1
|
Xing Y, Hu Y, Wang H, Diao Y, Yue H. An ionic liquid-based delivery system of small interfering RNA targeting Bcl-2 for melanoma therapy. Biomater Sci 2025; 13:466-476. [PMID: 39611237 DOI: 10.1039/d4bm01159g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Melanoma, characterized by rapid tumour progression and a strong tendency to metastasize, poses significant challenges in clinical treatment. Given the vital role of B-cell lymphoma 2 (Bcl-2) protein overexpression in inhibiting apoptosis in tumour cells, the suppression of Bcl-2 has emerged as a promising anticancer therapy. Here, we have developed a straightforward and effective delivery system that combines small interfering RNA (siRNA) targeting Bcl-2 (siBcl-2) with ionic liquids (ILs) for treating melanoma. The unique properties of ILs including structural tunability, inherent charge, and chemical stability have garnered significant attention in the biomedical fields; however, their application in siRNA delivery remains nascent. Rather than the weak function of free siBcl-2, our delivery system (1-hexyl-3-methylimidazolium-siBcl-2, designated as C6-siBcl-2) demonstrated an outstanding capacity to improve the cellular uptake and lysosomal escape, resulting in robust apoptosis and cytotoxicity in melanoma cells. In addition to exhibiting superior gene silencing activity in vitro, such events were also evident in mice bearing melanoma tumours. In particular, this IL-based delivery system showed advantages in suppressing tumour growth, preventing metastasis, and enhancing the survival time of mice with melanoma tumours. Therefore, our study offered a novel and powerful nanoplatform that integrated ILs and RNA interference therapy, presenting new strategies for cancer treatment.
Collapse
Affiliation(s)
- Yuyuan Xing
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanhui Hu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hongyan Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanyan Diao
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, P. R. China
| | - Hua Yue
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
2
|
Agca S, Domaniku-Waraich A, Bilgic SN, Sucuoglu M, Dag M, Dogan SA, Kir S. Tumour-induced alterations in single-nucleus transcriptome of atrophying muscles indicate enhanced protein degradation and reduced oxidative metabolism. J Cachexia Sarcopenia Muscle 2024; 15:1898-1914. [PMID: 39001644 PMCID: PMC11446705 DOI: 10.1002/jcsm.13540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/07/2024] [Accepted: 06/17/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Tumour-induced skeletal muscle wasting in the context of cancer cachexia is a condition with profound implications for patient survival. The loss of muscle mass is a significant clinical obstacle and is linked to reduced tolerance to chemotherapy and increased frailty. Understanding the molecular mechanisms driving muscle atrophy is crucial for the design of new therapeutics. METHODS Lewis lung carcinoma tumours were utilized to induce cachexia and muscle atrophy in mice. Single-nucleus libraries of the tibialis anterior (TA) muscle from tumour-bearing mice and their non-tumour-bearing controls were constructed using 10X Genomics applications following the manufacturer's guidelines. RNA sequencing results were analysed with Cell Ranger software and the Seurat R package. Oxygen consumption of mitochondria isolated from TA muscle was measured using an Oroboros O2k-FluoRespirometer. Mouse primary myotubes were treated with a recombinant ectodysplasin A2 (EDA-A2) protein to activate EDA-A2 receptor (EDA2R) signalling and study changes in gene expression and oxygen consumption. RESULTS Tumour-bearing mice were sacrificed while exhibiting moderate cachexia. Average TA muscle weight was reduced by 11% (P = 0.0207) in these mice. A total of 12 335 nuclei, comprising 6422 nuclei from the control group and 5892 nuclei from atrophying muscles, were studied. The analysis of single-nucleus transcriptomes identified distinct myonuclear gene signatures and a shift towards type IIb myonuclei. Muscle atrophy-related genes, including Atrogin1, MuRF1 and Eda2r, were upregulated in these myonuclei, emphasizing their crucial roles in muscle wasting. Gene set enrichment analysis demonstrated that EDA2R activation and tumour inoculation led to similar expression patterns in muscle cells, including the stimulation of nuclear factor-kappa B, Janus kinase-signal transducer and activator of transcription and transforming growth factor-beta pathways and the suppression of myogenesis and oxidative phosphorylation. Muscle oxidative metabolism was suppressed by both tumours and EDA2R activation. CONCLUSIONS This study identified tumour-induced transcriptional changes in muscle tissue at single-nucleus resolution and highlighted the negative impact of tumours on oxidative metabolism. These findings contribute to a deeper understanding of the molecular mechanisms underlying muscle wasting.
Collapse
Affiliation(s)
- Samet Agca
- Department of Molecular Biology and Genetics, Koç University, Istanbul, 34450, Turkey
| | | | - Sevval Nur Bilgic
- Department of Molecular Biology and Genetics, Koç University, Istanbul, 34450, Turkey
| | - Melis Sucuoglu
- Department of Molecular Biology and Genetics, Koç University, Istanbul, 34450, Turkey
| | - Meric Dag
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Boğaziçi University, Istanbul, Turkey
| | - Sukru Anil Dogan
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Boğaziçi University, Istanbul, Turkey
| | - Serkan Kir
- Department of Molecular Biology and Genetics, Koç University, Istanbul, 34450, Turkey
| |
Collapse
|
3
|
Epstein SA, Doles JD, Dasgupta A. KLF10: a point of convergence in cancer cachexia. Curr Opin Support Palliat Care 2024; 18:120-125. [PMID: 39007915 PMCID: PMC11293965 DOI: 10.1097/spc.0000000000000711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
PURPOSE OF THE REVIEW Cancer-associated cachexia is a wasting syndrome entailing loss in body mass and a shortened life expectancy. There is currently no effective treatment to abrogate this syndrome, which leads to 20-30% of deaths in patients with cancer. While there have been advancements in defining signaling factors/pathways in cancer-induced muscle wasting, targeting the same in the clinic has not been as successful. Krüppel-like factor 10 (KLF10), a transcription factor implicated in muscle regulation, is regulated by the transforming growth factor-beta signaling pathway. This review proposes KLF10 as a potential convergence point of diverse signaling pathways involved in muscle wasting. RECENT FINDINGS KLF10 was discovered as a target of transforming growth factor-beta decades ago but more recently it has been shown that deletion of KLF10 rescues cancer-induced muscle wasting. Moreover, KLF10 has also been shown to bind key atrophy genes associated with muscle atrophy in vitro . SUMMARY There is an elevated need to explore targets in cachexia, which will successfully translate into the clinic. Investigating a convergence point downstream of multiple signaling pathways might hold promise in developing effective therapies for cachexia.
Collapse
Affiliation(s)
- Savannah A Epstein
- Department of Anatomy, Cell Biology and Physiology, Indiana School of Medicine, Indianapolis, Indiana, USA
| | | | | |
Collapse
|
4
|
Charrier D, Cerullo G, Carpenito R, Vindigni V, Bassetto F, Simoni L, Moro T, Paoli A. Metabolic and Biochemical Effects of Pyrroloquinoline Quinone (PQQ) on Inflammation and Mitochondrial Dysfunction: Potential Health Benefits in Obesity and Future Perspectives. Antioxidants (Basel) 2024; 13:1027. [PMID: 39334686 PMCID: PMC11429417 DOI: 10.3390/antiox13091027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Obesity is defined as a complex, systemic disease characterized by excessive and dysfunctional adipose tissue, leading to adverse health effects. This condition is marked by low-grade inflammation, oxidative stress, and metabolic abnormalities, including mitochondrial dysfunction. These factors promote energy dysregulation and impact body composition not only by increasing body fat but also by promoting skeletal muscle mass atrophy. The decline in muscle mass is associated with an increased risk of all-cause mortality in individuals with this disease. The European Food Safety Authority approved pyrroloquinoline quinone (PQQ), a natural compound, as a dietary supplement in 2018. This narrative review aims to provide a comprehensive overview of the potential role of PQQ, based on its anti-inflammatory and antioxidant properties, in addressing dysfunctional adipose tissue metabolism and related disorders.
Collapse
Affiliation(s)
- Davide Charrier
- Department of Biomedical Sciences, University of Padova, 35122 Padua, Italy; (D.C.); (L.S.); (T.M.); (A.P.)
| | - Giuseppe Cerullo
- Department of Biomedical Sciences, University of Padova, 35122 Padua, Italy; (D.C.); (L.S.); (T.M.); (A.P.)
| | - Roberta Carpenito
- Plastic and Reconstructive Surgery Unit, Department of Neurosciences, University of Padua, 35122 Padua, Italy (V.V.); (F.B.)
| | - Vincenzo Vindigni
- Plastic and Reconstructive Surgery Unit, Department of Neurosciences, University of Padua, 35122 Padua, Italy (V.V.); (F.B.)
| | - Franco Bassetto
- Plastic and Reconstructive Surgery Unit, Department of Neurosciences, University of Padua, 35122 Padua, Italy (V.V.); (F.B.)
| | - Luca Simoni
- Department of Biomedical Sciences, University of Padova, 35122 Padua, Italy; (D.C.); (L.S.); (T.M.); (A.P.)
| | - Tatiana Moro
- Department of Biomedical Sciences, University of Padova, 35122 Padua, Italy; (D.C.); (L.S.); (T.M.); (A.P.)
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padova, 35122 Padua, Italy; (D.C.); (L.S.); (T.M.); (A.P.)
- Research Center for High Performance Sport, UCAM Catholic University of Murcia, 30107 Murcia, Spain
| |
Collapse
|
5
|
Ogilvie LM, Coyle-Asbil B, Brunt KR, Petrik J, Simpson JA. Therapy-naïve malignancy causes cardiovascular disease: a state-of-the-art cardio-oncology perspective. Am J Physiol Heart Circ Physiol 2024; 326:H1515-H1537. [PMID: 38639740 DOI: 10.1152/ajpheart.00795.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Cardiovascular disease (CVD) and cancer are the leading causes of mortality worldwide. Although generally thought of as distinct diseases, the intersectional overlap between CVD and cancer is increasingly evident in both causal and mechanistic relationships. The field of cardio-oncology is largely focused on the cardiotoxic effects of cancer therapies (e.g., chemotherapy, radiation). Furthermore, the cumulative effects of cardiotoxic therapy exposure and the prevalence of CVD risk factors in patients with cancer lead to long-term morbidity and poor quality of life in this patient population, even when patients are cancer-free. Evidence from patients with cancer and animal models demonstrates that the presence of malignancy itself, independent of cardiotoxic therapy exposure or CVD risk factors, negatively impacts cardiac structure and function. As such, the primary focus of this review is the cardiac pathophysiological and molecular features of therapy-naïve cancer. We also summarize the strengths and limitations of preclinical cancer models for cardio-oncology research and discuss therapeutic strategies that have been tested experimentally for the treatment of cancer-induced cardiac atrophy and dysfunction. Finally, we explore an adjacent area of interest, called "reverse cardio-oncology," where the sequelae of heart failure augment cancer progression. Here, we emphasize the cross-disease communication between malignancy and the injured heart and discuss the importance of chronic low-grade inflammation and endocrine factors in the progression of both diseases.
Collapse
Affiliation(s)
- Leslie M Ogilvie
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Bridget Coyle-Asbil
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Keith R Brunt
- Department of Pharmacology, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada
- IMPART Investigator Team Canada, Saint John, New Brunswick, Canada
| | - Jim Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
- IMPART Investigator Team Canada, Saint John, New Brunswick, Canada
| |
Collapse
|
6
|
Hesketh SJ. Advancing cancer cachexia diagnosis with -omics technology and exercise as molecular medicine. SPORTS MEDICINE AND HEALTH SCIENCE 2024; 6:1-15. [PMID: 38463663 PMCID: PMC10918365 DOI: 10.1016/j.smhs.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 03/12/2024] Open
Abstract
Muscle atrophy exacerbates disease outcomes and increases mortality, whereas the preservation of skeletal muscle mass and function play pivotal roles in ensuring long-term health and overall quality-of-life. Muscle atrophy represents a significant clinical challenge, involving the continued loss of muscle mass and strength, which frequently accompany the development of numerous types of cancer. Cancer cachexia is a highly prevalent multifactorial syndrome, and although cachexia is one of the main causes of cancer-related deaths, there are still no approved management strategies for the disease. The etiology of this condition is based on the upregulation of systemic inflammation factors and catabolic stimuli, resulting in the inhibition of protein synthesis and enhancement of protein degradation. Numerous necessary cellular processes are disrupted by cachectic pathology, which mediate intracellular signalling pathways resulting in the net loss of muscle and organelles. However, the exact underpinning molecular mechanisms of how these changes are orchestrated are incompletely understood. Much work is still required, but structured exercise has the capacity to counteract numerous detrimental effects linked to cancer cachexia. Primarily through the stimulation of muscle protein synthesis, enhancement of mitochondrial function, and the release of myokines. As a result, muscle mass and strength increase, leading to improved mobility, and quality-of-life. This review summarises existing knowledge of the complex molecular networks that regulate cancer cachexia and exercise, highlighting the molecular interplay between the two for potential therapeutic intervention. Finally, the utility of mass spectrometry-based proteomics is considered as a way of establishing early diagnostic biomarkers of cachectic patients.
Collapse
|
7
|
Jaime D, Fish LA, Madigan LA, Xi C, Piccoli G, Ewing MD, Blaauw B, Fallon JR. The MuSK-BMP pathway maintains myofiber size in slow muscle through regulation of Akt-mTOR signaling. Skelet Muscle 2024; 14:1. [PMID: 38172960 PMCID: PMC10763067 DOI: 10.1186/s13395-023-00329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/19/2023] [Indexed: 01/05/2024] Open
Abstract
Myofiber size regulation is critical in health, disease, and aging. MuSK (muscle-specific kinase) is a BMP (bone morphogenetic protein) co-receptor that promotes and shapes BMP signaling. MuSK is expressed at all neuromuscular junctions and is also present extrasynaptically in the mouse soleus, whose predominantly oxidative fiber composition is akin to that of human muscle. To investigate the role of the MuSK-BMP pathway in vivo, we generated mice lacking the BMP-binding MuSK Ig3 domain. These ∆Ig3-MuSK mice are viable and fertile with innervation levels comparable to wild type. In 3-month-old mice, myofibers are smaller in the slow soleus, but not in the fast tibialis anterior (TA). Transcriptomic analysis revealed soleus-selective decreases in RNA metabolism and protein synthesis pathways as well as dysregulation of IGF1-Akt-mTOR pathway components. Biochemical analysis showed that Akt-mTOR signaling is reduced in soleus but not TA. We propose that the MuSK-BMP pathway acts extrasynaptically to maintain myofiber size in slow muscle by promoting protein synthetic pathways including IGF1-Akt-mTOR signaling. These results reveal a novel mechanism for regulating myofiber size in slow muscle and introduce the MuSK-BMP pathway as a target for promoting muscle growth and combatting atrophy.
Collapse
Grants
- R41 AG073144 NIA NIH HHS
- T32 MH020068 NIMH NIH HHS
- U01 NS064295, R41 AG073144, R21 NS112743, R21 AG073743, P30 GM103410, P30 RR031153, P20 RR018728, S10 RR02763, R25GM083270, 2T32AG041688, and T32 MH20068 NIH HHS
- P30 GM103410 NIGMS NIH HHS
- T32 AG041688 NIA NIH HHS
- P30 RR031153 NCRR NIH HHS
- U01 NS064295 NINDS NIH HHS
- R21 NS112743 NINDS NIH HHS
- P20 RR018728 NCRR NIH HHS
- R21 AG073743 NIA NIH HHS
- R25 GM083270 NIGMS NIH HHS
- National Institutes of Health
- Carney Institute for Brain Sciences
- ALS Finding a Cure
- AFM-Téléthon
Collapse
Affiliation(s)
- Diego Jaime
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Lauren A Fish
- Department of Neuroscience, Brown University, Providence, RI, 02912, USA
| | - Laura A Madigan
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Chengjie Xi
- Department of Neuroscience, Brown University, Providence, RI, 02912, USA
| | - Giorgia Piccoli
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Madison D Ewing
- Department of Neuroscience, Brown University, Providence, RI, 02912, USA
| | - Bert Blaauw
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Justin R Fallon
- Department of Neuroscience, Brown University, Providence, RI, 02912, USA.
- Carney Institute for Neuroscience, Brown University, Providence, RI, USA.
| |
Collapse
|
8
|
Mina E, Wyart E, Sartori R, Angelino E, Zaggia I, Rausch V, Maldotti M, Pagani A, Hsu MY, Friziero A, Sperti C, Menga A, Graziani A, Hirsch E, Oliviero S, Sandri M, Conti L, Kautz L, Silvestri L, Porporato PE. FK506 bypasses the effect of erythroferrone in cancer cachexia skeletal muscle atrophy. Cell Rep Med 2023; 4:101306. [PMID: 38052214 PMCID: PMC10772350 DOI: 10.1016/j.xcrm.2023.101306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/29/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023]
Abstract
Skeletal muscle atrophy is a hallmark of cachexia, a wasting condition typical of chronic pathologies, that still represents an unmet medical need. Bone morphogenetic protein (BMP)-Smad1/5/8 signaling alterations are emerging drivers of muscle catabolism, hence, characterizing these perturbations is pivotal to develop therapeutic approaches. We identified two promoters of "BMP resistance" in cancer cachexia, specifically the BMP scavenger erythroferrone (ERFE) and the intracellular inhibitor FKBP12. ERFE is upregulated in cachectic cancer patients' muscle biopsies and in murine cachexia models, where its expression is driven by STAT3. Moreover, the knock down of Erfe or Fkbp12 reduces muscle wasting in cachectic mice. To bypass the BMP resistance mediated by ERFE and release the brake on the signaling, we targeted FKBP12 with low-dose FK506. FK506 restores BMP-Smad1/5/8 signaling, rescuing myotube atrophy by inducing protein synthesis. In cachectic tumor-bearing mice, FK506 prevents muscle and body weight loss and protects from neuromuscular junction alteration, suggesting therapeutic potential for targeting the ERFE-FKBP12 axis.
Collapse
Affiliation(s)
- Erica Mina
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
| | - Elisabeth Wyart
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
| | - Roberta Sartori
- Department of Biomedical Sciences, University of Padova, Padova, Italy; VIMM: Veneto Institute of Molecular Medicine, Padova, Italy
| | - Elia Angelino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy; Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Ivan Zaggia
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
| | - Valentina Rausch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
| | - Mara Maldotti
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy; Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, 10060 Candiolo, Torino, Italy
| | - Alessia Pagani
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Myriam Y Hsu
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy; Division of Cell Fate Dynamics and Therapeutics, Department of Biosystems Science, Institute for Life and Medical Sciences (LiMe), Kyoto University, Kyoto, Japan
| | - Alberto Friziero
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy; General Surgery 1, Padova University Hospital, Padova, Italy
| | - Cosimo Sperti
- General Surgery 2, Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, Padova University Hospital, Padova, Italy
| | - Alessio Menga
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
| | - Andrea Graziani
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy; Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
| | - Salvatore Oliviero
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy; Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, 10060 Candiolo, Torino, Italy
| | - Marco Sandri
- Department of Biomedical Sciences, University of Padova, Padova, Italy; VIMM: Veneto Institute of Molecular Medicine, Padova, Italy
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
| | - Léon Kautz
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, University Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Laura Silvestri
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy; Vita Salute San Raffaele University, Milan, Italy
| | - Paolo E Porporato
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy.
| |
Collapse
|
9
|
Cao Y, Ai Y, Zhang X, Zhang J, Long X, Zhu Y, Wang L, Gu Q, Han H. Genome-wide epigenetic dynamics during postnatal skeletal muscle growth in Hu sheep. Commun Biol 2023; 6:1077. [PMID: 37872364 PMCID: PMC10593826 DOI: 10.1038/s42003-023-05439-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/10/2023] [Indexed: 10/25/2023] Open
Abstract
Hypertrophy and fiber transformation are two prominent features of postnatal skeletal muscle development. However, the role of epigenetic modifications is less understood. ATAC-seq, whole genome bisulfite sequencing, and RNA-seq were applied to investigate the epigenetic dynamics of muscle in Hu sheep at 3 days, 3 months, 6 months, and 12 months after birth. All 6865 differentially expressed genes were assigned into three distinct tendencies, highlighting the balanced protein synthesis, accumulated immune activities, and restrained cell division in postnatal development. We identified 3742 differentially accessible regions and 11799 differentially methylated regions that were associated with muscle-development-related pathways in certain stages, like D3-M6. Transcription factor network analysis, based on genomic loci with high chromatin accessibility and low methylation, showed that ARID5B, MYOG, and ENO1 were associated with muscle hypertrophy, while NR1D1, FADS1, ZFP36L2, and SLC25A1 were associated with muscle fiber transformation. Taken together, these results suggest that DNA methylation and chromatin accessibility contributed toward regulating the growth and fiber transformation of postnatal skeletal muscle in Hu sheep.
Collapse
Affiliation(s)
- Yutao Cao
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yue Ai
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaosheng Zhang
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin, China
| | - Jinlong Zhang
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin, China
| | - Xianlei Long
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Yaning Zhu
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Linli Wang
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qingyi Gu
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Hongbing Han
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China.
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China.
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China.
| |
Collapse
|
10
|
Guo M, Zhang J, Ma Y, Zhu Z, Zuo H, Yao J, Wu X, Wang D, Yu J, Meng M, Liu C, Zhang Y, Chen J, Lu J, Ding S, Hu C, Ma X, Xu L. AAV-Mediated nuclear localized PGC1α4 delivery in muscle ameliorates sarcopenia and aging-associated metabolic dysfunctions. Aging Cell 2023; 22:e13961. [PMID: 37584432 PMCID: PMC10577532 DOI: 10.1111/acel.13961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/17/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023] Open
Abstract
Sarcopenia is characterized of muscle mass loss and functional decline in elder individuals which severely affects human physical activity, metabolic homeostasis, and life quality. Physical exercise is considered effective in combating muscle atrophy and sarcopenia, yet it is not feasible to elders with limited mobility. PGC-1α4, a short isoform of PGC-1α, is strongly induced in muscle under resistance training, and promotes muscle hypertrophy. In the present study, we showed that the transcriptional levels and nuclear localization of PGC1α4 was reduced during aging, accompanied with muscle dystrophic morphology, and gene programs. We thus designed NLS-PGC1α4 and ectopically express it in myotubes to enhance PGC1α4 levels and maintain its location in nucleus. Indeed, NLS-PGC1α4 overexpression increased muscle sizes in myotubes. In addition, by utilizing AAV-NLS-PGC1α4 delivery into gastrocnemius muscle, we found that it could improve sarcopenia with grip strength, muscle weights, fiber size and molecular phenotypes, and alleviate age-associated adiposity, insulin resistance and hepatic steatosis, accompanied with altered gene signatures. Mechanistically, we demonstrated that NLS-PGC-1α4 improved insulin signaling and enhanced glucose uptake in skeletal muscle. Besides, via RNA-seq analysis, we identified myokines IGF1 and METRNL as potential targets of NLS-PGC-1α4 that possibly mediate the improvement of muscle and adipose tissue functionality and systemic energy metabolism in aged mice. Moreover, we found a negative correlation between PGC1α4 and age in human skeletal muscle. Together, our results revealed that NLS-PGC1α4 overexpression improves muscle physiology and systematic energy homeostasis during aging and suggested it as a potent therapeutic strategy against sarcopenia and aging-associated metabolic diseases.
Collapse
Affiliation(s)
- Mingwei Guo
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityShanghaiChina
| | - Jun Zhang
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityShanghaiChina
| | - Ying Ma
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityShanghaiChina
| | - Zhenzhong Zhu
- Department of OrthopedicsSixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hui Zuo
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityShanghaiChina
| | - Jing Yao
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityShanghaiChina
| | - Xia Wu
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityShanghaiChina
| | - Dongmei Wang
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityShanghaiChina
| | - Jian Yu
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityShanghaiChina
- Department of Endocrinology and MetabolismFengxian Central Hospital Affiliated to Southern Medical UniversityShanghaiChina
| | - Meiyao Meng
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityShanghaiChina
| | - Caizhi Liu
- Department of Endocrinology and MetabolismFengxian Central Hospital Affiliated to Southern Medical UniversityShanghaiChina
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes MellitusShanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yi Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes MellitusShanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Jiangrong Chen
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityShanghaiChina
| | - Jian Lu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and HealthEast China Normal UniversityShanghaiChina
| | - Shuzhe Ding
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and HealthEast China Normal UniversityShanghaiChina
| | - Cheng Hu
- Department of Endocrinology and MetabolismFengxian Central Hospital Affiliated to Southern Medical UniversityShanghaiChina
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes MellitusShanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityShanghaiChina
- Department of Endocrinology and MetabolismFengxian Central Hospital Affiliated to Southern Medical UniversityShanghaiChina
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life SciencesEast China Normal UniversityShanghaiChina
- Chongqing Key Laboratory of Precision OpticsChongqing Institute of East China Normal UniversityChongqingChina
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityShanghaiChina
| |
Collapse
|
11
|
Directo D, Lee SR. Cancer Cachexia: Underlying Mechanisms and Potential Therapeutic Interventions. Metabolites 2023; 13:1024. [PMID: 37755304 PMCID: PMC10538050 DOI: 10.3390/metabo13091024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Cancer cachexia, a multifactorial metabolic syndrome developed during malignant tumor growth, is characterized by an accelerated loss of body weight accompanied by the depletion of skeletal muscle mass. This debilitating condition is associated with muscle degradation, impaired immune function, reduced functional capacity, compromised quality of life, and diminished survival in cancer patients. Despite the lack of the known capability of fully reversing or ameliorating this condition, ongoing research is shedding light on promising preclinical approaches that target the disrupted mechanisms in the pathophysiology of cancer cachexia. This comprehensive review delves into critical aspects of cancer cachexia, including its underlying pathophysiological mechanisms, preclinical models for studying the progression of cancer cachexia, methods for clinical assessment, relevant biomarkers, and potential therapeutic strategies. These discussions collectively aim to contribute to the evolving foundation for effective, multifaceted counteractive strategies against this challenging condition.
Collapse
Affiliation(s)
| | - Sang-Rok Lee
- Department of Kinesiology, New Mexico State University, Las Cruces, NM 88003, USA;
| |
Collapse
|
12
|
Rodgers BD, Herring SK, Carias DR, Chen J, Rocha AG. Development and validation of a model gene therapy biodistribution assay for AVGN7 using digital droplet polymerase chain reaction. Mol Ther Methods Clin Dev 2023; 29:494-503. [PMID: 37273901 PMCID: PMC10236005 DOI: 10.1016/j.omtm.2023.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/08/2023] [Indexed: 06/06/2023]
Abstract
Biodistribution assays are integral to gene therapy commercialization and have traditionally used real-time qPCR. Droplet digital PCR (ddPCR), however, has distinct advantages including higher sensitivity and absolute quantification but is underused because of lacking regulatory guidance and meaningful examples in the literature. We report a fit-for-purpose model process to validate a good laboratory practice (GLP)-compliant ddPCR assay for AVGN7, a Smad7 gene therapeutic for muscle wasting. Duplexed primer/probe sets for Smad7 and mouse TATA-box binding protein were optimized using gBlock DNA over a dynamic range of 10-80,000 copies/reaction in 250 ng mouse gDNA. Linearized plasmid and mouse gDNA were used for validation, which determined precision, accuracy, ruggedness/robustness, selectivity, recovery, specificity, dilution linearity, and stability. Inter-run precision and accuracy met previously established criteria with bias between -5% and 15%, coefficient of variation (CV) less than 19%, and total error within 8%-35%. The limit of detection was 2.5 copies/reaction, linearity was confirmed at 40-80,000 copies/reaction, specificity was demonstrated by single droplet populations and assay stability was demonstrated for benchtop, refrigerated storage, and repeated freeze-thaw cycles. The procedural road map provided exceeds recently established standards. It is also relevant to many IND-enabling processes, as validated ddPCR assays can be used in biodistribution studies and with vector titering and manufacturing quality control.
Collapse
Affiliation(s)
| | | | - Dereck R Carias
- Smithers Pharmaceutical Development Services, Ewing, NJ 08628, USA
| | - Joyce Chen
- Smithers Pharmaceutical Development Services, Ewing, NJ 08628, USA
| | | |
Collapse
|
13
|
Martin A, Gallot YS, Freyssenet D. Molecular mechanisms of cancer cachexia-related loss of skeletal muscle mass: data analysis from preclinical and clinical studies. J Cachexia Sarcopenia Muscle 2023; 14:1150-1167. [PMID: 36864755 PMCID: PMC10235899 DOI: 10.1002/jcsm.13073] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 06/15/2022] [Accepted: 08/14/2022] [Indexed: 03/04/2023] Open
Abstract
Cancer cachexia is a systemic hypoanabolic and catabolic syndrome that diminishes the quality of life of cancer patients, decreases the efficiency of therapeutic strategies and ultimately contributes to decrease their lifespan. The depletion of skeletal muscle compartment, which represents the primary site of protein loss during cancer cachexia, is of very poor prognostic in cancer patients. In this review, we provide an extensive and comparative analysis of the molecular mechanisms involved in the regulation of skeletal muscle mass in human cachectic cancer patients and in animal models of cancer cachexia. We summarize data from preclinical and clinical studies investigating how the protein turnover is regulated in cachectic skeletal muscle and question to what extent the transcriptional and translational capacities, as well as the proteolytic capacity (ubiquitin-proteasome system, autophagy-lysosome system and calpains) of skeletal muscle are involved in the cachectic syndrome in human and animals. We also wonder how regulatory mechanisms such as insulin/IGF1-AKT-mTOR pathway, endoplasmic reticulum stress and unfolded protein response, oxidative stress, inflammation (cytokines and downstream IL1ß/TNFα-NF-κB and IL6-JAK-STAT3 pathways), TGF-ß signalling pathways (myostatin/activin A-SMAD2/3 and BMP-SMAD1/5/8 pathways), as well as glucocorticoid signalling, modulate skeletal muscle proteostasis in cachectic cancer patients and animals. Finally, a brief description of the effects of various therapeutic strategies in preclinical models is also provided. Differences in the molecular and biochemical responses of skeletal muscle to cancer cachexia between human and animals (protein turnover rates, regulation of ubiquitin-proteasome system and myostatin/activin A-SMAD2/3 signalling pathways) are highlighted and discussed. Identifying the various and intertwined mechanisms that are deregulated during cancer cachexia and understanding why they are decontrolled will provide therapeutic targets for the treatment of skeletal muscle wasting in cancer patients.
Collapse
Affiliation(s)
- Agnès Martin
- Laboratoire Interuniversitaire de Biologie de la Motricité EA 7424, Univ LyonUniversité Jean Monnet Saint‐EtienneSaint‐Priest‐en‐JarezFrance
| | - Yann S. Gallot
- LBEPS, Univ Evry, IRBA, Université Paris SaclayEvryFrance
| | - Damien Freyssenet
- Laboratoire Interuniversitaire de Biologie de la Motricité EA 7424, Univ LyonUniversité Jean Monnet Saint‐EtienneSaint‐Priest‐en‐JarezFrance
| |
Collapse
|
14
|
Poetsch MS, Palus S, Van Linthout S, von Haehling S, Doehner W, Coats AJS, Anker SD, Springer J. The small molecule ACM-001 improves cardiac function in a rat model of severe cancer cachexia. Eur J Heart Fail 2023; 25:673-686. [PMID: 36999379 DOI: 10.1002/ejhf.2840] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 02/23/2023] [Accepted: 03/26/2023] [Indexed: 04/01/2023] Open
Abstract
AIMS Cachexia, a common manifestation of malignant cancer, is not only associated with weight loss, but also with severe cardiac atrophy and impaired cardiac function. Here, we investigated the effects of ACM-001 (0.3 or 3 mg/kg/day) in comparison to carvedilol (3 or 30 mg/kg/day), metropolol (50 or 100 mg/kg/day), nebivolol (1 or 10 mg/kg/day) and tertatolol (0.5 or 5 mg/kg/day) on cardiac mass and function in a rat cancer cachexia model. METHODS AND RESULTS Young male Wistar Han rats were inoculated i.p. with 108 Yoshida hepatoma AH-130 cells and treated once daily with verum or placebo by gavage. Cardiac function (echocardiography), body weight and body composition (nuclear magnetic resonance scans) were assessed. The hearts of animals were euthanized on day 11 (placebo and 3 mg/kg/day ACM-001) were used for signalling studies. Beta-blockers had no effect on tumour burden. ACM-001 reduced body weight loss (placebo: -34 ± 2.4 g vs. 3 mg/kg/day ACM-001: -14.8 ± 8.4 g, p = 0.033). Lean mass wasting was attenuated (placebo: -16.5 ± 2.34 g vs. 3 mg/kg/day ACM-001: -2.4 ± 6.7 g, p = 0.037), while fat loss was similar (p = 0.4) on day 11. Placebo animals lost left ventricular mass (-101 ± 14 mg), which was prevented only by 3 mg/kg/day ACM-001 (7 ± 25 mg, p < 0.01 vs. placebo). ACM-001 improved the ejection fraction (EF) (ΔEF: placebo: -24.3 ± 2.6 vs. 3 mg/kg/day ACM-001: 0.1 ± 2.9, p < 0.001). Cardiac output was 50% lower in the placebo group (-41 ± 4 ml/min) compared to baseline, while 3 mg/kg/day ACM-001 preserved cardiac output (-5 ± 8 ml/min, p < 0.01). The molecular mechanisms involved inhibition of protein degradation and activation of protein synthesis pathways. CONCLUSION This study shows that 3 mg/kg/day ACM-001 restores the anabolic/catabolic balance in cardiac muscle leading to improved function. Moreover, not all beta-blockers have similar effects.
Collapse
Affiliation(s)
- Mareike S Poetsch
- Institute of Pharmacology and Toxicology, Faculty of Medicine, Carl Gustav Carus Technische Universität Dresden, Dresden, Germany
| | - Sandra Palus
- Berlin Institute of Health Center for Regenerative Therapies (BCRT) Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Sophie Van Linthout
- Berlin Institute of Health Center for Regenerative Therapies (BCRT) Charité Universitätsmedizin Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University Medicine Goettingen (UMG), Goettingen, Germany
| | - Wolfram Doehner
- Berlin Institute of Health Center for Regenerative Therapies (BCRT) Charité Universitätsmedizin Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Stefan D Anker
- Berlin Institute of Health Center for Regenerative Therapies (BCRT) Charité Universitätsmedizin Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jochen Springer
- Berlin Institute of Health Center for Regenerative Therapies (BCRT) Charité Universitätsmedizin Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
15
|
Roy A, Narkar VA, Kumar A. Emerging role of TAK1 in the regulation of skeletal muscle mass. Bioessays 2023; 45:e2300003. [PMID: 36789559 PMCID: PMC10023406 DOI: 10.1002/bies.202300003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/02/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023]
Abstract
Maintenance of skeletal muscle mass and strength throughout life is crucial for heathy living and longevity. Several signaling pathways have been implicated in the regulation of skeletal muscle mass in adults. TGF-β-activated kinase 1 (TAK1) is a key protein, which coordinates the activation of multiple signaling pathways. Recently, it was discovered that TAK1 is essential for the maintenance of skeletal muscle mass and myofiber hypertrophy following mechanical overload. Forced activation of TAK1 in skeletal muscle causes hypertrophy and attenuates denervation-induced muscle atrophy. TAK1-mediated signaling in skeletal muscle promotes protein synthesis, redox homeostasis, mitochondrial health, and integrity of neuromuscular junctions. In this article, we have reviewed the role and potential mechanisms through which TAK1 regulates skeletal muscle mass and growth. We have also proposed future areas of research that could be instrumental in exploring TAK1 as therapeutic target for improving muscle mass in various catabolic conditions and diseases.
Collapse
Affiliation(s)
- Anirban Roy
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, USA
| | - Vihang A. Narkar
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA
| | - Ashok Kumar
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, USA
| |
Collapse
|
16
|
Wang D, Li X, Jiao D, Cai Y, Qian L, Shen Y, Lu Y, Zhou Y, Fu B, Sun R, Tian Z, Zheng X, Wei H. LCN2 secreted by tissue-infiltrating neutrophils induces the ferroptosis and wasting of adipose and muscle tissues in lung cancer cachexia. J Hematol Oncol 2023; 16:30. [PMID: 36973755 PMCID: PMC10044814 DOI: 10.1186/s13045-023-01429-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Cancer cachexia is a deadly wasting syndrome that accompanies various diseases (including ~ 50% of cancers). Clinical studies have established that cachexia is not a nutritional deficiency and is linked to expression of certain proteins (e.g., interleukin-6 and C-reactive protein), but much remains unknown about this often fatal syndrome. METHODS First, cachexia was created in experimental mouse models of lung cancer. Samples of human lung cancer were used to identify the association between the serum lipocalin 2 (LCN2) level and cachexia progression. Then, mouse models with LCN2 blockade or LCN2 overexpression were used to ascertain the role of LCN2 upon ferroptosis and cachexia. Furthermore, antibody depletion of tissue-infiltrating neutrophils (TI-Neu), as well as myeloid-specific-knockout of Lcn2, were undertaken to reveal if LCN2 secreted by TI-Neu caused cachexia. Finally, chemical inhibition of ferroptosis was conducted to illustrate the effect of ferroptosis upon tissue wasting. RESULTS Protein expression of LCN2 was higher in the wasting adipose tissue and muscle tissues of experimental mouse models of lung cancer cachexia. Moreover, evaluation of lung cancer patients revealed an association between the serum LCN2 level and cachexia progression. Inhibition of LCN2 expression reduced cachexia symptoms significantly and inhibited tissue wasting in vivo. Strikingly, we discovered a significant increase in the number of TI-Neu in wasting tissues, and that these innate immune cells secreted high levels of LCN2. Antibody depletion of TI-Neu, as well as myeloid-specific-knockout of Lcn2, prevented ferroptosis and tissue wasting in experimental models of lung cancer cachexia. Chemical inhibition of ferroptosis alleviated tissue wasting significantly and also prolonged the survival of cachectic mice. CONCLUSIONS Our study provides new insights into how LCN2-induced ferroptosis functionally impacts tissue wasting. We identified LCN2 as a potential target in the treatment of cancer cachexia.
Collapse
Affiliation(s)
- Dong Wang
- Department of Geriatrics, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institue of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Xiaohui Li
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institue of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Defeng Jiao
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institue of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Ying Cai
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China
| | - Liting Qian
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China
| | - Yiqing Shen
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institue of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Yichen Lu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institue of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Yonggang Zhou
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institue of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Binqing Fu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institue of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Rui Sun
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institue of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Zhigang Tian
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institue of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Xiaohu Zheng
- Department of Geriatrics, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- Institue of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| | - Haiming Wei
- Department of Geriatrics, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- Institue of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| |
Collapse
|
17
|
MYTHO is a novel regulator of skeletal muscle autophagy and integrity. Nat Commun 2023; 14:1199. [PMID: 36864049 PMCID: PMC9981687 DOI: 10.1038/s41467-023-36817-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 02/17/2023] [Indexed: 03/04/2023] Open
Abstract
Autophagy is a critical process in the regulation of muscle mass, function and integrity. The molecular mechanisms regulating autophagy are complex and still partly understood. Here, we identify and characterize a novel FoxO-dependent gene, d230025d16rik which we named Mytho (Macroautophagy and YouTH Optimizer), as a regulator of autophagy and skeletal muscle integrity in vivo. Mytho is significantly up-regulated in various mouse models of skeletal muscle atrophy. Short term depletion of MYTHO in mice attenuates muscle atrophy caused by fasting, denervation, cancer cachexia and sepsis. While MYTHO overexpression is sufficient to trigger muscle atrophy, MYTHO knockdown results in a progressive increase in muscle mass associated with a sustained activation of the mTORC1 signaling pathway. Prolonged MYTHO knockdown is associated with severe myopathic features, including impaired autophagy, muscle weakness, myofiber degeneration, and extensive ultrastructural defects, such as accumulation of autophagic vacuoles and tubular aggregates. Inhibition of the mTORC1 signaling pathway in mice using rapamycin treatment attenuates the myopathic phenotype triggered by MYTHO knockdown. Skeletal muscles from human patients diagnosed with myotonic dystrophy type 1 (DM1) display reduced Mytho expression, activation of the mTORC1 signaling pathway and impaired autophagy, raising the possibility that low Mytho expression might contribute to the progression of the disease. We conclude that MYTHO is a key regulator of muscle autophagy and integrity.
Collapse
|
18
|
Jaime D, Fish LA, Madigan LA, Ewing MD, Fallon JR. The MuSK-BMP pathway maintains myofiber size in slow muscle through regulation of Akt- mTOR signaling. RESEARCH SQUARE 2023:rs.3.rs-2613527. [PMID: 36909467 PMCID: PMC10002845 DOI: 10.21203/rs.3.rs-2613527/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Myofiber size regulation is critical in health, disease, and aging. MuSK (muscle-specific kinase) is a BMP (bone morphogenetic protein) co-receptor that promotes and shapes BMP signaling. MuSK is expressed at all neuromuscular junctions and is also present extrasynaptically in the slow soleus muscle. To investigate the role of the MuSK-BMP pathway in vivo we generated mice lacking the BMP-binding MuSK Ig3 domain. These ΔIg3-MuSKmice are viable and fertile with innervation levels comparable to wild type. In 3-month-old mice myofibers are smaller in the slow soleus, but not in the fast tibialis anterior (TA). Transcriptomic analysis revealed soleus-selective decreases in RNA metabolism and protein synthesis pathways as well as dysregulation of IGF1-Akt-mTOR pathway components. Biochemical analysis showed that Akt-mTOR signaling is reduced in soleus but not TA. We propose that the MuSK-BMP pathway acts extrasynaptically to maintain myofiber size in slow muscle by promoting protein synthetic pathways including IGF1-Akt-mTOR signaling. These results reveal a novel mechanism for regulating myofiber size in slow muscle and introduce the MuSK-BMP pathway as a target for promoting muscle growth and combatting atrophy.
Collapse
|
19
|
Pei T, Zhu D, Yang S, Hu R, Wang F, Zhang J, Yan S, Ju L, He Z, Han Z, He J, Yan Y, Wang M, Xiao W, Ma Y. Bacteroides plebeius improves muscle wasting in chronic kidney disease by modulating the gut-renal muscle axis. J Cell Mol Med 2022; 26:6066-6078. [PMID: 36458537 PMCID: PMC9753468 DOI: 10.1111/jcmm.17626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 12/05/2022] Open
Abstract
Chronic kidney disease (CKD) affects approximately 10% of the global population. Muscle atrophy occurs in patients with almost all types of CKD, and the gut microbiome is closely related to protein consumption during chronic renal failure (CRF). This study investigated the effects of Bacteroides plebeius on protein energy consumption in rats with CKD, and our results suggest that Bacteroides plebeius may combat muscle atrophy through the Mystn/ActRIIB/SMAD2 pathway. A total of 5/6 Nx rats were used as a model of muscle wasting in CKD. The rats with muscle wasting were administered Bacteroides plebeius (2 × 108 cfu/0.2 ml) for 8 weeks. The results showed that Bacteroides plebeius administration significantly inhibited muscle wasting in CKD. High-throughput 16 S rRNA pyrosequencing revealed that supplementation with Bacteroides plebeius rescued disturbances in the gut microbiota. Bacteroides plebeius could also enhance the barrier function of the intestinal mucosa. Bacteroides plebeius may modulate the gut microbiome and reduce protein consumption by increasing the abundance of probiotics and reducing damage to the intestinal mucosal barrier. Our findings suggest that Bacteroides plebeius may combat muscle atrophy through the Mystn/ActRIIB/SMAD2 pathway.
Collapse
Affiliation(s)
- Tingting Pei
- Department of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Daoqi Zhu
- Department of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Sixia Yang
- Department of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Rong Hu
- Department of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Fujing Wang
- Department of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Jiaxing Zhang
- Department of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Shihua Yan
- Department of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Liliang Ju
- Department of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Zhuoen He
- Department of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Zhongxiao Han
- Department of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Jinyue He
- Department of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yangtian Yan
- Department of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Mingqing Wang
- Department of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Wei Xiao
- Department of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina,Key Laboratory of Glucolipid Metabolic Disorder, Ministry of EducationGuangdong Pharmaceutical UniversityGuangzhouGuangdongChina
| | - Yun Ma
- Department of PharmacyNanfang Hospital, Southern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
20
|
Cancer Cachexia: Signaling and Transcriptional Regulation of Muscle Catabolic Genes. Cancers (Basel) 2022; 14:cancers14174258. [PMID: 36077789 PMCID: PMC9454911 DOI: 10.3390/cancers14174258] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 02/08/2023] Open
Abstract
Simple Summary An uncontrollable loss in the skeletal muscle of cancer patients which leads to a significant reduction in body weight is clinically referred to as cancer cachexia (CC). While factors derived from the tumor environment which trigger various signaling pathways have been identified, not much progress has been made clinically to effectively prevent muscle loss. Deeper insights into the transcriptional and epigenetic regulation of muscle catabolic genes may shed light on key regulators which can be targeted to develop new therapeutic avenues. Abstract Cancer cachexia (CC) is a multifactorial syndrome characterized by a significant reduction in body weight that is predominantly caused by the loss of skeletal muscle and adipose tissue. Although the ill effects of cachexia are well known, the condition has been largely overlooked, in part due to its complex etiology, heterogeneity in mediators, and the involvement of diverse signaling pathways. For a long time, inflammatory factors have been the focus when developing therapeutics for the treatment of CC. Despite promising pre-clinical results, they have not yet advanced to the clinic. Developing new therapies requires a comprehensive understanding of how deregulated signaling leads to catabolic gene expression that underlies muscle wasting. Here, we review CC-associated signaling pathways and the transcriptional cascade triggered by inflammatory cytokines. Further, we highlight epigenetic factors involved in the transcription of catabolic genes in muscle wasting. We conclude with reflections on the directions that might pave the way for new therapeutic approaches to treat CC.
Collapse
|
21
|
Zhang L, Li M, Wang W, Yu W, Liu H, Wang K, Chang M, Deng C, Ji Y, Shen Y, Qi L, Sun H. Celecoxib alleviates denervation-induced muscle atrophy by suppressing inflammation and oxidative stress and improving microcirculation. Biochem Pharmacol 2022; 203:115186. [PMID: 35882305 DOI: 10.1016/j.bcp.2022.115186] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022]
Abstract
The molecular mechanism underlying denervation-induced muscle atrophy is complex and incompletely understood. Our previous results suggested that inflammation may play an important role in the early stages of muscle atrophy. Celecoxib is reported to exert anti-inflammatory effects. Here, we explored the effect of celecoxib on denervation-induced muscle atrophy and sought to identify the mechanism involved. We found that celecoxib treatment significantly increased the wet weight ratio and CSA of the tibialisanteriormuscle. Additionally, celecoxib downregulated the levels of COX-2, inflammatory factors and reduced inflammatory cell infiltration. GO and KEGG pathway enrichment analysis indicated that after 3 days of celecoxib treatment in vivo, the differentially expressed genes (DEGs) were mainly associated with the regulation of immune responses related to complement activation; after 14 days, the DEGs were mainly involved in the regulation of oxidative stress and inflammation-related responses. Celecoxib administration reduced the levels of ROS and oxidative stress-related proteins. Furthermore, we found that celecoxib treatment inhibited the denervation-induced up-regulation of the ubiquitin-proteasome and autophagy-lysosomal systems related proteins; decreased mitophagy in target muscles; and increased levels of MHC. Finally, celecoxib also attenuated microvascular damage in denervated skeletal muscle. Combined, our findings demonstrated that celecoxib inhibits inflammation and oxidative stress in denervated skeletal muscle, thereby suppressing mitophagy and proteolysis, improving blood flow in target muscles, and, ultimately, alleviating denervation-induced muscle atrophy. Our results confirmed that inflammatory responses play a key role in denervation-induced muscle atrophy and highlight a novel strategy for the prevention and treatment of this condition.
Collapse
Affiliation(s)
- Lilei Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province 226001, P. R. China
| | - Ming Li
- Department of Laboratory Medicine, Department of Endocrinology, Binhai County People's Hospital affiliated to Kangda College of Nanjing Medical University, Yancheng, Jiangsu Province 224500, P. R. China
| | - Wei Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province 226001, P. R. China; Department of Pathology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, P. R. China
| | - Weiran Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province 226001, P. R. China
| | - Hua Liu
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, 55 Ninghai Middle Road, Haian, Nantong, Jiangsu Province 226600, P. R. China
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province 226001, P. R. China
| | - Mengyuan Chang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province 226001, P. R. China
| | - Chunyan Deng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province 226001, P. R. China
| | - Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province 226001, P. R. China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province 226001, P. R. China.
| | - Lei Qi
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, P. R. China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province 226001, P. R. China.
| |
Collapse
|
22
|
Sulforaphane Enhanced Proliferation of Porcine Satellite Cells via Epigenetic Augmentation of SMAD7. Animals (Basel) 2022; 12:ani12111365. [PMID: 35681828 PMCID: PMC9179638 DOI: 10.3390/ani12111365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 12/10/2022] Open
Abstract
Satellite cells take an indispensable place in skeletal muscle regeneration, maintenance, and growth. However, only limited works have investigated effects of dietary compounds on the proliferation of porcine satellite cells (PSCs) and related mechanisms. Sulforaphane (SFN) at multiple levels was applied to PSCs. The PSCs’ viability and HDAC activity were measured with a WST-1 cell proliferation kit and Color-de-Lys® HDAC colorimetric activity assay kit. Gene expression and epigenetics modification were tested with qRT-PCR, Western blot, bisulfite sequencing, and ChIP-qPCR. This study found that SFN enhanced PSC proliferation and altered mRNA expression levels of myogenic regulatory factors. In addition, SFN inhibited histone deacetylase (HDAC) activity, disturbed mRNA levels of HDAC family members, and elevated acetylated histone H3 and H4 abundance in PSCs. Furthermore, both mRNA and protein levels of the Smad family member 7 (SMAD7) in PSCs were upregulated after SFN treatment. Finally, it was found that SFN increased the acetylation level of histone H4 in the SMAD7 promoter, decreased the expression of microRNAs, including ssc-miR-15a, ssc-miR-15b, ssc-miR-92a, ssc-miR-17-5p, ssc-miR-20a-5p, and ssc-miR-106a, targeting SMAD7, but did not impact on the SMAD7 promoter’s methylation status in PSCs. In summary, SFN was found to boost PSC proliferation and epigenetically increase porcine SMAD7 expression, which indicates a potential application of SFN in modulation of skeletal muscle growth.
Collapse
|
23
|
Graca FA, Rai M, Hunt LC, Stephan A, Wang YD, Gordon B, Wang R, Quarato G, Xu B, Fan Y, Labelle M, Demontis F. The myokine Fibcd1 is an endogenous determinant of myofiber size and mitigates cancer-induced myofiber atrophy. Nat Commun 2022; 13:2370. [PMID: 35501350 PMCID: PMC9061726 DOI: 10.1038/s41467-022-30120-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/14/2022] [Indexed: 12/19/2022] Open
Abstract
Decline in skeletal muscle cell size (myofiber atrophy) is a key feature of cancer-induced wasting (cachexia). In particular, atrophy of the diaphragm, the major muscle responsible for breathing, is an important determinant of cancer-associated mortality. However, therapeutic options are limited. Here, we have used Drosophila transgenic screening to identify muscle-secreted factors (myokines) that act as paracrine regulators of myofiber growth. Subsequent testing in mouse myotubes revealed that mouse Fibcd1 is an evolutionary-conserved myokine that preserves myofiber size via ERK signaling. Local administration of recombinant Fibcd1 (rFibcd1) ameliorates cachexia-induced myofiber atrophy in the diaphragm of mice bearing patient-derived melanoma xenografts and LLC carcinomas. Moreover, rFibcd1 impedes cachexia-associated transcriptional changes in the diaphragm. Fibcd1-induced signaling appears to be muscle selective because rFibcd1 increases ERK activity in myotubes but not in several cancer cell lines tested. We propose that rFibcd1 may help reinstate myofiber size in the diaphragm of patients with cancer cachexia.
Collapse
Affiliation(s)
- Flavia A Graca
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Mamta Rai
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Liam C Hunt
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Anna Stephan
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Yong-Dong Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Brittney Gordon
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, United States
- Xenograft Core, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Ruishan Wang
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Giovanni Quarato
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Beisi Xu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Myriam Labelle
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States.
- Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, United States.
| |
Collapse
|
24
|
Roy A, Kumar A. Supraphysiological activation of TAK1 promotes skeletal muscle growth and mitigates neurogenic atrophy. Nat Commun 2022; 13:2201. [PMID: 35459245 PMCID: PMC9033787 DOI: 10.1038/s41467-022-29752-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 03/30/2022] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle mass is regulated through coordinated activation of multiple signaling pathways. TAK1 signalosome has been found to be activated in various conditions of muscle atrophy and hypertrophy. However, the role and mechanisms by which TAK1 regulates skeletal muscle mass remain less understood. Here, we demonstrate that supraphysiological activation of TAK1 in skeletal muscle of adult mice stimulates translational machinery, protein synthesis, and myofiber growth. TAK1 causes phosphorylation of elongation initiation factor 4E (eIF4E) independent of mTOR. Inactivation of TAK1 disrupts neuromuscular junction morphology and causes deregulation of Smad signaling. Using genetic approaches, we demonstrate that TAK1 prevents excessive loss of muscle mass during denervation. TAK1 favors the nuclear translocation of Smad4 and cytoplasmic retention of Smad6. TAK1 is also required for the phosphorylation of eIF4E in denervated skeletal muscle. Collectively, our results demonstrate that TAK1 supports skeletal muscle growth and prevents neurogenic muscle atrophy in adult mice. TGF-β-activated kinase 1 (TAK1) is essential for the maintenance of skeletal muscle mass through incompletely understood mechanisms. Here the authors show that supraphysiological activation of TAK1 leads to muscle hypertrophy through the elongation initiation factor 4E (eIF4E) involved in protein synthesis, and prevents denervation-induced atrophy in mice.
Collapse
Affiliation(s)
- Anirban Roy
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, USA
| | - Ashok Kumar
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, USA.
| |
Collapse
|
25
|
Shi HT, Huang ZH, Xu TZ, Sun AJ, Ge JB. New diagnostic and therapeutic strategies for myocardial infarction via nanomaterials. EBioMedicine 2022; 78:103968. [PMID: 35367772 PMCID: PMC8983382 DOI: 10.1016/j.ebiom.2022.103968] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
Myocardial infarction is lethal to patients because of insufficient blood perfusion to vital organs. Several attempts have been made to improve its prognosis, among which nanomaterial research offers an opportunity to address this problem at the molecular level and has the potential to improve disease prevention, diagnosis, and treatment significantly. Up to now, nanomaterial-based technology has played a crucial role in broad novel diagnostic and therapeutic strategies for cardiac repair. This review summarizes various nanomaterial applications in myocardial infarction from multiple aspects, including high precision detection, pro-angiogenesis, regulating immune homeostasis, and miRNA and stem cell delivery vehicles. We also propose promising research hotspots that have not been reported much yet, such as conjugating pro-angiogenetic elements with nanoparticles to construct drug carriers, developing nanodrugs targeting other immune cells except for macrophages in the infarcted myocardium or the remote region. Though most of those strategies are preclinical and lack clinical trials, there is tremendous potential for their further applications in the future.
Collapse
Affiliation(s)
- Hong-Tao Shi
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China; Institute of Biomedical Science, Fudan University, Shanghai, China; Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China
| | - Zi-Hang Huang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China; Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Tian-Zhao Xu
- School of Life Science, Shanghai University, Shanghai, China
| | - Ai-Jun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China; Institute of Biomedical Science, Fudan University, Shanghai, China.
| | - Jun-Bo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China; Institute of Biomedical Science, Fudan University, Shanghai, China.
| |
Collapse
|
26
|
Review of Mechanisms and Treatment of Cancer-Induced Cardiac Cachexia. Cells 2022; 11:cells11061040. [PMID: 35326491 PMCID: PMC8947347 DOI: 10.3390/cells11061040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer cachexia is a multifactorial, paraneoplastic syndrome that impacts roughly half of all cancer patients. It can negatively impact patient quality of life and prognosis by causing physical impairment, reducing chemotherapy tolerance, and precluding them as surgical candidates. While there is substantial research on cancer-induced skeletal muscle cachexia, there are comparatively fewer studies and therapies regarding cardiac cachexia in the setting of malignancy. A literature review was performed using the PubMed database to identify original articles pertaining to cancer-induced cardiac cachexia, including its mechanisms and potential therapeutic modalities. Seventy studies were identified by two independent reviewers based on inclusion and exclusion criteria. While there are multiple studies addressing the pathophysiology of cardiac-induced cancer cachexia, there are no studies evaluating therapeutic options in the clinical setting. Many treatment modalities including nutrition, heart failure medication, cancer drugs, exercise, and gene therapy have been explored in in vitro and mice models with varying degrees of success. While these may be beneficial in cancer patients, further prospective studies specifically focusing on the assessment and treatment of the cardiac component of cachexia are needed.
Collapse
|
27
|
Rodgers BD, Ward CW. Myostatin/Activin Receptor Ligands in Muscle and the Development Status of Attenuating Drugs. Endocr Rev 2022; 43:329-365. [PMID: 34520530 PMCID: PMC8905337 DOI: 10.1210/endrev/bnab030] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 02/07/2023]
Abstract
Muscle wasting disease indications are among the most debilitating and often deadly noncommunicable disease states. As a comorbidity, muscle wasting is associated with different neuromuscular diseases and myopathies, cancer, heart failure, chronic pulmonary and renal diseases, peripheral neuropathies, inflammatory disorders, and, of course, musculoskeletal injuries. Current treatment strategies are relatively ineffective and can at best only limit the rate of muscle degeneration. This includes nutritional supplementation and appetite stimulants as well as immunosuppressants capable of exacerbating muscle loss. Arguably, the most promising treatments in development attempt to disrupt myostatin and activin receptor signaling because these circulating factors are potent inhibitors of muscle growth and regulators of muscle progenitor cell differentiation. Indeed, several studies demonstrated the clinical potential of "inhibiting the inhibitors," increasing muscle cell protein synthesis, decreasing degradation, enhancing mitochondrial biogenesis, and preserving muscle function. Such changes can prevent muscle wasting in various disease animal models yet many drugs targeting this pathway failed during clinical trials, some from serious treatment-related adverse events and off-target interactions. More often, however, failures resulted from the inability to improve muscle function despite preserving muscle mass. Drugs still in development include antibodies and gene therapeutics, all with different targets and thus, safety, efficacy, and proposed use profiles. Each is unique in design and, if successful, could revolutionize the treatment of both acute and chronic muscle wasting. They could also be used in combination with other developing therapeutics for related muscle pathologies or even metabolic diseases.
Collapse
Affiliation(s)
| | - Christopher W Ward
- Department of Orthopedics and Center for Biomedical Engineering and Technology (BioMET), University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
28
|
Yi X, Tao J, Qian Y, Feng F, Hu X, Xu T, Jin H, Ruan H, Zheng HF, Tong P. Morroniside ameliorates inflammatory skeletal muscle atrophy via inhibiting canonical and non-canonical NF-κB and regulating protein synthesis/degradation. Front Pharmacol 2022; 13:1056460. [PMID: 36618945 PMCID: PMC9816435 DOI: 10.3389/fphar.2022.1056460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
No drug options exist for skeletal muscle atrophy in clinical, which poses a huge socio-economic burden, making development on drug interventions a general wellbeing need. Patients with a variety of pathologic conditions associated with skeletal muscle atrophy have systemically elevated inflammatory factors. Morroniside, derived from medicinal herb Cornus officinalis, possesses anti-inflammatory effect. However, whether and how morroniside combat muscle atrophy remain unknown. Here, we identified crucial genetic associations between TNFα/NF-κB pathway and grip strength based on population using 377,807 European participants from the United Kingdom Biobank dataset. Denervation increased TNFα in atrophying skeletal muscles, which inhibited myotube formation in vitro. Notably, morroniside treatment rescued TNFα-induced myotube atrophy in vitro and impeded skeletal muscle atrophy in vivo, resulting in increased body/muscles weights, No. of satellite cells, size of type IIA, IIX and IIB myofibers, and percentage of type IIA myofibers in denervated mice. Mechanistically, in vitro and/or in vivo studies demonstrated that morroniside could not only inhibit canonical and non-canonical NF-κB, inflammatory mediators (IL6, IL-1b, CRP, NIRP3, PTGS2, TNFα), but also down-regulate protein degradation signals (Follistatin, Myostatin, ALK4/5/7, Smad7/3), ubiquitin-proteasome molecules (FoxO3, Atrogin-1, MuRF1), autophagy-lysosomal molecules (Bnip3, LC3A, and LC3B), while promoting protein synthesis signals (IGF-1/IGF-1R/IRS-1/PI3K/Akt, and BMP14/BMPR2/ALK2/3/Smad5/9). Moreover, morroniside had no obvious liver and kidney toxicity. This human genetic, cells and mice pathological evidence indicates that morroniside is an efficacious and safe inflammatory muscle atrophy treatment and suggests its translational potential on muscle wasting.
Collapse
Affiliation(s)
- Xiangjiao Yi
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Jianguo Tao
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yu Qian
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Feng Feng
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xueqin Hu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Taotao Xu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Hongting Jin
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Hongfeng Ruan
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
- *Correspondence: Peijian Tong, ; Hou-Feng Zheng, ; Hongfeng Ruan,
| | - Hou-Feng Zheng
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Peijian Tong, ; Hou-Feng Zheng, ; Hongfeng Ruan,
| | - Peijian Tong
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
- *Correspondence: Peijian Tong, ; Hou-Feng Zheng, ; Hongfeng Ruan,
| |
Collapse
|
29
|
Pou Casellas C, Jansen K, Rookmaaker MB, Clevers H, Verhaar MC, Masereeuw R. Regulation of Solute Carriers OCT2 and OAT1/3 in the Kidney: A Phylogenetic, Ontogenetic and Cell Dynamic Perspective. Physiol Rev 2021; 102:993-1024. [PMID: 34486394 DOI: 10.1152/physrev.00009.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the course of more than 500 million years, the kidneys have undergone a remarkable evolution from primitive nephric tubes to intricate filtration-reabsorption systems that maintain homeostasis and remove metabolic end products from the body. The evolutionarily conserved solute carriers Organic Cation Transporter 2 (OCT2), and Organic Anion Transporters 1 and 3 (OAT1/3) coordinate the active secretion of a broad range of endogenous and exogenous substances, many of which accumulate in the blood of patients with kidney failure despite dialysis. Harnessing OCT2 and OAT1/3 through functional preservation or regeneration could alleviate the progression of kidney disease. Additionally, it would improve current in vitro test models that lose their expression in culture. With this review, we explore OCT2 and OAT1/3 regulation using different perspectives: phylogenetic, ontogenetic and cell dynamic. Our aim is to identify possible molecular targets to both help prevent or compensate for the loss of transport activity in patients with kidney disease, and to enable endogenous OCT2 and OAT1/3 induction in vitro in order to develop better models for drug development.
Collapse
Affiliation(s)
- Carla Pou Casellas
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands.,Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Katja Jansen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Maarten B Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Hans Clevers
- Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
30
|
Sartori R, Hagg A, Zampieri S, Armani A, Winbanks CE, Viana LR, Haidar M, Watt KI, Qian H, Pezzini C, Zanganeh P, Turner BJ, Larsson A, Zanchettin G, Pierobon ES, Moletta L, Valmasoni M, Ponzoni A, Attar S, Da Dalt G, Sperti C, Kustermann M, Thomson RE, Larsson L, Loveland KL, Costelli P, Megighian A, Merigliano S, Penna F, Gregorevic P, Sandri M. Perturbed BMP signaling and denervation promote muscle wasting in cancer cachexia. Sci Transl Med 2021; 13:eaay9592. [PMID: 34349036 DOI: 10.1126/scitranslmed.aay9592] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/18/2021] [Indexed: 02/05/2023]
Abstract
Most patients with advanced solid cancers exhibit features of cachexia, a debilitating syndrome characterized by progressive loss of skeletal muscle mass and strength. Because the underlying mechanisms of this multifactorial syndrome are incompletely defined, effective therapeutics have yet to be developed. Here, we show that diminished bone morphogenetic protein (BMP) signaling is observed early in the onset of skeletal muscle wasting associated with cancer cachexia in mouse models and in patients with cancer. Cancer-mediated factors including Activin A and IL-6 trigger the expression of the BMP inhibitor Noggin in muscle, which blocks the actions of BMPs on muscle fibers and motor nerves, subsequently causing disruption of the neuromuscular junction (NMJ), denervation, and muscle wasting. Increasing BMP signaling in the muscles of tumor-bearing mice by gene delivery or pharmacological means can prevent muscle wasting and preserve measures of NMJ function. The data identify perturbed BMP signaling and denervation of muscle fibers as important pathogenic mechanisms of muscle wasting associated with tumor growth. Collectively, these findings present interventions that promote BMP-mediated signaling as an attractive strategy to counteract the loss of functional musculature in patients with cancer.
Collapse
Affiliation(s)
- Roberta Sartori
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Adam Hagg
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
- Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, VIC 3800, Australia
| | - Sandra Zampieri
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padova, 35128 Padua, Italy
- Myology Center, University of Padova, 35122 Padua, Italy
| | - Andrea Armani
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | | | - Laís R Viana
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Structural and Functional Biology, Biology Institute, University of Campinas, Campinas, São Paulo 13083-97, Brazil
| | - Mouna Haidar
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Kevin I Watt
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Hongwei Qian
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Camilla Pezzini
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Pardis Zanganeh
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Bradley J Turner
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Anna Larsson
- Theme Cancer, Karolinska University Hospital, Solna 171 76, Sweden
| | - Gianpietro Zanchettin
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padova, 35128 Padua, Italy
| | - Elisa S Pierobon
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padova, 35128 Padua, Italy
| | - Lucia Moletta
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padova, 35128 Padua, Italy
| | - Michele Valmasoni
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padova, 35128 Padua, Italy
| | - Alberto Ponzoni
- Department of Radiology, Padova General Hospital, 35121 Padova, Italy
| | - Shady Attar
- Department of Medicine, University Hospital of Padova, 35121 Padova, Italy
| | - Gianfranco Da Dalt
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padova, 35128 Padua, Italy
| | - Cosimo Sperti
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padova, 35128 Padua, Italy
| | - Monika Kustermann
- Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Rachel E Thomson
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Lars Larsson
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kate L Loveland
- Centre for Reproductive Health. Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Sciences, and Anatomy and Developmental Biology, Monash University, VIC 3800, Australia
| | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy
| | - Aram Megighian
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Stefano Merigliano
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padova, 35128 Padua, Italy
| | - Fabio Penna
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy
| | - Paul Gregorevic
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia.
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Biochemistry and Molecular Biology, Monash University, VIC 3800, Australia
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Marco Sandri
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy.
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Myology Center, University of Padova, 35122 Padua, Italy
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
31
|
Screening for gene doping transgenes in horses via the use of massively parallel sequencing. Gene Ther 2021; 29:236-246. [PMID: 34276046 DOI: 10.1038/s41434-021-00279-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/26/2022]
Abstract
Throughout the history of horse racing, doping techniques to suppress or enhance performance have expanded to match the technology available. The next frontier in doping, both in the equine and human sports areas, is predicted to be genetic manipulation; either by prohibited use of genome editing, or gene therapy via transgenes. By using massively-parallel sequencing via a two-step PCR method we can screen for multiple doping targets at once in pooled primer sets. This method has the advantages of high scalability through combinational indexing, and the use of reference standards with altered sequences as controls. Custom software produces transgene-specific amplicons from any Ensembl-annotated genome to facilitate rapid assay design. Additional scripts batch-process FASTQ data from experiments, automatically quality-filtering sequences and assigning hits based on discriminatory motifs. We report here our experiences in establishing the workflow with an initial 31 transgene and vector feature targets. To evaluate the sensitivity of parallel sequencing in a real-world setting, we performed an intramuscular (IM) administration of a control rAAV vector into two horses and compared the detection sensitivity between parallel sequencing and real-time qPCR. Vector was detected by all assays on both methods up to 79 h post-administration, becoming sporadic after 96 h.
Collapse
|
32
|
Martin A, Freyssenet D. Phenotypic features of cancer cachexia-related loss of skeletal muscle mass and function: lessons from human and animal studies. J Cachexia Sarcopenia Muscle 2021; 12:252-273. [PMID: 33783983 PMCID: PMC8061402 DOI: 10.1002/jcsm.12678] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer cachexia is a complex multi-organ catabolic syndrome that reduces mobility, increases fatigue, decreases the efficiency of therapeutic strategies, diminishes the quality of life, and increases the mortality of cancer patients. This review provides an exhaustive and comprehensive analysis of cancer cachexia-related phenotypic changes in skeletal muscle at both the cellular and subcellular levels in human cancer patients, as well as in animal models of cancer cachexia. Cancer cachexia is characterized by a major decrease in skeletal muscle mass in human and animals that depends on the severity of the disease/model and the localization of the tumour. It affects both type 1 and type 2 muscle fibres, even if some animal studies suggest that type 2 muscle fibres would be more prone to atrophy. Animal studies indicate an impairment in mitochondrial oxidative metabolism resulting from a decrease in mitochondrial content, an alteration in mitochondria morphology, and a reduction in mitochondrial metabolic fluxes. Immuno-histological analyses in human and animal models also suggest that a faulty mechanism of skeletal muscle repair would contribute to muscle mass loss. An increase in collagen deposit, an accumulation of fat depot outside and inside the muscle fibre, and a disrupted contractile machinery structure are also phenotypic features that have been consistently reported in cachectic skeletal muscle. Muscle function is also profoundly altered during cancer cachexia with a strong reduction in skeletal muscle force. Even though the loss of skeletal muscle mass largely contributes to the loss of muscle function, other factors such as muscle-nerve interaction and calcium handling are probably involved in the decrease in muscle force. Longitudinal analyses of skeletal muscle mass by imaging technics and skeletal muscle force in cancer patients, but also in animal models of cancer cachexia, are necessary to determine the respective kinetics and functional involvements of these factors. Our analysis also emphasizes that measuring skeletal muscle force through standardized tests could provide a simple and robust mean to early diagnose cachexia in cancer patients. That would be of great benefit to cancer patient's quality of life and health care systems.
Collapse
Affiliation(s)
- Agnès Martin
- Inter‐university Laboratory of Human Movement BiologyUniversité de Lyon, University Jean Monnet Saint‐EtienneSaint‐ÉtienneFrance
| | - Damien Freyssenet
- Inter‐university Laboratory of Human Movement BiologyUniversité de Lyon, University Jean Monnet Saint‐EtienneSaint‐ÉtienneFrance
| |
Collapse
|
33
|
Sartori R, Romanello V, Sandri M. Mechanisms of muscle atrophy and hypertrophy: implications in health and disease. Nat Commun 2021; 12:330. [PMID: 33436614 PMCID: PMC7803748 DOI: 10.1038/s41467-020-20123-1] [Citation(s) in RCA: 452] [Impact Index Per Article: 113.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle is the protein reservoir of our body and an important regulator of glucose and lipid homeostasis. Consequently, the growth or the loss of muscle mass can influence general metabolism, locomotion, eating and respiration. Therefore, it is not surprising that excessive muscle loss is a bad prognostic index of a variety of diseases ranging from cancer, organ failure, infections and unhealthy ageing. Muscle function is influenced by different quality systems that regulate the function of contractile proteins and organelles. These systems are controlled by transcriptional dependent programs that adapt muscle cells to environmental and nutritional clues. Mechanical, oxidative, nutritional and energy stresses, as well as growth factors or cytokines modulate signaling pathways that, ultimately, converge on protein and organelle turnover. Novel insights that control and orchestrate such complex network are continuously emerging and will be summarized in this review. Understanding the mechanisms that control muscle mass will provide therapeutic targets for the treatment of muscle loss in inherited and non-hereditary diseases and for the improvement of the quality of life during ageing. Loss of muscle mass is associated with ageing and with a number of diseases such as cancer. Here, the authors review the signaling pathways that modulate protein synthesis and degradation and gain or loss of muscle mass, and discuss therapeutic implications and future directions for the field.
Collapse
Affiliation(s)
- Roberta Sartori
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/b, 35121, Padova, Italy.,Veneto Institute of Molecular Medicine, via Orus 2, 35129, Padova, Italy
| | - Vanina Romanello
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/b, 35121, Padova, Italy. .,Veneto Institute of Molecular Medicine, via Orus 2, 35129, Padova, Italy.
| | - Marco Sandri
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/b, 35121, Padova, Italy. .,Veneto Institute of Molecular Medicine, via Orus 2, 35129, Padova, Italy. .,Myology Center, University of Padova, via Ugo Bassi 58/b, 35121, Padova, Italy. .,Department of Medicine, McGill University, Montreal, Canada.
| |
Collapse
|
34
|
Gorza L, Sorge M, Seclì L, Brancaccio M. Master Regulators of Muscle Atrophy: Role of Costamere Components. Cells 2021; 10:cells10010061. [PMID: 33401549 PMCID: PMC7823551 DOI: 10.3390/cells10010061] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
The loss of muscle mass and force characterizes muscle atrophy in several different conditions, which share the expression of atrogenes and the activation of their transcriptional regulators. However, attempts to antagonize muscle atrophy development in different experimental contexts by targeting contributors to the atrogene pathway showed partial effects in most cases. Other master regulators might independently contribute to muscle atrophy, as suggested by our recent evidence about the co-requirement of the muscle-specific chaperone protein melusin to inhibit unloading muscle atrophy development. Furthermore, melusin and other muscle mass regulators, such as nNOS, belong to costameres, the macromolecular complexes that connect sarcolemma to myofibrils and to the extracellular matrix, in correspondence with specific sarcomeric sites. Costameres sense a mechanical load and transduce it both as lateral force and biochemical signals. Recent evidence further broadens this classic view, by revealing the crucial participation of costameres in a sarcolemmal “signaling hub” integrating mechanical and humoral stimuli, where mechanical signals are coupled with insulin and/or insulin-like growth factor stimulation to regulate muscle mass. Therefore, this review aims to enucleate available evidence concerning the early involvement of costamere components and additional putative master regulators in the development of major types of muscle atrophy.
Collapse
Affiliation(s)
- Luisa Gorza
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy
- Correspondence:
| | - Matteo Sorge
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.S.); (L.S.); (M.B.)
| | - Laura Seclì
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.S.); (L.S.); (M.B.)
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.S.); (L.S.); (M.B.)
| |
Collapse
|
35
|
Li J, Yang T, Tang H, Sha Z, Chen R, Chen L, Yu Y, Rowe GC, Das S, Xiao J. Inhibition of lncRNA MAAT Controls Multiple Types of Muscle Atrophy by cis- and trans-Regulatory Actions. Mol Ther 2020; 29:1102-1119. [PMID: 33279721 DOI: 10.1016/j.ymthe.2020.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/09/2020] [Accepted: 11/29/2020] [Indexed: 12/18/2022] Open
Abstract
Muscle atrophy is associated with negative outcomes in a variety of diseases. Identification of a common therapeutic target would address a significant unmet clinical need. Here, we identify a long non-coding RNA (lncRNA) (muscle-atrophy-associated transcript, lncMAAT) as a common regulator of skeletal muscle atrophy. lncMAAT is downregulated in multiple types of muscle-atrophy models both in vivo (denervation, Angiotensin II [AngII], fasting, immobilization, and aging-induced muscle atrophy) and in vitro (AngII, H2O2, and tumor necrosis factor alpha [TNF-α]-induced muscle atrophy). Gain- and loss-of-function analysis both in vitro and in vivo reveals that downregulation of lncMAAT is sufficient to induce muscle atrophy, while overexpression of lncMAAT can ameliorate multiple types of muscle atrophy. Mechanistically, lncMAAT negatively regulates the transcription of miR-29b through SOX6 by a trans-regulatory module and increases the expression of the neighboring gene Mbnl1 by a cis-regulatory module. Therefore, overexpression of lncMAAT may represent a promising therapy for muscle atrophy induced by different stimuli.
Collapse
Affiliation(s)
- Jin Li
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China; School of Medicine, Shanghai University, Shanghai 200444, China
| | - Tingting Yang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Haifei Tang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Zhao Sha
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Rui Chen
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Lei Chen
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Yan Yu
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Glenn C Rowe
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02214, USA
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China; School of Medicine, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
36
|
Hagg A, Kharoud S, Goodchild G, Goodman CA, Chen JL, Thomson RE, Qian H, Gregorevic P, Harrison CA, Walton KL. TMEPAI/PMEPA1 Is a Positive Regulator of Skeletal Muscle Mass. Front Physiol 2020; 11:560225. [PMID: 33250771 PMCID: PMC7672205 DOI: 10.3389/fphys.2020.560225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022] Open
Abstract
Inhibition of myostatin- and activin-mediated SMAD2/3 signaling using ligand traps, such as soluble receptors, ligand-targeting propeptides and antibodies, or follistatin can increase skeletal muscle mass in healthy mice and ameliorate wasting in models of cancer cachexia and muscular dystrophy. However, clinical translation of these extracellular approaches targeting myostatin and activin has been hindered by the challenges of achieving efficacy without potential effects in other tissues. Toward the goal of developing tissue-specific myostatin/activin interventions, we explored the ability of transmembrane prostate androgen-induced (TMEPAI), an inhibitor of transforming growth factor-β (TGF-β1)-mediated SMAD2/3 signaling, to promote growth, and counter atrophy, in skeletal muscle. In this study, we show that TMEPAI can block activin A, activin B, myostatin and GDF-11 activity in vitro. To determine the physiological significance of TMEPAI, we employed Adeno-associated viral vector (AAV) delivery of a TMEPAI expression cassette to the muscles of healthy mice, which increased mass by as much as 30%, due to hypertrophy of muscle fibers. To demonstrate that TMEPAI mediates its effects via inhibition of the SMAD2/3 pathway, tibialis anterior (TA) muscles of mice were co-injected with AAV vectors expressing activin A and TMEPAI. In this setting, TMEPAI blocked skeletal muscle wasting driven by activin-induced phosphorylation of SMAD3. In a model of cancer cachexia associated with elevated circulating activin A, delivery of AAV:TMEPAI into TA muscles of mice bearing C26 colon tumors ameliorated the muscle atrophy normally associated with cancer progression. Collectively, the findings indicate that muscle-directed TMEPAI gene delivery can inactivate the activin/myostatin-SMAD3 pathway to positively regulate muscle mass in healthy settings and models of disease.
Collapse
Affiliation(s)
- Adam Hagg
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Centre for Muscle Research, Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia.,Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Swati Kharoud
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Georgia Goodchild
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Craig A Goodman
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia.,Australian Institute for Musculoskeletal Science, Sunshine Hospital, The University of Melbourne, St Albans, VIC, Australia
| | - Justin L Chen
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Rachel E Thomson
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia.,Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Hongwei Qian
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia.,Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Paul Gregorevic
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia.,Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.,Department of Neurology, The University of Washington School of Medicine, Seattle, WA, United States
| | - Craig A Harrison
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Kelly L Walton
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Hudson Institute of Medical Research, Clayton, VIC, Australia
| |
Collapse
|
37
|
Yang W, Huang J, Wu H, Wang Y, Du Z, Ling Y, Wang W, Wu Q, Gao W. Molecular mechanisms of cancer cachexia‑induced muscle atrophy (Review). Mol Med Rep 2020; 22:4967-4980. [PMID: 33174001 PMCID: PMC7646947 DOI: 10.3892/mmr.2020.11608] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/09/2020] [Indexed: 12/20/2022] Open
Abstract
Muscle atrophy is a severe clinical problem involving the loss of muscle mass and strength that frequently accompanies the development of numerous types of cancer, including pancreatic, lung and gastric cancers. Cancer cachexia is a multifactorial syndrome characterized by a continuous decline in skeletal muscle mass that cannot be reversed by conventional nutritional therapy. The pathophysiological characteristic of cancer cachexia is a negative protein and energy balance caused by a combination of factors, including reduced food intake and metabolic abnormalities. Numerous necessary cellular processes are disrupted by the presence of abnormal metabolites, which mediate several intracellular signaling pathways and result in the net loss of cytoplasm and organelles in atrophic skeletal muscle during various states of cancer cachexia. Currently, the clinical morbidity and mortality rates of patients with cancer cachexia are high. Once a patient enters the cachexia phase, the consequences are difficult to reverse and the treatment methods for cancer cachexia are very limited. The present review aimed to summarize the recent discoveries regarding the pathogenesis of cancer cachexia-induced muscle atrophy and provided novel ideas for the comprehensive treatment to improve the prognosis of affected patients.
Collapse
Affiliation(s)
- Wei Yang
- Department of Oncology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Jianhui Huang
- Department of Oncology, Lishui Municipal Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Hui Wu
- Department of Clinical Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Yuqing Wang
- Department of Clinical Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Zhiyin Du
- Department of Clinical Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Yuanbo Ling
- Department of Clinical Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Weizhuo Wang
- Department of Clinical Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Qian Wu
- Department of Oncology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Wenbin Gao
- Department of Oncology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|
38
|
Shen Y, Zhang Q, Huang Z, Zhu J, Qiu J, Ma W, Yang X, Ding F, Sun H. Isoquercitrin Delays Denervated Soleus Muscle Atrophy by Inhibiting Oxidative Stress and Inflammation. Front Physiol 2020; 11:988. [PMID: 32903465 PMCID: PMC7435639 DOI: 10.3389/fphys.2020.00988] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022] Open
Abstract
Although denervated muscle atrophy is common, the underlying molecular mechanism remains unelucidated. We have previously found that oxidative stress and inflammatory response may be early events that trigger denervated muscle atrophy. Isoquercitrin is a biologically active flavonoid with antioxidative and anti-inflammatory properties. The present study investigated the effect of isoquercitrin on denervated soleus muscle atrophy and its possible molecular mechanisms. We found that isoquercitrin was effective in alleviating soleus muscle mass loss following denervation in a dose-dependent manner. Isoquercitrin demonstrated the optimal protective effect at 20 mg/kg/d, which was the dose used in subsequent experiments. To further explore the protective effect of isoquercitrin on denervated soleus muscle atrophy, we analyzed muscle proteolysis via the ubiquitin-proteasome pathway, mitophagy, and muscle fiber type conversion. Isoquercitrin significantly inhibited the denervation-induced overexpression of two muscle-specific ubiquitin ligases—muscle RING finger 1 (MuRF1) and muscle atrophy F-box (MAFbx), and reduced the degradation of myosin heavy chains (MyHCs) in the target muscle. Following isoquercitrin treatment, mitochondrial vacuolation and autophagy were inhibited, as evidenced by reduced level of autophagy-related proteins (ATG7, BNIP3, LC3B, and PINK1); slow-to-fast fiber type conversion in the target muscle was delayed via triggering expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α); and the production of reactive oxygen species (ROS) in the target muscle was reduced, which might be associated with the upregulation of antioxidant factors (SOD1, SOD2, NRF2, NQO1, and HO1) and the downregulation of ROS production-related factors (Nox2, Nox4, and DUOX1). Furthermore, isoquercitrin treatment reduced the levels of inflammatory factors—interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α)—in the target muscle and inactivated the JAK/STAT3 signaling pathway. Overall, isoquercitrin may alleviate soleus muscle atrophy and mitophagy and reverse the slow-to-fast fiber type conversion following denervation via inhibition of oxidative stress and inflammatory response. Our study findings enrich the knowledge regarding the molecular regulatory mechanisms of denervated muscle atrophy and provide a scientific basis for isoquercitrin as a protective drug for the prevention and treatment of denervated muscle atrophy.
Collapse
Affiliation(s)
- Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Qiuyu Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ziwei Huang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jianwei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiayi Qiu
- School of Nursing, Nantong University, Nantong, China
| | - Wenjing Ma
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
39
|
Ries A, Schelch K, Falch D, Pany L, Hoda MA, Grusch M. Activin A: an emerging target for improving cancer treatment? Expert Opin Ther Targets 2020; 24:985-996. [PMID: 32700590 DOI: 10.1080/14728222.2020.1799350] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Activin A is involved in the regulation of a surprisingly broad number of processes that are relevant for cancer development and treatment; it is implicated in cell autonomous functions and multiple regulatory functions in the tumor microenvironment. AREAS COVERED This article summarizes the current knowledge about activin A in cell growth and death, migration and metastasis, angiogenesis, stemness and drug resistance, regulation of antitumor immunity, and cancer cachexia. We explore the role of activin A as a biomarker and discuss strategies for using it as target for cancer therapy. Literature retrieved from Medline until 25 June 2020 was considered. EXPERT OPINION While many functions of activin A were investigated in preclinical models, there is currently limited experience from clinical trials. Activin A has growth- and migration-promoting effects, contributes to immune evasion and cachexia and is associated with shorter survival in several cancer types. Targeting activin A could offer the chance to simultaneously limit tumor growth and spreading, improve drug response, boost antitumor immune responses and improve cancer-associated or treatment-associated cachexia, bone loss, and anemia. Nevertheless, defining which patients have the highest likelihood of benefiting from these effects is challenging and will require further work.
Collapse
Affiliation(s)
- Alexander Ries
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna , Vienna, Austria
| | - Karin Schelch
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna , Vienna, Austria
| | - David Falch
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna , Vienna, Austria
| | - Laura Pany
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna , Vienna, Austria
| | - Mir Alireza Hoda
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna , Vienna, Austria
| | - Michael Grusch
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna , Vienna, Austria
| |
Collapse
|
40
|
Vainshtein A, Sandri M. Signaling Pathways That Control Muscle Mass. Int J Mol Sci 2020; 21:ijms21134759. [PMID: 32635462 PMCID: PMC7369702 DOI: 10.3390/ijms21134759] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/23/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
The loss of skeletal muscle mass under a wide range of acute and chronic maladies is associated with poor prognosis, reduced quality of life, and increased mortality. Decades of research indicate the importance of skeletal muscle for whole body metabolism, glucose homeostasis, as well as overall health and wellbeing. This tissue’s remarkable ability to rapidly and effectively adapt to changing environmental cues is a double-edged sword. Physiological adaptations that are beneficial throughout life become maladaptive during atrophic conditions. The atrophic program can be activated by mechanical, oxidative, and energetic distress, and is influenced by the availability of nutrients, growth factors, and cytokines. Largely governed by a transcription-dependent mechanism, this program impinges on multiple protein networks including various organelles as well as biosynthetic and quality control systems. Although modulating muscle function to prevent and treat disease is an enticing concept that has intrigued research teams for decades, a lack of thorough understanding of the molecular mechanisms and signaling pathways that control muscle mass, in addition to poor transferability of findings from rodents to humans, has obstructed efforts to develop effective treatments. Here, we review the progress made in unraveling the molecular mechanisms responsible for the regulation of muscle mass, as this continues to be an intensive area of research.
Collapse
Affiliation(s)
| | - Marco Sandri
- Veneto Institute of Molecular Medicine, via Orus 2, 35129 Padua, Italy
- Department of Biomedical Science, University of Padua, via G. Colombo 3, 35100 Padua, Italy
- Myology Center, University of Padua, via G. Colombo 3, 35100 Padova, Italy
- Department of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
- Correspondence:
| |
Collapse
|
41
|
Rodgers BD, Bishaw Y, Kagel D, Ramos JN, Maricelli JW. Micro-dystrophin Gene Therapy Partially Enhances Exercise Capacity in Older Adult mdx Mice. Mol Ther Methods Clin Dev 2020; 17:122-132. [PMID: 31909085 PMCID: PMC6939027 DOI: 10.1016/j.omtm.2019.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/20/2019] [Indexed: 01/09/2023]
Abstract
Micro-dystrophin (μDys) gene therapeutics can improve striated muscle structure and function in different animal models of Duchenne muscular dystrophy. Most studies, however, used young mdx mice that lack a pronounced dystrophic phenotype, short treatment periods, and limited muscle function tests. We, therefore, determined the relative efficacy of two previously described μDys gene therapeutics (rAAV6:μDysH3 and rAAV6:μDys5) in 6-month-old mdx mice using a 6-month treatment regimen and forced exercise. Forelimb and hindlimb grip strength, metabolic rate (VO2 max), running efficiency (energy expenditure), and serum creatine kinase levels similarly improved in mdx mice treated with either vector. Both vectors produced nearly identical dose-responses in all assays. They also partially prevented the degenerative effects of repeated high-intensity exercise on muscle histology, although none of the metrics examined was restored to normal wild-type levels. Moreover, neither vector had any consistent effect on respiration while exercising. These data together suggest that, although μDys gene therapy can improve isolated and systemic muscle function, it may be only partially effective when dystrophinopathies are advanced or when muscle structure is significantly challenged, as with high-intensity exercise. This further suggests that restoring muscle function to near-normal levels will likely require ancillary or combinatorial treatments capable of enhancing muscle strength.
Collapse
Affiliation(s)
- Buel D. Rodgers
- School of Molecular Biosciences, Washington Center for Muscle Biology, Washington State University, Pullman, WA 99164, USA
| | - Yemeserach Bishaw
- School of Molecular Biosciences, Washington Center for Muscle Biology, Washington State University, Pullman, WA 99164, USA
| | - Denali Kagel
- School of Molecular Biosciences, Washington Center for Muscle Biology, Washington State University, Pullman, WA 99164, USA
| | - Julian N. Ramos
- Department of Neurology, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington, Seattle, WA 98195, USA
- Molecular and Cellular Biology Program, University of Washington School of Medicine, Seattle, WA, USA
| | - Joseph W. Maricelli
- School of Molecular Biosciences, Washington Center for Muscle Biology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
42
|
Davey JR, Estevez E, Thomson RE, Whitham M, Watt KI, Hagg A, Qian H, Henstridge DC, Ludlow H, Hedger MP, McGee SL, Coughlan MT, Febbraio MA, Gregorevic P. Intravascular Follistatin gene delivery improves glycemic control in a mouse model of type 2 diabetes. FASEB J 2020; 34:5697-5714. [PMID: 32141144 DOI: 10.1096/fj.201802059rrr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 01/09/2023]
Abstract
Type 2 diabetes (T2D) manifests from inadequate glucose control due to insulin resistance, hypoinsulinemia, and deteriorating pancreatic β-cell function. The pro-inflammatory factor Activin has been implicated as a positive correlate of severity in T2D patients, and as a negative regulator of glucose uptake by skeletal muscle, and of pancreatic β-cell phenotype in mice. Accordingly, we sought to determine whether intervention with the Activin antagonist Follistatin can ameliorate the diabetic pathology. Here, we report that an intravenous Follistatin gene delivery intervention with tropism for striated muscle reduced the serum concentrations of Activin B and improved glycemic control in the db/db mouse model of T2D. Treatment reversed the hyperglycemic progression with a corresponding reduction in the percentage of glycated-hemoglobin to levels similar to lean, healthy mice. Follistatin gene delivery promoted insulinemia and abundance of insulin-positive pancreatic β-cells, even when treatment was administered to mice with advanced diabetes, supporting a mechanism for improved glycemic control associated with maintenance of functional β-cells. Our data demonstrate that single-dose intravascular Follistatin gene delivery can ameliorate the diabetic progression and improve prognostic markers of disease. These findings are consistent with other observations of Activin-mediated mechanisms exerting deleterious effects in models of obesity and diabetes, and suggest that interventions that attenuate Activin signaling could help further understanding of T2D and the development of novel T2D therapeutics.
Collapse
Affiliation(s)
- Jonathan R Davey
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Parkville, VIC, Australia.,Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Emma Estevez
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Rachel E Thomson
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Parkville, VIC, Australia.,Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Martin Whitham
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,College of Life and Environmental Sciences, University of Birmingham, Edgbaston, UK
| | - Kevin I Watt
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Parkville, VIC, Australia.,Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Adam Hagg
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Parkville, VIC, Australia.,Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Hongwei Qian
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Parkville, VIC, Australia.,Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Darren C Henstridge
- School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | - Helen Ludlow
- School of Life Sciences, Oxford Brookes University, Oxford, UK
| | - Mark P Hedger
- The Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Sean L McGee
- School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
| | - Melinda T Coughlan
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Mark A Febbraio
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Paul Gregorevic
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Parkville, VIC, Australia.,Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.,Department of Neurology, University of Washington, Seattle, WA, USA
| |
Collapse
|
43
|
Wu Q, Sun S, Li Z, Yang Q, Li B, Zhu S, Wang L, Wu J, Yuan J, Wang C, Li J, Sun S. Breast cancer-released exosomes trigger cancer-associated cachexia to promote tumor progression. Adipocyte 2019; 8:31-45. [PMID: 30474469 PMCID: PMC6768245 DOI: 10.1080/21623945.2018.1551688] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cancer-secreted exosomes are emerging mediators of cancer-associated cachexia. Here, we show that miR-155 secreted by breast cancer cells is a potent role on the catabolism of adipocytes and muscle cells through targeting the PPARγ. After cocultivated with mature adipocytes or C2C12, tumour cells exhibit an aggressive phenotype via inducing epithelial-mesenchymal transition while breast cancer-derived exosomes increased catabolism and release the metabolites in adipocytes and muscle cells. In adipocytes, cancer cell-secreted miR-155 promotes beige/brown differentiation and remodel metabolism in resident adipocytes by downregulating the PPARγ expression, but does not significantly affect biological conversion in C2C12. Likewise, propranolol ameliorates tumour exosomes-associated cachectic wasting through upregulating the PPARγ expression. In summary, we have demonstrated that the transfer of miR-155 from exosomes acts as an oncogenic signal reprograming systemic energy metabolism and leading to cancer-associated cachexia in breast cancer.
Collapse
Affiliation(s)
- Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Zhiyu Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Qian Yang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Bei Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Shan Zhu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Lijun Wang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Juan Wu
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Changhua Wang
- Department of Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province, P. R. China
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- CONTACT Shengrong Sun ; Juanjuan Li Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, Hubei Province 430060, P. R. China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- CONTACT Shengrong Sun ; Juanjuan Li Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, Hubei Province 430060, P. R. China
| |
Collapse
|
44
|
Hunt LC, Stover J, Haugen B, Shaw TI, Li Y, Pagala VR, Finkelstein D, Barton ER, Fan Y, Labelle M, Peng J, Demontis F. A Key Role for the Ubiquitin Ligase UBR4 in Myofiber Hypertrophy in Drosophila and Mice. Cell Rep 2019; 28:1268-1281.e6. [PMID: 31365869 PMCID: PMC6697171 DOI: 10.1016/j.celrep.2019.06.094] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 05/07/2019] [Accepted: 06/26/2019] [Indexed: 12/31/2022] Open
Abstract
Skeletal muscle cell (myofiber) atrophy is a detrimental component of aging and cancer that primarily results from muscle protein degradation via the proteasome and ubiquitin ligases. Transcriptional upregulation of some ubiquitin ligases contributes to myofiber atrophy, but little is known about the role that most other ubiquitin ligases play in this process. To address this question, we have used RNAi screening in Drosophila to identify the function of > 320 evolutionarily conserved ubiquitin ligases in myofiber size regulation in vivo. We find that whereas RNAi for some ubiquitin ligases induces myofiber atrophy, loss of others (including the N-end rule ubiquitin ligase UBR4) promotes hypertrophy. In Drosophila and mouse myofibers, loss of UBR4 induces hypertrophy via decreased ubiquitination and degradation of a core set of target proteins, including the HAT1/RBBP4/RBBP7 histone-binding complex. Together, this study defines the repertoire of ubiquitin ligases that regulate myofiber size and the role of UBR4 in myofiber hypertrophy.
Collapse
Affiliation(s)
- Liam C Hunt
- Division of Developmental Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jared Stover
- Division of Developmental Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Benard Haugen
- Division of Developmental Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Timothy I Shaw
- Department of Structural Biology, Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yuxin Li
- Department of Structural Biology, Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Vishwajeeth R Pagala
- Department of Structural Biology, Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Elisabeth R Barton
- College of Health & Human Performance Applied Physiology & Kinesiology, University of Florida, 124 Florida Gym, 1864 Stadium Road, Gainesville, FL 32611, USA
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Myriam Labelle
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Junmin Peng
- Department of Structural Biology, Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Fabio Demontis
- Division of Developmental Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
45
|
Baccam A, Benoni-Sviercovich A, Rocchi M, Moresi V, Seelaender M, Li Z, Adamo S, Xue Z, Coletti D. The Mechanical Stimulation of Myotubes Counteracts the Effects of Tumor-Derived Factors Through the Modulation of the Activin/Follistatin Ratio. Front Physiol 2019; 10:401. [PMID: 31068826 PMCID: PMC6491697 DOI: 10.3389/fphys.2019.00401] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/22/2019] [Indexed: 11/28/2022] Open
Abstract
Activin negatively affects muscle fibers and progenitor cells in aging (sarcopenia) and in chronic diseases characterized by severe muscle wasting (cachexia). High circulating activin levels predict poor survival in cancer patients. However, the relative impact of activin in mediating muscle atrophy and hampered homeostasis is still unknown. To directly assess the involvement of activin, and its physiological inhibitor follistatin, in cancer-induced muscle atrophy, we cultured C2C12 myotubes in the absence or in the presence of a mechanical stretching stimulus and in the absence or presence of C26 tumor-derived factors (CM), so as to mimic the mechanical stimulation of exercise and cancer cachexia, respectively. We found that CM induces activin release by myotubes, further exacerbating the negative effects of tumor-derived factors. In addition, mechanical stimulation is sufficient to counteract the adverse tumor-induced effects on muscle cells, in association with an increased follistatin/activin ratio in the cell culture medium, indicating that myotubes actively release follistatin upon stretching. Recombinant follistatin counteracts tumor effects on myotubes exclusively by rescuing fusion index, suggesting that it is only partially responsible for the stretch-mediated rescue. Therefore, besides activin, other tumor-derived factors may play a significant role in mediating muscle atrophy. In addition to increasing follistatin secretion mechanical stimulation induces additional beneficial responses in myotubes. We propose that in animal models of cancer cachexia and in cancer patients purely mechanical stimuli play an important role in mediating the rescue of the muscle homeostasis reported upon exercise.
Collapse
Affiliation(s)
- Alexandra Baccam
- Biology of Adaptation and Aging (B2A), Sorbonne Université, UMR8256 - INSERM ERL U1164, Paris, France.,Section of Histology, Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy.,Interuniversity Institute of Myology, Rome, Italy
| | - Alexandra Benoni-Sviercovich
- Biology of Adaptation and Aging (B2A), Sorbonne Université, UMR8256 - INSERM ERL U1164, Paris, France.,Section of Histology, Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy.,Interuniversity Institute of Myology, Rome, Italy
| | - Marco Rocchi
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy
| | - Viviana Moresi
- Section of Histology, Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy.,Interuniversity Institute of Myology, Rome, Italy
| | - Marilia Seelaender
- Institute of Biomedical Sciences, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Zhenlin Li
- Section of Histology, Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Sergio Adamo
- Biology of Adaptation and Aging (B2A), Sorbonne Université, UMR8256 - INSERM ERL U1164, Paris, France.,Interuniversity Institute of Myology, Rome, Italy
| | - Zhigang Xue
- Section of Histology, Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Dario Coletti
- Biology of Adaptation and Aging (B2A), Sorbonne Université, UMR8256 - INSERM ERL U1164, Paris, France.,Section of Histology, Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy.,Interuniversity Institute of Myology, Rome, Italy
| |
Collapse
|
46
|
Yang Q, Yan C, Wang X, Gong Z. Leptin induces muscle wasting in a zebrafish kras-driven hepatocellular carcinoma (HCC) model. Dis Model Mech 2019; 12:dmm.038240. [PMID: 30718259 PMCID: PMC6398506 DOI: 10.1242/dmm.038240] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/29/2019] [Indexed: 12/14/2022] Open
Abstract
Cancer cachexia affects up to 80% of patients with advanced solid cancer and leads to excessive muscle wasting. Here, using an inducible zebrafish hepatocellular carcinoma (HCC) model driven by oncogenic krasG12V, we observed a progressive muscle-wasting phenotype in adult zebrafish, characterized by significant loss of body weight and muscle fibers. By differential feeding, we observed that overfeeding caused fatty liver, accelerated carcinogenesis and muscle wasting. Interestingly, leptin, an obesity hormone, was upregulated in oncogenic hepatocytes and overfeeding groups. We also found that leptin expression progressively increased during human liver disease progression. By using leptin receptor (lepr)-knockout fish, we found that tumor fish in the lepr mutant background had a higher survival rate and significantly lower muscle-wasting level after tumor induction than the tumor fish in the wild-type background. Chemical inhibitors targeting leptin signaling also alleviated the muscle-wasting phenotype, indicating that leptin signaling may be a new therapeutic target for cancer patients with muscle wasting. Summary: Through a zebrafish model, this study demonstrates that leptin plays an important role in cancer-induced muscle wasting and that the leptin pathway may be a therapeutic target in cancer cachexia.
Collapse
Affiliation(s)
- Qiqi Yang
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Chuan Yan
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Xu Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 230002, China
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| |
Collapse
|
47
|
Bloise E, Ciarmela P, Dela Cruz C, Luisi S, Petraglia F, Reis FM. Activin A in Mammalian Physiology. Physiol Rev 2019; 99:739-780. [DOI: 10.1152/physrev.00002.2018] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Activins are dimeric glycoproteins belonging to the transforming growth factor beta superfamily and resulting from the assembly of two beta subunits, which may also be combined with alpha subunits to form inhibins. Activins were discovered in 1986 following the isolation of inhibins from porcine follicular fluid, and were characterized as ovarian hormones that stimulate follicle stimulating hormone (FSH) release by the pituitary gland. In particular, activin A was shown to be the isoform of greater physiological importance in humans. The current understanding of activin A surpasses the reproductive system and allows its classification as a hormone, a growth factor, and a cytokine. In more than 30 yr of intense research, activin A was localized in female and male reproductive organs but also in other organs and systems as diverse as the brain, liver, lung, bone, and gut. Moreover, its roles include embryonic differentiation, trophoblast invasion of the uterine wall in early pregnancy, and fetal/neonate brain protection in hypoxic conditions. It is now recognized that activin A overexpression may be either cytostatic or mitogenic, depending on the cell type, with important implications for tumor biology. Activin A also regulates bone formation and regeneration, enhances joint inflammation in rheumatoid arthritis, and triggers pathogenic mechanisms in the respiratory system. In this 30-yr review, we analyze the evidence for physiological roles of activin A and the potential use of activin agonists and antagonists as therapeutic agents.
Collapse
Affiliation(s)
- Enrrico Bloise
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Pasquapina Ciarmela
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Cynthia Dela Cruz
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Stefano Luisi
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Felice Petraglia
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Fernando M. Reis
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| |
Collapse
|
48
|
Gao B, Zhang Q, Wang X, Wang M, Ren XK, Guo J, Xia S, Zhang W, Feng Y. A “self-accelerating endosomal escape” siRNA delivery nanosystem for significantly suppressing hyperplasia via blocking the ERK2 pathway. Biomater Sci 2019; 7:3307-3319. [DOI: 10.1039/c9bm00451c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Highly efficient ERK2 silencing in VSMCs via a “self-accelerating endosomal escape” siRNA transport nanosystem.
Collapse
Affiliation(s)
- Bin Gao
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Qiaoping Zhang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Xiaoyu Wang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Meiyu Wang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Xiang-kui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Jintang Guo
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine
- Affiliated Hospital
- Logistics University of People's Armed Police Force
- Tianjin 300162
- China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology
- Logistics University of Chinese People's Armed Police Force
- Tianjin 300309
- China
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| |
Collapse
|
49
|
Lynch GS, Koopman R. Overcoming nature’s paradox in skeletal muscle to optimise animal production. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an19361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nature’s paradox in skeletal muscle describes the seemingly mutually exclusive relationship between muscle fibre size and oxidative capacity. In mammals, there is a constraint on the size at which mitochondria-rich, high O2-dependent oxidative fibres can attain before they become anoxic or adapt to a glycolytic phenotype, being less reliant on O2. This implies that a muscle fibre can hypertrophy at the expense of its endurance capacity. Adaptations to activity (exercise) generally obey this relationship, with optimal muscle endurance generally being linked to an enhanced proportion of small, slow oxidative fibres and muscle strength (force and/or power) being linked to an enhanced proportion of large, fast glycolytic fibres. This relationship generally constrains not only the physiological limits of performance (e.g. speed and endurance), but also the capacity to manipulate muscle attributes such as fibre size and composition, with important relevance to the livestock and aquaculture industries for producing specific muscle traits such as (flesh) quality, texture and taste. Highly glycolytic (white) muscles have different traits than do highly oxidative (red) muscles and so the ability to manipulate muscle attributes to produce flesh with specific traits has important implications for optimising meat production and quality. Understanding the biological regulation of muscle size, and phenotype and the capacity to manipulate signalling pathways to produce specific attributes, has important implications for promoting ethically sustainable and profitable commercial livestock and aquaculture practices and for developing alternative food sources, including ‘laboratory meat’ or ‘clean meat’. This review describes the exciting potential of manipulating muscle attributes relevant to animal production, through traditional nutritional and pharmacological approaches and through viral-mediated strategies that could theoretically push the limits of muscle fibre growth, adaptation and plasticity.
Collapse
|
50
|
Lu Z, Du L, Liu R, Di R, Zhang L, Ma Y, Li Q, Liu E, Chu M, Wei C. MiR-378 and BMP-Smad can influence the proliferation of sheep myoblast. Gene 2018; 674:143-150. [PMID: 29908283 DOI: 10.1016/j.gene.2018.06.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/04/2018] [Accepted: 06/12/2018] [Indexed: 01/02/2023]
Abstract
MicroRNA (miRNA) is a sort of endogenous ~20-25 nt non-coding RNAs, and it can regulate a variety of biological events. We found the miR-378 may involve in regulating the muscle development of sheep during our previous research. However, the molecular mechanism of miR-378 regulating myoblast proliferation is still unclear. In this research, we predicted that BMP2 (Bone morphogenetic protein 2) was the target gene of miR-378 and the BMP-Smad signal pathway that BMP2 participated in playing an important role in the muscle development. Therefore, we tried to determine whether miR-378 influence myoblast proliferation of sheep through the BMP-Smad signal pathway. The results indicated that inhibit BMP-Smad signal pathway by interfering Smad4 to promote proliferation of sheep myoblasts; promote BMP-Smad signal pathway by interfering Smad7 to inhibit proliferation of sheep myoblasts; over-expression miR-378 promotes BMP-Smad signal pathway and myoblast proliferation in sheep; interfering miR-378 inhibits BMP-Smad signal pathway and myoblast proliferation in sheep. However, when both of which functioned at the myoblast, miR-378 could not fully depend on BMP-Smad signal pathway to regulate myoblast proliferation. In sum, both miR-378 and BMP-Smad can influence the proliferation of myoblast, but miR-378 does not target the 3' UTR of sheep BMP2.
Collapse
Affiliation(s)
- Zengkui Lu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Lixin Du
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruizao Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ran Di
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liping Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Qing Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Enmin Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mingxing Chu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Caihong Wei
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|