1
|
Wei L, Yu P, Wang H, Liu J. Adeno-associated viral vectors deliver gene vaccines. Eur J Med Chem 2024; 281:117010. [PMID: 39488197 DOI: 10.1016/j.ejmech.2024.117010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Adeno-associated viruses (AAVs) are leading platforms for in vivo delivery of gene therapies, with six licensed AAV-based therapeutics attributed to their non-pathogenic nature, low immunogenicity, and high efficiency. In the realm of gene-based vaccines, one of the most vital therapeutic areas, AAVs are also emerging as promising delivery tools. We scrutinized AAVs, focusing on their virological properties, as well as bioengineering and chemical modifications to demonstrate their significant potential in gene vaccine delivery, and detailing the preparation of AAV particles. Additionally, we summarized the use of AAV vectors in vaccines for both infectious and non-infectious diseases, such as influenza, COVID-19, Alzheimer's disease, and cancer. Furthermore, this review, along with the latest clinical trial updates, provides a comprehensive overview of studies on the potential of using AAV vectors for gene vaccine delivery. It aims to deepen our understanding of the challenges and limitations in nucleic acid delivery and pave the way for future clinical success.
Collapse
Affiliation(s)
- Lai Wei
- College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Peng Yu
- College of Biotechnology, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Haomeng Wang
- CanSino (Shanghai) Biological Research Co., Ltd, 201208, Shanghai, China.
| | - Jiang Liu
- Rosalind Franklin Institute, Harwell Campus, OX11 0QS, Oxford, United Kingdom; Department of Pharmacology, University of Oxford, Mansfield Road, OX1 3QT, Oxford, United Kingdom.
| |
Collapse
|
2
|
Kolesnik VV, Nurtdinov RF, Oloruntimehin ES, Karabelsky AV, Malogolovkin AS. Optimization strategies and advances in the research and development of AAV-based gene therapy to deliver large transgenes. Clin Transl Med 2024; 14:e1607. [PMID: 38488469 PMCID: PMC10941601 DOI: 10.1002/ctm2.1607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 03/18/2024] Open
Abstract
Adeno-associated virus (AAV)-based therapies are recognized as one of the most potent next-generation treatments for inherited and genetic diseases. However, several biological and technological aspects of AAV vectors remain a critical issue for their widespread clinical application. Among them, the limited capacity of the AAV genome significantly hinders the development of AAV-based gene therapy. In this context, genetically modified transgenes compatible with AAV are opening up new opportunities for unlimited gene therapies for many genetic disorders. Recent advances in de novo protein design and remodelling are paving the way for new, more efficient and targeted gene therapeutics. Using computational and genetic tools, AAV expression cassette and transgenic DNA can be split, miniaturized, shuffled or created from scratch to mediate efficient gene transfer into targeted cells. In this review, we highlight recent advances in AAV-based gene therapy with a focus on its use in translational research. We summarize recent research and development in gene therapy, with an emphasis on large transgenes (>4.8 kb) and optimizing strategies applied by biomedical companies in the research pipeline. We critically discuss the prospects for AAV-based treatment and some emerging challenges. We anticipate that the continued development of novel computational tools will lead to rapid advances in basic gene therapy research and translational studies.
Collapse
Affiliation(s)
- Valeria V. Kolesnik
- Martsinovsky Institute of Medical ParasitologyTropical and Vector‐Borne Diseases, Sechenov UniversityMoscowRussia
| | - Ruslan F. Nurtdinov
- Martsinovsky Institute of Medical ParasitologyTropical and Vector‐Borne Diseases, Sechenov UniversityMoscowRussia
| | - Ezekiel Sola Oloruntimehin
- Martsinovsky Institute of Medical ParasitologyTropical and Vector‐Borne Diseases, Sechenov UniversityMoscowRussia
| | | | - Alexander S. Malogolovkin
- Martsinovsky Institute of Medical ParasitologyTropical and Vector‐Borne Diseases, Sechenov UniversityMoscowRussia
- Center for Translational MedicineSirius University of Science and TechnologySochiRussia
| |
Collapse
|
3
|
Raleigh MD, Beltraminelli N, Fallot S, LeSage MG, Saykao A, Pentel PR, Fuller S, Thisted T, Biesova Z, Horrigan S, Sampey D, Zhou B, Kalnik MW. Attenuating nicotine's effects with high affinity human anti-nicotine monoclonal antibodies. PLoS One 2021; 16:e0254247. [PMID: 34329335 PMCID: PMC8323890 DOI: 10.1371/journal.pone.0254247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/23/2021] [Indexed: 11/27/2022] Open
Abstract
Use of nicotine-specific monoclonal antibodies (mAbs) to sequester and reduce nicotine distribution to brain has been proposed as a therapeutic approach to treat nicotine addiction (the basis of tobacco use disorder). A series of monoclonal antibodies with high affinity for nicotine (nic•mAbs) was isolated from B-cells of vaccinated smokers. Genes encoding 32 unique nicotine binding antibodies were cloned, and the mAbs expressed and tested by surface plasmon resonance to determine their affinity for S-(–)-nicotine. The highest affinity nic•mAbs had binding affinity constants (KD) between 5 and 67 nM. The 4 highest affinity nic•mAbs were selected to undergo additional secondary screening for antigen-specificity, protein properties (including aggregation and stability), and functional in vivo studies to evaluate their capacity for reducing nicotine distribution to brain in rats. The 2 most potent nic•mAbs in single-dose nicotine pharmacokinetic experiments were further tested in a dose-response in vivo study. The most potent lead, ATI-1013, was selected as the lead candidate based on the results of these studies. Pretreatment with 40 and 80 mg/kg ATI-1013 reduced brain nicotine levels by 56 and 95%, respectively, in a repeated nicotine dosing experiment simulating very heavy smoking. Nicotine self-administration was also significantly reduced in rats treated with ATI-1013. A pilot rat 30-day repeat-dose toxicology study (4x200mg/kg ATI-1013) in the presence of nicotine indicated no drug-related safety concerns. These data provide evidence that ATI-1013 could be a potential therapy for the treatment of nicotine addiction.
Collapse
Affiliation(s)
- Michael D. Raleigh
- Hennepin Healthcare Research Institute, Minneapolis, Minnesota, United States of America
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | | | | | - Mark G. LeSage
- Hennepin Healthcare Research Institute, Minneapolis, Minnesota, United States of America
- Nic•mAb Strategic Alliance, San Diego, California, United States of America
| | - Amy Saykao
- Hennepin Healthcare Research Institute, Minneapolis, Minnesota, United States of America
| | - Paul R. Pentel
- Hennepin Healthcare Research Institute, Minneapolis, Minnesota, United States of America
- Nic•mAb Strategic Alliance, San Diego, California, United States of America
| | - Steve Fuller
- Nic•mAb Strategic Alliance, San Diego, California, United States of America
- Antidote Therapeutics, Inc., Woodbine, Maryland, United States of America
| | - Thomas Thisted
- Nic•mAb Strategic Alliance, San Diego, California, United States of America
- Antidote Therapeutics, Inc., Woodbine, Maryland, United States of America
| | - Zuzanna Biesova
- Antidote Therapeutics, Inc., Woodbine, Maryland, United States of America
| | - Stephen Horrigan
- Noble Life Sciences, Woodbine, Maryland, United States of America
| | - Darryl Sampey
- Nic•mAb Strategic Alliance, San Diego, California, United States of America
- Biofactura, Inc., Frederick, Maryland, United States of America
| | - Bin Zhou
- Nic•mAb Strategic Alliance, San Diego, California, United States of America
- The Scripps Research Institute, La Jolla, California, United States of America
| | - Matthew W. Kalnik
- Nic•mAb Strategic Alliance, San Diego, California, United States of America
- Antidote Therapeutics, Inc., Woodbine, Maryland, United States of America
- * E-mail:
| |
Collapse
|
4
|
Hossain MK, Hassanzadeganroudsari M, Kypreos E, Feehan J, Apostolopoulos V. Immune to addiction: how immunotherapies can be used to combat methamphetamine addiction. Expert Rev Vaccines 2021; 20:707-715. [PMID: 33970739 DOI: 10.1080/14760584.2021.1927725] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: The concept of anti-methamphetamine (METH) immunotherapies is a few decades old. A substantial amount of information has been generated on the development of anti-METH immunotherapies, particularly in the preclinical stages of development of vaccines and monoclonal antibody (mAb) treatments. However, the concept of treating METH use addiction with anti-METH immunotherapies is not well understood by many researchers or general readers. A series of questions commonly arise regarding the concept: how does it work? What is the antigen used? How exactly does the vaccine prevent METH addiction?Areas covered: This paper reviews the published articles relating to the mechanisms of METH use disorders, strategies used in the development of anti-METH immunotherapies, and the mechanism of action of these treatments. It provides clear explanations to questions surrounding the basis of anti-METH immunotherapies and contextualizes their development. It also identifies areas for future investigation to speed their translation into clinical use.Expert opinion: While METH immunotherapies, including vaccines and mAbs, have progressed significantly in the last 30 years, there are newer approaches that should be evaluated to improve their translatability. Approaches including nanoparticle vaccines, virus-like particles, and other novel methods should be fully evaluated as means of generating anti-METH immunity.
Collapse
Affiliation(s)
- Md Kamal Hossain
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | | | - Erica Kypreos
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | | |
Collapse
|
5
|
Chowdhury EA, Meno-Tetang G, Chang HY, Wu S, Huang HW, Jamier T, Chandran J, Shah DK. Current progress and limitations of AAV mediated delivery of protein therapeutic genes and the importance of developing quantitative pharmacokinetic/pharmacodynamic (PK/PD) models. Adv Drug Deliv Rev 2021; 170:214-237. [PMID: 33486008 DOI: 10.1016/j.addr.2021.01.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/17/2022]
Abstract
While protein therapeutics are one of the most successful class of drug molecules, they are expensive and not suited for treating chronic disorders that require long-term dosing. Adeno-associated virus (AAV) mediated in vivo gene therapy represents a viable alternative, which can deliver the genes of protein therapeutics to produce long-term expression of proteins in target tissues. Ongoing clinical trials and recent regulatory approvals demonstrate great interest in these therapeutics, however, there is a lack of understanding regarding their cellular disposition, whole-body disposition, dose-exposure relationship, exposure-response relationship, and how product quality and immunogenicity affects these important properties. In addition, there is a lack of quantitative studies to support the development of pharmacokinetic-pharmacodynamic models, which can support the discovery, development, and clinical translation of this delivery system. In this review, we have provided a state-of-the-art overview of current progress and limitations related to AAV mediated delivery of protein therapeutic genes, along with our perspective on the steps that need to be taken to improve clinical translation of this therapeutic modality.
Collapse
|
6
|
Alzhrani RF, Xu H, Valdes SA, Cui Z. Intranasal delivery of a nicotine vaccine candidate induces antibodies in mouse blood and lung mucosal secretions that specifically neutralize nicotine. Drug Dev Ind Pharm 2020; 46:1656-1664. [PMID: 32892651 DOI: 10.1080/03639045.2020.1820033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Cigarette smoking is one of the leading causes of death in the world. The majority of the smokers have tried to quit, but only a few of them were able to achieve long-term abstinence, due to the high addictiveness of nicotine. Nicotine-specific antibodies have the potential to block the euphoric effect of nicotine by forming antibody-antigen complexes in the blood circulation. Since nicotine is taken largely by inhalation, inducing anti-nicotine antibodies in lung and nasal mucosal secretions, in addition to blood circulation, is expected to be beneficial. SIGNIFICANCE The importance of this study is to establish the feasibility of inducing nicotine-neutralizing antibodies not only in the blood, but also in the lung and nasal mucosal secretions, by intranasal administration of a nicotine vaccine candidate. METHODS Nicotine-keyhole limpet hemocyanin conjugate (Nic-KLH) was prepared and mixed with monophosphoryl lipid A (MPL) as an adjuvant. Nic-KLH/MPL was given intranasally or subcutaneously to mice, and the titers, affinity, and specificity of the nicotine-specific antibodies in nasal and lung mucosal secretions and blood samples were determined using (competitive) ELISA. RESULTS Nasal Nic-KLH/MPL immunization elicited robust nicotine-specific neutralizing IgA in mouse nasal and lung secretions, in additional to anti-nicotine IgG in blood circulation. The nicotine-specific IgG level in mice nasally immunized with Nic-KLH/MPL was lower than in mice subcutaneously immunized with the same Nic-KLH/MPL, but a heterologous prime-boost immunization strategy helped to increase it. CONCLUSION Intranasal immunization with a nicotine vaccine candidate can induce systemic and mucosal antibodies that specifically neutralize nicotine.
Collapse
Affiliation(s)
- Riyad F Alzhrani
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, TX, USA
| | - Haiyue Xu
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, TX, USA
| | - Solange A Valdes
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, TX, USA
| | - Zhengrong Cui
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
7
|
Hay CE, Ewing LE, Hambuchen MD, Zintner SM, Small JC, Bolden CT, Fantegrossi WE, Margaritis P, Owens SM, Peterson EC. The Development and Characterization of an scFv-Fc Fusion-Based Gene Therapy to Reduce the Psychostimulant Effects of Methamphetamine Abuse. J Pharmacol Exp Ther 2020; 374:16-23. [PMID: 32245884 DOI: 10.1124/jpet.119.261180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 03/31/2020] [Indexed: 12/17/2022] Open
Abstract
Methamphetamine (METH) continues to be among the most addictive and abused drugs in the United States. Unfortunately, there are currently no Food and Drug Administration-approved pharmacological treatments for METH-use disorder. We have previously explored the use of adeno-associated viral (AAV)-mediated gene transfer of an anti-METH monoclonal antibody. Here, we advance our approach by generating a novel anti-METH single-chain variable fragment (scFv)-Fc fusion construct (termed 7F9-Fc) packaged into AAV serotype 8 vector (called AAV-scFv-Fc) and tested in vivo and ex vivo. A range of doses [1 × 1010, 1 × 1011, and 1 × 1012 vector copies (vcs)/mouse] were administered to mice, eliciting a dose-dependent expression of 7F9-Fc in serum with peak circulating concentrations of 48, 1785, and 3831 µg/ml, respectively. Expressed 7F9-Fc exhibited high-affinity METH binding, IC50 = 17 nM. Between days 21 and 35 after vector administration, at both 1 × 1011 vc/mouse and 1 × 1012 vc/mouse doses, the AAV-7F9-Fc gene therapy significantly decreased the potency of METH in locomotor assays. On day 116 post-AAV administration, mice expressing 7F9-Fc sequestered over 2.5 times more METH in the serum than vehicle-treated mice, and METH concentrations in the brain were reduced by 1.2 times the value for vehicle mice. These data suggest that an AAV-delivered anti-METH Fc fusion antibody could be used to persistently reduce concentrations of METH in the central nervous system. SIGNIFICANCE STATEMENT: In this manuscript, we describe the testing of a novel antimethamphetamine (METH) single-chain variable fragment-Fc fusion protein delivered in mice using gene therapy. The results suggest that the gene therapy delivery system can lead to the production of significant antibody concentrations that mitigate METH's psychostimulant effects in mice over an extended time period.
Collapse
Affiliation(s)
- Charles E Hay
- University of Arkansas for Medical Sciences, Little Rock, Arkansas (C.E.H., L.E.E., M.D.H., C.T.B., W.E.F., S.M.O., E.C.P,); The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (S.M.Z., J.C.S., P.M.,); The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (P.M.); and Department of Pediatrics, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania (P.M.)
| | - Laura E Ewing
- University of Arkansas for Medical Sciences, Little Rock, Arkansas (C.E.H., L.E.E., M.D.H., C.T.B., W.E.F., S.M.O., E.C.P,); The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (S.M.Z., J.C.S., P.M.,); The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (P.M.); and Department of Pediatrics, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania (P.M.)
| | - Michael D Hambuchen
- University of Arkansas for Medical Sciences, Little Rock, Arkansas (C.E.H., L.E.E., M.D.H., C.T.B., W.E.F., S.M.O., E.C.P,); The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (S.M.Z., J.C.S., P.M.,); The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (P.M.); and Department of Pediatrics, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania (P.M.)
| | - Shannon M Zintner
- University of Arkansas for Medical Sciences, Little Rock, Arkansas (C.E.H., L.E.E., M.D.H., C.T.B., W.E.F., S.M.O., E.C.P,); The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (S.M.Z., J.C.S., P.M.,); The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (P.M.); and Department of Pediatrics, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania (P.M.)
| | - Juliana C Small
- University of Arkansas for Medical Sciences, Little Rock, Arkansas (C.E.H., L.E.E., M.D.H., C.T.B., W.E.F., S.M.O., E.C.P,); The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (S.M.Z., J.C.S., P.M.,); The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (P.M.); and Department of Pediatrics, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania (P.M.)
| | - Chris T Bolden
- University of Arkansas for Medical Sciences, Little Rock, Arkansas (C.E.H., L.E.E., M.D.H., C.T.B., W.E.F., S.M.O., E.C.P,); The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (S.M.Z., J.C.S., P.M.,); The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (P.M.); and Department of Pediatrics, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania (P.M.)
| | - William E Fantegrossi
- University of Arkansas for Medical Sciences, Little Rock, Arkansas (C.E.H., L.E.E., M.D.H., C.T.B., W.E.F., S.M.O., E.C.P,); The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (S.M.Z., J.C.S., P.M.,); The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (P.M.); and Department of Pediatrics, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania (P.M.)
| | - Paris Margaritis
- University of Arkansas for Medical Sciences, Little Rock, Arkansas (C.E.H., L.E.E., M.D.H., C.T.B., W.E.F., S.M.O., E.C.P,); The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (S.M.Z., J.C.S., P.M.,); The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (P.M.); and Department of Pediatrics, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania (P.M.)
| | - S Michael Owens
- University of Arkansas for Medical Sciences, Little Rock, Arkansas (C.E.H., L.E.E., M.D.H., C.T.B., W.E.F., S.M.O., E.C.P,); The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (S.M.Z., J.C.S., P.M.,); The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (P.M.); and Department of Pediatrics, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania (P.M.)
| | - Eric C Peterson
- University of Arkansas for Medical Sciences, Little Rock, Arkansas (C.E.H., L.E.E., M.D.H., C.T.B., W.E.F., S.M.O., E.C.P,); The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (S.M.Z., J.C.S., P.M.,); The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (P.M.); and Department of Pediatrics, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania (P.M.)
| |
Collapse
|
8
|
Crystal RG. My Pathway to Gene Therapy. Hum Gene Ther 2020; 31:273-282. [DOI: 10.1089/hum.2020.29112.rgc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ronald G. Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
9
|
Elmer BM, Swanson KA, Bangari DS, Piepenhagen PA, Roberts E, Taksir T, Guo L, Obinu MC, Barneoud P, Ryan S, Zhang B, Pradier L, Yang ZY, Nabel GJ. Gene delivery of a modified antibody to Aβ reduces progression of murine Alzheimer's disease. PLoS One 2019; 14:e0226245. [PMID: 31887144 PMCID: PMC6936806 DOI: 10.1371/journal.pone.0226245] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/24/2019] [Indexed: 12/30/2022] Open
Abstract
Antibody therapies for Alzheimer’s Disease (AD) hold promise but have been limited by the inability of these proteins to migrate efficiently across the blood brain barrier (BBB). Central nervous system (CNS) gene transfer by vectors like adeno-associated virus (AAV) overcome this barrier by allowing the bodies’ own cells to produce the therapeutic protein, but previous studies using this method to target amyloid-β have shown success only with truncated single chain antibodies (Abs) lacking an Fc domain. The Fc region mediates effector function and enhances antigen clearance from the brain by neonatal Fc receptor (FcRn)-mediated reverse transcytosis and is therefore desirable to include for such treatments. Here, we show that single chain Abs fused to an Fc domain retaining FcRn binding, but lacking Fc gamma receptor (FcγR) binding, termed a silent scFv-IgG, can be expressed and released into the CNS following gene transfer with AAV. While expression of canonical IgG in the brain led to signs of neurotoxicity, this modified Ab was efficiently secreted from neuronal cells and retained target specificity. Steady state levels in the brain exceeded peak levels obtained by intravenous injection of IgG. AAV-mediated expression of this scFv-IgG reduced cortical and hippocampal plaque load in a transgenic mouse model of progressive β-amyloid plaque accumulation. These findings suggest that CNS gene delivery of a silent anti-Aβ scFv-IgG was well-tolerated, durably expressed and functional in a relevant disease model, demonstrating the potential of this modality for the treatment of Alzheimer’s disease.
Collapse
Affiliation(s)
- Bradford M. Elmer
- Breakthrough Lab, Sanofi, Cambridge, Massachusetts, United States of America
| | - Kurt A. Swanson
- Breakthrough Lab, Sanofi, Cambridge, Massachusetts, United States of America
| | - Dinesh S. Bangari
- Global Discovery Pathology, Sanofi, Framingham, Massachusetts, United States of America
| | - Peter A. Piepenhagen
- Global Discovery Pathology, Sanofi, Framingham, Massachusetts, United States of America
| | - Errin Roberts
- Global Discovery Pathology, Sanofi, Framingham, Massachusetts, United States of America
| | - Tatyana Taksir
- Global Discovery Pathology, Sanofi, Framingham, Massachusetts, United States of America
| | - Lei Guo
- Translational Sciences, Sanofi, Cambridge, Massachusetts, United States of America
| | | | | | - Susan Ryan
- Global Discovery Pathology, Sanofi, Framingham, Massachusetts, United States of America
| | - Bailin Zhang
- Translational Sciences, Sanofi, Cambridge, Massachusetts, United States of America
| | | | - Zhi-Yong Yang
- Breakthrough Lab, Sanofi, Cambridge, Massachusetts, United States of America
| | - Gary J. Nabel
- Breakthrough Lab, Sanofi, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
10
|
Psychopharmacology: neuroimmune signaling in psychiatric disease-developing vaccines against abused drugs using toll-like receptor agonists. Psychopharmacology (Berl) 2019; 236:2899-2907. [PMID: 30726515 DOI: 10.1007/s00213-019-5176-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 01/16/2019] [Indexed: 01/05/2023]
Abstract
RATIONALE Since substance use disorders have few or no effective pharmacotherapies, researchers have developed vaccines as immune-therapies against nicotine, cocaine, methamphetamine, and opioids including fentanyl. OBJECTIVES We focus on enhancing antibody (AB) production through stimulation of toll-like receptor-5 (TLR5) during active vaccination. The stimulating adjuvant is Entolimod, a novel protein derivative of flagellin. We review the molecular and cellular mechanisms underlying Entolimod's actions on TLR5. RESULTS Entolimod shows excellent efficacy for increasing AB levels to levels well beyond those produced by anti-addiction vaccines alone in animal models and humans. These ABs also significantly block the behavioral effects of the targeted drug of abuse. The TLR5 stimulation involves a wide range of immune cell types such as dendritic, antigen presenting, T and B cells. Entolimod binding to TLR5 initiates an intracellular signaling cascade that stimulates cytokine production of tumor necrosis factor and two interleukins (IL-6 and IL-12). While cytokine release can be catastrophic in cytokine storm, Entolimod produces a modulated release with few side effects even at doses 30 times greater than doses needed in these vaccine studies. Entolimod has markedly increased AB responses to all of our anti-addiction vaccines in rodent models, and in normal humans. CONCLUSIONS Entolimod and TLR5 stimulation has broad application to vaccines and potentially to other psychiatric disorders like depression, which has critical inflammatory contributions that Entolimod could reduce.
Collapse
|
11
|
Smith LC, Bremer PT, Hwang CS, Zhou B, Ellis B, Hixon MS, Janda KD. Monoclonal Antibodies for Combating Synthetic Opioid Intoxication. J Am Chem Soc 2019; 141:10489-10503. [PMID: 31187995 DOI: 10.1021/jacs.9b04872] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Opioid abuse in the United States has been declared a national crisis and is exacerbated by an inexpensive, readily available, and illicit supply of synthetic opioids. Specifically, fentanyl and related analogues such as carfentanil pose a significant danger to opioid users due to their high potency and rapid acting depression of respiration. In recent years these synthetic opioids have become the number one cause of drug-related deaths. In our research efforts to combat the public health threat posed by synthetic opioids, we have developed monoclonal antibodies (mAbs) against the fentanyl class of drugs. The mAbs were generated in hybridomas derived from mice vaccinated with a fentanyl conjugate vaccine. Guided by a surface plasmon resonance (SPR) binding assay, we selected six hybridomas that produced mAbs with 10-11 M binding affinity for fentanyl, yet broad cross-reactivity with related fentanyl analogues. In mouse antinociception models, our lead mAb (6A4) could blunt the effects of both fentanyl and carfentanil in a dose-responsive manner. Additionally, mice pretreated with 6A4 displayed enhanced survival when subjected to fentanyl above LD50 doses. Pharmacokinetic analysis revealed that the antibody sequesters large amounts of these drugs in the blood, thus reducing drug biodistribution to the brain and other tissue. Lastly, the 6A4 mAb could effectively reverse fentanyl/carfentanil-induced antinociception comparable to the opioid antagonist naloxone, the standard of care drug for treating opioid overdose. While naloxone is known for its short half-life, we found the half-life of 6A4 to be approximately 6 days in mice, thus monoclonal antibodies could theoretically be useful in preventing renarcotization events in which opioid intoxication recurs following quick metabolism of naloxone. Our results as a whole demonstrate that monoclonal antibodies could be a desirable treatment modality for synthetic opioid overdose and possibly opioid use disorder.
Collapse
Affiliation(s)
- Lauren C Smith
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 N Torrey Pines Road , La Jolla , California 92037 , United States
| | - Paul T Bremer
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 N Torrey Pines Road , La Jolla , California 92037 , United States.,Cessation Therapeutics LLC , 3031 Tisch Way Ste 505 , San Jose , California 95128 , United States
| | - Candy S Hwang
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 N Torrey Pines Road , La Jolla , California 92037 , United States.,Department of Chemistry , Southern Connecticut State University , New Haven , Connecticut 06515 , United States
| | - Bin Zhou
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 N Torrey Pines Road , La Jolla , California 92037 , United States
| | - Beverly Ellis
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 N Torrey Pines Road , La Jolla , California 92037 , United States
| | - Mark S Hixon
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 N Torrey Pines Road , La Jolla , California 92037 , United States.,Mark S. Hixon Consulting LLC , 11273 Spitfire Road , San Diego , California 92126 , United States
| | - Kim D Janda
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 N Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|
12
|
Myagkova MA, Morozova VS. Vaccines for substance abuse treatment: new approaches in the immunotherapy of addictions. Russ Chem Bull 2018. [DOI: 10.1007/s11172-018-2290-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Development and testing of AAV-delivered single-chain variable fragments for the treatment of methamphetamine abuse. PLoS One 2018; 13:e0200060. [PMID: 29958300 PMCID: PMC6025879 DOI: 10.1371/journal.pone.0200060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/11/2018] [Indexed: 01/27/2023] Open
Abstract
Methamphetamine (METH) substance abuse disorders have major impact on society, yet no medications have proven successful at preventing METH relapse or cravings. Anti-METH monoclonal antibodies can reduce METH brain concentrations; however, this therapy has limitations, including the need for repeated dosing throughout the course of addiction recovery. An adeno-associated viral (AAV)-delivered DNA sequence for a single-chain variable fragment could offer long-term, continuous expression of anti-METH antibody fragments. For these studies, we injected mice via tail vein with 1 x 1012 vector genomes of two AAV8 scFv constructs and measured long-term expression of the antibody fragments. Mice expressed each scFv for at least 212 days, achieving micromolar scFv concentrations in serum. In separate experiments 21 days and 50 days after injecting mice with AAV-scFvs mice were challenged with METH in vivo. The circulating scFvs were capable of decreasing brain METH concentrations by up to 60% and sequestering METH in serum for 2 to 3 hrs. These results suggest that AAV-delivered scFv could be a promising therapy to treat methamphetamine abuse.
Collapse
|
14
|
Robert MA, Nassoury N, Chahal PS, Venne MH, Racine T, Qiu X, Kobinger G, Kamen A, Gilbert R, Gaillet B. Gene Transfer of ZMapp Antibodies Mediated by Recombinant Adeno-Associated Virus Protects Against Ebola Infections. Hum Gene Ther 2018; 29:452-466. [PMID: 29179602 DOI: 10.1089/hum.2017.101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vectored delivery of the ZMapp antibody cocktail (c2G4, c4G7, and c13C6) by using recombinant adeno-associated viruses (rAAVs) could be useful for preventive immunization against Ebola virus infections because rAAVs can generate long-term antibody expression. Three rAAVs (serotype 9) encoding chimeric ZMapp antibodies were produced by triple-plasmid transfection up to 10 L-scale in WAVE bioreactors using HEK293 cells grown in suspension/serum-free conditions. Efficacy of AAV-c2G4 via intravenous (i.v.), intramuscular (i.m.), and intranasal (i.n.) routes of administration was evaluated in mice with two different doses of 2.7 × 1010 and 13.0 × 1010 vector genomes (vg). The best protective efficacies after Ebola challenge were obtained with the i.v. and i.m. routes. Serum concentrations of ZMapp antibodies positively correlated with survivability. Efficacy of the rAAV-ZMapp cocktail was then evaluated at a higher dose of 30.0 × 1010 vg. It conferred a more robust protection (90% i.v. and 60% i.m.) than rAAV-c4G7 (30%) and rAAV-c13C6 (70%), both administered separately at the same dose. Delivery of rAAV-c2G4 alone achieved up to 100% protection (100% i.v. and 90% i.m.) at the same dose. In conclusion, the preventive treatment was effective in mice. However, no advantage was observed for using the rAAV-ZMapp cocktail in comparison to the utilization of the single rAAV-c2G4.
Collapse
Affiliation(s)
- Marc-André Robert
- 1 Department of Chemical Engineering, Université Laval , Quebec, Canada .,2 National Research Council Canada , Montreal, Canada
| | | | | | | | - Trina Racine
- 3 Infectious Disease Research Center, Université Laval , Quebec, Canada .,4 Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Xiangguo Qiu
- 4 Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada .,5 Department of Medical Microbiology, McGill University , Montreal, Canada
| | - Gary Kobinger
- 3 Infectious Disease Research Center, Université Laval , Quebec, Canada .,6 Department of Laboratory Medicine, University of Pennsylvania , Philadelphia, Pennsylvania.,7 Department of Microbiology, University of Manitoba , Winnipeg, Canada
| | - Amine Kamen
- 8 Department of Bioengineering, McGill University , Montreal, Canada
| | | | - Bruno Gaillet
- 1 Department of Chemical Engineering, Université Laval , Quebec, Canada
| |
Collapse
|
15
|
CRYSTAL RONALDG, PAGOVICH ODELYAE. THE JEREMIAH METZGER LECTURE NOVEL THERAPEUTIC STRATEGIES OF ALLERGIC AND IMMUNOLOGIC DISORDERS. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2018; 129:250-265. [PMID: 30166721 PMCID: PMC6116601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Advances in understanding the immunological basis and mechanisms underlying allergic and immunologic disorders have led to effective but costly long-term and repetitive biologic therapies. Gene therapy is a rapidly advancing technology, in which a single administration of an adeno-associated virus encoding the therapeutic protein or monoclonal antibody may provide effective long-term therapy for allergic and immunologic disorders. In this review, we summarize the recent studies from our laboratory developing gene therapy strategies to treat hereditary angioedema and peanut allergy. The unraveling of the pathogenesis of immune-based disorders, including hereditary deficiencies of components of the immune system and allergic disorders, has led to the development of therapies using parenteral administration of recombinant proteins or monoclonal antibodies (1). While many of these therapies are highly effective, they are limited by the half-life of the therapeutic protein or antibody, requiring repetitive administration of days to weeks (2-15). The focus of recent work in our laboratory has been to solve this problem by substituting protein/monoclonal antibody administration with gene therapy, where current technology allows for a single administration of the gene coding for a protein or antibody to provide persistent expression of effective levels of the therapeutic protein or antibody. Gene therapy is a drug delivery platform which uses genetic material, usually in the form of coding exons of the therapeutic gene, to correct, compensate for, or prevent the development of an abnormal phenotype (16). Originally conceptualized as a strategy to treat rare hereditary disorders, gene therapy is being developed for a wide range of human disorders, including common acquired conditions (17-20). In this review, we will describe how we have adopted gene therapy technology to develop therapies for immune-related disorders, using as examples hereditary angioedema, an inherited autosomal dominant disorder, and peanut allergy, a common acquired allergic disorder.
Collapse
|
16
|
Flotte TR. Gene Therapy for Alcoholism and Other Substance Use Disorders. Hum Gene Ther 2017; 28:701-702. [DOI: 10.1089/hum.2017.29048.trf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
Hollevoet K, Declerck PJ. State of play and clinical prospects of antibody gene transfer. J Transl Med 2017; 15:131. [PMID: 28592330 PMCID: PMC5463339 DOI: 10.1186/s12967-017-1234-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/31/2017] [Indexed: 12/31/2022] Open
Abstract
Recombinant monoclonal antibodies (mAbs) are one of today's most successful therapeutic classes in inflammatory diseases and oncology. A wider accessibility and implementation, however, is hampered by the high product cost and prolonged need for frequent administration. The surge in more effective mAb combination therapies further adds to the costs and risk of toxicity. To address these issues, antibody gene transfer seeks to administer to patients the mAb-encoding nucleotide sequence, rather than the mAb protein. This allows the body to produce its own medicine in a cost- and labor-effective manner, for a prolonged period of time. Expressed mAbs can be secreted systemically or locally, depending on the production site. The current review outlines the state of play and clinical prospects of antibody gene transfer, thereby highlighting recent innovations, opportunities and remaining hurdles. Different expression platforms and a multitude of administration sites have been pursued. Viral vector-mediated mAb expression thereby made the most significant strides. Therapeutic proof of concept has been demonstrated in mice and non-human primates, and intramuscular vectored mAb therapy is under clinical evaluation. However, viral vectors face limitations, particularly in terms of immunogenicity. In recent years, naked DNA has gained ground as an alternative. Attained serum mAb titers in mice, however, remain far below those obtained with viral vectors, and robust pharmacokinetic data in larger animals is limited. The broad translatability of DNA-based antibody therapy remains uncertain, despite ongoing evaluation in patients. RNA presents another emerging platform for antibody gene transfer. Early reports in mice show that mRNA may be able to rival with viral vectors in terms of generated serum mAb titers, although expression appears more short-lived. Overall, substantial progress has been made in the clinical translation of antibody gene transfer. While challenges persist, clinical prospects are amplified by ongoing innovations and the versatility of antibody gene transfer. Clinical introduction can be expedited by selecting the platform approach currently best suited for the mAb or disease of interest. Innovations in expression platform, administration and antibody technology are expected to further improve overall safety and efficacy, and unlock the vast clinical potential of antibody gene transfer.
Collapse
Affiliation(s)
- Kevin Hollevoet
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Campus Gasthuisberg O&N 2, P.B. 820, Herestraat 49, 3000 Leuven, Belgium
| | - Paul J. Declerck
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Campus Gasthuisberg O&N 2, P.B. 820, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
18
|
Pravetoni M. Biologics to treat substance use disorders: Current status and new directions. Hum Vaccin Immunother 2016; 12:3005-3019. [PMID: 27441896 DOI: 10.1080/21645515.2016.1212785] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Biologics (vaccines, monoclonal antibodies (mAb), and genetically modified enzymes) offer a promising class of therapeutics to treat substance use disorders (SUD) involving abuse of opioids and stimulants such as nicotine, cocaine, and methamphetamine. In contrast to small molecule medications targeting brain receptors, biologics for SUD are larger molecules that do not cross the blood-brain barrier (BBB), but target the drug itself, preventing its distribution to the brain and blunting its effects on the central nervous system (CNS). Active and passive immunization approaches rely on antibodies (Ab) that bind drugs of abuse in serum and block their distribution to the brain, preventing the rewarding effects of drugs and addiction-related behaviors. Alternatives to vaccines and anti-drug mAb are genetically engineered human or bacterial enzymes that metabolize drugs of abuse, lowering the concentration of free active drug. Pre-clinical and clinical data support development of effective biologics for SUD.
Collapse
Affiliation(s)
- Marco Pravetoni
- a Minneapolis Medical Research Foundation, and University of Minnesota Medical School, Departments of Medicine and Pharmacology , Center for Immunology , Minneapolis , MN , USA
| |
Collapse
|
19
|
Pagovich OE, Wang B, Chiuchiolo MJ, Kaminsky SM, Sondhi D, Jose CL, Price CC, Brooks SF, Mezey JG, Crystal RG. Anti-hIgE gene therapy of peanut-induced anaphylaxis in a humanized murine model of peanut allergy. J Allergy Clin Immunol 2016; 138:1652-1662.e7. [PMID: 27372563 DOI: 10.1016/j.jaci.2016.03.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/09/2016] [Accepted: 03/28/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND Peanuts are the most common food to provoke fatal or near-fatal anaphylactic reactions. Treatment with an anti-hIgE mAb is efficacious but requires frequent parenteral administration. OBJECTIVE Based on the knowledge that peanut allergy is mediated by peanut-specific IgE, we hypothesized that a single administration of an adeno-associated virus (AAV) gene transfer vector encoding for anti-hIgE would protect against repeated peanut exposure in the host with peanut allergy. METHODS We developed a novel humanized murine model of peanut allergy that recapitulates the human anaphylactic response to peanuts in NOD-scid IL2Rgammanull mice transferred with blood mononuclear cells from donors with peanut allergy and then sensitized with peanut extract. As therapy, we constructed an adeno-associated rh.10 serotype vector coding for a full-length, high-affinity, anti-hIgE antibody derived from the Fab fragment of the anti-hIgE mAb omalizumab (AAVrh.10anti-hIgE). In the reconstituted mice peanut-specific IgE was induced by peanut sensitization and hypersensitivity, and reactions were provoked by feeding peanuts to mice with symptoms similar to those of human subjects with peanut allergy. RESULTS A single administration of AAVrh.10anti-hIgE vector expressed persistent levels of anti-hIgE. The anti-hIgE vector, administered either before sensitization or after peanut sensitization and manifestation of the peanut-induced phenotype, blocked IgE-mediated alterations in peanut-induced histamine release, anaphylaxis scores, locomotor activity, and free IgE levels and protected animals from death caused by anaphylaxis. CONCLUSION If this degree of persistent efficacy translates to human subjects, AAVrh.10anti-hIgE could be an effective 1-time preventative therapy for peanut allergy and possibly other severe, IgE-mediated allergies.
Collapse
Affiliation(s)
- Odelya E Pagovich
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY
| | - Bo Wang
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY; Department of Respiratory Medicine, West China Hospital, Sichuan University, Sichuan, China
| | - Maria J Chiuchiolo
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY
| | - Stephen M Kaminsky
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY
| | - Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY
| | - Clarisse L Jose
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY
| | - Christina C Price
- Departments of Internal Medicine and Pediatrics, Yale University School of Medicine, New Haven, Conn
| | - Sarah F Brooks
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY
| | - Jason G Mezey
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY; Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY.
| |
Collapse
|
20
|
Abstract
This article focuses on a novel vaccine strategy known as vector-mediated antibody gene transfer, with a particular focus on human immunodeficiency virus (HIV). This strategy provides a solution to the problem of current vaccines that fail to generate neutralizing antibodies to prevent HIV-1 infection and AIDS. Antibody gene transfer allows for predetermination of antibody affinity and specificity prior to "immunization" and avoids the need for an active humoral immune response against the HIV envelope protein. This approach uses recombinant adeno-associated viral (rAAV) vectors, which have been shown to transduce muscle with high efficiency and direct the long-term expression of a variety of transgenes, to deliver the gene encoding a broadly neutralizing antibody into the muscle. Following rAAV vector gene delivery, the broadly neutralizing antibodies are endogenously synthesized in myofibers and passively distributed to the circulatory system. This is an improvement over classical passive immunization strategies that administer antibody proteins to the host to provide protection from infection. Vector-mediated gene transfer studies in mice and monkeys with anti-HIV and simian immunodeficiency virus (SIV)-neutralizing antibodies demonstrated long-lasting neutralizing activity in serum with complete protection against intravenous challenge with virulent HIV and SIV. These results indicate that existing potent anti-HIV antibodies can be rapidly moved into the clinic. However, this methodology need not be confined to HIV. The general strategy of vector-mediated antibody gene transfer can be applied to other difficult vaccine targets such as hepatitis C virus, malaria, respiratory syncytial virus, and tuberculosis.
Collapse
|
21
|
Papadopoulos K, Wattanaarsakit P, Prasongchean W, Narain R. Gene therapies in clinical trials. POLYMERS AND NANOMATERIALS FOR GENE THERAPY 2016. [DOI: https:/doi.org/10.1016/b978-0-08-100520-0.00010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
|
22
|
Deal CE, Balazs AB. Engineering humoral immunity as prophylaxis or therapy. Curr Opin Immunol 2015; 35:113-22. [PMID: 26183209 DOI: 10.1016/j.coi.2015.06.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/24/2015] [Indexed: 01/01/2023]
Abstract
PURPOSE OF THE REVIEW In this review, we will discuss the field of engineered humoral immunity with an emphasis on recent work using viral vectors to produce antibodies in vivo. As an alternative to passive transfer of monoclonal antibody protein, a transgene encoding an antibody is delivered to cells via vector transduction, resulting in expression and secretion by the host cell. This review will summarize the evidence in support of this strategy as an alternative to traditional vaccines against infection and as novel therapeutics for a variety of diseases. RECENT FINDINGS Historically, humoral immunity has been engineered through vaccination and passive transfer of monoclonal antibodies. However, recent work suggests that vectors can be used to deliver transgenes encoding broadly neutralizing antibodies to non-hematopoietic tissues and can mediate long-term expression that is capable of preventing or treating infectious diseases. The production of engineered monoclonal antibodies allows for precise targeting and elimination of aberrant self-proteins that are characteristic of certain neurodegenerative disease. This approach has also been successfully used to combat cancer and addiction in several animal models. Despite the wide array of expression platforms that have been described, adeno-associated virus vectors have emerged as the frontrunner for rapid clinical translation. SUMMARY Recent advances in vector-mediated antibody expression have demonstrated the potential for such interventions to prevent infection and treat disease. As such, it offers an alternative to immunogen-based vaccine design and a novel therapeutic intervention by enabling precise manipulation of humoral immunity. Success translating these approaches to patients may enable the development of effective prevention against previously intractable pathogens that evade immunity such as HIV, influenza, malaria or HCV and may also enable new treatment options for neurodegenerative diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Cailin E Deal
- Ragon Institute of MGH, MIT & Harvard, 400 Technology Sq., Cambridge, MA 02139, United States
| | - Alejandro B Balazs
- Ragon Institute of MGH, MIT & Harvard, 400 Technology Sq., Cambridge, MA 02139, United States.
| |
Collapse
|
23
|
Blum K, Thanos PK, Badgaiyan RD, Febo M, Oscar-Berman M, Fratantonio J, Demotrovics Z, Gold MS. Neurogenetics and gene therapy for reward deficiency syndrome: are we going to the Promised Land? Expert Opin Biol Ther 2015; 15:973-85. [PMID: 25974314 DOI: 10.1517/14712598.2015.1045871] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Addiction is a substantial health issue with limited treatment options approved by the FDA and as such currently available. The advent of neuroimaging techniques that link neurochemical and neurogenetic mechanisms to the reward circuitry brain function provides a framework for potential genomic-based therapies. AREAS COVERED Through candidate and genome-wide association studies approaches, many gene polymorphisms and clusters have been implicated in drug, food and behavioral dependence linked by the common rubric reward deficiency syndrome (RDS). The results of selective studies that include the role of epigenetics, noncoding micro RNAs in RDS behaviors especially drug abuse involving alcohol, opioids, cocaine, nicotine, pain and feeding are reviewed in this article. New targets for addiction treatment and relapse prevention, treatment alternatives such as gene therapy in animal models, and pharmacogenomics and nutrigenomics methods to manipulate transcription and gene expression are explored. EXPERT OPINION The recognition of the clinical benefit of early genetic testing to determine addiction risk stratification and dopaminergic agonistic, rather than antagonistic therapies are potentially the genomic-based wave of the future. In addition, further development, especially in gene transfer work and viral vector identification, could make gene therapy for RDS a possibility in the future.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine , Gainesville, FL , USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Figueroa JA, Reidy A, Mirandola L, Trotter K, Suvorava N, Figueroa A, Konala V, Aulakh A, Littlefield L, Grizzi F, Rahman RL, R. Jenkins M, Musgrove B, Radhi S, D'Cunha N, D'Cunha LN, Hermonat PL, Cobos E, Chiriva-Internati M. Chimeric Antigen Receptor Engineering: A Right Step in the Evolution of Adoptive Cellular Immunotherapy. Int Rev Immunol 2015; 34:154-87. [PMID: 25901860 DOI: 10.3109/08830185.2015.1018419] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
25
|
Abstract
The use of antibodies as a treatment for disease has it origins in experiments performed in the 1890s, and since these initial experiments, monoclonal antibodies (mAbs) have become one of the fastest growing therapeutic classes for the treatment of cancer, autoimmune disease, and infectious diseases. However, treatment with therapeutic mAbs often requires high doses given via long infusions or multiple injections, which, coupled with the prohibitively high cost associated with the production of clinical-grade proteins and the transient serum half-lives that necessitate multiple administrations to gain therapeutic benefits, makes large-scale treatment of patients, especially patients in the developing world, difficult. Due to their low-cost and rapid scalability, nucleic acid-based approaches to deliver antibody gene sequences for in situ mAb production have gained substantial traction. In this review, we discuss new approaches to produce therapeutic mAbs in situ to overcome the need for the passive infusion of purified protein.
Collapse
Affiliation(s)
- Todd J Suscovich
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | | |
Collapse
|
26
|
Schnepp BC, Johnson PR. Vector-mediated antibody gene transfer for infectious diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 848:149-67. [PMID: 25757620 DOI: 10.1007/978-1-4939-2432-5_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This chapter discusses the emerging field of vector-mediated antibody gene transfer as an alternative vaccine for infectious disease, with a specific focus on HIV. However, this methodology need not be confined to HIV-1; the general strategy of vector-mediated antibody gene transfer can be applied to other difficult vaccine targets like hepatitis C virus, malaria, respiratory syncytial virus, and tuberculosis. This approach is an improvement over classical passive immunization strategies that administer antibody proteins to the host to provide protection from infection. With vector-mediated gene transfer, the antibody gene is delivered to the host, via a recombinant adeno-associated virus (rAAV) vector; this in turn results in long-term endogenous antibody expression from the injected muscle that confers protective immunity. Vector-mediated antibody gene transfer can rapidly move existing, potent broadly cross-neutralizing HIV-1-specific antibodies into the clinic. The gene transfer products demonstrate a potency and breadth identical to the original product. This strategy eliminates the need for immunogen design and interaction with the adaptive immune system to generate protection, a strategy that so far has shown limited promise.
Collapse
Affiliation(s)
- Bruce C Schnepp
- Infectious Disease, The Children's Hospital of Philadelphia, Abramson Research Center, Room 1216J, 3615 Civic Center Blvd., Philadelphia, PA, 19104, USA,
| | | |
Collapse
|
27
|
De Biasi M, McLaughlin I, Perez EE, Crooks PA, Dwoskin LP, Bardo MT, Pentel PR, Hatsukami D. Scientific overview: 2013 BBC plenary symposium on tobacco addiction. Drug Alcohol Depend 2014; 141:107-17. [PMID: 24934691 PMCID: PMC4227301 DOI: 10.1016/j.drugalcdep.2014.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 05/12/2014] [Accepted: 05/16/2014] [Indexed: 12/13/2022]
Abstract
Nicotine dependence plays a critical role in addiction to tobacco products, and thus contributes to a variety of devastating tobacco-related diseases (SGR 2014). Annual costs associated with smoking in the US are estimated to be between $289 and $333 billion. Effective interventions for nicotine dependence, especially in smokers, are a critical barrier to the eradication of tobacco-related diseases. This overview highlights research presented at the Plenary Symposium of Behavior, Biology and Chemistry: Translational Research in Addiction Conference (BBC), hosted by the UT Health Science Center San Antonio, on March 9-10, 2013. The Plenary Symposium focused on tobacco addiction, and covered topics ranging from basic science to national policy. As in previous years, the meeting brought together globally-renowned scientists, graduate student recruits, and young scientists from underrepresented populations in Texas and other states with the goal of fostering interest in drug addiction research in young generations.
Collapse
Affiliation(s)
- M De Biasi
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| | - I McLaughlin
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - E E Perez
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - P A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - L P Dwoskin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - M T Bardo
- Department of Psychology, University of Kentucky, Lexington, KY, USA
| | - P R Pentel
- Department of Medicine, Hennepin County Medical Center, University of Minnesota, Minneapolis, MN, USA
| | - D Hatsukami
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
28
|
Rosenberg JB, De BP, Hicks MJ, Janda KD, Kaminsky SM, Worgall S, Crystal RG. Suppression of nicotine-induced pathophysiology by an adenovirus hexon-based antinicotine vaccine. Hum Gene Ther 2014; 24:595-603. [PMID: 23611296 DOI: 10.1089/hum.2012.245] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite antismoking campaigns, cigarette smoking remains a pervasive addiction with significant societal impact, accounting for one of every five deaths. Smoking cessation therapies to help smokers quit are ineffective with a high recidivism rate. With the knowledge that nicotine is the principal addictive compound of cigarettes, we have developed an antismoking vaccine based on the highly immunogenic properties of the hexon protein purified from the serotype 5 adenovirus (Ad) capsid. We hypothesized that an effective antinicotine vaccine could be based on coupling the nicotine hapten AM1 to purified Ad hexon protein. To assess this, AM1 was conjugated to hexon purified from serotype 5 Ad to produce the HexonAM1 vaccine. C57Bl/6 mice were sensitized by 10 daily nicotine administrations (0.5 mg/kg, subcutaneous) to render the mice addicted to nicotine. Control groups were sensitized to phosphate-buffered saline (PBS). The mice were then immunized with HexonAM1 (4 μg, intramuscular) at 0, 3, and 6 weeks. By 6 weeks, the HexonAM1-vaccinated mice had serum antinicotine antibody titers of 1.1×10(6)±7.6×10(4). To demonstrate that these high antinicotine titers were sufficient to suppress the effects of nicotine, HexonAM1-vaccinated mice were evaluated for nicotine-induced hypoactive behavior with nicotine challenges (0.5 mg/kg wt) over 5 weeks. In all challenges, the HexonAM1-vaccinated mice behaved similar to PBS-challenged naive mice. These data demonstrate that a vaccine comprised of a nicotine analog coupled to Ad hexon can evoke a high level of antinicotine antibodies sufficient to inhibit nicotine-induced behavior. The HexonAM1 vaccine represents a platform paradigm for vaccines against small molecules.
Collapse
Affiliation(s)
- Jonathan B Rosenberg
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Huang J, Li X, Coelho-dos-Reis JGA, Wilson JM, Tsuji M. An AAV vector-mediated gene delivery approach facilitates reconstitution of functional human CD8+ T cells in mice. PLoS One 2014; 9:e88205. [PMID: 24516613 PMCID: PMC3916402 DOI: 10.1371/journal.pone.0088205] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 01/09/2014] [Indexed: 12/03/2022] Open
Abstract
In the present study, a novel adeno-associated virus (AAV) vector-mediated gene delivery approach was taken to improve the reconstitution of functional CD8+ T cells in humanized mice, thereby mimicking the human immune system (HIS). Human genes encoding HLA-A2 and selected human cytokines (A2/hucytokines) were introduced to an immune-deficient mouse model [NOD/SCID/IL2rγnull (NSG) mice] using AAV serotype 9 (AAV9) vectors, followed by transplantation of human hematopoietic stem cells. NSG mice transduced with AAV9 encoding A2/hucytokines resulted in higher levels of reconstitution of human CD45+ cells compared to NSG mice transduced with AAV9 encoding HLA-A2 alone or HLA-A2-transgenic NSG mice. Furthermore, this group of HIS mice also mounted the highest level of antigen-specific A2-restricted human CD8+ T-cell response upon vaccination with recombinant adenoviruses expressing human malaria and HIV antigens. Finally, the human CD8+ T-cell response induced in human malaria vaccine-immunized HIS mice was shown to be functional by displaying cytotoxic activity against hepatocytes that express the human malaria antigen in the context of A2 molecules. Taken together, our data show that AAV vector-mediated gene delivery is a simple and efficient method to transfer multiple human genes to immune-deficient mice, thus facilitating successful reconstitution of HIS in mice. The HIS mice generated in this study should ultimately allow us to swiftly evaluate the T-cell immunogenicity of various human vaccine candidates in a pre-clinical setting.
Collapse
Affiliation(s)
- Jing Huang
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
| | - Xiangming Li
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
| | - Jordana G. A. Coelho-dos-Reis
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
| | - James M. Wilson
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Moriya Tsuji
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
30
|
Yang L, Wang P. Passive immunization against HIV/AIDS by antibody gene transfer. Viruses 2014; 6:428-47. [PMID: 24473340 PMCID: PMC3939464 DOI: 10.3390/v6020428] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 01/06/2014] [Accepted: 01/10/2014] [Indexed: 12/12/2022] Open
Abstract
Despite tremendous efforts over the course of many years, the quest for an effective HIV vaccine by the classical method of active immunization remains largely elusive. However, two recent studies in mice and macaques have now demonstrated a new strategy designated as Vectored ImmunoProphylaxis (VIP), which involves passive immunization by viral vector-mediated delivery of genes encoding broadly neutralizing antibodies (bnAbs) for in vivo expression. Robust protection against virus infection was observed in preclinical settings when animals were given VIP to express monoclonal neutralizing antibodies. This unorthodox approach raises new promise for combating the ongoing global HIV pandemic. In this article, we survey the status of antibody gene transfer, review the revolutionary progress on isolation of extremely bnAbs, detail VIP experiments against HIV and its related virus conduced in humanized mice and macaque monkeys, and discuss the pros and cons of VIP and its opportunities and challenges towards clinical applications to control HIV/AIDS endemics.
Collapse
Affiliation(s)
- Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Pin Wang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
31
|
Nieto K, Salvetti A. AAV Vectors Vaccines Against Infectious Diseases. Front Immunol 2014; 5:5. [PMID: 24478774 PMCID: PMC3896988 DOI: 10.3389/fimmu.2014.00005] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/07/2014] [Indexed: 12/12/2022] Open
Abstract
Since their discovery as a tool for gene transfer, vectors derived from the adeno-associated virus (AAV) have been used for gene therapy applications and attracted scientist to this field for their exceptional properties of efficiency of in vivo gene transfer and the level and duration of transgene expression. For many years, AAVs have been considered as low immunogenic vectors due to their ability to induce long-term expression of non-self-proteins in contrast to what has been observed with other viral vectors, such as adenovirus, for which strong immune responses against the same transgene products were documented. The perceived low immunogenicity likely explains why the use of AAV vectors for vaccination was not seriously considered before the early 2000s. Indeed, while analyses conducted using a variety of transgenes and animal species slowly changed the vision of immunological properties of AAVs, an increasing number of studies were also performed in the field of vaccination. Even if the comparison with other modes of vaccination was not systemically performed, the analyses conducted so far in the field of active immunotherapy strongly suggest that AAVs possess some interesting features to be used as tools to produce an efficient and sustained antibody response. In addition, recent studies also highlighted the potential of AAVs for passive immunotherapy. This review summarizes the main studies conducted to evaluate the potential of AAV vectors for vaccination against infectious agents and discusses their advantages and drawbacks. Altogether, the variety of studies conducted in this field contributes to the understanding of the immunological properties of this versatile virus and to the definition of its possible future applications.
Collapse
Affiliation(s)
- Karen Nieto
- Tumor Immunology Program (D030), German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Anna Salvetti
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon , Lyon , France ; LabEx Ecofect, Université de Lyon , Lyon , France
| |
Collapse
|
32
|
Pentel PR, LeSage MG. New directions in nicotine vaccine design and use. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 69:553-80. [PMID: 24484987 DOI: 10.1016/b978-0-12-420118-7.00014-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Clinical trials of nicotine vaccines suggest that they can enhance smoking cessation rates but do not reliably produce the consistently high serum antibody concentrations required. A wide array of next-generation strategies are being evaluated to enhance vaccine efficacy or provide antibody through other mechanisms. Protein conjugate vaccines may be improved by modifications of hapten or linker design or by optimizing hapten density. Conjugating hapten to viruslike particles or disrupted virus may allow exploitation of naturally occurring viral features associated with high immunogenicity. Conjugates that utilize different linker positions on nicotine can function as independent immunogens, so that using them in combination generates higher antibody concentrations than can be produced by a single immunogen. Nanoparticle vaccines, consisting of hapten, T cell help peptides, and adjuvants attached to a liposome or synthetic scaffold, are in the early stages of development. Nanoparticle vaccines offer the possibility of obtaining precise and consistent control of vaccine component stoichiometry and spacing and immunogen size and shape. Passive transfer of nicotine-specific monoclonal antibodies offers a greater control of antibody dose, the ability to give very high doses, and an immediate onset of action but is expensive and has a shorter duration of action than vaccines. Viral vector-mediated transfer of genes for antibody production can elicit high levels of antibody expression in animals and may present an alternative to vaccination or passive immunization if the long-term safety of this approach is confirmed. Next-generation immunotherapies are likely to be substantially more effective than first-generation vaccines.
Collapse
Affiliation(s)
- Paul R Pentel
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA; Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA; Minneapolis Medical Research Foundation, Minneapolis, Minnesota, USA.
| | - Mark G LeSage
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA; Minneapolis Medical Research Foundation, Minneapolis, Minnesota, USA; Department of Psychology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
33
|
Volkow ND, Baler RD. Addiction science: Uncovering neurobiological complexity. Neuropharmacology 2014; 76 Pt B:235-49. [PMID: 23688927 PMCID: PMC3818510 DOI: 10.1016/j.neuropharm.2013.05.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/01/2013] [Accepted: 05/06/2013] [Indexed: 11/16/2022]
Abstract
Until very recently addiction-research was limited by existing tools and strategies that were inadequate for studying the inherent complexity at each of the different phenomenological levels. However, powerful new tools (e.g., optogenetics and designer drug receptors) and high throughput protocols are starting to give researchers the potential to systematically interrogate "all" genes, epigenetic marks, and neuronal circuits. These advances, combined with imaging technologies (both for preclinical and clinical studies) and a paradigm shift toward open access have spurred an unlimited growth of datasets transforming the way we investigate the neurobiology of substance use disorders (SUD) and the factors that modulate risk and resilience. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
- N D Volkow
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
34
|
Fahim REF, Kessler PD, Kalnik MW. Therapeutic vaccines against tobacco addiction. Expert Rev Vaccines 2013; 12:333-42. [PMID: 23496672 DOI: 10.1586/erv.13.13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Most smokers are aware of the dangers of smoking and want to quit, yet few are successful owing to the highly addictive properties of nicotine. Available smoking cessation tools include pharmacotherapies that act in the CNS and show modest long-term efficacy. Additionally, there are emerging concerns that they may cause adverse neuropsychiatric events. Antinicotine vaccines have been used experimentally as aids to smoking cessation. It is hypothesized that antibody capture of nicotine in the bloodstream would prevent it from crossing the blood-brain barrier and reaching the nicotinic receptors. The advantage of the approach includes the relatively gradual rise of antibody levels, which may reduce nicotine withdrawal symptoms, and the possible persistence of the antibodies potentially provides long-term protection, possibly preventing relapse. Proof-of-concept studies of at least two vaccine candidates have shown correlations between antinicotine antibody exposure and smoking abstinence. Unfortunately, the only vaccine tested in two large, randomized Phase III trials, 3'-amino-methyl-nicotine r-exoprotein A conjugate vaccine (NicVAX(®), Nabi Biopharmaceuticals, MD, USA), did not demonstrate efficacy. However, despite the lack of efficacy, there is good reason for continued optimism. This review will summarize the current status of the development of nicotine vaccines, discuss possible causes for the mixed results and review future scientific directions.
Collapse
Affiliation(s)
- Raafat E F Fahim
- Nabi Biopharmaceuticals, 12270 Wilkins Avenue, Rockville, MD 20842, USA.
| | | | | |
Collapse
|
35
|
Brimijoin S, Shen X, Orson F, Kosten T. Prospects, promise and problems on the road to effective vaccines and related therapies for substance abuse. Expert Rev Vaccines 2013; 12:323-32. [PMID: 23496671 DOI: 10.1586/erv.13.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review addresses potential new treatments for stimulant drugs of abuse, especially cocaine. Clinical trials of vaccines against cocaine and nicotine have been completed with the generally encouraging result that subjects showing high titers of antidrug antibody experience a reduction in drug reward, which may aid in cessation. New vaccine technologies, including gene transfer of highly optimized monoclonal antibodies, are likely to improve such outcomes further. In the special case of cocaine abuse, a metabolic enzyme is emerging as an alternative or added therapeutic intervention, which would also involve gene transfer. Such approaches still require extensive studies of safety and efficacy, but they may eventually contribute to a robust form of in vivo drug interception that greatly reduces the risks of addiction relapse.
Collapse
Affiliation(s)
- Stephen Brimijoin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.
| | | | | | | |
Collapse
|
36
|
Lev O. Enhancing Children against Unhealthy Behaviors-An Ethical and Policy Assessment of Using a Nicotine Vaccine. Public Health Ethics 2013; 6:197-206. [PMID: 23864909 PMCID: PMC3712401 DOI: 10.1093/phe/pht006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Health behaviors such as tobacco use contribute significantly to poor health. It is widely recognized that efforts to prevent poor health outcomes should begin in early childhood. Biomedical enhancements, such as a nicotine vaccine, are now emerging and have potential to be used for primary prevention of common diseases. In anticipation of such enhancements, it is important that we begin to consider the ethical and policy appropriateness of their use with children. The main ethical concerns raised by enhancing children relate to their impact on children's well-being and autonomy. These concerns are significant, however they do not appear to apply in the case of the nicotine vaccine; indeed the vaccine could even further these goals for children. Nevertheless, concerns about broadly applying this enhancement may be more challenging. The vaccine may be less cost-effective than alternative public efforts to prevent tobacco use, utilizing it could distract from addressing the foundational causes of smoking and it might not be publically acceptable. Empirical research about these concerns is needed to ascertain their likelihood and impact as well as how they could be minimized. This research could help determine whether behavior-related enhancements hold promise for improving children's health.
Collapse
Affiliation(s)
- Ori Lev
- Sapir Academic College, Israel
| |
Collapse
|
37
|
Abstract
Is it possible for students in different courses, at different academic levels, and at different universities to learn immunology together using the Internet? We teach a colloquium on inflammation for undergraduates at the University of Arizona and a lecture course on human immunology for graduate students and clinical and basic science fellows at the University of Colorado Anschutz Medical Campus. Students in these programs, being scattered about large campuses, have little time for student-directed discussion and peer interactions, and they never have the opportunity to meet students in the course in the other state. Instead of requiring the usual essays and term papers, we set up a blog (an online discussion group) for the two courses, and required all students to post, and comment on other posts, within and between the courses. Student writing is normally directed at a single reader, the instructor, which seems like a waste of talent; we encouraged peer exchanges. Furthermore, we were interested in observing the interactions between the Colorado students, who were older and sometimes experienced professionals, and the younger Arizonans. We used a blog because it is administratively impossible to enroll the students in two universities in a single courseware (learning management system) site. Blogging has offered insights into students' comfort with this form of social medium, and into the potential for this approach in light of the rapid adoption of blended and massively open online courses.
Collapse
Affiliation(s)
- Zoë Cohen
- Department of Physiology, University of Arizona, Tucson, AZ 85721, USA.
| | | |
Collapse
|
38
|
Lockner JW, Ho SO, McCague KC, Chiang SM, Do TQ, Fujii G, Janda KD. Enhancing nicotine vaccine immunogenicity with liposomes. Bioorg Med Chem Lett 2012; 23:975-8. [PMID: 23313243 DOI: 10.1016/j.bmcl.2012.12.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/10/2012] [Accepted: 12/13/2012] [Indexed: 11/30/2022]
Abstract
A major liability of existing nicotine vaccine candidates is the wide variation in anti-nicotine immune responses among clinical trial participants. In order to address this liability, significant emphasis has been directed at evaluating adjuvants and delivery systems that confer more robust potentiation of the anti-nicotine immune response. Toward that end, we have initiated work that seeks to exploit the adjuvant effect of liposomes, with or without Toll-like receptor agonist(s). The results of the murine immunization study described herein support the hypothesis that a liposomal nicotine vaccine formulation may provide a means for addressing the immunogenicity challenge.
Collapse
Affiliation(s)
- Jonathan W Lockner
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Abstract
BACKGROUND By reducing the amount of nicotine that reaches the brain when a person smokes a cigarette, nicotine vaccines may help people to stop smoking or to prevent recent quitters from relapsing. OBJECTIVES The aims of this review are to assess the efficacy of nicotine vaccines for smoking cessation and for relapse prevention, and to assess the frequency and type of adverse events associated with the use of nicotine vaccines. SEARCH METHODS We searched the Cochrane Tobacco Addiction Review Group specialised register for trials, using the term 'vaccine' in the title or abstract, or in a keyword (date of most recent search April 2012). To identify any other material including reviews and papers potentially relevant to the background or discussion sections, we also searched MEDLINE, EMBASE, and PsycINFO, combining terms for nicotine vaccines with terms for smoking and tobacco use, without design limits or limits for human subjects. We searched the Annual Meeting abstracts of the Society for Research on Nicotine and Tobacco up to 2012, using the search string 'vaccin'. We searched Google Scholar for 'nicotine vaccine'. We also searched company websites and Google for information related to specific vaccines. We searched clinicaltrials.gov in March 2012 for 'nicotine vaccine' and for the trade names of known vaccine candidates. SELECTION CRITERIA We included randomized controlled trials of nicotine vaccines, at Phase II and Phase III trial stage and beyond, in adult smokers or recent ex-smokers. We included studies of nicotine vaccines used as part of smoking cessation or relapse prevention interventions. DATA COLLECTION AND ANALYSIS We extracted data on the type of participants, the dose and duration of treatment, the outcome measures, the randomization procedure, concealment of allocation, blinding of participants and personnel, reporting of outcomes, and completeness of follow-up.Our primary outcome measure was a minimum of six months abstinence from smoking. We used the most rigorous definition of abstinence, and preferred cessation rates at 12 months and biochemically validated rates where available. We have used the risk ratio (RR) to summarize individual trial outcomes. We have not pooled the current group of included studies as they cover different vaccines and variable regimens. MAIN RESULTS There are no nicotine vaccines currently licensed for public use, but there are a number in development. We found four trials which met our inclusion criteria, three comparing NicVAX to placebo and one comparing NIC002 (formerly NicQbeta) to placebo. All were smoking cessation trials conducted by pharmaceutical companies as part of the drug development process, and all trials were judged to be at high or unclear risk of bias in at least one domain. Overall, 2642 smokers participated in the included studies in this review. None of the four included studies detected a statistically significant difference in long-term cessation between participants receiving vaccine and those receiving placebo. The RR for 12 month cessation in active and placebo groups was 1.35 (95% Confidence Interval (CI) 0.82 to 2.22) in the trial of NIC002 and 1.74 (95% CI 0.73 to 4.18) in one NicVAX trial. Two Phase III NicVAX trials, for which full results were not available, reported similar quit rates of approximately 11% in both groups. In the two studies with full results available, post hoc analyses detected higher cessation rates in participants with higher levels of nicotine antibodies, but these findings are not readily generalisable. The two studies with full results showed nicotine vaccines to be well tolerated, with the majority of adverse events classified as mild or moderate. In the study of NIC002, participants receiving the vaccine were more likely to report mild to moderate adverse events, most commonly flu-like symptoms, whereas in the study of NicVAX there was no significant difference between the two arms. Information on adverse events was not available for the large Phase III trials of NicVAX.Vaccine candidates are likely to undergo significant changes before becoming available to the general public, and those included in this review may not be the first to reach market; this limits the external validity of the results reported in this review in terms of both effectiveness and tolerability. AUTHORS' CONCLUSIONS There is currently no evidence that nicotine vaccines enhance long-term smoking cessation. Rates of serious adverse events recorded in the two trials with full data available were low, and the majority of adverse events reported were at mild to moderate levels. The evidence available suggests nicotine vaccines do not induce compensatory smoking or affect withdrawal symptoms. No nicotine vaccines are currently licensed for use in any country but a number are under development.Further trials of nicotine vaccines are needed, comparing vaccines with placebo for smoking cessation. Further trials are also needed to explore the potential of nicotine vaccines to prevent relapse. Results from past, current and future research should be reported in full. Adverse events and serious adverse events should continue to be carefully monitored and thoroughly reported.
Collapse
|
41
|
Yates D. Targeting nicotine. Nat Rev Neurosci 2012. [DOI: 10.1038/nrn3309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Quit smoking with a shot. Nature 2012. [DOI: 10.1038/487008b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|