1
|
Bixenmann L, Ahmad T, Stephan F, Nuhn L. End-Group Dye-Labeled Poly(hemiacetal ester) Block Copolymers: Enhancing Hydrolytic Stability and Loading Capacity for Micellar (Immuno-)Drug Delivery. Biomacromolecules 2024; 25:7958-7974. [PMID: 39509250 DOI: 10.1021/acs.biomac.4c01229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Polymers with hemiacetal esters integrated in their backbone provide beneficial degradation profiles for (immuno-) drug delivery. However, their fast hydrolysis and low drug loading capacity have limited their applications so far. Therefore, this study focuses on the stability and loading capacity of hemiacetal ester polymers. The hydrophobicity of the micellar core has a tremendous effect on the hemiacetal ester stability. For that purpose, we introduce a new monomer with a phenyl moiety for stabilizing the micellar core and improving drug loading. The carrier functionality can further be expanded by post-polymerization modifications via activated ester groups at the polymer chain end. This allows for covalent dye labeling, which provides substantial insights into the polymers' in vitro performance. Flow cytometric analyses on RAW dual macrophages revealed intact micelles exhibiting significantly higher cellular uptake compared to degraded species, thus, highlighting the potential of end group functionalized poly(hemiacetal ester)s for (immuno)drug delivery purposes.
Collapse
Affiliation(s)
- Leon Bixenmann
- Institute of Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, 97070 Würzburg, Germany
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Taufiq Ahmad
- Institute of Functional Materials and Biofabrication, Department of Functional Materials in Medicine and Dentistry, University Hospital of Würzburg, 97070 Würzburg, Germany
| | - Fabian Stephan
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Lutz Nuhn
- Institute of Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, 97070 Würzburg, Germany
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| |
Collapse
|
2
|
Zhang RY, Wen Y, He CB, Zhou SH, Wu YH, Wang EY, Feng RR, Ding D, Du JJ, Gao XF, Guo J. Conjugation of TLR7 and TLR7/8 agonists onto weak protein antigen via versatile oxime ligation for enhanced vaccine efficacy. Int J Biol Macromol 2024; 278:134620. [PMID: 39127274 DOI: 10.1016/j.ijbiomac.2024.134620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Protein-based subunit vaccines are weakly immunogenic, and developing self-adjuvanting vaccines with adjuvant conjugated to antigen is a promising approach for generating optimal immune responses. Here, we report a novel adjuvant-protein conjugate vaccine based on versatile oxime ligation technique. Firstly, the adjuvant properties of a series of TLR7 and TLR7/8 small molecule agonists in self-adjuvanting vaccines were systematically compared by coupling them to proteins in consistent ratio via p-carboxybenzaldehyde (p-CBA) for the first time. All conjugate vaccines induced cytokine secretion in murine and human macrophages in vitro, and promoted specific antibody production in vivo. Notably, a conjugate containing imidazoquinoline TLR7/8 agonist (TLR7/8a1) showed the greatest enhancement in Th1/2 balanced antibody response. To minimize the interference with the protein antigenic integrity, we further developed a systematic glycoconjugation strategy to conjugate this TLR7/8a1 onto the glycan chains of SARS-CoV-2 S1 glycoprotein via oxime ligation, in which S1 containing different numbers of aldehyde groups were obtained by differential periodate oxidation. The resulting TLR7/8a1-S1 conjugate triggered a potent humoral and cellular immunity in vivo. Together these data demonstrate the promise of these TLR7 and TLR7/8 agonists as effective built-in adjuvants, and the versatile oxime ligation strategy might broaden potential applications in designing different conjugate vaccines.
Collapse
Affiliation(s)
- Ru-Yan Zhang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China; Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, College of Medicine, Hubei Polytechnic University, Huangshi 435003, China
| | - Yu Wen
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Chen-Bin He
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Shi-Hao Zhou
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Ye-Hui Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - En-Yang Wang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Ran-Ran Feng
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Dong Ding
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jing-Jing Du
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, College of Medicine, Hubei Polytechnic University, Huangshi 435003, China
| | - Xiao-Fei Gao
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, School of Chemistry and Materials Science, East China University of Technology, Nanchang 330013, China
| | - Jun Guo
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
3
|
Zou GQ, Li K, Yan C, Li YQ, Xian MY, Hu X, Luo R, Liu Z. Aluminum hydroxide and immunostimulatory glycolipid adjuvant combination for enhanced COVID-19 subunit vaccine immunogenicity. Vaccine 2024; 42:126145. [PMID: 39034218 DOI: 10.1016/j.vaccine.2024.07.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/11/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Protein-based subunit vaccines like RBD-Fc are promising tools to fight COVID-19. RBD-Fc fuses the receptor-binding domain (RBD) of the SARS-CoV-2 virus spike protein with the Fc region of human IgG1, making it more immunogenic than RBD alone. Earlier work showed that combining RBD-Fc with iNKT cell agonists as adjuvants improved neutralizing antibodies but did not sufficiently enhance T cell responses, a limitation RBD-Fc vaccines share with common adjuvants. Here we demonstrate that aluminum hydroxide combined with α-C-GC, a C-glycoside iNKT cell agonist, significantly improved the RBD-Fc vaccine's induction of RBD-specific T-cell responses. Additionally, aluminum hydroxide with α-GC-CPOEt, a phosphonate diester derivative, synergistically elicited more robust neutralizing antibodies. Remarkably, modifying αGC with phosphate (OPO3H2) or phosphonate (CPO3H2) to potentially enhance aluminum hydroxide interaction did not improve efficacy over unmodified αGC with aluminum hydroxide. These findings underscore the straightforward yet potent potential of this approach in advancing COVID-19 vaccine development and provide insights for iNKT cell-based immunotherapy.
Collapse
Affiliation(s)
- Guo-Qing Zou
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - Ke Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Cheng Yan
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - Ya-Qian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Mao-Ying Xian
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - Xing Hu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| | - Zheng Liu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, PR China.
| |
Collapse
|
4
|
Ou BS, Baillet J, Filsinger Interrante MV, Adamska JZ, Zhou X, Saouaf OM, Yan J, Klich JH, Jons CK, Meany EL, Valdez AS, Carter L, Pulendran B, King NP, Appel EA. Saponin nanoparticle adjuvants incorporating Toll-like receptor agonists drive distinct immune signatures and potent vaccine responses. SCIENCE ADVANCES 2024; 10:eadn7187. [PMID: 39110802 PMCID: PMC11305391 DOI: 10.1126/sciadv.adn7187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Over the past few decades, the development of potent and safe immune-activating adjuvant technologies has become the heart of intensive research in the constant fight against highly mutative and immune evasive viruses such as influenza, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and human immunodeficiency virus (HIV). Herein, we developed a highly modular saponin-based nanoparticle platform incorporating Toll-like receptor agonists (TLRas) including TLR1/2a, TLR4a, and TLR7/8a adjuvants and their mixtures. These various TLRa-saponin nanoparticle adjuvant constructs induce unique acute cytokine and immune-signaling profiles, leading to specific T helper responses that could be of interest depending on the target disease for prevention. In a murine vaccine study, the adjuvants greatly improved the potency, durability, breadth, and neutralization of both COVID-19 and HIV vaccine candidates, suggesting the potential broad application of these adjuvant constructs to a range of different antigens. Overall, this work demonstrates a modular TLRa-SNP adjuvant platform that could improve the design of vaccines and affect modern vaccine development.
Collapse
Affiliation(s)
- Ben S. Ou
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Julie Baillet
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
| | - Maria V. Filsinger Interrante
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
- Stanford Biophysics Program, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Julia Z. Adamska
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Xueting Zhou
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Olivia M. Saouaf
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jerry Yan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - John H. Klich
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Carolyn K. Jons
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
| | - Emily L. Meany
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Adian S. Valdez
- Department of Biochemistry, University of Washington, Seattle, WA 98109, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Lauren Carter
- Department of Biochemistry, University of Washington, Seattle, WA 98109, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Neil P. King
- Department of Biochemistry, University of Washington, Seattle, WA 98109, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Eric A. Appel
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Pediatrics-Endocrinology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
- Woods Institute for the Environment, Stanford University, Stanford CA 94305, USA
| |
Collapse
|
5
|
Goetz M, Thotathil N, Zhao Z, Mitragotri S. Vaccine adjuvants for infectious disease in the clinic. Bioeng Transl Med 2024; 9:e10663. [PMID: 39036089 PMCID: PMC11256182 DOI: 10.1002/btm2.10663] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 07/23/2024] Open
Abstract
Adjuvants, materials added to vaccines to enhance the resulting immune response, are important components of vaccination that are many times overlooked. While vaccines always include an antigen to tell the body what to vaccinate to, of equal importance the adjuvant provides the how, a significant factor in producing a complete response. The adjuvant space has been slow to develop with the first use of an adjuvant in a licensed vaccine occurring in the 1930s, and remaining the only adjuvant in licensed vaccines for the next 80 years. However, with vaccination at the forefront of protection against new and complex pathogens, it is important to consider all components when designing an effective vaccine. Here we summarize the adjuvant space in licensed vaccines as well as the novel adjuvant space in clinical trials with a specific focus on the materials utilized and their resulting impact on the immune response. We discuss five major categories of adjuvant materials: aluminum salts, nanoparticles, viral vectors, TLR agonists, and emulsions. For each category, we delve into the current clinical trials space, the impact of these materials on vaccination, as well as some of the ways in which they could be improved. Adjuvants present an exciting opportunity to improve vaccine responses and stability, this review will help inform about the current progress of this space. Translational impact statement In the aftermath of the COVID-19 pandemic, vaccines for infectious diseases have come into the spotlight. While antigens have always been an important focus of vaccine design, the adjuvant is a significant tool for enhancing the immune response to the vaccine that has been largely underdeveloped. This article provides a broad review of the history of adjuvants and, the current vaccine adjuvant space, and the progress seen in adjuvants in clinical trials. There is specific emphasis on the material landscape for adjuvants and their resulting mechanism of action. Looking ahead, while the novel vaccine adjuvant space features exciting new technologies and materials, there is still a need for more to meet the protective needs of new and complex pathogens.
Collapse
Affiliation(s)
- Morgan Goetz
- John A Paulson School of Engineering & Applied SciencesHarvard UniversityAllstonMassachusettsUSA
- Wyss Institute of Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Naaz Thotathil
- University of Massachusetts AmherstAmherstMassachusettsUSA
| | - Zongmin Zhao
- Department of Pharmaceutical SciencesCollege of Pharmacy, University of Illinois ChicagoChicagoIllinoisUSA
| | - Samir Mitragotri
- John A Paulson School of Engineering & Applied SciencesHarvard UniversityAllstonMassachusettsUSA
- Wyss Institute of Biologically Inspired EngineeringBostonMassachusettsUSA
| |
Collapse
|
6
|
Mancini F, Caradonna V, Alfini R, Aruta MG, Vitali CG, Gasperini G, Piccioli D, Berlanda Scorza F, Rossi O, Micoli F. Testing S. sonnei GMMA with and without Aluminium Salt-Based Adjuvants in Animal Models. Pharmaceutics 2024; 16:568. [PMID: 38675229 PMCID: PMC11054012 DOI: 10.3390/pharmaceutics16040568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Shigellosis is one of the leading causes of diarrheal disease in low- and middle-income countries, particularly in young children, and is more often associated with antimicrobial resistance. Therefore, a preventive vaccine against shigellosis is an urgent medical need. We have proposed Generalised Modules for Membrane Antigens (GMMA) as an innovative delivery system for Shigella sonnei O-antigen, and an Alhydrogel formulation (1790GAHB) has been extensively tested in preclinical and clinical studies. Alhydrogel has been used as an adsorbent agent with the main purpose of reducing potential GMMA systemic reactogenicity. However, the immunogenicity and systemic reactogenicity of this GMMA-based vaccine formulated with or without Alhydrogel have never been compared. In this work, we investigated the potential adjuvant effect of aluminium salt-based adjuvants (Alhydrogel and AS37) on S. sonnei GMMA immunogenicity in mice and rabbits, and we found that S. sonnei GMMA alone resulted to be strongly immunogenic. The addition of neither Alhydrogel nor AS37 improved the magnitude or the functionality of vaccine-elicited antibodies. Interestingly, rabbits injected with either S. sonnei GMMA adsorbed on Alhydrogel or S. sonnei GMMA alone showed a limited and transient body temperature increase, returning to baseline values within 24 h after each vaccination. Overall, immunisation with unadsorbed GMMA did not raise any concern for animal health. We believe that these data support the clinical testing of GMMA formulated without Alhydrogel, which would allow for further simplification of GMMA-based vaccine manufacturing.
Collapse
Affiliation(s)
- Francesca Mancini
- GSK Vaccines Institute for Global Health S.r.l. (GVGH), 53100 Siena, Italy
| | - Valentina Caradonna
- GSK Vaccines Institute for Global Health S.r.l. (GVGH), 53100 Siena, Italy
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, 53100 Siena, Italy
| | - Renzo Alfini
- GSK Vaccines Institute for Global Health S.r.l. (GVGH), 53100 Siena, Italy
| | - Maria Grazia Aruta
- GSK Vaccines Institute for Global Health S.r.l. (GVGH), 53100 Siena, Italy
| | | | | | | | | | - Omar Rossi
- GSK Vaccines Institute for Global Health S.r.l. (GVGH), 53100 Siena, Italy
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health S.r.l. (GVGH), 53100 Siena, Italy
| |
Collapse
|
7
|
Cheng Y, Shen R, Liu F, Li Y, Wang J, Hou Y, Liu Y, Zhou H, Hou F, Wang Y, Li X, Qiao R, Luo S. Humoral and cellular immune responses induced by serogroup W135 meningococcal conjugate and polysaccharide vaccines. Vaccine 2024; 42:2781-2792. [PMID: 38508928 DOI: 10.1016/j.vaccine.2024.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/15/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
Investigating the mechanisms by which W135 meningococcal conjugate (PSW135-TT) activates adaptive immune responses in mice can provide a comprehensive understanding of the immune mechanisms of bacterial polysaccharide conjugate vaccines. We compared B-cell and T-cell immune responses immunized with W135 meningococcal capsular polysaccharides (PSW135), tetanus toxoid (TT) and PSW135-TT in mice. The results showed that PSW135-TT could induce higher PSW135-specific and TT-specific IgG antibodies with a significant enhancement after two doses. All serum antibodies immunized with PSW135- TT had strong bactericidal activity, whereas none of the serum antibodies immunized with PSW135 had bactericidal activity. Besides, IgM and IgG antibodies immunized with PSW135-TT after two doses were positively correlated with the titer of bactericidal antibodies. We also found Th cells favored Th2 humoral immune responses in PSW135-TT, PSW135, and TT-immunized mice, especially peripheral blood lymphocytes. Furthermore, PSW135-TT and TT could effectively activate bone marrow derived dendritic cells (BMDCs) and promote BMDCs to highly express major histocompatibility complex Ⅱ (MHCⅡ), CD86 and CD40 molecules in mice, whereas PSW135 couldn't. These data verified the typical characteristics of PSW135-TT and TT as T cell dependent antigen (TD-Ag) and PSW135 as T cell independent antigen (TI-Ag), which will be very helpful for further exploration of the immune mechanism of polysaccharide-protein conjugate vaccines and improvement of the quality of bacterial polysaccharide conjugate vaccines in future.
Collapse
Affiliation(s)
- Yahui Cheng
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Rong Shen
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Fanglei Liu
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Yanting Li
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Jing Wang
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Yali Hou
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Yueping Liu
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Haifei Zhou
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Fengping Hou
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Yunjin Wang
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Xiongxiong Li
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Ruijie Qiao
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China.
| | - Shuquan Luo
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China.
| |
Collapse
|
8
|
Hou Y, Chen M, Bian Y, Hu Y, Chuan J, Zhong L, Zhu Y, Tong R. Insights into vaccines for elderly individuals: from the impacts of immunosenescence to delivery strategies. NPJ Vaccines 2024; 9:77. [PMID: 38600250 PMCID: PMC11006855 DOI: 10.1038/s41541-024-00874-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
Immunosenescence increases the risk and severity of diseases in elderly individuals and leads to impaired vaccine-induced immunity. With aging of the global population and the emerging risk of epidemics, developing adjuvants and vaccines for elderly individuals to improve their immune protection is pivotal for healthy aging worldwide. Deepening our understanding of the role of immunosenescence in vaccine efficacy could accelerate research focused on optimizing vaccine delivery for elderly individuals. In this review, we analyzed the characteristics of immunosenescence at the cellular and molecular levels. Strategies to improve vaccination potency in elderly individuals are summarized, including increasing the antigen dose, preparing multivalent antigen vaccines, adding appropriate adjuvants, inhibiting chronic inflammation, and inhibiting immunosenescence. We hope that this review can provide a review of new findings with regards to the impacts of immunosenescence on vaccine-mediated protection and inspire the development of individualized vaccines for elderly individuals.
Collapse
Affiliation(s)
- Yingying Hou
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Min Chen
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yuan Bian
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yuan Hu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Junlan Chuan
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lei Zhong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Yuxuan Zhu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
9
|
Lavelle EC, McEntee CP. Vaccine adjuvants: Tailoring innate recognition to send the right message. Immunity 2024; 57:772-789. [PMID: 38599170 DOI: 10.1016/j.immuni.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
Adjuvants play pivotal roles in vaccine development, enhancing immunization efficacy through prolonged retention and sustained release of antigen, lymph node targeting, and regulation of dendritic cell activation. Adjuvant-induced activation of innate immunity is achieved via diverse mechanisms: for example, adjuvants can serve as direct ligands for pathogen recognition receptors or as inducers of cell stress and death, leading to the release of immunostimulatory-damage-associated molecular patterns. Adjuvant systems increasingly stimulate multiple innate pathways to induce greater potency. Increased understanding of the principles dictating adjuvant-induced innate immunity will subsequently lead to programming specific types of adaptive immune responses. This tailored optimization is fundamental to next-generation vaccines capable of inducing robust and sustained adaptive immune memory across different cohorts.
Collapse
Affiliation(s)
- Ed C Lavelle
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| | - Craig P McEntee
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
10
|
Lu Q, Kou D, Lou S, Ashrafizadeh M, Aref AR, Canadas I, Tian Y, Niu X, Wang Y, Torabian P, Wang L, Sethi G, Tergaonkar V, Tay F, Yuan Z, Han P. Nanoparticles in tumor microenvironment remodeling and cancer immunotherapy. J Hematol Oncol 2024; 17:16. [PMID: 38566199 PMCID: PMC10986145 DOI: 10.1186/s13045-024-01535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer immunotherapy and vaccine development have significantly improved the fight against cancers. Despite these advancements, challenges remain, particularly in the clinical delivery of immunomodulatory compounds. The tumor microenvironment (TME), comprising macrophages, fibroblasts, and immune cells, plays a crucial role in immune response modulation. Nanoparticles, engineered to reshape the TME, have shown promising results in enhancing immunotherapy by facilitating targeted delivery and immune modulation. These nanoparticles can suppress fibroblast activation, promote M1 macrophage polarization, aid dendritic cell maturation, and encourage T cell infiltration. Biomimetic nanoparticles further enhance immunotherapy by increasing the internalization of immunomodulatory agents in immune cells such as dendritic cells. Moreover, exosomes, whether naturally secreted by cells in the body or bioengineered, have been explored to regulate the TME and immune-related cells to affect cancer immunotherapy. Stimuli-responsive nanocarriers, activated by pH, redox, and light conditions, exhibit the potential to accelerate immunotherapy. The co-application of nanoparticles with immune checkpoint inhibitors is an emerging strategy to boost anti-tumor immunity. With their ability to induce long-term immunity, nanoarchitectures are promising structures in vaccine development. This review underscores the critical role of nanoparticles in overcoming current challenges and driving the advancement of cancer immunotherapy and TME modification.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - Dongquan Kou
- Department of Rehabilitation Medicine, Chongqing Public Health Medical Center, Chongqing, China
| | - Shenghan Lou
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250000, Shandong, China
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Israel Canadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, USA
| | - Xiaojia Niu
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Pedram Torabian
- Cumming School of Medicine, Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Department of Medical Sciences, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Lingzhi Wang
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore
| | - Gautam Sethi
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore.
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore, Republic of Singapore
| | - Franklin Tay
- The Graduate School, Augusta University, 30912, Augusta, GA, USA
| | - Zhennan Yuan
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Peng Han
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China.
| |
Collapse
|
11
|
Ou J, Zheng L, Chen Y, Fu Q, Tan L, Liang E, Huang L, Pan Y, Ke J, Chen Z, Cheng K. Heterocyclic-Modified Imidazoquinoline Derivatives: Selective TLR7 Agonist Regulates Tumor Microenvironment against Melanoma. J Med Chem 2024; 67:3321-3338. [PMID: 38363069 DOI: 10.1021/acs.jmedchem.3c01504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Immunotherapy targeting the toll-like receptor 7 (TLR7) is a promising strategy for cancer treatment. Herein, we describe the design and synthesis of a series of imidazoquinoline-based TLR7 agonists and assess NF-κB pathway activation using HEK-Blue hTLR7 cells to identify the most potent small-molecule TLR7 agonist, SMU-L11 (EC50 = 0.024 ± 0.002 μM). In vitro experiments demonstrated that SMU-L11 specifically activated TLR7, resulting in recruitment of the MyD88 adaptor protein and activation of the NF-κB and MAPK signaling pathways. Moreover, SMU-L11 was found to exert immune-enhancing effects by significantly inducing the secretion of proinflammatory cytokines in murine dendritic cells, macrophages, and human peripheral blood mononuclear cells while promoting M1 macrophage polarization. In vivo studies using a B16-F10 mouse tumor model showed that SMU-L11 significantly enhanced immune cell activation and augmented CD4+ T and CD8+ T-cell proliferation, directly killing tumor cells and inhibiting tumor growth.
Collapse
Affiliation(s)
- Jiaxin Ou
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lu Zheng
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yanlin Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qiuyue Fu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Liyi Tan
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - En Liang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lan Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yue Pan
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiahua Ke
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhipeng Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kui Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
12
|
D'Oro U, O'Hagan DT. The scientific journey of a novel adjuvant (AS37) from bench to bedside. NPJ Vaccines 2024; 9:26. [PMID: 38332005 PMCID: PMC10853242 DOI: 10.1038/s41541-024-00810-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
A decade ago, we described a new approach to discover next generation adjuvants, identifying small-molecule immune potentiators (SMIPs) as Toll-like receptor (TLR)7 agonists. We also optimally formulated these drugs through adsorption to aluminum salts (alum), allowing them to be evaluated with a range of established and early-stage vaccines. Early proof-of-concept studies showed that a TLR7 agonist (TLR7a)-based SMIP, when adsorbed to alum, could perform as an effective adjuvant for a variety of different antigens, in both small and large animals. Studies in rodents demonstrated that the adjuvant enhanced immunogenicity of a recombinant protein-based vaccine against Staphylococcus aureus, and also showed potential to improve existing vaccines against pertussis or meningococcal infection. Extensive evaluations showed that the adjuvant was effective in non-human primates (NHPs), exploiting a mechanism of action that was consistent across the different animal models. The adjuvant formulation (named AS37) has now been advanced into clinical evaluation. A systems biology-based evaluation of the phase I clinical data with a meningococcal C conjugate vaccine showed that the AS37-adjuvanted formulation had an acceptable safety profile, was potent, and activated the expected immune pathways in humans, which was consistent with observations from the NHP studies. In the intervening decade, several alternative TLR7 agonists have also emerged and advanced into clinical development, such as the alum adsorbed TLR7/8 SMIP present in a widely distributed COVID-19 vaccine. This review summarizes the research and early development of the new adjuvant AS37, with an emphasis on the steps taken to allow its progression into clinical evaluations.
Collapse
|
13
|
Nie M, Wu S, Chen Y, Wu Y, Chen R, Liu Y, Yue M, Jiang Y, Qiu D, Yang M, Wang Z, Gao J, Xiong H, Qi R, He J, Zhang J, Zhang L, Wang Y, Fang M, Que Y, Yao Y, Li S, Zhang J, Zhao Q, Yuan Q, Zhang T, Xia N. Micronanoparticled risedronate exhibits potent vaccine adjuvant effects. J Control Release 2024; 365:369-383. [PMID: 37972764 DOI: 10.1016/j.jconrel.2023.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Micro/Nano-scale particles are widely used as vaccine adjuvants to enhance immune response and improve antigen stability. While aluminum salt is one of the most common adjuvants approved for human use, its immunostimulatory capacity is suboptimal. In this study, we modified risedronate, an immunostimulant and anti-osteoporotic drug, to create zinc salt particle-based risedronate (Zn-RS), also termed particulate risedronate. Compared to soluble risedronate, micronanoparticled Zn-RS adjuvant demonstrated increased recruitment of innate cells, enhanced antigen uptake locally, and a similar antigen depot effect as aluminum salt. Furthermore, Zn-RS adjuvant directly and quickly stimulated immune cells, accelerated the formulation of germinal centers in lymph nodes, and facilitated the rapid production of antibodies. Importantly, Zn-RS adjuvant exhibited superior performance in both young and aged mice, effectively protecting against respiratory diseases such as SARS-CoV-2 challenge. Consequently, particulate risedronate showed great potential as an immune-enhancing vaccine adjuvant, particularly beneficial for vaccines targeting the susceptible elderly.
Collapse
Affiliation(s)
- Meifeng Nie
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China
| | - Shuyu Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China
| | - Yiyi Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China
| | - Yangtao Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China
| | - Ruitong Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China
| | - Yue Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China
| | - Mingxi Yue
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China
| | - Yao Jiang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China
| | - Dekui Qiu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China
| | - Man Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China
| | - Zikang Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China
| | - Jiahua Gao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China
| | - Hualong Xiong
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China
| | - Ruoyao Qi
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China
| | - Jinhang He
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China
| | - Jinlei Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China
| | - Liang Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China
| | - Yingbin Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China
| | - Mujin Fang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China
| | - Yuqiong Que
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China
| | - Youliang Yao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China
| | - Shaowei Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China.
| | - Jun Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China.
| | - Qinjian Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing, Chongqing 400016, China.
| | - Quan Yuan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China.
| | - Tianying Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China.
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
14
|
Tregoning JS. LION: Taming RNA vaccine inflammation. Mol Ther 2023; 31:2557. [PMID: 37541255 PMCID: PMC10492017 DOI: 10.1016/j.ymthe.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 08/06/2023] Open
Affiliation(s)
- John S Tregoning
- Department of Infectious Disease, Imperial College London, London, UK.
| |
Collapse
|
15
|
Laera D, HogenEsch H, O'Hagan DT. Aluminum Adjuvants-'Back to the Future'. Pharmaceutics 2023; 15:1884. [PMID: 37514070 PMCID: PMC10383759 DOI: 10.3390/pharmaceutics15071884] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Aluminum-based adjuvants will continue to be a key component of currently approved and next generation vaccines, including important combination vaccines. The widespread use of aluminum adjuvants is due to their excellent safety profile, which has been established through the use of hundreds of millions of doses in humans over many years. In addition, they are inexpensive, readily available, and are well known and generally accepted by regulatory agencies. Moreover, they offer a very flexible platform, to which many vaccine components can be adsorbed, enabling the preparation of liquid formulations, which typically have a long shelf life under refrigerated conditions. Nevertheless, despite their extensive use, they are perceived as relatively 'weak' vaccine adjuvants. Hence, there have been many attempts to improve their performance, which typically involves co-delivery of immune potentiators, including Toll-like receptor (TLR) agonists. This approach has allowed for the development of improved aluminum adjuvants for inclusion in licensed vaccines against HPV, HBV, and COVID-19, with others likely to follow. This review summarizes the various aluminum salts that are used in vaccines and highlights how they are prepared. We focus on the analytical challenges that remain to allowing the creation of well-characterized formulations, particularly those involving multiple antigens. In addition, we highlight how aluminum is being used to create the next generation of improved adjuvants through the adsorption and delivery of various TLR agonists.
Collapse
Affiliation(s)
- Donatello Laera
- Technical Research & Development, Drug Product, GSK, 53100 Siena, Italy
- Global Manufacturing Division, Corporate Industrial Analytics, Chiesi Pharmaceuticals, 43122 Parma, Italy
| | - Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA
| | | |
Collapse
|
16
|
Bricha S, Côté-Cyr M, Tremblay T, Nguyen PT, St-Louis P, Giguère D, Archambault D, Bourgault S. Synthetic Multicomponent Nanovaccines Based on the Molecular Co-assembly of β-Peptides Protect against Influenza A Virus. ACS Infect Dis 2023; 9:1232-1244. [PMID: 37200051 DOI: 10.1021/acsinfecdis.2c00610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Peptides with the ability to self-assemble into nanoparticles have emerged as an attractive strategy to design antigen delivery platforms for subunit vaccines. While toll-like receptor (TLR) agonists are promising immunostimulants, their use as soluble agents is limited by their rapid clearance and off-target inflammation. Herein, we harnessed molecular co-assembly to prepare multicomponent cross-β-sheet peptide nanofilaments exposing an antigenic epitope derived from the influenza A virus and a TLR agonist. The TLR7 agonist imiquimod and the TLR9 agonist CpG were respectively functionalized on the assemblies by means of an orthogonal pre- or post-assembly conjugation strategy. The nanofilaments were readily uptaken by dendritic cells, and the TLR agonists retained their activity. Multicomponent nanovaccines induced a robust epitope-specific immune response and completely protected immunized mice from a lethal influenza A virus inoculation. This versatile bottom-up approach is promising for the preparation of synthetic vaccines with customized magnitude and polarization of the immune responses.
Collapse
Affiliation(s)
- Salma Bricha
- Department of Chemistry, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
- Department of Biological Sciences, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Québec H3C 3P8, Canada
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Saint-Hyacinthe J2S 2M2, Canada
- The Center of Excellence in Research on Orphan Diseases─Fondation Courtois (CERMO-FC), Montréal H3C 3P8, Canada
| | - Mélanie Côté-Cyr
- Department of Chemistry, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Québec H3C 3P8, Canada
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Saint-Hyacinthe J2S 2M2, Canada
- The Center of Excellence in Research on Orphan Diseases─Fondation Courtois (CERMO-FC), Montréal H3C 3P8, Canada
| | - Thomas Tremblay
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Québec H3C 3P8, Canada
- Department of Chemistry, Université Laval, 1045 Av. De la Médecine, Québec City QC G1V 0A6, Canada
| | - Phuong Trang Nguyen
- Department of Chemistry, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Québec H3C 3P8, Canada
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Saint-Hyacinthe J2S 2M2, Canada
- The Center of Excellence in Research on Orphan Diseases─Fondation Courtois (CERMO-FC), Montréal H3C 3P8, Canada
| | - Philippe St-Louis
- Department of Biological Sciences, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Saint-Hyacinthe J2S 2M2, Canada
- The Center of Excellence in Research on Orphan Diseases─Fondation Courtois (CERMO-FC), Montréal H3C 3P8, Canada
| | - Denis Giguère
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Québec H3C 3P8, Canada
- Department of Chemistry, Université Laval, 1045 Av. De la Médecine, Québec City QC G1V 0A6, Canada
| | - Denis Archambault
- Department of Biological Sciences, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Saint-Hyacinthe J2S 2M2, Canada
- The Center of Excellence in Research on Orphan Diseases─Fondation Courtois (CERMO-FC), Montréal H3C 3P8, Canada
| | - Steve Bourgault
- Department of Chemistry, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Québec H3C 3P8, Canada
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Saint-Hyacinthe J2S 2M2, Canada
- The Center of Excellence in Research on Orphan Diseases─Fondation Courtois (CERMO-FC), Montréal H3C 3P8, Canada
| |
Collapse
|
17
|
Ananya A, Holden KG, Gu Z, Nettleton D, Mallapragada SK, Wannemuehler MJ, Kohut ML, Narasimhan B. "Just right" combinations of adjuvants with nanoscale carriers activate aged dendritic cells without overt inflammation. Immun Ageing 2023; 20:10. [PMID: 36895007 PMCID: PMC9996592 DOI: 10.1186/s12979-023-00332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/05/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND The loss in age-related immunological markers, known as immunosenescence, is caused by a combination of factors, one of which is inflammaging. Inflammaging is associated with the continuous basal generation of proinflammatory cytokines. Studies have demonstrated that inflammaging reduces the effectiveness of vaccines. Strategies aimed at modifying baseline inflammation are being developed to improve vaccination responses in older adults. Dendritic cells have attracted attention as an age-specific target because of their significance in immunization as antigen presenting cells that stimulate T lymphocytes. RESULTS In this study, bone marrow derived dendritic cells (BMDCs) were generated from aged mice and used to investigate the effects of combinations of adjuvants, including Toll-like receptor, NOD2, and STING agonists with polyanhydride nanoparticles and pentablock copolymer micelles under in vitro conditions. Cellular stimulation was characterized via expression of costimulatory molecules, T cell-activating cytokines, proinflammatory cytokines, and chemokines. Our results indicate that multiple TLR agonists substantially increase costimulatory molecule expression and cytokines associated with T cell activation and inflammation in culture. In contrast, NOD2 and STING agonists had only a moderate effect on BMDC activation, while nanoparticles and micelles had no effect by themselves. However, when nanoparticles and micelles were combined with a TLR9 agonist, a reduction in the production of proinflammatory cytokines was observed while maintaining increased production of T cell activating cytokines and enhancing cell surface marker expression. Additionally, combining nanoparticles and micelles with a STING agonist resulted in a synergistic impact on the upregulation of costimulatory molecules and an increase in cytokine secretion from BMDCs linked with T cell activation without excessive secretion of proinflammatory cytokines. CONCLUSIONS These studies provide new insights into rational adjuvant selection for vaccines for older adults. Combining appropriate adjuvants with nanoparticles and micelles may lead to balanced immune activation characterized by low inflammation, setting the stage for designing next generation vaccines that can induce mucosal immunity in older adults.
Collapse
Affiliation(s)
- Ananya Ananya
- Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Kaitlyn G Holden
- Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
| | - Zhiling Gu
- Department of Statistics, Iowa State University, Ames, IA, 50011, USA
| | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, IA, 50011, USA
| | - Surya K Mallapragada
- Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | | | - Marian L Kohut
- Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
- Department of Kinesiology, Iowa State University, Ames, IA, 50011, USA
| | - Balaji Narasimhan
- Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA.
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
18
|
Duong VT, Skwarczynski M, Toth I. Towards the development of subunit vaccines against tuberculosis: The key role of adjuvant. Tuberculosis (Edinb) 2023; 139:102307. [PMID: 36706503 DOI: 10.1016/j.tube.2023.102307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/22/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
According to the World Health Organization (WHO), tuberculosis (TB) is the leading cause of death triggered by a single infectious agent, worldwide. Bacillus Calmette-Guerin (BCG) is the only currently licensed anti-TB vaccine. However, other strategies, including modification of recombinant BCG vaccine, attenuated Mycobacterium tuberculosis (Mtb) mutant constructs, DNA and protein subunit vaccines, are under extensive investigation. As whole pathogen vaccines can trigger serious adverse reactions, most current strategies are focused on the development of safe anti-TB subunit vaccines; this is especially important given the rising TB infection rate in immunocompromised HIV patients. The whole Mtb genome has been mapped and major antigens have been identified; however, optimal vaccine delivery mode is still to be established. Isolated protein antigens are typically poorly immunogenic so adjuvants are required to induce strong and long-lasting immune responses. This article aims to review the developmental status of anti-TB subunit vaccine adjuvants.
Collapse
Affiliation(s)
- Viet Tram Duong
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
19
|
Holz E, Darwish M, Tesar DB, Shatz-Binder W. A Review of Protein- and Peptide-Based Chemical Conjugates: Past, Present, and Future. Pharmaceutics 2023; 15:600. [PMID: 36839922 PMCID: PMC9959917 DOI: 10.3390/pharmaceutics15020600] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Over the past few decades, the complexity of molecular entities being advanced for therapeutic purposes has continued to evolve. A main propellent fueling innovation is the perpetual mandate within the pharmaceutical industry to meet the needs of novel disease areas and/or delivery challenges. As new mechanisms of action are uncovered, and as our understanding of existing mechanisms grows, the properties that are required and/or leveraged to enable therapeutic development continue to expand. One rapidly evolving area of interest is that of chemically enhanced peptide and protein therapeutics. While a variety of conjugate molecules such as antibody-drug conjugates, peptide/protein-PEG conjugates, and protein conjugate vaccines are already well established, others, such as antibody-oligonucleotide conjugates and peptide/protein conjugates using non-PEG polymers, are newer to clinical development. This review will evaluate the current development landscape of protein-based chemical conjugates with special attention to considerations such as modulation of pharmacokinetics, safety/tolerability, and entry into difficult to access targets, as well as bioavailability. Furthermore, for the purpose of this review, the types of molecules discussed are divided into two categories: (1) therapeutics that are enhanced by protein or peptide bioconjugation, and (2) protein and peptide therapeutics that require chemical modifications. Overall, the breadth of novel peptide- or protein-based therapeutics moving through the pipeline each year supports a path forward for the pursuit of even more complex therapeutic strategies.
Collapse
Affiliation(s)
- Emily Holz
- Department of Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Martine Darwish
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Devin B. Tesar
- Department of Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Whitney Shatz-Binder
- Department of Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
20
|
Siena E, Schiavetti F, Borgogni E, Taccone M, Faenzi E, Brazzoli M, Aprea S, Bardelli M, Volpini G, Buricchi F, Sammicheli C, Tavarini S, Bechtold V, Blohmke CJ, Cardamone D, De Intinis C, Gonzalez-Lopez A, O'Hagan DT, Nuti S, Seidl C, Didierlaurent AM, Bertholet S, D'Oro U, Medini D, Finco O. Systems analysis of human responses to an aluminium hydroxide-adsorbed TLR7 agonist (AS37) adjuvanted vaccine reveals a dose-dependent and specific activation of the interferon-mediated antiviral response. Vaccine 2023; 41:724-734. [PMID: 36564274 DOI: 10.1016/j.vaccine.2022.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
The candidate Adjuvant System AS37 contains a synthetic toll-like receptor agonist (TLR7a) adsorbed to alum. In a phase I study (NCT02639351), healthy adults were randomised to receive one dose of licensed alum-adjuvanted meningococcal serogroup C (MenC-CRM197) conjugate vaccine (control) or MenC-CRM197 conjugate vaccine adjuvanted with AS37 (TLR7a dose 12.5, 25, 50 or 100 µg). A subset of 66 participants consented to characterisation of peripheral whole blood transcriptomic responses, systemic cytokine/chemokine responses and multiple myeloid and lymphoid cell responses as exploratory study endpoints. Blood samples were collected pre-vaccination, 6 and 24 h post-vaccination, and 3, 7, 28 and 180 days post-vaccination. The gene expression profile in whole blood showed an early, AS37-specific transcriptome response that peaked at 24 h, increased with TLR7a dose up to 50 µg and generally resolved within one week. Five clusters of differentially expressed genes were identified, including those involved in the interferon-mediated antiviral response. Evaluation of 30 cytokines/chemokines by multiplex assay showed an increased level of interferon-induced chemokine CXCL10 (IP-10) at 24 h and 3 days post-vaccination in the AS37-adjuvanted vaccine groups. Increases in activated plasmacytoid dendritic cells (pDC) and intermediate monocytes were detected 3 days post-vaccination in the AS37-adjuvanted vaccine groups. T follicular helper (Tfh) cells increased 7 days post-vaccination and were maintained at 28 days post-vaccination, particularly in the AS37-adjuvanted vaccine groups. Moreover, most of the subjects that received vaccine containing 25, 50 and 100 µg TLR7a showed an increased MenC-specific memory B cell responses versus baseline. These data show that the adsorption of TLR7a to alum promotes an immune signature consistent with TLR7 engagement, with up-regulation of interferon-inducible genes, cytokines and frequency of activated pDC, intermediate monocytes, MenC-specific memory B cells and Tfh cells. TLR7a 25-50 µg can be considered the optimal dose for AS37, particularly for the adjuvanted MenC-CRM197 conjugate vaccine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Carlo De Intinis
- GSK, Via Fiorentina 1, 53100 Siena, Italy; University of Turin, Via Verdi 8, 10124 Torino, Italy.
| | | | | | - Sandra Nuti
- GSK, 14200 Shady Grove Rd, Rockville MD, USA.
| | | | | | | | - Ugo D'Oro
- GSK, Via Fiorentina 1, 53100 Siena, Italy.
| | | | | |
Collapse
|
21
|
Qiao D, Li L, Liu L, Chen Y. Universal and Translational Nanoparticulate CpG Adjuvant. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50592-50600. [PMID: 36334044 DOI: 10.1021/acsami.2c15644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
CpG, an agonist of toll-like receptor 9 (TLR9), has become a novel adjuvant that substantially potentiates cellular immunity. However, this agonist may increase systemic toxicity by diffusing into blood after administration and is difficult to be internalized by immune cells to reach TLR9 located in endosomes as a result of the characteristics of negative charge of CpG. Here, we applied a scalable and controllable flash nanocomplexation technology to prepare nanoparticulate CpG adjuvant (npCpG), CpG encapsulated in a physical cross-linking network of protamine and TPP. The nanoadjuvant could redirect CpG into draining lymph nodes to reduce systemic diffusion to improve safety. Further, a combination of npCpG and influenza H1N1 hemagglutinin antigen showed excellent humoral and cellular immunity, evoking high levels of antibodies and cytokines and inducing a great expansion of splenocytes in immunized mice. Also, the nanoadjuvant combined with ovalbumin antigen led to a potent cytotoxic T-cell response, substantially inhibited tumor growth, and improved the survival rate of mice in a melanoma model. This study showed the universal performances of npCpG in infectious disease prevention and tumor immunotherapy to demonstrate the translational potential.
Collapse
Affiliation(s)
- Dongdong Qiao
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510275, People's Republic of China
- Department of Basic Medicine, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong 515041, People's Republic of China
| | - Liyan Li
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510275, People's Republic of China
| | - Lixin Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510275, People's Republic of China
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510275, People's Republic of China
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, People's Republic of China
| |
Collapse
|
22
|
Development of a TLR7/8 agonist adjuvant formulation to overcome early life hyporesponsiveness to DTaP vaccination. Sci Rep 2022; 12:16860. [PMID: 36258023 PMCID: PMC9579132 DOI: 10.1038/s41598-022-20346-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
Infection is the most common cause of mortality early in life, yet the broad potential of immunization is not fully realized in this vulnerable population. Most vaccines are administered during infancy and childhood, but in some cases the full benefit of vaccination is not realized in-part. New adjuvants are cardinal to further optimize current immunization approaches for early life. However, only a few classes of adjuvants are presently incorporated in vaccines approved for human use. Recent advances in the discovery and delivery of Toll-like receptor (TLR) agonist adjuvants have provided a new toolbox for vaccinologists. Prominent among these candidate adjuvants are synthetic small molecule TLR7/8 agonists. The development of an effective infant Bordetella pertussis vaccine is urgently required because of the resurgence of pertussis in many countries, contemporaneous to the switch from whole cell to acellular vaccines. In this context, TLR7/8 adjuvant based vaccine formulation strategies may be a promising tool to enhance and accelerate early life immunity by acellular B. pertussis vaccines. In the present study, we optimized (a) the formulation delivery system, (b) structure, and (c) immunologic activity of novel small molecule imidazoquinoline TLR7/8 adjuvants towards human infant leukocytes, including dendritic cells. Upon immunization of neonatal mice, this TLR7/8 adjuvant overcame neonatal hyporesponsiveness to acellular pertussis vaccination by driving a T helper (Th)1/Th17 biased T cell- and IgG2c-skewed humoral response to a licensed acellular vaccine (DTaP). This potent immunization strategy may represent a new paradigm for effective immunization against pertussis and other pathogens in early life.
Collapse
|
23
|
Chellappan DK, Bhandare RR, Shaik AB, Prasad K, Suhaimi NAA, Yap WS, Das A, Banerjee P, Ghosh N, Guith T, Das A, Balakrishnan S, Candasamy M, Mayuren J, Palaniveloo K, Gupta G, Singh SK, Dua K. Vaccine for Diabetes-Where Do We Stand? Int J Mol Sci 2022; 23:ijms23169470. [PMID: 36012735 PMCID: PMC9409121 DOI: 10.3390/ijms23169470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetes is an endocrinological disorder with a rapidly increasing number of patients globally. Over the last few years, the alarming status of diabetes has become a pivotal factor pertaining to morbidity and mortality among the youth as well as middle-aged people. Current developments in our understanding related to autoimmune responses leading to diabetes have developed a cause for concern in the prospective usage of immunomodulatory agents to prevent diabetes. The mechanism of action of vaccines varies greatly, such as removing autoreactive T cells and inhibiting the interactions between immune cells. Currently, most developed diabetes vaccines have been tested in animal models, while only a few human trials have been completed with positive outcomes. In this review, we investigate the undergoing clinical trial studies for the development of a prototype diabetes vaccine.
Collapse
Affiliation(s)
- Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
- Correspondence: (D.K.C.); (R.R.B.); Tel.: +60-12-636-1308 (D.K.C.); +971-6-705-6227 (R.R.B.)
| | - Richie R. Bhandare
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Ajman University, Al-Jruf, Ajman P.O. Box 346, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jruf, Ajman P.O. Box 346, United Arab Emirates
- Correspondence: (D.K.C.); (R.R.B.); Tel.: +60-12-636-1308 (D.K.C.); +971-6-705-6227 (R.R.B.)
| | - Afzal B. Shaik
- St. Mary’s College of Pharmacy, St. Mary’s Group of Institutions Guntur, Chebrolu, Guntur 522212, India
| | - Krishna Prasad
- Department of Clinical Sciences, College of Dentistry, Centre of Medical and Bio-Allied Health Science Research, Ajman University, Al-Jruf, Ajman P.O. Box 346, United Arab Emirates
| | | | - Wei Sheng Yap
- School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Arpita Das
- Department of Biotechnology, Adamas University, Kolkata 700126, India
| | - Pradipta Banerjee
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nandini Ghosh
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Tanner Guith
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Amitava Das
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Mayuren Candasamy
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Jayashree Mayuren
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Kishneth Palaniveloo
- C302, Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur 302017, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara 144411, India
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Kamal Dua
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
24
|
Yin W, Xuan D, Wang H, Zhou M, Deng B, Ma F, Lu Y, Zhang J. Biodegradable Imiquimod-Loaded Mesoporous Organosilica as a Nanocarrier and Adjuvant for Enhanced and Prolonged Immunity against Foot-and-Mouth Disease Virus in Mice. ACS APPLIED BIO MATERIALS 2022; 5:3095-3106. [PMID: 35679606 DOI: 10.1021/acsabm.2c00382] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Foot-and-mouth disease (FMD), a serious, fast-spreading, and virulent disease, has led to huge economic losses to people all over the world. Vaccines are the most effective way to control FMD. However, the weak immunogenicity of inactivated FMD virus (FMDV) requires the addition of adjuvants to enhance the immune effectiveness of the vaccines. Herein, we formulated and fabricated biodegradable dendritic mesoporous tetrasulfide-doped organosilica nanoparticles SOMSN with imiquimod complex (SOMSN-IMQ) and used it as a platform for FMD vaccine delivery and as an adjuvant. SOMSN-IMQ demonstrated excellent stability for 6 months when stored in PBS, while it could be completely degraded within 42 days in SBF at room temperature. Biosafety experiments such as cell toxicity, hemolysis, and histology indicated that the as-prepared SOMSN-IMQ showed nontoxicity and good biocompatibility. Furthermore, SOMSN-IMQ exhibited a maximum adsorption capacity of 1000 μg/mg for inactivated FMDV antigens. Our results showed that SOMSN-IMQ can be effectively engulfed by RAW264.7 cells in a dose-dependent manner. After immunization, SOMSN-IMQ@FMDV can elicit persistent higher antibody levels, higher IgG2a/IgG1 ratio, and cytokine expression, which indicated that SOMSN-IMQ@FMDV triggered superior humoral and cellular immune responses. Moreover, SOMSN-IMQ could provoke maturation and activation of dendritic cells in lymph nodes (LDCs) as well as the proliferation of lymphocytes in vivo. Thus, SOMSN-IMQ could promote effective and potent immunity and provide a promising adjuvant platform for FMDV vaccination with acceptable safety.
Collapse
Affiliation(s)
- Wenzhu Yin
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious and Zoonoses, Yangzhou 225009, P. R. China
| | - Dechun Xuan
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China.,School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Haiyan Wang
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China
| | - Mingxu Zhou
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China
| | - Bihua Deng
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China
| | - Fang Ma
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China
| | - Yu Lu
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China.,School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious and Zoonoses, Yangzhou 225009, P. R. China
| | - Jinqiu Zhang
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China.,School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious and Zoonoses, Yangzhou 225009, P. R. China
| |
Collapse
|
25
|
Facciolà A, Visalli G, Laganà A, Di Pietro A. An Overview of Vaccine Adjuvants: Current Evidence and Future Perspectives. Vaccines (Basel) 2022; 10:vaccines10050819. [PMID: 35632575 PMCID: PMC9147349 DOI: 10.3390/vaccines10050819] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023] Open
Abstract
Vaccinations are one of the most important preventive tools against infectious diseases. Over time, many different types of vaccines have been developed concerning the antigen component. Adjuvants are essential elements that increase the efficacy of vaccination practises through many different actions, especially acting as carriers, depots, and stimulators of immune responses. For many years, few adjuvants have been included in vaccines, with aluminium salts being the most commonly used adjuvant. However, recent research has focused its attention on many different new compounds with effective adjuvant properties and improved safety. Modern technologies such as nanotechnologies and molecular biology have forcefully entered the production processes of both antigen and adjuvant components, thereby improving vaccine efficacy. Microparticles, emulsions, and immune stimulators are currently in the spotlight for their huge potential in vaccine production. Although studies have reported some potential side effects of vaccine adjuvants such as the recently recognised ASIA syndrome, the huge worth of vaccines remains unquestionable. Indeed, the recent COVID-19 pandemic has highlighted the importance of vaccines, especially in regard to managing future potential pandemics. In this field, research into adjuvants could play a leading role in the production of increasingly effective vaccines.
Collapse
Affiliation(s)
- Alessio Facciolà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.L.); (A.D.P.)
- Correspondence:
| | - Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.L.); (A.D.P.)
| | - Antonio Laganà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.L.); (A.D.P.)
- Multi-Specialist Clinical Institute for Orthopaedic Trauma Care (COT), 98124 Messina, Italy
| | - Angela Di Pietro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.L.); (A.D.P.)
| |
Collapse
|
26
|
Lu R, Wang S, Jiang S, Li C, Wang Y, Li L, Wang Y, Ma G, Qiao H, Leng Z, Niu J, Tian Z, Wang B. Chrysin Enhances Anti-tumor Immunity Response through IL-12-STAT4 Signal Pathway in B16F10 Melanoma Mouse Model. Scand J Immunol 2022; 96:e13177. [PMID: 35484925 DOI: 10.1111/sji.13177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/29/2022]
Abstract
Chrysin (CHR) is a flavonoid with extensive pharmacological activity. The molecular formula of CHR is C15 H10 O4 . CHR is reported to have antioxidative, anti-tumor and anti-viral functions. To evaluate its potential function as a vaccine adjuvant, we prepared a melanoma vaccine using a soluble protein extract of B16F10 melanoma cells as antigen and CHR as an adjuvant. The melanoma model was developed after two immunisations, and it was discovered that combining B16F10 soluble protein antigen-mixed CHR vaccine could inhibit tumor growth in the mouse model, and the overall survival rate was higher than that of the B16F10 antigen vaccine alone. In vivo and in vitro experiments were conducted to determine whether CHR functioned as an adjuvant by activating antigen-presenting cells (APCs). We discovered that CHR activated APCs both in vivo and in vitro and may enhance Th1 cell function by activating the IL12-STAT4 signal pathway, thereby enhancing the anti-tumor response of cytotoxic T lymphocytes (CTL) in vivo. Next, to verify the critical role of CD8+ T cells in suppressing melanoma development, we transplanted CD8+ T cells from immunised mice to B16F10 tumor-bearing mice and discovered that the survival rate of tumor-bearing mice was significantly prolonged. In summary, our experimental results indicate that CHR can be used as a potential adjuvant to enhance antigen immunogenicity, inhibit B16F10 tumor growth in mice and improve tumor immune response.
Collapse
Affiliation(s)
- Ran Lu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Shuang Wang
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Shasha Jiang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Chenglin Li
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Yashuo Wang
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Ling Li
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Yunyang Wang
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Guixin Ma
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Hongye Qiao
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Zhe Leng
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Junyun Niu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Zibin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Bin Wang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
27
|
iNKT cell agonists as vaccine adjuvants to combat infectious diseases. Carbohydr Res 2022; 513:108527. [DOI: 10.1016/j.carres.2022.108527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 01/07/2023]
|
28
|
Stefanetti G, Borriello F, Richichi B, Zanoni I, Lay L. Immunobiology of Carbohydrates: Implications for Novel Vaccine and Adjuvant Design Against Infectious Diseases. Front Cell Infect Microbiol 2022; 11:808005. [PMID: 35118012 PMCID: PMC8803737 DOI: 10.3389/fcimb.2021.808005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/22/2021] [Indexed: 12/14/2022] Open
Abstract
Carbohydrates are ubiquitous molecules expressed on the surface of nearly all living cells, and their interaction with carbohydrate-binding proteins is critical to many immunobiological processes. Carbohydrates are utilized as antigens in many licensed vaccines against bacterial pathogens. More recently, they have also been considered as adjuvants. Interestingly, unlike other types of vaccines, adjuvants have improved immune response to carbohydrate-based vaccine in humans only in a few cases. Furthermore, despite the discovery of many new adjuvants in the last years, aluminum salts, when needed, remain the only authorized adjuvant for carbohydrate-based vaccines. In this review, we highlight historical and recent advances on the use of glycans either as vaccine antigens or adjuvants, and we review the use of currently available adjuvants to improve the efficacy of carbohydrate-based vaccines. A better understanding of the mechanism of carbohydrate interaction with innate and adaptive immune cells will benefit the design of a new generation of glycan-based vaccines and of immunomodulators to fight both longstanding and emerging diseases.
Collapse
Affiliation(s)
- Giuseppe Stefanetti
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
| | - Francesco Borriello
- Division of Immunology, Harvard Medical School and Boston Children’s Hospital, Boston, MA, United States
| | - Barbara Richichi
- Department of Chemistry “Ugo Schiff”, University of Florence, Florence, Italy
| | - Ivan Zanoni
- Division of Immunology, Division of Gastroenterology, Harvard Medical School and Boston Children’s Hospital, Boston, MA, United States
| | - Luigi Lay
- Department of Chemistry, University of Milan, Milan, Italy
| |
Collapse
|
29
|
Mekonnen D, Mengist HM, Jin T. SARS-CoV-2 subunit vaccine adjuvants and their signaling pathways. Expert Rev Vaccines 2022; 21:69-81. [PMID: 34633259 PMCID: PMC8567292 DOI: 10.1080/14760584.2021.1991794] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/07/2021] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Vaccines are the agreed upon weapon against the COVID-19 pandemic. This review discusses about COVID-19 subunit vaccines adjuvants and their signaling pathways, which could provide a glimpse into the selection of appropriate adjuvants for prospective vaccine development studies. AREAS COVERED In the introduction, a brief background about the SARS-CoV-2 pandemic, the vaccine development race and classes of vaccine adjuvants were provided. . The antigen, trial stage, and types of adjuvants were extracted from the included articles and thun assimilated. Finally, the pattern recognition receptors (PRRs), their classes, cognate adjuvants, and potential signaling pathways were comprehended. EXPERT OPINION Adjuvants are unsung heroes of subunit vaccines. The in silico studies are very vital in avoiding several costly trial errors and save much work times. The majority of the (pre)clinical studies are promising. It is encouraging that most of the selected adjuvants are novel. Much emphasis must be paid to the optimal paring of antigen-adjuvant-PRRs for obtaining the desired vaccine effect. A good subunit vaccine/adjuvant is one that has high efficacy, safety, dose sparing, and rapid seroconversion rate and broad spectrum of immune response. In the years to come, COVID-19 adjuvanted subunit vaccines are expected to have superior utility than any other vaccines for various reasons.
Collapse
Affiliation(s)
- Daniel Mekonnen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hylemariam Mihiretie Mengist
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Cas Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Cas Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
30
|
Silva M, Kato Y, Melo MB, Phung I, Freeman BL, Li Z, Roh K, Van Wijnbergen JW, Watkins H, Enemuo CA, Hartwell BL, Chang JYH, Xiao S, Rodrigues KA, Cirelli KM, Li N, Haupt S, Aung A, Cossette B, Abraham W, Kataria S, Bastidas R, Bhiman J, Linde C, Bloom NI, Groschel B, Georgeson E, Phelps N, Thomas A, Bals J, Carnathan DG, Lingwood D, Burton DR, Alter G, Padera TP, Belcher AM, Schief WR, Silvestri G, Ruprecht RM, Crotty S, Irvine DJ. A particulate saponin/TLR agonist vaccine adjuvant alters lymph flow and modulates adaptive immunity. Sci Immunol 2021; 6:eabf1152. [PMID: 34860581 DOI: 10.1126/sciimmunol.abf1152] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Murillo Silva
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yu Kato
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Mariane B Melo
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Ivy Phung
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.,Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Brian L Freeman
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Zhongming Li
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kangsan Roh
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, MGH Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jan W Van Wijnbergen
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, MGH Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hannah Watkins
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chiamaka A Enemuo
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.,Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Brittany L Hartwell
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jason Y H Chang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shuhao Xiao
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kristen A Rodrigues
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Harvard-MIT Health Sciences and Technology Program, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kimberly M Cirelli
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Na Li
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sonya Haupt
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.,Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Aereas Aung
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Benjamin Cossette
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wuhbet Abraham
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Swati Kataria
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Raiza Bastidas
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jinal Bhiman
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Caitlyn Linde
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Nathaniel I Bloom
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Bettina Groschel
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA.,IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Erik Georgeson
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA.,IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicole Phelps
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA.,IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ayush Thomas
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Julia Bals
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Diane G Carnathan
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.,Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Daniel Lingwood
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Dennis R Burton
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA.,Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Timothy P Padera
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, MGH Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Angela M Belcher
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - William R Schief
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA.,Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Guido Silvestri
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.,Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ruth M Ruprecht
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Shane Crotty
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.,Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
31
|
Kimani FW, Manna S, Moser B, Shen J, Nihesh N, Esser-Kahn AP. Improving the Adjuvanticity of Small Molecule Immune Potentiators Using Covalently Linked NF-κB Modulators. ACS Med Chem Lett 2021; 12:1441-1448. [PMID: 34527180 PMCID: PMC8436408 DOI: 10.1021/acsmedchemlett.1c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/20/2021] [Indexed: 11/29/2022] Open
Abstract
Small molecule immune potentiators (SMIPs) such as imidazoquinolinone derivatives that activate Toll-like receptor (TLR) 7/8 have immense potential as vaccine adjuvants and as antitumor agents. However, these molecules have high bioavailability that results in unacceptable levels of systemic inflammation due to adjuvant toxicity, thereby greatly limiting their use. To address this challenge, here we report the design and synthesis of novel imidazoquinolinone-NF-κB immunomodulator dimers. Employing in vitro assays, we screened a select library of synthesized dimers and selected viable candidates for further in vivo experiments. With ovalbumin as a model antigen, we vaccinated mice and demonstrated that these dimers reduce the systemic toxicity associated with SMIPs to baseline levels while simultaneously maintaining the adjuvanticity in a vaccine formulation. Additionally, we showed that select dimers improved efficacy in a CT26 mouse colon carcinoma tumor model while eliciting minimal adjuvant toxicity.
Collapse
Affiliation(s)
- Flora W. Kimani
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Saikat Manna
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Brittany Moser
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Jingjing Shen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Naorem Nihesh
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Aaron P. Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
32
|
Bhagchandani S, Johnson JA, Irvine DJ. Evolution of Toll-like receptor 7/8 agonist therapeutics and their delivery approaches: From antiviral formulations to vaccine adjuvants. Adv Drug Deliv Rev 2021; 175:113803. [PMID: 34058283 PMCID: PMC9003539 DOI: 10.1016/j.addr.2021.05.013] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/04/2021] [Accepted: 05/15/2021] [Indexed: 02/07/2023]
Abstract
Imidazoquinoline derivatives (IMDs) and related compounds function as synthetic agonists of Toll-like receptors 7 and 8 (TLR7/8) and one is FDA approved for topical antiviral and skin cancer treatments. Nevertheless, these innate immune system-activating drugs have potentially much broader therapeutic utility; they have been pursued as antitumor immunomodulatory agents and more recently as candidate vaccine adjuvants for cancer and infectious disease. The broad expression profiles of TLR7/8, poor pharmacokinetic properties of IMDs, and toxicities associated with systemic administration, however, are formidable barriers to successful clinical translation. Herein, we review IMD formulations that have advanced to the clinic and discuss issues related to biodistribution and toxicity that have hampered the further development of these compounds. Recent strategies aimed at enhancing safety and efficacy, particularly through the use of bioconjugates and nanoparticle formulations that alter pharmacokinetics, biodistribution, and cellular targeting, are described. Finally, key aspects of the biology of TLR7 signaling, such as TLR7 tolerance, that may need to be considered in the development of new IMD therapeutics are discussed.
Collapse
Affiliation(s)
- Sachin Bhagchandani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Jeremiah A Johnson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA.
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
33
|
De Vrieze J, Baptista AP, Nuhn L, Van Herck S, Deswarte K, Yu H, Lambrecht BN, De Geest BG. Lipid Nature and Alkyl Length Influence Lymph Node Accumulation of Lipid‐Polyethylene Glycol Amphiphiles. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jana De Vrieze
- Department of Pharmaceutics Ghent University Ottergemsesteenweg 460 Ghent 9000 Belgium
| | - Antonio P. Baptista
- Laboratory of Immunoregulation and Mucosal Immunology VIB‐UGhent Center for Inflammation Research Technologiepark‐Zwijnaarde 71 Ghent 9052 Belgium
- Department of Internal Medicine and Pediatrics Ghent University C. Heymanslaan 10 Ghent 9000 Belgium
| | - Lutz Nuhn
- Max Planck Institute for Polymer Research Ackermannweg 10 Mainz 55128 Germany
| | - Simon Van Herck
- Department of Pharmaceutics Ghent University Ottergemsesteenweg 460 Ghent 9000 Belgium
| | - Kim Deswarte
- Laboratory of Immunoregulation and Mucosal Immunology VIB‐UGhent Center for Inflammation Research Technologiepark‐Zwijnaarde 71 Ghent 9052 Belgium
- Department of Internal Medicine and Pediatrics Ghent University C. Heymanslaan 10 Ghent 9000 Belgium
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
| | - Bart N. Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology VIB‐UGhent Center for Inflammation Research Technologiepark‐Zwijnaarde 71 Ghent 9052 Belgium
- Department of Internal Medicine and Pediatrics Ghent University C. Heymanslaan 10 Ghent 9000 Belgium
- Department of Pulmonary Medicine Erasmus University Medical Center Dr. Molewaterplein 40 Rotterdam 3015 GD Netherlands
| | - Bruno G. De Geest
- Department of Pharmaceutics Ghent University Ottergemsesteenweg 460 Ghent 9000 Belgium
| |
Collapse
|
34
|
Pulendran B, S Arunachalam P, O'Hagan DT. Emerging concepts in the science of vaccine adjuvants. Nat Rev Drug Discov 2021; 20:454-475. [PMID: 33824489 PMCID: PMC8023785 DOI: 10.1038/s41573-021-00163-y] [Citation(s) in RCA: 689] [Impact Index Per Article: 172.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
Abstract
Adjuvants are vaccine components that enhance the magnitude, breadth and durability of the immune response. Following its introduction in the 1920s, alum remained the only adjuvant licensed for human use for the next 70 years. Since the 1990s, a further five adjuvants have been included in licensed vaccines, but the molecular mechanisms by which these adjuvants work remain only partially understood. However, a revolution in our understanding of the activation of the innate immune system through pattern recognition receptors (PRRs) is improving the mechanistic understanding of adjuvants, and recent conceptual advances highlight the notion that tissue damage, different forms of cell death, and metabolic and nutrient sensors can all modulate the innate immune system to activate adaptive immunity. Furthermore, recent advances in the use of systems biology to probe the molecular networks driving immune response to vaccines ('systems vaccinology') are revealing mechanistic insights and providing a new paradigm for the vaccine discovery and development process. Here, we review the 'known knowns' and 'known unknowns' of adjuvants, discuss these emerging concepts and highlight how our expanding knowledge about innate immunity and systems vaccinology are revitalizing the science and development of novel adjuvants for use in vaccines against COVID-19 and future pandemics.
Collapse
Affiliation(s)
- Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- Chemistry, Engineering & Medicine for Human Health, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| | - Prabhu S Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
35
|
Rational design of innate defense regulator peptides as tumor vaccine adjuvants. NPJ Vaccines 2021; 6:75. [PMID: 34016984 PMCID: PMC8138013 DOI: 10.1038/s41541-021-00334-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 04/06/2021] [Indexed: 02/05/2023] Open
Abstract
The development of adjuvants has been an empirical process. Efforts to develop a new design and evaluation system for novel adjuvants are not only desirable but also necessary. Moreover, composite adjuvants that contain two or more types of adjuvants to synergistically enhance the immune response are important for adjuvant and vaccine design. Innate defense regulator peptides (IDRs) are promising adjuvants for clinical immunotherapy because they exhibit multifaceted immunomodulatory capabilities. However, the rational design and discovery of IDRs that have improved immunomodulatory activities have been hampered by the lack of screening techniques and the great challenges in the identification of their interaction partners. Here, we describe a screening and evaluation system for IDR design. On the basis of in vitro screening, the optimized IDR DP7 recruited neutrophils, monocytes and macrophages to the site of infection. The adjuvant, comprising the DP7 and CpG oligonucleotide (CpG), induced chemokine/cytokine expression, enhanced the antigen uptake by dendritic cells and upregulated surface marker expression in dendritic cells. Vaccination with the NY-ESO-1 or OVA antigens combined with the adjuvant alum/CpG/DP7 strongly suppressed tumor growth in mice which was due to the improvement of antigen-specific humoral and cellular immunity. Regarding the mechanism of action, GPR35 may be the potential interaction partner of DP7. Our study revealed the potential application of the screening and evaluation system as a strategy for rationally designing effective IDRs or composite adjuvants and identifying their mechanism of action.
Collapse
|
36
|
Combined PET and whole-tissue imaging of lymphatic-targeting vaccines in non-human primates. Biomaterials 2021; 275:120868. [PMID: 34091299 DOI: 10.1016/j.biomaterials.2021.120868] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/23/2022]
Abstract
Antigen accumulation in lymph nodes (LNs) is critical for vaccine efficacy, but understanding of vaccine biodistribution in humans or large animals remains limited. Using the rhesus macaque model, we employed a combination of positron emission tomography (PET) and fluorescence imaging to characterize the whole-animal to tissue-level biodistribution of a subunit vaccine comprised of an HIV envelope trimer protein nanoparticle (trimer-NP) and lipid-conjugated CpG adjuvant (amph-CpG). Following immunization in the thigh, PET imaging revealed vaccine uptake primarily in inguinal and iliac LNs, reaching distances up to 17 cm away from the injection site. Within LNs, trimer-NPs exhibited striking accumulation on the periphery of follicular dendritic cell (FDC) networks in B cell follicles. Comparative imaging of soluble Env trimers (not presented on nanoparticles) in naïve or previously-immunized animals revealed diffuse deposition of trimer antigens in LNs following primary immunization, but concentration on FDCs in pre-immunized animals with high levels of trimer-specific IgG. These data demonstrate the capacity of nanoparticle or "albumin hitchhiking" technologies to concentrate vaccines in genitourinary tract-draining LNs, which may be valuable for promoting mucosal immunity.
Collapse
|
37
|
Hadidi N, Sharifnia Z, Eteghadi A, Shokrgozar MA, Mosaffa N. PEGylated single-walled carbon nanotubes as co-adjuvants enhance expression of maturation markers in monocyte-derived dendritic cells. Nanomedicine (Lond) 2021; 16:171-188. [PMID: 33560153 DOI: 10.2217/nnm-2020-0339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Aim: This study investigated the application of phospholipid-PEGylated single-walled carbon nanotubes (PL-PEG-SWCNTs) as a safe co-adjuvant for the commercial recombinant hepatitis B virus vaccine to enhance induction of monocyte-derived dendritic cells (MDDCs) differentiation and activation in vitro as an immune response initiator cell to prompt a long-term immune response after a single dose injection. Methods: Immature MDDCs were exposed to PL-PEG-SWCNTs alone and in combination with hepatitis B vaccine. Results & conclusion: Study results confirm the enhanced expression of maturation markers in human immature MDDCs after PL-PEG-SWCNT exposure. The results suggest that PL-PEG-SWCNT is an efficient co-adjuvant for the commercial recombinant hepatitis B virus vaccine to enhance dendritic cell response stimulation in vitro.
Collapse
Affiliation(s)
- Naghmeh Hadidi
- Department of Clinical Research & EM Microscope, Pasteur Institute of Iran (PII), Tehran 1316943551, Iran
| | - Zarin Sharifnia
- Department of Clinical Research & EM Microscope, Pasteur Institute of Iran (PII), Tehran 1316943551, Iran
| | - Atefeh Eteghadi
- Department of Clinical Research & EM Microscope, Pasteur Institute of Iran (PII), Tehran 1316943551, Iran
| | | | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 198396-3113, Iran
| |
Collapse
|
38
|
Aldosari BN, Alfagih IM, Almurshedi AS. Lipid Nanoparticles as Delivery Systems for RNA-Based Vaccines. Pharmaceutics 2021; 13:206. [PMID: 33540942 PMCID: PMC7913163 DOI: 10.3390/pharmaceutics13020206] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/30/2022] Open
Abstract
There has been increased interest in the development of RNA-based vaccines for protection against various infectious diseases and also for cancer immunotherapies. Rapid and cost-effective manufacturing methods in addition to potent immune responses observed in preclinical and clinical studies have made mRNA-based vaccines promising alternatives to conventional vaccine technologies. However, efficient delivery of these vaccines requires that the mRNA be protected against extracellular degradation. Lipid nanoparticles (LNPs) have been extensively studied as non-viral vectors for the delivery of mRNA to target cells because of their relatively easy and scalable manufacturing processes. This review highlights key advances in the development of LNPs and reviews the application of mRNA-based vaccines formulated in LNPs for use against infectious diseases and cancer.
Collapse
Affiliation(s)
| | - Iman M. Alfagih
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia; (B.N.A.); (A.S.A.)
| | | |
Collapse
|
39
|
Hernandez-Franco JF, Mosley YYC, Franco J, Ragland D, Yao Y, HogenEsch H. Effective and Safe Stimulation of Humoral and Cell-Mediated Immunity by Intradermal Immunization with a Cyclic Dinucleotide/Nanoparticle Combination Adjuvant. THE JOURNAL OF IMMUNOLOGY 2020; 206:700-711. [PMID: 33380496 DOI: 10.4049/jimmunol.2000703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/03/2020] [Indexed: 01/01/2023]
Abstract
Intradermal (ID) immunization is an attractive route of vaccination because it targets tissue rich in dendritic cells, has dose-sparing potential, and allows needle-free delivery. However, few adjuvants are effective, nonreactogenic, and compatible with needle-free delivery devices. In this study, we demonstrate that a combination adjuvant composed of cyclic-di-AMP (cdAMP) and the plant-derived nanoparticle adjuvant Nano-11 significantly enhanced the immune response to ID-injected vaccines in mice and pigs with minimal local reaction at the injection site. The cdAMP/Nano-11 combination adjuvant increased Ag uptake by lymph node-resident and migratory skin dendritic cell subpopulations, including Langerhans cells. ID immunization with cdAMP/Nano-11 expanded the population of germinal center B cells and follicular helper T cells in the draining lymph node and Ag-specific Th1 and Th17 cells in the spleen. It elicited an enhanced immune response with a significant increase of IgG1 and IgG2a responses in mice at a reduced dose compared with i.m. immunization. An increased IgG response was observed following needle-free ID immunization of pigs. Nano-11 and cdAMP demonstrated a strong synergistic interaction, as shown in the activation of mouse, human, and porcine APC, with increased expression of costimulatory molecules and secretion of TNF and IL-1β. The combination adjuvant induced robust activation of both NF-κB and IFN regulatory factor signaling pathways and the NLRP3 inflammasome. We conclude that the combination of Nano-11 and cdAMP is a promising adjuvant for ID delivery of vaccines that supports a balanced immune response.
Collapse
Affiliation(s)
| | - Yung-Yi C Mosley
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907
| | - Jackeline Franco
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907
| | - Darryl Ragland
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN 47907
| | - Yuan Yao
- Department of Food Science, Purdue University, West Lafayette, IN 47907; and
| | - Harm HogenEsch
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907; .,Purdue Institute for Immunology, Inflammation and Infectious Diseases (PI4D), West Lafayette, IN 47907
| |
Collapse
|
40
|
O'Hagan DT, Lodaya RN, Lofano G. The continued advance of vaccine adjuvants - 'we can work it out'. Semin Immunol 2020; 50:101426. [PMID: 33257234 DOI: 10.1016/j.smim.2020.101426] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/20/2020] [Accepted: 11/16/2020] [Indexed: 12/19/2022]
Abstract
In the last decade there have been some significant advances in vaccine adjuvants, particularly in relation to their inclusion in licensed products. This was proceeded by several decades in which such advances were very scarce, or entirely absent, but several novel adjuvants have now been included in licensed products, including in the US. These advances have relied upon several key technological insights that have emerged in this time period, which have finally allowed an in depth understanding of how adjuvants work. These advances include developments in systems biology approaches which allow the hypotheses first advanced in pre-clinical studies to be critically evaluated in human studies. This review highlights these recent advances, both in relation to the adjuvants themselves, but also the technologies that have enabled their successes. Moreover, we critically appraise what will come next, both in terms of new adjuvant molecules, and the technologies needed to allow them to succeed. We confidently predict that additional adjuvants will emerge in the coming years that will reach approval in licensed products, but that the components might differ significantly from those which are currently used. Gradually, the natural products that were originally used to build adjuvants, since they were readily available at the time of initial development, will come to be replaced by synthetic or biosynthetic materials, with more appealing attributes, including more reliable and robust supply, along with reduced heterogeneity. The recent advance in vaccine adjuvants is timely, given the need to create novel vaccines to deal with the COVID-19 pandemic. Although, we must ensure that the rigorous safety evaluations that allowed the current adjuvants to advance are not 'short-changed' in the push for new vaccines to meet the global challenge as quickly as possible, we must not jeopardize what we have achieved, by pushing less established technologies too quickly, if the data does not fully support it.
Collapse
Affiliation(s)
- Derek T O'Hagan
- GSK, Slaoui Center for Vaccines Research, Rockville, MD, 20850, USA
| | - Rushit N Lodaya
- GSK, Slaoui Center for Vaccines Research, Rockville, MD, 20850, USA
| | - Giuseppe Lofano
- GSK, Slaoui Center for Vaccines Research, Rockville, MD, 20850, USA.
| |
Collapse
|
41
|
Manna S, Maiti S, Shen J, Du W, Esser-Kahn AP. Pathogen-like Nanoassemblies of Covalently Linked TLR Agonists Enhance CD8 and NK Cell-Mediated Antitumor Immunity. ACS CENTRAL SCIENCE 2020; 6:2071-2078. [PMID: 33274283 PMCID: PMC7706081 DOI: 10.1021/acscentsci.0c01001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Indexed: 05/03/2023]
Abstract
Therapies based on Toll Like Receptor agonists (TLRa) are emerging as a promising modality for cancer immunotherapy to recruit antitumor T-cells in unresponsive immunologically "cold" tumors. Often, combinations of agonists are employed to synergistically enhance efficacy. However, low efficacy and severe toxicities deter these TLR-based therapeutics from further clinical applications. Studies have suggested that the rapid systemic diffusion of agonists to nontarget tissues is the primary cause. To address this challenge, we developed supramolecular nanotherapeutics of covalently linked TLRas for multivalent, synergistic interactions by drawing inspiration from immune recognition of pathogens. This new nanotherapeutic increased stimulation of key pro-inflammatory cytokines and remarkably enhanced CD8 and NK cell-mediated antitumor response while exhibiting ultralow off-target toxicity in an aggressive B16.F10 tumor model. Results from our studies thereby indicate that such supramolecular immune-agonist therapeutics may be further developed as a viable treatment modality for cancer immunotherapy.
Collapse
Affiliation(s)
- Saikat Manna
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Sampa Maiti
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Department
of Chemistry and Biochemistry, Science of Advanced Material, Central Michigan University, Mount Pleasant, Michigan 48858, United States
| | - Jingjing Shen
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Wenjun Du
- Department
of Chemistry and Biochemistry, Science of Advanced Material, Central Michigan University, Mount Pleasant, Michigan 48858, United States
- (W.D.)
| | - Aaron P. Esser-Kahn
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- (A.P.E-K.)
| |
Collapse
|
42
|
Auderset F, Belnoue E, Mastelic-Gavillet B, Lambert PH, Siegrist CA. A TLR7/8 Agonist-Including DOEPC-Based Cationic Liposome Formulation Mediates Its Adjuvanticity Through the Sustained Recruitment of Highly Activated Monocytes in a Type I IFN-Independent but NF-κB-Dependent Manner. Front Immunol 2020; 11:580974. [PMID: 33262759 PMCID: PMC7686571 DOI: 10.3389/fimmu.2020.580974] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022] Open
Abstract
Novel adjuvants, such as Toll-like receptors (TLRs) agonists, are needed for the development of new formulations able to circumvent limitations of current vaccines. Among TLRs, TLR7/8 agonists represent promising candidates, as they are well described to enhance antigen-specific antibody responses and skew immunity toward T helper (TH) 1 responses. We find here that the incorporation of the synthetic TLR7/8 ligand 3M-052 in a cationic DOEPC-based liposome formulation shifts immunity toward TH1 responses and elicits strong and long-lasting germinal center and follicular T helper cell responses in adult mice. This reflects the prolonged recruitment of innate cells toward the site of immunization and homing of activated antigen-loaded monocytes and monocyte-derived dendritic cells toward draining lymph nodes. We further show that this adjuvanticity is independent of type I IFN but NF-κB-dependent. Overall, our data identify TLR7/8 agonists incorporated in liposomes as promising and effective adjuvants to enhance TH1 and germinal center responses.
Collapse
Affiliation(s)
- Floriane Auderset
- World Health Organization Collaborating Center for Vaccine Immunology, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| | - Elodie Belnoue
- World Health Organization Collaborating Center for Vaccine Immunology, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| | - Beatris Mastelic-Gavillet
- World Health Organization Collaborating Center for Vaccine Immunology, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| | - Paul-Henri Lambert
- World Health Organization Collaborating Center for Vaccine Immunology, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| | - Claire-Anne Siegrist
- World Health Organization Collaborating Center for Vaccine Immunology, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| |
Collapse
|
43
|
Abstract
The rapid development of nanobiotechnology has enabled progress in therapeutic cancer vaccines. These vaccines stimulate the host innate immune response by tumor antigens followed by a cascading adaptive response against cancer. However, an improved antitumor immune response is still in high demand because of the unsatisfactory clinical performance of the vaccine in tumor inhibition and regression. To date, a complicated tumor immunosuppressive environment and suboptimal design are the main obstacles for therapeutic cancer vaccines. The optimization of tumor antigens, vaccine delivery pathways, and proper adjuvants for innate immune response initiation, along with reprogramming of the tumor immunosuppressive environment, is essential for therapeutic cancer vaccines in triggering an adequate antitumor immune response. In this review, we aim to review the challenges in and strategies for enhancing the efficacy of therapeutic vaccines. We start with the summary of the available tumor antigens and their properties and then the optimal strategies for vaccine delivery. Subsequently, the vaccine adjuvants focused on the intrinsic adjuvant properties of nanostructures are further discussed. Finally, we summarize the combination strategies with therapeutic cancer vaccines and discuss their positive impact in cancer immunity.
Collapse
Affiliation(s)
- Jie Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 1001190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Muhetaerjiang Mamuti
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 1001190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 1001190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
44
|
Pullulan-Coated Iron Oxide Nanoparticles for Blood-Stage Malaria Vaccine Delivery. Vaccines (Basel) 2020; 8:vaccines8040651. [PMID: 33153189 PMCID: PMC7711541 DOI: 10.3390/vaccines8040651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/19/2020] [Accepted: 10/29/2020] [Indexed: 12/23/2022] Open
Abstract
Vaccines against blood-stage malaria often aim to induce antibodies to neutralize parasite entry into red blood cells, interferon gamma (IFNγ) produced by T helper 1 (Th1) CD4+ T cells or interleukin 4 (IL-4) produced by T helper 2 (Th2) cells to provide B cell help. One vaccine delivery method for suitable putative malaria protein antigens is the use of nanoparticles as vaccine carriers. It has been previously shown that antigen conjugated to inorganic nanoparticles in the viral-particle size range (~40–60 nm) can induce protective antibodies and T cells against malaria antigens in a rodent malaria challenge model. Herein, it is shown that biodegradable pullulan-coated iron oxide nanoparticles (pIONPs) can be synthesized in this same size range. The pIONPs are non-toxic and do not induce conventional pro-inflammatory cytokines in vitro and in vivo. We show that murine blood-stage antigen MSP4/5 from Plasmodium yoelii could be chemically conjugated to pIONPs and the use of these conjugates as immunogens led to the induction of both specific antibodies and IFNγ CD4+ T cells reactive to MSP4/5 in mice, comparable to responses to MSP4/5 mixed with classical adjuvants (e.g., CpG or Alum) that preferentially induce Th1 or Th2 cells individually. These results suggest that biodegradable pIONPs warrant further exploration as carriers for developing blood-stage malaria vaccines.
Collapse
|
45
|
Chasaide CN, Mills KH. Next-Generation Pertussis Vaccines Based on the Induction of Protective T Cells in the Respiratory Tract. Vaccines (Basel) 2020; 8:E621. [PMID: 33096737 PMCID: PMC7711671 DOI: 10.3390/vaccines8040621] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
Immunization with current acellular pertussis (aP) vaccines protects against severe pertussis, but immunity wanes rapidly after vaccination and these vaccines do not prevent nasal colonization with Bordetella pertussis. Studies in mouse and baboon models have demonstrated that Th1 and Th17 responses are integral to protective immunity induced by previous infection with B. pertussis and immunization with whole cell pertussis (wP) vaccines. Mucosal Th17 cells, IL-17 and secretory IgA (sIgA) are particularly important in generating sustained sterilizing immunity in the nasal cavity. Current aP vaccines induce potent IgG and Th2-skewed T cell responses but are less effective at generating Th1 and Th17 responses and fail to prime respiratory tissue-resident memory T (TRM) cells, that maintain long-term immunity at mucosal sites. In contrast, a live attenuated pertussis vaccine, pertussis outer membrane vesicle (OMV) vaccines or aP vaccines formulated with novel adjuvants do induce cellular immune responses in the respiratory tract, especially when delivered by the intranasal route. An increased understanding of the mechanisms of sustained protective immunity, especially the role of respiratory TRM cells, will facilitate the development of next generation pertussis vaccines that not only protect against pertussis disease, but prevent nasal colonization and transmission of B. pertussis.
Collapse
Affiliation(s)
| | - Kingston H.G. Mills
- School of Biochemistry and Immunology, Trinity College Dublin, 2, D02 PN40 Dublin, Ireland;
| |
Collapse
|
46
|
Pereira B, Xu XN, Akbar AN. Targeting Inflammation and Immunosenescence to Improve Vaccine Responses in the Elderly. Front Immunol 2020; 11:583019. [PMID: 33178213 PMCID: PMC7592394 DOI: 10.3389/fimmu.2020.583019] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
One of the most appreciated consequences of immunosenescence is an impaired response to vaccines with advanced age. While most studies report impaired antibody responses in older adults as a correlate of vaccine efficacy, it is now widely appreciated that this may fail to identify important changes occurring in the immune system with age that may affect vaccine efficacy. The impact of immunosenescence on vaccination goes beyond the defects on antibody responses as T cell-mediated responses are reshaped during aging and certainly affect vaccination. Likewise, age-related changes in the innate immune system may have important consequences on antigen presentation and priming of adaptive immune responses. Importantly, a low-level chronic inflammatory status known as inflammaging has been shown to inhibit immune responses to vaccination and pharmacological strategies aiming at blocking baseline inflammation can be potentially used to boost vaccine responses. Yet current strategies aiming at improving immunogenicity in the elderly have mainly focused on the use of adjuvants to promote local inflammation. More research is needed to understand the role of inflammation in vaccine responses and to reconcile these seemingly paradoxical observations. Alternative approaches to improve vaccine responses in the elderly include the use of higher vaccine doses or alternative routes of vaccination showing only limited benefits. This review will explore novel targets and potential new strategies for enhancing vaccine responses in older adults, including the use of anti-inflammatory drugs and immunomodulators.
Collapse
Affiliation(s)
- Branca Pereira
- HIV/GUM Directorate, Chelsea and Westminster Hospital NHS Foundation Trust, London, United Kingdom.,Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Xiao-Ning Xu
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Arne N Akbar
- Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
47
|
GenÇ R, YakuboĞullari N, Nalbantsoy A, ÇÖven F, Bedİr E. Adjuvant potency of Astragaloside VII embedded cholesterol nanoparticles for H3N2 influenza vaccine. ACTA ACUST UNITED AC 2020; 44:304-314. [PMID: 33110368 PMCID: PMC7585159 DOI: 10.3906/biy-2003-49] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/23/2020] [Indexed: 11/12/2022]
Abstract
Adjuvants are substances that increase the immune response to a given antigen. In the development of novel vaccine adjuvants/systems, saponins are one of the most attractive molecules due to their altered immunomodulatory activities. In this study, we tried to develop PEG (polyethylene glycol)/cholesterol-based lipid nanoparticles (LNPs) to deliver the Astragaloside VII (AST-VII) and potentiate adjuvant properties of AST-VII for the influenza vaccine. In the formation of PEG/cholesterol/AST-VII-based LNPs (PEG300: Chol-AST-VII LNPs), 3 different primary solvents (acetone, ethanol, and chloroform) were evaluated, employing their effects on hydrodynamic particle size, distribution, surface chemistry, and colloidal stability. Prepared nanoparticles were simply admixtured with inactivated influenza antigen (H3N2) and applied to PMA (phorbol 12-myristate 13-acetate)-ionomycin treated human whole blood to evaluate their cytokine release profile. PEG300: Chol-AST-VII LNPs (80.2 ± 7.7 nm) were obtained using chloroform as a desolvation agent. Co-treatment of PMA-ionomycin with AST-VII and PEG300: Chol-AST-VII LNPs significantly increased the levels of IL-2 and IFN-g, compared to PMA-ionomycin alone. In the presence of H3N2, AST-VII was able to augment IL-17A, while PEG300: Chol-AST-VII LNPs stimulated the production of IFN-g. Hemolysis was only observed in PEG300: Chol-AST-VII LNPs (250 μg/mL) treatment. AST-VII and AST-VII-integrated LNPs could be used as efficacious adjuvants for an inactivated H3N2 vaccine in vitro, and cytokine response through Th1/Th17 route was reported.
Collapse
Affiliation(s)
- Rükan GenÇ
- Department of Chemical Engineering, Faculty of Engineering, Mersin Turkey
| | - Nilgün YakuboĞullari
- Department of Bioengineering, Faculty of Engineering, İzmir Institute of Technology, İzmir Turkey
| | - Ayşe Nalbantsoy
- Department of Bioengineering, Faculty of Engineering, Ege University, İzmir Turkey
| | - Fethiye ÇÖven
- Veterinary Control and Research Institute, İzmir Turkey
| | - Erdal Bedİr
- Department of Bioengineering, Faculty of Engineering, İzmir Institute of Technology, İzmir Turkey
| |
Collapse
|
48
|
Preparation, Supramolecular Aggregation and Immunological Activity of the Bona Fide Vaccine Adjuvant Sulfavant S. Mar Drugs 2020; 18:md18090451. [PMID: 32872423 PMCID: PMC7551793 DOI: 10.3390/md18090451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 12/22/2022] Open
Abstract
In aqueous conditions, amphiphilic bioactive molecules are able to form self-assembled colloidal structures modifying their biological activity. This behavior is generally neglected in preclinical studies, despite its impact on pharmacological development. In this regard, a significative example is represented by a new class of amphiphilic marine-inspired vaccine adjuvants, collectively named Sulfavants, based on the β-sulfoquinovosyl-diacylglyceride skeleton. The family includes the lead product Sulfavant A (1) and two epimers, Sulfavant R (2) and Sulfavant S (3), differing only for the stereochemistry at C-2 of glycerol. The three compounds showed a significant difference in immunological potency, presumably correlated with change of the aggregates in water. Here, a new synthesis of diastereopure 3 was achieved, and the study of the immunomodulatory behavior of mixtures of 2/3 proved that the bizarre in vitro response to 1–3 effectively depends on the supramolecular aggregation states, likely affecting the bioavailability of agonists that can effectively interact with the cellular targets. The evidence obtained with the mixture of pure Sulfavant R (2) and Sulfavant S (3) proves, for the first time, that supramolecular organization of a mixture of active epimers in aqueous solution can bias evaluation of their biological and pharmacological potential.
Collapse
|
49
|
Sun Q, Bai X, Sofias AM, van der Meel R, Ruiz-Hernandez E, Storm G, Hennink WE, De Geest B, Kiessling F, Yu HJ, Lammers T, Shi Y. Cancer nanomedicine meets immunotherapy: opportunities and challenges. Acta Pharmacol Sin 2020; 41:954-958. [PMID: 32555445 PMCID: PMC7470866 DOI: 10.1038/s41401-020-0448-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/17/2020] [Indexed: 01/08/2023] Open
Abstract
Cancer nanomedicines have shown promise in combination immunotherapy, thus far mostly preclinically but also already in clinical trials. Combining nanomedicines with immunotherapy aims to reinforce the cancer-immunity cycle, via potentiating key steps in the immune reaction cascade, namely antigen release, antigen processing, antigen presentation, and immune cell-mediated killing. Combination nano-immunotherapy can be realized via three targeting strategies, i.e., by targeting cancer cells, targeting the tumor immune microenvironment, and targeting the peripheral immune system. The clinical potential of nano-immunotherapy has recently been demonstrated in a phase III trial in which nano-albumin paclitaxel (Abraxane®) was combined with atezolizumab (Tecentriq®) for the treatment of patients suffering from advanced triple-negative breast cancer. In the present paper, besides strategies and initial (pre)clinical success stories, we also discuss several key challenges in nano-immunotherapy. Taken together, nanomedicines combined with immunotherapy are gaining significant attention, and it is anticipated that they will play an increasingly important role in clinical cancer therapy.
Collapse
Affiliation(s)
- Qingxue Sun
- Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Xiangyang Bai
- Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Alexandros Marios Sofias
- Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Roy van der Meel
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Bruno De Geest
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Fraunhofer MEVIS, Institute for Medical Image Computing, Aachen, Germany
| | - Hai-Jun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
- Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands.
| | - Yang Shi
- Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
50
|
Irvine DJ, Aung A, Silva M. Controlling timing and location in vaccines. Adv Drug Deliv Rev 2020; 158:91-115. [PMID: 32598970 PMCID: PMC7318960 DOI: 10.1016/j.addr.2020.06.019] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023]
Abstract
Vaccines are one of the most powerful technologies supporting public health. The adaptive immune response induced by immunization arises following appropriate activation and differentiation of T and B cells in lymph nodes. Among many parameters impacting the resulting immune response, the presence of antigen and inflammatory cues for an appropriate temporal duration within the lymph nodes, and further within appropriate subcompartments of the lymph nodes- the right timing and location- play a critical role in shaping cellular and humoral immunity. Here we review recent advances in our understanding of how vaccine kinetics and biodistribution impact adaptive immunity, and the underlying immunological mechanisms that govern these responses. We discuss emerging approaches to engineer these properties for future vaccines, with a focus on subunit vaccines.
Collapse
Affiliation(s)
- Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Aereas Aung
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Murillo Silva
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|