1
|
Liu W, Cheng G, Cui H, Tian Z, Li B, Han Y, Wu JX, Sun J, Zhao Y, Chen T, Yu G. Theoretical basis, state and challenges of living cell-based drug delivery systems. Theranostics 2024; 14:5152-5183. [PMID: 39267776 PMCID: PMC11388066 DOI: 10.7150/thno.99257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
The therapeutic efficacy of drugs is determined, to a certain extent, by the efficiency of drug delivery. The low efficiency of drug delivery systems (DDSs) is frequently associated with serious toxic side effects and can even prove fatal in certain cases. With the rapid development of technology, drug delivery has evolved from using traditional frameworks to using nano DDSs (NDDSs), endogenous biomaterials DDSs (EBDDSs), and living cell DDSs (LCDDSs). LCDDSs are receiving widespread attention from researchers at present owing to the unique advantages of living cells in targeted drug delivery, including their excellent biocompatibility properties, low immunogenicity, unique biological properties and functions, and role in the treatment of diseases. However, the theoretical basis and techniques involved in the application of LCDDSs have not been extensively summarized to date. Therefore, this review comprehensively summarizes the properties and applications of living cells, elaborates the various drug loading approaches and controlled drug release, and discusses the results of clinical trials. The review also discusses the current shortcomings and prospects for the future development of LCDDSs, which will serve as highly valuable insights for the development and clinical transformation of LCDDSs in the future.
Collapse
Affiliation(s)
- Wei Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Guowang Cheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Hao Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Zhen Tian
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Bowen Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Yanhua Han
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jia-Xin Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jie Sun
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Yuyue Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Guangtao Yu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| |
Collapse
|
2
|
Zhang X, Taylor H, Valdivia A, Dasari R, Buckley A, Bonacquisti E, Nguyen J, Kanchi K, Corcoran DL, Herring LE, Steindler DA, Baldwin A, Hingtgen S, Satterlee AB. Auto-loaded TRAIL-exosomes derived from induced neural stem cells for brain cancer therapy. J Control Release 2024; 372:433-445. [PMID: 38908756 PMCID: PMC11283351 DOI: 10.1016/j.jconrel.2024.06.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Transdifferentiation (TD), a somatic cell reprogramming process that eliminates pluripotent intermediates, creates cells that are ideal for personalized anti-cancer therapy. Here, we provide the first evidence that extracellular vesicles (EVs) from TD-derived induced neural stem cells (Exo-iNSCs) are an efficacious treatment strategy for brain cancer. We found that genetically engineered iNSCs generated EVs loaded with the tumoricidal gene product TRAIL at nearly twice the rate of their parental fibroblasts, and TRAIL produced by iNSCs was naturally loaded into the lumen of EVs and arrayed across their outer membrane (Exo-iNSC-TRAIL). Uptake studies in ex vivo organotypic brain slice cultures showed that Exo-iNSC-TRAIL selectively accumulates within tumor foci, and co-culture assays demonstrated that Exo-iNSC-TRAIL killed metastatic and primary brain cancer cells more effectively than free TRAIL. In an orthotopic mouse model of brain cancer, Exo-iNSC-TRAIL reduced breast-to-brain tumor xenografts by approximately 3000-fold compared to treatment with free TRAIL, with all Exo-iNSC-TRAIL treated animals surviving through 90 days post-treatment. In additional in vivo testing against aggressive U87 and invasive GBM8 glioblastoma tumors, Exo-iNSC-TRAIL also induced a statistically significant increase in survival. These studies establish a novel, easily generated, stable, tumor-targeted EV to efficaciously treat multiple forms of brain cancer.
Collapse
Affiliation(s)
- Xiaopei Zhang
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hannah Taylor
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alain Valdivia
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rajaneekar Dasari
- Eshelman Institute for Innovation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew Buckley
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emily Bonacquisti
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Juliane Nguyen
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Krishna Kanchi
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David L Corcoran
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura E Herring
- Michael Hooker Proteomics Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dennis A Steindler
- Eshelman Institute for Innovation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Steindler Consulting, Boston, MA, USA
| | - Albert Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shawn Hingtgen
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Andrew Benson Satterlee
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Eshelman Institute for Innovation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Luo J, Feng Y, Hong Z, Yin M, Zheng H, Zhang L, Hu X. High-frequency repetitive transcranial magnetic stimulation promotes neural stem cell proliferation after ischemic stroke. Neural Regen Res 2024; 19:1772-1780. [PMID: 38103244 PMCID: PMC10960276 DOI: 10.4103/1673-5374.389303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 07/14/2023] [Accepted: 09/18/2023] [Indexed: 12/18/2023] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202408000-00031/figure1/v/2023-12-16T180322Z/r/image-tiff Proliferation of neural stem cells is crucial for promoting neuronal regeneration and repairing cerebral infarction damage. Transcranial magnetic stimulation (TMS) has recently emerged as a tool for inducing endogenous neural stem cell regeneration, but its underlying mechanisms remain unclear. In this study, we found that repetitive TMS effectively promotes the proliferation of oxygen-glucose deprived neural stem cells. Additionally, repetitive TMS reduced the volume of cerebral infarction in a rat model of ischemic stroke caused by middle cerebral artery occlusion, improved rat cognitive function, and promoted the proliferation of neural stem cells in the ischemic penumbra. RNA-sequencing found that repetitive TMS activated the Wnt signaling pathway in the ischemic penumbra of rats with cerebral ischemia. Furthermore, PCR analysis revealed that repetitive TMS promoted AKT phosphorylation, leading to an increase in mRNA levels of cell cycle-related proteins such as Cdk2 and Cdk4. This effect was also associated with activation of the glycogen synthase kinase 3β/β-catenin signaling pathway, which ultimately promotes the proliferation of neural stem cells. Subsequently, we validated the effect of repetitive TMS on AKT phosphorylation. We found that repetitive TMS promoted Ca2+ influx into neural stem cells by activating the P2 calcium channel/calmodulin pathway, thereby promoting AKT phosphorylation and activating the glycogen synthase kinase 3β/β-catenin pathway. These findings indicate that repetitive TMS can promote the proliferation of endogenous neural stem cells through a Ca2+ influx-dependent phosphorylated AKT/glycogen synthase kinase 3β/β-catenin signaling pathway. This study has produced pioneering results on the intrinsic mechanism of repetitive TMS to promote neural function recovery after ischemic stroke. These results provide a strong scientific foundation for the clinical application of repetitive TMS. Moreover, repetitive TMS treatment may not only be an efficient and potential approach to support neurogenesis for further therapeutic applications, but also provide an effective platform for the expansion of neural stem cells.
Collapse
Affiliation(s)
- Jing Luo
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yuan Feng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhongqiu Hong
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Mingyu Yin
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Haiqing Zheng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Liying Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiquan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
4
|
Zhang X, Taylor H, Valdivia A, Dasari R, Buckley A, Bonacquisti E, Nguyen J, Kanchi K, Corcoran DL, Herring LE, Steindler DA, Baldwin A, Hingtgen S, Satterlee AB. Auto-loaded TRAIL-exosomes derived from induced neural stem cells for brain cancer therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595724. [PMID: 38854085 PMCID: PMC11160660 DOI: 10.1101/2024.05.24.595724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Transdifferentiation (TD), a somatic cell reprogramming process that eliminates pluripotent intermediates, creates cells that are ideal for personalized anti-cancer therapy. Here, we provide the first evidence that extracellular vesicles (EVs) from TD-derived induced neural stem cells (Exo-iNSCs) are an efficacious treatment strategy for brain cancer. We found that genetically engineered iNSCs generated EVs loaded with the tumoricidal gene product TRAIL at nearly twice the rate as their parental fibroblasts, and the TRAIL produced by iNSCs were naturally loaded into the lumen of EVs and arrayed across their outer membrane (Exo-iNSC-TRAIL). Uptake studies in ex vivo organotypic brain slice cultures showed Exo-iNSC-TRAIL selectively accumulates within tumor foci, and co-culture assays showed that Exo-iNSC-TRAIL killed metastatic and primary brain cancer cells more effectively than free TRAIL. In an orthotopic mouse model of brain cancer, Exo-iNSC-TRAIL reduced breast-to-brain tumor xenografts around 3000-fold greater than treatment with free TRAIL, with all Exo-iNSC-TRAIL treated animals surviving through 90 days post-treatment. In additional in vivo testing against aggressive U87 and invasive GBM8 glioblastoma tumors, Exo-iNSC-TRAIL also induced a statistically significant increase in survival. These studies establish a new easily generated, stable, tumor-targeted EV to efficaciously treat multiple forms of brain cancer.
Collapse
|
5
|
Shen Y, Thng DKH, Wong ALA, Toh TB. Mechanistic insights and the clinical prospects of targeted therapies for glioblastoma: a comprehensive review. Exp Hematol Oncol 2024; 13:40. [PMID: 38615034 PMCID: PMC11015656 DOI: 10.1186/s40164-024-00512-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/08/2024] [Indexed: 04/15/2024] Open
Abstract
Glioblastoma (GBM) is a fatal brain tumour that is traditionally diagnosed based on histological features. Recent molecular profiling studies have reshaped the World Health Organization approach in the classification of central nervous system tumours to include more pathogenetic hallmarks. These studies have revealed that multiple oncogenic pathways are dysregulated, which contributes to the aggressiveness and resistance of GBM. Such findings have shed light on the molecular vulnerability of GBM and have shifted the disease management paradigm from chemotherapy to targeted therapies. Targeted drugs have been developed to inhibit oncogenic targets in GBM, including receptors involved in the angiogenic axis, the signal transducer and activator of transcription 3 (STAT3), the PI3K/AKT/mTOR signalling pathway, the ubiquitination-proteasome pathway, as well as IDH1/2 pathway. While certain targeted drugs showed promising results in vivo, the translatability of such preclinical achievements in GBM remains a barrier. We also discuss the recent developments and clinical assessments of targeted drugs, as well as the prospects of cell-based therapies and combinatorial therapy as novel ways to target GBM. Targeted treatments have demonstrated preclinical efficacy over chemotherapy as an alternative or adjuvant to the current standard of care for GBM, but their clinical efficacy remains hindered by challenges such as blood-brain barrier penetrance of the drugs. The development of combinatorial targeted therapies is expected to improve therapeutic efficacy and overcome drug resistance.
Collapse
Affiliation(s)
- Yating Shen
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Dexter Kai Hao Thng
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Andrea Li Ann Wong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Hospital, Singapore, Singapore
| | - Tan Boon Toh
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore.
- The Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore.
| |
Collapse
|
6
|
Wei H, Gu Y, Li A, Song P, Liu D, Sun F, Ma X, Qian X. Conductive 3D Ti 3C 2T x MXene-Matrigel hydrogels promote proliferation and neuronal differentiation of neural stem cells. Colloids Surf B Biointerfaces 2024; 233:113652. [PMID: 37988822 DOI: 10.1016/j.colsurfb.2023.113652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/25/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023]
Abstract
Neural stem cells (NSCs) transplantation has great potential in the field of central nervous system injury repair, but the limited differentiation efficiency of transplanted NSCs often affects the therapeutic effect. In this paper, we present a stable three-dimensional (3D) conductive hydrogel prepared by cross-linking MXenes to Matrigel hydrogel. Benefiting from 3D microporous network structure of hydrogel, the conductive hydrogel can provide an extracellular matrix-like substrate for NSCs growth. Moreover, with the addition of Ti3C2Tx MXenes, the composite has excellent electrical conductivity and biocompatibility. It is demonstrated that MXene-Matrigel hydrogels can effectively promote the proliferation and differentiation of NSCs. These findings provide experimental evidence for understanding the regulatory role of conductive hydrogels on NSCs and provides new strategies for neural tissue engineering.
Collapse
Affiliation(s)
- Hao Wei
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China; Research Institute of Otolaryngology, Nanjing, China
| | - Yajun Gu
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China; Research Institute of Otolaryngology, Nanjing, China
| | - Ao Li
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China; Research Institute of Otolaryngology, Nanjing, China
| | - Panpan Song
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China; Research Institute of Otolaryngology, Nanjing, China
| | - Dingding Liu
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China; Research Institute of Otolaryngology, Nanjing, China
| | - Feihu Sun
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China; Research Institute of Otolaryngology, Nanjing, China
| | - Xiaofeng Ma
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China; Research Institute of Otolaryngology, Nanjing, China.
| | - Xiaoyun Qian
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China; Research Institute of Otolaryngology, Nanjing, China.
| |
Collapse
|
7
|
Liu W, Zhao Y, Liu Z, Zhang G, Wu H, Zheng X, Tang X, Chen Z. Therapeutic effects against high-grade glioblastoma mediated by engineered induced neural stem cells combined with GD2-specific CAR-NK. Cell Oncol (Dordr) 2023; 46:1747-1762. [PMID: 37420122 DOI: 10.1007/s13402-023-00842-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 07/09/2023] Open
Abstract
PURPOSE High-grade glioblastoma is extremely challenging to treat because of its aggressiveness and resistance to conventional chemo- and radio-therapies. On the contrary, genetic and cellular immunotherapeutic strategies based on the stem and immune cells are emerging as promising treatments against glioblastoma (GBM). We aimed to developed a novel combined immunotherapeutic strategy to improve the treatment efficacy using genetically engineered PBMC-derived induced neural stem cells (iNSCs) expressing HSV-TK and second-generation CAR-NK cells against GBM. METHODS iNSCs cells expressing HSV-TK (iNSCsTK) and GD2-specific CAR-NK92 (GD2NK92) were generated from PBMC-derived iNSCs and NK92 cell lines, respectively. The anti-tumor effect of iNSCsTK and the combinational therapeutics of iNSCsTK and GD2NK92 were evaluated by GBM cell line using in vitro and in vivo experiments. RESULTS PBMC-derived iNSCsTK possessed tumor-tropism migration ability in vitro and in vivo, which exhibited considerable anti-tumor activity via bystander effect in the presence of ganciclovir (GCV). iNSCsTK/GCV could slow GBM progression and prolong median survival in tumor-bearing mice. However, the anti-tumor effect was limited to single therapy. Therefore, the combinational therapeutic effect of iNSCsTK/GCV and GD2NK92 against GBM was investigated. This approach displayed a more significant anti-tumor effect in vitro and in xenograft tumor mice. CONCLUSIONS PBMC-derived iNSCsTK showed a significant tumor-tropic migration and an effective anti-tumor activity with GCV in vitro and in vivo. In addition, combined with GD2NK92, iNSCsTK therapeutic efficacy improved dramatically to prolong the tumor-bearing animal model's median survival.
Collapse
Affiliation(s)
- Weihua Liu
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Yu Zhao
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Zhongfeng Liu
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Guangji Zhang
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Huantong Wu
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Xin Zheng
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Xihe Tang
- Neurosurgery Center of Aeronautical General Hospital, Beijing, 100012, China
| | - Zhiguo Chen
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China.
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China.
- , Beijing, China.
| |
Collapse
|
8
|
Woodell AS, Landoni E, Valdivia A, Buckley A, Ogunnaike EA, Dotti G, Hingtgen SD. Utilizing induced neural stem cell-based delivery of a cytokine cocktail to enhance chimeric antigen receptor-modified T-cell therapy for brain cancer. Bioeng Transl Med 2023; 8:e10538. [PMID: 38023712 PMCID: PMC10658508 DOI: 10.1002/btm2.10538] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 12/01/2023] Open
Abstract
Chimeric antigen receptor (CAR)-modified T-cell therapy has shown enormous clinical promise against blood cancers, yet efficacy against solid tumors remains a challenge. Here, we investigated the potential of a new combination cell therapy, where tumor-homing induced neural stem cells (iNSCs) are used to enhance CAR-T-cell therapy and achieve efficacious suppression of brain tumors. Using in vitro and in vivo migration assays, we found iNSC-secreted RANTES/IL-15 increased CAR-T-cell migration sixfold and expansion threefold, resulting in greater antitumor activity in a glioblastoma (GBM) tumor model. Furthermore, multimodal imaging showed iNSC delivery of RANTES/IL-15 in combination with intravenous administration of CAR-T cells reduced established orthotopic GBM xenografts 2538-fold within the first week, followed by durable tumor remission through 60 days post-treatment. By contrast, CAR-T-cell therapy alone only partially controlled tumor growth, with a median survival of only 19 days. Together, these studies demonstrate the potential of combined cell therapy platforms to improve the efficacy of CAR-T-cell therapy for brain tumors.
Collapse
Affiliation(s)
- Alex S. Woodell
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Elisa Landoni
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Alain Valdivia
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Andrew Buckley
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Edikan A. Ogunnaike
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Center for Nanotechnology in Drug Delivery, UNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Department of Microbiology and ImmunologyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Shawn D. Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
9
|
Nehama D, Woodell AS, Maingi SM, Hingtgen SD, Dotti G. Cell-based therapies for glioblastoma: Promising tools against tumor heterogeneity. Neuro Oncol 2023; 25:1551-1562. [PMID: 37179459 PMCID: PMC10484163 DOI: 10.1093/neuonc/noad092] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Indexed: 05/15/2023] Open
Abstract
Glioblastoma (GBM) is a highly aggressive tumor with a devastating impact on quality-of-life and abysmal survivorship. Patients have very limited effective treatment options. The successes of targeted small molecule drugs and immune checkpoint inhibitors seen in various solid tumors have not translated to GBM, despite significant advances in our understanding of its molecular, immune, and microenvironment landscapes. These discoveries, however, have unveiled GBM's incredible heterogeneity and its role in treatment failure and survival. Novel cellular therapy technologies are finding successes in oncology and harbor characteristics that make them uniquely suited to overcome challenges posed by GBM, such as increased resistance to tumor heterogeneity, modularity, localized delivery, and safety. Considering these advantages, we compiled this review article on cellular therapies for GBM, focusing on cellular immunotherapies and stem cell-based therapies, to evaluate their utility. We categorize them based on their specificity, review their preclinical and clinical data, and extract valuable insights to help guide future cellular therapy development.
Collapse
Affiliation(s)
- Dean Nehama
- Department of Internal Medicine, Montefiore Medical Center, New York, New York, USA
| | - Alex S Woodell
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Spencer M Maingi
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Shawn D Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Gianpietro Dotti
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
10
|
Yin X, Liu X, Xiao X, Yi K, Chen W, Han C, Wang L, Li Y, Liu J. Human neural stem cells repress glioma cell progression in a paracrine manner by downregulating the Wnt/β-catenin signalling pathway. FEBS Open Bio 2023; 13:1772-1788. [PMID: 37410396 PMCID: PMC10476570 DOI: 10.1002/2211-5463.13671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 04/07/2023] [Accepted: 07/04/2023] [Indexed: 07/07/2023] Open
Abstract
Neural stem cells (NSCs) play crucial roles in neurological disorders and tissue injury repair through exerting paracrine effects. However, the effects of NSC-derived factors on glioma progression remain unclear. This study aimed to evaluate the effects of human NSC-conditioned medium (NSC-CM) on the behaviour of glioma cells using an in vitro co-culture system. Cell counting kit-8 and 5-ethynyl-2'-deoxyuridine assays revealed that NSC-CM inhibited glioma cell proliferation and growth in a fetal bovine serum (FBS)-independent manner. In addition, our wound-healing assay demonstrated that NSC-CM repressed glioma cell migration, while results from transwell and 3D spheroid invasion assays indicated that NSC-CM also reduced the invasion capacity of glioma cells. Flow cytometry showed that NSC-CM prevented cell cycle progression from the G1 to S phase and promoted apoptosis. Western blotting was used to show that the expression of Wnt/β-catenin pathway-related proteins, including β-catenin, c-Myc, cyclin D1, CD44 and Met, was remarkably decreased in NSC-CM-treated glioma cells. Furthermore, the addition of a Wnt/β-catenin pathway activator, CHIR99021, significantly induced the expression of β-catenin and Met and increased the proliferative and invasive capabilities of control medium-treated glioma cells but not those of NSC-CM-treated glioma cells. The use of enzyme-linked immunosorbent assays (ELISA) revealed the secretion of some antitumour factors in human and rat NSCs, including interferon-α and dickkopf-1. Our data suggest that NSC-CM partially inhibits glioma cell progression by downregulating Wnt/β-catenin signalling. This study may serve as a basis for developing future antiglioma therapies based on NSC derivatives.
Collapse
Affiliation(s)
- Xiaolin Yin
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical UniversityDalian Medical UniversityChina
| | - Xiumei Liu
- Dalian Innovation Institute of Stem Cell and Precision MedicineChina
| | - Xiangyi Xiao
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical UniversityDalian Medical UniversityChina
| | - Kaiyu Yi
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical UniversityDalian Medical UniversityChina
| | - Weigong Chen
- Dalian Innovation Institute of Stem Cell and Precision MedicineChina
| | - Chao Han
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical UniversityDalian Medical UniversityChina
| | - Liang Wang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical UniversityDalian Medical UniversityChina
| | - Ying Li
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical UniversityDalian Medical UniversityChina
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical UniversityDalian Medical UniversityChina
| |
Collapse
|
11
|
Jeon HM, Kim JY, Cho HJ, Lee WJ, Nguyen D, Kim SS, Oh YT, Kim HJ, Jung CW, Pinero G, Joshi T, Hambardzumyan D, Sakaguchi T, Hubert CG, McIntyre TM, Fine HA, Gladson CL, Wang B, Purow BW, Park JB, Park MJ, Nam DH, Lee J. Tissue factor is a critical regulator of radiation therapy-induced glioblastoma remodeling. Cancer Cell 2023; 41:1480-1497.e9. [PMID: 37451272 PMCID: PMC10530238 DOI: 10.1016/j.ccell.2023.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 02/28/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
Radiation therapy (RT) provides therapeutic benefits for patients with glioblastoma (GBM), but inevitably induces poorly understood global changes in GBM and its microenvironment (TME) that promote radio-resistance and recurrence. Through a cell surface marker screen, we identified that CD142 (tissue factor or F3) is robustly induced in the senescence-associated β-galactosidase (SA-βGal)-positive GBM cells after irradiation. F3 promotes clonal expansion of irradiated SA-βGal+ GBM cells and orchestrates oncogenic TME remodeling by activating both tumor-autonomous signaling and extrinsic coagulation pathways. Intratumoral F3 signaling induces a mesenchymal-like cell state transition and elevated chemokine secretion. Simultaneously, F3-mediated focal hypercoagulation states lead to activation of tumor-associated macrophages (TAMs) and extracellular matrix (ECM) remodeling. A newly developed F3-targeting agent potently inhibits the aforementioned oncogenic events and impedes tumor relapse in vivo. These findings support F3 as a critical regulator for therapeutic resistance and oncogenic senescence in GBM, opening potential therapeutic avenues.
Collapse
Affiliation(s)
- Hye-Min Jeon
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jeong-Yub Kim
- Divisions of Radiation Cancer Research, Research Center for Radio-Senescence, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Hee Jin Cho
- Department of Biomedical Convergence Science and Technology, Kyungpook National University, Daegu, Korea
| | - Won Jun Lee
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Dayna Nguyen
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sung Soo Kim
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Young Taek Oh
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Hee-Jin Kim
- Divisions of Radiation Cancer Research, Research Center for Radio-Senescence, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Chan-Woong Jung
- Divisions of Radiation Cancer Research, Research Center for Radio-Senescence, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Gonzalo Pinero
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tanvi Joshi
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Takuya Sakaguchi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Christopher G Hubert
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Thomas M McIntyre
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Howard A Fine
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Candece L Gladson
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Bingcheng Wang
- Department of Medicine, MetroHealth Campus, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Benjamin W Purow
- Department of Neurology, UVA Cancer Center, University of Virginia Health System, Charlottesville, VA, USA
| | - Jong Bae Park
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Myung Jin Park
- Divisions of Radiation Cancer Research, Research Center for Radio-Senescence, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Do-Hyun Nam
- Institute for Refractory Cancer Research, Samsung Medical Center, Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Department of Neurosurgery Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeongwu Lee
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
12
|
Beltran-Huarac J, Yamaleyeva DN, Dotti G, Hingtgen S, Sokolsky-Papkov M, Kabanov AV. Magnetic Control of Protein Expression via Magneto-mechanical Actuation of ND-PEGylated Iron Oxide Nanocubes for Cell Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19877-19891. [PMID: 37040569 PMCID: PMC10143622 DOI: 10.1021/acsami.3c00179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
Engineered cells used as smart vehicles for delivery of secreted therapeutic proteins enable effective treatment of cancer and certain degenerative, autoimmune, and genetic disorders. However, current cell-based therapies use mostly invasive tools for tracking proteins and do not allow for controlled secretion of therapeutic proteins, which could result in unconstrained killing of surrounding healthy tissues or ineffective killing of host cancer cells. Regulating the expression of therapeutic proteins after success of therapy remains elusive. In this study, a noninvasive therapeutic approach mediated by magneto-mechanical actuation (MMA) was developed to remotely regulate the expression of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) protein, which is secreted by transduced cells. Stem cells, macrophages, and breast cancer cells were transduced with a lentiviral vector encoding the SGpL2TR protein. SGpL2TR comprises TRAIL and GpLuc domains optimized for cell-based applications. Our approach relies on the remote actuation of cubic-shape highly magnetic field responsive superparamagnetic iron oxide nanoparticles (SPIONs) coated with nitrodopamine PEG (ND-PEG), which are internalized within the cells. Cubic ND-PEG-SPIONs actuated by superlow frequency alternating current magnetic fields can translate magnetic forces into mechanical motion and in turn spur mechanosensitive cellular responses. Cubic ND-PEG-SPIONs were artificially designed to effectively operate at low magnetic field strengths (<100 mT) retaining approximately 60% of their saturation magnetization. Compared to other cells, stems cells were more sensitive to the interaction with actuated cubic ND-PEG-SPIONs, which clustered near the endoplasmic reticulum (ER). Luciferase, ELISA, and RT-qPCR analyses revealed a marked TRAIL downregulation (secretion levels were depleted down to 30%) when intracellular particles at 0.100 mg/mL Fe were actuated by magnetic fields (65 mT and 50 Hz for 30 min). Western blot studies indicated actuated, intracellular cubic ND-PEG-SPIONs can cause mild ER stress at short periods (up to 3 h) of postmagnetic field treatment thus leading to the unfolded protein response. We observed that the interaction of TRAIL polypeptides with ND-PEG can also contribute to this response. To prove the applicability of our approach, we used glioblastoma cells, which were exposed to TRAIL secreted from stem cells. We demonstrated that in the absence of MMA treatment, TRAIL essentially killed glioblastoma cells indiscriminately, but when treated with MMA, we were able to control the cell killing rate by adjusting the magnetic doses. This approach can expand the capabilities of stem cells to serve as smart vehicles for delivery of therapeutic proteins in a controlled manner without using interfering and expensive drugs, while retaining their potential to regenerate damaged tissue after treatment. This approach brings forth new alternatives to regulate protein expression noninvasively for cell therapy and other cancer therapies.
Collapse
Affiliation(s)
- Juan Beltran-Huarac
- Center
for Nanotechnology in Drug Delivery and Division of Pharmacoengineering
and Molecular Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Department
of Physics, Howell Science Complex, East
Carolina University, Greenville, North Carolina 27858, United States
| | - Dina N. Yamaleyeva
- Joint
UNC/NC State Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Gianpietro Dotti
- Lineberger
Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Shawn Hingtgen
- Division
of Pharmacoengineering and Molecular Therapeutics, Eshelman School
of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Marina Sokolsky-Papkov
- Center
for Nanotechnology in Drug Delivery and Division of Pharmacoengineering
and Molecular Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Alexander V. Kabanov
- Center
for Nanotechnology in Drug Delivery and Division of Pharmacoengineering
and Molecular Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
13
|
Chao CJ, Zhang E, Zhao Z. Engineering cells for precision drug delivery: New advances, clinical translation, and emerging strategies. Adv Drug Deliv Rev 2023; 197:114840. [PMID: 37088403 DOI: 10.1016/j.addr.2023.114840] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/04/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Cells have emerged as a promising new form of drug delivery carriers owing to their distinguished advantages such as naturally bypassing immune recognition, intrinsic capability to navigate biological barriers, and access to hard-to-reach tissues via onboarding sensing and active motility. Over the past two decades, a large body of work has focused on understanding the ability of cell carriers to breach biological barriers and to modulate drug pharmacokinetics and pharmacodynamics. These efforts have led to the engineering of various cells for tissue-specific drug delivery. Despite exciting advances, clinical translation of cell-based drug carriers demands a thorough understanding of the pressing challenges and potential strategies to overcome them. Here, we summarize recent advances and new concepts in cell-based drug carriers and their clinical translation. We also discuss key considerations and emerging strategies to engineering the next-generation cell-based delivery technologies for more precise, targeted drug delivery.
Collapse
Affiliation(s)
- Chih-Jia Chao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Endong Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA; Translational Oncology Program, University of Illinois Cancer Center, Chicago, IL 60612.
| |
Collapse
|
14
|
Lu J, Gao X, Wang S, He Y, Ma X, Zhang T, Liu X. Advanced strategies to evade the mononuclear phagocyte system clearance of nanomaterials. EXPLORATION (BEIJING, CHINA) 2023; 3:20220045. [PMID: 37323617 PMCID: PMC10191055 DOI: 10.1002/exp.20220045] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/12/2022] [Indexed: 06/17/2023]
Abstract
Nanomaterials are promising carriers to improve the bioavailability and therapeutic efficiency of drugs by providing preferential drug accumulation at their sites of action, but their delivery efficacy is severely limited by a series of biological barriers, especially the mononuclear phagocytic system (MPS)-the first and major barrier encountered by systemically administered nanomaterials. Herein, the current strategies for evading the MPS clearance of nanomaterials are summarized. First, engineering nanomaterials methods including surface modification, cell hitchhiking, and physiological environment modulation to reduce the MPS clearance are explored. Second, MPS disabling methods including MPS blockade, suppression of macrophage phagocytosis, and macrophages depletion are examined. Last, challenges and opportunities in this field are further discussed.
Collapse
Affiliation(s)
- Junjie Lu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of EducationCollege of Chemistry and Materials ScienceNorthwest UniversityXi'anChina
| | - Xiao Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China of the Ministry of EducationSchool of MedicineNorthwest UniversityXi'anChina
| | - Siyao Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China of the Ministry of EducationSchool of MedicineNorthwest UniversityXi'anChina
| | - Yuan He
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of EducationCollege of Chemistry and Materials ScienceNorthwest UniversityXi'anChina
| | - Xiaowei Ma
- National Center for Veterinary Drug Safety EvaluationCollege of Veterinary MedicineChina Agricultural UniversityBeijingChina
| | - Tingbin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of EducationCollege of Chemistry and Materials ScienceNorthwest UniversityXi'anChina
| | - Xiaoli Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China of the Ministry of EducationSchool of MedicineNorthwest UniversityXi'anChina
- Institute of Regenerative and Reconstructive MedicineMed‐X InstituteNational Local Joint Engineering Research Center for Precision Surgery & Regenerative MedicineShaanxi Provincial Center for Regenerative Medicine and Surgical EngineeringFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
15
|
Thang M, Mellows C, Mercer-Smith A, Nguyen P, Hingtgen S. Current approaches in enhancing TRAIL therapies in glioblastoma. Neurooncol Adv 2023; 5:vdad047. [PMID: 37215952 PMCID: PMC10195206 DOI: 10.1093/noajnl/vdad047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
Glioblastoma (GBM) is the most prevalent, aggressive, primary brain cancer in adults and continues to pose major medical challenges due in part to its high rate of recurrence. Extensive research is underway to discover new therapies that target GBM cells and prevent the inevitable recurrence in patients. The pro-apoptotic protein tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has attracted attention as an ideal anticancer agent due to its ability to selectively kill cancer cells with minimal toxicity in normal cells. Although initial clinical evaluations of TRAIL therapies in several cancers were promising, later stages of clinical trial results indicated that TRAIL and TRAIL-based therapies failed to demonstrate robust efficacies due to poor pharmacokinetics, resulting in insufficient concentrations of TRAIL at the therapeutic site. However, recent studies have developed novel ways to prolong TRAIL bioavailability at the tumor site and efficiently deliver TRAIL and TRAIL-based therapies using cellular and nanoparticle vehicles as drug loading cargos. Additionally, novel techniques have been developed to address monotherapy resistance, including modulating biomarkers associated with TRAIL resistance in GBM cells. This review highlights the promising work to overcome the challenges of TRAIL-based therapies with the aim to facilitate improved TRAIL efficacy against GBM.
Collapse
Affiliation(s)
- Morrent Thang
- Neuroscience Center, University of North Carolina—Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina—Chapel Hill School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Clara Mellows
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina—Chapel Hill School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Alison Mercer-Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina—Chapel Hill School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Phuong Nguyen
- Michigan State University School of Medicine, East Lansing, Michigan, USA
| | - Shawn Hingtgen
- Corresponding Author: Shawn Hingtgen, PhD, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, 125 Mason Farm Road, Chapel Hill, NC 27599-7363, USA ()
| |
Collapse
|
16
|
King JL, Maturavongsadit P, Hingtgen SD, Benhabbour SR. Injectable pH Thermo-Responsive Hydrogel Scaffold for Tumoricidal Neural Stem Cell Therapy for Glioblastoma Multiforme. Pharmaceutics 2022; 14:pharmaceutics14102243. [PMID: 36297678 PMCID: PMC9609352 DOI: 10.3390/pharmaceutics14102243] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/24/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant brain tumor in adults and despite recent advances in treatment modalities, GBM remains incurable. Injectable hydrogel scaffolds are a versatile delivery system that can improve delivery of drug and cell therapeutics for GBM. In this report, we investigated an injectable nanocellulose/chitosan-based hydrogel scaffold for neural stem cell encapsulation and delivery. Hydrogels were prepared using thermogelling beta-glycerophosphate (BGP) and hydroxyethyl cellulose (HEC), chitosan (CS), and cellulose nanocrystals (CNCs). We evaluated the impact of neural stem cells on hydrogel gelation kinetics, microstructures, and degradation. Furthermore, we investigated the biomaterial effects on cell viability and functionality. We demonstrated that the incorporation of cells at densities of 1, 5 and 10 million does not significantly impact rheological and physical properties CS scaffolds. However, addition of CNCs significantly prolonged hydrogel degradation when cells were seeded at 5 and 10 million per 1 mL hydrogel. In vitro cell studies demonstrated high cell viability, release of TRAIL at therapeutic concentrations, and effective tumor cell killing within 72 h. The ability of these hydrogel scaffolds to support stem cell encapsulation and viability and maintain stem cell functionality makes them an attractive cell delivery system for local treatment of post-surgical cancers.
Collapse
Affiliation(s)
- Jasmine L. King
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Panita Maturavongsadit
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Shawn D. Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - S. Rahima Benhabbour
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
- Correspondence:
| |
Collapse
|
17
|
Satterlee AB, Dunn DE, Valdivia A, Malawsky D, Buckley A, Gershon T, Floyd S, Hingtgen S. Spatiotemporal analysis of induced neural stem cell therapy to overcome advanced glioblastoma recurrence. Mol Ther Oncolytics 2022; 26:49-62. [PMID: 35784402 PMCID: PMC9217992 DOI: 10.1016/j.omto.2022.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/01/2022] [Indexed: 12/03/2022] Open
Abstract
Genetically engineered neural stem cells (NSCs) are a promising therapy for the highly aggressive brain cancer glioblastoma (GBM); however, treatment durability remains a major challenge. We sought to define the events that contribute to dynamic adaptation of GBM during treatment with human skin-derived induced NSCs releasing the pro-apoptotic agent TRAIL (iNSC-TRAIL) and develop strategies that convert initial tumor kill into sustained GBM suppression. In vivo and ex vivo analysis before, during, and after treatment revealed significant shifts in tumor transcriptome and spatial distribution as the tumors adapted to treatment. To address this, we designed iNSC delivery strategies that increased spatiotemporal TRAIL coverage and significantly decreased GBM volume throughout the brain, reducing tumor burden 100-fold as quantified in live ex vivo brain slices. The varying impact of different strategies on treatment durability and median survival of both solid and invasive tumors provides important guidance for optimizing iNSC therapy.
Collapse
Affiliation(s)
- Andrew B. Satterlee
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Denise E. Dunn
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27704, USA
| | - Alain Valdivia
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Daniel Malawsky
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Andrew Buckley
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Timothy Gershon
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Scott Floyd
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27704, USA
| | - Shawn Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
18
|
To Explore the Stem Cells Homing to GBM: The Rise to the Occasion. Biomedicines 2022; 10:biomedicines10050986. [PMID: 35625723 PMCID: PMC9138893 DOI: 10.3390/biomedicines10050986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple efforts are currently underway to develop targeted therapeutic deliveries to the site of glioblastoma progression. The use of carriers represents advancement in the delivery of various therapeutic agents as a new approach in neuro-oncology. Mesenchymal stem cells (MSCs) and neural stem cells (NSCs) are used because of their capability in migrating and delivering therapeutic payloads to tumors. Two of the main properties that carrier cells should possess are their ability to specifically migrate from the bloodstream and low immunogenicity. In this article, we also compared the morphological and molecular features of each type of stem cell that underlie their migration capacity to glioblastoma. Thus, the major focus of the current review is on proteins and lipid molecules that are released by GBM to attract stem cells.
Collapse
|
19
|
Litvinova LS, Shupletsova VV, Khaziakhmatova OG, Daminova AG, Kudryavtseva VL, Yurova KA, Malashchenko VV, Todosenko NM, Popova V, Litvinov RI, Korotkova EI, Sukhorukov GB, Gow AJ, Weissman D, Atochina-Vasserman EN, Khlusov IA. Human Mesenchymal Stem Cells as a Carrier for a Cell-Mediated Drug Delivery. Front Bioeng Biotechnol 2022; 10:796111. [PMID: 35284410 PMCID: PMC8909129 DOI: 10.3389/fbioe.2022.796111] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
A number of preclinical and clinical studies have demonstrated the efficiency of mesenchymal stromal cells to serve as an excellent base for a cell-mediated drug delivery system. Cell-based targeted drug delivery has received much attention as a system to facilitate the uptake a nd transfer of active substances to specific organs and tissues with high efficiency. Human mesenchymal stem cells (MSCs) are attracting increased interest as a promising tool for cell-based therapy due to their high proliferative capacity, multi-potency, and anti-inflammatory and immunomodulatory properties. In particular, these cells are potentially suitable for use as encapsulated drug transporters to sites of inflammation. Here, we studied the in vitro effects of incorporating synthetic polymer microcapsules at various microcapsule-to-cell ratios on the morphology, ultrastructure, cytokine profile, and migration ability of human adipose-derived MSCs at various time points post-phagocytosis. The data show that under appropriate conditions, human MSCs can be efficiently loaded with synthesized microcapsules without damaging the cell’s structural integrity with unexpressed cytokine secretion, retained motility, and ability to migrate through 8 μm pores. Thus, the strategy of using human MSCs as a delivery vehicle for transferring microcapsules, containing bioactive material, across the tissue–blood or tumor–blood barriers to facilitate the treatment of stroke, cancer, or inflammatory diseases may open a new therapeutic perspective.
Collapse
Affiliation(s)
- L. S. Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - V. V. Shupletsova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - O. G. Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - A. G. Daminova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Kazan Institute of Biochemistry and Biophysics, FRC KSC of RAS, Kazan, Russia
- Interdisciplinary Center for Analytical Microscopy, Kazan Federal University, Kazan, Russia
| | - V. L. Kudryavtseva
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - K. A. Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - V. V. Malashchenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - N. M. Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - V. Popova
- School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - R. I. Litvinov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - E. I. Korotkova
- School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - G. B. Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - A. J. Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - D. Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - E. N. Atochina-Vasserman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: E. N. Atochina-Vasserman,
| | - I. A. Khlusov
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Department of Morphology and General Pathology, Siberian State Medical University, Tomsk, Russia
- Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia
| |
Collapse
|
20
|
Bomba HN, Carey‐Ewend A, Sheets KT, Valdivia A, Goetz M, Findlay IA, Mercer‐Smith A, Kass LE, Khagi S, Hingtgen SD. Use of
FLOSEAL
® as a scaffold and its impact on induced neural stem cell phenotype, persistence, and efficacy. Bioeng Transl Med 2022; 7:e10283. [PMID: 35600639 PMCID: PMC9115686 DOI: 10.1002/btm2.10283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 01/15/2023] Open
Abstract
Induced neural stem cells (iNSCs) have emerged as a promising therapeutic platform for glioblastoma (GBM). iNSCs have the innate ability to home to tumor foci, making them ideal carriers for antitumor payloads. However, the in vivo persistence of iNSCs limits their therapeutic potential. We hypothesized that by encapsulating iNSCs in the FDA‐approved, hemostatic matrix FLOSEAL®, we could increase their persistence and, as a result, therapeutic durability. Encapsulated iNSCs persisted for 95 days, whereas iNSCs injected into the brain parenchyma persisted only 2 weeks in mice. Two orthotopic GBM tumor models were used to test the efficacy of encapsulated iNSCs. In the GBM8 tumor model, mice that received therapeutic iNSCs encapsulated in FLOSEAL® survived 30 to 60 days longer than mice that received nonencapsulated cells. However, the U87 tumor model showed no significant differences in survival between these two groups, likely due to the more solid and dense nature of the tumor. Interestingly, the interaction of iNSCs with FLOSEAL® appears to downregulate some markers of proliferation, anti‐apoptosis, migration, and therapy which could also play a role in treatment efficacy and durability. Our results demonstrate that while FLOSEAL® significantly improves iNSC persistence, this alone is insufficient to enhance therapeutic durability.
Collapse
Affiliation(s)
- Hunter N. Bomba
- Division of Pharmacoengineering and Molecular Pharmaceutics UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Abigail Carey‐Ewend
- Division of Pharmacoengineering and Molecular Pharmaceutics UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Kevin T. Sheets
- Division of Pharmacoengineering and Molecular Pharmaceutics UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Alain Valdivia
- Division of Pharmacoengineering and Molecular Pharmaceutics UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Morgan Goetz
- Division of Pharmacoengineering and Molecular Pharmaceutics UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Ingrid A. Findlay
- Division of Pharmacoengineering and Molecular Pharmaceutics UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Alison Mercer‐Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Lauren E. Kass
- Division of Pharmacoengineering and Molecular Pharmaceutics UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Simon Khagi
- Department of Neurosurgery The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Shawn D. Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
- Lineberger Comprehensive Cancer Center The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| |
Collapse
|
21
|
Attia N, Mashal M, Pemminati S, Omole A, Edmondson C, Jones W, Priyadarshini P, Mughal T, Aziz P, Zenick B, Perez A, Lacken M. Cell-Based Therapy for the Treatment of Glioblastoma: An Update from Preclinical to Clinical Studies. Cells 2021; 11:116. [PMID: 35011678 PMCID: PMC8750228 DOI: 10.3390/cells11010116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 01/12/2023] Open
Abstract
Glioblastoma (GB), an aggressive primary tumor of the central nervous system, represents about 60% of all adult primary brain tumors. It is notorious for its extremely low (~5%) 5-year survival rate which signals the unsatisfactory results of the standard protocol for GB therapy. This issue has become, over time, the impetus for the discipline of bringing novel therapeutics to the surface and challenging them so they can be improved. The cell-based approach in treating GB found its way to clinical trials thanks to a marvelous number of preclinical studies that probed various types of cells aiming to combat GB and increase the survival rate. In this review, we aimed to summarize and discuss the up-to-date preclinical studies that utilized stem cells or immune cells to treat GB. Likewise, we tried to summarize the most recent clinical trials using both cell categories to treat or prevent recurrence of GB in patients. As with any other therapeutics, cell-based therapy in GB is still hampered by many drawbacks. Therefore, we highlighted several novel techniques, such as the use of biomaterials, scaffolds, nanoparticles, or cells in the 3D context that may depict a promising future when combined with the cell-based approach.
Collapse
Affiliation(s)
- Noha Attia
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
- Laboratory of Pharmaceutics, NanoBioCel Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Histology and Cell Biology Department, Faculty of Medicine, University of Alexandria, Alexandria 21561, Egypt
| | - Mohamed Mashal
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
- Laboratory of Pharmaceutics, NanoBioCel Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Sudhakar Pemminati
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Adekunle Omole
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Carolyn Edmondson
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Will Jones
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Priyanka Priyadarshini
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Temoria Mughal
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Pauline Aziz
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Blesing Zenick
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Ambar Perez
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Morgan Lacken
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| |
Collapse
|
22
|
Mercer-Smith AR, Jiang W, Bago JR, Valdivia A, Thang M, Woodell AS, Montgomery SA, Sheets KT, Anders CK, Hingtgen SD. Cytotoxic Engineered Induced Neural Stem Cells as an Intravenous Therapy for Primary Non-Small Cell Lung Cancer and Triple-Negative Breast Cancer. Mol Cancer Ther 2021; 20:2291-2301. [PMID: 34433662 DOI: 10.1158/1535-7163.mct-21-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/30/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022]
Abstract
Converting human fibroblasts into personalized induced neural stem cells (hiNSC) that actively seek out tumors and deliver cytotoxic agents is a promising approach for treating cancer. Herein, we provide the first evidence that intravenously-infused hiNSCs secreting cytotoxic agent home to and suppress the growth of non-small cell lung cancer (NSCLC) and triple-negative breast cancer (TNBC). Migration of hiNSCs to NSCLC and TNBC in vitro was investigated using time-lapse motion analysis, which showed directional movement of hiNSCs to both tumor cell lines. In vivo, migration of intravenous hiNSCs to orthotopic NSCLC or TNBC tumors was determined using bioluminescent imaging (BLI) and immunofluorescent post-mortem tissue analysis, which indicated that hiNSCs colocalized with tumors within 3 days of intravenous administration and persisted through 14 days. In vitro, efficacy of hiNSCs releasing cytotoxic TRAIL (hiNSC-TRAIL) was monitored using kinetic imaging of co-cultures, in which hiNSC-TRAIL therapy induced rapid killing of both NSCLC and TNBC. Efficacy was determined in vivo by infusing hiNSC-TRAIL or control cells intravenously into mice bearing orthotopic NSCLC or TNBC and tracking changes in tumor volume using BLI. Mice treated with intravenous hiNSC-TRAIL showed a 70% or 72% reduction in NSCLC or TNBC tumor volume compared with controls within 14 or 21 days, respectively. Safety was assessed by hematology, blood chemistry, and histology, and no significant changes in these safety parameters was observed through 28 days. These results indicate that intravenous hiNSCs-TRAIL seek out and kill NSCLC and TNBC tumors, suggesting a potential new strategy for treating aggressive peripheral cancers.
Collapse
Affiliation(s)
- Alison R Mercer-Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Wulin Jiang
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Juli R Bago
- Department of Hemato-Oncology, University of Ostrava, Ostrava, Czech Republic
| | - Alain Valdivia
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Morrent Thang
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alex S Woodell
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Stephanie A Montgomery
- Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kevin T Sheets
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Carey K Anders
- Department of Medicine, Duke University, Durham, North Carolina
| | - Shawn D Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
- Department of Neurosurgery, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
23
|
Takayama Y, Kusamori K, Nishikawa M. Mesenchymal stem/stromal cells as next-generation drug delivery vehicles for cancer therapeutics. Expert Opin Drug Deliv 2021; 18:1627-1642. [PMID: 34311638 DOI: 10.1080/17425247.2021.1960309] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Drug delivery to solid tumors remains a significant therapeutic challenge. Mesenchymal stem/stromal cells (MSCs) home to tumor tissues and can be employed as tumor targeted drug/gene delivery vehicles. Reportedly, therapeutic gene- or anti-cancer drug-loaded MSCs have shown remarkable anti-tumor effects in preclinical studies, and some clinical trials for assessing therapeutic MSCs in patients with cancer have been registered. AREAS COVERED In the present review, we first discuss the source and interdonor heterogeneity of MSCs, their tumor-homing mechanism, and the route of MSC administration in MSC-based cancer therapy. We then summarize the therapeutic applications of MSCs as a drug delivery vehicle for therapeutic genes or anti-cancer drugs and the drug delivery mechanism from drug-loaded MSCs to cancer cells. EXPERT OPINION Although numerous preclinical studies have revealed significant anti-tumor effects, several clinical trials assessing MSC-based cancer gene therapy have failed to demonstrate corroborative results, documenting limited therapeutic effects. Notably, a successful clinical outcome with MSC-based cancer therapy would require the interdonor heterogeneity of administered MSCs to be resolved, along with improved tumor-homing efficiency and optimized drug delivery efficiency from MSCs to cancer cells.
Collapse
Affiliation(s)
- Yukiya Takayama
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba Japan
| | - Kosuke Kusamori
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba Japan
| | - Makiya Nishikawa
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba Japan
| |
Collapse
|
24
|
Zhang GL, Wang CF, Qian C, Ji YX, Wang YZ. Role and mechanism of neural stem cells of the subventricular zone in glioblastoma. World J Stem Cells 2021; 13:877-893. [PMID: 34367482 PMCID: PMC8316865 DOI: 10.4252/wjsc.v13.i7.877] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/16/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma multiforme (GBM), the most frequently occurring malignant brain tumor in adults, remains mostly untreatable. Because of the heterogeneity of invasive gliomas and drug resistance associated with the tumor microenvironment, the prognosis is poor, and the survival rate of patients is low. Communication between GBMs and non-glioma cells in the tumor microenvironment plays a vital role in tumor growth and recurrence. Emerging data have suggested that neural stem cells (NSCs) in the subventricular zone (SVZ) are the cells-of-origin of gliomas, and SVZ NSC involvement is associated with the progression and recurrence of GBM. This review highlights the interaction between SVZ NSCs and gliomas, summarizes current findings on the crosstalk between gliomas and other non-glioma cells, and describes the links between SVZ NSCs and gliomas. We also discuss the role and mechanism of SVZ NSCs in glioblastoma, as well as the interventions targeting the SVZ and their therapeutic implications in glioblastoma. Taken together, understanding the biological mechanism of glioma-NSC interactions can lead to new therapeutic strategies for GBM.
Collapse
Affiliation(s)
- Gui-Long Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong Province, China
| | - Chuan-Fang Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong Province, China
| | - Cheng Qian
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong Province, China
| | - Yun-Xiang Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong Province, China
| | - Ye-Zhong Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong Province, China
| |
Collapse
|
25
|
Abadi B, Shahsavani Y, Faramarzpour M, Rezaei N, Rahimi HR. Antidepressants with anti-tumor potential in treating glioblastoma: A narrative review. Fundam Clin Pharmacol 2021; 36:35-48. [PMID: 34212424 DOI: 10.1111/fcp.12712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 06/13/2021] [Accepted: 06/25/2021] [Indexed: 11/30/2022]
Abstract
Glioblastoma multiforme (GBM) is known as the deadliest form of brain tumor. In addition, its high treatment resistance, heterogeneity, and invasiveness make it one of the most challenging tumors. Depression is a common psychological disorder among patients with cancer, especially GBM. Due to the high occurrence rates of depression in GBM patients and the overlap of molecular and cellular mechanisms involved in the pathogenesis of these diseases, finding antidepressants with antitumor effects could be considered as an affordable strategy for the treatment of GBM. Antidepressants exert their antitumor properties through different mechanisms. According to available evidence in this regard, some of them can eliminate the adverse effects resulting from chemo-radiotherapy in several cancers along with their synergistic effects caused by chemotherapy. Therefore, providing comprehensive insight into this issue would guide scientists and physicians in developing further preclinical studies and clinical trials, in order to evaluate antidepressants' antitumor potential. Considering that no narrative review has been recently published on this issue, specifically on these classes of drugs, we present this article with the purpose of describing the antitumor cellular mechanisms of three classes of antidepressants as follows: tricyclic antidepressants (TCAs), selective serotonin reuptake inhibitors (SSRIs), and monoamine oxidase inhibitors (MAOIs) in GBM.
Collapse
Affiliation(s)
- Banafshe Abadi
- Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Yasamin Shahsavani
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.,Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahsa Faramarzpour
- Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hamid-Reza Rahimi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
26
|
Mercer-Smith AR, Findlay IA, Bomba HN, Hingtgen SD. Intravenously Infused Stem Cells for Cancer Treatment. Stem Cell Rev Rep 2021; 17:2025-2041. [PMID: 34138421 DOI: 10.1007/s12015-021-10192-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 01/14/2023]
Abstract
Despite the recent influx of immunotherapies and small molecule drugs to treat tumors, cancer remains a leading cause of death in the United States, in large part due to the difficulties of treating metastatic cancer. Stem cells, which are inherently tumoritropic, provide a useful drug delivery vehicle to target both primary and metastatic tumors. Intravenous infusions of stem cells carrying or secreting therapeutic payloads show significant promise in the treatment of cancer. Stem cells may be engineered to secrete cytotoxic products, loaded with oncolytic viruses or nanoparticles containing small molecule drugs, or conjugated with immunotherapies. Herein we describe these preclinical and clinical studies, discuss the distribution and migration of stem cells following intravenous infusion, and examine both the limitations of and the methods to improve the migration and therapeutic efficacy of tumoritropic, therapeutic stem cells.
Collapse
Affiliation(s)
- Alison R Mercer-Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, North Carolina, Chapel Hill, 27599, USA
| | - Ingrid A Findlay
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, North Carolina, Chapel Hill, 27599, USA
| | - Hunter N Bomba
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, North Carolina, Chapel Hill, 27599, USA
| | - Shawn D Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, North Carolina, Chapel Hill, 27599, USA. .,Department of Neurosurgery, The University of North Carolina at Chapel Hill, North Carolina, Chapel Hill, 27599, USA.
| |
Collapse
|
27
|
Jiang W, Yang Y, Mercer-Smith AR, Valdivia A, Bago JR, Woodell AS, Buckley AA, Marand MH, Qian L, Anders CK, Hingtgen SD. Development of next-generation tumor-homing induced neural stem cells to enhance treatment of metastatic cancers. SCIENCE ADVANCES 2021; 7:eabf1526. [PMID: 34108203 PMCID: PMC8189583 DOI: 10.1126/sciadv.abf1526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 04/23/2021] [Indexed: 05/08/2023]
Abstract
Engineered tumor-homing neural stem cells (NSCs) have shown promise in treating cancer. Recently, we transdifferentiated skin fibroblasts into human-induced NSCs (hiNSC) as personalized NSC drug carriers. Here, using a SOX2 and spheroidal culture-based reprogramming strategy, we generated a new hiNSC variant, hiNeuroS, that was genetically distinct from fibroblasts and first-generation hiNSCs and had significantly enhanced tumor-homing and antitumor properties. In vitro, hiNeuroSs demonstrated superior migration to human triple-negative breast cancer (TNBC) cells and in vivo rapidly homed to TNBC tumor foci following intracerebroventricular (ICV) infusion. In TNBC parenchymal metastasis models, ICV infusion of hiNeuroSs secreting the proapoptotic agent TRAIL (hiNeuroS-TRAIL) significantly reduced tumor burden and extended median survival. In models of TNBC leptomeningeal carcinomatosis, ICV dosing of hiNeuroS-TRAIL therapy significantly delayed the onset of tumor formation and extended survival when administered as a prophylactic treatment, as well as reduced tumor volume while prolonging survival when delivered as established tumor therapy.
Collapse
Affiliation(s)
- Wulin Jiang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27588, USA
| | - Yuchen Yang
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27588, USA
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27588, USA
| | - Alison R Mercer-Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27588, USA
| | - Alain Valdivia
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27588, USA
| | - Juli R Bago
- Department of Hemato-Oncology, University Hospital of Ostrava, 708 52 Ostrava, Czech Republic
- Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic
| | - Alex S Woodell
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27588, USA
| | - Andrew A Buckley
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27588, USA
| | - Michael H Marand
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27588, USA
| | - Li Qian
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27588, USA
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27588, USA
| | - Carey K Anders
- Department of Medicine, Duke University, North Carolina, 27710, USA
| | - Shawn D Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27588, USA.
- Department of Neurosurgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27588, USA
| |
Collapse
|
28
|
Biomimetic Nanotechnology: A Natural Path Forward for Tumor-Selective and Tumor-Specific NIR Activable Photonanomedicines. Pharmaceutics 2021; 13:pharmaceutics13060786. [PMID: 34070233 PMCID: PMC8225032 DOI: 10.3390/pharmaceutics13060786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022] Open
Abstract
The emergence of biomimetic nanotechnology has seen an exponential rise over the past decade with applications in regenerative medicine, immunotherapy and drug delivery. In the context of nanomedicines activated by near infrared (NIR) photodynamic processes (photonanomedicines; PNMs), biomimetic nanotechnology is pushing the boundaries of activatable tumor targeted nanoscale drug delivery systems. This review discusses how, by harnessing a unique collective of biological processes critical to targeting of solid tumors, biomimetic PNMs (bPNMs) can impart tumor cell specific and tumor selective photodynamic therapy-based combination regimens. Through molecular immune evasion and self-recognition, bPNMs can confer both tumor selectivity (preferential bulk tumor accumulation) and tumor specificity (discrete molecular affinity for cancer cells), respectively. They do so in a manner that is akin, yet arguably superior, to synthetic molecular-targeted PNMs. A particular emphasis is made on how bPNMs can be engineered to circumvent tumor cell heterogeneity, which is considered the Achilles’ heel of molecular targeted therapeutics. Forward-looking propositions are also presented on how patient tumor heterogeneity can ultimately be recapitulated to fabricate patient-specific, heterogeneity-targeting bPNMs.
Collapse
|
29
|
Calinescu AA, Kauss MC, Sultan Z, Al-Holou WN, O'Shea SK. Stem cells for the treatment of glioblastoma: a 20-year perspective. CNS Oncol 2021; 10:CNS73. [PMID: 34006134 PMCID: PMC8162173 DOI: 10.2217/cns-2020-0026] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma, the deadliest form of primary brain tumor, remains a disease without cure. Treatment resistance is in large part attributed to limitations in the delivery and distribution of therapeutic agents. Over the last 20 years, numerous preclinical studies have demonstrated the feasibility and efficacy of stem cells as antiglioma agents, leading to the development of trials to test these therapies in the clinic. In this review we present and analyze these studies, discuss mechanisms underlying their beneficial effect and highlight experimental progress, limitations and the emergence of promising new therapeutic avenues. We hope to increase awareness of the advantages brought by stem cells for the treatment of glioblastoma and inspire further studies that will lead to accelerated implementation of effective therapies. Glioblastoma is the deadliest and most common form of brain tumor, for which there is no cure. It is very difficult to deliver medicine to the tumor cells, because they spread out widely into the normal brain, and local blood vessels represent a barrier that most medicines cannot cross. It was shown, in many studies over the last 20 years, that stem cells are attracted toward the tumor and that they can deliver many kinds of therapeutic agents directly to brain cancer cells and shrink the tumor. In this review we analyze these studies and present new discoveries that can be used to make stem cell therapies for glioblastoma more effective to prolong the life of patients with brain tumors.
Collapse
Affiliation(s)
| | - McKenzie C Kauss
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,College of Literature Science & Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zain Sultan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wajd N Al-Holou
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sue K O'Shea
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
30
|
Stem cell-based therapy treating glioblastoma multiforme. Hematol Oncol Stem Cell Ther 2021; 14:1-15. [PMID: 32971031 DOI: 10.1016/j.hemonc.2020.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/20/2020] [Accepted: 08/14/2020] [Indexed: 01/27/2023] Open
Abstract
Glioblastoma (GB) is one of the most malignant types of central nervous system tumours, classified as grade IV by the World Health Organization. Despite the therapeutic advances, the prognosis is ominous, with a median survival of about 12-15 months post diagnosis. Although therapeutic options available can increase the survival, they are ineffective in treating patients with GB. Impairing factors such as the blood-brain barrier, cancer stem cells, and infiltration into brain parenchyma lead to failure of current therapies. Therefore, clinicians need novel/alternative effective strategies to treat GB. Due to their ability to preserve healthy tissues and to provide an effective and long-lasting response, stem cells (SCs) with tropism for tumour cells have attracted considerable attention in the scientific community. As is the case here, SCs can be used to target brain tumour cancer cells, especially high-grade malignant gliomas like GB, by overcoming the resistance and exerting benefits for patients affected with such lethal disease. Herein, we will discuss the research knowledge regarding SC-based therapy for the treatment of GB, focalising our attention on SCs and SC-released extracellular vesicles modified to express/load different antitumour payloads, as well as on SCs exploited as a diagnostic tool. Advantages and unresolved issues of anticancer SC-based therapy will also be considered.
Collapse
|
31
|
Luo GF, Chen WH, Zeng X, Zhang XZ. Cell primitive-based biomimetic functional materials for enhanced cancer therapy. Chem Soc Rev 2021; 50:945-985. [PMID: 33226037 DOI: 10.1039/d0cs00152j] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cell primitive-based functional materials that combine the advantages of natural substances and nanotechnology have emerged as attractive therapeutic agents for cancer therapy. Cell primitives are characterized by distinctive biological functions, such as long-term circulation, tumor specific targeting, immune modulation etc. Moreover, synthetic nanomaterials featuring unique physical/chemical properties have been widely used as effective drug delivery vehicles or anticancer agents to treat cancer. The combination of these two kinds of materials will catalyze the generation of innovative biomaterials with multiple functions, high biocompatibility and negligible immunogenicity for precise cancer therapy. In this review, we summarize the most recent advances in the development of cell primitive-based functional materials for cancer therapy. Different cell primitives, including bacteria, phages, cells, cell membranes, and other bioactive substances are introduced with their unique bioactive functions, and strategies in combining with synthetic materials, especially nanoparticulate systems, for the construction of function-enhanced biomaterials are also summarized. Furthermore, foreseeable challenges and future perspectives are also included for the future research direction in this field.
Collapse
Affiliation(s)
- Guo-Feng Luo
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | | | | | | |
Collapse
|
32
|
Piña-Sánchez P, Chávez-González A, Ruiz-Tachiquín M, Vadillo E, Monroy-García A, Montesinos JJ, Grajales R, Gutiérrez de la Barrera M, Mayani H. Cancer Biology, Epidemiology, and Treatment in the 21st Century: Current Status and Future Challenges From a Biomedical Perspective. Cancer Control 2021; 28:10732748211038735. [PMID: 34565215 PMCID: PMC8481752 DOI: 10.1177/10732748211038735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Since the second half of the 20th century, our knowledge about the biology of cancer has made extraordinary progress. Today, we understand cancer at the genomic and epigenomic levels, and we have identified the cell that starts neoplastic transformation and characterized the mechanisms for the invasion of other tissues. This knowledge has allowed novel drugs to be designed that act on specific molecular targets, the immune system to be trained and manipulated to increase its efficiency, and ever more effective therapeutic strategies to be developed. Nevertheless, we are still far from winning the war against cancer, and thus biomedical research in oncology must continue to be a global priority. Likewise, there is a need to reduce unequal access to medical services and improve prevention programs, especially in countries with a low human development index.
Collapse
Affiliation(s)
- Patricia Piña-Sánchez
- Oncology Research Unit, Oncology Hospital, Mexican Institute of Social Security, Mexico
| | | | - Martha Ruiz-Tachiquín
- Oncology Research Unit, Oncology Hospital, Mexican Institute of Social Security, Mexico
| | - Eduardo Vadillo
- Oncology Research Unit, Oncology Hospital, Mexican Institute of Social Security, Mexico
| | - Alberto Monroy-García
- Oncology Research Unit, Oncology Hospital, Mexican Institute of Social Security, Mexico
| | - Juan José Montesinos
- Oncology Research Unit, Oncology Hospital, Mexican Institute of Social Security, Mexico
| | - Rocío Grajales
- Department of Medical Oncology, Oncology Hospital, Mexican Institute of Social Security, Mexico
| | - Marcos Gutiérrez de la Barrera
- Oncology Research Unit, Oncology Hospital, Mexican Institute of Social Security, Mexico
- Clinical Research Division, Oncology Hospital, Mexican Institute of Social Security, Mexico
| | - Hector Mayani
- Oncology Research Unit, Oncology Hospital, Mexican Institute of Social Security, Mexico
| |
Collapse
|
33
|
Bomba HN, Sheets KT, Valdivia A, Khagi S, Ruterbories L, Mariani CL, Borst LB, Tokarz DA, Hingtgen SD. Personalized-induced neural stem cell therapy: Generation, transplant, and safety in a large animal model. Bioeng Transl Med 2021; 6:e10171. [PMID: 33532581 PMCID: PMC7823134 DOI: 10.1002/btm2.10171] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 12/24/2022] Open
Abstract
In this study, we take an important step toward clinical translation by generating the first canine-induced neural stem cells (iNSCs). We explore key aspects of scale-up, persistence, and safety of personalized iNSC therapy in autologous canine surgery models. iNSCs are a promising new approach to treat aggressive cancers of the brain, including the deadly glioblastoma. Created by direct transdifferentiation of fibroblasts, iNSCs are known to migrate through the brain, track down invasive cancer foci, and deliver anticancer payloads that significantly reduce tumor burden and extend survival of tumor-bearing mice. Here, skin biopsies were collected from canines and converted into the first personalized canine iNSCs engineered to carry TNFα-related apoptosis-inducing ligand (TRAIL) and thymidine kinase (TK), as well as magnetic resonance imaging (MRI) contrast agents for in vivo tracking. Time-lapse analysis showed canine iNSCs efficiently migrate to human tumor cells, and cell viability assays showed both TRAIL and TK monotherapy markedly reduced tumor growth. Using intraoperative navigation and two delivery methods to closely mimic human therapy, canines received autologous iNSCs either within postsurgical cavities in a biocompatible matrix or via a catheter placed in the lateral ventricle. Both strategies were well tolerated, and serial MRI showed hypointense regions at the implant sites that remained stable through 86 days postimplant. Serial fluid sample testing following iNSC delivery showed the bimodal personalized therapy was well tolerated, with no iNSC-induced abnormal tissue pathology. Overall, this study lays an important foundation as this promising personalized cell therapy advances toward human patient testing.
Collapse
Affiliation(s)
- Hunter N. Bomba
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Kevin T. Sheets
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Alain Valdivia
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Simon Khagi
- Department of NeurosurgeryThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Laura Ruterbories
- Department of Clinical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Christopher L. Mariani
- Department of Clinical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Comparative Medicine InstituteNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Luke B. Borst
- Department of Population Health and Pathobiology, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Debra A. Tokarz
- Department of Population Health and Pathobiology, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Shawn D. Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
34
|
Carey-Ewend AG, Hagler SB, Bomba HN, Goetz MJ, Bago JR, Hingtgen SD. Developing Bioinspired Three-Dimensional Models of Brain Cancer to Evaluate Tumor-Homing Neural Stem Cell Therapy. Tissue Eng Part A 2020; 27:857-866. [PMID: 33085922 DOI: 10.1089/ten.tea.2020.0113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Engineered neural stem cells (NSCs) have recently emerged as a promising therapy. Acting as a tumor-homing drug-delivery system, NSCs migrate through brain tissue to seek out primary and invasive tumor foci. NSCs can deliver therapeutic agents, such as TNFα-related apoptosis-inducing ligand, directly to the tumor and suppress glioblastoma (GBM) in murine models. While the mainstays for evaluating NSC migration and efficacy have been two-dimensional chemotaxis assays and mouse models, these low-throughput and small-scale systems limit our ability to implant and track these cells for human translation. To circumvent these challenges, we developed a three-dimensional culture system using a matrix of poly-l-lactic acid 6100 microfibers suspended in agar. These bioinspired brain matrices were used to model tumor growth, NSC migration, and efficacy of NSC therapy at small and human scale. Kinetic fluorescent imaging confirmed growth of tumors in both small and human-sized bioinspired brain matrix. Tumors proliferated 50-fold and 3-fold for GBM and human metastatic breast cancer, respectively, over 7 days. We next explored the impact of tumor location on NSC migration. When NSCs were implanted 2 mm lateral from the tumor foci, NSCs colocalized with the GBM within 7 days. In models of multifocal disease, NSCs were found to colocalize with multiple tumors, preferentially migrating to tumor foci closest to the site of NSC implantation. Lastly, therapeutic NSCs were implanted at increasing distances (0, 2, 5, or 10 mm) laterally from GBM foci to investigate the effects of distance on NSC efficacy. Serial imaging showed reduced fluorescence at tumor sites, implicating GBM apoptosis across all distances. NSCs coinjected with tumor induced a near-complete response in <10 days, while NSCs implanted 10 mm laterally from the tumor induced a near-complete response by day 30. Lastly, GBM foci were established in each hemisphere of the model and control or therapeutic NSCs were implanted adjacent to tumor cells in the right hemisphere. Kinetic imaging showed that NSC therapy attenuated progression of GBM foci, while GBM cells treated with control NSC expanded rapidly over 21 days. In conclusion, we developed a new bioinspired model that supports growth of human brain cancer cells and enables rapid tracking of NSC therapy. Impact statement Tumor-homing and tumor-killing-engineered neural stem cell (NSC) therapies have shown immense promise in both preclinical and clinical trials. However, as cell therapies continue to evolve, cost-effective and high-throughput screening assays are needed to assess the proliferation, migration, and efficacy of these cells. In this study, we developed a bioinspired brain matrix for the evaluation of engineered NSCs. Importantly, this matrix is easy to fabricate, scalable, and allows for sterile real-time, noninvasive imaging using our custom bioreactor. We then utilized the bioinspired brain matrix system to answer key questions around the tumor-homing migration and efficacy of engineered NSC therapies that are challenging to address with traditional models.
Collapse
Affiliation(s)
- Abigail G Carey-Ewend
- Department of Pharmaceutical Sciences, Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shaye B Hagler
- Department of Pharmaceutical Sciences, Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Hunter N Bomba
- Department of Pharmaceutical Sciences, Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Morgan J Goetz
- Department of Pharmaceutical Sciences, Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Juli R Bago
- Department of Hemato-Oncology, University Hospital of Ostrava, Ostrava, Czech Republic
| | - Shawn D Hingtgen
- Department of Pharmaceutical Sciences, Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
35
|
Dual-engineered, “Trojanized” macrophages bio-modally eradicate tumors through biologically and photothermally deconstructing cancer cells in an on-demand, NIR-commanded, self-explosive manner. Biomaterials 2020; 250:120021. [DOI: 10.1016/j.biomaterials.2020.120021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 12/20/2022]
|
36
|
Luzzi S, Giotta Lucifero A, Brambilla I, Trabatti C, Mosconi M, Savasta S, Foiadelli T. The impact of stem cells in neuro-oncology: applications, evidence, limitations and challenges. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:51-60. [PMID: 32608375 PMCID: PMC7975826 DOI: 10.23750/abm.v91i7-s.9955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/19/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Stem cells (SCs) represent a recent and attractive therapeutic option for neuro-oncology, as well as for treating degenerative, ischemic and traumatic pathologies of the central nervous system. This is mainly because of their homing capacity, which makes them capable of reaching the inaccessible SC niches of the tumor, therefore, acting as living drugs. The target of the study is a comprehensive overview of the SC-based therapies in neuro-oncology, also highlighting the current translational challenges of this type of approach. METHODS An online search of the literature was carried out on the PubMed/MEDLINE and ClinicalTrials.gov websites, restricting it to the most pertinent keywords regarding the systematization of the SCs and their therapeutic use for malignant brain tumors. A large part of the search was dedicated to clinical trials. Only preclinical and clinical data belonging to the last 5 years were shortlisted. A further sorting was implemented based on the best match and relevance. RESULTS The results consisted in 96 relevant articles and 31 trials. Systematization involves a distinction between human embryonic, fetal and adult, but also totipotent, pluripotent or multipotent SCs. Mesenchymal and neuronal SCs were the most studied for neuro-oncological illnesses. 30% and 50% of the trials were phase I and II, respectively. CONCLUSION Mesenchymal and neuronal SCs are ideal candidates for SCs-based therapy of malignant brain tumors. The spectrum of their possible applications is vast and is mainly based on the homing capacity toward the tumor microenvironment. Availability, delivery route, oncogenicity and ethical issues are the main translational challenges concerning the use of SCs in neuro-oncology.
Collapse
Affiliation(s)
- Sabino Luzzi
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Alice Giotta Lucifero
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.
| | - Ilaria Brambilla
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| | - Chiara Trabatti
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| | - Mario Mosconi
- c and Traumatology Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.
| | - Salvatore Savasta
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| | - Thomas Foiadelli
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| |
Collapse
|
37
|
Moore KM, Murthy AB, Graham-Gurysh EG, Hingtgen SD, Bachelder EM, Ainslie KM. Polymeric Biomaterial Scaffolds for Tumoricidal Stem Cell Glioblastoma Therapy. ACS Biomater Sci Eng 2020; 6:3762-3777. [PMID: 33463324 PMCID: PMC10373914 DOI: 10.1021/acsbiomaterials.0c00477] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glioblastoma (GBM) is the most common primary brain tumor and has a poor prognosis; as such, there is an urgent need to develop innovative new therapies. Tumoricidal stem cells are an emerging therapy that has the potential to combat limitations of traditional local and systemic chemotherapeutic strategies for GBM by providing a source for high, sustained concentrations of tumoricidal agents locally to the tumor. One major roadblock for tumoricidal stem cell therapy is that the persistence of tumoricidal stem cells injected as a cell suspension into the GBM surgical resection cavity is limited. Polymeric biomaterial scaffolds have been utilized to enhance the delivery of tumoricidal stem cells in the surgical resection cavity and extend their persistence in the brain, ultimately increasing their therapeutic efficacy against GBM. In this review, we examine three main scaffold categories explored for tumoricidal stem cell therapy: microcapsules, hydrogels, and electrospun scaffolds. Furthermore, considering the significant impact of surgery on the brain and recurrent GBM, we survey a brief history of orthotopic models of GBM surgical resection.
Collapse
Affiliation(s)
- Kathryn M Moore
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27599, United States
| | - Ananya B Murthy
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Elizabeth G Graham-Gurysh
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Shawn D Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kristy M Ainslie
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27599, United States.,Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
38
|
Ruff M, Kizilbash S, Buckner J. Further understanding of glioma mechanisms of pathogenesis: implications for therapeutic development. Expert Rev Anticancer Ther 2020; 20:355-363. [PMID: 32301635 DOI: 10.1080/14737140.2020.1757440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Recent discoveries in the molecular makeup of gliomas, the relationship of certain molecular drivers, and the patient's response to therapy and overall prognosis have resulted in a paradigm shift and redefined our understanding of glioma and revealed potential vulnerabilities within this recalcitrant and lethal disease.Areas covered: We summarize the current classification of malignant glioma in the context of the historical background, current data-driven treatment strategies, and recent discoveries of the mechanisms of pathogenesis of this disease which recapitulates the developing brain. We describe the relationship to common genetic alterations found in glioma, and possible avenues to exploit these newly revealed mechanisms.Expert opinion: Improved understanding of the molecular underpinnings of this disease has been directly translated into treatment decisions and an improved ability to counsel patients regarding their prognosis. We are beginning to see the first glimmer of a return on the investment in regard to immunotherapy in malignant glioma, with further anticipated successful exploitations of the unique pathophysiology of glioma.
Collapse
Affiliation(s)
- Michael Ruff
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.,Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Sani Kizilbash
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Jan Buckner
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
39
|
Generation and Profiling of Tumor-Homing Induced Neural Stem Cells from the Skin of Cancer Patients. Mol Ther 2020; 28:1614-1627. [PMID: 32402245 DOI: 10.1016/j.ymthe.2020.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/13/2020] [Accepted: 04/23/2020] [Indexed: 12/22/2022] Open
Abstract
The conversion of human fibroblasts into personalized induced neural stem cells (iNSCs) that actively seek out tumors and deliver cytotoxic agents is a highly promising approach for treating various types of cancer. However, the ability to generate iNSCs from the skin of cancer patients has not been explored. Here, we take an important step toward clinical application by generating iNSCs from skin biopsies of human patients undergoing treatment for the aggressive brain cancer, glioblastoma (GBM). We then utilized a panel of functional and genomic studies to investigate the efficacy and tumor-homing capacity of these patient-derived cells, as well as genomic analysis, to characterize the impact of interpatient variability on this personalized cell therapy. From the skin-tissue biopsies, we established fibroblasts and transdifferentiated the cells into iNSCs. Genomic and functional testing revealed marked variability in growth rates, therapeutic agent production, and gene expression during fibroblast-to-iNSC conversion among patient lines. In vivo testing showed patient-derived iNSCs home to tumors, yet rates and expression of homing-related pathways varied among patients. With the use of surgical-resection mouse models of invasive human cluster of differentiation 133+ (CD133+) GBM cells and serial kinetic imaging, we found that "high-performing" patient-derived iNSC lines reduced the volume of GBM cells 60-fold and extended survival from 28 to 45 days. Treatment with "low-performing" patient lines had minimal effect on tumor growth, but the anti-tumor effect could be rescued by increasing the intracavity dose. Together, these data show, for the first time, that tumor-homing iNSCs can be generated from the skin of cancer patients and efficaciously suppress tumor growth. We also begin to define genetic markers that could be used to identify cells that will contain the most effective attributes for tumor homing and kill in human patients, including high gene expression of the semaphorin-3B (SEMA3B), which is known to be involved in neuronal cell migration. These studies should serve as an important guide toward clinical GBM therapy, where the personalized nature of optimized iNSC therapy has the potential to avoid transplant rejection and maximize treatment durability.
Collapse
|
40
|
Facklam AL, Volpatti LR, Anderson DG. Biomaterials for Personalized Cell Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902005. [PMID: 31495970 DOI: 10.1002/adma.201902005] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/26/2019] [Indexed: 05/13/2023]
Abstract
Cell therapy has already had an important impact on healthcare and provided new treatments for previously intractable diseases. Notable examples include mesenchymal stem cells for tissue regeneration, islet transplantation for diabetes treatment, and T cell delivery for cancer immunotherapy. Biomaterials have the potential to extend the therapeutic impact of cell therapies by serving as carriers that provide 3D organization and support cell viability and function. With the growing emphasis on personalized medicine, cell therapies hold great potential for their ability to sense and respond to the biology of an individual patient. These therapies can be further personalized through the use of patient-specific cells or with precision biomaterials to guide cellular activity in response to the needs of each patient. Here, the role of biomaterials for applications in tissue regeneration, therapeutic protein delivery, and cancer immunotherapy is reviewed, with a focus on progress in engineering material properties and functionalities for personalized cell therapies.
Collapse
Affiliation(s)
- Amanda L Facklam
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Lisa R Volpatti
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Daniel G Anderson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
41
|
Moore KM, Graham-Gurysh EG, Bomba HN, Murthy AB, Bachelder EM, Hingtgen SD, Ainslie KM. Impact of composite scaffold degradation rate on neural stem cell persistence in the glioblastoma surgical resection cavity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110846. [PMID: 32279815 DOI: 10.1016/j.msec.2020.110846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/12/2020] [Indexed: 10/24/2022]
Abstract
Tumoricidal neural stem cells (NSCs) are an emerging therapy to combat glioblastoma (GBM). This therapy employs genetically engineered NSCs that secrete tumoricidal agents to seek out and kill tumor foci remaining after GBM surgical resection. Biomaterial scaffolds have previously been utilized to deliver NSCs to the resection cavity. Here, we investigated the impact of scaffold degradation rate on NSC persistence in the brain resection cavity. Composite acetalated dextran (Ace-DEX) gelatin electrospun scaffolds were fabricated with two distinct degradation profiles created by changing the ratio of cyclic to acyclic acetal coverage of Ace-DEX. In vitro, fast degrading scaffolds were fully degraded by one week, whereas slow degrading scaffolds had a half-life of >56 days. The scaffolds also retained distinct degradation profiles in vivo. Two different NSC lines readily adhered to and remained viable on Ace-DEX gelatin scaffolds, in vitro. Therapeutic NSCs secreting tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) had the same TRAIL output as tissue culture treated polystyrene (TCPS) when seeded on both scaffolds. Furthermore, secreted TRAIL was found to be highly potent against the human derived GBM cell line, GBM8, in vitro. Firefly luciferase expressing NSCs were seeded on scaffolds, implanted in a surgical resection cavity and their persistence in the brain was monitored by bioluminescent imaging (BLI). NSC loaded scaffolds were compared to a direct injection (DI) of NSCs in suspension, which is the current clinical approach to NSC therapy for GBM. Fast and slow degrading scaffolds enhanced NSC implantation efficiency 2.87 and 3.08-fold over DI, respectively. Interestingly, scaffold degradation profile did not significantly impact NSC persistence. However, persistence and long-term survival of NSCs was significantly greater for both scaffolds compared to DI, with scaffold implanted NSCs still detected by BLI at day 120 in most mice. Overall, these results highlight the benefit of utilizing a scaffold for application of tumoricidal NSC therapy for GBM.
Collapse
Affiliation(s)
- Kathryn M Moore
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA
| | - Elizabeth G Graham-Gurysh
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Hunter N Bomba
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Ananya B Murthy
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Shawn D Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA; Department of Neurosurgery, UNC School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Kristy M Ainslie
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA; Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA; Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
42
|
Hossain JA, Marchini A, Fehse B, Bjerkvig R, Miletic H. Suicide gene therapy for the treatment of high-grade glioma: past lessons, present trends, and future prospects. Neurooncol Adv 2020; 2:vdaa013. [PMID: 32642680 PMCID: PMC7212909 DOI: 10.1093/noajnl/vdaa013] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Suicide gene therapy has represented an experimental cancer treatment modality for nearly 40 years. Among the various cancers experimentally treated by suicide gene therapy, high-grade gliomas have been the most prominent both in preclinical and clinical settings. Failure of a number of promising suicide gene therapy strategies in the clinic pointed toward a bleak future of this approach for the treatment of high-grade gliomas. Nevertheless, the development of new vectors and suicide genes, better prodrugs, more efficient delivery systems, and new combinatorial strategies represent active research areas that may eventually lead to better efficacy of suicide gene therapy. These trends are evident by the current increasing focus on suicide gene therapy for high-grade glioma treatment both in the laboratory and in the clinic. In this review, we give an overview of different suicide gene therapy approaches for glioma treatment and discuss clinical trials, delivery issues, and immune responses.
Collapse
Affiliation(s)
- Jubayer A Hossain
- Department of Biomedicine, University of Bergen, Bergen, Norway.,Haukeland University Hospital, Bergen, Norway.,Department of Oncology, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Antonio Marchini
- Department of Oncology, Luxembourg Institute of Health, Strassen, Luxembourg.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Boris Fehse
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rolf Bjerkvig
- Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Oncology, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Hrvoje Miletic
- Department of Biomedicine, University of Bergen, Bergen, Norway.,Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
43
|
Dong H, Xu X, Wang L, Mo R. Advances in living cell-based anticancer therapeutics. Biomater Sci 2020; 8:2344-2365. [DOI: 10.1039/d0bm00036a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review summarizes recent advances in the applications of living cells as drug carriers or active drugs for anticancer drug delivery and cancer therapy.
Collapse
Affiliation(s)
- He Dong
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
| | - Xiao Xu
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
| | - Leikun Wang
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
| | - Ran Mo
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
| |
Collapse
|
44
|
Aquib M, Juthi AZ, Farooq MA, Ali MG, Janabi AHW, Bavi S, Banerjee P, Bhosale R, Bavi R, Wang B. Advances in local and systemic drug delivery systems for post-surgical cancer treatment. J Mater Chem B 2020; 8:8507-8518. [DOI: 10.1039/d0tb00987c] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Graphical representation of local and systemic drug delivery systems.
Collapse
Affiliation(s)
- Md Aquib
- Department of Pharmaceutics
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- People's Republic of China
| | - Ajkia Zaman Juthi
- Department of Biochemistry and Molecular Biology
- School of life Science
- University of Science and Technology of China
- Hefei City
- People's Republic of China
| | - Muhammad Asim Farooq
- Department of Pharmaceutics
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- People's Republic of China
| | - Manasik Gumah Ali
- Antibody Engineering Laboratory
- School of Life Science & Technology
- China Pharmaceutical University
- Nanjing
- People's Republic of China
| | | | - Sneha Bavi
- Axiom Market Research and ConsultingTM
- Pune 411007
- India
| | - Parikshit Banerjee
- School of Pharmacy, Faculty of Medicine
- The Chinese University of Hong Kong
- New Territories
- People's Republic of China
| | - Raghunath Bhosale
- School of Chemical Sciences
- Punyashlok Ahilyadevi Holkar Solapur University
- Solapur
- India
| | - Rohit Bavi
- School of Chemical Sciences
- Punyashlok Ahilyadevi Holkar Solapur University
- Solapur
- India
- State Key Laboratory of Natural Medicines
| | - Bo Wang
- Department of Pharmaceutics
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- People's Republic of China
| |
Collapse
|
45
|
Reprogramming Fibroblasts to Neural Stem Cells by Overexpression of the Transcription Factor Ptf1a. Methods Mol Biol 2020; 2117:245-263. [PMID: 31960384 DOI: 10.1007/978-1-0716-0301-7_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Neural stem cells (NSCs) have the features of both neural progenitors and stem cells, and show great potentials in translational research and regenerative medicine. Studies on NSCs have been greatly accelerated by the introduction of induced neural stem cells (iNSCs). The iNSCs are usually differentiated from induced pluripotent stem cells (iPSCs) or transdifferentiated from somatic cells such as fibroblasts or glial cells. Here, we describe a detailed protocol to reprogram human and mouse fibroblasts into iNSCs by overexpression of a transcription factor Ptf1a delivered by lentiviruses. The obtained iNSC lines have a strong self-renewal ability and are capable of differentiating into various types of neurons, astrocytes, and oligodendrocytes both in vitro and in vivo. The protocol is quite simple but powerful to produce iNSC lines.
Collapse
|
46
|
Satterlee AB, Dunn DE, Lo DC, Khagi S, Hingtgen S. Tumoricidal stem cell therapy enables killing in novel hybrid models of heterogeneous glioblastoma. Neuro Oncol 2019; 21:1552-1564. [PMID: 31420675 PMCID: PMC6917409 DOI: 10.1093/neuonc/noz138] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Tumor-homing tumoricidal neural stem cell (tNSC) therapy is a promising new strategy that recently entered human patient testing for glioblastoma (GBM). Developing strategies for tNSC therapy to overcome intratumoral heterogeneity, variable cancer cell invasiveness, and differential drug response of GBM will be essential for efficacious treatment response in the clinical setting. The aim of this study was to create novel hybrid tumor models and investigate the impact of GBM heterogeneity on tNSC therapies. METHODS We used organotypic brain slice explants and distinct human GBM cell types to generate heterogeneous models ex vivo and in vivo. We then tested the efficacy of mono- and combination therapy with primary NSCs and fibroblast-derived human induced neural stem cells (iNSCs) engineered with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or enzyme-prodrug therapy. RESULTS Optical imaging, molecular assays, and immunohistochemistry revealed that the hybrid models recapitulated key aspects of patient GBM, including heterogeneity in TRAIL sensitivity, proliferation, migration patterns, hypoxia, blood vessel structure, cancer stem cell populations, and immune infiltration. To explore the impact of heterogeneity on tNSC therapy, testing in multiple in vivo models showed that tNSC-TRAIL therapy potently inhibited tumor growth and significantly increased survival across all paradigms. Patterns of tumor recurrence varied with therapeutic (tNSC-TRAIL and/or tNSC-thymidine kinase), dose, and route of administration. CONCLUSIONS These studies report new hybrid models that accurately capture key aspects of GBM heterogeneity which markedly impact treatment response while demonstrating the ability of tNSC mono- and combination therapy to overcome certain aspects of heterogeneity for robust tumor kill.
Collapse
Affiliation(s)
- Andrew B Satterlee
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Denise E Dunn
- Center for Drug Discovery and Department of Neurobiology, Duke University Medical Center, Durham, North Carolina
| | - Donald C Lo
- Center for Drug Discovery and Department of Neurobiology, Duke University Medical Center, Durham, North Carolina
| | - Simon Khagi
- Division of Hematology/Oncology, Department of Medicine; Division of Neuro-oncology, Department of Neurosurgery Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Shawn Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
47
|
Bu LL, Yan J, Wang Z, Ruan H, Chen Q, Gunadhi V, Bell RB, Gu Z. Advances in drug delivery for post-surgical cancer treatment. Biomaterials 2019; 219:119182. [DOI: 10.1016/j.biomaterials.2019.04.027] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 02/08/2023]
|
48
|
Lutz H, Hu S, Dinh PU, Cheng K. Cells and cell derivatives as drug carriers for targeted delivery. MEDICINE IN DRUG DISCOVERY 2019; 3:100014. [PMID: 38596257 PMCID: PMC11003759 DOI: 10.1016/j.medidd.2020.100014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
For over a century, researchers have focused on how to optimize drug delivery. Systemic administration means that the drug becomes dilute and has the potential to diffuse to all tissues, which is only until the immune system steps in and rapidly clears it from blood circulation. Drug carriers are the solution for amplifying the intended effect and diminishing side effects. With drug carriers, tissue-specific drug delivery and controlled drug release is possible. Thus far, both synthetic and non-synthetic carriers exist. However, due to the numerous limitations of synthetic carriers, science has begun to concentrate on using live cells and cell-derivatives as drug carriers. The most problematic shortcomings of synthetic carriers are their limited biocompatibility and biodegradability. Most synthetic carriers are cytotoxic or induce immune responses. Moreover, synthetic carriers typically depend on passive diffusion and risk phagocytosis, further reducing their impact. On the other hand, live-cell carriers and their derivatives usually have a targeting mechanism and drug release is controlled, increasing the efficiency with which a drug accumulates and acts on a tissue. Still, both types of carriers face similar problems, including achieving high loading capacity, maintaining drug quality, efficiently accumulating in the target tissue, and minimizing side effects. This review aims to elucidate the advantages and disadvantages of each popular cell or cell-derived carrier and to spotlight novel solutions.
Collapse
Affiliation(s)
- Halle Lutz
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, United States
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, United States
| | - Phuong-Uyen Dinh
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, United States
| | - Ke Cheng
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, United States
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27607, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
49
|
Adipose-derived stromal cell secretome disrupts autophagy in glioblastoma. J Mol Med (Berl) 2019; 97:1491-1506. [PMID: 31401659 DOI: 10.1007/s00109-019-01829-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 07/21/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022]
Abstract
Mesenchymal stromal cells (MSCs) are frequently recruited to tumor sites to play a part in the tumor microenvironment (TME). However, their real impact on cancer cell behavior remains obscure. Here we investigated the effects of human adipose-derived stromal cell (hADSC) secretome in autophagy of glioblastoma (GBM), as a way to better comprehend how hADSCs influence the TME. GBM U-87 MG cells were treated with conditioned medium (CM) from hADSCs and autophagic flux was evaluated. hADSC CM treatment blocked the autophagic flux in tumor cells, as indicated by the accumulation of autophagosomes in the cytosol, the high LC3-II and p62/SQSTM1 protein levels, and the lack of increase in the amount of acidic vesicular organelles. These effects were further detected in other GBM cell lines tested and also in co-cultures of hADSCs and U-87 MG. hADSC CM did not compromise lysosomal acidification; however, it was able to activate mTORC1 signaling and, as a consequence, led to a decrease in the nuclear translocation of TFEB, a master transcriptional regulator of lysosomal biogenesis and autophagy, thereby contributing to a defective autophagic process. hADSCs secrete transforming growth factor beta 1 (TGFβ1) and this cytokine is an important mediator of CM effects on autophagy. A comprehensive knowledge of MSC roles in tumor biology is of great importance to shed light on the complex dialog between these cells and to explore such interactions therapeutically. The present results help to elucidate the paracrine effects of MSCs in tumors and bring attention to the potential to be explored in MSC secretome. KEY MESSAGES: hADSC secretome specifically affects the biology of GBM cells. hADSCs block the late steps of autophagic flux in GBM cells. hADSC secretome activates mTORC1 signaling and reduces TFEB nuclear translocation in GBM cells.
Collapse
|
50
|
Abstract
Glioblastoma ranks among the most lethal of all human cancers. Glioblastomas display striking cellular heterogeneity, with stem-like glioblastoma stem cells (GSCs) at the apex. Although the original identification of GSCs dates back more than a decade, the purification and characterization of GSCs remains challenging. Despite these challenges, the evidence that GSCs play important roles in tumor growth and response to therapy has grown. Like normal stem cells, GSCs are functionally defined and distinguished from their differentiated tumor progeny at core transcriptional, epigenetic, and metabolic regulatory levels, suggesting that no single therapeutic modality will be universally effective against a heterogenous GSC population. Glioblastomas induce a systemic immunosuppression with mixed responses to oncoimmunologic modalities, suggesting the potential for augmentation of response with a deeper consideration of GSCs. Unfortunately, the GSC literature has been complicated by frequent use of inferior cell lines and a lack of proper functional analyses. Collectively, glioblastoma offers a reliable cancer to study cancer stem cells to better model the human disease and inform improved biologic understanding and design of novel therapeutics.
Collapse
Affiliation(s)
- Ryan C Gimple
- Division of Regenerative Medicine, Department of Medicine, University of California at San Diego, La Jolla, California 92037, USA
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Shruti Bhargava
- Division of Regenerative Medicine, Department of Medicine, University of California at San Diego, La Jolla, California 92037, USA
| | - Deobrat Dixit
- Division of Regenerative Medicine, Department of Medicine, University of California at San Diego, La Jolla, California 92037, USA
| | - Jeremy N Rich
- Division of Regenerative Medicine, Department of Medicine, University of California at San Diego, La Jolla, California 92037, USA
- Department of Neurosciences, University of California at San Diego School of Medicine, La Jolla, California 92037, USA
| |
Collapse
|