1
|
Asturias EJ, Connery AK, Olson D, Lamb MM, Paniagua-Avila A, Anderson EJ, Focht C, Colbert AM, Natrajan M, Waggoner JJ, Scherer E, Calvimontes DM, Bolaños GA, Bauer D, Arroyave P, Hernández S, Martinez MA, Ralda AV, Rojop N, Barrios EE, Chacon A, Dempsey W, Tomashek KM, Keitel WA, El Sahly HM, Muñoz FM. Postnatal Zika and Dengue Infection and their Effects on Neurodevelopment Among Children Living in Rural Guatemala. Pediatr Infect Dis J 2024:00006454-990000000-01112. [PMID: 39637296 DOI: 10.1097/inf.0000000000004646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
BACKGROUND Prenatal Zika virus (ZIKV) infection leads to microcephaly and adverse neurodevelopment. The effects of postnatal ZIKV infection on the developing brain are unknown. We assessed the neurodevelopmental outcomes of children exposed postnatally during the ZIKV epidemic. METHODS A prospective study enrolled infants 0-3 months of age and their mothers, and children 1.5-3.5 years of age in rural Guatemala from 2017 and were followed for 12 months until 2019. Neurodevelopment was evaluated using the Mullen Scales of Early Learning (MSEL). ZIKV and dengue virus (DENV) infections were identified by polymerase chain reaction (PCR) using active surveillance. Serological analyses, stratified by age group flavivirus serostatus at enrollment, were conducted using a focus reduction neutralization test. RESULTS Of 1371 enrolled participants, 1187 (86.6%) completed the study. No PCR-confirmed ZIKV infections were identified during the study period. One-third of 1.5-3.5-year-old children were ZIKV-seropositive at enrollment (likely postnatal infection). Twenty participants (5.8%) tested positive for DENV by PCR (11 infants, 5 children and 4 mothers); 15 (75%) were DENV-3 infections and 5 were DENV-2. The incidence of DENV infection in infants was 2.6%. No significant differences in MSEL scores were found between infants born seropositive versus seronegative for ZIKV or DENV. DENV seropositivity at enrollment in 1.5-5-year-old children was associated with lower MSEL scores for fine motor, visual reception and language, and microcephaly at 12 months versus seronegative children (all P < 0.05). CONCLUSIONS Postnatal ZIKV infection in children from rural Guatemala was not associated with worse neurodevelopmental outcomes. DENV seropositivity was associated with a higher risk of microcephaly in infants and worse neurodevelopmental outcomes in children.
Collapse
Affiliation(s)
- Edwin J Asturias
- From the Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
- Center for Global Health or Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado
| | - Amy K Connery
- Center for Global Health or Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado
- Department of Rehabilitation Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Daniel Olson
- From the Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Molly M Lamb
- Center for Global Health or Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado
| | - Alejandra Paniagua-Avila
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York City, New York
| | | | | | - Alison M Colbert
- Department of Rehabilitation Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | | | | | | | | | - Guillermo A Bolaños
- Fundacion para la Salud Integral de los Guatemaltecos, Retalhuleu, Guatemala
| | - Desirée Bauer
- Fundacion para la Salud Integral de los Guatemaltecos, Retalhuleu, Guatemala
| | - Paola Arroyave
- Fundacion para la Salud Integral de los Guatemaltecos, Retalhuleu, Guatemala
| | - Sara Hernández
- Fundacion para la Salud Integral de los Guatemaltecos, Retalhuleu, Guatemala
| | - Maria A Martinez
- Fundacion para la Salud Integral de los Guatemaltecos, Retalhuleu, Guatemala
| | - Aida V Ralda
- Fundacion para la Salud Integral de los Guatemaltecos, Retalhuleu, Guatemala
| | - Neudy Rojop
- Fundacion para la Salud Integral de los Guatemaltecos, Retalhuleu, Guatemala
| | - Edgar E Barrios
- Fundacion para la Salud Integral de los Guatemaltecos, Retalhuleu, Guatemala
| | - Andrea Chacon
- Fundacion para la Salud Integral de los Guatemaltecos, Retalhuleu, Guatemala
| | - Walla Dempsey
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Kay M Tomashek
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Wendy A Keitel
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas
| | - Hana M El Sahly
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas
| | - Flor M Muñoz
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Texas
| |
Collapse
|
2
|
Cogo PR, Moadab G, Bliss-Moreau E, Pittet F. Prenatal Zika Virus Exposure Alters the Interaction Between Affective Processing and Decision-Making in Juvenile Rhesus Macaques (Macaca mulatta). Dev Psychobiol 2024; 66:e70002. [PMID: 39508455 DOI: 10.1002/dev.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/29/2024] [Accepted: 10/12/2024] [Indexed: 11/15/2024]
Abstract
Many challenges during pregnancy can disrupt fetal development and have varying consequences on the subsequent psychological development of infants. Notably, exposure to infectious pathogens during fetal development, such as those encountered in viral pandemics, has been associated with persistent developmental consequences on infants' brains and behavior. However, the underlying mechanisms and the degree to which neural plasticity over infancy may accommodate fetal insults remain unclear. To address this gap, we investigated the interaction between affective processing and decision-making in a cohort of rhesus monkey juveniles exposed to Zika virus (ZIKV) during fetal development, a pathogen known to profoundly disrupt central nervous system development. Ten juveniles exposed to ZIKV during their fetal development and nine procedure-matched controls (CONs) completed a judgment bias task with and without a negative mood induction. Although ZIKV exposure did not impact the monkeys' decision-making processes during the task or the magnitude of their behavioral responses to the mood induction procedure, it did alter the influence of mood induction on decision-making. Although CON monkeys exhibited significantly more conservative decision-making following negative mood induction, the decision-making of Zika-exposed monkeys remained consistent among conditions. These findings suggest that fetal exposure to ZIKV impacts the neural systems involved in integrating affective and cognitive information, with potential long-term implications for learning, memory, and emotion regulation.
Collapse
Affiliation(s)
- Patrick R Cogo
- California National Primate Research Center, University of California, Davis, California, USA
| | - Gilda Moadab
- California National Primate Research Center, University of California, Davis, California, USA
- Department of Psychology, University of California, Davis, California, USA
| | - Eliza Bliss-Moreau
- California National Primate Research Center, University of California, Davis, California, USA
- Department of Psychology, University of California, Davis, California, USA
| | - Florent Pittet
- California National Primate Research Center, University of California, Davis, California, USA
| |
Collapse
|
3
|
Charbonneau JA, Davis B, Raven EP, Patwardhan B, Grebosky C, Halteh L, Bennett JL, Bliss-Moreau E. Evaluation of registration-based vs. manual segmentation of rhesus macaque brain MRIs. Brain Struct Funct 2024; 229:2029-2043. [PMID: 39136727 PMCID: PMC11483197 DOI: 10.1007/s00429-024-02848-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/01/2024] [Indexed: 10/18/2024]
Abstract
With increasing numbers of magnetic resonance imaging (MRI) datasets becoming publicly available, researchers and clinicians alike have turned to automated methods of segmentation to enable population-level analyses of these data. Although prior research has evaluated the extent to which automated methods recapitulate "gold standard" manual segmentation methods in the human brain, such an evaluation has not yet been carried out for segmentation of MRIs of the macaque brain. Macaques offer the important opportunity to bridge gaps between microanatomical studies using invasive methods like tract tracing, neural recordings, and high-resolution histology and non-invasive macroanatomical studies using methods like MRI. As such, it is important to evaluate whether automated tools derive data of sufficient quality from macaque MRIs to bridge these gaps. We tested the relationship between automated registration-based segmentation using an open source and actively maintained NHP imaging analysis pipeline (AFNI) and gold standard manual segmentation of 4 structures (2 cortical: anterior cingulate cortex and insula; 2 subcortical: amygdala and caudate) across 37 rhesus macaques (Macaca mulatta). We identified some variability in the strength of correlation between automated and manual segmentations across neural regions and differences in relationships with demographic variables like age and sex between the two techniques.
Collapse
Affiliation(s)
- Joey A Charbonneau
- Neuroscience Graduate Program, University of California Davis, Davis, CA, USA.
- California National Primate Research Center, University of California Davis, Davis, CA, USA.
| | - Brittany Davis
- Neuroscience Graduate Program, University of California Davis, Davis, CA, USA
- California National Primate Research Center, University of California Davis, Davis, CA, USA
| | - Erika P Raven
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Bhakti Patwardhan
- California National Primate Research Center, University of California Davis, Davis, CA, USA
| | - Carson Grebosky
- California National Primate Research Center, University of California Davis, Davis, CA, USA
| | - Lucas Halteh
- California National Primate Research Center, University of California Davis, Davis, CA, USA
| | - Jeffrey L Bennett
- California National Primate Research Center, University of California Davis, Davis, CA, USA
- Department of Psychology, University of California Davis, Davis, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, Davis School of Medicine, Sacramento, CA, USA
- The MIND Institute, University of California Davis, Sacramento, CA, USA
| | - Eliza Bliss-Moreau
- California National Primate Research Center, University of California Davis, Davis, CA, USA.
- Department of Psychology, University of California Davis, Davis, CA, USA.
| |
Collapse
|
4
|
Presti S, Dierna F, Zanghì A, Vecchio M, Lavalle S, Praticò ER, Ruggieri M, Polizzi A. Cerebral Malformations Related to Coronavirus Disease 2019 during Pregnancy. JOURNAL OF PEDIATRIC NEUROLOGY 2024; 22:419-423. [DOI: 10.1055/s-0044-1786785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
AbstractThe pandemic of severe-acute-respiratory-syndrome-related coronavirus (SARS-CoV-2) has shown a wide spectrum of possible consequences in children, ranging from asymptomatic patients to the development of severe conditions, such as multisystem inflammatory syndrome in children and encephalopathies related to cytokine storm. Specifically, neurological and neuroimaging abnormalities, ranging from mild-to-the severe ones, have been documented in children as well, such as postinfectious immune-mediated acute disseminated encephalomyelitis, myelitis, neural enhancement, cranial nerve enhancement, and cortical injury, also without neurological symptoms. Considering the neurotropism of coronaviruses and SARS-CoV-2, which has been well described in the literature, we reviewed the literature reporting possible cerebral malformation in neonates due to the infection of SARS-CoV-2 in pregnancy. Coronavirus disease 2019 (COVID-19) during pregnancy might develop cerebral disorders in several ways. Articles in English in the literature were screened using the following search terms: (1) “brain malformations” AND “COVID-19”; (2) “cerebral malformations” AND “COVID-19”; (3) brain malformations AND “Sars-Cov-2”; (4) “cerebral malformations “AND “Sars-Cov-2.” Considering the congenital brain malformation found in newborns exposed to infection of SARS-Cov-2 pre- or neonatally, we identified one paper which reported three neonates with cerebral malformation. Although sporadic, cerebral malformations like atypical signals in white matter with delayed myelination, brain dysplasia/hypoplasia with delayed myelination, and unusual signals in the periventricular regions have been documented.
Collapse
Affiliation(s)
- Santiago Presti
- Pediatrics Postgraduate Residency Program, University of Catania, Catania, Italy
| | - Federica Dierna
- Pediatrics Postgraduate Residency Program, University of Catania, Catania, Italy
| | - Antonio Zanghì
- Department of Medical and Surgical Sciences and Advanced Technologies, Research Center for Surgery of Complex Malformation Syndromes of Transition and Adulthood, University of Catania, Catania, Italy
| | - Michele Vecchio
- Department of Biomedical and Biotechnological Sciences, Rehabilitation Unit, University of Catania, Catania, Italy
| | - Salvatore Lavalle
- Chair of Radiology, Department of Medicine and Surgery, Kore Universisty, Enna, Italy
| | | | - Martino Ruggieri
- Department of Clinical and Experimental Medicine, Unit of Clinical Pediatrics, University of Catania, Catania, Italy
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
| |
Collapse
|
5
|
Wang S, Li W, Wang Z, Yang W, Li E, Xia X, Yan F, Chiu S. Emerging and reemerging infectious diseases: global trends and new strategies for their prevention and control. Signal Transduct Target Ther 2024; 9:223. [PMID: 39256346 PMCID: PMC11412324 DOI: 10.1038/s41392-024-01917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 09/12/2024] Open
Abstract
To adequately prepare for potential hazards caused by emerging and reemerging infectious diseases, the WHO has issued a list of high-priority pathogens that are likely to cause future outbreaks and for which research and development (R&D) efforts are dedicated, known as paramount R&D blueprints. Within R&D efforts, the goal is to obtain effective prophylactic and therapeutic approaches, which depends on a comprehensive knowledge of the etiology, epidemiology, and pathogenesis of these diseases. In this process, the accessibility of animal models is a priority bottleneck because it plays a key role in bridging the gap between in-depth understanding and control efforts for infectious diseases. Here, we reviewed preclinical animal models for high priority disease in terms of their ability to simulate human infections, including both natural susceptibility models, artificially engineered models, and surrogate models. In addition, we have thoroughly reviewed the current landscape of vaccines, antibodies, and small molecule drugs, particularly hopeful candidates in the advanced stages of these infectious diseases. More importantly, focusing on global trends and novel technologies, several aspects of the prevention and control of infectious disease were discussed in detail, including but not limited to gaps in currently available animal models and medical responses, better immune correlates of protection established in animal models and humans, further understanding of disease mechanisms, and the role of artificial intelligence in guiding or supplementing the development of animal models, vaccines, and drugs. Overall, this review described pioneering approaches and sophisticated techniques involved in the study of the epidemiology, pathogenesis, prevention, and clinical theatment of WHO high-priority pathogens and proposed potential directions. Technological advances in these aspects would consolidate the line of defense, thus ensuring a timely response to WHO high priority pathogens.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Wujian Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zhenshan Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Wanying Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China.
- Department of Laboratory Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
6
|
Partiot E, Brychka D, Gaudin R. Investigating human monocyte adhesion, migration and transmigration and their modulation by Zika virus. Eur J Cell Biol 2024; 103:151453. [PMID: 39182312 DOI: 10.1016/j.ejcb.2024.151453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/25/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024] Open
Abstract
Human circulating monocytes are established targets for Zika virus (ZIKV) infection. Because of their important migratory properties toward any tissues, including the central nervous system (CNS), a better understanding of the mechanisms underlying monocyte transmigration upon ZIKV infection is required. Here, we monitored adhesion, migration and transmigration properties of monocytes exposed to ZIKV. We found that ZIKV enhanced monocyte adhesion on collagen compared to mock-exposed samples, and that pharmacological inhibition of mDia and Cdc42 function induced a significant decrease of adhesion in both mock- and ZIKV-exposed monocytes. In contrast, monocyte migration through collagen was inhibited by most of the tested small molecules targeting regulators of actin polymerization, including Rac1, ROCK, Cdc42, mDia, Arp2/3, Myosin-II and LFA-1. ZIKV-exposed monocyte migration showed a very similar profile to that of their mock-exposed counterparts. Finally, assessment of monocyte transmigration through human cerebral microvascular endothelial cells (hCMEC/D3) showed dependency on Rac1, ROCK, and Cdc42, independently of their infection status. In contrast, we identified that BIRT377, an antagonist of LFA-1, significantly inhibited transmigration of ZIKV-exposed but not mock-exposed monocytes. As BIRT377 increased adhesion of ZIKV-exposed monocytes, we propose that LFA-1 might be involved in a post-adhesion step to enhance viro-induced transmigration. These data suggest that ZIKV exposure triggers specific migratory properties of monocytes that are not exploited under physiological conditions. This work provides further insights on virus-host interactions important for viral neuroinvasion and offers novel targets to specifically inhibit the infiltration of infected cells to the CNS. SUMMARY SENTENCE: Monocyte transmigration involves massive actin cytoskeleton reorganization regulated by small Rho GTPases and integrins, which can be subverted by viruses.
Collapse
Affiliation(s)
- Emma Partiot
- CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier 34293, France; Univ Montpellier, Montpellier 34090, France
| | - Diana Brychka
- CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier 34293, France; Univ Montpellier, Montpellier 34090, France
| | - Raphael Gaudin
- CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier 34293, France; Univ Montpellier, Montpellier 34090, France.
| |
Collapse
|
7
|
Liu LB, Yang W, Chang JT, Fan DY, Wu YH, Wang PG, An J. Zika virus infection leads to hormone deficiencies of the hypothalamic-pituitary-gonadal axis and diminished fertility in mice. J Virol 2023; 97:e0100623. [PMID: 37732785 PMCID: PMC10617514 DOI: 10.1128/jvi.01006-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/03/2023] [Indexed: 09/22/2023] Open
Abstract
IMPORTANCE Zika virus (ZIKV) infection in pregnant women during the third trimester can cause neurodevelopmental delays and cryptorchidism in children without microcephaly. However, the consequences of congenital ZIKV infection on fertility in these children remain unclear. Here, using an immunocompetent mouse model, we reveal that congenital ZIKV infection can cause hormonal disorders of the hypothalamic-pituitary-gonadal axis, leading to reduced fertility and decreased sexual preference. Our study has for the first time linked the hypothalamus to the reproductive system and social behaviors after ZIKV infection. Although the extent to which these observations in mice translate to humans remains unclear, these findings did suggest that the reproductive health and hormone levels of ZIKV-exposed children should receive more attention to improve their living quality.
Collapse
Affiliation(s)
- Li-Bo Liu
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wei Yang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Department of Neurosurgery, Capital Medical University Sanbo Brain Hospital, Beijing, China
| | - Jia-Tong Chang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Dong-Ying Fan
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yan-Hua Wu
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Pei-Gang Wang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jing An
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
8
|
Tisoncik-Go J, Stokes C, Whitmore LS, Newhouse DJ, Voss K, Gustin A, Sung CJ, Smith E, Stencel-Baerenwald J, Parker E, Snyder JM, Shaw DW, Rajagopal L, Kapur RP, Waldorf KA, Gale M. Disruption of myelin structure and oligodendrocyte maturation in a pigtail macaque model of congenital Zika infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.11.561759. [PMID: 37873381 PMCID: PMC10592731 DOI: 10.1101/2023.10.11.561759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Zika virus (ZikV) infection during pregnancy can cause congenital Zika syndrome (CZS) and neurodevelopmental delay in non-microcephalic infants, of which the pathogenesis remains poorly understood. We utilized an established pigtail macaque maternal-to-fetal ZikV infection/exposure model to study fetal brain pathophysiology of CZS manifesting from ZikV exposure in utero. We found prenatal ZikV exposure led to profound disruption of fetal myelin, with extensive downregulation in gene expression for key components of oligodendrocyte maturation and myelin production. Immunohistochemical analyses revealed marked decreases in myelin basic protein intensity and myelinated fiber density in ZikV-exposed animals. At the ultrastructural level, the myelin sheath in ZikV-exposed animals showed multi-focal decompaction consistent with perturbation or remodeling of previously formed myelin, occurring concomitant with dysregulation of oligodendrocyte gene expression and maturation. These findings define fetal neuropathological profiles of ZikV-linked brain injury underlying CZS resulting from ZikV exposure in utero. Because myelin is critical for cortical development, ZikV-related perturbations in oligodendrocyte function may have long-term consequences on childhood neurodevelopment, even in the absence of overt microcephaly.
Collapse
Affiliation(s)
- Jennifer Tisoncik-Go
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Caleb Stokes
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Leanne S Whitmore
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Daniel J Newhouse
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Kathleen Voss
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Andrew Gustin
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Cheng-Jung Sung
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Elise Smith
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Jennifer Stencel-Baerenwald
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Edward Parker
- Department of Ophthalmology, NEI Core for Vision Research, University of Washington, Seattle, Washington, USA
| | - Jessica M Snyder
- Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Dennis W Shaw
- Department of Radiology, University of Washington, Seattle Washington, USA
| | - Lakshmi Rajagopal
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Raj P Kapur
- Department of Pathology, University of Washington, Seattle, Washington, USA
- Department of Pathology, Seattle Children's Hospital, Seattle, Washington, USA
| | - Kristina Adams Waldorf
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington, USA
- Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
9
|
Steiner JP, Bachani M, Malik N, Li W, Tyagi R, Sampson K, Abrams RPM, Kousa Y, Solis J, Johnson TP, Nath A. Neurotoxic properties of the Zika virus envelope protein. Exp Neurol 2023; 367:114469. [PMID: 37327963 PMCID: PMC10527427 DOI: 10.1016/j.expneurol.2023.114469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/31/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Prenatal Zika virus (ZIKV) infection is a serious global concern as it can lead to brain injury and many serious birth defects, collectively known as congenital Zika syndrome. Brain injury likely results from viral mediated toxicity in neural progenitor cells. Additionally, postnatal ZIKV infections have been linked to neurological complications, yet the mechanisms driving these manifestations are not well understood. Existing data suggest that the ZIKV envelope protein can persist in the central nervous system for extended periods of time, but it is unknown if this protein can independently contribute to neuronal toxicity. Here we find that the ZIKV envelope protein is neurotoxic, leading to overexpression of poly adenosine diphosphate -ribose polymerase 1, which can induce parthanatos. Together, these data suggest that neuronal toxicity resulting from the envelope protein may contribute to the pathogenesis of post-natal ZIKV-related neurologic complications.
Collapse
Affiliation(s)
- Joseph P Steiner
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Muznabanu Bachani
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Nasir Malik
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Wenxue Li
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Richa Tyagi
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Kevon Sampson
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Rachel P M Abrams
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Youssef Kousa
- Division of Neurology, Children's National Hospital, Washington, DC 20010, USA; Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Jamie Solis
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Tory P Johnson
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Avindra Nath
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America; Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America.
| |
Collapse
|
10
|
Medina A, Rusnak R, Richardson R, Zimmerman MG, Suthar M, Schoof N, Kovacs-Balint Z, Mavigner M, Sanchez M, Chahroudi A, Raper J. Treatment with sofosbuvir attenuates the adverse neurodevelopmental consequences of Zika virus infection in infant rhesus macaques. J Neuroimmunol 2023; 381:578148. [PMID: 37451078 PMCID: PMC10528946 DOI: 10.1016/j.jneuroim.2023.578148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/25/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Zika virus (ZIKV) infection during infancy in a rhesus macaque (RM) model negatively impacts brain development resulting in long-term behavioral alterations. The current study investigated whether postexposure prophylaxis could alleviate these negative neurodevelopmental consequences. Three RM infants received a 14-day course of sofosbuvir (SOF; 15 mg/kg p.o.) treatment starting at 3 days post-infection with a Puerto Rican strain of ZIKV (PRVABC59) and were then monitored longitudinally for one year. In contrast to ZIKV-infected infant RMs who did not receive SOF, postexposure SOF treatment mitigated the neurodevelopmental, behavioral and cognitive changes seen after postnatal ZIKV infection even while not accelerating viral clearance from the blood. These data suggest that antiviral treatment may help ameliorate some, but not all, of the neurodevelopmental abnormalities associated with early postnatal ZIKV infection.
Collapse
Affiliation(s)
- Alejandra Medina
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Rebecca Rusnak
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Rebecca Richardson
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Matthew G Zimmerman
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Mehul Suthar
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nils Schoof
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zsofia Kovacs-Balint
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Maud Mavigner
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mar Sanchez
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ann Chahroudi
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Jessica Raper
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
11
|
Souza INO, Andrade BS, Frost PS, Neris RLS, Gavino-Leopoldino D, Da Poian AT, Assunção-Miranda I, Figueiredo CP, Clarke JR, Neves GA. Different outcomes of neonatal and adult Zika virus infection on startle reflex and prepulse inhibition in mice. Behav Brain Res 2023; 451:114519. [PMID: 37263423 DOI: 10.1016/j.bbr.2023.114519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/20/2023] [Accepted: 05/28/2023] [Indexed: 06/03/2023]
Abstract
Zika virus (ZIKV) infection causes severe neurological consequences in both gestationally-exposed infants and adults. Sensorial gating deficits strongly correlate to the motor, sensorial and cognitive impairments observed in ZIKV-infected patients. However, no startle response or prepulse inhibition (PPI) assessment has been made in patients or animal models. In this study, we identified different outcomes according to the age of infection and sex in mice: neonatally infected animals presented an increase in PPI and delayed startle latency. However, adult-infected male mice presented lower startle amplitude, while a PPI impairment was observed 14 days after infection in both sexes. Our data further the understanding of the functional impacts of ZIKV on the developing and mature nervous system, which could help explain other behavioral and cognitive alterations caused by the virus. With this study, we support the startle reflex testing in ZIKV-exposed patients, especially infants, allowing for early detection of functional neuromotor damage and early intervention.
Collapse
Affiliation(s)
- Isis N O Souza
- Laboratory of Molecular Pharmacology, Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, Brazil; School of Pharmacy, Universidade Federal do Rio de Janeiro, Brazil
| | - Brenda S Andrade
- Laboratory of Molecular Pharmacology, Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, Brazil
| | - Paula S Frost
- School of Pharmacy, Universidade Federal do Rio de Janeiro, Brazil
| | - Romulo L S Neris
- Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro, Brazil
| | | | - Andrea T Da Poian
- Institute of Medical Biochemistry Leopoldo de Meis (IBqM), Universidade Federal do Rio de Janeiro, Brazil
| | | | | | - Julia R Clarke
- School of Pharmacy, Universidade Federal do Rio de Janeiro, Brazil
| | - Gilda A Neves
- Laboratory of Molecular Pharmacology, Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, Brazil.
| |
Collapse
|
12
|
Ghosh S, Salan T, Riotti J, Ramachandran A, Gonzalez IA, Bandstra ES, Reyes FL, Andreansky SS, Govind V, Saigal G. Brain MRI segmentation of Zika-Exposed normocephalic infants shows smaller amygdala volumes. PLoS One 2023; 18:e0289227. [PMID: 37506075 PMCID: PMC10381087 DOI: 10.1371/journal.pone.0289227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Infants with congenital Zika syndrome (CZS) are known to exhibit characteristic brain abnormalities. However, the brain anatomy of Zika virus (ZIKV)-exposed infants, born to ZIKV-positive pregnant mothers, who have normal-appearing head characteristics at birth, has not been evaluated in detail. The aim of this prospective study is, therefore, to compare the cortical and subcortical brain structural volume measures of ZIKV-exposed normocephalic infants to age-matched healthy controls. METHODS AND FINDINGS We acquired T2-MRI of the whole brain of 18 ZIKV-exposed infants and 8 normal controls on a 3T MRI scanner. The MR images were auto-segmented into eight tissue types and anatomical regions including the white matter, cortical grey matter, deep nuclear grey matter, corticospinal fluid, amygdala, hippocampus, cerebellum, and brainstem. We determined the volumes of these regions and calculated the total intracranial volume (TICV) and head circumference (HC). We compared these measurements between the two groups, controlling for infant age at scan, by first comparing results for all subjects in each group and secondly performing a subgroup analysis for subjects below 8 weeks of postnatal age at scan. ZIKV-exposed infants demonstrated a significant decrease in amygdala volume compared to the control group in both the group and subgroup comparisons (p<0.05, corrected for multiple comparisons using FDR). No significant volume differences were observed in TICV, HC, or any specific brain tissue structures or regions. Study limitations include small sample size, which was due to abrupt cessation of extramural funding as the ZIKV epidemic waned. CONCLUSION ZIKV-exposed infants exhibited smaller volumes in the amygdala, a brain region primarily involved in emotional and behavioral processing. This brain MRI finding may lead to poorer behavioral outcomes and warrants long-term monitoring of pediatric cases of infants with gestational exposure to Zika virus as well as other neurotropic viruses.
Collapse
Affiliation(s)
- Shanchita Ghosh
- Department of Radiology, University of California Davis, Sacramento, California, United States of America
| | - Teddy Salan
- Department of Radiology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Jessica Riotti
- Department of Radiology, Jackson Memorial Hospital, Miami, Florida, United States of America
| | - Amrutha Ramachandran
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
| | - Ivan A Gonzalez
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Emmalee S Bandstra
- Division of Neonatology, Department of Pediatrics, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Fiama L Reyes
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Samita S Andreansky
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Varan Govind
- Department of Radiology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Gaurav Saigal
- Department of Radiology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| |
Collapse
|
13
|
Abstract
PURPOSE OF THE REVIEW Persistent infections capable of causing central nervous system (CNS) complications months or years after the initial infection represent a major public health concern. This concern is particularly relevant considering the ongoing coronavirus disease 2019 pandemic, where the long-term neurological effects are still being recognized. RECENT FINDINGS Viral infections are a risk factor for the development of neurodegenerative diseases. In this paper, we provide an in-depth exploration of the prevalent known and suspected persistent pathogens and their epidemiological and mechanistic links to later development of CNS disease. We examine the pathogenic mechanisms involved, including direct viral damage and indirect immune dysregulation, while also addressing the challenges associated with detecting persistent pathogens. SUMMARY Viral encephalitis has been closely associated with the later development of neurodegenerative diseases and persistent viral infections of the CNS can result in severe and debilitating symptoms. Further, persistent infections may result in the development of autoreactive lymphocytes and autoimmune mediated tissue damage. Diagnosis of persistent viral infections of the CNS remains challenging and treatment options are limited. The development of additional testing modalities as well as novel antiviral agents and vaccines against these persistent infections remains a crucial research goal.
Collapse
Affiliation(s)
- Darshan Pandya
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
14
|
Thomas J, Garcia J, Terry M, Mahaney S, Quintanilla O, Silva DC, Morales M, VandeBerg JL. Monodelphis domestica as a Fetal Intra-Cerebral Inoculation Model for Zika Virus Pathogenesis. Pathogens 2023; 12:pathogens12050733. [PMID: 37242404 DOI: 10.3390/pathogens12050733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Monodelphis domestica (the laboratory opossum) is a marsupial native to South America. At birth, these animals are developmentally equivalent to human embryos at approximately 5 weeks of gestation, which, when coupled with other characteristics including the size of the animals, the development of a robust immune system during juvenile development, and the relative ease of experimental manipulation, have made M. domestica a valuable model in many areas of biomedical research. However, their suitability as models for infectious diseases, especially neurotropic viruses such as Zika virus (ZIKV), is currently unknown. Here, we describe the replicative effects of ZIKV using a fetal intra-cerebral model of inoculation. Using immunohistology and in situ hybridization, we found that opossum embryos and fetuses are susceptible to infection by ZIKV administered intra-cerebrally, that the infection persists, and that viral replication results in neural pathology and may occasionally result in global growth restriction. These results demonstrate the utility of M. domestica as a new animal model for investigating ZIKV infection in vivo and facilitate further inquiry into viral pathogenesis, particularly for those viruses that are neurotropic, that require a host with the ability to sustain sustained viremia, and/or that may require intra-cerebral inoculations of large numbers of embryos or fetuses.
Collapse
Affiliation(s)
- John Thomas
- Center for Vector Borne Disease, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
- Department of Human Genetics, The University of Texas Rio Grande Valley, Brownsville, TX 78521, USA
- School of Medicine, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Juan Garcia
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Matthew Terry
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Susan Mahaney
- Department of Human Genetics, The University of Texas Rio Grande Valley, Brownsville, TX 78521, USA
- School of Medicine, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
- South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley, Brownsville, TX 78521, USA
| | - Oscar Quintanilla
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Dionn Carlo Silva
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Marisol Morales
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - John L VandeBerg
- Center for Vector Borne Disease, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
- Department of Human Genetics, The University of Texas Rio Grande Valley, Brownsville, TX 78521, USA
- School of Medicine, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
- South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley, Brownsville, TX 78521, USA
| |
Collapse
|
15
|
Puig-Pijuan T, Souza LRQ, Pedrosa CDSG, Higa LM, Monteiro FL, Tanuri A, Valverde RHF, Einicker-Lamas M, Rehen SK. Copper regulation disturbance linked to oxidative stress and cell death during Zika virus infection in human astrocytes. J Cell Biochem 2022; 123:1997-2008. [PMID: 36063501 DOI: 10.1002/jcb.30323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 12/24/2022]
Abstract
The Zika virus (ZIKV) caused neurological abnormalities in more than 3500 Brazilian newborns between 2015 and 2020. Data have pointed to oxidative stress in astrocytes as well as to dysregulations in neural cell proliferation and cell cycle as important events accounting for the cell death and neurological complications observed in Congenital Zika Syndrome. Copper imbalance has been shown to induce similar alterations in other pathologies, and disturbances in copper homeostasis have already been described in viral infections. Here, we investigated copper homeostasis imbalance as a factor that could contribute to the cytotoxic effects of ZIKV infection in astrocytes. Human induced pluripotent stem cell-derived astrocytes were infected with ZIKV; changes in the gene expression of copper homeostasis proteins were analyzed. The effect of the administration of CuCl2 or a copper chelator on oxidative stress, cell viability and percentage of infection were also studied. ZIKV infection leads to a downregulation of one of the transporters mediating copper release, ATP7B protein. We also observed the activation of mechanisms that counteract high copper levels, including the synthesis of copper chaperones and the reduction of the copper importer protein CTR1. Finally, we show that chelator-mediated copper sequestration in ZIKV-infected astrocytes reduces the levels of reactive oxygen species and improves cell viability, but does not change the overall percentage of infected cells. In summary, our results show that copper homeostasis imbalance plays a role in the pathology of ZIKV in astrocytes, indicating that it may also be a factor accounting for the developmental abnormalities in the central nervous system following viral infection. Evaluating micronutrient levels and the use of copper chelators in pregnant women susceptible to ZIKV infection may be promising strategies to manage novel cases of congenital ZIKV syndrome.
Collapse
Affiliation(s)
- Teresa Puig-Pijuan
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil.,Laboratory of Biomembranes, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leticia R Q Souza
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | | | - Luiza M Higa
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio Luis Monteiro
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amilcar Tanuri
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael H F Valverde
- Laboratory of Biomembranes, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Einicker-Lamas
- Laboratory of Biomembranes, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Stevens Kastrup Rehen
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil.,Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Zhang X. Magnetic resonance imaging of the monkey fetal brain in utero. INVESTIGATIVE MAGNETIC RESONANCE IMAGING 2022; 26:177-190. [PMID: 36937817 PMCID: PMC10019598 DOI: 10.13104/imri.2022.26.4.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Non-human primates (NHPs) are the closest living relatives of the human and play a critical role in investigating the effects of maternal viral infection and consumption of medicines, drugs, and alcohol on fetal development. With the advance of contemporary fast MRI techniques with parallel imaging, fetal MRI is becoming a robust tool increasingly used in clinical practice and preclinical studies to examine congenital abnormalities including placental dysfunction, congenital heart disease (CHD), and brain abnormalities non-invasively. Because NHPs are usually scanned under anesthesia, the motion artifact is reduced substantially, allowing multi-parameter MRI techniques to be used intensively to examine the fetal development in a single scanning session or longitudinal studies. In this paper, the MRI techniques for scanning monkey fetal brains in utero in biomedical research are summarized. Also, a fast imaging protocol including T2-weighted imaging, diffusion MRI, resting-state functional MRI (rsfMRI) to examine rhesus monkey fetal brains in utero on a clinical 3T scanner is introduced.
Collapse
Affiliation(s)
- Xiaodong Zhang
- EPC Imaging Center and Division of Neuropharmacology and Neurologic Diseases, Emory National Primate Research Center, Emory University, Atlanta, Georgia, 30329, USA
| |
Collapse
|
17
|
Zhang X. Effects of Anesthesia on Cerebral Blood Flow and Functional Connectivity of Nonhuman Primates. Vet Sci 2022; 9:516. [PMID: 36288129 PMCID: PMC9609818 DOI: 10.3390/vetsci9100516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 02/07/2023] Open
Abstract
Nonhuman primates (NHPs) are the closest living relatives of humans and play a critical and unique role in neuroscience research and pharmaceutical development. General anesthesia is usually required in neuroimaging studies of NHPs to keep the animal from stress and motion. However, the adverse effects of anesthesia on cerebral physiology and neural activity are pronounced and can compromise the data collection and interpretation. Functional connectivity is frequently examined using resting-state functional MRI (rsfMRI) to assess the functional abnormality in the animal brain under anesthesia. The fMRI signal can be dramatically suppressed by most anesthetics in a dose-dependent manner. In addition, rsfMRI studies may be further compromised by inter-subject variations when the sample size is small (as seen in most neuroscience studies of NHPs). Therefore, proper use of anesthesia is strongly demanded to ensure steady and consistent physiology maintained during rsfMRI data collection of each subject. The aim of this review is to summarize typical anesthesia used in rsfMRI scans of NHPs and the effects of anesthetics on cerebral physiology and functional connectivity. Moreover, the protocols with optimal rsfMRI data acquisition and anesthesia procedures for functional connectivity study of macaque monkeys are introduced.
Collapse
Affiliation(s)
- Xiaodong Zhang
- EPC Imaging Center and Division of Neuropharmacology and Neurologic Diseases, Emory National Primate Research Center, Emory University, 954 Gatewood RD, Atlanta, GA 30329, USA
| |
Collapse
|
18
|
Lebov JF, Hooper SR, Pugh N, Becker-Dreps S, Bowman NM, Brown LM, MacDonald PD, Lakshmanane P, Jadi R, Bucardo F, Chevez T, Rodriguez AH, Aleman Rivera TDJ. Neurological and neuropsychological sequelae of Zika virus infection in children in León, Nicaragua. Rev Panam Salud Publica 2022; 46:e90. [PMID: 35875321 PMCID: PMC9299389 DOI: 10.26633/rpsp.2022.90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/16/2022] [Indexed: 11/24/2022] Open
Abstract
Objectives. To describe the presence and persistence of neurological and neuropsychological sequelae among children with acquired Zika virus infection and assess whether those sequelae were more common in children infected with Zika virus compared to uninfected children. Methods. We conducted a prospective cohort study of children with and without Zika virus infection in León, Nicaragua, using a standard clinical assessment tool and questionnaire to collect data on symptoms at three visits, about 6 months apart, and a battery of standardized instruments to evaluate neurocognitive function, behavior, depression, and anxiety at the last two visits. Results. Sixty-two children were enrolled, with no significant differences in demographics by infection group. Children infected with Zika virus had a range of neurological symptoms, some of which persisted for 6 to 12 months; however, no consistent pattern of symptoms was observed. At baseline a small percentage of children infected with Zika virus had an abnormal finger-to-nose test (13%), cold touch response (13%), and vibration response (15%) versus 0% in the uninfected group. Neurocognitive deficits and behavioral problems were common in both groups, with no significant differences between the groups. Children infected with Zika virus had lower cognitive efficiency scores at the 6-month visit. Anxiety and depression were infrequent in both groups. Conclusions. Larger studies are needed to definitively investigate the relationship between Zika virus infection and neurological symptoms and neurocognitive problems, with adjustment for factors affecting cognition and behavior, including mood and sleep disorders, home learning environment, history of neuroinvasive infections, and detailed family history of neuropsychological problems.
Collapse
Affiliation(s)
- Jill F. Lebov
- RTI International, Research Triangle Park, NC, United States of America
| | | | - Norma Pugh
- RTI International, Research Triangle Park, NC, United States of America
| | | | | | - Linda M. Brown
- RTI International, Research Triangle Park, NC, United States of America
| | | | | | - Ramesh Jadi
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Filemon Bucardo
- National Autonomous University of Nicaragua-León, León, Nicaragua
| | - Tatiana Chevez
- National Autonomous University of Nicaragua-León, León, Nicaragua
| | | | | |
Collapse
|
19
|
Kung PL, Chou TW, Lindman M, Chang NP, Estevez I, Buckley BD, Atkins C, Daniels BP. Zika virus-induced TNF-α signaling dysregulates expression of neurologic genes associated with psychiatric disorders. J Neuroinflammation 2022; 19:100. [PMID: 35462541 PMCID: PMC9036774 DOI: 10.1186/s12974-022-02460-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 04/07/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Zika virus (ZIKV) is an emerging flavivirus of global concern. ZIKV infection of the central nervous system has been linked to a variety of clinical syndromes, including microcephaly in fetuses and rare but serious neurologic disease in adults. However, the potential for ZIKV to influence brain physiology and host behavior following apparently mild or subclinical infection is less well understood. Furthermore, though deficits in cognitive function are well-documented after recovery from neuroinvasive viral infection, the potential impact of ZIKV on other host behavioral domains has not been thoroughly explored. METHODS We used transcriptomic profiling, including unbiased gene ontology enrichment analysis, to assess the impact of ZIKV infection on gene expression in primary cortical neuron cultures. These studies were extended with molecular biological analysis of gene expression and inflammatory cytokine signaling. In vitro observations were further confirmed using established in vivo models of ZIKV infection in immunocompetent hosts. RESULTS Transcriptomic profiling of primary neuron cultures following ZIKV infection revealed altered expression of key genes associated with major psychiatric disorders, such as bipolar disorder and schizophrenia. Gene ontology enrichment analysis also revealed significant changes in gene expression associated with fundamental neurobiological processes, including neuronal development, neurotransmission, and others. These alterations to neurologic gene expression were also observed in the brain in vivo using several immunocompetent mouse models of ZIKV infection. Mechanistic studies identified TNF-α signaling via TNFR1 as a major regulatory mechanism controlling ZIKV-induced changes to neurologic gene expression. CONCLUSIONS Our studies reveal that cell-intrinsic innate immune responses to ZIKV infection profoundly shape neuronal transcriptional profiles, highlighting the need to further explore associations between ZIKV infection and disordered host behavioral states.
Collapse
Affiliation(s)
- Po-Lun Kung
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Tsui-Wen Chou
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Marissa Lindman
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Nydia P. Chang
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Irving Estevez
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Benjamin D. Buckley
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Colm Atkins
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Brian P. Daniels
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| |
Collapse
|
20
|
Beckman D, Seelke AMH, Bennett J, Dougherty P, Van Rompay KKA, Keesler R, Pesavento PA, Coffey LLA, Morrison JH, Bliss-Moreau E. Neuroanatomical abnormalities in a nonhuman primate model of congenital Zika virus infection. eLife 2022; 11:e64734. [PMID: 35261339 PMCID: PMC8906804 DOI: 10.7554/elife.64734] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/14/2021] [Indexed: 11/18/2022] Open
Abstract
We evaluated neuropathological consequences of fetal ZIKV exposure in rhesus monkeys, a translatable animal model for human neural development, by carrying out quantitative neuroanatomical analyses of the nearly full-term brains of fetuses infected with ZIKV and procedure-matched controls. For each animal, a complete cerebral hemisphere was evaluated using immunohistochemical (IHC) and neuroanatomical techniques to detect virus, identify affected cell types, and evaluate gross neuroanatomical abnormalities. IHC staining revealed the presence of ZIKV in the frontal lobe, which contained activated microglia and showed increased apoptosis of immature neurons. ZIKV-infected animals exhibited macrostructural changes within the visual pathway. Regional differences tracked with the developmental timing of the brain, suggesting inflammatory processes related to viral infiltration swept through the cortex, followed by a wave of cell death resulting in morphological changes. These findings may help explain why some infants born with normal sized heads during the ZIKV epidemic manifest developmental challenges as they age.
Collapse
Affiliation(s)
- Danielle Beckman
- California National Primate Research Center, UC DavisDavisUnited States
| | - Adele MH Seelke
- California National Primate Research Center, UC DavisDavisUnited States
- Department of Psychology, UC DavisDavisUnited States
| | - Jeffrey Bennett
- California National Primate Research Center, UC DavisDavisUnited States
- Department of Psychology, UC DavisDavisUnited States
| | - Paige Dougherty
- California National Primate Research Center, UC DavisDavisUnited States
- Department of Psychology, UC DavisDavisUnited States
| | - Koen KA Van Rompay
- California National Primate Research Center, UC DavisDavisUnited States
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, UC DavisDavisUnited States
| | - Rebekah Keesler
- California National Primate Research Center, UC DavisDavisUnited States
| | - Patricia A Pesavento
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, UC DavisDavisUnited States
| | - Lark LA Coffey
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, UC DavisDavisUnited States
| | - John H Morrison
- California National Primate Research Center, UC DavisDavisUnited States
- Department of Neurology, School of Medicine, UC DavisDavisUnited States
| | - Eliza Bliss-Moreau
- California National Primate Research Center, UC DavisDavisUnited States
- Department of Psychology, UC DavisDavisUnited States
| |
Collapse
|
21
|
Hsu DC, Chumpolkulwong K, Corley MJ, Hunsawong T, Inthawong D, Schuetz A, Imerbsin R, Silsorn D, Nadee P, Sopanaporn J, Phuang-Ngern Y, Klungthong C, Reed M, Fernandez S, Ndhlovu LC, Paul R, Lugo-Roman L, Michael NL, Modjarrad K, Vasan S. Neurocognitive impact of Zika virus infection in adult rhesus macaques. J Neuroinflammation 2022; 19:40. [PMID: 35130924 PMCID: PMC8822695 DOI: 10.1186/s12974-022-02402-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/24/2022] [Indexed: 12/03/2022] Open
Abstract
Background Zika virus (ZIKV) is a mosquito-transmitted flavivirus that affects many regions of the world. Infection, in utero, causes microcephaly and later developmental and neurologic impairments. The impact of ZIKV infection on neurocognition in adults has not been well described. The objective of the study was to assess the neurocognitive impact of ZIKV infection in adult rhesus macaques. Methods Neurocognitive assessments were performed using the Cambridge Neuropsychological Test Automated Battery (CANTAB) via a touch screen and modified Brinkman Board before and after subcutaneous ZIKV inoculation. Immune activation markers were measured in the blood and cerebral spinal fluid (CSF) by multiplex assay and flow cytometry. Results All animals (N = 8) had detectable ZIKV RNA in plasma at day 1 post-inoculation (PI) that peaked at day 2 PI (median 5.9, IQR 5.6–6.2 log10 genome equivalents/mL). In all eight animals, ZIKV RNA became undetectable in plasma by day 14 PI, but persisted in lymphoid tissues. ZIKV RNA was not detected in the CSF supernatant at days 4, 8, 14 and 28 PI but was detected in the brain of 2 animals at days 8 and 28 PI. Elevations in markers of immune activation in the blood and CSF were accompanied by a reduction in accuracy and reaction speed on the CANTAB in the majority of animals. Conclusions The co-occurrence of systemic and CSF immune perturbations and neurocognitive impairment establishes this model as useful for studying the impact of neuroinflammation on neurobehavior in rhesus macaques, as it pertains to ZIKV infection and potentially other pathogens. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02402-4.
Collapse
Affiliation(s)
- Denise C Hsu
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA. .,Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand. .,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, 20817, USA.
| | | | - Michael J Corley
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, USA
| | - Taweewun Hunsawong
- Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Dutsadee Inthawong
- Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Alexandra Schuetz
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA.,Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, 20817, USA
| | - Rawiwan Imerbsin
- Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Decha Silsorn
- Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Panupat Nadee
- Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Jumpol Sopanaporn
- Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | | | | | - Matthew Reed
- Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Stefan Fernandez
- Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Lishomwa C Ndhlovu
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, USA.,Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Robert Paul
- Missouri Institute of Mental Health, University of Missouri, St. Louis, MO, 63143, USA
| | - Luis Lugo-Roman
- Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Nelson L Michael
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Kayvon Modjarrad
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Sandhya Vasan
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, 20817, USA.,Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| |
Collapse
|
22
|
Sherer ML, Lemanski EA, Patel RT, Wheeler SR, Parcells MS, Schwarz JM. A Rat Model of Prenatal Zika Virus Infection and Associated Long-Term Outcomes. Viruses 2021; 13:v13112298. [PMID: 34835104 PMCID: PMC8624604 DOI: 10.3390/v13112298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that became widely recognized due to the epidemic in Brazil in 2015. Since then, there has been nearly a 20-fold increase in the incidence of microcephaly and birth defects seen among women giving birth in Brazil, leading the Centers for Disease Control and Prevention (CDC) to officially declare a causal link between prenatal ZIKV infection and the serious brain abnormalities seen in affected infants. Here, we used a unique rat model of prenatal ZIKV infection to study three possible long-term outcomes of congenital ZIKV infection: (1) behavior, (2) cell proliferation, survival, and differentiation in the brain, and (3) immune responses later in life. Adult offspring that were prenatally infected with ZIKV exhibited motor deficits in a sex-specific manner, and failed to mount a normal interferon response to a viral immune challenge later in life. Despite undetectable levels of ZIKV in the brain and serum in these offspring at P2, P24, or P60, these results suggest that prenatal exposure to ZIKV results in lasting consequences that could significantly impact the health of the offspring. To help individuals already exposed to ZIKV, as well as be prepared for future outbreaks, we need to understand the full spectrum of neurological and immunological consequences that could arise following prenatal ZIKV infection.
Collapse
Affiliation(s)
- Morgan L. Sherer
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA; (R.T.P.); (S.R.W.); (J.M.S.)
- Correspondence: (M.L.S.); (E.A.L.)
| | - Elise A. Lemanski
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA; (R.T.P.); (S.R.W.); (J.M.S.)
- Correspondence: (M.L.S.); (E.A.L.)
| | - Rita T. Patel
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA; (R.T.P.); (S.R.W.); (J.M.S.)
| | - Shannon R. Wheeler
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA; (R.T.P.); (S.R.W.); (J.M.S.)
| | - Mark S. Parcells
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA;
| | - Jaclyn M. Schwarz
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA; (R.T.P.); (S.R.W.); (J.M.S.)
| |
Collapse
|
23
|
Haese NN, Roberts VHJ, Chen A, Streblow DN, Morgan TK, Hirsch AJ. Nonhuman Primate Models of Zika Virus Infection and Disease during Pregnancy. Viruses 2021; 13:2088. [PMID: 34696518 PMCID: PMC8539636 DOI: 10.3390/v13102088] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
Since the explosive outbreak of Zika virus in Brazil and South/Central America in 2015-2016, the frequency of infections has subsided, but Zika virus remains present in this region as well as other tropical and sub-tropical areas of the globe. The most alarming aspect of Zika virus infection is its association with severe birth defects when infection occurs in pregnant women. Understanding the mechanism of Zika virus pathogenesis, which comprises features unique to Zika virus as well as shared with other teratogenic pathogens, is key to future prophylactic or therapeutic interventions. Nonhuman primate-based research has played a significant role in advancing our knowledge of Zika virus pathogenesis, especially with regard to fetal infection. This review summarizes what we have learned from these models and potential future research directions.
Collapse
Affiliation(s)
- Nicole N. Haese
- The Vaccine & Gene Institute, Oregon Health and Science University, 505 NW 185th Ave, Beaverton, OR 97006, USA; (N.N.H.); (D.N.S.)
| | - Victoria H. J. Roberts
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, 505 NW 185th Ave, Beaverton, OR 97006, USA;
| | - Athena Chen
- Department of Pathology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA; (A.C.); (T.K.M.)
| | - Daniel N. Streblow
- The Vaccine & Gene Institute, Oregon Health and Science University, 505 NW 185th Ave, Beaverton, OR 97006, USA; (N.N.H.); (D.N.S.)
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, 505 NW 185th Ave, Beaverton, OR 97006, USA
| | - Terry K. Morgan
- Department of Pathology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA; (A.C.); (T.K.M.)
- Department of Obstetrics and Gynecology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Alec J. Hirsch
- The Vaccine & Gene Institute, Oregon Health and Science University, 505 NW 185th Ave, Beaverton, OR 97006, USA; (N.N.H.); (D.N.S.)
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, 505 NW 185th Ave, Beaverton, OR 97006, USA
| |
Collapse
|
24
|
Bentes AA, Crispim APC, Marinho PES, Viegas ECC, Loutfi KS, Guedes I, Araujo ST, Alvarenga AM, Campos E Silva LM, Santos MA, Batista AK, Alvarenga PP, Candiani TMS, Kroon EG, de Castro Romanelli RM. Neurologic Manifestations of Noncongenital Zika Virus in Children. J Pediatr 2021; 237:298-301.e1. [PMID: 34216632 DOI: 10.1016/j.jpeds.2021.06.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 10/21/2022]
Abstract
We evaluated neurologic complications following noncongenital Zika virus infection in 11 children who presented with central nervous system signs. Zika virus RNA was detected by real-time reverse transcription-polymerase chain reaction in cerebrospinal fluid. Approximately one-quarter of patients required antiepileptic medication in follow-up, and 2 children progressed to learning difficulties or developmental delay.
Collapse
Affiliation(s)
- Aline Almeida Bentes
- Departamento de Pediatria, Universidade Federal de Minas Gerais, Minas Gerais, Brazil; Hospital Infantil João Paulo II, FHEMIG, Minas Gerais, Brazil
| | - Ana Paula Correa Crispim
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | | | | | | | - Isabela Guedes
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Sara Tavares Araujo
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | | | | | | | - Aline Karla Batista
- Faculdade de Enfermagem, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | | | | | - Erna Geessien Kroon
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Minas Gerais, Brazil.
| | | |
Collapse
|
25
|
African-Lineage Zika Virus Replication Dynamics and Maternal-Fetal Interface Infection in Pregnant Rhesus Macaques. J Virol 2021; 95:e0222020. [PMID: 34076485 PMCID: PMC8312872 DOI: 10.1128/jvi.02220-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Following the Zika virus (ZIKV) outbreak in the Americas, ZIKV was causally associated with microcephaly and a range of neurological and developmental symptoms, termed congenital Zika syndrome (CZS). The viruses responsible for this outbreak belonged to the Asian lineage of ZIKV. However, in vitro and in vivo studies assessing the pathogenesis of African-lineage ZIKV demonstrated that African-lineage isolates often replicated to high titers and caused more-severe pathology than Asian-lineage isolates. To date, the pathogenesis of African-lineage ZIKV in a translational model, particularly during pregnancy, has not been rigorously characterized. Here, we infected four pregnant rhesus macaques with a low-passage-number strain of African-lineage ZIKV and compared its pathogenesis to those for a cohort of four pregnant rhesus macaques infected with an Asian-lineage isolate and a cohort of mock-inoculated controls. The viral replication kinetics for the two experimental groups were not significantly different, and both groups developed robust neutralizing antibody titers above levels considered to be protective. There was no evidence of significant fetal head growth restriction or gross fetal harm at delivery (1 to 1.5 weeks prior to full term) in either group. However, a significantly higher burden of ZIKV viral RNA (vRNA) was found in the maternal-fetal interface tissues of the macaques exposed to an African-lineage isolate. Our findings suggest that ZIKV of any genetic lineage poses a threat to pregnant individuals and their infants. IMPORTANCE ZIKV was first identified in 1947 in Africa, but most of our knowledge of ZIKV is based on studies of the distinct Asian genetic lineage, which caused the outbreak in the Americas in 2015 to 2016. In its most recent update, the WHO stated that improved understanding of African-lineage ZIKV pathogenesis during pregnancy must be a priority. The recent detection of African-lineage isolates in Brazil underscores the need to understand the impact of these viruses. Here, we provide the first comprehensive assessment of African-lineage ZIKV infection during pregnancy in a translational nonhuman primate model. We show that African-lineage isolates replicate with kinetics similar to those of Asian-lineage isolates and can infect the placenta. However, there was no evidence of more-severe outcomes with African-lineage isolates. Our results highlight both the threat that African-lineage ZIKV poses to pregnant individuals and their infants and the need for epidemiological and translational in vivo studies with African-lineage ZIKV.
Collapse
|
26
|
Li M, Brokaw A, Furuta AM, Coler B, Obregon-Perko V, Chahroudi A, Wang HY, Permar SR, Hotchkiss CE, Golos TG, Rajagopal L, Adams Waldorf KM. Non-human Primate Models to Investigate Mechanisms of Infection-Associated Fetal and Pediatric Injury, Teratogenesis and Stillbirth. Front Genet 2021; 12:680342. [PMID: 34290739 PMCID: PMC8287178 DOI: 10.3389/fgene.2021.680342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/25/2021] [Indexed: 12/25/2022] Open
Abstract
A wide array of pathogens has the potential to injure the fetus and induce teratogenesis, the process by which mutations in fetal somatic cells lead to congenital malformations. Rubella virus was the first infectious disease to be linked to congenital malformations due to an infection in pregnancy, which can include congenital cataracts, microcephaly, hearing impairment and congenital heart disease. Currently, human cytomegalovirus (HCMV) is the leading infectious cause of congenital malformations globally, affecting 1 in every 200 infants. However, our knowledge of teratogenic viruses and pathogens is far from complete. New emerging infectious diseases may induce teratogenesis, similar to Zika virus (ZIKV) that caused a global pandemic in 2016-2017; thousands of neonates were born with congenital microcephaly due to ZIKV exposure in utero, which also included a spectrum of injuries to the brain, eyes and spinal cord. In addition to congenital anomalies, permanent injury to fetal and neonatal organs, preterm birth, stillbirth and spontaneous abortion are known consequences of a broader group of infectious diseases including group B streptococcus (GBS), Listeria monocytogenes, Influenza A virus (IAV), and Human Immunodeficiency Virus (HIV). Animal models are crucial for determining the mechanism of how these various infectious diseases induce teratogenesis or organ injury, as well as testing novel therapeutics for fetal or neonatal protection. Other mammalian models differ in many respects from human pregnancy including placentation, labor physiology, reproductive tract anatomy, timeline of fetal development and reproductive toxicology. In contrast, non-human primates (NHP) most closely resemble human pregnancy and exhibit key similarities that make them ideal for research to discover the mechanisms of injury and for testing vaccines and therapeutics to prevent teratogenesis, fetal and neonatal injury and adverse pregnancy outcomes (e.g., stillbirth or spontaneous abortion). In this review, we emphasize key contributions of the NHP model pre-clinical research for ZIKV, HCMV, HIV, IAV, L. monocytogenes, Ureaplasma species, and GBS. This work represents the foundation for development and testing of preventative and therapeutic strategies to inhibit infectious injury of human fetuses and neonates.
Collapse
Affiliation(s)
- Miranda Li
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Alyssa Brokaw
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Anna M. Furuta
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Brahm Coler
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Veronica Obregon-Perko
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta and Emory University, Atlanta, GA, United States
| | - Hsuan-Yuan Wang
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Sallie R. Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Charlotte E. Hotchkiss
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States
| | - Thaddeus G. Golos
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Lakshmi Rajagopal
- Department of Global Health, University of Washington, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Kristina M. Adams Waldorf
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
27
|
Moura LM, Ferreira VLDR, Loureiro RM, de Paiva JPQ, Rosa-Ribeiro R, Amaro E, Soares MBP, Machado BS. The Neurobiology of Zika Virus: New Models, New Challenges. Front Neurosci 2021; 15:654078. [PMID: 33897363 PMCID: PMC8059436 DOI: 10.3389/fnins.2021.654078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
The Zika virus (ZIKV) attracted attention due to one striking characteristic: the ability to cross the placental barrier and infect the fetus, possibly causing severe neurodevelopmental disruptions included in the Congenital Zika Syndrome (CZS). Few years after the epidemic, the CZS incidence has begun to decline. However, how ZIKV causes a diversity of outcomes is far from being understood. This is probably driven by a chain of complex events that relies on the interaction between ZIKV and environmental and physiological variables. In this review, we address open questions that might lead to an ill-defined diagnosis of CZS. This inaccuracy underestimates a large spectrum of apparent normocephalic cases that remain underdiagnosed, comprising several subtle brain abnormalities frequently masked by a normal head circumference. Therefore, new models using neuroimaging and artificial intelligence are needed to improve our understanding of the neurobiology of ZIKV and its true impact in neurodevelopment.
Collapse
Affiliation(s)
| | | | | | | | | | - Edson Amaro
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ), Bahia, Brazil.,University Center SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Advanced Health Systems (CIMATEC ISI SAS), National Service of Industrial Learning - SENAI, Bahia, Brazil
| | | |
Collapse
|
28
|
Lima NS, Moon D, Darko S, De La Barrera RA, Lin L, Koren MA, Jarman RG, Eckels KH, Thomas SJ, Michael NL, Modjarrad K, Douek DC, Trautmann L. Pre-existing Immunity to Japanese Encephalitis Virus Alters CD4 T Cell Responses to Zika Virus Inactivated Vaccine. Front Immunol 2021; 12:640190. [PMID: 33717194 PMCID: PMC7943459 DOI: 10.3389/fimmu.2021.640190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/28/2021] [Indexed: 12/16/2022] Open
Abstract
The epidemic spread of Zika virus (ZIKV), associated with devastating neurologic syndromes, has driven the development of multiple ZIKV vaccines candidates. An effective vaccine should induce ZIKV-specific T cell responses, which are shown to improve the establishment of humoral immunity and contribute to viral clearance. Here we investigated how previous immunization against Japanese encephalitis virus (JEV) and yellow fever virus (YFV) influences T cell responses elicited by a Zika purified-inactivated virus (ZPIV) vaccine. We demonstrate that three doses of ZPIV vaccine elicited robust CD4 T cell responses to ZIKV structural proteins, while ZIKV-specific CD4 T cells in pre-immunized individuals with JEV vaccine, but not YFV vaccine, were more durable and directed predominantly toward conserved epitopes, which elicited Th1 and Th2 cytokine production. In addition, T cell receptor repertoire analysis revealed preferential expansion of cross-reactive clonotypes between JEV and ZIKV, suggesting that pre-existing immunity against JEV may prime the establishment of stronger CD4 T cell responses to ZPIV vaccination. These CD4 T cell responses correlated with titers of ZIKV-neutralizing antibodies in the JEV pre-vaccinated group, but not in flavivirus-naïve or YFV pre-vaccinated individuals, suggesting a stronger contribution of CD4 T cells in the generation of neutralizing antibodies in the context of JEV-ZIKV cross-reactivity.
Collapse
Affiliation(s)
- Noemia S Lima
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.,Cellular Immunology Section, US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Damee Moon
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Samuel Darko
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Rafael A De La Barrera
- Pilot Bioproduction Facility, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Leyi Lin
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Michael A Koren
- Viral Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Richard G Jarman
- Viral Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Kenneth H Eckels
- Pilot Bioproduction Facility, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Stephen J Thomas
- Division of Infectious Diseases, Department of Medicine, State University of New York Upstate, Syracuse, NY, United States
| | - Nelson L Michael
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Lydie Trautmann
- Cellular Immunology Section, US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States.,Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States
| |
Collapse
|
29
|
Schouest B, Peterson TA, Szeltner DM, Scheef EA, Baddoo M, Ungerleider N, Flemington EK, MacLean AG, Maness NJ. Transcriptional signatures of Zika virus infection in astrocytes. J Neurovirol 2021; 27:116-125. [PMID: 33405202 PMCID: PMC7921019 DOI: 10.1007/s13365-020-00931-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/09/2020] [Accepted: 12/02/2020] [Indexed: 01/18/2023]
Abstract
Astrocytes are an early and important target of Zika virus (ZIKV) infection in the developing brain, but the impacts of infection on astrocyte function remain controversial. Given that nonhuman primate (NHP) models of ZIKV infection replicate aspects of neurologic disease seen in human infections, we cultured primary astrocytes from the brain tissue of infant rhesus macaques and then infected the cells with Asian or African lineage ZIKV to identify transcriptional patterns associated with infection in these cells. The African lineage virus appeared to have greater infectivity and promote stronger antiviral signaling, but infection by either strain ultimately produced typical virus response patterns. Both viruses induced hypoxic stress, but the Asian lineage strain additionally had an effect on metabolic and lipid biosynthesis pathways. Together, these findings describe an NHP astrocyte model that may be used to assess transcriptional signatures following ZIKV infection.
Collapse
Affiliation(s)
- Blake Schouest
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
- Biomedical Sciences Training Program, Tulane University School of Medicine, New Orleans, LA, USA
| | - Tiffany A Peterson
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
- Biomedical Sciences Training Program, Tulane University School of Medicine, New Orleans, LA, USA
| | - Dawn M Szeltner
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - Elizabeth A Scheef
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - Melody Baddoo
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Nathan Ungerleider
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Erik K Flemington
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Andrew G MacLean
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Nicholas J Maness
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA.
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
30
|
Raper J, Chahroudi A. Clinical and Preclinical Evidence for Adverse Neurodevelopment after Postnatal Zika Virus Infection. Trop Med Infect Dis 2021; 6:tropicalmed6010010. [PMID: 33445671 PMCID: PMC7838975 DOI: 10.3390/tropicalmed6010010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
Although the Zika virus (ZIKV) typically causes mild or no symptoms in adults, during the 2015−2016 outbreak, ZIKV infection in pregnancy resulted in a spectrum of diseases in infants, including birth defects and neurodevelopmental disorders identified in childhood. While intense clinical and basic science research has focused on the neurodevelopmental outcomes of prenatal ZIKV infection, less is known about the consequences of infection during early life. Considering the neurotropism of ZIKV and the rapidly-developing postnatal brain, it is important to understand how infection during infancy may disrupt neurodevelopment. This paper reviews the current knowledge regarding early postnatal ZIKV infection. Emerging clinical evidence supports the hypothesis that ZIKV infection during infancy can result in negative neurologic consequences. However, clinical data regarding postnatal ZIKV infection in children are limited; as such, animal models play an important role in understanding the potential complications of ZIKV infection related to the vulnerable developing brain. Preclinical data provide insight into the potential behavioral, cognitive, and motor domains that clinical studies should examine in pediatric populations exposed to ZIKV during infancy.
Collapse
Affiliation(s)
- Jessica Raper
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA;
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ann Chahroudi
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA;
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA
- Correspondence:
| |
Collapse
|
31
|
Pacheco O, Newton SM, Daza M, Cates JE, Reales JAM, Burkel VK, Mercado M, Godfred-Cato S, Gonzalez M, Anderson KN, Woodworth KR, Valencia D, Tong VT, Gilboa SM, Osorio MB, Rodríguez DYS, Prieto-Alvarado FE, Moore CA, Honein MA, Ospina Martínez ML. Neurodevelopmental findings in children 20-30 months of age with postnatal Zika infection at 1-12 months of age, Colombia, September-November 2017. Paediatr Perinat Epidemiol 2021; 35:92-97. [PMID: 32488915 PMCID: PMC7708429 DOI: 10.1111/ppe.12690] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/10/2020] [Accepted: 05/01/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Zika virus (ZIKV) infection during pregnancy can cause infant brain and eye abnormalities and has been associated with adverse neurodevelopmental outcomes in exposed infants. Evidence is limited on ZIKV's effects on children infected postnatally within the first year of life. OBJECTIVE To determine whether any adverse neurodevelopmental outcomes occurred in early childhood for children infected postnatally with ZIKV during infancy, given the neurotoxicity of ZIKV infection and the rapid brain development that occurs in infancy and early childhood. METHODS The Colombia Instituto Nacional de Salud (INS) conducted health and developmental screenings between September and November 2017 to evaluate 60 children at ages 20-30 months who had laboratory-confirmed symptomatic postnatal ZIKV infection at ages 1-12 months. We examined the frequency of adverse neurologic, hearing, eye, and developmental outcomes as well as the relationship between age at Zika symptom onset and developmental outcomes. RESULTS Nine of the 60 (15.0%) children had adverse outcomes on the neurologic, hearing, or eye examination. Six of the 47 (12.8%) children without these adverse findings, and who received a valid developmental screening, had an alert score in the hearing-language domain which signals the need for additional developmental evaluation. CONCLUSION Neurologic, hearing, eye, and developmental findings suggest reassuring results. Since the full spectrum of neurodevelopmental outcomes in children postnatally infected with ZIKV remains unknown, routine paediatric care is advised to monitor the development of these children to ensure early identification of any adverse neurodevelopmental outcomes.
Collapse
Affiliation(s)
| | - Suzanne M. Newton
- Division of Birth Defects and Infant Disorders, National Center on Birth Defects and Developmental Disabilities, CDC, Atlanta, GA, USA,Eagle Global Scientific, Atlanta, GA, USA
| | | | - Jordan E. Cates
- Division of Birth Defects and Infant Disorders, National Center on Birth Defects and Developmental Disabilities, CDC, Atlanta, GA, USA
| | | | - Veronica K. Burkel
- Division of Birth Defects and Infant Disorders, National Center on Birth Defects and Developmental Disabilities, CDC, Atlanta, GA, USA,Eagle Medical Services, LLC, Atlanta, GA, USA
| | | | - Shana Godfred-Cato
- Division of Birth Defects and Infant Disorders, National Center on Birth Defects and Developmental Disabilities, CDC, Atlanta, GA, USA
| | | | - Kayla N. Anderson
- Division of Birth Defects and Infant Disorders, National Center on Birth Defects and Developmental Disabilities, CDC, Atlanta, GA, USA
| | - Kate R. Woodworth
- Division of Birth Defects and Infant Disorders, National Center on Birth Defects and Developmental Disabilities, CDC, Atlanta, GA, USA
| | - Diana Valencia
- Division of Birth Defects and Infant Disorders, National Center on Birth Defects and Developmental Disabilities, CDC, Atlanta, GA, USA
| | - Van T. Tong
- Division of Birth Defects and Infant Disorders, National Center on Birth Defects and Developmental Disabilities, CDC, Atlanta, GA, USA
| | - Suzanne M. Gilboa
- Division of Birth Defects and Infant Disorders, National Center on Birth Defects and Developmental Disabilities, CDC, Atlanta, GA, USA
| | | | | | | | - Cynthia A. Moore
- Division of Birth Defects and Infant Disorders, National Center on Birth Defects and Developmental Disabilities, CDC, Atlanta, GA, USA
| | - Margaret A. Honein
- Division of Birth Defects and Infant Disorders, National Center on Birth Defects and Developmental Disabilities, CDC, Atlanta, GA, USA
| | | |
Collapse
|
32
|
Ireland DDC, Manangeeswaran M, Lewkowicz AP, Engel K, Clark SM, Laniyan A, Sykes J, Lee HN, McWilliams IL, Kelley-Baker L, Tonelli LH, Verthelyi D. Long-term persistence of infectious Zika virus: Inflammation and behavioral sequela in mice. PLoS Pathog 2020; 16:e1008689. [PMID: 33301527 PMCID: PMC7728251 DOI: 10.1371/journal.ppat.1008689] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022] Open
Abstract
The neurodevelopmental defects associated with ZIKV infections early in pregnancy are well documented, however the potential defects and long-term consequences associated with milder infections in late pregnancy and perinatal period are less well understood. To model these, we challenged 1 day old (P1) immunocompetent C57BL/6 mice with ZIKV. The animals developed a transient neurological syndrome including unsteady gait, kinetic tremors, severe ataxia and seizures 10-15 days post-infection (dpi) but symptoms subsided after a week, and most animals survived. Despite apparent recovery, MRI of convalescent mice show reduced cerebellar volume that correlates with altered coordination and motor function as well as hyperactivity and impulsivity. Persistent mRNA levels of pro-inflammatory genes including Cd80, Il-1α, and Ifn-γ together with Cd3, Cd8 and perforin (PrfA), suggested persistence of low-grade inflammation. Surprisingly, the brain parenchyma of convalescent mice harbor multiple small discrete foci with viral antigen, active apoptotic processes in neurons, and cellular infiltrates, surrounded by activated astrocytes and microglia as late as 1-year post-infection. Detection of negative-sense strand viral RNA and isolation of infectious virus derived from these convalescent mice by blinded passage in Vero cells confirmed long-term persistence of replicating ZIKV in CNS of convalescent mice. Although the infection appears to persist in defined reservoirs within CNS, the resulting inflammation could increase the risk of neurodegenerative disorders. This raises concern regarding possible long-term effects in asymptomatic children exposed to the virus and suggests that long-term neurological and behavioral monitoring as well as anti-viral treatment to clear virus from the CNS may be useful in patients exposed to ZIKV at an early age.
Collapse
Affiliation(s)
- Derek D. C. Ireland
- US Food and Drug Administration, Office of Biotechnology Products, Silver Spring, Maryland, United States of America
| | - Mohanraj Manangeeswaran
- US Food and Drug Administration, Office of Biotechnology Products, Silver Spring, Maryland, United States of America
| | - Aaron P. Lewkowicz
- US Food and Drug Administration, Office of Biotechnology Products, Silver Spring, Maryland, United States of America
| | - Kaliroi Engel
- US Food and Drug Administration, Office of Biotechnology Products, Silver Spring, Maryland, United States of America
| | - Sarah M. Clark
- University of Maryland School of Medicine, Department of Psychiatry, Baltimore, Maryland, United States of America
| | - Adelle Laniyan
- University of Maryland School of Medicine, Department of Psychiatry, Baltimore, Maryland, United States of America
| | - Jacob Sykes
- US Food and Drug Administration, Office of Biotechnology Products, Silver Spring, Maryland, United States of America
| | - Ha-Na Lee
- US Food and Drug Administration, Office of Biotechnology Products, Silver Spring, Maryland, United States of America
| | - Ian L. McWilliams
- US Food and Drug Administration, Office of Biotechnology Products, Silver Spring, Maryland, United States of America
| | - Logan Kelley-Baker
- US Food and Drug Administration, Office of Biotechnology Products, Silver Spring, Maryland, United States of America
| | - Leonardo H. Tonelli
- University of Maryland School of Medicine, Department of Psychiatry, Baltimore, Maryland, United States of America
| | - Daniela Verthelyi
- US Food and Drug Administration, Office of Biotechnology Products, Silver Spring, Maryland, United States of America
| |
Collapse
|
33
|
Morin EL, Howell BR, Feczko E, Earl E, Pincus M, Reding K, Kovacs-Balint ZA, Meyer JS, Styner M, Fair D, Sanchez MM. Developmental outcomes of early adverse care on amygdala functional connectivity in nonhuman primates. Dev Psychopathol 2020; 32:1579-1596. [PMID: 33427167 PMCID: PMC11500993 DOI: 10.1017/s0954579420001133] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Despite the strong link between childhood maltreatment and psychopathology, the underlying neurodevelopmental mechanisms are poorly understood and difficult to disentangle from heritable and prenatal factors. This study used a translational macaque model of infant maltreatment in which the adverse experience occurs in the first months of life, during intense maturation of amygdala circuits important for stress and emotional regulation. Thus, we examined the developmental impact of maltreatment on amygdala functional connectivity (FC) longitudinally, from infancy through the juvenile period. Using resting state functional magnetic resonance imaging (MRI) we performed amygdala-prefrontal cortex (PFC) region-of-interest and exploratory whole-brain amygdala FC analyses. The latter showed (a) developmental increases in amygdala FC with many regions, likely supporting increased processing of socioemotional-relevant stimuli with age; and (b) maltreatment effects on amygdala coupling with arousal and stress brain regions (locus coeruleus, laterodorsal tegmental area) that emerged with age. Maltreated juveniles showed weaker FC than controls, which was negatively associated with infant hair cortisol concentrations. Findings from the region-of-interest analysis also showed weaker amygdala FC with PFC regions in maltreated animals than controls since infancy, whereas bilateral amygdala FC was stronger in maltreated animals. These effects on amygdala FC development may underlie the poor behavioral outcomes associated with this adverse experience.
Collapse
Affiliation(s)
- Elyse L Morin
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Brittany R Howell
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA, USA
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA
- Department of Human Development and Family Science, Virginia Tech, Blacksburg, VA, USA
| | - Eric Feczko
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - Eric Earl
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - Melanie Pincus
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Katherine Reding
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | | | - Jerrold S Meyer
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA
| | - Martin Styner
- Departments of Psychiatry and Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Damien Fair
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - Mar M Sanchez
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA, USA
| |
Collapse
|
34
|
Vannella KM, Stein S, Connelly M, Swerczek J, Amaro-Carambot E, Coyle EM, Babyak A, Winkler CW, Saturday G, Gai ND, Hammoud DA, Dowd KA, Valencia LP, Ramos-Benitez MJ, Kindrachuk J, Pierson TC, Peterson KE, Brenchley JM, Whitehead SS, Khurana S, Herbert R, Chertow DS. Nonhuman primates exposed to Zika virus in utero are not protected against reinfection at 1 year postpartum. Sci Transl Med 2020; 12:eaaz4997. [PMID: 33115950 PMCID: PMC11256112 DOI: 10.1126/scitranslmed.aaz4997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 07/08/2020] [Indexed: 12/14/2022]
Abstract
There is limited information about the impact of Zika virus (ZIKV) exposure in utero on the anti-ZIKV immune responses of offspring. We infected six rhesus macaque dams with ZIKV early or late in pregnancy and studied four of their offspring over the course of a year postpartum. Despite evidence of ZIKV exposure in utero, we observed no structural brain abnormalities in the offspring. We detected infant-derived ZIKV-specific immunoglobulin A antibody responses and T cell memory responses during the first year postpartum in the two offspring born to dams infected with ZIKV early in pregnancy. Critically, although the infants had acquired some immunological memory of ZIKV, it was not sufficient to protect them against reinfection with ZIKV at 1 year postpartum. The four offspring reexposed to ZIKV at 1 year postpartum all survived but exhibited acute viremia and viral tropism to lymphoid tissues; three of four reexposed offspring exhibited spinal cord pathology. These data suggest that macaque infants born to dams infected with ZIKV during pregnancy remain susceptible to postnatal infection and consequent neuropathology.
Collapse
Affiliation(s)
- Kevin M Vannella
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sydney Stein
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark Connelly
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joanna Swerczek
- Experimental Primate Virology Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Poolesville, MD 20837, USA
| | - Emerito Amaro-Carambot
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elizabeth M Coyle
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Ashley Babyak
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Clayton W Winkler
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Neville D Gai
- Center for Infectious Disease Imaging, Radiology and Imaging Services, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dima A Hammoud
- Center for Infectious Disease Imaging, Radiology and Imaging Services, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kimberly A Dowd
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luis Perez Valencia
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marcos J Ramos-Benitez
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jason Kindrachuk
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Emerging Viruses, Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Theodore C Pierson
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Karin E Peterson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steve S Whitehead
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Richard Herbert
- Experimental Primate Virology Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Poolesville, MD 20837, USA
| | - Daniel S Chertow
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
35
|
Ramond A, Lobkowicz L, Clemente NS, Vaughan A, Turchi MD, Wilder-Smith A, Brickley EB. Postnatal symptomatic Zika virus infections in children and adolescents: A systematic review. PLoS Negl Trop Dis 2020; 14:e0008612. [PMID: 33006989 PMCID: PMC7556487 DOI: 10.1371/journal.pntd.0008612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/14/2020] [Accepted: 07/17/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Recent Zika virus (ZIKV) outbreaks in the Pacific and the Americas have highlighted clinically significant congenital neurological abnormalities resulting from ZIKV infection in pregnancy. However, little is known about ZIKV infections in children and adolescents, a group that is potentially vulnerable to ZIKV neurovirulence. METHODS We conducted a systematic review on the clinical presentation and complications of children and adolescents aged 0 to 18 years with a robust diagnosis of ZIKV infection. We searched PubMed, Web of Science, LILACs, and EMBASE until 13 February 2020 and screened reference lists of eligible articles. We assessed the studies' risk of bias using pre-specified criteria. FINDINGS Our review collated the evidence from 2543 pediatric ZIKV cases representing 17 countries and territories, identified in 1 cohort study, 9 case series and 22 case reports. The most commonly observed signs and symptoms of ZIKV infection in children and adolescents were mild and included fever, rash, conjunctivitis and arthralgia. The frequency of neurological complications was reported only in the largest case series (identified in 1.0% of cases) and in an additional 14 children identified from hospital-based surveillance studies and case reports. ZIKV-related mortality was primarily accompanied by co-morbidity and was reported in one case series (<0.5% of cases) and three case reports. One death was attributed to complications of Guillain-Barré Syndrome secondary to ZIKV infection. CONCLUSIONS AND RELEVANCE Based on the current evidence, the clinical presentation of ZIKV infection in children and adolescents appears to be primarily mild and similar to the presentation in adults, with rare instances of severe complications and/or mortality. However, reliable estimation of the risks of ZIKV complications in these age groups is limited by the scarcity and quality of published data. Additional prospective studies are needed to improve understanding of the relative frequency of the signs, symptoms, and complications associated with pediatric ZIKV infections and to investigate any potential effects of early life ZIKV exposure on neurodevelopment.
Collapse
Affiliation(s)
- Anna Ramond
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Ludmila Lobkowicz
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Nuria Sanchez Clemente
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Aisling Vaughan
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Marília Dalva Turchi
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brasil (Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia, Brazil)
| | - Annelies Wilder-Smith
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany
- Department of Epidemiology and Global Health, Umeå University, Umeå, Sweden
| | - Elizabeth B. Brickley
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
36
|
Evolutionary analysis of the Musashi family: What can it tell us about Zika? INFECTION GENETICS AND EVOLUTION 2020; 84:104364. [DOI: 10.1016/j.meegid.2020.104364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022]
|
37
|
Beaver JT, Mills LK, Swieboda D, Lelutiu N, Esser ES, Antao OQ, Scountzou E, Williams DT, Papaioannou N, Littauer EQ, Romanyuk A, Compans RW, Prausnitz MR, Skountzou I. Cutaneous vaccination ameliorates Zika virus-induced neuro-ocular pathology via reduction of anti-ganglioside antibodies. Hum Vaccin Immunother 2020; 16:2072-2091. [PMID: 32758106 PMCID: PMC7553697 DOI: 10.1080/21645515.2020.1775460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Zika virus (ZIKV) causes moderate to severe neuro-ocular sequelae, with symptoms ranging from conjunctivitis to Guillain-Barré Syndrome (GBS). Despite the international threat ZIKV poses, no licensed vaccine exists. As ZIKV and DENV are closely related, antibodies against one virus have demonstrated the ability to enhance the other. To examine if vaccination can confer robust, long-term protection against ZIKV, preventing neuro-ocular pathology and long-term inflammation in immune-privileged compartments, BALB/c mice received two doses of unadjuvanted inactivated whole ZIKV vaccine (ZVIP) intramuscularly (IM) or cutaneously with dissolving microneedle patches (MNP). MNP immunization induced significantly higher B and T cell responses compared to IM vaccination, resulting in increased antibody titers with greater avidity for ZPIV as well as increased numbers of IFN-γ, TNF-α, IL- and IL-4 secreting T cells. When compared to IM vaccination, antibodies generated by cutaneous vaccination demonstrated greater neutralization activity, increased cross-reactivity with Asian and African lineage ZIKV strains (PRVABC59, FLR, and MR766) and Dengue virus (DENV) serotypes, limited ADE, and lower reactivity to GBS-associated gangliosides. MNP vaccination effectively controlled viremia and inflammation, preventing neuro-ocular pathology. Conversely, IM vaccination exacerbated ocular pathology, resulting in uncontrolled, long-term inflammation. Importantly, neuro-ocular pathology correlated with anti-ganglioside antibodies implicated in demyelination and GBS. This study highlights the importance of longevity studies in ZIKV immunization, and the need of exploring alternative vaccination platforms to improve the quality of vaccine-induced immune responses.
Collapse
Affiliation(s)
- Jacob T Beaver
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | - Lisa K Mills
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | - Dominika Swieboda
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | - Nadia Lelutiu
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | - Edward S Esser
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | - Olivia Q Antao
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | | | - Dahnide T Williams
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | - Nikolaos Papaioannou
- Faculty of Veterinary Medicine, Laboratory of Pathologic Anatomy, Aristotle University of Thessaloniki , Greece
| | - Elizabeth Q Littauer
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | - Andrey Romanyuk
- Department of Biomedical Engineering, School of Chemical and Biomolecular Engineering, Georgia Institute of Technology , Atlanta, GA, USA
| | - Richard W Compans
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | - Mark R Prausnitz
- Department of Biomedical Engineering, School of Chemical and Biomolecular Engineering, Georgia Institute of Technology , Atlanta, GA, USA
| | - Ioanna Skountzou
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| |
Collapse
|
38
|
Beaver JT, Mills LK, Swieboda D, Lelutiu N, Esser ES, Antao OQ, Scountzou E, Williams DT, Papaioannou N, Littauer EQ, Skountzou I. Zika virus-induced neuro-ocular pathology in immunocompetent mice correlates with anti-ganglioside autoantibodies. Hum Vaccin Immunother 2020; 16:2092-2108. [PMID: 32758108 PMCID: PMC7553712 DOI: 10.1080/21645515.2020.1775459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A severe consequence of adult Zika virus (ZIKV) infection is Guillain-Barré Syndrome (GBS), where autoreactive antibodies attack peripheral and central nervous systems (CNS) resulting in neuro-ocular pathology and fatal complications. During virally induced GBS, autoimmune brain demyelination and macular degeneration correlate with low virus neutralization and elevated antibody-mediated infection among Fcγ-R bearing cells. The use of interferon-deficient mice for ZIKV studies limits elucidation of antibody-dependent enhancement (ADE) and long-term pathology (≥120 days), due to high lethality post-infection. Here we used immunocompetent BALB/c mice, which generate robust humoral immune responses, to investigate long-term impacts of ZIKV infection. A high infectious dose (1x106 FFU per mouse) of ZIKV was administered intravenously. Control animals received a single dose of anti-IFNAR blocking monoclonal antibody and succumbed to lethal neurological pathology within 13 days. Immunocompetent mice exhibited motor impairment such as arthralgia, as well as ocular inflammation resulting in retinal vascular damage, and corneal edema. This pathology persisted 100 days after infection with evidence of chronic inflammation in immune-privileged tissues, demyelination in the hippocampus and motor cortex regions of the brain, and retinal/corneal hyperplasia. Anti-inflammatory transcriptional responses were tissue-specific, likely contributing to differential pathology in these organs. Pathology in immunocompetent animals coincided with weakly neutralizing antibodies and increased ADE among ZIKV strains (PRVABC59, FLR, and MR766) and all Dengue virus (DENV) serotypes. These antibodies were autoreactive to GBS-associated gangliosides. This study highlights the importance of longevity studies in ZIKV infection and confirms the role of anti-ganglioside antibodies in ZIKV-induced neuro-ocular disease.
Collapse
Affiliation(s)
- Jacob T Beaver
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | - Lisa K Mills
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | - Dominika Swieboda
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | - Nadia Lelutiu
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | - Edward S Esser
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | - Olivia Q Antao
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | | | - Dahnide T Williams
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | - Nikolaos Papaioannou
- Faculty of Veterinary Medicine, Aristotle University of Thessaloniki , Thessaloniki, Greece
| | - Elizabeth Q Littauer
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | - Ioanna Skountzou
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| |
Collapse
|
39
|
Mulkey SB, DeBiasi RL. Do Not Judge a Book by Its Cover: Critical Need for Longitudinal Neurodevelopmental Assessment of In Utero Zika-Exposed Children. Am J Trop Med Hyg 2020; 102:913-914. [PMID: 32274991 PMCID: PMC7204577 DOI: 10.4269/ajtmh.20-0197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Sarah B Mulkey
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,Department of Neurology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,Children's National Hospital, Washington, District of Columbia
| | - Roberta L DeBiasi
- Department of Tropical Medicine and Infectious Disease, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,Children's National Hospital, Washington, District of Columbia
| |
Collapse
|
40
|
Partiot E, Gaudin R. [Monocytes and Zika virus: the brain's conquest]. Med Sci (Paris) 2020; 36:449-451. [PMID: 32452363 DOI: 10.1051/medsci/2020072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Emma Partiot
- Université de Montpellier, CNRS UMR 9004, Institut de recherche en infectiologie de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Raphaël Gaudin
- Université de Montpellier, CNRS UMR 9004, Institut de recherche en infectiologie de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| |
Collapse
|
41
|
Raper J, Kovacs-Balint Z, Mavigner M, Gumber S, Burke MW, Habib J, Mattingly C, Fair D, Earl E, Feczko E, Styner M, Jean SM, Cohen JK, Suthar MS, Sanchez MM, Alvarado MC, Chahroudi A. Long-term alterations in brain and behavior after postnatal Zika virus infection in infant macaques. Nat Commun 2020; 11:2534. [PMID: 32439858 PMCID: PMC7242369 DOI: 10.1038/s41467-020-16320-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/21/2020] [Indexed: 12/18/2022] Open
Abstract
Zika virus (ZIKV) infection has a profound impact on the fetal nervous system. The postnatal period is also a time of rapid brain growth, and it is important to understand the potential neurobehavioral consequences of ZIKV infection during infancy. Here we show that postnatal ZIKV infection in a rhesus macaque model resulted in long-term behavioral, motor, and cognitive changes, including increased emotional reactivity, decreased social contact, loss of balance, and deficits in visual recognition memory at one year of age. Structural and functional MRI showed that ZIKV-infected infant rhesus macaques had persistent enlargement of lateral ventricles, smaller volumes and altered functional connectivity between brain areas important for socioemotional behavior, cognitive, and motor function (e.g. amygdala, hippocampus, cerebellum). Neuropathological changes corresponded with neuroimaging results and were consistent with the behavioral and memory deficits. Overall, this study demonstrates that postnatal ZIKV infection in this model may have long-lasting neurodevelopmental consequences.
Collapse
Affiliation(s)
- Jessica Raper
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Maud Mavigner
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA, USA
| | - Sanjeev Gumber
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Mark W Burke
- Department of Physiology and Biophysics, Howard University, Washington, DC, USA
| | - Jakob Habib
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Cameron Mattingly
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Damien Fair
- Oregon Health and Science University, Portland, OR, USA
| | - Eric Earl
- Oregon Health and Science University, Portland, OR, USA
| | - Eric Feczko
- Oregon Health and Science University, Portland, OR, USA
| | - Martin Styner
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Sherrie M Jean
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Joyce K Cohen
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Mehul S Suthar
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Atlanta, GA, 30329, USA
| | - Mar M Sanchez
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Maria C Alvarado
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Ann Chahroudi
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA, USA.
| |
Collapse
|
42
|
Yoshikawa FSY, Pietrobon AJ, Branco ACCC, Pereira NZ, Oliveira LMDS, Machado CM, Duarte AJDS, Sato MN. Zika Virus Infects Newborn Monocytes Without Triggering a Substantial Cytokine Response. J Infect Dis 2020; 220:32-40. [PMID: 30785182 DOI: 10.1093/infdis/jiz075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 12/18/2022] Open
Abstract
Zika virus (ZIKV) is a clinically important flavivirus that can cause neurological disturbances in newborns. Here, we investigated comparatively the outcome of in vitro infection of newborn monocytes by ZIKV. We observed that neonatal cells show defective production of interleukin 1β, interleukin 10, and monocyte chemoattractant protein 1 in response to ZIKV, although they were as efficient as adult cells in supporting viral infection. Although CLEC5A is a classical flavivirus immune receptor, it is not essential to the cytokine response, but it regulates the viral load only in adult cells. Greater expression of viral entry receptors may create a favorable environment for viral invasion in neonatal monocytes. We are the first to suggest a role for CLEC5A in human monocyte infectivity and to show that newborn monocytes are interesting targets in ZIKV pathogenesis, owing to their ability to carry the virus with only a partial triggering of the immune response, creating a potentially favorable environment for virus-related pathologies in young individuals.
Collapse
Affiliation(s)
- Fabio Seiti Yamada Yoshikawa
- Laboratório de Investigação em Dermatologia e Imunodeficiências, Instituto de Medicina Tropical, Faculdade de Medicina
| | - Anna Julia Pietrobon
- Laboratório de Investigação em Dermatologia e Imunodeficiências, Instituto de Medicina Tropical, Faculdade de Medicina.,Departamento de Imunologia, Instituto de Ciências Biomédicas
| | - Anna Cláudia Calvielli Castelo Branco
- Laboratório de Investigação em Dermatologia e Imunodeficiências, Instituto de Medicina Tropical, Faculdade de Medicina.,Departamento de Imunologia, Instituto de Ciências Biomédicas
| | - Nátalli Zanete Pereira
- Laboratório de Investigação em Dermatologia e Imunodeficiências, Instituto de Medicina Tropical, Faculdade de Medicina.,Departamento de Imunologia, Instituto de Ciências Biomédicas
| | - Luanda Mara da Silva Oliveira
- Laboratório de Investigação em Dermatologia e Imunodeficiências, Instituto de Medicina Tropical, Faculdade de Medicina
| | | | - Alberto José da Silva Duarte
- Laboratório de Investigação em Dermatologia e Imunodeficiências, Instituto de Medicina Tropical, Faculdade de Medicina
| | - Maria Notomi Sato
- Laboratório de Investigação em Dermatologia e Imunodeficiências, Instituto de Medicina Tropical, Faculdade de Medicina.,Departamento de Imunologia, Instituto de Ciências Biomédicas
| |
Collapse
|
43
|
Trus I, Udenze D, Berube N, Wheler C, Martel MJ, Gerdts V, Karniychuk U. CpG-Recoding in Zika Virus Genome Causes Host-Age-Dependent Attenuation of Infection With Protection Against Lethal Heterologous Challenge in Mice. Front Immunol 2020; 10:3077. [PMID: 32038625 PMCID: PMC6993062 DOI: 10.3389/fimmu.2019.03077] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
Experimental increase of CpG dinucleotides in an RNA virus genome impairs infection providing a promising approach for vaccine development. While CpG recoding is an emerging and promising vaccine approach, little is known about infection phenotypes caused by recoded viruses in vivo. For example, infection phenotypes, immunogenicity, and protective efficacy induced by CpG-recoded viruses in different age groups were not studied yet. This is important, because attenuation of infection phenotypes caused by recoded viruses may depend on the population-based expression of cellular components targeting viral CpG dinucleotides. In the present study, we generated several Zika virus (ZIKV) variants with the increasing CpG content and compared infection in neonatal and adult mice. Increasing the CpG content caused host-age-dependent attenuation of infection with considerable attenuation in neonates and high attenuation in adults. Expression of the zinc-finger antiviral protein (ZAP)—the host protein targeting viral CpG dinucleotides—was also age-dependent. Similar to the wild-type virus, ZIKV variants with the increased CpG content evoked robust cellular and humoral immune responses and protection against lethal challenge. Collectively, the host age should be accounted for in future studies on mechanisms targeting viral CpG dinucleotides, development of safe dinucleotide recoding strategies, and applications of CpG-recoded vaccines.
Collapse
Affiliation(s)
- Ivan Trus
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada
| | - Daniel Udenze
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada.,School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada
| | - Nathalie Berube
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada
| | - Colette Wheler
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada
| | - Marie-Jocelyne Martel
- Department of Obstetrics and Gynecology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada.,Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Uladzimir Karniychuk
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada.,School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
44
|
Trus I, Udenze D, Cox B, Berube N, Nordquist RE, van der Staay FJ, Huang Y, Kobinger G, Safronetz D, Gerdts V, Karniychuk U. Subclinical in utero Zika virus infection is associated with interferon alpha sequelae and sex-specific molecular brain pathology in asymptomatic porcine offspring. PLoS Pathog 2019; 15:e1008038. [PMID: 31725819 PMCID: PMC6855438 DOI: 10.1371/journal.ppat.1008038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/21/2019] [Indexed: 01/18/2023] Open
Abstract
Zika virus (ZIKV) infection during human pregnancy may lead to severe fetal pathology and debilitating impairments in offspring. However, the majority of infections are subclinical and not associated with evident birth defects. Potentially detrimental life-long health outcomes in asymptomatic offspring evoke high concerns. Thus, animal models addressing sequelae in offspring may provide valuable information. To induce subclinical infection, we inoculated selected porcine fetuses at the mid-stage of development. Inoculation resulted in trans-fetal virus spread and persistent infection in the placenta and fetal membranes for two months. Offspring did not show congenital Zika syndrome (e.g., microcephaly, brain calcifications, congenital clubfoot, arthrogryposis, seizures) or other visible birth defects. However, a month after birth, a portion of offspring exhibited excessive interferon alpha (IFN-α) levels in blood plasma in a regular environment. Most affected offspring also showed dramatic IFN-α shutdown during social stress providing the first evidence for the cumulative impact of prenatal ZIKV exposure and postnatal environmental insult. Other eleven cytokines tested before and after stress were not altered suggesting the specific IFN-α pathology. While brains from offspring did not have histopathology, lesions, and ZIKV, the whole genome expression analysis of the prefrontal cortex revealed profound sex-specific transcriptional changes that most probably was the result of subclinical in utero infection. RNA-seq analysis in the placenta persistently infected with ZIKV provided independent support for the sex-specific pattern of in utero-acquired transcriptional responses. Collectively, our results provide strong evidence that two hallmarks of fetal ZIKV infection, altered type I IFN response and molecular brain pathology can persist after birth in offspring in the absence of congenital Zika syndrome. A number of studies showed that Zika virus (ZIKV) can cause severe abnormalities in fetuses, e.g., brain lesions, and subsequently life-long developmental and cognitive impairment in children. However, the majority of infections in pregnant women are subclinical and are not associated with developmental abnormalities in fetuses and newborns. It is known that disruptions to the in utero environment during fetal development can program increased risks for disease in adulthood. For this reason, children affected in utero even by mild ZIKV infection can appear deceptively healthy at birth but develop immune dysfunction and brain abnormalities during postnatal development. Here, we used the porcine model of subclinical fetal ZIKV infection to determine health sequelae in offspring which did not show apparent signs of the disease. We demonstrated that subclinical fetal infection was associated with abnormal immunological responses in apparently healthy offspring under normal environmental conditions and during social stress. We also showed silent sex-specific brain pathology as represented by altered gene expression. Our study provides new insights into potential outcomes of subclinical in utero ZIKV infection. It also emphasizes that further attempts to better understand silent pathology and develop alleviative interventions in ZIKV-affected offspring should take into account interactions of host factors, like sex, and environmental insults, like social stress.
Collapse
Affiliation(s)
- Ivan Trus
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Canada
| | - Daniel Udenze
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Canada
- School of Public Health, University of Saskatchewan, Saskatoon, Canada
| | - Brian Cox
- Department of Physiology, Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada
| | - Nathalie Berube
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Canada
| | - Rebecca E. Nordquist
- Behavior and Welfare Group, Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, CL, Netherlands
- Brain Center Rudolf Magnus, Utrecht University, Utrecht, Netherlands
| | - Franz Josef van der Staay
- Behavior and Welfare Group, Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, CL, Netherlands
| | | | | | - David Safronetz
- Canada National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Uladzimir Karniychuk
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Canada
- School of Public Health, University of Saskatchewan, Saskatoon, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
- * E-mail:
| |
Collapse
|
45
|
Nelson BR, Roby JA, Dobyns WB, Rajagopal L, Gale M, Adams Waldorf KM. Immune Evasion Strategies Used by Zika Virus to Infect the Fetal Eye and Brain. Viral Immunol 2019; 33:22-37. [PMID: 31687902 PMCID: PMC6978768 DOI: 10.1089/vim.2019.0082] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-transmitted flavivirus that caused a public health emergency in the Americas when an outbreak in Brazil became linked to congenital microcephaly. Understanding how ZIKV could evade the innate immune defenses of the mother, placenta, and fetus has become central to determining how the virus can traffic into the fetal brain. ZIKV, like other flaviviruses, evades host innate immune responses by leveraging viral proteins and other processes that occur during viral replication to allow spread to the placenta. Within the placenta, there are diverse cell types with coreceptors for ZIKV entry, creating an opportunity for the virus to establish a reservoir for replication and infect the fetus. The fetal brain is vulnerable to ZIKV, particularly during the first trimester, when it is beginning a dynamic process, to form highly complex and specialized regions orchestrated by neuroprogenitor cells. In this review, we provide a conceptual framework to understand the different routes for viral trafficking into the fetal brain and the eye, which are most likely to occur early and later in pregnancy. Based on the injury profile in human and nonhuman primates, ZIKV entry into the fetal brain likely occurs across both the blood/cerebrospinal fluid barrier in the choroid plexus and the blood/brain barrier. ZIKV can also enter the eye by trafficking across the blood/retinal barrier. Ultimately, the efficient escape of innate immune defenses by ZIKV is a key factor leading to viral infection. However, the host immune response against ZIKV can lead to injury and perturbations in developmental programs that drive cellular division, migration, and brain growth. The combined effect of innate immune evasion to facilitate viral propagation and the maternal/placental/fetal immune response to control the infection will determine the extent to which ZIKV can injure the fetal brain.
Collapse
Affiliation(s)
- Branden R. Nelson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Justin A. Roby
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington
- Department of Immunology, University of Washington, Seattle, Washington
| | - William B. Dobyns
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - Lakshmi Rajagopal
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington
- Department of Global Health, University of Washington, Seattle, Washington
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington
- Department of Immunology, University of Washington, Seattle, Washington
- Department of Global Health, University of Washington, Seattle, Washington
| | - Kristina M. Adams Waldorf
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington
- Department of Global Health, University of Washington, Seattle, Washington
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington
- Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
46
|
Larocca RA, Mendes EA, Abbink P, Peterson RL, Martinot AJ, Iampietro MJ, Kang ZH, Aid M, Kirilova M, Jacob-Dolan C, Tostanoski L, Borducchi EN, De La Barrera RA, Barouch DH. Adenovirus Vector-Based Vaccines Confer Maternal-Fetal Protection against Zika Virus Challenge in Pregnant IFN-αβR -/- Mice. Cell Host Microbe 2019; 26:591-600.e4. [PMID: 31668877 DOI: 10.1016/j.chom.2019.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 07/06/2019] [Accepted: 09/25/2019] [Indexed: 10/25/2022]
Abstract
Maternal infection with Zika virus (ZIKV) can lead to microcephaly and other congenital abnormalities of the fetus. Although ZIKV vaccines that prevent or reduce viremia in non-pregnant mice have been described, a maternal vaccine that provides complete fetal protection would be desirable. Here, we show that adenovirus (Ad) vector-based ZIKV vaccines induce potent neutralizing antibodies that confer robust maternal and fetal protection against ZIKV challenge in pregnant, highly susceptible IFN-αβR-/- mice. Moreover, passive transfer of maternal antibodies from vaccinated dams protected pups against post-natal ZIKV challenge. These data suggest that Ad-based ZIKV vaccines may be able to provide protection in pregnant females against fetal ZIKV transmission in utero as well as in infants against ZIKV infection after birth.
Collapse
Affiliation(s)
- Rafael A Larocca
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Erica A Mendes
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Peter Abbink
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Rebecca L Peterson
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Amanda J Martinot
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Mark Justin Iampietro
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Zi H Kang
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Malika Aid
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Marinela Kirilova
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Catherine Jacob-Dolan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lisa Tostanoski
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Erica N Borducchi
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
47
|
Nem de Oliveira Souza I, Frost PS, França JV, Nascimento-Viana JB, Neris RLS, Freitas L, Pinheiro DJLL, Nogueira CO, Neves G, Chimelli L, De Felice FG, Cavalheiro ÉA, Ferreira ST, Assunção-Miranda I, Figueiredo CP, Da Poian AT, Clarke JR. Acute and chronic neurological consequences of early-life Zika virus infection in mice. Sci Transl Med 2019; 10:10/444/eaar2749. [PMID: 29875203 DOI: 10.1126/scitranslmed.aar2749] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 05/17/2018] [Indexed: 12/13/2022]
Abstract
Although congenital Zika virus (ZIKV) exposure has been associated with microcephaly and other neurodevelopmental disorders, long-term consequences of perinatal infection are largely unknown. We evaluated short- and long-term neuropathological and behavioral consequences of neonatal ZIKV infection in mice. ZIKV showed brain tropism, causing postnatal-onset microcephaly and several behavioral deficits in adulthood. During the acute phase of infection, mice developed frequent seizures, which were reduced by tumor necrosis factor-α (TNF-α) inhibition. During adulthood, ZIKV replication persisted in neonatally infected mice, and the animals showed increased susceptibility to chemically induced seizures, neurodegeneration, and brain calcifications. Altogether, the results show that neonatal ZIKV infection has long-term neuropathological and behavioral complications in mice and suggest that early inhibition of TNF-α-mediated neuroinflammation might be an effective therapeutic strategy to prevent the development of chronic neurological abnormalities.
Collapse
Affiliation(s)
| | - Paula S Frost
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil.,Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Julia V França
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | | | - Rômulo L S Neris
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Leandro Freitas
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, SP 04023-062, Brazil
| | - Daniel J L L Pinheiro
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, SP 04023-062, Brazil
| | - Clara O Nogueira
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Gilda Neves
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Leila Chimelli
- Laboratory of Neuropathology, State Institute of Brain Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil.,Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Ésper A Cavalheiro
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, SP 04023-062, Brazil
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Iranaia Assunção-Miranda
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil.
| | - Claudia P Figueiredo
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil.
| | - Andrea T Da Poian
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil.
| | - Julia R Clarke
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil.
| |
Collapse
|
48
|
Ayala-Nunez NV, Follain G, Delalande F, Hirschler A, Partiot E, Hale GL, Bollweg BC, Roels J, Chazal M, Bakoa F, Carocci M, Bourdoulous S, Faklaris O, Zaki SR, Eckly A, Uring-Lambert B, Doussau F, Cianferani S, Carapito C, Jacobs FMJ, Jouvenet N, Goetz JG, Gaudin R. Zika virus enhances monocyte adhesion and transmigration favoring viral dissemination to neural cells. Nat Commun 2019; 10:4430. [PMID: 31562326 PMCID: PMC6764950 DOI: 10.1038/s41467-019-12408-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 09/04/2019] [Indexed: 02/06/2023] Open
Abstract
Zika virus (ZIKV) invades and persists in the central nervous system (CNS), causing severe neurological diseases. However the virus journey, from the bloodstream to tissues through a mature endothelium, remains unclear. Here, we show that ZIKV-infected monocytes represent suitable carriers for viral dissemination to the CNS using human primary monocytes, cerebral organoids derived from embryonic stem cells, organotypic mouse cerebellar slices, a xenotypic human-zebrafish model, and human fetus brain samples. We find that ZIKV-exposed monocytes exhibit higher expression of adhesion molecules, and higher abilities to attach onto the vessel wall and transmigrate across endothelia. This phenotype is associated to enhanced monocyte-mediated ZIKV dissemination to neural cells. Together, our data show that ZIKV manipulates the monocyte adhesive properties and enhances monocyte transmigration and viral dissemination to neural cells. Monocyte transmigration may represent an important mechanism required for viral tissue invasion and persistence that could be specifically targeted for therapeutic intervention. Zika virus (ZIKV) can infect the central nervous system, but it is not clear how it reaches the brain. Here, Ayala-Nunez et al. show in ex vivo and in vivo models that ZIKV can hitch a ride in monocytes in a Trojan Horse manner to cross the endothelium and disseminate the virus.
Collapse
Affiliation(s)
- Nilda Vanesa Ayala-Nunez
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, Université de Montpellier, 34293, Montpellier, France.,Université de Strasbourg, INSERM, 67000, Strasbourg, France
| | | | - François Delalande
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC, UMR 7178, CNRS-Université de Strasbourg, ECPM, 67087, Strasbourg, France
| | - Aurélie Hirschler
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC, UMR 7178, CNRS-Université de Strasbourg, ECPM, 67087, Strasbourg, France
| | - Emma Partiot
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, Université de Montpellier, 34293, Montpellier, France
| | - Gillian L Hale
- Infectious Diseases Pathology Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Centers for Disease Control and Prevention, 1600 Clifton Rd NE, MS: G32, Atlanta, GA, 30329-4027, USA
| | - Brigid C Bollweg
- Infectious Diseases Pathology Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Centers for Disease Control and Prevention, 1600 Clifton Rd NE, MS: G32, Atlanta, GA, 30329-4027, USA
| | - Judith Roels
- University of Amsterdam, Swammerdam Institute for Life Sciences, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Maxime Chazal
- Viral Genomics and Vaccination Unit, UMR3569 CNRS, Virology Department, Institut Pasteur, 75015, Paris, France
| | - Florian Bakoa
- Viral Genomics and Vaccination Unit, UMR3569 CNRS, Virology Department, Institut Pasteur, 75015, Paris, France
| | - Margot Carocci
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S1255, FMTS, 67000, Strasbourg, France
| | - Sandrine Bourdoulous
- INSERM U1016, Institut Cochin, CNRS UMR8104, Université Paris Descartes, Paris, France
| | - Orestis Faklaris
- MRI Core facility, Biocampus, CNRS UMS 3426, 34293, Montpellier, France
| | - Sherif R Zaki
- Infectious Diseases Pathology Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Centers for Disease Control and Prevention, 1600 Clifton Rd NE, MS: G32, Atlanta, GA, 30329-4027, USA
| | - Anita Eckly
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S1255, FMTS, 67000, Strasbourg, France
| | - Béatrice Uring-Lambert
- Hôpitaux universitaires de Strasbourg, laboratoire central d'immunologie, 67000, Strasbourg, France
| | - Frédéric Doussau
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Sarah Cianferani
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC, UMR 7178, CNRS-Université de Strasbourg, ECPM, 67087, Strasbourg, France
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC, UMR 7178, CNRS-Université de Strasbourg, ECPM, 67087, Strasbourg, France
| | - Frank M J Jacobs
- University of Amsterdam, Swammerdam Institute for Life Sciences, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Nolwenn Jouvenet
- Viral Genomics and Vaccination Unit, UMR3569 CNRS, Virology Department, Institut Pasteur, 75015, Paris, France
| | | | - Raphael Gaudin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, Université de Montpellier, 34293, Montpellier, France. .,Université de Strasbourg, INSERM, 67000, Strasbourg, France.
| |
Collapse
|
49
|
Maness NJ, Schouest B, Singapuri A, Dennis M, Gilbert MH, Bohm RP, Schiro F, Aye PP, Baker K, Van Rompay KKA, Lackner AA, Bonaldo MC, Blair RV, Permar SR, Coffey LL, Panganiban AT, Magnani D. Postnatal Zika virus infection of nonhuman primate infants born to mothers infected with homologous Brazilian Zika virus. Sci Rep 2019; 9:12802. [PMID: 31488856 PMCID: PMC6728326 DOI: 10.1038/s41598-019-49209-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/15/2019] [Indexed: 02/07/2023] Open
Abstract
Recent data in a nonhuman primate model showed that infants postnatally infected with Zika virus (ZIKV) were acutely susceptible to high viremia and neurological damage, suggesting the window of vulnerability extends beyond gestation. In this pilot study, we addressed the susceptibility of two infant rhesus macaques born healthy to dams infected with Zika virus during pregnancy. Passively acquired neutralizing antibody titers dropped below detection limits between 2 and 3 months of age, while binding antibodies remained detectable until viral infection at 5 months. Acute serum viremia was comparatively lower than adults infected with the same Brazilian isolate of ZIKV (n = 11 pregnant females, 4 males, and 4 non-pregnant females). Virus was never detected in cerebrospinal fluid nor in neural tissues at necropsy two weeks after infection. However, viral RNA was detected in lymph nodes, confirming some tissue dissemination. Though protection was not absolute and our study lacks an important comparison with postnatally infected infants born to naïve dams, our data suggest infants born healthy to infected mothers may harbor a modest but important level of protection from postnatally acquired ZIKV for several months after birth, an encouraging result given the potentially severe infection outcomes of this population.
Collapse
Affiliation(s)
- Nicholas J Maness
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA.
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA.
| | - Blake Schouest
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
- Biomedical Sciences Training Program, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Anil Singapuri
- Department of Pathology, Microbiology and Immunology, University of California, Davis, CA, USA
| | - Maria Dennis
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Margaret H Gilbert
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| | - Rudolf P Bohm
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| | - Faith Schiro
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| | - Pyone P Aye
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| | - Kate Baker
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| | - Koen K A Van Rompay
- Department of Pathology, Microbiology and Immunology, University of California, Davis, CA, USA
- California National Primate Research Center, University of California, Davis, California, USA
| | - Andrew A Lackner
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| | - Myrna C Bonaldo
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Robert V Blair
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| | - Sallie R Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Lark L Coffey
- Department of Pathology, Microbiology and Immunology, University of California, Davis, CA, USA
| | - Antonito T Panganiban
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| | - Diogo Magnani
- MassBiologics of the University of Massachusetts Medical School, Boston, Massachusetts, USA
| |
Collapse
|
50
|
Abstract
In 2015, public awareness of Zika virus (ZIKV) rose in response to alarming statistics of infants with microcephaly being born to women who were infected with the virus during pregnancy, triggering global concern over these potentially devastating consequences. Although we have discovered a great deal about the genome and pathogenesis of this reemergent flavivirus since this recent outbreak, we still have much more to learn, including the nature of the virus-host interactions and mechanisms that determine its tropism and pathogenicity in the nervous system, which are in turn shaped by the continual evolution of the virus. Inevitably, we will find out more about the potential long-term effects of ZIKV exposure on the nervous system from ongoing longitudinal studies. Integrating clinical and epidemiological data with a wider range of animal and human cell culture models will be critical to understanding the pathogenetic mechanisms and developing more specific antiviral compounds and vaccines.
Collapse
Affiliation(s)
- Kimberly M Christian
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Department of Developmental and Cell Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Epigenetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Department of Developmental and Cell Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|