difference in heritability between Black and White people (P=0.0352). Conclusions Lp(a)‐OxPL levels were associated with allele‐specific Lp(a) level carried on smaller apo(a) sizes and among Black participants also for larger apo(a) sizes. The heritability estimates for Lp(a)‐bound OxPL differed by race.
Collapse
Affiliation(s)
- Lars Berglund
- Department of Internal Medicine University of California Davis Davis CA
| | - Kyoungmi Kim
- Department of Public Health Sciences University of California Davis Davis CA
| | - Wei Zhang
- Department of Internal Medicine University of California Davis Davis CA
| | - Nishant Prakash
- Department of Internal Medicine University of California Davis Davis CA
| | - Kevin Truax
- Department of Internal Medicine University of California Davis Davis CA
| | - Erdembileg Anuurad
- Office of Research School of Medicine University of California Davis Davis CA
| | - Byambaa Enkhmaa
- Department of Internal Medicine University of California Davis Davis CA
| |
Collapse
|
32
|
Abstract
Ferroptosis is an iron-dependent cell death pathway and participates in various diseases. Current evidence suggests that ferroptosis can obviously affect the function of blood cells. This paper aims to elaborate the role of ferroptosis in blood cells and related diseases. First, abnormal ferroptosis damages the developing red blood cells by breaking systemic iron homeostasis, leading to erythropoiesis suppression and anaemia. Ferroptosis mediates neutrophils recruitment and neutrophil extracellular trap formation (NETosis). In T-cells, ferroptosis induces a novel point of synergy between immunotherapy and radiotherapy. Additionally, ferroptosis may mediate B cells differentiation, antibody responses and lymphoma. Nevertheless, increased ferroptosis can ameliorate acute myeloid leukaemia and T-cell leukaemia/lymphoma by inducing iron-dependent cancer cells death. Besides, ferroptosis activates platelets by increasing P-selectin, thus causing thromboembolism. Ferroptosis mediates virus infection and parasite infection by driving T-cell death and preventing T-cell immunity. Interestingly, ferroptosis is also considered as a critical player in COVID-19 infections, while targetting ferroptosis may also improve thromboembolism and prognosis in patients with COVID-19 infection. Overall, the crucial role of ferroptosis in blood cells will show a new therapeutic potential in blood cell-related diseases.HighlightsFerroptosis shows a new therapeutic potential for blood cell-related diseases.Ferroptosis damages erythropoiesis and thus induces anaemia.Ferroptosis induces platelet activation and leads to thromboembolism.Ferroptosis regulates T-cell and B-cell immunity, which participant in infectious diseases.Inversely, ferroptosis ameliorates acute myeloid leukaemia and T-cell leukaemia.
Collapse
Affiliation(s)
- Zhe Chen
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, China
| | - Jinyong Jiang
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, China
| | - Nian Fu
- Department of Gastroenterology, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
33
|
Cebo M, Calderón Castro C, Schlotterbeck J, Gawaz M, Chatterjee M, Lämmerhofer M. Untargeted UHPLC-ESI-QTOF-MS/MS analysis with targeted feature extraction at precursor and fragment level for profiling of the platelet lipidome with ex vivo thrombin-activation. J Pharm Biomed Anal 2021; 205:114301. [PMID: 34391135 DOI: 10.1016/j.jpba.2021.114301] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 01/17/2023]
Abstract
Lipids play a major role in platelet signaling and activation. In this study, we analyzed the platelet lipidome in an untargeted manner by reversed-phase UHPLC for lipid species separation coupled to high-resolution QTOF-MS/MS in data-independent acquisition (DIA) mode with sequential window acquisition of all theoretical fragment ion mass spectra (SWATH) for compound detection. Lipid identification and peak picking was supported by the characteristic regular elution pattern of lipids differing in carbon and double bond numbers. It was primarily based on post-acquisition targeted feature extraction from the SWATH data. Multiple extracted ion chromatograms (EICs) from SWATH data of diagnostic ions on MS1 and MS2 level from both positive and negative ion mode allowed to distinguish between poorly resolved isomeric lipids based on their distinct fragment ions, which were used for relative quantification at a molecular lipid species level. It supports assay specificity for relative lipid quantitation via multiple quantifiably ions unlike to data-dependent acquisition methods which rely on precursor ions only. This approach was used to analyze human platelet samples. 457 lipids were annotated. Concentrations of lipids were estimated by stable isotope-labelled lipid class-specific internal standards as surrogate calibrants. Heatmaps of lipid concentrations in dependence on carbon and double bond numbers for the distinct lipid classes revealed a snapshot of the platelet lipidome in the resting state with lipid species distributions within classes supporting some functional interpretations. As expected, activation of the platelets by thrombin has led to significant alterations in the platelet lipidome as proven by univariate (volcano plot) and multivariate (PLS-DA) statistics. Several lipids were significantly up-regulated (lysophosphatidylinositols, oxylipins such as thromboxane B2 (TXB2), hydroxyheptadecatrienoic acid (HHT), hydroxyeicosatetraenoic acid (HETE), hydroxyoctadecadienoic acid (HODE), sphingoid-bases, (very) long chain saturated fatty acids) or down-regulated (lysophosphatidylethanolamines, polyunsaturated fatty acids, phosphatidylinositols). Several of them are well known as biomarkers of platelet activation while others may provide some further insights into pathways of platelet activation and platelet metabolism.
Collapse
Affiliation(s)
- Malgorzata Cebo
- University of Tübingen, Institute of Pharmaceutical Sciences, Pharmaceutical (Bio)Analysis, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | | | - Jörg Schlotterbeck
- University of Tübingen, Institute of Pharmaceutical Sciences, Pharmaceutical (Bio)Analysis, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Meinrad Gawaz
- Department of Cardiology and Angiology, University Hospital Tübingen, Otfried-Müller-Strasse 10, 72076, Tübingen, Germany
| | - Madhumita Chatterjee
- Department of Cardiology and Angiology, University Hospital Tübingen, Otfried-Müller-Strasse 10, 72076, Tübingen, Germany
| | - Michael Lämmerhofer
- University of Tübingen, Institute of Pharmaceutical Sciences, Pharmaceutical (Bio)Analysis, Auf der Morgenstelle 8, 72076, Tübingen, Germany.
| |
Collapse
|
34
|
Kyle JE, Aimo L, Bridge AJ, Clair G, Fedorova M, Helms JB, Molenaar MR, Ni Z, Orešič M, Slenter D, Willighagen E, Webb-Robertson BJM. Interpreting the lipidome: bioinformatic approaches to embrace the complexity. Metabolomics 2021; 17:55. [PMID: 34091802 DOI: 10.1007/s11306-021-01802-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Improvements in mass spectrometry (MS) technologies coupled with bioinformatics developments have allowed considerable advancement in the measurement and interpretation of lipidomics data in recent years. Since research areas employing lipidomics are rapidly increasing, there is a great need for bioinformatic tools that capture and utilize the complexity of the data. Currently, the diversity and complexity within the lipidome is often concealed by summing over or averaging individual lipids up to (sub)class-based descriptors, losing valuable information about biological function and interactions with other distinct lipids molecules, proteins and/or metabolites. AIM OF REVIEW To address this gap in knowledge, novel bioinformatics methods are needed to improve identification, quantification, integration and interpretation of lipidomics data. The purpose of this mini-review is to summarize exemplary methods to explore the complexity of the lipidome. KEY SCIENTIFIC CONCEPTS OF REVIEW Here we describe six approaches that capture three core focus areas for lipidomics: (1) lipidome annotation including a resolvable database identifier, (2) interpretation via pathway- and enrichment-based methods, and (3) understanding complex interactions to emphasize specific steps in the analytical process and highlight challenges in analyses associated with the complexity of lipidome data.
Collapse
Affiliation(s)
- Jennifer E Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Lucila Aimo
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, 1 rue Michel-Servet, 1211, Geneva 4, Switzerland
| | - Alan J Bridge
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, 1 rue Michel-Servet, 1211, Geneva 4, Switzerland
| | - Geremy Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Center for Biotechnology and Biomedicine, Universität Leipzig, Deutscher Platz 5, Leipzig, Germany
| | - J Bernd Helms
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Martijn R Molenaar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Zhixu Ni
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Center for Biotechnology and Biomedicine, Universität Leipzig, Deutscher Platz 5, Leipzig, Germany
| | - Matej Orešič
- School of Medical Sciences, Örebro University, 702 81, Örebro, Sweden
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Denise Slenter
- Department of Bioinformatics-BiGCaT, NUTRIM, Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Egon Willighagen
- Department of Bioinformatics-BiGCaT, NUTRIM, Maastricht University, 6229 ER, Maastricht, The Netherlands
| | | |
Collapse
|
35
|
Sikorskaya TV, Ermolenko EV, Boroda AV, Ginanova TT. Physiological processes and lipidome dynamics in the soft coral Sinularia heterospiculata under experimental bleaching. Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110609. [PMID: 33957260 DOI: 10.1016/j.cbpb.2021.110609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/15/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022]
Abstract
Coral polyps host intracellular symbiotic dinoflagellates (SD). The loss of SD (referred as bleaching) under stressful environmental conditions is the main reason of coral reef destruction, and therefore, intensively studied over the world. Lipids are the structural base of biomembranes and energy reserve of corals and are directly involved in the coral bleaching. In order to establish a relationship between coral tissue morphology, physiological processes and lipidome dynamics during bleaching, the soft coral Sinularia heterospiculata was exposed to experimental heat stress (33 °C) for 72 h. A chlorophyll content, structure of cells, the level of reactive oxygen species (ROS), and molecular species of storage and structural lipids were analyzed. After 24 h of heat exposure, the level of ROS-positive SD cells did not increase, but the host tissues lost a significant part of SD. The removal of SD cells by exocytosis were suggested. Exocytosis was presumed to prevail at earlier stages of the soft coral bleaching. Symbiophagosomes with degenerative SD were observed in the stressed coral host cells. After 24 h, the content of phosphatidylinositols, which involved in apoptosis and autophagy, was significantly decreased. The innate immune response was triggered, and SD were digested by the coral host. After 48 h, a degradation of SD chloroplasts and a decrease in the specific monogalactosyldiacylglycerol molecular species were detected that confirmed a disruption of lipid biosynthesis in chloroplasts. At the end of coral bleaching, the appearance of oxidized phosphatidylethanolamines, indicating damage to the host membranes, and the degradation of the coral tissues were simultaneously observed. Thus, a switch between dominant mechanisms of the SD loss during bleaching of S. heterospiculata was found and proved by certain variations of the lipidomic profile. Lipidomic parameters may become indicators of physiological processes occurring in the symbiotic coral organism and may be used for assessing anthropogenic or natural destructive effects on coral reefs.
Collapse
Affiliation(s)
- Tatyana V Sikorskaya
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation.
| | - Ekaterina V Ermolenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Andrey V Boroda
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Taliya T Ginanova
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| |
Collapse
|
36
|
Jiang P, Yang F, Zou C, Bao T, Wu M, Yang D, Bu S. The construction and analysis of a ferroptosis-related gene prognostic signature for pancreatic cancer. Aging (Albany NY) 2021; 13:10396-10414. [PMID: 33819918 PMCID: PMC8064155 DOI: 10.18632/aging.202801] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/03/2021] [Indexed: 04/18/2023]
Abstract
Ferroptosis is a regulated cell death nexus linking metabolism, redox biology and diseases including cancer. The aim of the present study was to identify a ferroptosis-related gene prognostic signature for pancreatic cancer (PCa) by systematic analysis of transcriptional profiles from Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx). Altogether 14 ferroptosis-relevant genes with potential prognostic values were identified, based on which a risk score formula was constructed. According to the risk scores, we classified the patients into a high- and a low-risk score group. It was verified in Gene Expression Omnibus (GEO) and ICGC (International Cancer Genome Consortium) datasets. The Kaplan-Meier survival curves demonstrated that patients with lower risk scores had significantly favorable overall survival (OS) (P < 0.0001). The area under the receiver operating curve (ROC) for 12, 18 and 24 months was about 0.8 in all patients. The result of immune status analysis revealed that the signature significantly associated with the immune infiltration and immune checkpoint blockade (ICB) proteins. In addition, we used quantitative real time PCR (q-rtPCR) and Human Protein Atlas (HPA) to validate the expression of the key genes. Collectively, the signature is valuable for survival prediction of PCa patients. As the signature also has relevance with the immune characteristics, it may help improve the efficacy of personalized immunotherapy.
Collapse
Affiliation(s)
- Peicheng Jiang
- Department of Gastroenterology, Fudan University Jinshan Hospital, Shanghai, China
| | - Feng Yang
- Department of Pancreatic Surgery, Fudan University Huashan Hospital, Shanghai, China
| | - Caifeng Zou
- Department of Pancreatic Surgery, Fudan University Huashan Hospital, Shanghai, China
| | - Tianyuan Bao
- Department of Gastroenterology, Fudan University Jinshan Hospital, Shanghai, China
| | - Mengmeng Wu
- Department of Digestive Diseases, Fudan University Huashan Hospital, Shanghai, China
| | - Dongqin Yang
- Department of Digestive Diseases, Fudan University Huashan Hospital, Shanghai, China
| | - Shurui Bu
- Department of Gastroenterology, Fudan University Jinshan Hospital, Shanghai, China
| |
Collapse
|
37
|
Affiliation(s)
- Katherine N Theken
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Garret A FitzGerald
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. .,Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
38
|
Oxidation of polyunsaturated fatty acids to produce lipid mediators. Essays Biochem 2021; 64:401-421. [PMID: 32618335 PMCID: PMC7517362 DOI: 10.1042/ebc20190082] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022]
Abstract
The chemistry, biochemistry, pharmacology and molecular biology of oxylipins (defined as a family of oxygenated natural products that are formed from unsaturated fatty acids by pathways involving at least one step of dioxygen-dependent oxidation) are complex and occasionally contradictory subjects that continue to develop at an extraordinarily rapid rate. The term includes docosanoids (e.g. protectins, resolvins and maresins, or specialized pro-resolving mediators), eicosanoids and octadecanoids and plant oxylipins, which are derived from either the omega-6 (n-6) or the omega-3 (n-3) families of polyunsaturated fatty acids. For example, the term eicosanoid is used to embrace those biologically active lipid mediators that are derived from C20 fatty acids, and include prostaglandins, thromboxanes, leukotrienes, hydroxyeicosatetraenoic acids and related oxygenated derivatives. The key enzymes for the production of prostanoids are prostaglandin endoperoxide H synthases (cyclo-oxygenases), while lipoxygenases and oxidases of the cytochrome P450 family produce numerous other metabolites. In plants, the lipoxygenase pathway from C18 polyunsaturated fatty acids yields a variety of important products, especially the jasmonates, which have some comparable structural features and functions. Related oxylipins are produced by non-enzymic means (isoprostanes), while fatty acid esters of hydroxy fatty acids (FAHFA) are now being considered together with the oxylipins from a functional perspective. In all kingdoms of life, oxylipins usually act as lipid mediators through specific receptors, have short half-lives and have functions in innumerable biological contexts.
Collapse
|
39
|
Reed KSM, Ulici V, Kim C, Chubinskaya S, Loeser RF, Phanstiel DH. Transcriptional response of human articular chondrocytes treated with fibronectin fragments: an in vitro model of the osteoarthritis phenotype. Osteoarthritis Cartilage 2021; 29:235-247. [PMID: 33248223 PMCID: PMC7870543 DOI: 10.1016/j.joca.2020.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/19/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Fibronectin is a matrix protein that is fragmented during cartilage degradation in osteoarthritis (OA). Treatment of chondrocytes with fibronectin fragments (FN-f) has been used to model OA in vitro, but the system has not been fully characterized. This study sought to define the transcriptional response of chondrocytes to FN-f, and directly compare it to responses traditionally observed in OA. DESIGN Normal human femoral chondrocytes isolated from tissue donors were treated with either FN-f or PBS (control) for 3, 6, or 18 h. RNA-seq libraries were compared between time-matched FN-f and control samples in order to identify changes in gene expression over time. Differentially expressed genes were compared to a published OA gene set and used for pathway, transcription factor motif, and kinome analysis. RESULTS FN-f treatment resulted in 3,914 differentially expressed genes over the time course. Genes that are up- or downregulated in OA were significantly up- (P < 0.00001) or downregulated (P < 0.0004) in response to FN-f. Early response genes were involved in proinflammatory pathways, whereas many late response genes were involved in ferroptosis. The promoters of upregulated genes were enriched for NF-κB, AP-1, and IRF motifs. Highly upregulated kinases included CAMK1G, IRAK2, and the uncharacterized kinase DYRK3, while growth factor receptors TGFBR2 and FGFR2 were downregulated. CONCLUSIONS FN-f treatment of normal human articular chondrocytes recapitulated many key aspects of the OA chondrocyte phenotype. This in vitro model is promising for future OA studies, especially considering its compatibility with genomics and genome-editing techniques.
Collapse
Affiliation(s)
- K S M Reed
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - V Ulici
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA; Division of Rheumatology, Allergy and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| | - C Kim
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA; Division of Rheumatology, Allergy and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| | - S Chubinskaya
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA.
| | - R F Loeser
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA; Division of Rheumatology, Allergy and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| | - D H Phanstiel
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
40
|
Bioactive Ether Lipids: Primordial Modulators of Cellular Signaling. Metabolites 2021; 11:metabo11010041. [PMID: 33430006 PMCID: PMC7827237 DOI: 10.3390/metabo11010041] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 12/14/2022] Open
Abstract
The primacy of lipids as essential components of cellular membranes is conserved across taxonomic domains. In addition to this crucial role as a semi-permeable barrier, lipids are also increasingly recognized as important signaling molecules with diverse functional mechanisms ranging from cell surface receptor binding to the intracellular regulation of enzymatic cascades. In this review, we focus on ether lipids, an ancient family of lipids having ether-linked structures that chemically differ from their more prevalent acyl relatives. In particular, we examine ether lipid biosynthesis in the peroxisome of mammalian cells, the roles of selected glycerolipids and glycerophospholipids in signal transduction in both prokaryotes and eukaryotes, and finally, the potential therapeutic contributions of synthetic ether lipids to the treatment of cancer.
Collapse
|
41
|
Hydrogen influences HDL-associated enzymes and reduces oxidized phospholipids levels in rats fed with a high-fat diet. Life Sci 2020; 267:118945. [PMID: 33359745 DOI: 10.1016/j.lfs.2020.118945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
AIMS Oxidized phospholipids (OxPLs) are formed as a result of oxidative stress, which potentially mediate multiple pathological effects. We aimed to evaluate the effects of hydrogen (H2) on OxPLs in vivo and the underlying mechanism. MAIN METHODS Rats were randomly assigned to three groups: control group fed with a chow diet, model group fed with a high-fat diet, and H2-treated group fed with a high-fat diet and treated by 4% H2 inhalation for ten weeks. OxPLs in liver and plasma were analyzed by liquid chromatography-mass spectrometry. High-density lipoprotein (HDL) was separated by ultracentrifugation. A proteomic analysis was performed to reveal the alternation of HDL protein composition and he antioxidant capacity of HDL was tested by low-density lipoprotein oxidation experiment. Furthermore, the activity or expression of HDL-associated enzymes were evaluated. KEY FINDINGS Inhalation of 4% H2 decreased the accumulation of OxPLs in rats. In vitro tests revealed that the different concentrations of H2 did not inhibit the formation of OxPLs mediated by non-enzymatic oxidation. H2 inhalation altered the components and enhanced the anti-oxidative capacity of HDL in rats fed with a high-fat diet. Further experiments showed that H2 significantly regulated the activity of lipoprotein-associated phospholipase A2, paraoxonase-1, and the expression of lecithin:cholesterol acyltransferase. SIGNIFICANCE Our findings revealed that H2 may reduce the OxPLs levels through its influence on HDL-associated enzymes that can act on OxPLs, suggesting that H2 can be used in alleviating diseases related to lipid peroxidation due to oxidative stress.
Collapse
|
42
|
Liebisch G, Fahy E, Aoki J, Dennis EA, Durand T, Ejsing CS, Fedorova M, Feussner I, Griffiths WJ, Köfeler H, Merrill AH, Murphy RC, O'Donnell VB, Oskolkova O, Subramaniam S, Wakelam MJO, Spener F. Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. J Lipid Res 2020; 61:1539-1555. [PMID: 33037133 PMCID: PMC7707175 DOI: 10.1194/jlr.s120001025] [Citation(s) in RCA: 421] [Impact Index Per Article: 84.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A comprehensive and standardized system to report lipid structures analyzed by MS is essential for the communication and storage of lipidomics data. Herein, an update on both the LIPID MAPS classification system and shorthand notation of lipid structures is presented for lipid categories Fatty Acyls (FA), Glycerolipids (GL), Glycerophospholipids (GP), Sphingolipids (SP), and Sterols (ST). With its major changes, i.e., annotation of ring double bond equivalents and number of oxygens, the updated shorthand notation facilitates reporting of newly delineated oxygenated lipid species as well. For standardized reporting in lipidomics, the hierarchical architecture of shorthand notation reflects the diverse structural resolution powers provided by mass spectrometric assays. Moreover, shorthand notation is expanded beyond mammalian phyla to lipids from plant and yeast phyla. Finally, annotation of atoms is included for the use of stable isotope-labeled compounds in metabolic labeling experiments or as internal standards. This update on lipid classification, nomenclature, and shorthand annotation for lipid mass spectra is considered a standard for lipid data presentation.
Collapse
Affiliation(s)
- Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Eoin Fahy
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Edward A Dennis
- Department of Chemistry and Biochemistry, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Thierry Durand
- Institute of Biomolecules Max Mousseron, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Leipzig, Germany; Center for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | | | - Harald Köfeler
- Core Facility Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Alfred H Merrill
- School of Biological Sciences and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado at Denver, Aurora, CO, USA
| | | | - Olga Oskolkova
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Shankar Subramaniam
- Department of Biomedical Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | | | - Friedrich Spener
- Department of Molecular Biosciences, University of Graz, Graz, Austria; Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria.
| |
Collapse
|
43
|
Li D, Li Y. The interaction between ferroptosis and lipid metabolism in cancer. Signal Transduct Target Ther 2020; 5:108. [PMID: 32606298 PMCID: PMC7327075 DOI: 10.1038/s41392-020-00216-5] [Citation(s) in RCA: 400] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/08/2020] [Accepted: 06/13/2020] [Indexed: 02/08/2023] Open
Abstract
Ferroptosis is a new form of programmed cell death characterized by the accumulation of iron-dependent lethal lipid peroxides. Recent discoveries have focused on alterations that occur in lipid metabolism during ferroptosis and have provided intriguing insights into the interplay between ferroptosis and lipid metabolism in cancer. Their interaction regulates the initiation, development, metastasis, therapy resistance of cancer, as well as the tumor immunity, which offers several potential strategies for cancer treatment. This review is a brief overview of the features characterizing the interaction between ferroptosis and lipid metabolism, and highlights the significance of this interaction in cancer.
Collapse
Affiliation(s)
- Dingshan Li
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yongsheng Li
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China. .,Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
44
|
Murphy RC. Lipid mass spectrometry: A path traveled for 50 years. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4492. [PMID: 31896171 DOI: 10.1002/jms.4492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
In the middle of the 1960s, I began graduate school and at the same time started on the path of using mass spectrometry to gain insight into various aspects of lipid biochemistry. This was not a straight path but one that went from organic geochemistry, to lunar sample analysis, to a pursuit of the structure of an elusive and very active, lipid mediator slow reacting substance of anaphylaxis (SRS-A). The discovery of the structure of SRS-A opened important questions about phospholipid biochemistry and the arachidonate cycle in cells. I have written this reflection to highlight the various advances in mass spectrometry that occurred during this time that had a great impact on our ability to study lipid biochemistry. I specifically applied these new advances to studies of leukotriene biosynthesis in vivo, leukotriene metabolism, and arachidonate-containing phospholipids that are essential in providing arachidonic acid for the 5-lipoxygenase pathway. Along the way, imaging mass spectrometry was shown to be a powerful tool to probe lipids as they exist in tissue slices. We found this as just one of the ways to use the emerging technology of lipidomics to study human pathophysiology. Our studies of neutral lipids and oxidized phospholipids were especially challenging due to the total number of molecular species that could be found in cells. Many challenges remain in using mass spectrometry for lipid studies, and a few are presented.
Collapse
Affiliation(s)
- Robert C Murphy
- Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, 12801 E. 17th Ave, Aurora, Colorado, 80045
| |
Collapse
|
45
|
Kagan VE, Tyurina YY, Vlasova II, Kapralov AA, Amoscato AA, Anthonymuthu TS, Tyurin VA, Shrivastava IH, Cinemre FB, Lamade A, Epperly MW, Greenberger JS, Beezhold DH, Mallampalli RK, Srivastava AK, Bayir H, Shvedova AA. Redox Epiphospholipidome in Programmed Cell Death Signaling: Catalytic Mechanisms and Regulation. Front Endocrinol (Lausanne) 2020; 11:628079. [PMID: 33679610 PMCID: PMC7933662 DOI: 10.3389/fendo.2020.628079] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/21/2020] [Indexed: 01/16/2023] Open
Abstract
A huge diversification of phospholipids, forming the aqueous interfaces of all biomembranes, cannot be accommodated within a simple concept of their role as membrane building blocks. Indeed, a number of signaling functions of (phospho)lipid molecules has been discovered. Among these signaling lipids, a particular group of oxygenated polyunsaturated fatty acids (PUFA), so called lipid mediators, has been thoroughly investigated over several decades. This group includes oxygenated octadecanoids, eicosanoids, and docosanoids and includes several hundreds of individual species. Oxygenation of PUFA can occur when they are esterified into major classes of phospholipids. Initially, these events have been associated with non-specific oxidative injury of biomembranes. An alternative concept is that these post-synthetically oxidatively modified phospholipids and their adducts with proteins are a part of a redox epiphospholipidome that represents a rich and versatile language for intra- and inter-cellular communications. The redox epiphospholipidome may include hundreds of thousands of individual molecular species acting as meaningful biological signals. This review describes the signaling role of oxygenated phospholipids in programs of regulated cell death. Although phospholipid peroxidation has been associated with almost all known cell death programs, we chose to discuss enzymatic pathways activated during apoptosis and ferroptosis and leading to peroxidation of two phospholipid classes, cardiolipins (CLs) and phosphatidylethanolamines (PEs). This is based on the available LC-MS identification and quantitative information on the respective peroxidation products of CLs and PEs. We focused on molecular mechanisms through which two proteins, a mitochondrial hemoprotein cytochrome c (cyt c), and non-heme Fe lipoxygenase (LOX), change their catalytic properties to fulfill new functions of generating oxygenated CL and PE species. Given the high selectivity and specificity of CL and PE peroxidation we argue that enzymatic reactions catalyzed by cyt c/CL complexes and 15-lipoxygenase/phosphatidylethanolamine binding protein 1 (15LOX/PEBP1) complexes dominate, at least during the initiation stage of peroxidation, in apoptosis and ferroptosis. We contrast cell-autonomous nature of CLox signaling in apoptosis correlating with its anti-inflammatory functions vs. non-cell-autonomous ferroptotic signaling facilitating pro-inflammatory (necro-inflammatory) responses. Finally, we propose that small molecule mechanism-based regulators of enzymatic phospholipid peroxidation may lead to highly specific anti-apoptotic and anti-ferroptotic therapeutic modalities.
Collapse
Affiliation(s)
- Valerian E Kagan
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Irina I Vlasova
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexander A Kapralov
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrew A Amoscato
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tamil S Anthonymuthu
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Vladimir A Tyurin
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Indira H Shrivastava
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
- Office of the Director, Health Effects Laboratory Division, NIOSH/CDC, Morgantown, WV, United States
| | - Fatma B Cinemre
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrew Lamade
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joel S Greenberger
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Donald H Beezhold
- Office of the Director, Health Effects Laboratory Division, NIOSH/CDC, Morgantown, WV, United States
| | - Rama K Mallampalli
- Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Apurva K Srivastava
- Laboratory of Human Toxicology and Pharmacology, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Hulya Bayir
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anna A Shvedova
- Exposure Assessment Branch, The National Institute for Occupational Safety and Health/Centers for Disease Control and Prevention (NIOSH/CDC), Morgantown, WV, United States
| |
Collapse
|
46
|
Spickett CM. Formation of Oxidatively Modified Lipids as the Basis for a Cellular Epilipidome. Front Endocrinol (Lausanne) 2020; 11:602771. [PMID: 33408694 PMCID: PMC7779974 DOI: 10.3389/fendo.2020.602771] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022] Open
Abstract
While often regarded as a subset of metabolomics, lipidomics can better be considered as a field in its own right. While the total number of lipid species in biology may not exceed the number of metabolites, they can be modified chemically and biochemically leading to an enormous diversity of derivatives, many of which retain the lipophilic properties of lipids and thus expand the lipidome greatly. Oxidative modification by radical oxygen species, either enzymatically or chemically, is one of the major mechanisms involved, although attack by non-radical oxidants also occurs. The modified lipids typically contain more oxygens in the form of hydroxyl, epoxide, carbonyl and carboxylic acid groups, and nitration, nitrosylation, halogenation or sulfation can also occur. This article provides a succinct overview of the types of species formed, the reactive compounds involved and the specific molecular sites that they react with, and the biochemical or chemical mechanisms involved. In many cases, these modifications reduce the stability of the lipid, and breakdown products are formed, which themselves have interesting properties such as the ability to react with other biomolecules. Publications on the biological effects of modified lipids are growing rapidly, supporting the concept that some of these biomolecules have potential signaling and regulatory effects. The question therefore arises whether modified lipids represent an "epilipidome", analogous to the epigenetic modifications that can control gene expression.
Collapse
|
47
|
Hajeyah AA, Griffiths WJ, Wang Y, Finch AJ, O’Donnell VB. The Biosynthesis of Enzymatically Oxidized Lipids. Front Endocrinol (Lausanne) 2020; 11:591819. [PMID: 33329396 PMCID: PMC7711093 DOI: 10.3389/fendo.2020.591819] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
Enzymatically oxidized lipids are a specific group of biomolecules that function as key signaling mediators and hormones, regulating various cellular and physiological processes from metabolism and cell death to inflammation and the immune response. They are broadly categorized as either polyunsaturated fatty acid (PUFA) containing (free acid oxygenated PUFA "oxylipins", endocannabinoids, oxidized phospholipids) or cholesterol derivatives (oxysterols, steroid hormones, and bile acids). Their biosynthesis is accomplished by families of enzymes that include lipoxygenases (LOX), cyclooxygenases (COX), cytochrome P450s (CYP), and aldo-keto reductases (AKR). In contrast, non-enzymatically oxidized lipids are produced by uncontrolled oxidation and are broadly considered to be harmful. Here, we provide an overview of the biochemistry and enzymology of LOXs, COXs, CYPs, and AKRs in humans. Next, we present biosynthetic pathways for oxylipins, oxidized phospholipids, oxysterols, bile acids and steroid hormones. Last, we address gaps in knowledge and suggest directions for future work.
Collapse
Affiliation(s)
- Ali A. Hajeyah
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
- *Correspondence: Ali A. Hajeyah,
| | - William J. Griffiths
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Yuqin Wang
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Andrew J. Finch
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Valerie B. O’Donnell
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
48
|
Weng J, Zhou J, Liang L, Li L. UHPLC/QTOF-MS-based metabolomics reveal the effect of Melastoma dodecandrum extract in type 2 diabetic rats. PHARMACEUTICAL BIOLOGY 2019; 57:807-815. [PMID: 31794270 PMCID: PMC6896414 DOI: 10.1080/13880209.2019.1693605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/17/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Context: Melastoma dodecandrum Lour. (Melastomataceae) is a traditional Chinese medicine. This is the first study to report a protective effect of the ethanol extract from M. dodecandrum (MDE) in type 2 diabetic (T2DM) rats.Objective: To investigate the therapeutic mechanism of MDE in T2DM rats.Materials and methods: Sprague-Dawley rats were fed a high-fat diet for 6 consecutive weeks, followed by intraperitoneal injection of streptozotocin (STZ) (30 mg/kg) to induce diabetes. T2DM rats were divided into untreated diabetic, metformin-treated and MDE-treated groups. Additionally, normal rats without treatment served as the control group (n = 6). Metformin (250 mg/kg) and MDE (600 mg/kg) were intragastrically administered to T2DM rats for 5 consecutive weeks. Serum samples were evaluated via ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC/QTOF-MS), followed by principal components analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA).Results: The 17 identified potential biomarkers were mainly involved in lipid, amino acid, arachidonic acid, taurine and nicotinic acid metabolism. MDE also significantly reduced the level of fasting blood glucose (FBG), oral glucose tolerance, insulin, total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), malondialdehyde (MDA), aspartate aminotransferase (AST), alanine aminotransferase (ALT) and urea nitrogen (BUN) in T2DM rats. The high-density lipoprotein (HDL), serum creatinine (Scr), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) levels were elevated in MDE-treated group.Discussion and conclusion: MDE possesses substantial antidiabetic activity, especially in lipid disorder regulation. This suggests that the use of MDE can be generalized to broader pharmacological studies, such as obesity and hyperlipidaemia.
Collapse
Affiliation(s)
- Jingyu Weng
- Department of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jingkai Zhou
- Department of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Liqing Liang
- Department of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Li Li
- Department of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
49
|
Nakashima Y, Sakai Y, Mizuno Y, Furuno K, Hirono K, Takatsuki S, Suzuki H, Onouchi Y, Kobayashi T, Tanabe K, Hamase K, Miyamoto T, Aoyagi R, Arita M, Yamamura K, Tanaka T, Nishio H, Takada H, Ohga S, Hara T. Lipidomics links oxidized phosphatidylcholines and coronary arteritis in Kawasaki disease. Cardiovasc Res 2019; 117:96-108. [PMID: 31782770 DOI: 10.1093/cvr/cvz305] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/13/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022] Open
Abstract
AIMS Coronary arteritis is a life-threatening complication that may arise in the acute stage of Kawasaki disease (KD), the leading cause of systemic vasculitis in childhood. Various microorganisms and molecular pathogens have been reported to cause KD. However, little is known about the key molecules that contribute to the development of coronary arteritis in KD. METHODS AND RESULTS To identify causative molecules for coronary arteritis in KD, we prospectively recruited 105 patients with KD and 65 disease controls in four different parts of Japan from 2015 to 2018. During this period, we conducted lipidomics analyses of their sera using liquid chromatography-mass spectrometry (LC-MS). The comprehensive LC-MS system detected a total of 27 776 molecules harbouring the unique retention time and m/z values. In the first cohort of 57 KD patients, we found that a fraction of these molecules showed enrichment patterns that varied with the sampling region and season. Among them, 28 molecules were recurrently identified in KD patients but not in controls. The second and third cohorts of 48 more patients with KD revealed that these molecules were correlated with inflammatory markers (leucocyte counts and C-reactive proteins) in the acute stage. Notably, two of these molecules (m/z values: 822.55 and 834.59) were significantly associated with the development of coronary arteritis in the acute stage of KD. Their fragmentation patterns in the tandem MS/MS analysis were consistent with those of oxidized phosphatidylcholines (PCs). Further LC-MS/MS analysis supported the concept that reactive oxygen species caused the non-selective oxidization of PCs in KD patients. In addition, the concentrations of LOX-1 ligand containing apolipoprotein B in the plasma of KD patients were significantly higher than in controls. CONCLUSION These data suggest that inflammatory signals activated by oxidized phospholipids are involved in the pathogenesis of coronary arteritis in KD. Because the present study recruited only Japanese patients, further examinations are required to determine whether oxidized PCs might be useful biomarkers for the development of coronary arteritis in broad populations of KD.
Collapse
Affiliation(s)
- Yasutaka Nakashima
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yumi Mizuno
- Kawasaki Disease Center, Fukuoka Children's Hospital, 5-1-1 Kashiiteriha, Higashi-ku, Fukuoka 813-0017, Japan
| | - Kenji Furuno
- Kawasaki Disease Center, Fukuoka Children's Hospital, 5-1-1 Kashiiteriha, Higashi-ku, Fukuoka 813-0017, Japan
| | - Keiichi Hirono
- Department of Pediatrics, Graduate School of Medicine, University of Toyama, Toyama 930-194, Japan
| | - Shinichi Takatsuki
- Department of Pediatrics, Toho University Omori Medical Center, Tokyo 143-8540, Japan
| | - Hiroyuki Suzuki
- Department of Pediatrics, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Yoshihiro Onouchi
- Department of Public Health, Chiba University Graduate School of Medicine, Chiba 260-0856, Japan
| | - Tohru Kobayashi
- Department of Management and Strategy, Clinical Research Center, National Center for Child Health and Development, Tokyo 157-0074, Japan
| | - Kazuhiro Tanabe
- Medical Solution Promotion Department, LSI Medience Corporation, Tokyo 101-8517, Japan
| | - Kenji Hamase
- Department of Drug Discovery and Evolution, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tomofumi Miyamoto
- Department of Pharmaceutical Health Care and Sciences, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Ryohei Aoyagi
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), Tsurumi, Yokohama, Kanagawa 230-0045, Japan.,Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo 105-0011, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), Tsurumi, Yokohama, Kanagawa 230-0045, Japan.,Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo 105-0011, Japan
| | - Kenichiro Yamamura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tamami Tanaka
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hisanori Nishio
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hidetoshi Takada
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Toshiro Hara
- Kawasaki Disease Center, Fukuoka Children's Hospital, 5-1-1 Kashiiteriha, Higashi-ku, Fukuoka 813-0017, Japan
| |
Collapse
|
50
|
Ni Z, Goracci L, Cruciani G, Fedorova M. Computational solutions in redox lipidomics - Current strategies and future perspectives. Free Radic Biol Med 2019; 144:110-123. [PMID: 31035005 DOI: 10.1016/j.freeradbiomed.2019.04.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 12/31/2022]
Abstract
The high chemical diversity of lipids allows them to perform multiple biological functions ranging from serving as structural building blocks of biological membranes to regulation of metabolism and signal transduction. In addition to the native lipidome, lipid species derived from enzymatic and non-enzymatic modifications (the epilipidome) make the overall picture even more complex, as their functions are still largely unknown. Oxidized lipids represent the fraction of epilipidome which has attracted high scientific attention due to their apparent involvement in the onset and development of numerous human disorders. Development of high-throughput analytical methods such as liquid chromatography coupled on-line to mass spectrometry provides the possibility to address epilipidome diversity in complex biological samples. However, the main bottleneck of redox lipidomics, the branch of lipidomics dealing with the characterization of oxidized lipids, remains the lack of optimal computational tools for robust, accurate and specific identification of already discovered and yet unknown modified lipids. Here we discuss the main principles of high-throughput identification of lipids and their modified forms and review the main software tools currently available in redox lipidomics. Different levels of confidence for software assisted identification of redox lipidome are defined and necessary steps toward optimal computational solutions are proposed.
Collapse
Affiliation(s)
- Zhixu Ni
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Germany; Center for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, Leipzig, Germany
| | - Laura Goracci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy; Consortium for Computational Molecular and Materials Sciences (CMS), via Elce di Sotto 8, 06123 Perugia, Italy
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy; Consortium for Computational Molecular and Materials Sciences (CMS), via Elce di Sotto 8, 06123 Perugia, Italy
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Germany; Center for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, Leipzig, Germany.
| |
Collapse
|