1
|
Pfersdorf F, Romanazzi L, Rosenkilde MM, Gustavsson M. Regulation of the chemokine receptors CXCR4 and ACKR3 by receptor activity-modifying proteins. J Biol Chem 2024:108055. [PMID: 39662834 DOI: 10.1016/j.jbc.2024.108055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/06/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024] Open
Abstract
The chemokine CXCL12 and its two cognate receptors - CXCR4 and ACKR3 - are key players in various homeostatic and pathophysiological processes, including embryonic development, autoimmune diseases, tissue repair and cancer. Recent reports identified an interaction of CXCR4 and ACKR3 with receptor activity-modifying proteins (RAMPs), and RAMP3 has been shown to facilitate ACKR3's recycling properties. Yet, the functional effects of RAMPs on the CXCL12 signalling axis remain largely elusive. Here, we characterize the effects of RAMPs on CXCR4 and ACKR3 function. We show that, in the absence of a ligand, RAMPs do not affect the cell membrane localization or constitutive internalization of the two receptors. RAMP3 inhibits ligand-stimulated internalization of ACKR3, which retains the receptor at the membrane and inhibits its ability to scavenge CXCL12. In addition, while cAMP inhibition by CXCR4 is unaffected by RAMPs, basal and ligand-stimulated β-arrestin recruitment to both CXCR4 and ACKR3 is reduced in the presence of RAMP3 due to complex formation at the cell surface. The effects on ACKR3 are observed for chemokine, small molecule and peptide agonists as well as for a N-terminal truncated receptor variant, suggesting that RAMP regulation involves contacts with the transmembrane domain of the receptor. Taken together, our results show that RAMPs regulate the CXCL12 signalling axis by directly interfering with receptor function. These findings could have direct implications for the interplay between receptors in vivo as well as future drug design in the therapeutic targeting of the CXCL12 signalling axis.
Collapse
Affiliation(s)
- Fabian Pfersdorf
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lucas Romanazzi
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Martin Gustavsson
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Saotome K, McGoldrick LL, Ho JH, Ramlall TF, Shah S, Moore MJ, Kim JH, Leidich R, Olson WC, Franklin MC. Structural insights into CXCR4 modulation and oligomerization. Nat Struct Mol Biol 2024:10.1038/s41594-024-01397-1. [PMID: 39313635 DOI: 10.1038/s41594-024-01397-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 08/28/2024] [Indexed: 09/25/2024]
Abstract
Activation of the chemokine receptor CXCR4 by its chemokine ligand CXCL12 regulates diverse cellular processes. Previously reported crystal structures of CXCR4 revealed the architecture of an inactive, homodimeric receptor. However, many structural aspects of CXCR4 remain poorly understood. Here, we use cryo-electron microscopy to investigate various modes of human CXCR4 regulation. CXCL12 activates CXCR4 by inserting its N terminus deep into the CXCR4 orthosteric pocket. The binding of US Food and Drug Administration-approved antagonist AMD3100 is stabilized by electrostatic interactions with acidic residues in the seven-transmembrane-helix bundle. A potent antibody blocker, REGN7663, binds across the extracellular face of CXCR4 and inserts its complementarity-determining region H3 loop into the orthosteric pocket. Trimeric and tetrameric structures of CXCR4 reveal modes of G-protein-coupled receptor oligomerization. We show that CXCR4 adopts distinct subunit conformations in trimeric and tetrameric assemblies, highlighting how oligomerization could allosterically regulate chemokine receptor function.
Collapse
Affiliation(s)
- Kei Saotome
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA.
| | | | - Jo-Hao Ho
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | | - Sweta Shah
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | | - Jee Hae Kim
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | | | | | |
Collapse
|
3
|
Penfield J, Zhang L. Interaction and dynamics of chemokine receptor CXCR4 binding with CXCL12 and hBD-3. Commun Chem 2024; 7:205. [PMID: 39271963 PMCID: PMC11399392 DOI: 10.1038/s42004-024-01280-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Chemokine receptor CXCR4 is involved in diverse diseases. A comparative study was conducted on CXCR4 embedded in a POPC lipid bilayer binding with CXCL12 in full and truncated forms, hBD-3 in wildtype, analog, and mutant forms based on in total 63 µs all-atom MD simulations. The initial binding structures of CXCR4 with ligands were predicted using HADDOCK docking or random-seed method, then μs-long simulations were performed to refine the structures. CXCR4&ligand binding structures predicted agree with available literature data. Both kinds of ligands bind stably to the N-terminus, extracellular loop 2 (ECL2), and ECL3 regions of CXCR4; the C2-C3 (K32-R38) region and occasionally the head of hBD-3 bind stably with CXCR4. hBD-3 analogs with Cys11-Cys40 disulfide bond can activate CXCR4 based on the Helix3-Helix6 distance calculation, but not other analogs or mutant. The results provide insight into understanding the dynamics and activation mechanism of CXCR4 receptor binding with different ligands.
Collapse
Affiliation(s)
- Jackson Penfield
- Chemical Engineering Department, Tennessee Technological University, Cookeville, TN, 38505, USA
| | - Liqun Zhang
- Chemical Engineering Department, University of Rhode Island, Kingston, RI, 02881, USA.
| |
Collapse
|
4
|
Liu Y, Liu A, Li X, Liao Q, Zhang W, Zhu L, Ye RD. Cryo-EM structure of monomeric CXCL12-bound CXCR4 in the active state. Cell Rep 2024; 43:114578. [PMID: 39093700 DOI: 10.1016/j.celrep.2024.114578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/17/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
CXCR4 binding of its endogenous agonist CXCL12 leads to diverse functions, including bone marrow retention of hematopoietic progenitors and cancer metastasis. However, the structure of the CXCL12-bound CXCR4 remains unresolved despite available structures of CXCR4 in complex with antagonists. Here, we present the cryoelectron microscopy (cryo-EM) structure of the CXCL12-CXCR4-Gi complex at an overall resolution of 2.65 Å. CXCL12 forms a 1:1 stoichiometry complex with CXCR4, following the two-site model. The first 8 amino acids of mature CXCL12 are crucial for CXCR4 activation by forming polar interactions with minor sub-pocket residues in the transmembrane binding pocket. The 3.2-Å distance between V3 of CXCL12 and the "toggle switch" W6.48 marks the deepest insertion among all chemokine-receptor pairs, leading to conformational changes of CXCR4 for G protein activation. These results, combined with functional assays and computational analysis, provide the structural basis for CXCR4 activation by CXCL12.
Collapse
Affiliation(s)
- Yezhou Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Aijun Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China; Dongguan Songshan Lake Central Hospital, Dongguan Third People's Hospital, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, Guangdong 523326, China
| | - Xinyu Li
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Qiwen Liao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Weijia Zhang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Lizhe Zhu
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Richard D Ye
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Guangdong 518048, China.
| |
Collapse
|
5
|
Eberle SA, Gustavsson M. Bilayer lipids modulate ligand binding to atypical chemokine receptor 3. Structure 2024; 32:1174-1183.e5. [PMID: 38776922 DOI: 10.1016/j.str.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/28/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Chemokine receptors belong to the large class of G protein-coupled receptors (GPCRs) and are involved in a number of (patho)physiological processes. Previous studies highlighted the importance of membrane lipids for modulating GPCR structure and function. However, the underlying mechanisms of how lipids regulate GPCRs are often poorly understood. Here, we report that anionic lipid bilayers increase the binding affinity of the chemokine CXCL12 for the atypical chemokine receptor 3 (ACKR3) by modulating the CXCL12 binding kinetics. Notably, the anionic bilayer favors CXCL12 over the more positively charged chemokine CXCL11, which we explained by bilayer interactions orienting CXCL12 but not CXCL11 for productive ACKR3 binding. Furthermore, our data suggest a stabilization of active ACKR3 conformations in anionic bilayers. Taken together, the described regulation of chemokine selectivity of ACKR3 by the lipid bilayer proposes an extended version of the classical model of chemokine binding including the lipid environment of the receptor.
Collapse
Affiliation(s)
- Stefanie Alexandra Eberle
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Martin Gustavsson
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
6
|
Schafer CT, Pauszek RF, Gustavsson M, Handel TM, Millar DP. Distinct Activation Mechanisms of CXCR4 and ACKR3 Revealed by Single-Molecule Analysis of their Conformational Landscapes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.31.564925. [PMID: 37961571 PMCID: PMC10635023 DOI: 10.1101/2023.10.31.564925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The canonical chemokine receptor CXCR4 and atypical receptor ACKR3 both respond to CXCL12 but induce different effector responses to regulate cell migration. While CXCR4 couples to G proteins and directly promotes cell migration, ACKR3 is G protein-independent and scavenges CXCL12 to regulate extracellular chemokine levels and maintain CXCR4 responsiveness, thereby indirectly influencing migration. The receptors also have distinct activation requirements. CXCR4 only responds to wild-type CXCL12 and is sensitive to mutation of the chemokine. By contrast, ACKR3 recruits GPCR kinases (GRKs) and β-arrestins and promiscuously responds to CXCL12, CXCL12 variants, other peptides and proteins, and is relatively insensitive to mutation. To investigate the role of conformational dynamics in the distinct pharmacological behaviors of CXCR4 and ACKR3, we employed single-molecule FRET to track discrete conformational states of the receptors in real-time. The data revealed that apo-CXCR4 preferentially populates a high-FRET inactive state, while apo-ACKR3 shows little conformational preference and high transition probabilities among multiple inactive, intermediate and active conformations, consistent with its propensity for activation. Multiple active-like ACKR3 conformations are populated in response to agonists, compared to the single CXCR4 active-state. This and the markedly different conformational landscapes of the receptors suggest that activation of ACKR3 may be achieved by a broader distribution of conformational states than CXCR4. Much of the conformational heterogeneity of ACKR3 is linked to a single residue that differs between ACKR3 and CXCR4. The dynamic properties of ACKR3 may underly its inability to form productive interactions with G proteins that would drive canonical GPCR signaling.
Collapse
Affiliation(s)
- Christopher T. Schafer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, University of California San Diego, La Jolla, CA 92037
| | - Raymond F. Pauszek
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Martin Gustavsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, University of California San Diego, La Jolla, CA 92037
| | - Tracy M. Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, University of California San Diego, La Jolla, CA 92037
| | - David P. Millar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
7
|
Servant G, Kenakin T. A Pharmacological perspective on the temporal properties of sweeteners. Pharmacol Res 2024; 204:107211. [PMID: 38744400 DOI: 10.1016/j.phrs.2024.107211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Several non-caloric sweeteners exhibit a delay in sweetness onset and a sweetness linger after sampling. These temporal properties are thought to be the result of non-specific interactions with cell membranes and proteins in the oral cavity. Data and analysis presented in this report also support the potential involvement of receptor affinity and binding kinetics to this phenomenon. In general, affected sweeteners exhibit distinctly higher binding affinity compared to carbohydrate sweeteners, which do not have temporal issues. In addition, binding kinetic simulations illustrate much slower receptor binding association and dissociation kinetics for a set of non-caloric sweeteners presenting temporal issues, in comparison to carbohydrate sweeteners. So, the higher affinity of some non-caloric sweeteners, dictating lower use levels, and affecting binding kinetics, could contribute to their delay and linger in sweetness perception. Simple pharmacology principles could explain, at least in part, some of the temporal issues of sweeteners.
Collapse
Affiliation(s)
- Guy Servant
- dsm-firmenich, 10636 Scripps Summit Court #201, San Diego, CA 92131, USA.
| | - Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, 120 Mason Farm Rd., 4042 Genetic Medicine CB #7365, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Schafer CT, Chen Q, Tesmer JJG, Handel TM. Atypical Chemokine Receptor 3 "Senses" CXC Chemokine Receptor 4 Activation Through GPCR Kinase Phosphorylation. Mol Pharmacol 2023; 104:174-186. [PMID: 37474305 PMCID: PMC11033958 DOI: 10.1124/molpharm.123.000710] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/22/2023] [Accepted: 06/30/2023] [Indexed: 07/22/2023] Open
Abstract
Atypical chemokine receptor 3 (ACKR3) is an arrestin-biased receptor that regulates extracellular chemokine levels through scavenging. The scavenging process restricts the availability of the chemokine agonist CXCL12 for the G protein-coupled receptor (GPCR) CXCR4 and requires phosphorylation of the ACKR3 C-terminus by GPCR kinases (GRKs). ACKR3 is phosphorylated by GRK2 and GRK5, but the mechanisms by which these kinases regulate the receptor are unresolved. Here we determined that GRK5 phosphorylation of ACKR3 results in more efficient chemokine scavenging and β-arrestin recruitment than phosphorylation by GRK2 in HEK293 cells. However, co-activation of CXCR4-enhanced ACKR3 phosphorylation by GRK2 through the liberation of Gβγ, an accessory protein required for efficient GRK2 activity. The results suggest that ACKR3 "senses" CXCR4 activation through a GRK2-dependent crosstalk mechanism, which enables CXCR4 to influence the efficiency of CXCL12 scavenging and β-arrestin recruitment to ACKR3. Surprisingly, we also found that despite the requirement for phosphorylation and the fact that most ligands promote β-arrestin recruitment, β-arrestins are dispensable for ACKR3 internalization and scavenging, suggesting a yet-to-be-determined function for these adapter proteins. Since ACKR3 is also a receptor for CXCL11 and opioid peptides, these data suggest that such crosstalk may also be operative in cells with CXCR3 and opioid receptor co-expression. Additionally, kinase-mediated receptor cross-regulation may be relevant to other atypical and G protein-coupled receptors that share common ligands. SIGNIFICANCE STATEMENT: The atypical receptor ACKR3 indirectly regulates CXCR4-mediated cell migration by scavenging their shared agonist CXCL12. Here, we show that scavenging and β-arrestin recruitment by ACKR3 are primarily dependent on phosphorylation by GRK5. However, we also show that CXCR4 co-activation enhances the contribution of GRK2 by liberating Gβγ. This phosphorylation crosstalk may represent a common feedback mechanism between atypical and G protein-coupled receptors with shared ligands for regulating the efficiency of scavenging or other atypical receptor functions.
Collapse
Affiliation(s)
- Christopher T Schafer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (C.T.S., T.M.H.) and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (Q.C., J.J.G.T.)
| | - Qiuyan Chen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (C.T.S., T.M.H.) and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (Q.C., J.J.G.T.)
| | - John J G Tesmer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (C.T.S., T.M.H.) and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (Q.C., J.J.G.T.)
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (C.T.S., T.M.H.) and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (Q.C., J.J.G.T.)
| |
Collapse
|
9
|
Vales S, Kryukova J, Chandra S, Smagurauskaite G, Payne M, Clark CJ, Hafner K, Mburu P, Denisov S, Davies G, Outeiral C, Deane CM, Morris GM, Bhattacharya S. Discovery and pharmacophoric characterization of chemokine network inhibitors using phage-display, saturation mutagenesis and computational modelling. Nat Commun 2023; 14:5763. [PMID: 37717048 PMCID: PMC10505172 DOI: 10.1038/s41467-023-41488-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023] Open
Abstract
CC and CXC-chemokines are the primary drivers of chemotaxis in inflammation, but chemokine network redundancy thwarts pharmacological intervention. Tick evasins promiscuously bind CC and CXC-chemokines, overcoming redundancy. Here we show that short peptides that promiscuously bind both chemokine classes can be identified from evasins by phage-display screening performed with multiple chemokines in parallel. We identify two conserved motifs within these peptides and show using saturation-mutagenesis phage-display and chemotaxis studies of an exemplar peptide that an anionic patch in the first motif and hydrophobic, aromatic and cysteine residues in the second are functionally necessary. AlphaFold2-Multimer modelling suggests that the peptide occludes distinct receptor-binding regions in CC and in CXC-chemokines, with the first and second motifs contributing ionic and hydrophobic interactions respectively. Our results indicate that peptides with broad-spectrum anti-chemokine activity and therapeutic potential may be identified from evasins, and the pharmacophore characterised by phage display, saturation mutagenesis and computational modelling.
Collapse
Affiliation(s)
- Serena Vales
- Wellcome Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Jhanna Kryukova
- Wellcome Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Soumyanetra Chandra
- Wellcome Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Gintare Smagurauskaite
- Wellcome Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Megan Payne
- Wellcome Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Charlie J Clark
- Wellcome Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Katrin Hafner
- Wellcome Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Philomena Mburu
- Wellcome Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Stepan Denisov
- Wellcome Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Graham Davies
- Wellcome Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Carlos Outeiral
- Department of Statistics, University of Oxford, 24-29 St Giles, Oxford, OX1 3LB, UK
| | - Charlotte M Deane
- Department of Statistics, University of Oxford, 24-29 St Giles, Oxford, OX1 3LB, UK
| | - Garrett M Morris
- Department of Statistics, University of Oxford, 24-29 St Giles, Oxford, OX1 3LB, UK
| | - Shoumo Bhattacharya
- Wellcome Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.
| |
Collapse
|
10
|
Chen Q, Schafer CT, Mukherjee S, Gustavsson M, Agrawal P, Yao XQ, Kossiakoff AA, Handel TM, Tesmer JJG. ACKR3-arrestin2/3 complexes reveal molecular consequences of GRK-dependent barcoding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.18.549504. [PMID: 37502840 PMCID: PMC10370059 DOI: 10.1101/2023.07.18.549504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Atypical chemokine receptor 3 (ACKR3, also known as CXCR7) is a scavenger receptor that regulates extracellular levels of the chemokine CXCL12 to maintain responsiveness of its partner, the G protein-coupled receptor (GPCR), CXCR4. ACKR3 is notable because it does not couple to G proteins and instead is completely biased towards arrestins. Our previous studies revealed that GRK2 and GRK5 install distinct distributions of phosphates (or "barcodes") on the ACKR3 carboxy terminal tail, but how these unique barcodes drive different cellular outcomes is not understood. It is also not known if arrestin2 (Arr2) and 3 (Arr3) bind to these barcodes in distinct ways. Here we report cryo-electron microscopy structures of Arr2 and Arr3 in complex with ACKR3 phosphorylated by either GRK2 or GRK5. Unexpectedly, the finger loops of Arr2 and 3 directly insert into the detergent/membrane instead of the transmembrane core of ACKR3, in contrast to previously reported "core" GPCR-arrestin complexes. The distance between the phosphorylation barcode and the receptor transmembrane core regulates the interaction mode of arrestin, alternating between a tighter complex for GRK5 sites and heterogenous primarily "tail only" complexes for GRK2 sites. Arr2 and 3 bind at different angles relative to the core of ACKR3, likely due to differences in membrane/micelle anchoring at their C-edge loops. Our structural investigations were facilitated by Fab7, a novel Fab that binds both Arr2 and 3 in their activated states irrespective of receptor or phosphorylation status, rendering it a potentially useful tool to aid structure determination of any native GPCR-arrestin complex. The structures provide unprecedented insight into how different phosphorylation barcodes and arrestin isoforms can globally affect the configuration of receptor-arrestin complexes. These differences may promote unique downstream intracellular interactions and cellular responses. Our structures also suggest that the 100% bias of ACKR3 for arrestins is driven by the ability of arrestins, but not G proteins, to bind GRK-phosphorylated ACKR3 even when excluded from the receptor cytoplasmic binding pocket.
Collapse
Affiliation(s)
- Qiuyan Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biological Sciences, Purdue University, West Lafayette IN 47907-2054, USA
| | - Christopher T Schafer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093 USA
- Department of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
| | - Somnath Mukherjee
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL60637, USA
| | - Martin Gustavsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093 USA
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Parth Agrawal
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL60637, USA
| | - Xin-Qiu Yao
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL60637, USA
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093 USA
| | - John J G Tesmer
- Department of Biological Sciences, Purdue University, West Lafayette IN 47907-2054, USA
| |
Collapse
|
11
|
Pawnikar S, Akhter S, Miao Y. Structural dynamics of chemokine receptors. VITAMINS AND HORMONES 2023; 123:645-662. [PMID: 37718001 DOI: 10.1016/bs.vh.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Membrane proteins such as G protein-coupled receptors (GPCRs) are involved in awide range of physiological and pathological cellular processes. Binding of extracellular signals to GPCRs, including hormones, neurotransmitters, peptides and proteins, can activate intracellular signaling cascades via G protein interaction. Chemokine receptors are key GPCRs implicated in cancers, immune responses, cell migration and inflammation. Specifically, the CCR5 and CXCR4 chemokine receptors serve as important therapeutic targets against Human Immunodeficiency virus (HIV) entry into human cells. Maraviroc and Vicriviroc, two clinically used HIV entry inhibitors, are antagonists of the CCR5 receptor. These drugs block HIV entry, but ultimately resistance develops, due to emergence of viruses that can utilize the CXCR4 co-receptor. Unfortunately, development of chemokine receptor antagonists as selective drugs of HIV infection has been greatly hindered as their target orthosteric site is conserved among different receptor subtypes. Accordingly, it is important to understand the structural dynamics of these receptors to develop more effective therapeutics. In this chapter, we describe the latest advances in studies of these two key chemokine receptors with respect to their structures, dynamics and function.
Collapse
Affiliation(s)
- Shristi Pawnikar
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States
| | - Sana Akhter
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States
| | - Yinglong Miao
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States.
| |
Collapse
|
12
|
Crawford KS, Volkman BF. Prospects for targeting ACKR1 in cancer and other diseases. Front Immunol 2023; 14:1111960. [PMID: 37006247 PMCID: PMC10050359 DOI: 10.3389/fimmu.2023.1111960] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
The chemokine network is comprised of a family of signal proteins that encode messages for cells displaying chemokine G-protein coupled receptors (GPCRs). The diversity of effects on cellular functions, particularly directed migration of different cell types to sites of inflammation, is enabled by different combinations of chemokines activating signal transduction cascades on cells displaying a combination of receptors. These signals can contribute to autoimmune disease or be hijacked in cancer to stimulate cancer progression and metastatic migration. Thus far, three chemokine receptor-targeting drugs have been approved for clinical use: Maraviroc for HIV, Plerixafor for hematopoietic stem cell mobilization, and Mogalizumab for cutaneous T-cell lymphoma. Numerous compounds have been developed to inhibit specific chemokine GPCRs, but the complexity of the chemokine network has precluded more widespread clinical implementation, particularly as anti-neoplastic and anti-metastatic agents. Drugs that block a single signaling axis may be rendered ineffective or cause adverse reactions because each chemokine and receptor often have multiple context-specific functions. The chemokine network is tightly regulated at multiple levels, including by atypical chemokine receptors (ACKRs) that control chemokine gradients independently of G-proteins. ACKRs have numerous functions linked to chemokine immobilization, movement through and within cells, and recruitment of alternate effectors like β-arrestins. Atypical chemokine receptor 1 (ACKR1), previously known as the Duffy antigen receptor for chemokines (DARC), is a key regulator that binds chemokines involved in inflammatory responses and cancer proliferation, angiogenesis, and metastasis. Understanding more about ACKR1 in different diseases and populations may contribute to the development of therapeutic strategies targeting the chemokine network.
Collapse
Affiliation(s)
- Kyler S. Crawford
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | | |
Collapse
|
13
|
Schafer CT, Chen Q, Tesmer JJG, Handel TM. Atypical Chemokine Receptor 3 'Senses' CXC Chemokine Receptor 4 Activation Through GPCR Kinase Phosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.25.530029. [PMID: 36865154 PMCID: PMC9980177 DOI: 10.1101/2023.02.25.530029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Atypical chemokine receptor 3 (ACKR3) is an arrestin-biased receptor that regulates extracellular chemokine levels through scavenging. The scavenging action mediates the availability of the chemokine CXCL12 for the G protein-coupled receptor (GPCR) CXCR4 and requires phosphorylation of the ACKR3 C-terminus by GPCR kinases (GRKs). ACKR3 is phosphorylated by GRK2 and GRK5, but the mechanisms by which these kinases regulate the receptor are unresolved. Here we mapped the phosphorylation patterns and determined that GRK5 phosphorylation of ACKR3 dominates β-arrestin recruitment and chemokine scavenging over GRK2. Co-activation of CXCR4 significantly enhanced phosphorylation by GRK2 through the liberation of Gβγ. These results suggest that ACKR3 'senses' CXCR4 activation through a GRK2-dependent crosstalk mechanism. Surprisingly, we also found that despite the requirement for phosphorylation, and the fact that most ligands promote β-arrestin recruitment, β-arrestins are dispensable for ACKR3 internalization and scavenging, suggesting a yet to be determined function for these adapter proteins.
Collapse
Affiliation(s)
- Christopher T. Schafer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, USA
| | - Qiuyan Chen
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
- Present address: Dept. of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - John J. G. Tesmer
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Tracy M. Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, USA
| |
Collapse
|
14
|
Cambier S, Gouwy M, Proost P. The chemokines CXCL8 and CXCL12: molecular and functional properties, role in disease and efforts towards pharmacological intervention. Cell Mol Immunol 2023; 20:217-251. [PMID: 36725964 PMCID: PMC9890491 DOI: 10.1038/s41423-023-00974-6] [Citation(s) in RCA: 139] [Impact Index Per Article: 139.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/12/2022] [Indexed: 02/03/2023] Open
Abstract
Chemokines are an indispensable component of our immune system through the regulation of directional migration and activation of leukocytes. CXCL8 is the most potent human neutrophil-attracting chemokine and plays crucial roles in the response to infection and tissue injury. CXCL8 activity inherently depends on interaction with the human CXC chemokine receptors CXCR1 and CXCR2, the atypical chemokine receptor ACKR1, and glycosaminoglycans. Furthermore, (hetero)dimerization and tight regulation of transcription and translation, as well as post-translational modifications further fine-tune the spatial and temporal activity of CXCL8 in the context of inflammatory diseases and cancer. The CXCL8 interaction with receptors and glycosaminoglycans is therefore a promising target for therapy, as illustrated by multiple ongoing clinical trials. CXCL8-mediated neutrophil mobilization to blood is directly opposed by CXCL12, which retains leukocytes in bone marrow. CXCL12 is primarily a homeostatic chemokine that induces migration and activation of hematopoietic progenitor cells, endothelial cells, and several leukocytes through interaction with CXCR4, ACKR1, and ACKR3. Thereby, it is an essential player in the regulation of embryogenesis, hematopoiesis, and angiogenesis. However, CXCL12 can also exert inflammatory functions, as illustrated by its pivotal role in a growing list of pathologies and its synergy with CXCL8 and other chemokines to induce leukocyte chemotaxis. Here, we review the plethora of information on the CXCL8 structure, interaction with receptors and glycosaminoglycans, different levels of activity regulation, role in homeostasis and disease, and therapeutic prospects. Finally, we discuss recent research on CXCL12 biochemistry and biology and its role in pathology and pharmacology.
Collapse
Affiliation(s)
- Seppe Cambier
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.
| |
Collapse
|
15
|
Targeting CXCR4 and CD47 Receptors: An Overview of New and Old Molecules for a Biological Personalized Anticancer Therapy. Int J Mol Sci 2022; 23:ijms232012499. [PMID: 36293358 PMCID: PMC9604048 DOI: 10.3390/ijms232012499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/26/2022] Open
Abstract
Biological therapy, with its multifaceted applications, has revolutionized the treatment of tumors, mainly due to its ability to exclusively target cancer cells and reduce the adverse effects on normal tissues. This review focuses on the therapies targeting the CXCR4 and CD47 receptors. We surveyed the results of early clinical trials testing compounds classified as nonpeptides, small peptides, CXCR4 antagonists or specific antibodies whose activity reduces or completely blocks the intracellular signaling pathways and cell proliferation. We then examined antibodies and fusion proteins against CD47, the receptor that acts as a “do not eat me” signal to phagocytes escaping immune surveillance. Despite these molecules being tested in early clinical trials, some drawbacks are emerging that impair their use in practice. Finally, we examined the ImmunoGenic Surrender mechanism that involves crosstalk and co-internalization of CXCR4 and CD47 upon engagement of CXCR4 by ligands or other molecules. The favorable effect of such compounds is dual as CD47 surface reduction impact on the immune response adds to the block of CXCR4 proliferative potential. These results suggest that a combination of different therapeutic approaches has more beneficial effects on patients’ survival and may pave the way for new accomplishments in personalized anticancer therapy.
Collapse
|
16
|
Yen YC, Schafer CT, Gustavsson M, Eberle SA, Dominik PK, Deneka D, Zhang P, Schall TJ, Kossiakoff AA, Tesmer JJG, Handel TM. Structures of atypical chemokine receptor 3 reveal the basis for its promiscuity and signaling bias. SCIENCE ADVANCES 2022; 8:eabn8063. [PMID: 35857509 PMCID: PMC9278869 DOI: 10.1126/sciadv.abn8063] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/26/2022] [Indexed: 05/12/2023]
Abstract
Both CXC chemokine receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3) are activated by the chemokine CXCL12 yet evoke distinct cellular responses. CXCR4 is a canonical G protein-coupled receptor (GPCR), whereas ACKR3 is intrinsically biased for arrestin. The molecular basis for this difference is not understood. Here, we describe cryo-EM structures of ACKR3 in complex with CXCL12, a more potent CXCL12 variant, and a small-molecule agonist. The bound chemokines adopt an unexpected pose relative to those established for CXCR4 and observed in other receptor-chemokine complexes. Along with functional studies, these structures provide insight into the ligand-binding promiscuity of ACKR3, why it fails to couple to G proteins, and its bias toward β-arrestin. The results lay the groundwork for understanding the physiological interplay of ACKR3 with other GPCRs.
Collapse
Affiliation(s)
- Yu-Chen Yen
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Christopher T. Schafer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Martin Gustavsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Stefanie A. Eberle
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Pawel K. Dominik
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Dawid Deneka
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Department of Biophysics, Jagiellonian University, Krakow, Poland
| | - Penglie Zhang
- ChemoCentryx Inc., 835 Industrial Rd., Suite 600, San Carlos, CA 94070, USA
| | - Thomas J. Schall
- ChemoCentryx Inc., 835 Industrial Rd., Suite 600, San Carlos, CA 94070, USA
| | - Anthony A. Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - John J. G. Tesmer
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Department of Molecular Pharmacology and Medicinal Chemistry, Purdue University, West Lafayette, IN, USA
| | - Tracy M. Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
17
|
Hopkins BE, Masuho I, Ren D, Iyamu ID, Lv W, Malik N, Martemyanov KA, Schiltz GE, Miller RJ. Effects of Small Molecule Ligands on ACKR3 Receptors. Mol Pharmacol 2022; 102:128-138. [PMID: 35809897 PMCID: PMC9393849 DOI: 10.1124/molpharm.121.000295] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/31/2022] [Indexed: 11/30/2022] Open
Abstract
Chemokines such as stromal derived factor 1 and their G protein coupled receptors are well-known regulators of the development and functions of numerous tissues. C-X-C motif chemokine ligand 12 (CXCL12) has two receptors: C-X-C chemokine motif receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3). ACKR3 has been described as an atypical “biased” receptor because it does not appear to signal through G proteins and, instead, signals solely through the β-arrestin pathway. In support of this conclusion, we have shown that ACKR3 is unable to signal through any of the known mammalian Gα isoforms and have generated a comprehensive map of the Gα activation by CXCL12/CXCR4. We also synthesized a series of small molecule ligands which acted as selective agonists for ACKR3 as assessed by their ability to recruit β-arrestin to the receptor. Using select point mutations, we studied the molecular characteristics that determine the ability of small molecules to activate ACKR3 receptors, revealing a key role for the deeper binding pocket composed of residues in the transmembrane domains of ACKR3. The development of more selective ACKR3 ligands should allow us to better appreciate the unique roles of ACKR3 in the CXCL12/CXCR4/ACKR3-signaling axis and better understand the structural determinants for ACKR3 activation.
Collapse
Affiliation(s)
| | - Ikuo Masuho
- Department of Neuroscience, The Scripps Research Institute Florida, United States
| | - Dongjun Ren
- Department of Pharmacology, Northwestern University, United States
| | - Iredia D Iyamu
- Center for Molecular Innovation and Drug Discovery, Northwestern University, United States
| | - Wei Lv
- Center for Molecular Innovation and Drug Discovery, Northwestern University, United States
| | - Neha Malik
- Center for Molecular Innovation and Drug Discovery, Northwestern University, United States
| | | | - Gary E Schiltz
- Center for Molecular Innovation and Drug Discovery, Department of Pharmacology, Department of Chemistry, and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, United States
| | - Richard J Miller
- Department of Pharmacology, Northwestern University, United States
| |
Collapse
|
18
|
CXCR4/CXCL12 Activities in the Tumor Microenvironment and Implications for Tumor Immunotherapy. Cancers (Basel) 2022; 14:cancers14092314. [PMID: 35565443 PMCID: PMC9105267 DOI: 10.3390/cancers14092314] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Chemokines are small soluble proteins that control and regulate cell trafficking within and between tissues by binding to their receptors. Among them, CXCL12 and its receptor CXCR4 appeared with ancestral vertebrates, are expressed almost ubiquitously, and play essential roles in embryogenesis and organogenesis. In addition, CXCL12 and CXCR4 are involved in antigen recognition by T and B cells and in shaping the tumor microenvironment (TME), mainly towards dampening immune responses. New data indicate that CXCR4 interacts with the surface protein CD47 in a novel form of immunosurveillance, called ImmunoGenic Surrender (IGS). Following the co-internalization of CXCR4 and CD47 in tumor cells, macrophages phagocytose them and cross-present their antigens to the adaptive immune system, leading to tumor rejection in a fraction of mice. All of these specific activities of CXCL12 and CXCR4 in antigen presentation might be complementary to current immunotherapies. Abstract CXCR4 is a G-Protein coupled receptor that is expressed nearly ubiquitously and is known to control cell migration via its interaction with CXCL12, the most ancient chemokine. The functions of CXCR4/CXCL12 extend beyond cell migration and involve the recognition and disposal of unhealthy or tumor cells. The CXCR4/CXCL12 axis plays a relevant role in shaping the tumor microenvironment (TME), mainly towards dampening immune responses. Notably, CXCR4/CXCL12 cross-signal via the T and B cell receptors (TCR and BCR) and co-internalize with CD47, promoting tumor cell phagocytosis by macrophages in an anti-tumor immune process called ImmunoGenic Surrender (IGS). These specific activities in shaping the immune response might be exploited to improve current immunotherapies.
Collapse
|
19
|
Eberle SA, Gustavsson M. A Scintillation Proximity Assay for Real-Time Kinetic Analysis of Chemokine-Chemokine Receptor Interactions. Cells 2022; 11:1317. [PMID: 35455996 PMCID: PMC9024993 DOI: 10.3390/cells11081317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
Chemokine receptors are extensively involved in a broad range of physiological and pathological processes, making them attractive drug targets. However, despite considerable efforts, there are very few approved drugs targeting this class of seven transmembrane domain receptors to date. In recent years, the importance of including binding kinetics in drug discovery campaigns was emphasized. Therefore, kinetic insight into chemokine-chemokine receptor interactions could help to address this issue. Moreover, it could additionally deepen our understanding of the selectivity and promiscuity of the chemokine-chemokine receptor network. Here, we describe the application, optimization and validation of a homogenous Scintillation Proximity Assay (SPA) for real-time kinetic profiling of chemokine-chemokine receptor interactions on the example of ACKR3 and CXCL12. The principle of the SPA is the detection of radioligand binding to receptors reconstituted into nanodiscs by scintillation light. No receptor modifications are required. The nanodiscs provide a native-like environment for receptors and allow for full control over bilayer composition and size. The continuous assay format enables the monitoring of binding reactions in real-time, and directly accounts for non-specific binding and potential artefacts. Minor adaptations additionally facilitate the determination of equilibrium binding metrics, making the assay a versatile tool for the study of receptor-ligand interactions.
Collapse
Affiliation(s)
| | - Martin Gustavsson
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark;
| |
Collapse
|
20
|
Pawnikar S, Miao Y. Mechanism of Peptide Agonist Binding in CXCR4 Chemokine Receptor. Front Mol Biosci 2022; 9:821055. [PMID: 35359589 PMCID: PMC8963245 DOI: 10.3389/fmolb.2022.821055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/14/2022] [Indexed: 01/07/2023] Open
Abstract
Chemokine receptors are key G-protein-coupled receptors (GPCRs) that control cell migration in immune system responses, development of cardiovascular and central nervous systems, and numerous diseases. In particular, the CXCR4 chemokine receptor promotes metastasis, tumor growth and angiogenesis in cancers. CXCR4 is also used as one of the two co-receptors for T-tropic HIV-1 entry into host cells. Therefore, CXCR4 serves as an important therapeutic target for treating cancers and HIV infection. Apart from the CXCL12 endogenous peptide agonist, previous studies suggested that the first 17 amino acids of CXCL12 are sufficient to activate CXCR4. Two 17-residue peptides with positions 1-4 mutated to RSVM and ASLW functioned as super and partial agonists of CXCR4, respectively. However, the mechanism of peptide agonist binding in CXCR4 remains unclear. Here, we have investigated this mechanism through all-atom simulations using a novel Peptide Gaussian accelerated molecular dynamics (Pep-GaMD) method. The Pep-GaMD simulations have allowed us to explore representative binding conformations of each peptide and identify critical low-energy states of CXCR4 activated by the super versus partial peptide agonists. Our simulations have provided important mechanistic insights into peptide agonist binding in CXCR4, which are expected to facilitate rational design of new peptide modulators of CXCR4 and other chemokine receptors.
Collapse
|
21
|
Larsen O, van der Velden WJC, Mavri M, Schuermans S, Rummel PC, Karlshøj S, Gustavsson M, Proost P, Våbenø J, Rosenkilde MM. Identification of a conserved chemokine receptor motif that enables ligand discrimination. Sci Signal 2022; 15:eabg7042. [PMID: 35258997 DOI: 10.1126/scisignal.abg7042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Extensive ligand-receptor promiscuity in the chemokine signaling system balances beneficial redundancy and specificity. However, this feature poses a major challenge to selectively modulate the system pharmacologically. Here, we identified a conserved cluster of three aromatic receptor residues that anchors the second extracellular loop (ECL2) to the top of receptor transmembrane helices (TM) 4 and 5 and enables recognition of both shared and specific characteristics of interacting chemokines. This cluster was essential for the activation of several chemokine receptors. Furthermore, characteristic motifs of the ß1 strand and 30s loop make the two main CC-chemokine subgroups-the macrophage inflammatory proteins (MIPs) and monocyte chemoattractant proteins (MCPs)-differentially dependent on this cluster in the promiscuous receptors CCR1, CCR2, and CCR5. The cluster additionally enabled CCR1 and CCR5 to discriminate between closely related MIPs based on the N terminus of the chemokine. G protein signaling and β-arrestin2 recruitment assays confirmed the importance of the conserved cluster in receptor discrimination of chemokine ligands. This extracellular site may facilitate the development of chemokine-related therapeutics.
Collapse
Affiliation(s)
- Olav Larsen
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Wijnand J C van der Velden
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Maša Mavri
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Sara Schuermans
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Pia C Rummel
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Stefanie Karlshøj
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Martin Gustavsson
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Jon Våbenø
- Helgeland Hospital Trust, Prestmarkveien 1, 8800 Sandnessjøen, Norway
| | - Mette M Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
22
|
Lewandowski EM, Kroeck KG, Jacobs LM, Fenske TG, Witt RN, Hintz AM, Ramsden ER, Zhang X, Peterson F, Volkman BF, Veldkamp CT, Chen Y. Structural Insights into Molecular Recognition by Human Chemokine CCL19. Biochemistry 2022; 61:311-318. [PMID: 35156805 PMCID: PMC9254573 DOI: 10.1021/acs.biochem.1c00759] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human chemokines CCL19 and CCL21 bind to the G protein-coupled receptor (GPCR) CCR7 and play an important role in the trafficking of immune cells as well as cancer metastasis. Conserved binding sites for sulfotyrosine residues on the receptor contribute significantly to the chemokine/GPCR interaction and have been shown to provide promising targets for new drug-discovery efforts to disrupt the chemokine/GPCR interaction and, consequently, tumor metastasis. Here, we report the first X-ray crystal structure of a truncated CCL19 (residues 7-70) at 2.50 Å resolution, revealing molecular details crucial for protein-protein interactions. Although the overall structure is similar to the previously determined NMR model, there are important variations, particularly near the N terminus and the so-called 30's and 40's loops. Computational analysis using the FTMap server indicates the potential importance of these areas in ligand binding and the differences in binding hotspots compared to CCL21. NMR titration experiments using a CCR7-derived peptide (residues 5-11, TDDYIGD) further demonstrate potential receptor recognition sites, such as those near the C terminus and 40's loop, which consist of both positively charged and hydrophobic residues that may be important for receptor binding. Taken together, the X-ray, NMR, and computational analysis herein provide insights into the overall structure and molecular features of CCL19 and enables investigation into this chemokine's function and inhibitor development.
Collapse
Affiliation(s)
- Eric M. Lewandowski
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, Florida 33612, United States
| | - Kyle G. Kroeck
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, Florida 33612, United States
| | - Lian M.C. Jacobs
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, Florida 33612, United States
| | - Tyler G. Fenske
- Department of Biochemistry and Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Robin N. Witt
- Department of Chemistry, University of Wisconsin Whitewater, Whitewater, Wisconsin 53190, United States
| | - Alyssa M. Hintz
- Department of Chemistry, University of Wisconsin Whitewater, Whitewater, Wisconsin 53190, United States
| | - Elizabeth R. Ramsden
- Department of Chemistry, University of Wisconsin Whitewater, Whitewater, Wisconsin 53190, United States
| | - Xiujun Zhang
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, Florida 33612, United States
| | - Francis Peterson
- Department of Biochemistry and Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Brian F. Volkman
- Department of Biochemistry and Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States,Corresponding authors: Brian F. Volkman, , Christopher T. Veldkamp, , Yu Chen,
| | - Christopher T. Veldkamp
- Department of Chemistry, University of Wisconsin Whitewater, Whitewater, Wisconsin 53190, United States,Corresponding authors: Brian F. Volkman, , Christopher T. Veldkamp, , Yu Chen,
| | - Yu Chen
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, Florida 33612, United States,Corresponding authors: Brian F. Volkman, , Christopher T. Veldkamp, , Yu Chen,
| |
Collapse
|
23
|
Gutjahr JC, Crawford KS, Jensen DR, Naik P, Peterson FC, Samson GPB, Legler DF, Duchene J, Veldkamp CT, Rot A, Volkman BF. The dimeric form of CXCL12 binds to atypical chemokine receptor 1. Sci Signal 2021; 14:14/696/eabc9012. [PMID: 34404752 DOI: 10.1126/scisignal.abc9012] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The pleiotropic chemokine CXCL12 is involved in diverse physiological and pathophysiological processes, including embryogenesis, hematopoiesis, leukocyte migration, and tumor metastasis. It is known to engage the classical receptor CXCR4 and the atypical receptor ACKR3. Differential receptor engagement can transduce distinct cellular signals and effects as well as alter the amount of free, extracellular chemokine. CXCR4 binds both monomeric and the more commonly found dimeric forms of CXCL12, whereas ACKR3 binds monomeric forms. Here, we found that CXCL12 also bound to the atypical receptor ACKR1 (previously known as Duffy antigen/receptor for chemokines or DARC). In vitro nuclear magnetic resonance spectroscopy and isothermal titration calorimetry revealed that dimeric CXCL12 bound to the extracellular N terminus of ACKR1 with low nanomolar affinity, whereas the binding affinity of monomeric CXCL12 was orders of magnitude lower. In transfected MDCK cells and primary human Duffy-positive erythrocytes, a dimeric, but not a monomeric, construct of CXCL12 efficiently bound to and internalized with ACKR1. This interaction between CXCL12 and ACKR1 provides another layer of regulation of the multiple biological functions of CXCL12. The findings also raise the possibility that ACKR1 can bind other dimeric chemokines, thus potentially further expanding the role of ACKR1 in chemokine retention and presentation.
Collapse
Affiliation(s)
- Julia C Gutjahr
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Kyler S Crawford
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Davin R Jensen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Prachi Naik
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Guerric P B Samson
- Biotechnology Institute Thurgau (BITg), University of Konstanz, 8280 Kreuzlingen, Switzerland
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg), University of Konstanz, 8280 Kreuzlingen, Switzerland.,Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Johan Duchene
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University, 80336 Munich, Germany
| | | | - Antal Rot
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK. .,Institute for Cardiovascular Prevention, Ludwig-Maximilians University, 80336 Munich, Germany.,Centre for Inflammation and Therapeutic Innovation, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
24
|
Kharche S, Joshi M, Chattopadhyay A, Sengupta D. Conformational plasticity and dynamic interactions of the N-terminal domain of the chemokine receptor CXCR1. PLoS Comput Biol 2021; 17:e1008593. [PMID: 34014914 PMCID: PMC8172051 DOI: 10.1371/journal.pcbi.1008593] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/02/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
The dynamic interactions between G protein-coupled receptors (GPCRs) and their cognate protein partners are central to several cell signaling pathways. For example, the association of CXC chemokine receptor 1 (CXCR1) with its cognate chemokine, interleukin-8 (IL8 or CXCL8) initiates pathways leading to neutrophil-mediated immune responses. The N-terminal domain of chemokine receptors confers ligand selectivity, but unfortunately the conformational dynamics of this intrinsically disordered region remains unresolved. In this work, we have explored the interaction of CXCR1 with IL8 by microsecond time scale coarse-grain simulations, complemented by atomistic models and NMR chemical shift predictions. We show that the conformational plasticity of the apo-receptor N-terminal domain is restricted upon ligand binding, driving it to an open C-shaped conformation. Importantly, we corroborated the dynamic complex sampled in our simulations against chemical shift perturbations reported by previous NMR studies and show that the trends are similar. Our results indicate that chemical shift perturbation is often not a reporter of residue contacts in such dynamic associations. We believe our results represent a step forward in devising a strategy to understand intrinsically disordered regions in GPCRs and how they acquire functionally important conformational ensembles in dynamic protein-protein interfaces.
Collapse
Affiliation(s)
- Shalmali Kharche
- CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Manali Joshi
- Bioinformatics Centre, S. P. Pune University, Pune, India
| | | | - Durba Sengupta
- CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
25
|
Kline JM, Heusinkveld LE, Taranto E, Martin CB, Tomasi AG, Hsu IJ, Cho K, Khillan JS, Murphy PM, Pontejo SM. Structural and functional analysis of Ccr1l1, a Rodentia-restricted eosinophil-selective chemokine receptor homologue. J Biol Chem 2021; 296:100373. [PMID: 33548230 PMCID: PMC7949164 DOI: 10.1016/j.jbc.2021.100373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 11/25/2022] Open
Abstract
Mouse Ccr1l1 (Ccr1-like 1) encodes an orphan G-protein-coupled receptor (GPCR) with the highest homology to the inflammatory and highly promiscuous chemokine receptors Ccr1 and Ccr3 (70 and 50% amino acid identity, respectively). Ccr1l1 was first cloned in 1995, yet current knowledge of this putative chemokine receptor is limited to its gene organization and chromosomal localization. Here we report that Ccr1l1 is a Rodentia-specific gene selectively expressed in eosinophils. However, eosinophil phenotypes, development, and responsiveness to chemokines were all normal in naïve Ccr1l1 knockout mice. We demonstrate for the first time that recombinant Ccr1l1 is expressed on the plasma membrane of transfected cells and contains an extracellular N terminus and an intracellular C terminus, consistent with GPCR topology. Using receptor internalization, β-arrestin recruitment, calcium flux, and chemotaxis assays, we excluded all 37 available mouse chemokines, including Ccr1 ligands, and two viral chemokines as Ccr1l1 ligands, and demonstrated that mouse Ccr1, but not Ccr1l1, exhibits constitutive signaling activity. However, sequence analysis and structural modeling revealed that Ccr1l1 is well equipped to act as a classical signaling GPCR, with N-terminal sulfotyrosines as the only signaling and chemokine-binding determinant absent in Ccr1l1. Hereof, we show that a sulfatable N-terminal Ccr1 Y18 residue is essential for chemotaxis and calcium responses induced by Ccl3 and Ccl9/10, but substituting the corresponding Ccr1l1 F19 residue with tyrosine failed to confer responsiveness to Ccr1 ligands. Although Ccr1l1 remains an extreme outlier in the chemokine receptor family, our study supports that it might respond to unidentified mouse chemokine ligands in eosinophil-driven immune responses.
Collapse
Affiliation(s)
- Jaclyn M Kline
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lauren E Heusinkveld
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Eleanor Taranto
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Clare B Martin
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alessandra G Tomasi
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Isabel J Hsu
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kyoungin Cho
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jaspal S Khillan
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Philip M Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sergio M Pontejo
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
26
|
Aru B, Günay A, Şenkuytu E, Yanıkkaya Demirel G, Gürek AG, Atilla D. A Translational Study of a Silicon Phthalocyanine Substituted with a Histone Deacetylase Inhibitor for Photodynamic Therapy. ACS OMEGA 2020; 5:25854-25867. [PMID: 33073111 PMCID: PMC7558005 DOI: 10.1021/acsomega.0c03180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
In this study, we synthesized and characterized a silicon phthalocyanine substituted with 3-hydroxypyridin-2-thione (SiPc-HDACi), designed to be a chemophotodynamic therapy agent acting as a histone deacetylase inhibitor, and we determined its photophysical, photochemical, and photobiological properties. Next, we evaluated its anticancer efficacy on MCF-7, double positive and MDA-MB-231, triple negative breast cancer cell lines, as well as on a healthy human endothelial cell line (HUVEC). Our results indicate that SiPc-HDACi can target nucleoli of cells, effectively inducing apoptosis while promoting cell cycle arrest thanks to its high singlet oxygen yield and its histone deacetylase downregulating properties, suggesting a powerful anticancer effect on breast cancer in vitro. Our further studies will be conducted with primary breast cancer cell culture to give a better insight into the anticancer mechanism of the compound.
Collapse
Affiliation(s)
- Başak Aru
- Department
of Molecular Biology and Genetics, Gebze
Technical University, 41400 Gebze, Kocaeli, Turkey
- Faculty
of Medicine, Immunology Department, Yeditepe University, 34755 Ataşehir, İstanbul, Turkey
| | - Aysel Günay
- Department
of Chemistry, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey
| | - Elif Şenkuytu
- Faculty
of Science, Department of Chemistry, Atatürk
University, 25240 Erzurum, Turkey
| | | | - Ayşe Gül Gürek
- Department
of Chemistry, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey
| | - Devrim Atilla
- Department
of Chemistry, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey
| |
Collapse
|
27
|
Kessler N, Akabayov SR, Moseri A, Cohen LS, Sakhapov D, Bolton D, Fridman B, Kay LE, Naider F, Anglister J. Allovalency observed by transferred NOE: interactions of sulfated tyrosine residues in the N-terminal segment of CCR5 with the CCL5 chemokine. FEBS J 2020; 288:1648-1663. [PMID: 32814359 DOI: 10.1111/febs.15503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/08/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022]
Abstract
The N-terminal segment of the chemokine receptor Human CC chemokine receptor 5 (CCR5), Nt-CCR5, contains four tyrosine residues, Y3, Y10, Y14, and Y15. Sulfation of at least two of these tyrosine residues was found to be essential for high-affinity binding of CCR5 to its chemokine ligands. Here, we show that among the monosulfated Nt-CCR5(8-20) peptide surrogates (sNt-CCR5) those sulfated at Y15 and Y14 have the highest affinity for the CC chemokine ligand 5 (CCL5) chemokine in comparison with monosulfation at position Y10. Sulfation at Y3 was not investigated. A peptide sulfated at both Y14 and Y15 has the highest affinity for CCL5 by up to a factor of 3, in comparison with the other disulfated (sNt-CCR5) peptides. Chemical shift perturbation analysis and transferred nuclear Overhauser effect measurements indicate that the sulfated tyrosine residues interact with the same CCL5-binding pocket and that each of the sulfated tyrosines at positions 10, 14, and 15 can occupy individually the binding site on CCL5 in a similar manner, although with somewhat different affinity, suggesting the possibility of allovalency in sulfated Nt-CCR5 peptides. The affinity of the disulfated peptides to CCL5 could be increased by this allovalency and by stronger electrostatic interactions.
Collapse
Affiliation(s)
- Naama Kessler
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sabine R Akabayov
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Moseri
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Leah S Cohen
- Department of Chemistry and Macromolecular Assembly Institute, College of Staten Island of the City University of New York, Staten Island, NY, USA.,PhD Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, New York, NY, USA
| | - Damir Sakhapov
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - David Bolton
- Department of Molecular Biology, New York State Institute for Basic Research in Developmental Disabilities, Office for People with Developmental Disabilities, Staten Island, NY, USA
| | - Brandon Fridman
- Department of Chemistry and Macromolecular Assembly Institute, College of Staten Island of the City University of New York, Staten Island, NY, USA
| | - Lewis E Kay
- Department of Molecular Genetics, The University of Toronto, Toronto, ON, Canada.,Department of Biochemistry, The University of Toronto, Toronto, ON, Canada.,Department of Chemistry, The University of Toronto, Toronto, ON, Canada.,Program in Molecular Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Fred Naider
- Department of Chemistry and Macromolecular Assembly Institute, College of Staten Island of the City University of New York, Staten Island, NY, USA.,PhD Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, New York, NY, USA
| | - Jacob Anglister
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
28
|
Watanabe E, Wada T, Okekawa A, Kitamura F, Komatsu G, Onogi Y, Yamamoto S, Sasahara M, Kitada M, Koya D, Tsuneki H, Sasaoka T. Stromal cell-derived factor 1 (SDF1) attenuates platelet-derived growth factor-B (PDGF-B)-induced vascular remodeling for adipose tissue expansion in obesity. Angiogenesis 2020; 23:667-684. [PMID: 32699964 DOI: 10.1007/s10456-020-09738-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022]
Abstract
Platelet-derived growth factor-B (PDGF-B) is a main factor to promote adipose tissue angiogenesis, which is responsible for the tissue expansion in obesity. In this process, PDGF-B induces the dissociation of pericytes from blood vessels; however, its regulatory mechanism remains unclear. In the present study, we found that stromal cell-derived factor 1 (SDF1) plays an essential role in this regulatory mechanism. SDF1 mRNA was increased in epididymal white adipose tissue (eWAT) of obese mice. Ex vivo pharmacological analyses using cultured adipose tissue demonstrated that physiological concentrations (1-100 pg/mL) of SDF1 inhibited the PDGF-B-induced pericyte dissociation from vessels via two cognate SDF1 receptors, CXCR4 and CXCR7. In contrast, higher concentrations (> 1 ng/mL) of SDF1 alone caused the dissociation of pericytes via CXCR4, and this effect disappeared in the cultured tissues from PDGF receptor β (PDGFRβ) knockout mice. To investigate the role of SDF1 in angiogenesis in vivo, the effects of anagliptin, an inhibitor of dipeptidyl peptidase 4 (DPP4) that degrades SDF1, were examined in mice fed a high-fat diet. Anagliptin increased the SDF1 levels in the serum and eWAT. These changes were associated with a reduction of pericyte dissociation and fat accumulation in eWAT. AMD3100, a CXCR4 antagonist, cancelled these anagliptin effects. In flow-cytometry analysis, anagliptin increased and decreased the PDGF-B expression in endothelial cells and macrophages, respectively, whereas anagliptin reduced the PDGFRβ expression in pericytes of eWAT. These results suggest that SDF1 negatively regulates the adipose tissue angiogenesis in obesity by altering the reactivity of pericytes to PDGF-B.
Collapse
Affiliation(s)
- Eri Watanabe
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Tsutomu Wada
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Akira Okekawa
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Fuka Kitamura
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Go Komatsu
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yasuhiro Onogi
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Seiji Yamamoto
- Department of Pathology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Masakiyo Sasahara
- Department of Pathology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Munehiro Kitada
- Department of Diabetology and Endocrinology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| | - Hiroshi Tsuneki
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Toshiyasu Sasaoka
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
29
|
Stephens BS, Ngo T, Kufareva I, Handel TM. Functional anatomy of the full-length CXCR4-CXCL12 complex systematically dissected by quantitative model-guided mutagenesis. Sci Signal 2020; 13:eaay5024. [PMID: 32665413 PMCID: PMC7437921 DOI: 10.1126/scisignal.aay5024] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Because of their prominent roles in development, cancer, and HIV, the chemokine receptor CXCR4 and its ligand CXCL12 have been the subject of numerous structural and functional studies, but the determinants of ligand binding, selectivity, and signaling are still poorly understood. Here, building on our latest structural model, we used a systematic mutagenesis strategy to dissect the functional anatomy of the CXCR4-CXCL12 complex. Key charge swap mutagenesis experiments provided evidence for pairwise interactions between oppositely charged residues in the receptor and chemokine, confirming the accuracy of the predicted orientation of the chemokine relative to the receptor and providing insight into ligand selectivity. Progressive deletion of N-terminal residues revealed an unexpected contribution of the receptor N terminus to chemokine signaling. This finding challenges a longstanding "two-site" hypothesis about the essential features of the receptor-chemokine interaction in which the N terminus contributes only to binding affinity. Our results suggest that although the interaction of the chemokine N terminus with the receptor-binding pocket is the key driver of signaling, the signaling amplitude depends on the extent to which the receptor N terminus binds the chemokine. Together with systematic characterization of other epitopes, these data enable us to propose an experimentally consistent structural model for how CXCL12 binds CXCR4 and initiates signal transmission through the receptor transmembrane domain.
Collapse
Affiliation(s)
- Bryan S Stephens
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Tony Ngo
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
30
|
Jaracz-Ros A, Bernadat G, Cutolo P, Gallego C, Gustavsson M, Cecon E, Baleux F, Kufareva I, Handel TM, Bachelerie F, Levoye A. Differential activity and selectivity of N-terminal modified CXCL12 chemokines at the CXCR4 and ACKR3 receptors. J Leukoc Biol 2020; 107:1123-1135. [PMID: 32374043 DOI: 10.1002/jlb.2ma0320-383rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/12/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
Chemokines play critical roles in numerous physiologic and pathologic processes through their action on seven-transmembrane (TM) receptors. The N-terminal domain of chemokines, which is a key determinant of signaling via its binding within a pocket formed by receptors' TM helices, can be the target of proteolytic processing. An illustrative case of this regulatory mechanism is the natural processing of CXCL12 that generates chemokine variants lacking the first two N-terminal residues. Whereas such truncated variants behave as antagonists of CXCR4, the canonical G protein-coupled receptor of CXCL12, they are agonists of the atypical chemokine receptor 3 (ACKR3/CXCR7), suggesting the implication of different structural determinants in the complexes formed between CXCL12 and its two receptors. Recent analyses have suggested that the CXCL12 N-terminus first engages the TM helices of ACKR3 followed by the receptor N-terminus wrapping around the chemokine core. Here we investigated the first stage of ACKR3-CXCL12 interactions by comparing the activity of substituted or N-terminally truncated variants of CXCL12 toward CXCR4 and ACKR3. We showed that modification of the first two N-terminal residues of the chemokine (K1R or P2G) does not alter the ability of CXCL12 to activate ACKR3. Our results also identified the K1R variant as a G protein-biased agonist of CXCR4. Comparative molecular dynamics simulations of the complexes formed by ACKR3 either with CXCL12 or with the P2G variant identified interactions between the N-terminal 2-4 residues of CXCL12 and a pocket formed by receptor's TM helices 2, 6, and 7 as critical determinants for ACKR3 activation.
Collapse
Affiliation(s)
- Agnieszka Jaracz-Ros
- Université Paris-Saclay, INSERM, Inflammation, Microbiome and Immunosurveillance, Clamart, France
| | | | - Pasquale Cutolo
- Université Paris-Saclay, INSERM, Inflammation, Microbiome and Immunosurveillance, Clamart, France
| | - Carmen Gallego
- Université Paris-Saclay, INSERM, Inflammation, Microbiome and Immunosurveillance, Clamart, France
| | - Martin Gustavsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, Jolla, Louisiana, California, USA
| | - Erika Cecon
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Françoise Baleux
- Institut Pasteur, Unité de Chimie des Biomolécules, Paris, France
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, Jolla, Louisiana, California, USA
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, Jolla, Louisiana, California, USA
| | - Françoise Bachelerie
- Université Paris-Saclay, INSERM, Inflammation, Microbiome and Immunosurveillance, Clamart, France
| | - Angélique Levoye
- Université de Paris, PARCC, INSERM, Paris, France.,Université Sorbonne Paris Nord, Bobigny, France
| |
Collapse
|
31
|
Dyer DP. Understanding the mechanisms that facilitate specificity, not redundancy, of chemokine-mediated leukocyte recruitment. Immunology 2020; 160:336-344. [PMID: 32285441 PMCID: PMC7370109 DOI: 10.1111/imm.13200] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/29/2022] Open
Abstract
Chemokines (chemotactic cytokines) and their receptors are critical to recruitment and positioning of cells during development and the immune response. The chemokine system has long been described as redundant for a number of reasons, where multiple chemokine ligands can bind to multiple receptors and vice versa. This apparent redundancy has been thought to be a major reason for the failure of drugs targeting chemokines during inflammatory disease. We are now beginning to understand that chemokine biology is in fact based around a high degree of specificity, where each chemokine and receptor plays a particular role in the immune response. This specificity hypothesis is supported by a number of recent studies designed to address this problem. This review will detail these studies and the mechanisms that produce this specificity of function with an emphasis on the emerging role of chemokine–glycosaminoglycan interactions.
Collapse
Affiliation(s)
- Douglas P Dyer
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
32
|
Ngo T, Stephens BS, Gustavsson M, Holden LG, Abagyan R, Handel TM, Kufareva I. Crosslinking-guided geometry of a complete CXC receptor-chemokine complex and the basis of chemokine subfamily selectivity. PLoS Biol 2020; 18:e3000656. [PMID: 32271748 PMCID: PMC7173943 DOI: 10.1371/journal.pbio.3000656] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 04/21/2020] [Accepted: 03/02/2020] [Indexed: 12/15/2022] Open
Abstract
Chemokines and their receptors are orchestrators of cell migration in humans. Because dysregulation of the receptor-chemokine system leads to inflammation and cancer, both chemokines and receptors are highly sought therapeutic targets. Yet one of the barriers for their therapeutic targeting is the limited understanding of the structural principles behind receptor-chemokine recognition and selectivity. The existing structures do not include CXC subfamily complexes and lack information about the receptor distal N-termini, despite the importance of the latter in signaling, regulation, and bias. Here, we report the discovery of the geometry of the complex between full-length CXCR4, a prototypical CXC receptor and driver of cancer metastasis, and its endogenous ligand CXCL12. By comprehensive disulfide cross-linking, we establish the existence and the structure of a novel interface between the CXCR4 distal N-terminus and CXCL12 β1-strand, while also recapitulating earlier findings from nuclear magnetic resonance, modeling and crystallography of homologous receptors. A cross-linking-informed high-resolution model of the CXCR4-CXCL12 complex pinpoints the interaction determinants and reveals the occupancy of the receptor major subpocket by the CXCL12 proximal N terminus. This newly found positioning of the chemokine proximal N-terminus provides a structural explanation of CXC receptor-chemokine selectivity against other subfamilies. Our findings challenge the traditional two-site understanding of receptor-chemokine recognition, suggest the possibility of new affinity and signaling determinants, and fill a critical void on the structural map of an important class of therapeutic targets. These results will aid the rational design of selective chemokine-receptor targeting small molecules and biologics with novel pharmacology.
Collapse
Affiliation(s)
- Tony Ngo
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Bryan S. Stephens
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Martin Gustavsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Lauren G. Holden
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Tracy M. Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
33
|
van der Velden WJC, Heitman LH, Rosenkilde MM. Perspective: Implications of Ligand-Receptor Binding Kinetics for Therapeutic Targeting of G Protein-Coupled Receptors. ACS Pharmacol Transl Sci 2020; 3:179-189. [PMID: 32296761 DOI: 10.1021/acsptsci.0c00012] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Indexed: 12/16/2022]
Abstract
The concept of ligand-receptor binding kinetics has been broadly applied in drug development pipelines focusing on G protein-coupled receptors (GPCRs). The ligand residence time (RT) for a receptor describes how long a ligand-receptor complex exists, and is defined as the reciprocal of the dissociation rate constant (k off). RT has turned out to be a valuable parameter for GPCR researchers focusing on drug development as a good predictor of in vivo efficacy. The positive correlation between RT and in vivo efficacy has been established for several drugs targeting class A GPCRs (e.g., the neurokinin-1 receptor (NK1R), the β2 adrenergic receptor (β2AR), and the muscarinic 3 receptor (M3R)) and for drugs targeting class B1 (e.g., the glucagon-like peptide 1 receptor (GLP-1R)). Recently, the association rate constant (k on) has gained similar attention as another parameter affecting in vivo efficacy. In the current perspective, we address the importance of studying ligand-receptor binding kinetics for therapeutic targeting of GPCRs, with an emphasis on how binding kinetics can be altered by subtle molecular changes in the ligands and/or the receptors and how such changes affect treatment outcome. Moreover, we speculate on the impact of binding kinetic parameters for functional selectivity and sustained receptor signaling from endosomal compartments; phenomena that have gained increasing interest in attempts to improve therapeutic targeting of GPCRs.
Collapse
Affiliation(s)
- Wijnand J C van der Velden
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK 2200, Denmark
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333 CC, The Netherlands
| | - Mette M Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK 2200, Denmark
| |
Collapse
|
34
|
Gustavsson M. New insights into the structure and function of chemokine receptor:chemokine complexes from an experimental perspective. J Leukoc Biol 2020; 107:1115-1122. [DOI: 10.1002/jlb.2mr1219-288r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 12/15/2022] Open
Affiliation(s)
- Martin Gustavsson
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| |
Collapse
|