1
|
Karaman S, Lehti S, Zhang C, Taskinen MR, Käkelä R, Mardinoglu A, Brorson H, Alitalo K, Kivelä R. Multi-omics characterization of lymphedema-induced adipose tissue resulting from breast cancer-related surgery. FASEB J 2024; 38:e70097. [PMID: 39394863 DOI: 10.1096/fj.202400498rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 10/14/2024]
Abstract
Secondary lymphedema (LE) following breast cancer-related surgery is a life-long complication, which currently has no cure. LE induces significant regional adipose tissue deposition, requiring liposuction as a treatment. Here, we aimed to elucidate the transcriptional, metabolomic, and lipidomic signature of the adipose tissue developed due to the surgery-induced LE in short- and long-term LE patients and compared the transcriptomic landscape of LE adipose tissue to the obesity-induced adipose tissue. Adipose tissue biopsies were obtained from breast cancer-operated females with LE from the affected and non-affected arms (n = 20 patients). To decipher the molecular properties of the LE adipose tissue, we performed RNA sequencing, metabolomics, and lipidomics combined with bioinformatics analyses. Differential gene expression data from a cohort of lean and obese patients without LE was used for comparisons. Integrative analysis of functional genomics revealed that inflammatory response, cell chemotaxis, and angiogenesis were upregulated biological processes in the LE arm, indicating a sustained inflammation in the edematous adipose tissue; whereas, epidermal differentiation, cell-cell junction organization, water homeostasis, and neurogenesis were downregulated in the LE arm. Surprisingly, only a few genes were found to be the same in the LE-induced and the obesity-induced adipose tissue expansion, indicating a different type of adipose tissue development in these two conditions. In metabolomics analysis, we found reduced levels of a branched-chain amino acid valine in the LE arm and downregulation of the mRNA levels of its transporter SLC6A15. Lipidomics analyses did not show any significant differences between the LE and non-LE arms, suggesting that other factors affect the lipid composition of the adipose tissue more than the LE in these patients. Our results provide a detailed molecular characterization of adipose tissue in secondary LE after breast cancer-related surgery. We also show distinct differences in transcriptomic signatures between LE-induced adipose tissue and obesity-induced adipose tissue, but only minor differences in metabolome and lipidome between the LE and the non-LE arm.
Collapse
Affiliation(s)
- Sinem Karaman
- Wihuri Research Institute, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Satu Lehti
- Wihuri Research Institute, Helsinki, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Cheng Zhang
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Marja-Riitta Taskinen
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Reijo Käkelä
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE) and Biocenter Finland, Helsinki, Finland
- Molecular and Integrative Biosciences Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Håkan Brorson
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
- Plastic and Reconstructive Surgery, Skåne University Hospital, Malmö, Sweden
- Lund University Cancer Centre, Lund, Sweden
- Department of Health Sciences, Faculty of Medicine, Health & Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Kari Alitalo
- Wihuri Research Institute, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Riikka Kivelä
- Wihuri Research Institute, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- Stem Cell and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Kim HJ, Norton CE, Zawieja SD, Castorena-Gonzalez JA, Davis MJ. Acute Metabolic Stress Induces Lymphatic Dysfunction Through KATP Channel Activation. FUNCTION 2024; 5:zqae033. [PMID: 39075985 PMCID: PMC11384908 DOI: 10.1093/function/zqae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/26/2024] [Accepted: 07/13/2024] [Indexed: 07/31/2024] Open
Abstract
Lymphatic dysfunction is an underlying component of multiple metabolic diseases, including diabetes, obesity, and metabolic syndrome. We investigated the roles of KATP channels in lymphatic contractile dysfunction in response to acute metabolic stress induced by inhibition of the mitochondrial electron transport chain. Ex vivo popliteal lymphatic vessels from mice were exposed to the electron transport chain inhibitors antimycin A and rotenone, or the oxidative phosphorylation inhibitor/protonophore, CCCP. Each inhibitor led to a significant reduction in the frequency of spontaneous lymphatic contractions and calculated pump flow, without a significant change in contraction amplitude. Contraction frequency was restored by the KATP channel inhibitor, glibenclamide. Lymphatic vessels from mice with global Kir6.1 deficiency or expressing a smooth muscle-specific dominant negative Kir6.1 channel were resistant to inhibition. Antimycin A inhibited the spontaneous action potentials generated in lymphatic muscle and this effect was reversed by glibenclamide, confirming the role of KATP channels. Antimycin A, but not rotenone or CCCP, increased dihydrorhodamine fluorescence in lymphatic muscle, indicating ROS production. Pretreatment with tiron or catalase prevented the effect of antimycin A on wild-type lymphatic vessels, consistent with its action being mediated by ROS. Our results support the conclusion that KATP channels in lymphatic muscle can be directly activated by reduced mitochondrial ATP production or ROS generation, consequent to acute metabolic stress, leading to contractile dysfunction through inhibition of the ionic pacemaker controlling spontaneous lymphatic contractions. We propose that a similar activation of KATP channels contributes to lymphatic dysfunction in metabolic disease.
Collapse
Affiliation(s)
- Hae Jin Kim
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO 65212, USA
| | - Charles E Norton
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO 65212, USA
| | - Scott D Zawieja
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO 65212, USA
| | | | - Michael J Davis
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
3
|
Brown S, Tadros AB, Montagna G, Bell T, Crowley F, Gallagher EJ, Dayan JH. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) may reduce the risk of developing cancer-related lymphedema following axillary lymph node dissection (ALND). Front Pharmacol 2024; 15:1457363. [PMID: 39318780 PMCID: PMC11420520 DOI: 10.3389/fphar.2024.1457363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024] Open
Abstract
Purpose Patients undergoing axillary lymph node dissection (ALND) for breast cancer face a high risk of lymphedema, further increased by high body mass index (BMI) and insulin resistance. GLP-1 receptor agonists (GLP-1RAs) have the potential to reduce these risk factors, but their role in lymphedema has never been investigated. The purpose of this study was to determine if GLP-RAs can reduce the risk of lymphedema in patients undergoing ALND. Methods All patients who underwent ALND at a tertiary cancer center between 2010 and 2023 were reviewed. Patients with less than 2 years of follow-up from the time of ALND were excluded. Race, BMI, radiation, chemotherapy history, pre-existing diagnosis of diabetes, lymphedema development after ALND, and the use of GLP-1RAs were analyzed. Multivariate logistic regression analysis was performed to assess if there was a significant reduction in the risk of developing lymphedema after ALND. A sub-group analysis of non-diabetic patients was also performed. Results 3,830 patients who underwent ALND were included, 76 of which were treated with. GLP-1 RAs. The incidence of lymphedema in the GLP-1 RA cohort was 6.6% (5 patients). Compared to 28.5% (1,071 patients) in the non-GLP-1 RA cohort. On multivariate regression analysis, patients who were treated with GLP-1 RA were 86% less likely to develop lymphedema compared to the non-GLP-1 RA cohort (OR 0.14, 95% CI 0.04-0.32, p < 0.0001). A BMI of 25 kg/m 2 or greater was a statistically significant risk factor for developing lymphedema with an odds ratio of 1.34 (95% CI 1.16-1.56, p < 0.0001). Diabetes was associated with lymphedema development that closely approached statistical significance (OR 1.32, 95% CI 0.97-1.78, p = 0.06). A subgroup analysis solely on non-diabetic patients showed similar results. The odds of developing lymphedema were 84% lower for patients without diabetes treated with GLP1-RAs compared to those who did not receive GLP-1 RAs (OR 0.16, 95% CI 0.05-0.40, p < 0.0001). Conclusion GLP1-RAs appear to significantly reduce the risk of lymphedema in patientsundergoing ALND. The mechanism of action may be multifactorial and not limited to weight reduction and insulin resistance. Future prospective analysis is warranted to clarify the role of GLP-1RAs in reducing lymphedema risk.
Collapse
Affiliation(s)
- Stav Brown
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Audree B. Tadros
- Department of Surgery, Breast Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Giacomo Montagna
- Department of Surgery, Breast Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Tajah Bell
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Fionnuala Crowley
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Brookdale Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Emily J. Gallagher
- Department of Medicine, Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Joseph H. Dayan
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- The Institute for Advanced Reconstruction, Plastic and Reconstructive Surgery, Red Bank, Paramus, NJ, United States
| |
Collapse
|
4
|
Lee SO, Kim IK. Molecular pathophysiology of secondary lymphedema. Front Cell Dev Biol 2024; 12:1363811. [PMID: 39045461 PMCID: PMC11264244 DOI: 10.3389/fcell.2024.1363811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/20/2024] [Indexed: 07/25/2024] Open
Abstract
Lymphedema occurs as a result of lymphatic vessel damage or obstruction, leading to the lymphatic fluid stasis, which triggers inflammation, tissue fibrosis, and adipose tissue deposition with adipocyte hypertrophy. The treatment of lymphedema is divided into conservative and surgical approaches. Among surgical treatments, methods like lymphaticovenular anastomosis and vascularized lymph node transfer are gaining attention as they focus on restoring lymphatic flow, constituting a physiologic treatment approach. Lymphatic endothelial cells form the structure of lymphatic vessels. These cells possess button-like junctions that facilitate the influx of fluid and leukocytes. Approximately 10% of interstitial fluid is connected to venous return through lymphatic capillaries. Damage to lymphatic vessels leads to lymphatic fluid stasis, resulting in the clinical condition of lymphedema through three mechanisms: Inflammation involving CD4+ T cells as the principal contributing factor, along with the effects of immune cells on the VEGF-C/VEGFR axis, consequently resulting in abnormal lymphangiogenesis; adipocyte hypertrophy and adipose tissue deposition regulated by the interaction of CCAAT/enhancer-binding protein α and peroxisome proliferator-activated receptor-γ; and tissue fibrosis initiated by the overactivity of Th2 cells, leading to the secretion of profibrotic cytokines such as IL-4, IL-13, and the growth factor TGF-β1. Surgical treatments aimed at reconstructing the lymphatic system help facilitate lymphatic fluid drainage, but their effectiveness in treating already damaged lymphatic vessels is limited. Therefore, reviewing the pathophysiology and molecular mechanisms of lymphedema is crucial to complement surgical treatments and explore novel therapeutic approaches.
Collapse
|
5
|
Fowler JWM, Song L, Tam K, Roth Flach RJ. Targeting lymphatic function in cardiovascular-kidney-metabolic syndrome: preclinical methods to analyze lymphatic function and therapeutic opportunities. Front Cardiovasc Med 2024; 11:1412857. [PMID: 38915742 PMCID: PMC11194411 DOI: 10.3389/fcvm.2024.1412857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/24/2024] [Indexed: 06/26/2024] Open
Abstract
The lymphatic vascular system spans nearly every organ in the body and serves as an important network that maintains fluid, metabolite, and immune cell homeostasis. Recently, there has been a growing interest in the role of lymphatic biology in chronic disorders outside the realm of lymphatic abnormalities, lymphedema, or oncology, such as cardiovascular-kidney-metabolic syndrome (CKM). We propose that enhancing lymphatic function pharmacologically may be a novel and effective way to improve quality of life in patients with CKM syndrome by engaging multiple pathologies at once throughout the body. Several promising therapeutic targets that enhance lymphatic function have already been reported and may have clinical benefit. However, much remains unclear of the discreet ways the lymphatic vasculature interacts with CKM pathogenesis, and translation of these therapeutic targets to clinical development is challenging. Thus, the field must improve characterization of lymphatic function in preclinical mouse models of CKM syndrome to better understand molecular mechanisms of disease and uncover effective therapies.
Collapse
Affiliation(s)
| | | | | | - Rachel J. Roth Flach
- Internal Medicine Research Unit, Pfizer Research and Development, Cambridge, MA, United States
| |
Collapse
|
6
|
Mohan G, Khan I, Diaz SM, Kamocka MM, Hulsman LA, Ahmed S, Neumann CR, Jorge MD, Gordillo GM, Sen CK, Sinha M, Hassanein AH. Quantification of Lymphangiogenesis in the Murine Lymphedema Tail Model Using Intravital Microscopy. Lymphat Res Biol 2024; 22:195-202. [PMID: 38699876 PMCID: PMC11310576 DOI: 10.1089/lrb.2023.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024] Open
Abstract
Background: Lymphedema is chronic limb swelling resulting from lymphatic dysfunction. It affects an estimated five million Americans. There is no cure for this disease. Assessing lymphatic growth is essential in developing novel therapeutics. Intravital microscopy (IVM) is a powerful imaging tool for investigating various biological processes in live animals. Tissue nanotransfection technology (TNT) facilitates a direct, transcutaneous nonviral vector gene delivery using a chip with nanochannel poration in a rapid (<100 ms) focused electric field. TNT was used in this study to deliver the genetic cargo in the murine tail lymphedema to assess the lymphangiogenesis. The purpose of this study is to experimentally evaluate the applicability of IVM to visualize and quantify lymphatics in the live mice model. Methods and Results: The murine tail model of lymphedema was utilized. TNT was applied to the murine tail (day 0) directly at the surgical site with genetic cargo loaded into the TNT reservoir: TNTpCMV6 group receives pCMV6 (expression vector backbone alone) (n = 6); TNTProx1 group receives pCMV6-Prox1 (n = 6). Lymphatic vessels (fluorescein isothiocyanate [FITC]-dextran stained) and lymphatic branch points (indicating lymphangiogenesis) were analyzed with the confocal/multiphoton microscope. The experimental group TNTProx1 exhibited reduced postsurgical tail lymphedema and increased lymphatic distribution compared to TNTpCMV6 group. More lymphatic branching points (>3-fold) were observed at the TNT site in TNTProx1 group. Conclusions: This study demonstrates a novel, powerful imaging tool for investigating lymphatic vessels in live murine tail model of lymphedema. IVM can be utilized for functional assessment of lymphatics and visualization of lymphangiogenesis following gene-based therapy.
Collapse
Affiliation(s)
- Ganesh Mohan
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Imran Khan
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Stephanie M. Diaz
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Malgorzata M. Kamocka
- Indiana Center for Biological Microscopy, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Luci A. Hulsman
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Shahnur Ahmed
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Colby R. Neumann
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Miguel D. Jorge
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Gayle M. Gordillo
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
- McGowan Institute for Regenerative Medicine, Department of Plastic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Chandan K. Sen
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mithun Sinha
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Aladdin H. Hassanein
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
7
|
Simeroth S, Yu P. The role of lymphatic endothelial cell metabolism in lymphangiogenesis and disease. Front Cardiovasc Med 2024; 11:1392816. [PMID: 38798921 PMCID: PMC11119333 DOI: 10.3389/fcvm.2024.1392816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/18/2024] [Indexed: 05/29/2024] Open
Abstract
Lymphatic endothelial cells (LECs) line lymphatic vessels, which play an important role in the transport of lymph fluid throughout the human body. An organized lymphatic network develops via a process termed "lymphangiogenesis." During development, LECs respond to growth factor signaling to initiate the formation of a primary lymphatic vascular network. These LECs display a unique metabolic profile, preferring to undergo glycolysis even in the presence of oxygen. In addition to their reliance on glycolysis, LECs utilize other metabolic pathways such as fatty acid β-oxidation, ketone body oxidation, mitochondrial respiration, and lipid droplet autophagy to support lymphangiogenesis. This review summarizes the current understanding of metabolic regulation of lymphangiogenesis. Moreover, it highlights how LEC metabolism is implicated in various pathological conditions.
Collapse
Affiliation(s)
- Summer Simeroth
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Pengchun Yu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
8
|
Bowman C, Rockson SG. The Role of Inflammation in Lymphedema: A Narrative Review of Pathogenesis and Opportunities for Therapeutic Intervention. Int J Mol Sci 2024; 25:3907. [PMID: 38612716 PMCID: PMC11011271 DOI: 10.3390/ijms25073907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Lymphedema is a chronic and progressive disease of the lymphatic system characterized by inflammation, increased adipose deposition, and tissue fibrosis. Despite early hypotheses identifying lymphedema as a disease of mechanical lymphatic disruption alone, the progressive inflammatory nature underlying this condition is now well-established. In this review, we provide an overview of the various inflammatory mechanisms that characterize lymphedema development and progression. These mechanisms contribute to the acute and chronic phases of lymphedema, which manifest clinically as inflammation, fibrosis, and adiposity. Furthermore, we highlight the interplay between current therapeutic modalities and the underlying inflammatory microenvironment, as well as opportunities for future therapeutic development.
Collapse
Affiliation(s)
- Catharine Bowman
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA;
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stanley G. Rockson
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA;
| |
Collapse
|
9
|
Carroll BJ, Singhal D. Advances in lymphedema: An under-recognized disease with a hopeful future for patients. Vasc Med 2024; 29:70-84. [PMID: 38166534 DOI: 10.1177/1358863x231215329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Lymphedema has traditionally been underappreciated by the healthcare community. Understanding of the underlying pathophysiology and treatments beyond compression have been limited until recently. Increased investigation has demonstrated the key role of inflammation and resultant fibrosis and adipose deposition leading to the clinical sequelae and associated reduction in quality of life with lymphedema. New imaging techniques including magnetic resonance imaging (MRI), indocyanine green lymphography, and high-frequency ultrasound offer improved resolution and understanding of lymphatic anatomy and flow. Nonsurgical therapy with compression, exercise, and weight loss remains the mainstay of therapy, but growing surgical options show promise. Physiologic procedures (lymphovenous anastomosis and vascularized lymph node transfers) improve lymphatic flow in the diseased limb and may reduce edema and the burden of compression. Debulking, primarily with liposuction to remove the adipose deposition that has accumulated, results in a dramatic decrease in limb girth in appropriately selected patients. Though early, there are also exciting developments of potential therapeutic targets tackling the underlying drivers of the disease. Multidisciplinary teams have developed to offer the full breadth of evaluation and current management, but the development of a greater understanding and availability of therapies is needed to ensure patients with lymphedema have greater opportunity for optimal care.
Collapse
Affiliation(s)
- Brett J Carroll
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Dhruv Singhal
- Division of Plastic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Zamora A, Nougué M, Verdu L, Balzan E, Draia-Nicolau T, Benuzzi E, Pujol F, Baillif V, Lacazette E, Morfoisse F, Galitzky J, Bouloumié A, Dubourdeau M, Chaput B, Fazilleau N, Malloizel-Delaunay J, Bura-Rivière A, Prats AC, Garmy-Susini B. 15-Lipoxygenase promotes resolution of inflammation in lymphedema by controlling T reg cell function through IFN-β. Nat Commun 2024; 15:221. [PMID: 38177096 PMCID: PMC10766617 DOI: 10.1038/s41467-023-43554-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/14/2023] [Indexed: 01/06/2024] Open
Abstract
Lymphedema (LD) is characterized by the accumulation of interstitial fluid, lipids and inflammatory cell infiltrate in the limb. Here, we find that LD tissues from women who developed LD after breast cancer exhibit an inflamed gene expression profile. Lipidomic analysis reveals decrease in specialized pro-resolving mediators (SPM) generated by the 15-lipoxygenase (15-LO) in LD. In mice, the loss of SPM is associated with an increase in apoptotic regulatory T (Treg) cell number. In addition, the selective depletion of 15-LO in the lymphatic endothelium induces an aggravation of LD that can be rescued by Treg cell adoptive transfer or ALOX15-expressing lentivector injections. Mechanistically, exogenous injections of the pro-resolving cytokine IFN-β restores both 15-LO expression and Treg cell number in a mouse model of LD. These results provide evidence that lymphatic 15-LO may represent a therapeutic target for LD by serving as a mediator of Treg cell populations to resolve inflammation.
Collapse
Affiliation(s)
- A Zamora
- I2MC, Université de Toulouse, Inserm UMR 1297, UT3, Toulouse, France
| | - M Nougué
- I2MC, Université de Toulouse, Inserm UMR 1297, UT3, Toulouse, France
| | - L Verdu
- I2MC, Université de Toulouse, Inserm UMR 1297, UT3, Toulouse, France
| | - E Balzan
- I2MC, Université de Toulouse, Inserm UMR 1297, UT3, Toulouse, France
| | - T Draia-Nicolau
- I2MC, Université de Toulouse, Inserm UMR 1297, UT3, Toulouse, France
| | - E Benuzzi
- I2MC, Université de Toulouse, Inserm UMR 1297, UT3, Toulouse, France
| | - F Pujol
- I2MC, Université de Toulouse, Inserm UMR 1297, UT3, Toulouse, France
| | | | - E Lacazette
- I2MC, Université de Toulouse, Inserm UMR 1297, UT3, Toulouse, France
| | - F Morfoisse
- I2MC, Université de Toulouse, Inserm UMR 1297, UT3, Toulouse, France
| | - J Galitzky
- I2MC, Université de Toulouse, Inserm UMR 1297, UT3, Toulouse, France
| | - A Bouloumié
- I2MC, Université de Toulouse, Inserm UMR 1297, UT3, Toulouse, France
| | | | - B Chaput
- Service de Chirurgie Plastique et des Brûlés, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - N Fazilleau
- Infinity, Toulouse Institute for Infectious and Inflammatory Diseases, Inserm UMR1291, CNRS UMR5051, University of Toulouse, 31024, Toulouse, France
| | - J Malloizel-Delaunay
- Service de Médecine Vasculaire, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - A Bura-Rivière
- Service de Médecine Vasculaire, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - A C Prats
- I2MC, Université de Toulouse, Inserm UMR 1297, UT3, Toulouse, France
| | - B Garmy-Susini
- I2MC, Université de Toulouse, Inserm UMR 1297, UT3, Toulouse, France.
| |
Collapse
|
11
|
Kawakami Z, Matsubara Y, Ogura K, Imamura S, Iizuka S, Zhang N, Matsumoto C, Fujitsuka N. Effect of Goreisan, a Traditional Japanese Medicine, on Rat Hindlimb Lymphedema. Biol Pharm Bull 2024; 47:1179-1188. [PMID: 38880626 DOI: 10.1248/bpb.b23-00829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Secondary lymphedema occurs after cancer surgery involving lymph node dissection owing to the lymphatic system dysfunction. However, the pathophysiology of lymphedema and the molecular pathways involved remain unknown. This study aimed to develop a rat hindlimb lymphedema model and investigate the mechanisms that drive pathophysiology and the effects of the traditional Japanese medicine goreisan on lymphedema. The rat lymphedema model was induced by combination surgeries of popliteal lymph node dissection, skin cautery incision, and fascial ablation coagulation in the right hindlimb using male Wistar rats. The foot volume was significantly increased, and recovery was delayed by combination surgeries. Dermal thickness and dilated lymphatic vessels of the hindlimb were observed on postoperative day 2. The number of infiltrating leukocytes (CD45+ cells), including CD4+ T-cells, increased in the lymphedema group compared with that in the sham group. The relative mRNA expression and protein levels of interleukin-6 (IL-6), CC chemokine ligand 2 (CCL2), transforming growth factor β1 (TGF-β1), and Fms-related receptor tyrosine kinase 4 (FLT4) were significantly higher in the lymphedema group than in the sham group. Foot volume was decreased by goreisan, furosemide, and prednisolone treatments. Goreisan diminished the increase in CD4+ T-cells, and the same trend was observed for CCL2 and FLT4 expression. In conclusion, the rat hindlimb lymphedema model in this study exhibited increased foot volume, skin-infiltrating cells, and pathological changes accompanied by inflammatory and fibrotic responses, suggesting that the model presented significant clinical features of lymphedema. Goreisan may exert a therapeutic effect on lymphedema by inhibiting CD4+ T-cell infiltration.
Collapse
Affiliation(s)
| | | | | | | | | | - Nana Zhang
- Tsumura Kampo Research Laboratories, Tsumura & Co
| | | | | |
Collapse
|
12
|
Kim D, Tian W, Wu TTH, Xiang M, Vinh R, Chang JL, Gu S, Lee S, Zhu Y, Guan T, Schneider EC, Bao E, Dixon JB, Kao P, Pan J, Rockson SG, Jiang X, Nicolls MR. Abnormal Lymphatic Sphingosine-1-Phosphate Signaling Aggravates Lymphatic Dysfunction and Tissue Inflammation. Circulation 2023; 148:1231-1249. [PMID: 37609838 PMCID: PMC10592179 DOI: 10.1161/circulationaha.123.064181] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Lymphedema is a global health problem with no effective drug treatment. Enhanced T-cell immunity and abnormal lymphatic endothelial cell (LEC) signaling are promising therapeutic targets for this condition. Sphingosine-1-phosphate (S1P) mediates a key signaling pathway required for normal LEC function, and altered S1P signaling in LECs could lead to lymphatic disease and pathogenic T-cell activation. Characterizing this biology is relevant for developing much needed therapies. METHODS Human and mouse lymphedema was studied. Lymphedema was induced in mice by surgically ligating the tail lymphatics. Lymphedematous dermal tissue was assessed for S1P signaling. To verify the role of altered S1P signaling effects in lymphatic cells, LEC-specific S1pr1-deficient (S1pr1LECKO) mice were generated. Disease progression was quantified by tail-volumetric and -histopathologic measurements over time. LECs from mice and humans, with S1P signaling inhibition, were then cocultured with CD4 T cells, followed by an analysis of CD4 T-cell activation and pathway signaling. Last, animals were treated with a monoclonal antibody specific to P-selectin to assess its efficacy in reducing lymphedema and T-cell activation. RESULTS Human and experimental lymphedema tissues exhibited decreased LEC S1P signaling through S1P receptor 1 (S1PR1). LEC S1pr1 loss-of-function exacerbated lymphatic vascular insufficiency, tail swelling, and increased CD4 T-cell infiltration in mouse lymphedema. LECs, isolated from S1pr1LECKO mice and cocultured with CD4 T cells, resulted in augmented lymphocyte differentiation. Inhibiting S1PR1 signaling in human dermal LECs promoted T-helper type 1 and 2 (Th1 and Th2) cell differentiation through direct cell contact with lymphocytes. Human dermal LECs with dampened S1P signaling exhibited enhanced P-selectin, an important cell adhesion molecule expressed on activated vascular cells. In vitro, P-selectin blockade reduced the activation and differentiation of Th cells cocultured with shS1PR1-treated human dermal LECs. P-selectin-directed antibody treatment improved tail swelling and reduced Th1/Th2 immune responses in mouse lymphedema. CONCLUSIONS This study suggests that reduction of the LEC S1P signaling aggravates lymphedema by enhancing LEC adhesion and amplifying pathogenic CD4 T-cell responses. P-selectin inhibitors are suggested as a possible treatment for this pervasive condition.
Collapse
Affiliation(s)
- Dongeon Kim
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Wen Tian
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Timothy Ting-Hsuan Wu
- Stanford University School of Medicine, Stanford, California, USA
- Department of Biochemistry, Stanford Bio-X, Stanford, California, USA
| | - Menglan Xiang
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Ryan Vinh
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Jason Lon Chang
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Shenbiao Gu
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Seunghee Lee
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Yu Zhu
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Torrey Guan
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Emilie Claire Schneider
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Evan Bao
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | | | - Peter Kao
- Stanford University School of Medicine, Stanford, California, USA
| | - Junliang Pan
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | | | - Xinguo Jiang
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Mark Robert Nicolls
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
13
|
Lee E, Chan SL, Lee Y, Polacheck WJ, Kwak S, Wen A, Nguyen DHT, Kutys ML, Alimperti S, Kolarzyk AM, Kwak TJ, Eyckmans J, Bielenberg DR, Chen H, Chen CS. A 3D biomimetic model of lymphatics reveals cell-cell junction tightening and lymphedema via a cytokine-induced ROCK2/JAM-A complex. Proc Natl Acad Sci U S A 2023; 120:e2308941120. [PMID: 37782785 PMCID: PMC10576061 DOI: 10.1073/pnas.2308941120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/04/2023] [Indexed: 10/04/2023] Open
Abstract
Impaired lymphatic drainage and lymphedema are major morbidities whose mechanisms have remained obscure. To study lymphatic drainage and its impairment, we engineered a microfluidic culture model of lymphatic vessels draining interstitial fluid. This lymphatic drainage-on-chip revealed that inflammatory cytokines that are known to disrupt blood vessel junctions instead tightened lymphatic cell-cell junctions and impeded lymphatic drainage. This opposing response was further demonstrated when inhibition of rho-associated protein kinase (ROCK) was found to normalize fluid drainage under cytokine challenge by simultaneously loosening lymphatic junctions and tightening blood vessel junctions. Studies also revealed a previously undescribed shift in ROCK isoforms in lymphatic endothelial cells, wherein a ROCK2/junctional adhesion molecule-A (JAM-A) complex emerges that is responsible for the cytokine-induced lymphatic junction zippering. To validate these in vitro findings, we further demonstrated in a genetic mouse model that lymphatic-specific knockout of ROCK2 reversed lymphedema in vivo. These studies provide a unique platform to generate interstitial fluid pressure and measure the drainage of interstitial fluid into lymphatics and reveal a previously unappreciated ROCK2-mediated mechanism in regulating lymphatic drainage.
Collapse
Affiliation(s)
- Esak Lee
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA02115
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA02215
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY14853
| | - Siu-Lung Chan
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
| | - Yang Lee
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
| | - William J. Polacheck
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA02115
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA02215
| | - Sukyoung Kwak
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
| | - Aiyun Wen
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
| | - Duc-Huy T. Nguyen
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA02115
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA02215
| | - Matthew L. Kutys
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA02115
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA02215
| | - Stella Alimperti
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA02115
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA02215
| | - Anna M. Kolarzyk
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY14853
| | - Tae Joon Kwak
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY14853
| | - Jeroen Eyckmans
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA02115
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA02215
| | - Diane R. Bielenberg
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
| | - Hong Chen
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
| | - Christopher S. Chen
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA02115
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA02215
| |
Collapse
|
14
|
Levitt JE, Hedlin H, Duong S, Lu D, Lee J, Bunning B, Elkarra N, Pinsky BA, Heffernan E, Springman E, Moss RB, Bonilla HF, Parsonnet J, Zamanian RT, Langguth JJ, Bollyky J, Khosla C, Nicolls MR, Desai M, Rogers AJ. Evaluation of Acebilustat, a Selective Inhibitor of Leukotriene B4 Biosynthesis, for Treatment of Outpatients With Mild-Moderate Coronavirus Disease 2019: A Randomized, Double-Blind, Placebo-Controlled Phase 2 Trial. Clin Infect Dis 2023; 77:186-193. [PMID: 36996150 PMCID: PMC10517095 DOI: 10.1093/cid/ciad187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND The vast majority of coronavirus disease 2019 (COVID-19) disease occurs in outpatients where treatment is limited to antivirals for high-risk subgroups. Acebilustat, a leukotriene B4 inhibitor, has potential to reduce inflammation and symptom duration. METHODS In a single-center trial spanning Delta and Omicron variants, outpatients were randomized to 100 mg/d of oral acebilustat or placebo for 28 days. Patients reported daily symptoms via electronic query through day 28 with phone follow-up on day 120 and collected nasal swab samples on days 1-10. The primary outcome was sustained symptom resolution to day 28. Secondary 28-day outcomes included time to first symptom resolution, area under the curve (AUC) for longitudinal daily symptom scores, duration of viral shedding through day 10, and symptoms on day 120. RESULTS Sixty participants were randomized to each study arm. At enrollment, the median duration was 4 days (interquartile range, 3-5 days), and the median number of symptoms was 9 (7-11). Most patients (90%) were vaccinated, with 73% having neutralizing antibodies. A minority of participants (44%; 35% in the acebilustat arm and 53% in placebo) had sustained symptom resolution at day 28 (hazard ratio, 0.6 [95% confidence interval, .34-1.04]; P = .07 favoring placebo). There was no difference in the mean AUC for symptom scores over 28 days (difference in mean AUC, 9.4 [95% confidence interval, -42.1 to 60.9]; P = .72). Acebilustat did not affect viral shedding or symptoms at day 120. CONCLUSIONS Sustained symptoms through day 28 were common in this low-risk population. Despite this, leukotriene B4 antagonism with acebilustat did not shorten symptom duration in outpatients with COVID-19. Clinical Trials Registration. NCT04662060.
Collapse
Affiliation(s)
- Joseph E Levitt
- Division of Pulmonary, Allergy, and Critical Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Haley Hedlin
- Quantitative Sciences Unit, Division of Biomedical Informatics Research, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sophie Duong
- Stanford Center for Clinical Research, Stanford, CA, USA
| | - Di Lu
- Quantitative Sciences Unit, Division of Biomedical Informatics Research, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Justin Lee
- Quantitative Sciences Unit, Division of Biomedical Informatics Research, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Bryan Bunning
- Quantitative Sciences Unit, Division of Biomedical Informatics Research, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Nadia Elkarra
- Stanford Center for Clinical Research, Stanford, CA, USA
| | - Benjamin A Pinsky
- Department of Pathology Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Richard B Moss
- Pediatrics (Pulmonary Medicine), Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Hector F Bonilla
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Julie Parsonnet
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Roham T Zamanian
- Division of Pulmonary, Allergy, and Critical Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Jenna Bollyky
- Stanford Innovative Medicines Accelerator, Stanford, CA, USA
| | - Chaitan Khosla
- Stanford Innovative Medicines Accelerator, Stanford, CA, USA
| | - Mark R Nicolls
- Division of Pulmonary, Allergy, and Critical Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Manisha Desai
- Quantitative Sciences Unit, Division of Biomedical Informatics Research, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Angela J Rogers
- Division of Pulmonary, Allergy, and Critical Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
15
|
Jannaway M, Iyer D, Mastrogiacomo DM, Li K, Sung DC, Yang Y, Kahn ML, Scallan JP. VEGFR3 is required for button junction formation in lymphatic vessels. Cell Rep 2023; 42:112777. [PMID: 37454290 PMCID: PMC10503778 DOI: 10.1016/j.celrep.2023.112777] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 06/01/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023] Open
Abstract
Lymphatic capillaries develop discontinuous cell-cell junctions that permit the absorption of large macromolecules, chylomicrons, and fluid from the interstitium. While excessive vascular endothelial growth factor 2 (VEGFR2) signaling can remodel and seal these junctions, whether and how VEGFR3 can alter lymphatic junctions remains incompletely understood. Here, we use lymphatic-specific Flt4 knockout mice to investigate VEGFR3 signaling in lymphatic junctions. We show that loss of Flt4 prevents specialized button junction formation in multiple tissues and impairs interstitial absorption. Knockdown of FLT4 in human lymphatic endothelial cells results in impaired NOTCH1 expression and activation, and overexpression of the NOTCH1 intracellular domain in Flt4 knockout vessels rescues the formation of button junctions and absorption of interstitial molecules. Together, our data reveal a requirement for VEGFR3 and NOTCH1 signaling in the development of button junctions during postnatal development and may hold clinical relevance to lymphatic diseases with impaired VEGFR3 signaling.
Collapse
Affiliation(s)
- Melanie Jannaway
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Drishya Iyer
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Diandra M Mastrogiacomo
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Kunyu Li
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Derek C Sung
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ying Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Mark L Kahn
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua P Scallan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
16
|
Brown S, Nores GDG, Sarker A, Ly C, Li C, Park HJ, Hespe GE, Gardenier J, Kuonqui K, Campbell A, Shin J, Kataru RP, Aras O, Mehrara BJ. Topical captopril: a promising treatment for secondary lymphedema. Transl Res 2023; 257:43-53. [PMID: 36736951 PMCID: PMC10192126 DOI: 10.1016/j.trsl.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
Transforming growth factor-beta 1 (TGF-β1)-mediated tissue fibrosis is an important regulator of lymphatic dysfunction in secondary lymphedema. However, TGF-β1 targeting can cause toxicity and autoimmune complications, limiting clinical utility. Angiotensin II (Ang II) modulates intracellular TGF-β1 signaling, and inhibition of Ang II production using angiotensin-converting enzyme (ACE) inhibitors, such as captopril, has antifibrotic efficacy in some pathological settings. Therefore, we analyzed the expression of ACE and Ang II in clinical lymphedema biopsy specimens from patients with unilateral breast cancer-related lymphedema (BCRL) and mouse models, and found that cutaneous ACE expression is increased in lymphedematous tissues. Furthermore, topical captopril decreases fibrosis, activation of intracellular TGF-β1 signaling pathways, inflammation, and swelling in mouse models of lymphedema. Captopril treatment also improves lymphatic function and immune cell trafficking by increasing collecting lymphatic pumping. Our results show that the renin-angiotensin system in the skin plays an important role in the regulation of fibrosis in lymphedema, and inhibition of this signaling pathway may hold merit for treating lymphedema.
Collapse
Affiliation(s)
- Stav Brown
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gabriela D G Nores
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ananta Sarker
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Catherine Ly
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Claire Li
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hyeung Ju Park
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Geoffrey E Hespe
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jason Gardenier
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kevin Kuonqui
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Adana Campbell
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jinyeon Shin
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Raghu P Kataru
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Omer Aras
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Babak J Mehrara
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
17
|
Kim D, Tian W, Wu TTH, Xiang M, Vinh R, Chang J, Gu S, Lee S, Zhu Y, Guan T, Schneider EC, Bao E, Dixon JB, Kao P, Pan J, Rockson SG, Jiang X, Nicolls MR. Abnormal lymphatic S1P signaling aggravates lymphatic dysfunction and tissue inflammation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.08.23291175. [PMID: 37398237 PMCID: PMC10312855 DOI: 10.1101/2023.06.08.23291175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
BACKGROUND Lymphedema is a global health problem with no effective drug treatment. Enhanced T cell immunity and abnormal lymphatic endothelial cell (LEC) signaling are promising therapeutic targets for this condition. Sphingosine-1-phosphate (S1P) mediates a key signaling pathway required for normal LEC function, and altered S1P signaling in LECs could lead to lymphatic disease and pathogenic T cell activation. Characterizing this biology is relevant for developing much-needed therapies. METHODS Human and mouse lymphedema was studied. Lymphedema was induced in mice by surgically ligating the tail lymphatics. Lymphedematous dermal tissue was assessed for S1P signaling. To verify the role of altered S1P signaling effects in lymphatic cells, LEC-specific S1pr1 -deficient ( S1pr1 LECKO ) mice were generated. Disease progression was quantified by tail-volumetric and -histopathological measurements over time. LECs from mice and humans, with S1P signaling inhibition, were then co-cultured with CD4 T cells, followed by an analysis of CD4 T cell activation and pathway signaling. Finally, animals were treated with a monoclonal antibody specific to P-selectin to assess its efficacy in reducing lymphedema and T cell activation. RESULTS Human and experimental lymphedema tissues exhibited decreased LEC S1P signaling through S1PR1. LEC S1pr1 loss-of-function exacerbated lymphatic vascular insufficiency, tail swelling, and increased CD4 T cell infiltration in mouse lymphedema. LECs, isolated from S1pr1 LECKO mice and co-cultured with CD4 T cells, resulted in augmented lymphocyte differentiation. Inhibiting S1PR1 signaling in human dermal LECs (HDLECs) promoted T helper type 1 and 2 (Th1 and Th2) cell differentiation through direct cell contact with lymphocytes. HDLECs with dampened S1P signaling exhibited enhanced P-selectin, an important cell adhesion molecule expressed on activated vascular cells. In vitro , P-selectin blockade reduced the activation and differentiation of Th cells co-cultured with sh S1PR1 -treated HDLECs. P-selectin-directed antibody treatment improved tail swelling and reduced Th1/Th2 immune responses in mouse lymphedema. CONCLUSION This study suggests that reduction of the LEC S1P signaling aggravates lymphedema by enhancing LEC adhesion and amplifying pathogenic CD4 T cell responses. P-selectin inhibitors are suggested as a possible treatment for this pervasive condition. Clinical Perspective What is New?: Lymphatic-specific S1pr1 deletion exacerbates lymphatic vessel malfunction and Th1/Th2 immune responses during lymphedema pathogenesis. S1pr1 -deficient LECs directly induce Th1/Th2 cell differentiation and decrease anti-inflammatory Treg populations. Peripheral dermal LECs affect CD4 T cell immune responses through direct cell contact.LEC P-selectin, regulated by S1PR1 signaling, affects CD4 T cell activation and differentiation.P-selectin blockade improves lymphedema tail swelling and decreases Th1/Th2 population in the diseased skin.What Are the Clinical Implications?: S1P/S1PR1 signaling in LECs regulates inflammation in lymphedema tissue.S1PR1 expression levels on LECs may be a useful biomarker for assessing predisposition to lymphatic disease, such as at-risk women undergoing mastectomyP-selectin Inhibitors may be effective for certain forms of lymphedema.
Collapse
Affiliation(s)
- Dongeon Kim
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Wen Tian
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Timothy Ting-Hsuan Wu
- Stanford University School of Medicine, Stanford, California, USA
- Department of Biochemistry, Stanford Bio-X, Stanford, California, USA
| | - Menglan Xiang
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Ryan Vinh
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Jason Chang
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Shenbiao Gu
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Seunghee Lee
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Yu Zhu
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Torrey Guan
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Emilie Claire Schneider
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Evan Bao
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | | | - Peter Kao
- Stanford University School of Medicine, Stanford, California, USA
| | - Junliang Pan
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | | | - Xinguo Jiang
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Mark Robert Nicolls
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
18
|
Brown S, Campbell AC, Kuonqui K, Sarker A, Park HJ, Shin J, Kataru RP, Coriddi M, Dayan JH, Mehrara BJ. The Future of Lymphedema: Potential Therapeutic Targets for Treatment. CURRENT BREAST CANCER REPORTS 2023; 15:1-9. [PMID: 37359311 PMCID: PMC10233555 DOI: 10.1007/s12609-023-00491-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 06/28/2023]
Abstract
Purpose of Review This review aims to summarize the current knowledge regarding the pharmacological interventions studied in both experimental and clinical trials for secondary lymphedema. Recent Findings Lymphedema is a progressive disease that results in tissue swelling, pain, and functional disability. The most common cause of secondary lymphedema in developed countries is an iatrogenic injury to the lymphatic system during cancer treatment. Despite its high incidence and severe sequelae, lymphedema is usually treated with palliative options such as compression and physical therapy. However, recent studies on the pathophysiology of lymphedema have explored pharmacological treatments in preclinical and early phase clinical trials. Summary Many potential treatment options for lymphedema have been explored throughout the past two decades including systemic agents and topical approaches to decrease the potential toxicity of systemic treatment. Treatment strategies including lymphangiogenic factors, anti-inflammatory agents, and anti-fibrotic therapies may be used independently or in conjunction with surgical approaches.
Collapse
Affiliation(s)
- Stav Brown
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065 USA
| | - Adana C. Campbell
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065 USA
| | - Kevin Kuonqui
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065 USA
| | - Ananta Sarker
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065 USA
| | - Hyeung Ju Park
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065 USA
| | - Jinyeon Shin
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065 USA
| | - Raghu P. Kataru
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065 USA
| | - Michelle Coriddi
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065 USA
| | - Joseph H. Dayan
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065 USA
| | - Babak J. Mehrara
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065 USA
| |
Collapse
|
19
|
Kim SA, Gelvosa MN, Cheon H, Jeon JY. The effects of postoperative treadmill exercise on rats with secondary lymphedema. PLoS One 2023; 18:e0285384. [PMID: 37220160 DOI: 10.1371/journal.pone.0285384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/20/2023] [Indexed: 05/25/2023] Open
Abstract
Cancer-related lymphedema (LE) is often caused by radiotherapy and surgery such as lymph node dissection (LND). Previous studies have reported that exercise is beneficial to relieve LE, but the changes in the lymphatic system following exercise are still unclear. This study aimed to examine the changes in lymphatic drainage pathways over the exercise period and beneficial effects of exercise in rats with LE. Twelve rats were randomly allocated into exercise and control groups (EG and CG; n = 6 each). To obtain LE, inguinal and popliteal LND followed by 20 Gy irradiation was performed. Treadmill exercise was 30 minutes/day, 5 days/week over the four-week period. Consecutive indocyanine green (ICG) lymphography images were collected and classified into five patterns: i) linear; ii) splash; iii) stardust; iv) diffuse, and v) none. Ankle thickness was measured weekly. Histopathological evaluation was performed to examine the skin thickness, collagen area fraction (%) and lymphatic vessel density in harvested tissue. ICG lymphography exhibited more linear and splash patterns in the EG at week 3. The difference of swelling between both groups was significantly different at week 4 (p = 0.016). Histopathologic data revealed a thinner epidermis (p = 0.041) and dermis (p = 0.002), lower collagen area fraction (%, p = 0.002), and higher lymph vessel density (p = 0.002) in the EG than the CG. In conclusion, we found that postoperative exercise can facilitate improvement in lymphatic fluid retention in the lymphedema rat model, resulting in improvement of pathological conditions in the lymphatic system.
Collapse
Affiliation(s)
- Sang Ah Kim
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Department of Biomedical Science, Graduate school of University of Ulsan College of Medicine, Seoul, Korea
| | - Ma Nessa Gelvosa
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hwayeong Cheon
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Jae Yong Jeon
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
20
|
Abstract
Kidney disease is associated with adverse consequences in many organs beyond the kidney, including the heart, lungs, brain, and intestines. The kidney-intestinal cross talk involves intestinal epithelial damage, dysbiosis, and generation of uremic toxins. Recent studies reveal that kidney injury expands the intestinal lymphatics, increases lymphatic flow, and alters the composition of mesenteric lymph. The intestinal lymphatics, like blood vessels, are a route for transporting potentially harmful substances generated by the intestines. The lymphatic architecture and actions are uniquely suited to take up and transport large macromolecules, functions that differentiate them from blood vessels, allowing them to play a distinct role in a variety of physiological and pathological processes. Here, we focus on the mechanisms by which kidney diseases result in deleterious changes in intestinal lymphatics and consider a novel paradigm of a vicious cycle of detrimental organ cross talk. This concept involves kidney injury-induced modulation of intestinal lymphatics that promotes production and distribution of harmful factors, which in turn contributes to disease progression in distant organ systems.
Collapse
Affiliation(s)
- Jianyong Zhong
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology (J.Z., H.-C.Y., A.B.F.), Vanderbilt University Medical Center, Nashville, TN
| | - Annet Kirabo
- Department of Molecular Physiology and Biophysics (A.K.), Vanderbilt University Medical Center, Nashville, TN
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN (A.K.)
| | - Hai-Chun Yang
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology (J.Z., H.-C.Y., A.B.F.), Vanderbilt University Medical Center, Nashville, TN
| | - Agnes B Fogo
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology (J.Z., H.-C.Y., A.B.F.), Vanderbilt University Medical Center, Nashville, TN
- Department of Medicine (A.B.F.), Vanderbilt University Medical Center, Nashville, TN
| | - Elaine L Shelton
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Valentina Kon
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
21
|
Shimizu Y, Che Y, Murohara T. Therapeutic Lymphangiogenesis Is a Promising Strategy for Secondary Lymphedema. Int J Mol Sci 2023; 24:7774. [PMID: 37175479 PMCID: PMC10178056 DOI: 10.3390/ijms24097774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/15/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Secondary lymphedema is caused by lymphatic insufficiency (lymphatic drainage failure) following lymph node dissection during the surgical treatment or radiation therapy of breast or pelvic cancer. The clinical problems associated with lymphedema are reduced quality of life in terms of appearance and function, as well as the development of skin ulcers, recurrent pain, and infection. Currently, countermeasures against lymphedema are mainly physical therapy such as lymphatic massage, elastic stockings, and skin care, and there is no effective and fundamental treatment with a highly recommended grade. Therefore, there is a need for the development of a fundamental novel treatment for intractable lymphedema. Therapeutic lymphangiogenesis, which has been attracting attention in recent years, is a treatment concept that reconstructs the fragmented lymphatic network to recover lymphatic vessel function and is revolutionary to be a fundamental cure. This review focuses on the translational research of therapeutic lymphangiogenesis for lymphedema and outlines the current status and prospects in the development of therapeutic applications.
Collapse
Affiliation(s)
- Yuuki Shimizu
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | | | | |
Collapse
|
22
|
Jo M, Trujillo AN, Shibahara N, Breslin JW. Impact of Goreisan components on rat mesenteric collecting lymphatic vessel pumping. Microcirculation 2023; 30:e12788. [PMID: 36169611 PMCID: PMC10043042 DOI: 10.1111/micc.12788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/29/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Goreisan is a traditional herbal formulation with diuretic properties tested as a clinical therapeutic to alleviate lymphedema in Japan. The present study aimed to determine how Goreisan and its five different components affect lymphatic pump function. METHODS Mesenteric collecting lymphatics were isolated from anesthetized Sprague-Dawley rats and mounted on resistance-matched glass micropipettes in a 37°C physiological salt solution bath for studies. Diameter was continuously measured to obtain the following lymphatic pump parameters: contraction frequency (CF), end diastolic diameter (EDD), and end systolic diameter (ESD), contraction amplitude (AMP), ejection fraction (EF), and fractional pump flow (FPF). Goreisan and each of its components (Cinnamomi Cortex, Atractylodis Rhizoma, Alismatis Rhizoma, Polyporus, and Poria) were applied to the bath at concentrations of 1-30 μg/mL. RESULTS The results show that while Goreisan causes no significant changes to lymphatic pumping, Alismatis Rhizoma and Polyporus each significantly reduce CF and FPF. In addition, rats that received oral administration of Goreisan and Alismatis Rhizoma for 1 week had elevated expression of VEGFR-3 in their mesenteric collecting lymphatics. CONCLUSIONS Collectively, the results suggest that some components of Goreisan have a direct, rapid impact on lymphatic pumping. These findings provide new insights but also raise new questions about the therapeutic potential of Goreisan in patients with secondary lymphedema.
Collapse
Affiliation(s)
- Michiko Jo
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
- Division of Presymptomatic Disease, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Andrea N. Trujillo
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Naotoshi Shibahara
- Kampo Education and Training Center, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Jerome W. Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| |
Collapse
|
23
|
Michalaki E, Rudd JM, Liebman L, Wadhwani R, Wood LB, Willett NJ, Dixon JB. Lentiviral overexpression of VEGFC in transplanted MSCs leads to resolution of swelling in a mouse tail lymphedema model. Microcirculation 2023; 30:e12792. [PMID: 36369987 PMCID: PMC10680019 DOI: 10.1111/micc.12792] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/12/2022] [Accepted: 11/08/2022] [Indexed: 11/14/2022]
Abstract
BACKGROUND Dysfunction of the lymphatic system following injury, disease, or cancer treatment can lead to lymphedema, a debilitating condition with no cure. Despite the various physical therapy and surgical options available, most treatments are palliative and fail to address the underlying lymphatic vascular insufficiency driving lymphedema progression. Stem cell therapy provides a promising alternative in the treatment of various chronic diseases with a wide range of therapeutic effects that reduce inflammation, fibrosis, and oxidative stress, while promoting lymphatic vessel (LV) regeneration. Specifically, stem cell transplantation is suggested to promote LV restoration, rebuild lymphatic circulation, and thus potentially be utilized towards an effective lymphedema treatment. In addition to stem cells, studies have proposed the administration of vascular endothelial growth factor C (VEGFC) to promote lymphangiogenesis and decrease swelling in lymphedema. AIMS Here, we seek to combine the benefits of stem cell therapy, which provides a cellular therapeutic approach that can respond to the tissue environment, and VEGFC administration to restore lymphatic drainage. MATERIALS & METHODS Specifically, we engineered mesenchymal stem cells (MSCs) to overexpress VEGFC using a lentiviral vector (hVEGFC MSC) and investigated their therapeutic efficacy in improving LV function and tissue swelling using near infrared (NIR) imaging, and lymphatic regeneration in a single LV ligation mouse tail lymphedema model. RESULTS First, we showed that overexpression of VEGFC using lentiviral transduction led to an increase in VEGFC protein synthesis in vitro. Then, we demonstrated hVEGFC MSC administration post-injury significantly increased the lymphatic contraction frequency 14-, 21-, and 28-days post-surgery compared to the control animals (MSC administration) in vivo, while also reducing tail swelling 28-days post-surgery compared to controls. CONCLUSION Our results suggest a therapeutic potential of hVEGFC MSC in alleviating the lymphatic dysfunction observed during lymphedema progression after secondary injury and could provide a promising approach to enhancing autologous cell therapy for treating lymphedema.
Collapse
Affiliation(s)
- Eleftheria Michalaki
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Josephine M Rudd
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Lauren Liebman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Rahul Wadhwani
- Neuroscience Department, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Levi B Wood
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Nick J Willett
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon, USA
- The Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| | - J Brandon Dixon
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
24
|
Sestito LF, To KH, Cribb MT, Archer PA, Thomas SN, Dixon JB. Lymphatic-draining nanoparticles deliver Bay K8644 payload to lymphatic vessels and enhance their pumping function. SCIENCE ADVANCES 2023; 9:eabq0435. [PMID: 36827374 PMCID: PMC9956116 DOI: 10.1126/sciadv.abq0435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Dysfunction of collecting lymphatic vessel pumping is associated with an array of pathologies. S-(-)-Bay K8644 (BayK), a small-molecule agonist of L-type calcium channels, improves vessel contractility ex vivo but has been left unexplored in vivo because of poor lymphatic access and risk of deleterious off-target effects. When formulated within lymph-draining nanoparticles (NPs), BayK acutely improved lymphatic vessel function, effects not seen from treatment with BayK in its free form. By preventing rapid drug access to the circulation, NP formulation also reduced BayK's dose-limiting side effects. When applied to a mouse model of lymphedema, treatment with BayK formulated in lymph-draining NPs, but not free BayK, improved pumping pressure generated by intact lymphatic vessels and tissue remodeling associated with the pathology. This work reveals the utility of a lymph-targeting NP platform to pharmacologically enhance lymphatic pumping in vivo and highlights a promising approach to treating lymphatic dysfunction.
Collapse
Affiliation(s)
- Lauren F. Sestito
- Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Department of Mechanical Engineering and Bioengineering, Valparaiso University, 1900 Chapel Dr, Valparaiso, IN 46383, USA
| | - Kim H. T. To
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Matthew T. Cribb
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Paul A. Archer
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Susan N. Thomas
- Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - J. Brandon Dixon
- Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
25
|
Brown S, Dayan JH, Kataru RP, Mehrara BJ. The Vicious Circle of Stasis, Inflammation, and Fibrosis in Lymphedema. Plast Reconstr Surg 2023; 151:330e-341e. [PMID: 36696336 PMCID: PMC9881755 DOI: 10.1097/prs.0000000000009866] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
SUMMARY Lymphedema is a progressive disease of the lymphatic system arising from impaired lymphatic drainage, accumulation of interstitial fluid, and fibroadipose deposition. Secondary lymphedema resulting from cancer treatment is the most common form of the disease in developed countries, affecting 15% to 40% of patients with breast cancer after lymph node dissection. Despite recent advances in microsurgery, outcomes remain variable and, in some cases, inadequate. Thus, development of novel treatment strategies is an important goal. Research over the past decade suggests that lymphatic injury initiates a chronic inflammatory response that regulates the pathophysiology of lymphedema. T-cell inflammation plays a key role in this response. In this review, the authors highlight the cellular and molecular mechanisms of lymphedema and discuss promising preclinical therapies.
Collapse
Affiliation(s)
- Stav Brown
- From the Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center
| | - Joseph H Dayan
- From the Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center
| | - Raghu P Kataru
- From the Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center
| | - Babak J Mehrara
- From the Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center
| |
Collapse
|
26
|
Wilson JL, Steinberg E, Racz R, Altman RB, Shah N, Grimes K. A network paradigm predicts drug synergistic effects using downstream protein-protein interactions. CPT Pharmacometrics Syst Pharmacol 2022; 11:1527-1538. [PMID: 36204824 PMCID: PMC9662203 DOI: 10.1002/psp4.12861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
In some cases, drug combinations affect adverse outcome phenotypes by binding the same protein; however, drug-binding proteins are associated through protein-protein interaction (PPI) networks within the cell, suggesting that drug phenotypes may result from long-range network effects. We first used PPI network analysis to classify drugs based on proteins downstream of their targets and next predicted drug combination effects where drugs shared network proteins but had distinct binding proteins (e.g., targets, enzymes, or transporters). By classifying drugs using their downstream proteins, we had an 80.7% sensitivity for predicting rare drug combination effects documented in gold-standard datasets. We further measured the effect of predicted drug combinations on adverse outcome phenotypes using novel observational studies in the electronic health record. We tested predictions for 60 network-drug classes on seven adverse outcomes and measured changes in clinical outcomes for predicted combinations. These results demonstrate a novel paradigm for anticipating drug synergistic effects using proteins downstream of drug targets.
Collapse
Affiliation(s)
- Jennifer L. Wilson
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Ethan Steinberg
- Center for Biomedical Informatics ResearchStanford UniversityPalo AltoCaliforniaUSA
| | - Rebecca Racz
- Division of Applied Regulatory ScienceUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Russ B. Altman
- Department of BioengineeringStanford UniversityPalo AltoCaliforniaUSA,Department of GeneticsStanford UniversityPalo AltoCaliforniaUSA
| | - Nigam Shah
- Center for Biomedical Informatics ResearchStanford UniversityPalo AltoCaliforniaUSA
| | - Kevin Grimes
- Department of Chemical and Systems BiologyStanford UniversityPalo AltoCaliforniaUSA
| |
Collapse
|
27
|
Nurlaila I, Roh K, Yeom CH, Kang H, Lee S. Acquired lymphedema: Molecular contributors and future directions for developing intervention strategies. Front Pharmacol 2022; 13:873650. [PMID: 36386144 PMCID: PMC9640931 DOI: 10.3389/fphar.2022.873650] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 10/13/2022] [Indexed: 08/05/2023] Open
Abstract
Lymphedema is a debilitating chronic disease that mostly develops as an adverse reaction to cancer treatment modalities such as chemotherapy, surgery, and radiotherapy. Lymphedema also appears to be a deteriorating consequence of roundworm infections, as best represented by filariasis. According to its origin, lymphedema is classified as primary lymphedema and acquired lymphedema. The latter is an acquired condition that, hitherto, received a considerably low attention owing to the less number of fatal cases been reported. Notably, despite the low mortality rate in lymphedema, it has been widely reported to reduce the disease-free survival and thus the quality of life of affected patients. Hence, in this review, we focused on acquired lymphedema and orchestration of molecular interplays associated with either stimulation or inhibition of lymphedema development that were, in vast majority, clearly depicted in animal models with their specific and distinct technical approaches. We also discussed some recent progress made in phytochemical-based anti-lymphedema intervention strategies and the specific mechanisms underlying their anti-lymphedema properties. This review is crucial to understand not only the comprehensive aspects of the disease but also the future directions of the intervention strategies that can address the quality of life of affected patients rather than alleviating apparent symptoms only.
Collapse
Affiliation(s)
- Ika Nurlaila
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
- Department of Vaccine and Drugs, The National Research and Innovation Agency, Jakarta, Indonesia
| | - Kangsan Roh
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Division of Cardiology and Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Hee Kang
- Humanitas College, Kyung Hee University, Yongin, South Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
28
|
BONETTI GABRIELE, DHULI KRISTJANA, MICHELINI SERENA, MICHELINI SILVIA, MICHELINI SANDRO, RICCI MAURIZIO, CESTARI MARINA, BERTELLI MATTEO. Dietary supplements in lymphedema. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2022; 63:E200-E205. [PMID: 36479479 PMCID: PMC9710411 DOI: 10.15167/2421-4248/jpmh2022.63.2s3.2761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Lymphedema is a chronic inflammatory disorder resulting from ineffective fluid uptake by the lymphatic system, and the effects are principally felt in the lower limbs. The condition is said to be primary when caused by genetic mutations and secondary when caused by injuries, infections, or surgery. Lymphedema, a worldwide pathology, does not have an effective therapy so far. Leukotriene B4 has recently been identified as a key molecule in lymphedema pathogenesis. Surgical, nonsurgical, and pharmacological treatments have been proposed; however, they do not cure the disease and only ameliorate the symptoms. Nutrition and nutritional status are extremely important in lymphedema physiopathology. Obesity is a comorbidity that exacerbates the risk for secondary lymphedema and constitutes a negative prognostic factor. Indeed, anti-inflammatory foods and their effects on the inflammatory state and on oxidative stress are now being investigated for their possible therapeutic role in lymphedema. Although no special diet has so far been proven to be very effective, specific dietary tips could help in alleviating the edematous state of patients with lymphedema. A few supplements have been tested for lymphedema treatment. Among them, GARLIVE® containing hydroxytyrosol, hesperidin, spermidine and vitamin A, exhibited promising effects in the animal model. Hydroxytyrosol, a polyphenol from olives, showed anti-inflammatory effects and reduced leukotriene B4 synthesis, thus holding promise as a potential natural candidate for lymphedema treatment.
Collapse
Affiliation(s)
- GABRIELE BONETTI
- MAGI’S LAB, Rovereto (TN), Italy
- Correspondence: Gabriele Bonetti, MAGI’S LAB, Rovereto (TN), 38068, Italy. E-mail:
| | | | - SERENA MICHELINI
- Unit of Physical Medicine, Sapienza University of Rome, Rome, Italy
| | | | - SANDRO MICHELINI
- Vascular Diagnostics and Rehabilitation Service, Marino Hospital, ASL Roma 6, Marino, Italy
| | - MAURIZIO RICCI
- Division of Rehabilitation Medicine, Azienda Ospedaliero-Universitaria, Ospedali Riuniti di Ancona, Italy
| | - MARINA CESTARI
- Study Centre Pianeta Linfedema, Terni, Italy
- Lymphology Sector of the Rehabilitation Service, USLUmbria2, Terni, Italy
| | - MATTEO BERTELLI
- MAGI’S LAB, Rovereto (TN), Italy
- MAGI Euregio, Bolzano, Italy
- MAGISNAT, Peachtree Corners (GA), USA
| |
Collapse
|
29
|
Davis MJ, Kim HJ, Nichols CG. K ATP channels in lymphatic function. Am J Physiol Cell Physiol 2022; 323:C1018-C1035. [PMID: 35785984 PMCID: PMC9550566 DOI: 10.1152/ajpcell.00137.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/22/2022]
Abstract
KATP channels function as negative regulators of active lymphatic pumping and lymph transport. This review summarizes and critiques the evidence for the expression of specific KATP channel subunits in lymphatic smooth muscle and endothelium, the roles that they play in normal lymphatic function, and their possible involvement in multiple diseases, including metabolic syndrome, lymphedema, and Cantú syndrome. For each of these topics, suggestions are made for directions for future research.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri
| | - Hae Jin Kim
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
30
|
Ogino R, Yokooji T, Hayashida M, Suda S, Yamakawa S, Hayashida K. Emerging Anti-Inflammatory Pharmacotherapy and Cell-Based Therapy for Lymphedema. Int J Mol Sci 2022; 23:ijms23147614. [PMID: 35886961 PMCID: PMC9322118 DOI: 10.3390/ijms23147614] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Secondary lymphedema is a common complication of lymph node dissection or radiation therapy for cancer treatment. Conventional therapies such as compression sleeve therapy, complete decongestive physiotherapy, and surgical therapies decrease edema; however, they are not curative because they cannot modulate the pathophysiology of lymphedema. Recent advances reveal that the activation and accumulation of CD4+ T cells are key in the development of lymphedema. Based on this pathophysiology, the efficacy of pharmacotherapy (tacrolimus, anti-IL-4/IL-13 antibody, or fingolimod) and cell-based therapy for lymphedema has been demonstrated in animal models and pilot studies. In addition, mesenchymal stem/stromal cells (MSCs) have attracted attention as candidates for cell-based lymphedema therapy because they improve symptoms and decrease edema volume in the long term with no serious adverse effects in pilot studies. Furthermore, MSC transplantation promotes functional lymphatic regeneration and improves the microenvironment in animal models. In this review, we focus on inflammatory cells involved in the pathogenesis of lymphedema and discuss the efficacy and challenges of pharmacotherapy and cell-based therapies for lymphedema.
Collapse
Affiliation(s)
- Ryohei Ogino
- Department of Frontier Science for Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (R.O.); (T.Y.)
| | - Tomoharu Yokooji
- Department of Frontier Science for Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (R.O.); (T.Y.)
| | - Maiko Hayashida
- Department of Psychiatry, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan;
| | - Shota Suda
- Division of Plastic and Reconstructive Surgery, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (S.S.); (S.Y.)
| | - Sho Yamakawa
- Division of Plastic and Reconstructive Surgery, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (S.S.); (S.Y.)
| | - Kenji Hayashida
- Division of Plastic and Reconstructive Surgery, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (S.S.); (S.Y.)
- Correspondence: ; Tel.: +81-853-20-2210
| |
Collapse
|
31
|
Sung C, Wang S, Hsu J, Yu R, Wong AK. Current Understanding of Pathological Mechanisms of Lymphedema. Adv Wound Care (New Rochelle) 2022; 11:361-373. [PMID: 34521256 PMCID: PMC9051876 DOI: 10.1089/wound.2021.0041] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Significance: Lymphedema is a common disease that affects hundreds of millions of people worldwide with significant financial and social burdens. Despite increasing prevalence and associated morbidities, the mainstay treatment of lymphedema is largely palliative without an effective cure due to incomplete understanding of the disease. Recent Advances: Recent studies have described key histological and pathological processes that contribute to the progression of lymphedema, including lymphatic stasis, inflammation, adipose tissue deposition, and fibrosis. This review aims to highlight cellular and molecular mechanisms involved in each of these pathological processes. Critical Issues: Despite recent advances in the understanding of the pathophysiology of lymphedema, cellular and molecular mechanisms underlying the disease remains elusive due to its complex nature. Future Directions: Additional research is needed to gain a better insight into the cellular and molecular mechanisms underlying the pathophysiology of lymphedema, which will guide the development of therapeutic strategies that target specific pathology of the disease.
Collapse
Affiliation(s)
- Cynthia Sung
- Keck School of Medicine of USC, Los Angeles, California, USA.,Division of Plastic Surgery, City of Hope National Medical Center, Duarte, California, USA
| | - Sarah Wang
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Jerry Hsu
- Division of Plastic Surgery, City of Hope National Medical Center, Duarte, California, USA.,Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA.,Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Roy Yu
- Keck School of Medicine of USC, Los Angeles, California, USA
| | - Alex K. Wong
- Division of Plastic Surgery, City of Hope National Medical Center, Duarte, California, USA.,Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA.,Correspondence: Division of Plastic Surgery, City of Hope National Medical Center, 1500 Duarte Road, Familian Science Building 1018, Duarte, CA 91010, USA.
| |
Collapse
|
32
|
Duhon BH, Phan TT, Taylor SL, Crescenzi RL, Rutkowski JM. Current Mechanistic Understandings of Lymphedema and Lipedema: Tales of Fluid, Fat, and Fibrosis. Int J Mol Sci 2022; 23:6621. [PMID: 35743063 PMCID: PMC9223758 DOI: 10.3390/ijms23126621] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/13/2022] Open
Abstract
Lymphedema and lipedema are complex diseases. While the external presentation of swollen legs in lower-extremity lymphedema and lipedema appear similar, current mechanistic understandings of these diseases indicate unique aspects of their underlying pathophysiology. They share certain clinical features, such as fluid (edema), fat (adipose expansion), and fibrosis (extracellular matrix remodeling). Yet, these diverge on their time course and known molecular regulators of pathophysiology and genetics. This divergence likely indicates a unique route leading to interstitial fluid accumulation and subsequent inflammation in lymphedema versus lipedema. Identifying disease mechanisms that are causal and which are merely indicative of the condition is far more explored in lymphedema than in lipedema. In primary lymphedema, discoveries of genetic mutations link molecular markers to mechanisms of lymphatic disease. Much work remains in this area towards better risk assessment of secondary lymphedema and the hopeful discovery of validated genetic diagnostics for lipedema. The purpose of this review is to expose the distinct and shared (i) clinical criteria and symptomatology, (ii) molecular regulators and pathophysiology, and (iii) genetic markers of lymphedema and lipedema to help inform future research in this field.
Collapse
Affiliation(s)
- Bailey H. Duhon
- Department of Medical Physiology, Texas A & M University College of Medicine, Bryan, TX 77807, USA; (B.H.D.); (T.T.P.)
| | - Thien T. Phan
- Department of Medical Physiology, Texas A & M University College of Medicine, Bryan, TX 77807, USA; (B.H.D.); (T.T.P.)
| | - Shannon L. Taylor
- Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, TN 37232, USA;
- Department of Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachelle L. Crescenzi
- Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, TN 37232, USA;
- Department of Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Joseph M. Rutkowski
- Department of Medical Physiology, Texas A & M University College of Medicine, Bryan, TX 77807, USA; (B.H.D.); (T.T.P.)
| |
Collapse
|
33
|
New uses of ketoprofen – a review of studies from 2015 to 2021. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2022. [DOI: 10.2478/cipms-2022-0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
Ketoprofen (K) belongs to the family of nonsteroidal anti-inflammatory drugs (NSAIDs) and demonstrates analgesic, anti-inflammatory and antipyretic properties. K is one of the most commonly used NSAIDs because of the speed and effectiveness of its activity. K is currently used for the treatment of pain and treatment of symptoms in rheumatic diseases, however, many researchers are looking for new uses of K. The aim of the review was to present the possible applications of K as indicated in current literature. We searched research literature and compiled all the reports (2015 onwards) we could find about new possible employments of K in health practices. Many studies have been aimed at obtaining new uses of K. This article describes the use of ketoprofen lysine salt for treating injured gastric mucosa, the anti-allergic potential of K, the employment of K in treating nonalcoholic fatty liver disease, human lymphedema and seizures, as well as the antidepressant and anxiolytic effects of K, prospects for the use of K in oncology and transplantology. The findings of the review confirm that K, its derivatives and complexes have many newly discovered effects. It is likely that in the future, K will have more indications than it has today.
Collapse
|
34
|
Jiang X, Tian W, Kim D, McQuiston AS, Vinh R, Rockson SG, Semenza GL, Nicolls MR. Hypoxia and Hypoxia-Inducible Factors in Lymphedema. Front Pharmacol 2022; 13:851057. [PMID: 35450048 PMCID: PMC9017680 DOI: 10.3389/fphar.2022.851057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/14/2022] [Indexed: 12/19/2022] Open
Abstract
Lymphedema is a chronic inflammatory disorder characterized by edema, fat deposition, and fibrotic tissue remodeling. Despite significant advances in lymphatic biology research, our knowledge of lymphedema pathology is incomplete. Currently, there is no approved pharmacological therapy for this debilitating disease. Hypoxia is a recognized feature of inflammation, obesity, and fibrosis. Understanding hypoxia-regulated pathways in lymphedema may provide new insights into the pathobiology of this chronic disorder and help develop new medicinal treatments.
Collapse
Affiliation(s)
- Xinguo Jiang
- VA Palo Alto Health Care System, Palo Alto, CA, United States.,Stanford University School of Medicine, Stanford, CA, United States
| | - Wen Tian
- VA Palo Alto Health Care System, Palo Alto, CA, United States.,Stanford University School of Medicine, Stanford, CA, United States
| | - Dongeon Kim
- VA Palo Alto Health Care System, Palo Alto, CA, United States.,Stanford University School of Medicine, Stanford, CA, United States
| | - Alexander S McQuiston
- VA Palo Alto Health Care System, Palo Alto, CA, United States.,Stanford University School of Medicine, Stanford, CA, United States
| | - Ryan Vinh
- VA Palo Alto Health Care System, Palo Alto, CA, United States.,Stanford University School of Medicine, Stanford, CA, United States
| | | | - Gregg L Semenza
- Departments of Pediatrics, Medicine, Oncology, Radiation Oncology, and Biological Chemistry, and McKusick-Nathans Institute of Genetic Medicine, Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mark R Nicolls
- VA Palo Alto Health Care System, Palo Alto, CA, United States.,Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
35
|
Pal S, Rahman J, Mu S, Rusch NJ, Stolarz AJ. Drug-Related Lymphedema: Mysteries, Mechanisms, and Potential Therapies. Front Pharmacol 2022; 13:850586. [PMID: 35308247 PMCID: PMC8930849 DOI: 10.3389/fphar.2022.850586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
The lymphatic circulation is an important component of the circulatory system in humans, playing a critical role in the transport of lymph fluid containing proteins, white blood cells, and lipids from the interstitial space to the central venous circulation. The efficient transport of lymph fluid critically relies on the rhythmic contractions of collecting lymph vessels, which function to "pump" fluid in the distal to proximal direction through the lymphatic circulation with backflow prevented by the presence of valves. When rhythmic contractions are disrupted or valves are incompetent, the loss of lymph flow results in fluid accumulation in the interstitial space and the development of lymphedema. There is growing recognition that many pharmacological agents modify the activity of ion channels and other protein structures in lymph muscle cells to disrupt the cyclic contraction and relaxation of lymph vessels, thereby compromising lymph flow and predisposing to the development of lymphedema. The effects of different medications on lymph flow can be understood by appreciating the intricate intracellular calcium signaling that underlies the contraction and relaxation cycle of collecting lymph vessels. For example, voltage-sensitive calcium influx through long-lasting ("L-type") calcium channels mediates the rise in cytosolic calcium concentration that triggers lymph vessel contraction. Accordingly, calcium channel antagonists that are mainstay cardiovascular medications, attenuate the cyclic influx of calcium through L-type calcium channels in lymph muscle cells, thereby disrupting rhythmic contractions and compromising lymph flow. Many other classes of medications also may contribute to the formation of lymphedema by impairing lymph flow as an off-target effect. The purpose of this review is to evaluate the evidence regarding potential mechanisms of drug-related lymphedema with an emphasis on common medications administered to treat cardiovascular diseases, metabolic disorders, and cancer. Additionally, although current pharmacological approaches used to alleviate lymphedema are largely ineffective, efforts are mounting to arrive at a deeper understanding of mechanisms that regulate lymph flow as a strategy to identify novel anti-lymphedema medications. Accordingly, this review also will provide information on studies that have explored possible anti-lymphedema therapeutics.
Collapse
Affiliation(s)
- Soumiya Pal
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Jenat Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Shengyu Mu
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Nancy J Rusch
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Amanda J Stolarz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
36
|
Brown S, Dayan JH, Coriddi M, Campbell A, Kuonqui K, Shin J, Park HJ, Mehrara BJ, Kataru RP. Pharmacological Treatment of Secondary Lymphedema. Front Pharmacol 2022; 13:828513. [PMID: 35145417 PMCID: PMC8822213 DOI: 10.3389/fphar.2022.828513] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/07/2022] [Indexed: 12/12/2022] Open
Abstract
Lymphedema is a chronic disease that results in swelling and decreased function due to abnormal lymphatic fluid clearance and chronic inflammation. In Western countries, lymphedema most commonly develops following an iatrogenic injury to the lymphatic system during cancer treatment. It is estimated that as many as 10 million patients suffer from lymphedema in the United States alone. Current treatments for lymphedema are palliative in nature, relying on compression garments and physical therapy to decrease interstitial fluid accumulation in the affected extremity. However, recent discoveries have increased the hopes of therapeutic interventions that may promote lymphatic regeneration and function. The purpose of this review is to summarize current experimental pharmacological strategies in the treatment of lymphedema.
Collapse
|
37
|
Wahby Y, Abdel-Hamid H, Ayoup MS. Two decades of recent advances of Passerini reactions: synthetic and potential pharmaceutical applications. NEW J CHEM 2022. [DOI: 10.1039/d1nj03832j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This perspective describes the applications of Passerini reactions in the last two decades from 2000 to 2021 in pharmaceutical applications and synthesis of peptides, natural products, macrocycles, dendrimers, and versatile types of heterocycles.
Collapse
Affiliation(s)
- Yasmin Wahby
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, 21321, Egypt
| | - Hamida Abdel-Hamid
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, 21321, Egypt
| | - Mohammed Salah Ayoup
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, 21321, Egypt
| |
Collapse
|
38
|
Kumegawa S, Yamada G, Hashimoto D, Hirashima T, Kajimoto M, Isono K, Fujimoto K, Suzuki K, Uemura K, Ema M, Asamura S. Development of Surgical and Visualization Procedures to Analyze Vasculatures by Mouse Tail Edema Model. Biol Proced Online 2021; 23:21. [PMID: 34758723 PMCID: PMC8582144 DOI: 10.1186/s12575-021-00159-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/26/2021] [Indexed: 12/02/2022] Open
Abstract
Background Because of the high frequency of chronic edema formation in the current “aged” society, analyses and detailed observation of post-surgical edema are getting more required. Post-surgical examination of the dynamic vasculature including L.V. (Lymphatic Vasculature) to monitor edema formation has not been efficiently performed. Hence, procedures for investigating such vasculature are essential. By inserting transparent sheet into the cutaneous layer of mouse tails as a novel surgery model (theTailEdema bySilicone sheet mediatedTransparency protocol; TEST), the novel procedures are introduced and analyzed by series of histological analyses including video-based L.V. observation and 3D histological reconstruction of vasculatures in mouse tails. Results The dynamic generation of post-surgical main and fine (neo) L.V. connective structure during the edematous recovery process was visualized by series of studies with a novel surgery model. Snapshot images taken from live binocular image recording for TEST samples suggested the presence of main and elongating fine (neo) L.V. structure. After the ligation of L.V., the enlargement of main L.V. was confirmed. In the case of light sheet fluorescence microscopy (LSFM) observation, such L.V. connections were also suggested by using transparent 3D samples. Finally, the generation of neo blood vessels particularly in the region adjacent to the silicone sheet and the operated boundary region was suggested in 3D reconstruction images. However, direct detection of elongating fine (neo) L.V. was not suitable for analysis by such LSFM and 3D reconstruction procedures. Thus, such methods utilizing fixed tissues are appropriate for general observation for the operated region including of L.V. Conclusions The current surgical procedures and analysis on the post-surgical status are the first case to observe vasculatures in vivo with a transparent sheet. Systematic analyses including the FITC-dextran mediated snap shot images observation suggest the elongation of fine (neo) lymphatic vasculature. Post-surgical analyses including LSFM and 3D histological structural reconstruction, are suitable to reveal the fixed structures of blood and lymphatic vessels formation. Supplementary Information The online version contains supplementary material available at 10.1186/s12575-021-00159-3.
Collapse
Affiliation(s)
- Shinji Kumegawa
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Medical University of Wakayama, Wakayama, Japan
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Medical University of Wakayama, Wakayama, Japan.
| | - Daiki Hashimoto
- Department of molecular Physiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Tsuyoshi Hirashima
- The Hakubi Center/Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Mizuki Kajimoto
- Department of Developmental Genetics, Institute of Advanced Medicine, Medical University of Wakayama, Wakayama, Japan
| | - Kyoichi Isono
- Laboratory Animal Center, Wakayama Medical University, Wakayama, Japan
| | - Kota Fujimoto
- Department of Developmental Genetics, Institute of Advanced Medicine, Medical University of Wakayama, Wakayama, Japan
| | - Kentaro Suzuki
- Department of Developmental Genetics, Institute of Advanced Medicine, Medical University of Wakayama, Wakayama, Japan
| | - Kazuhisa Uemura
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Medical University of Wakayama, Wakayama, Japan
| | - Masatsugu Ema
- Department of Stem Cells and Human Diseases Models, Research Center for Animal Life Science, Medical University of Shiga, Otsu, Shiga, Japan
| | - Shinichi Asamura
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Medical University of Wakayama, Wakayama, Japan
| |
Collapse
|
39
|
Crescenzi R, Donahue PMC, Garza M, Lee CA, Patel NJ, Gonzalez V, Jones RS, Donahue MJ. Elevated magnetic resonance imaging measures of adipose tissue deposition in women with breast cancer treatment-related lymphedema. Breast Cancer Res Treat 2021; 191:115-124. [PMID: 34687412 DOI: 10.1007/s10549-021-06419-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 10/11/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE Breast cancer treatment-related lymphedema (BCRL) is a common co-morbidity of breast cancer therapies, yet factors that contribute to BCRL progression remain incompletely characterized. We investigated whether magnetic resonance imaging (MRI) measures of subcutaneous adipose tissue were uniquely elevated in women with BCRL. METHODS MRI at 3.0 T of upper extremity and torso anatomy, fat and muscle tissue composition, and T2 relaxometry were applied in left and right axillae of healthy control (n = 24) and symptomatic BCRL (n = 22) participants to test the primary hypothesis that fat-to-muscle volume fraction is elevated in symptomatic BCRL relative to healthy participants, and the secondary hypothesis that fat-to-muscle volume fraction is correlated with MR relaxometry of affected tissues and BCRL stage (significance criterion: two-sided p < 0.05). RESULTS Fat-to-muscle volume fraction in healthy participants was symmetric in the right and left sides (p = 0.51); in BCRL participants matched for age, sex, and BMI, fat-to-muscle volume fraction was elevated on the affected side (fraction = 0.732 ± 0.184) versus right and left side in controls (fraction = 0.545 ± 0.221, p < 0.001). Fat-to-muscle volume fraction directly correlated with muscle T2 (p = 0.046) and increased with increasing level of BCRL stage (p = 0.041). CONCLUSION Adiposity quantified by MRI is elevated in the affected upper extremity of women with BCRL and may provide a surrogate marker of condition onset or severity. CLINICAL TRIAL NCT02611557.
Collapse
Affiliation(s)
- Rachelle Crescenzi
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| | - Paula M C Donahue
- Dayani Center for Health and Wellness, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Physical Medicine and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Maria Garza
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chelsea A Lee
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Niral J Patel
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - R Sky Jones
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Manus J Donahue
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
40
|
Yusof KM, Groen K, Rosli R, Avery-Kiejda KA. Crosstalk Between microRNAs and the Pathological Features of Secondary Lymphedema. Front Cell Dev Biol 2021; 9:732415. [PMID: 34733847 PMCID: PMC8558478 DOI: 10.3389/fcell.2021.732415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/01/2021] [Indexed: 01/07/2023] Open
Abstract
Secondary lymphedema is characterized by lymphatic fluid retention and subsequent tissue swelling in one or both limbs that can lead to decreased quality of life. It often arises after loss, obstruction, or blockage of lymphatic vessels due to multifactorial modalities, such as lymphatic insults after surgery, immune system dysfunction, deposition of fat that compresses the lymphatic capillaries, fibrosis, and inflammation. Although secondary lymphedema is often associated with breast cancer, the condition can occur in patients with any type of cancer that requires lymphadenectomy such as gynecological, genitourinary, or head and neck cancers. MicroRNAs demonstrate pivotal roles in regulating gene expression in biological processes such as lymphangiogenesis, angiogenesis, modulation of the immune system, and oxidative stress. MicroRNA profiling has led to the discovery of the molecular mechanisms involved in the pathophysiology of auto-immune, inflammation-related, and metabolic diseases. Although the role of microRNAs in regulating secondary lymphedema is yet to be elucidated, the crosstalk between microRNAs and molecular factors involved in the pathological features of lymphedema, such as skin fibrosis, inflammation, immune dysregulation, and aberrant lipid metabolism have been demonstrated in several studies. MicroRNAs have the potential to serve as biomarkers for diseases and elucidation of their roles in lymphedema can provide a better understanding or new insights of the mechanisms underlying this debilitating condition.
Collapse
Affiliation(s)
- Khairunnisa’ Md Yusof
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Kira Groen
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
| | - Rozita Rosli
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Kelly A. Avery-Kiejda
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
41
|
Biologically active lipids in the regulation of lymphangiogenesis in disease states. Pharmacol Ther 2021; 232:108011. [PMID: 34614423 DOI: 10.1016/j.pharmthera.2021.108011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/31/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023]
Abstract
Lymphatic vessels have crucial roles in the regulation of interstitial fluids, immune surveillance, and the absorption of dietary fat in the intestine. Lymphatic function is also closely related to the pathogenesis of various disease states such as inflammation, lymphedema, endometriosis, liver dysfunction, and tumor metastasis. Lymphangiogenesis, the formation of new lymphatic vessels from pre-existing lymphatic vessels, is a critical determinant in the above conditions. Although the effect of growth factors on lymphangiogenesis is well-characterized, and biologically active lipids are known to affect smooth muscle contractility and vasoaction, there is accumulating evidence that biologically active lipids are also important inducers of growth factors and cytokines that regulate lymphangiogenesis. This review discusses recent advances in our understanding of biologically active lipids, including arachidonic acid metabolites, sphingosine 1-phosphate, and lysophosphatidic acid, as regulators of lymphangiogenesis, and the emerging importance of the lymphangiogenesis as a therapeutic target.
Collapse
|
42
|
Walker J, Tanna S, Roake J, Lyons O. A systematic review of pharmacologic and cell-based therapies for treatment of lymphedema (2010-2021). J Vasc Surg Venous Lymphat Disord 2021; 10:966-975.e1. [PMID: 34587525 DOI: 10.1016/j.jvsv.2021.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Lymphedema describes the accumulation of interstitial fluid that results from lymphatic failure. Lymphedema can be of primary or secondary origin and has been estimated to affect 200 million people worldwide. Secondary lymphedema is commonly due to damage to the lymphatic vessels after surgical procedures. Treatments include compression bandaging and exercise regimens. However, at present, no pharmacologic therapy has been approved. We performed a systematic review of randomized controlled trials (RCTs) that had investigated pharmacologic and cell-based therapies for secondary lymphedema. METHODS We searched the databases MEDLINE, Embase, and ClinicalTrials.gov from January 2010 to May 2021. Only RCTs that had investigated pharmacologic and/or cell-based therapies for secondary lymphedema were eligible for inclusion. Those studies that had examined only active filarial infection were excluded. Two of us (J.W., S.T.) independently screened the studies for eligibility. RESULTS We identified eight RCTs that met the inclusion criteria. Overall, the studies were of poor quality with a high risk of bias. Ketoprofen demonstrated promising improvements in skin thickness and tissue histopathologic scores. Some evidence was found to suggest that doxycycline might be beneficial for nonfilarial secondary lymphedema, and a single, small RCT demonstrated that selenium might also confer some benefit. Neither synbiotics nor platelet-rich plasma resulted in reduced lymphedema volumes or symptom severity. Also, although bone marrow-derived stem cells resulted in improved symptom scores, no significant volume reduction was detected. Although positive results were demonstrated in trials investigating benzopyrones, previous meta-analyses have cast doubt on their efficacy. No two studies assessed the same intervention; thus, we could not perform a meta-analysis. CONCLUSIONS Although the results from some studies appeared promising, the available evidence at present is insufficient for any pharmacologic or cell-based therapy for patients with secondary lymphedema. Furthermore, large, high-quality RCTs are required before treatment recommendations will be possible.
Collapse
Affiliation(s)
- James Walker
- Academic Department of Vascular Surgery, King's College London, St Thomas' Hospital, London, UK.
| | - Sameera Tanna
- Obetetrics and Gynaecology, The Hillingdon Hospitals NHS Foundation Trust, London, UK
| | - Justin Roake
- Department of Surgery, University of Otago, Christchurch, New Zealand; Department of Vascular Endovascular and Transplant Surgery, Christchurch Hospital, Canterbury District Health Board, Christchurch, New Zealand
| | - Oliver Lyons
- Academic Department of Vascular Surgery, King's College London, St Thomas' Hospital, London, UK; Department of Surgery, University of Otago, Christchurch, New Zealand; Department of Vascular Endovascular and Transplant Surgery, Christchurch Hospital, Canterbury District Health Board, Christchurch, New Zealand
| |
Collapse
|
43
|
Lee H, Lee B, Kim Y, Min S, Yang E, Lee S. Effects of Sodium Selenite Injection on Serum Metabolic Profiles in Women Diagnosed with Breast Cancer-Related Lymphedema-Secondary Analysis of a Randomized Placebo-Controlled Trial Using Global Metabolomics. Nutrients 2021; 13:nu13093253. [PMID: 34579131 PMCID: PMC8470409 DOI: 10.3390/nu13093253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
In our previous study, intravenous (IV) injection of selenium alleviated breast cancer-related lymphedema (BCRL). This secondary analysis aimed to explore the metabolic effects of selenium on patients with BCRL. Serum samples of the selenium-treated (SE, n = 15) or the placebo-controlled (CTRL, n = 14) groups were analyzed by ultra-high-performance liquid chromatography with Q-Exactive Orbitrap tandem mass spectrometry (UHPLC-Q-Exactive Orbitrap/MS). The SE group showed a lower ratio of extracellular water to segmental water (ECW/SW) in the affected arm to ECW/SW in the unaffected arm (arm ECW/SW ratio) than the CTRL group. Metabolomics analysis showed a valid classification at 2-weeks and 107 differential metabolites were identified. Among them, the levels of corticosterone, LTB4-DMA, and PGE3—which are known anti-inflammatory compounds—were elevated in the SE group. Pathway analysis demonstrated that lipid metabolism (glycerophospholipid metabolism, steroid hormone biosynthesis, or arachidonic acid metabolism), nucleotide metabolism (pyrimidine or purine metabolism), and vitamin metabolism (pantothenate and CoA biosynthesis, vitamin B6 metabolism, ascorbate and aldarate metabolism) were altered in the SE group compared to the CTRL group. In addition, xanthurenic acid levels were negatively associated with whole blood selenium level (WBSe) and positively associated with the arm ECW/SW. In conclusion, selenium IV injection improved the arm ECW/SW ratio and altered the serum metabolic profiles in patients with BCRL, and improved the anti-inflammatory process in lipid, nucleotide and vitamin pathways, which might alleviate the symptoms of BCRL.
Collapse
Affiliation(s)
- Heeju Lee
- Department of Food and Nutrition, BK21 FOUR Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea; (H.L.); (Y.K.); (S.M.)
| | - Bora Lee
- Graduate Program in Biomedical Engineering, College of Medicine, Yonsei University, Seoul 03722, Korea;
| | - Yeonhee Kim
- Department of Food and Nutrition, BK21 FOUR Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea; (H.L.); (Y.K.); (S.M.)
| | - Sohyun Min
- Department of Food and Nutrition, BK21 FOUR Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea; (H.L.); (Y.K.); (S.M.)
| | - Eunjoo Yang
- Department of Rehabilitation Medicine, College of Medicine, Seoul National University Bundang Hospital, Seoul National University, Seongnam 13620, Korea;
| | - Seungmin Lee
- Department of Food and Nutrition, BK21 FOUR Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea; (H.L.); (Y.K.); (S.M.)
- Correspondence: ; Tel.: +82-2-2123-3118
| |
Collapse
|
44
|
Pilot Study of Anti-Th2 Immunotherapy for the Treatment of Breast Cancer-Related Upper Extremity Lymphedema. BIOLOGY 2021; 10:biology10090934. [PMID: 34571811 PMCID: PMC8466465 DOI: 10.3390/biology10090934] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/05/2021] [Accepted: 09/14/2021] [Indexed: 01/02/2023]
Abstract
Recent studies suggest that Th2 cells play a key role in the pathology of secondary lymphedema by elaborating cytokines such as IL4 and IL13. The aim of this study was to test the efficacy of QBX258, a monoclonal IL4/IL13 neutralizing antibody, in women with breast cancer-related lymphedema (BCRL). We enrolled nine women with unilateral stage I/II BCRL and treated them once monthly with intravenous infusions of QBX258 for 4 months. We measured limb volumes, bioimpedance, and skin tonometry, and analyzed the quality of life (QOL) using a validated lymphedema questionnaire (Upper Limb Lymphedema 27, ULL-27) before treatment, immediately after treatment, and 4 months following treatment withdrawal. We also obtained 5 mm skin biopsies from the normal and lymphedematous limbs before and after treatment. Treatment was well-tolerated; however, one patient with a history of cellulitis developed cellulitis during the trial and was excluded from further analysis. We found no differences in limb volumes or bioimpedance measurements after drug treatment. However, QBX258 treatment improved skin stiffness (p < 0.001) and improved QOL measurements (Physical p < 0.05, Social p = 0.01). These improvements returned to baseline after treatment withdrawal. Histologically, treatment decreased epidermal thickness, the number of proliferating keratinocytes, type III collagen deposition, infiltration of mast cells, and the expression of Th2-inducing cytokines in the lymphedematous skin. Our limited study suggests that immunotherapy against Th2 cytokines may improve skin changes and QOL of women with BCRL. This treatment appears to be less effective for decreasing limb volumes; however, additional studies are needed.
Collapse
|
45
|
Russell PS, Hong J, Trevaskis NL, Windsor JA, Martin ND, Phillips ARJ. Lymphatic Contractile Function: A Comprehensive Review of Drug Effects and Potential Clinical Application. Cardiovasc Res 2021; 118:2437-2457. [PMID: 34415332 DOI: 10.1093/cvr/cvab279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/18/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The lymphatic system and the cardiovascular system work together to maintain body fluid homeostasis. Despite that, the lymphatic system has been relatively neglected as a potential drug target and a source of adverse effects from cardiovascular drugs. Like the heart, the lymphatic vessels undergo phasic contractions to promote lymph flow against a pressure gradient. Dysfunction or failure of the lymphatic pump results in fluid imbalance and tissue oedema. While this can due to drug effects, it is also a feature of breast cancer-associated lymphoedema, chronic venous insufficiency, congestive heart failure and acute systemic inflammation. There are currently no specific drug treatments for lymphatic pump dysfunction in clinical use despite the wealth of data from pre-clinical studies. AIM To identify (1) drugs with direct effects on lymphatic tonic and phasic contractions with potential for clinical application, and (2) drugs in current clinical use that have a positive or negative side effect on lymphatic function. METHODS We comprehensively reviewed all studies that tested the direct effect of a drug on the contractile function of lymphatic vessels. RESULTS Of the 208 drugs identified from 193 studies, about a quarter had only stimulatory effects on lymphatic tone, contraction frequency and/or contraction amplitude. Of FDA-approved drugs, there were 14 that increased lymphatic phasic contractile function. The most frequently used class of drug with inhibitory effects on lymphatic pump function were the calcium channels blockers. CONCLUSION This review highlights the opportunity for specific drug treatments of lymphatic dysfunction in various disease states and for avoiding adverse drug effects on lymphatic contractile function.
Collapse
Affiliation(s)
- Peter S Russell
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jiwon Hong
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Natalie L Trevaskis
- Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - John A Windsor
- Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Niels D Martin
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anthony R J Phillips
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
46
|
Abstract
Lymphedema is a common, complex, and inexplicably underappreciated human disease. Despite a history of relative neglect by health care providers and by governmental health care agencies, the last decade has seen an explosive growth of insights into, and approaches to, the problem of human lymphedema. The current review highlights the significant advances that have occurred in the investigative and clinical approaches to lymphedema, particularly over the last decade. This review summarizes the progress that has been attained in the realms of genetics, lymphatic imaging, and lymphatic surgery. Newer molecular insights are explored, along with their relationship to future molecular therapeutics. Growing insights into the relationships among lymphedema, obesity, and other comorbidities are important to consider in current and future responses to patients with lymphedema.
Collapse
Affiliation(s)
- Stanley G Rockson
- Allan and Tina Neill Professor of Lymphatic Research and Medicine, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
47
|
Cribb MT, Sestito LF, Rockson SG, Nicolls MR, Thomas SN, Dixon JB. The Kinetics of Lymphatic Dysfunction and Leukocyte Expansion in the Draining Lymph Node during LTB 4 Antagonism in a Mouse Model of Lymphedema. Int J Mol Sci 2021; 22:ijms22094455. [PMID: 33923272 PMCID: PMC8123113 DOI: 10.3390/ijms22094455] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/23/2022] Open
Abstract
The mechanisms of lymphedema development are not well understood, but emerging evidence highlights the crucial role the immune system plays in driving its progression. It is well known that lymphatic function deteriorates as lymphedema progresses; however, the connection between this progressive loss of function and the immune-driven changes that characterize the disease has not been well established. In this study, we assess changes in leukocyte populations in lymph nodes within the lymphatic drainage basin of the tissue injury site (draining lymph nodes, dLNs) using a mouse tail model of lymphedema in which a pair of draining collecting vessels are left intact. We additionally quantify lymphatic pump function using established near infrared (NIR) lymphatic imaging methods and lymph-draining nanoparticles (NPs) synthesized and employed by our team for lymphatic tissue drug delivery applications to measure lymphatic transport to and resulting NP accumulation within dLNs associated with swelling following surgery. When applied to assess the effects of the anti-inflammatory drug bestatin, which has been previously shown to be a possible treatment for lymphedema, we find lymph-draining NP accumulation within dLNs and lymphatic function to increase as lymphedema progresses, but no significant effect on leukocyte populations in dLNs or tail swelling. These results suggest that ameliorating this loss of lymphatic function is not sufficient to reverse swelling in this surgically induced disease model that better recapitulates the extent of lymphatic injury seen in human lymphedema. It also suggests that loss of lymphatic function during lymphedema may be driven by immune-mediated mechanisms coordinated in dLNs. Our work indicates that addressing both lymphatic vessel dysfunction and immune cell expansion within dLNs may be required to prevent or reverse lymphedema when partial lymphatic function is sustained.
Collapse
Affiliation(s)
- Matthew T. Cribb
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA; (M.T.C.); (S.N.T.)
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Lauren F. Sestito
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Stanley G. Rockson
- Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; (S.G.R.); (M.R.N.)
| | - Mark R. Nicolls
- Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; (S.G.R.); (M.R.N.)
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Susan N. Thomas
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA; (M.T.C.); (S.N.T.)
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - J. Brandon Dixon
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA; (M.T.C.); (S.N.T.)
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- Correspondence:
| |
Collapse
|
48
|
Miller A. Lymphödem, Inflammation und neue Therapieansätze. PHLEBOLOGIE 2021. [DOI: 10.1055/a-1383-7624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
ZusammenfassungDer fehlende Abtransport eiweißreicher interstitieller Flüssigkeit führt zu den bekannten klinischen Zeichen der Lymphödems an der Haut, die im Wesentlichen durch eine Fibrosierung ausgelöst werden. Bisher basiert die Therapie auf der mechanischen Anregung des Lymphtransports durch die komplexe physikalische Entstauung (KPE) oder operativen Maßnahmen, um das Ödem zu reduzieren. Der komplexe Ablauf der Entzündungsvorgänge im Gewebe wurde in den vergangenen Jahren untersucht und zeigt die zentrale Bedeutung von T-Lymphozyten, Makrophagen, LTB4 und diversen Zytokinen. Ausgehend von diesen Erkenntnissen gibt es Erfolg versprechende Therapieansätze mit Ketoprofen, Hydroxytyrosol und weiteren Immunmodulatoren.
Collapse
Affiliation(s)
- Anya Miller
- Praxis für Dermatologie, Allergologie, Lymphologie und Phlebologie, Berlin
| |
Collapse
|
49
|
Furlong-Silva J, Cross SD, Marriott AE, Pionnier N, Archer J, Steven A, Merker SS, Mack M, Hong YK, Taylor MJ, Turner JD. Tetracyclines improve experimental lymphatic filariasis pathology by disrupting interleukin-4 receptor-mediated lymphangiogenesis. J Clin Invest 2021; 131:140853. [PMID: 33434186 PMCID: PMC7919730 DOI: 10.1172/jci140853] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 01/06/2021] [Indexed: 12/21/2022] Open
Abstract
Lymphatic filariasis is the major global cause of nonhereditary lymphedema. We demonstrate that the filarial nematode Brugia malayi induced lymphatic remodeling and impaired lymphatic drainage following parasitism of limb lymphatics in a mouse model. Lymphatic insufficiency was associated with elevated circulating lymphangiogenic mediators, including vascular endothelial growth factor C. Lymphatic insufficiency was dependent on type 2 adaptive immunity, the interleukin-4 receptor, and recruitment of C-C chemokine receptor-2–positive monocytes and alternatively activated macrophages with a prolymphangiogenic phenotype. Oral treatments with second-generation tetracyclines improved lymphatic function, while other classes of antibiotic had no significant effect. Second-generation tetracyclines directly targeted lymphatic endothelial cell proliferation and modified type 2 prolymphangiogenic macrophage development. Doxycycline treatment impeded monocyte recruitment, inhibited polarization of alternatively activated macrophages, and suppressed T cell adaptive immune responses following infection. Our results determine a mechanism of action for the antimorbidity effects of doxycycline in filariasis and support clinical evaluation of second-generation tetracyclines as affordable, safe therapeutics for lymphedemas of chronic inflammatory origin.
Collapse
Affiliation(s)
- Julio Furlong-Silva
- Centre for Drugs & Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Stephen D Cross
- Centre for Drugs & Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Amy E Marriott
- Centre for Drugs & Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Nicolas Pionnier
- Centre for Drugs & Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - John Archer
- Centre for Drugs & Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Andrew Steven
- Centre for Drugs & Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Stefan Schulte Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Matthias Mack
- Universitätsklinikum Regensburg, Regensburg, Germany
| | - Young-Kwon Hong
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Mark J Taylor
- Centre for Drugs & Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Joseph D Turner
- Centre for Drugs & Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
50
|
Abstract
The lymphatic system has received increasing scientific and clinical attention because a wide variety of diseases are linked to lymphatic pathologies and because the lymphatic system serves as an ideal conduit for drug delivery. Lymphatic vessels exert heterogeneous roles in different organs and vascular beds, and consequently, their dysfunction leads to distinct organ-specific outcomes. Although studies in animal model systems have led to the identification of crucial lymphatic genes with potential therapeutic benefit, effective lymphatic-targeted therapeutics are currently lacking for human lymphatic pathological conditions. Here, we focus on the therapeutic roles of lymphatic vessels in diseases and summarize the promising therapeutic targets for modulating lymphangiogenesis or lymphatic function in preclinical or clinical settings. We also discuss considerations for drug delivery or targeting of lymphatic vessels for treatment of lymphatic-related diseases. The lymphatic vasculature is rapidly emerging as a critical system for targeted modulation of its function and as a vehicle for innovative drug delivery.
Collapse
Affiliation(s)
- Wenjing Xu
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599, USA;
| | - Natalie R Harris
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599, USA;
| | - Kathleen M Caron
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599, USA;
| |
Collapse
|