1
|
Yang S, Xu Y, Zhu M, Yu Y, Hu W, Zhang T, Gao J. Engineering the Functional Expansion of Microneedles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411112. [PMID: 39498731 DOI: 10.1002/adma.202411112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/11/2024] [Indexed: 11/07/2024]
Abstract
Microneedles (MNs), composed of an array of micro-sized needles and a supporting base, have transcended their initial use to replace hypodermic needles in drug delivery and fluid collection, advancing toward multifunctional platforms. In this review, four major areas are summarized in interdisciplinary engineering approaches combined with MNs technology. First, electronics engineering, the most extensively researched field, enables applications in biomonitoring, electrical stimulation, and closed-loop theranostics through the generation, transmission, and transformation of electrical signals. Second, in electromagnetic engineering, the responsiveness of electromagnetic induction offers prospects for remote and programmable therapeutic applications. Third, photonic engineering endows MNs with novel functionalities, such as waveguiding and photonic manipulation to enhance optical therapeutic capabilities and facilitate the visualization of disease progression and treatment processes. Lastly, it reviewed the role of mechanical engineering in conferring shape adaptability and programmable motion features necessary for various MNs applications. This review focuses on the functionalities that emerge from the intersection of MNs with complementary engineering technologies, aiming to inspire further research and innovation in microneedle technology for biomedical applications.
Collapse
Affiliation(s)
- Shengfei Yang
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Yihua Xu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Mingjian Zhu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Yawei Yu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Weitong Hu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Tianyuan Zhang
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
- Jiangsu Engineering Research Center for New-type External and Transdermal Preparations, Changzhou, 213149, China
| |
Collapse
|
2
|
Taha BA, Addie AJ, Haider AJ, Kadhim AC, Azzahrani AS, Arsad N. Needle-Free Targeted Injections Using Bubble Laser Technology in Therapeutics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23549-23561. [PMID: 39460975 DOI: 10.1021/acs.langmuir.4c03513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
This work explores bubble laser technology as an alternative to needles in injection systems for vaccination, cancer treatment, insulin delivery, and catheter hygiene. The technology leverages laser-induced microfiltration and bubble dynamics to create high-speed pneumatic jets that penetrate the skin without needles, addressing discomfort, infection risk, and needle-related concerns. The system's performance is analyzed based on laser wavelength, pulse duration, and Gaussian beam droplet size. The findings indicate a significant increase in spot size at 1064 nm compared with 400 nm, consistent with the diffraction theory. Induced bubble dynamics reveal bubble generation, jetting, and fluid interactions as the Weber number increases, as well as jet velocity and fluid inertia. For femtosecond pulses, increasing the pulse duration from 100 to 1500 fs reduces the bubble lifespan from 0.8 to 0.3 arbitrary units, and the collapse pressure decreases from 2.1 to 0.4 bar. For picosecond pulses, the bubble lifetime decreases from 0.9 to 0.5 arbitrary units, and the pressure drop decreases from 2.0 to 0.4 bar as the pulse length extends from 2000 to 8000 ps. Jet formation in laser jet injection systems is enhanced by short pulses in water that produce longer-lasting bubbles. Drug delivery based on the Rayleigh-Plesset equation is characterized by a low-pressure collapse and short bubble lifetime. Thus, this relationship suggests that bubble laser technology can provide a more controlled and safer method of needle-free procedures, increasing compliance and reducing tissue trauma.
Collapse
Affiliation(s)
- Bakr Ahmed Taha
- UKM─Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia UKM, Bangi 43600, Malaysia
| | - Ali J Addie
- Center of Industrial Applications and Materials Technology, Scientific Research Commission, Baghdad 00964, Iraq
| | - Adawiya J Haider
- Applied Sciences Department/Laser Science and Technology Branch, University of Technology, Baghdad 10066, Iraq
| | - Ahmed C Kadhim
- Department of Communications Engineering, University of Technology, Baghdad 10066, Iraq
| | - Ahmad S Azzahrani
- Electrical Engineering Department, Northern Border University, Arar 73211, Saudi Arabia
| | - Norhana Arsad
- UKM─Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia UKM, Bangi 43600, Malaysia
| |
Collapse
|
3
|
Zhang X, Wang Y, He X, Yang Y, Chen X, Li J. Advances in microneedle technology for biomedical detection. Biomater Sci 2024; 12:5134-5149. [PMID: 39225488 DOI: 10.1039/d4bm00794h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microneedles have recently emerged as a groundbreaking technology in the field of biomedical detection. Notable for their small size and ability to penetrate the superficial layers of the skin, microneedles provide an innovative platform for localized and real-time detection. This review explores the integration of various detection methods with microneedle technology, focusing particularly on its applications in biomedical contexts. First, the common detection methods, such as colorimetric, electrochemical, spectrometric, and fluorescence methods, combined with microneedle technology, are summarized. Then we showcase exemplary uses of microneedle technology in biomedical detection, including the monitoring of blood glucose levels, evaluating infection statuses in skin wounds, facilitating point-of-care testing, and identifying biomarkers in the interstitial fluid of the skin. Microneedle-based detection, with its painless, minimally invasive, and biocompatible approach, holds significant promise for enhancing biological assays. Finally, the review concludes by assessing the future potential and challenges of microneedle detection technology, underscoring its transformative capacity to advance personalized medicine and revolutionize healthcare practices.
Collapse
Affiliation(s)
- Xinmei Zhang
- College of Medicine, Southwest Jiaotong University, Chengdu 610003, China.
| | - Yuemin Wang
- College of Medicine, Southwest Jiaotong University, Chengdu 610003, China.
| | - Xinyu He
- College of Medicine, Southwest Jiaotong University, Chengdu 610003, China.
| | - Yan Yang
- The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Xingyu Chen
- College of Medicine, Southwest Jiaotong University, Chengdu 610003, China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
4
|
Xue Z, Chou W, Xu Y, Cheng Z, Ren X, Sun T, Tong W, Xie Y, Chen J, Zhang N, Sheng X, Wang Y, Zhao H, Yang J, Ding H. Battery-free optoelectronic patch for photodynamic and light therapies in treating bacteria-infected wounds. Biosens Bioelectron 2024; 261:116467. [PMID: 38901392 DOI: 10.1016/j.bios.2024.116467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/15/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024]
Abstract
Light therapy is an effective approach for the treatment of a variety of challenging dermatological conditions. In contrast to existing methods involving high doses and large areas of illumination, alternative strategies based on wearable designs that utilize a low light dose over an extended period provide a precise and convenient treatment. In this study, we present a battery-free, skin-integrated optoelectronic patch that incorporates a coil-powered circuit, an array of microscale violet and red light emitting diodes (LEDs), and polymer microneedles (MNs) loaded with 5-aminolevulinic acid (5-ALA). These polymer MNs, based on the biodegradable composite materials of polyvinyl alcohol (PVA) and hyaluronic acid (HA), serve as light waveguides for optical access and a medium for drug release into deeper skin layers. Unlike conventional clinical photomedical appliances with a rigid and fixed light source, this flexible design allows for a conformable light source that can be applied directly to the skin. In animal models with bacterial-infected wounds, the experimental group with the combination treatment of metronomic photodynamic and light therapies reduced 2.48 log10 CFU mL-1 in bactericidal level compared to the control group, indicating an effective anti-infective response. Furthermore, post-treatment analysis revealed the activation of proregenerative genes in monocyte and macrophage cell populations, suggesting enhanced tissue regeneration, neovascularization, and dermal recovery. Overall, this optoelectronic patch design broadens the scope for targeting deep skin lesions, and provides an alternative with the functionality of standard clinical light therapy methods.
Collapse
Affiliation(s)
- Zhao Xue
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
| | - Wenxin Chou
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yixuan Xu
- Department of Laser Medicine, the First Medical Centre, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China
| | - Ziyi Cheng
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
| | - Xuechun Ren
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
| | - Tianzhen Sun
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Wenbin Tong
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
| | - Yang Xie
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Junyu Chen
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Nuohan Zhang
- GMA Optoelectronic Technology Limited, Xinyang 464000, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Yongtian Wang
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
| | - Hongyou Zhao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Jian Yang
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China.
| | - He Ding
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
5
|
Han J, Sheng T, Zhang Y, Cheng H, Gao J, Yu J, Gu Z. Bioresponsive Immunotherapeutic Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2209778. [PMID: 36639983 DOI: 10.1002/adma.202209778] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/31/2022] [Indexed: 06/17/2023]
Abstract
The human immune system is an interaction network of biological processes, and its dysfunction is closely associated with a wide array of diseases, such as cancer, infectious diseases, tissue damage, and autoimmune diseases. Manipulation of the immune response network in a desired and controlled fashion has been regarded as a promising strategy for maximizing immunotherapeutic efficacy and minimizing side effects. Integration of "smart" bioresponsive materials with immunoactive agents including small molecules, biomacromolecules, and cells can achieve on-demand release of agents at targeted sites to reduce overdose-related toxicity and alleviate off-target effects. This review highlights the design principles of bioresponsive immunotherapeutic materials and discusses the critical roles of controlled release of immunoactive agents from bioresponsive materials in recruiting, housing, and manipulating immune cells for evoking desired immune responses. Challenges and future directions from the perspective of clinical translation are also discussed.
Collapse
Affiliation(s)
- Jinpeng Han
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tao Sheng
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuqi Zhang
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Burns and Wound Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Hao Cheng
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Jianqing Gao
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Jicheng Yu
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
- Department of General Surgery, Sir Run Run Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Zhen Gu
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
- Department of General Surgery, Sir Run Run Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
6
|
Liu Y, Mao R, Han S, Yu Z, Xu B, Xu T. Polymeric Microneedle Drug Delivery Systems: Mechanisms of Treatment, Material Properties, and Clinical Applications-A Comprehensive Review. Polymers (Basel) 2024; 16:2568. [PMID: 39339032 PMCID: PMC11434959 DOI: 10.3390/polym16182568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Our comprehensive review plunges into the cutting-edge advancements of polymeric microneedle drug delivery systems, underscoring their transformative potential in the realm of transdermal drug administration. Our scrutiny centers on the substrate materials pivotal for microneedle construction and the core properties that dictate their efficacy. We delve into the distinctive interplay between microneedles and dermal layers, underscoring the mechanisms by which this synergy enhances drug absorption and precision targeting. Moreover, we examine the acupoint-target organ-ganglion nexus, an innovative strategy that steers drug concentration to specific targets, offering a paradigm for precision medicine. A thorough analysis of the clinical applications of polymeric microneedle systems is presented, highlighting their adaptability and impact across a spectrum of therapeutic domains. This review also accentuates the systems' promise to bolster patient compliance, attributed to their minimally invasive and painless mode of drug delivery. We present forward-looking strategies aimed at optimizing stimulation sites to amplify therapeutic benefits. The anticipation is set for the introduction of superior biocompatible materials with advanced mechanical properties, customizing microneedles to cater to specialized clinical demands. In parallel, we deliberate on safety strategies aimed at boosting drug loading capacities and solidifying the efficacy of microneedle-based therapeutics. In summation, this review accentuates the pivotal role of polymeric microneedle technology in contemporary healthcare, charting a course for future investigative endeavors and developmental strides within this burgeoning field.
Collapse
Affiliation(s)
- Yun Liu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ruiyue Mao
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shijia Han
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhi Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Bin Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tiancheng Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
7
|
Li W, Lin J, Huang W, Wang Q, Zhang H, Zhang X, Zhuang J, Liu Y, Qu S, Lei B. Delivery of luminescent particles to plants for information encoding and storage. LIGHT, SCIENCE & APPLICATIONS 2024; 13:217. [PMID: 39198416 PMCID: PMC11358502 DOI: 10.1038/s41377-024-01518-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 09/01/2024]
Abstract
In the era of smart agriculture, the precise labeling and recording of growth information in plants pose challenges for modern agricultural production. This study introduces strontium aluminate particles coated with H3PO4 as luminescent labels capable of spatial embedding within plants for information encoding and storage during growth. The encapsulation with H3PO4 imparts stability and enhanced luminescence to SrAl2O4:Eu2+,Dy3+ (SAO). Using SAO@H3PO4 as a low-damage luminescent label, we implement its delivery into plants through microneedles (MNs) patches. The embedded SAO@H3PO4 within plants exhibits sustained and unaltered high signal-to-noise afterglow emission, with luminous intensity remaining at approximately 78% of the original for 27 days. To cater to diverse information recording needs, MNs of various geometric shapes are designed for loading SAO@H3PO4, and the luminescent signals in different shapes can be accurately identified through a designed program, the corresponding information can be conveniently viewed on a computer. Additionally, inspired by binary information concepts, MNs patches with specific arrangements of luminescent and non-luminescent points are created, resulting in varied luminescent MNs arrays on leaves. An advanced camera system with a tailored program accurately identifies and maps the labels to the corresponding recorded information. These findings showcase the potential of low-damage luminescent labels within plants, paving the way for convenient and widespread storage of plant growth information.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 510642, Guangzhou, China
| | - Junjie Lin
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 510642, Guangzhou, China
| | - Wanyi Huang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 510642, Guangzhou, China
| | - Qingrou Wang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 510642, Guangzhou, China
| | - Haoran Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 510642, Guangzhou, China
| | - Xuejie Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 510642, Guangzhou, China
| | - Jianle Zhuang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 510642, Guangzhou, China
| | - Yingliang Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 510642, Guangzhou, China
| | - Songnan Qu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, 999078, Macau, China
| | - Bingfu Lei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 510642, Guangzhou, China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, 525100, Guangdong, Maoming, China.
| |
Collapse
|
8
|
Sellers RS, Dormitzer PR. Toxicologic Pathology Forum: mRNA Vaccine Safety-Separating Fact From Fiction. Toxicol Pathol 2024; 52:333-342. [PMID: 39254115 PMCID: PMC11528946 DOI: 10.1177/01926233241278298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
SARS-CoV-2 spread rapidly across the globe, contributing to the death of millions of individuals from 2019 to 2023, and has continued to be a major cause of morbidity and mortality after the pandemic. At the start of the pandemic, no vaccines or anti-viral treatments were available to reduce the burden of disease associated with this virus, as it was a novel SARS coronavirus. Because of the tremendous need, the development of vaccines to protect against COVID-19 was critically important. The flexibility and ease of manufacture of nucleic acid-based vaccines, specifically mRNA-based products, allowed the accelerated development of COVID-19 vaccines. Although mRNA-based vaccines and therapeutics had been in clinical trials for over a decade, there were no licensed mRNA vaccines on the market at the start of the pandemic. The rapid development of mRNA-based COVID-19 vaccines reduced serious complications and death from the virus but also engendered significant public concerns, which continue now, years after emergency-use authorization and subsequent licensure of these vaccines. This article summarizes and addresses some of the safety concerns that continue to be expressed about these vaccines and their underlying technology.
Collapse
Affiliation(s)
- Rani S. Sellers
- The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
9
|
Jiao M, Li X, Liu H, Cai P, Yang X, McHugh KJ, Zheng B, Sun J, Zhang P, Luo X, Jing L. Aqueous Grown Quantum Dots with Robust Near-Infrared Fluorescence for Integrated Traumatic Brain Injury Diagnosis and Surgical Monitoring. ACS NANO 2024; 18:19038-19053. [PMID: 38979966 DOI: 10.1021/acsnano.4c03123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Surgical intervention is the most common first-line treatment for severe traumatic brain injuries (TBIs) associated with high intracranial pressure, while the complexity of these surgical procedures often results in complications. Surgeons often struggle to comprehensively evaluate the TBI status, making it difficult to select the optimal intervention strategy. Here, we introduce a fluorescence imaging-based technology that uses high-quality silver indium selenide-based quantum dots (QDs) for integrated TBI diagnosis and surgical guidance. These engineered, poly(ethylene glycol)-capped QDs emit in the near-infrared region, are resistant to phagocytosis, and importantly, are ultrastable after the epitaxial growth of an aluminum-doped zinc sulfide shell in the aqueous phase that renders the QDs resistant to long-term light irradiation and complex physiological environments. We found that intravenous injection of QDs enabled both the precise diagnosis of TBI in a mouse model and, more importantly, the comprehensive evaluation of the TBI status before, during, and after an operation to distinguish intracranial from superficial hemorrhages, provide real-time monitoring of the secondary hemorrhage, and guide the decision making on the evacuation of intracranial hematomas. This QD-based diagnostic and monitoring system could ultimately complement existing clinical tools for treating TBI, which may help surgeons improve patient outcomes and avoid unnecessary procedures.
Collapse
Affiliation(s)
- Mingxia Jiao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao 266042, China
| | - Xiaoqi Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao 266042, China
| | - Hui Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao 266042, China
| | - Peng Cai
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao 266042, China
| | - Xiling Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao 266042, China
| | - Kevin J McHugh
- Departments of Bioengineering and Chemistry, Rice University, Houston, Texas 77005, United States
| | - Bowen Zheng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao 266042, China
| | - Jiachen Sun
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Peisen Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao 266042, China
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao 266042, China
| | - Lihong Jing
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| |
Collapse
|
10
|
李 晓, 孙 晓, 林 华, 张 沛, 焦 明, 张 霓. [ In vivo tumor imaging and therapy based on near-infrared cadmium-free quantum dots]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2024; 41:620-626. [PMID: 38932550 PMCID: PMC11208639 DOI: 10.7507/1001-5515.202404002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/08/2024] [Indexed: 06/28/2024]
Abstract
Near-infrared fluorescence imaging technology, which possesses superior advantages including real-time and fast imaging, high spatial and temporal resolution, and deep tissue penetration, shows great potential for tumor imaging in vivo and therapy. Ⅰ-Ⅲ-Ⅵ quantum dots exhibit high brightness, broad excitation, easily tunable emission wavelength and superior stability, and do not contain highly toxic heavy metal elements such as cadmium or lead. These advantages make Ⅰ-Ⅲ-Ⅵ quantum dots attract widespread attention in biomedical field. This review summarizes the recent advances in the controlled synthesis of Ⅰ-Ⅲ-Ⅵ quantum dots and their applications in tumor imaging in vivo and therapy. Firstly, the organic-phase and aqueous-phase synthesis of Ⅰ-Ⅲ-Ⅵ quantum dots as well as the strategies for regulating the near-infrared photoluminescence are briefly introduced; secondly, representative biomedical applications of near-infrared-emitting cadmium-free quantum dots including early diagnosis of tumor, lymphatic imaging, drug delivery, photothermal and photodynamic therapy are emphatically discussed; lastly, perspectives on the future directions of developing quantum dots for biomedical application and the faced challenges are discussed. This paper may provide guidance and reference for further research and clinical translation of cadmium-free quantum dots in tumor diagnosis and treatment.
Collapse
Affiliation(s)
- 晓琪 李
- 青岛科技大学 化学与分子工程学院(山东青岛 266042)College of Chemical and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P. R. China
| | - 晓 孙
- 青岛科技大学 化学与分子工程学院(山东青岛 266042)College of Chemical and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P. R. China
| | - 华 林
- 青岛科技大学 化学与分子工程学院(山东青岛 266042)College of Chemical and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P. R. China
| | - 沛森 张
- 青岛科技大学 化学与分子工程学院(山东青岛 266042)College of Chemical and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P. R. China
| | - 明霞 焦
- 青岛科技大学 化学与分子工程学院(山东青岛 266042)College of Chemical and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P. R. China
| | - 霓 张
- 青岛科技大学 化学与分子工程学院(山东青岛 266042)College of Chemical and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P. R. China
| |
Collapse
|
11
|
Shan J, Wu X, Che J, Gan J, Zhao Y. Reactive Microneedle Patches with Antibacterial and Dead Bacteria-Trapping Abilities for Skin Infection Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309622. [PMID: 38582511 PMCID: PMC11186059 DOI: 10.1002/advs.202309622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/18/2024] [Indexed: 04/08/2024]
Abstract
Bacterial skin infections are highly prevalent and pose a significant public health threat. Current strategies are primarily focused on the inhibition of bacterial activation while disregarding the excessive inflammation induced by dead bacteria remaining in the body and the effect of the acidic microenvironment during therapy. In this study, a novel dual-functional MgB2 microparticles integrated microneedle (MgB2 MN) patch is presented to kill bacteria and eliminate dead bacteria for skin infection management. The MgB2 microparticles not only can produce a local alkaline microenvironment to promote the proliferation and migration of fibroblasts and keratinocytes, but also achieve >5 log bacterial inactivation. Besides, the MgB2 microparticles effectively mitigate dead bacteria-induced inflammation through interaction with lipopolysaccharide (LPS). With the incorporation of these MgB2 microparticles, the resultant MgB2 MN patches effectively kill bacteria and capture dead bacteria, thereby mitigating these bacteria-induced inflammation. Therefore, the MgB2 MN patches show good therapeutic efficacy in managing animal bacterial skin infections, including abscesses and wounds. These results indicate that reactive metal borides-integrated microneedle patches hold great promise for the treatment of clinical skin infections.
Collapse
Affiliation(s)
- Jingyang Shan
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Key Laboratory of Organic Electronics and Information DisplaysJiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
| | - Xiangyi Wu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Junyi Che
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Jingjing Gan
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| |
Collapse
|
12
|
Lee J, Hwang GW, Lee BS, Park NJ, Kim SN, Lim D, Kim DW, Lee YS, Park HK, Kim S, Kim JW, Yi GR, Kim KH, Pang C. Artificial Octopus-Limb-Like Adhesive Patches for Cupping-Driven Transdermal Delivery with Nanoscale Control of Stratum Corneum. ACS NANO 2024. [PMID: 38254288 DOI: 10.1021/acsnano.3c09304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Drug delivery through complex skin is currently being studied using various innovative structural and material strategies due to the low delivery efficiency of the multilayered stratum corneum as a barrier function. Existing microneedle-based or electrical stimulation methods have made considerable advances, but they still have technical limitations to reduce skin discomfort and increase user convenience. This work introduces the design, operation mechanism, and performance of noninvasive transdermal patch with dual-layered suction chamber cluster (d-SCC) mimicking octopus-limb capable of wet adhesion with enhanced adhesion hysteresis and physical stimulation. The d-SCC facilitates cupping-driven drug delivery through the skin with only finger pressure. Our device enables nanoscale deformation control of stratum corneum of the engaged skin, allowing for efficient transport of diverse drugs through the stratum corneum without causing skin discomfort. Compared without the cupping effect of d-SCC, applying negative pressure to the porcine, human cadaver, and artificial skin for 30 min significantly improved the penetration depth of liquid-formulated subnanoscale medicines up to 44, 56, and 139%. After removing the cups, an additional acceleration in delivery to the skin was observed. The feasibility of d-SCC was demonstrated in an atopic dermatitis-induced model with thickened stratum corneum, contributing to the normalization of immune response.
Collapse
Affiliation(s)
- Jihyun Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Gui Won Hwang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Bum Soo Lee
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - No-June Park
- Natural Products Research Institute, Korea Institute of Science and Technology, 679, Saimdangro, Gangneung-si, Gangwon-do 25451, Republic of Korea
| | - Su-Nam Kim
- Natural Products Research Institute, Korea Institute of Science and Technology, 679, Saimdangro, Gangneung-si, Gangwon-do 25451, Republic of Korea
| | - Dohyun Lim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Da Wan Kim
- Department of Electronic Engineering, Korea National University of Transportation, Chungju-si, Chungbuk 27469, Republic of Korea
| | - Yeon Soo Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Hyoung-Ki Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Seulgi Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Jin Woong Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Gi-Ra Yi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Changhyun Pang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| |
Collapse
|
13
|
Caplan AL, Ferguson K, Williamson A. Ethical Challenges of Advances in Vaccine Delivery Technologies. Hastings Cent Rep 2024; 54:13-15. [PMID: 38390678 DOI: 10.1002/hast.1563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Strategies to address misinformation and hesitancy about vaccines, including the fear of needles, and to overcome obstacles to access, such as the refrigeration that some vaccines demand, strongly suggest the need to develop new vaccine delivery technologies. But, given widespread distrust surrounding vaccination, these new technologies must be introduced to the public with the utmost transparency, care, and community involvement. Two emerging technologies, one a skin-patch vaccine and the other a companion dye and detector, provide excellent examples of greatly improved delivery technologies for which such a careful approach should be developed in order to increase vaccine uptake. Defusing fears and conspiracy mongering must be a key part of their rollout.
Collapse
|
14
|
Qu F, Sun Y, Bi D, Peng S, Li M, Liu H, Zhang L, Tao J, Liu Y, Zhu J. Regulating Size and Charge of Liposomes in Microneedles to Enhance Intracellular Drug Delivery Efficiency in Skin for Psoriasis Therapy. Adv Healthc Mater 2023; 12:e2302314. [PMID: 37714523 DOI: 10.1002/adhm.202302314] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/01/2023] [Indexed: 09/17/2023]
Abstract
The stratum corneum (SC) and cell membrane are two major barriers that hinder the therapeutic outcomes of transdermal drug delivery for the treatment of skin diseases. While microneedles (MNs) can efficiently penetrate the SC to deliver nanomedicines, the optimization of physicochemical properties of nanomedicines in MNs to enhance their in vivo cellular delivery efficiency remains unclear. Here, how the size and surface charge of drug-loaded liposomes in MNs influence the retention time and cellular delivery in psoriatic skin is systematically investigated. The results indicate that while 100 nm negatively-charged liposomes in MNs show higher cellular uptake in vitro, 250 and 450 nm liposomes could enhance skin retention and the long-term in vivo cellular delivery efficiency of drugs. Moreover, 250 nm cationic liposomes with a stronger positive charge show an extraordinarily long skin retention time of 132 h and significantly higher in vivo cellular internalization. In the treatment study, dexamethasone (dex)-loaded cationic liposomes-integrated MNs show better therapeutic outcomes than dex-loaded anionic liposomes-integrated MNs in a psoriasis-like animal model. The design principles of liposomes in MN drug delivery systems explored in the study hold the potential for enhancing the therapeutic outcomes of psoriasis and are instrumental for successful translation.
Collapse
Affiliation(s)
- Fei Qu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yufeng Sun
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Duohang Bi
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Siyu Peng
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Min Li
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hongmei Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lianbin Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Juan Tao
- Department of Dermatology, Union Hospital, Tongji Medical College. HUST, Wuhan, 430022, China
| | - Yijing Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518057, China
| | - Jintao Zhu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
15
|
Wang EY, Sarmadi M, Ying B, Jaklenec A, Langer R. Recent advances in nano- and micro-scale carrier systems for controlled delivery of vaccines. Biomaterials 2023; 303:122345. [PMID: 37918182 DOI: 10.1016/j.biomaterials.2023.122345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
Vaccines provide substantial safety against infectious diseases, saving millions of lives each year. The recent COVID-19 pandemic highlighted the importance of vaccination in providing mass-scale immunization against outbreaks. However, the delivery of vaccines imposes a unique set of challenges due to their large molecular size and low room temperature stability. Advanced biomaterials and delivery systems such as nano- and mciro-scale carriers are becoming critical components for successful vaccine development. In this review, we provide an updated overview of recent advances in the development of nano- and micro-scale carriers for controlled delivery of vaccines, focusing on carriers compatible with nucleic acid-based vaccines and therapeutics that emerged amid the recent pandemic. We start by detailing nano-scale delivery systems, focusing on nanoparticles, then move on to microscale systems including hydrogels, microparticles, and 3D printed microneedle patches. Additionally, we delve into emerging methods that move beyond traditional needle-based applications utilizing innovative delivery systems. Future challenges for clinical translation and manufacturing in this rapidly advancing field are also discussed.
Collapse
Affiliation(s)
- Erika Yan Wang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Morteza Sarmadi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Binbin Ying
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ana Jaklenec
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
16
|
Zhao T, Lin R, Xu B, Liu M, Chen L, Zhang F, Mei Y, Li X, Zhao D. Mesoporous Nano-Badminton with Asymmetric Mass Distribution: How Nanoscale Architecture Affects the Blood Flow Dynamics. J Am Chem Soc 2023; 145:21454-21464. [PMID: 37726207 DOI: 10.1021/jacs.3c07097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
While the nanobio interaction is crucial in determining nanoparticles' in vivo fate, a previous work on investigating nanoparticles' interaction with biological barriers is mainly carried out in a static state. Nanoparticles' fluid dynamics that share non-negligible impacts on their frequency of encountering biological hosts, however, is seldom given attention. Herein, inspired by badmintons' unique aerodynamics, badminton architecture Fe3O4&mPDA (Fe3O4 = magnetite nanoparticle and mPDA = mesoporous polydopamine) Janus nanoparticles have successfully been synthesized based on a steric-induced anisotropic assembly strategy. Due to the "head" Fe3O4 having much larger density than the mPDA "cone", it shows an asymmetric mass distribution, analogous to real badminton. Computational simulations show that nanobadmintons have a stable fluid posture of mPDA cone facing forward, which is opposite to that for the real badminton. The force analysis demonstrates that the badminton-like morphology and mass distribution endow the nanoparticles with a balanced motion around this posture, making its movement in fluid stable. Compared to conventional spherical Fe3O4@mPDA nanoparticles, the Janus nanoparticles with an asymmetric mass distribution have straighter blood flow trails and ∼50% reduced blood vessel wall encountering frequency, thus providing doubled blood half-life and ∼15% lower organ uptakes. This work provides novel methodology for the fabrication of unique nanomaterials, and the correlations between nanoparticle architectures, biofluid dynamics, organ uptake, and blood circulation time are successfully established, providing essential guidance for designing future nanocarriers.
Collapse
Affiliation(s)
- Tiancong Zhao
- Department of Chemistry, Laboratory of Advanced Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Runfeng Lin
- Department of Chemistry, Laboratory of Advanced Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Borui Xu
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, P. R. China
| | - Minchao Liu
- Department of Chemistry, Laboratory of Advanced Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Liang Chen
- Department of Chemistry, Laboratory of Advanced Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Fan Zhang
- Department of Chemistry, Laboratory of Advanced Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Yongfeng Mei
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, P. R. China
| | - Xiaomin Li
- Department of Chemistry, Laboratory of Advanced Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Dongyuan Zhao
- Department of Chemistry, Laboratory of Advanced Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
17
|
Wang H, Xu J, Xiang L. Microneedle-Mediated Transcutaneous Immunization: Potential in Nucleic Acid Vaccination. Adv Healthc Mater 2023; 12:e2300339. [PMID: 37115817 DOI: 10.1002/adhm.202300339] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/07/2023] [Indexed: 04/29/2023]
Abstract
Efforts aimed at exploring economical and efficient vaccination have taken center stage to combat frequent epidemics worldwide. Various vaccines have been developed for infectious diseases, among which nucleic acid vaccines have attracted much attention from researchers due to their design flexibility and wide application. However, the lack of an efficient delivery system considerably limits the clinical translation of nucleic acid vaccines. As mass vaccinations via syringes are limited by low patient compliance and high costs, microneedles (MNs), which can achieve painless, cost-effective, and efficient drug delivery, can provide an ideal vaccination strategy. The MNs can break through the stratum corneum barrier in the skin and deliver vaccines to the immune cell-rich epidermis and dermis. In addition, the feasibility of MN-mediated vaccination is demonstrated in both preclinical and clinical studies and has tremendous potential for the delivery of nucleic acid vaccines. In this work, the current status of research on MN vaccines is reviewed. Moreover, the improvements of MN-mediated nucleic acid vaccination are summarized and the challenges of its clinical translation in the future are discussed.
Collapse
Affiliation(s)
- Haochen Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Junhua Xu
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Xiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
18
|
Yang X, Li Y, Zhang P, Guo L, Li X, Shu Y, Jiang K, Hou Y, Jing L, Jiao M. Building in biologically appropriate multifunctionality in aqueous copper indium selenide-based quantum dots. NANOSCALE 2023; 15:13603-13616. [PMID: 37555299 DOI: 10.1039/d3nr02385k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Advanced nanoplatforms equipped with different functional moieties for theranostics hold appealing promise for reshaping precision medicine. The reliable construction of an individual nanomaterial with intrinsic near-infrared (NIR) photofunction and magnetic domains is much desired but largely unexplored in a direct aqueous synthesis system. Herein, we develop an aqueous phase synthetic strategy for Mn2+ doping of ZnS shell grown on Zn-Cu-In-Se core quantum dots (ZCISe@ZnS:Mn QDs), providing the optimal NIR fluorescence quantum efficiency of up to 18.9% and meanwhile efficiently introducing paramagnetic domains. The relaxometric properties of the water-soluble Mn-doped QDs make them desirable for both the longitudinal and transverse (T1 and T2) magnetic resonance (MR) contrast enhancement due to the shell lattice-doped Mn2+ ions with slow tumbling rates and favoured spin-proton dipolar interactions with surrounding water molecules. Surprisingly, the incorporation of Mn2+ ions into the shell is found to significantly enhance the production of reactive oxygen species (ROS) by combining both the chemodynamic and photodynamic processes upon NIR light irradiation, showing great potential for efficient photo-assisted ablation of cancer cells. Furthermore, a broad-spectrum excitation range beneficial for bright NIR fluorescence imaging of breast cancer has been proven and offers high flexibility in the choice of incident light sources. Multiparametric MR imaging of the brain has also been successfully demonstrated in vivo.
Collapse
Affiliation(s)
- Xiling Yang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao 266042, China.
| | - Yun Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao 266042, China.
| | - Peisen Zhang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China.
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029, China
| | - Lingfei Guo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao 266042, China.
| | - Xiaoqi Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao 266042, China.
| | - Yiyang Shu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao 266042, China.
| | - Kuiyu Jiang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao 266042, China.
| | - Yi Hou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029, China
| | - Lihong Jing
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China.
| | - Mingxia Jiao
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao 266042, China.
| |
Collapse
|
19
|
de la Fuente J, Contreras M. Quantum vaccinomics platforms to advance in vaccinology. Front Immunol 2023; 14:1172734. [PMID: 37398646 PMCID: PMC10307952 DOI: 10.3389/fimmu.2023.1172734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
The opinion flows from Introduction to the immunological quantum that requires a historical perspective, to Quantum vaccine algorithms supported by a bibliometric analysis, to Quantum vaccinomics describing from our perspective the different vaccinomics and quantum vaccinomics algorithms. Finally, in the Discussion and conclusions we propose novel platforms and algorithms developed to further advance on quantum vaccinomics. In the paper we refer to protective epitopes or immunological quantum for the design of candidate vaccine antigens, which may elicit a protective response through both cellular and antibody mediated mechanisms of the host immune system. Vaccines are key interventions for the prevention and control of infectious diseases affecting humans and animals worldwide. Biophysics led to quantum biology and quantum immunology reflecting quantum dynamics within living systems and their evolution. In analogy to quantum of light, immune protective epitopes were proposed as the immunological quantum. Multiple quantum vaccine algorithms were developed based on omics and other technologies. Quantum vaccinomics is the methodological approach with different platforms used for the identification and combination of immunological quantum for vaccine development. Current quantum vaccinomics platforms include in vitro, in music and in silico algorithms and top trends in biotechnology for the identification, characterization and combination of candidate protective epitopes. These platforms have been applied to different infectious diseases and in the future should target prevalent and emerging infectious diseases with novel algorithms.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Marinela Contreras
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| |
Collapse
|
20
|
Yang J, Luo R, Yang L, Wang X, Huang Y. Microneedle-Integrated Sensors for Extraction of Skin Interstitial Fluid and Metabolic Analysis. Int J Mol Sci 2023; 24:9882. [PMID: 37373027 DOI: 10.3390/ijms24129882] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Skin interstitial fluid (ISF) has emerged as a fungible biofluid sample for blood serum and plasma for disease diagnosis and therapy. The sampling of skin ISF is highly desirable considering its easy accessibility, no damage to blood vessels, and reduced risk of infection. Particularly, skin ISF can be sampled using microneedle (MN)-based platforms in the skin tissues, which exhibit multiple advantages including minimal invasion of the skin tissues, less pain, ease of carrying, capacity for continuous monitoring, etc. In this review, we focus on the current development of microneedle-integrated transdermal sensors for collecting ISF and detecting specific disease biomarkers. Firstly, we discussed and classified microneedles according to their structural design, including solid MNs, hollow MNs, porous MNs, and coated MNs. Subsequently, we elaborate on the construction of MN-integrated sensors for metabolic analysis with highlights on the electrochemical, fluorescent, chemical chromogenic, immunodiagnostic, and molecular diagnostic MN-integrated sensors. Finally, we discuss the current challenges and future direction for developing MN-based platforms for ISF extraction and sensing applications.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Ruiyu Luo
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Lei Yang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Xiaocheng Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Yong Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
21
|
Sobhanan J, Rival JV, Anas A, Sidharth Shibu E, Takano Y, Biju V. Luminescent Quantum Dots: Synthesis, Optical Properties, Bioimaging and Toxicity. Adv Drug Deliv Rev 2023; 197:114830. [PMID: 37086917 DOI: 10.1016/j.addr.2023.114830] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/26/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023]
Abstract
Luminescent nanomaterials such as semiconductor nanocrystals (NCs) and quantum dots (QDs) attract much attention to optical detectors, LEDs, photovoltaics, displays, biosensing, and bioimaging. These materials include metal chalcogenide QDs and metal halide perovskite NCs. Since the introduction of cadmium chalcogenide QDs to biolabeling and bioimaging, various metal nanoparticles (NPs), atomically precise metal nanoclusters, carbon QDs, graphene QDs, silicon QDs, and other chalcogenide QDs have been infiltrating the nano-bio interface as imaging and therapeutic agents. Nanobioconjugates prepared from luminescent QDs form a new class of imaging probes for cellular and in vivo imaging with single-molecule, super-resolution, and 3D resolutions. Surface modified and bioconjugated core-only and core-shell QDs of metal chalcogenides (MX; M = Cd/Pb/Hg/Ag, and X = S/Se/Te,), binary metal chalcogenides (MInX2; M = Cu/Ag, and X = S/Se/Te), indium compounds (InAs and InP), metal NPs (Ag, Au, and Pt), pure or mixed precision nanoclusters (Ag, Au, Pt), carbon nanomaterials (graphene QDs, graphene nanosheets, carbon NPs, and nanodiamond), silica NPs, silicon QDs, etc. have become prevalent in biosensing, bioimaging, and phototherapy. While heavy metal-based QDs are limited to in vitro bioanalysis or clinical testing due to their potential metal ion-induced toxicity, carbon (nanodiamond and graphene) and silicon QDs, gold and silica nanoparticles, and metal nanoclusters continue their in vivo voyage towards clinical imaging and therapeutic applications. This review summarizes the synthesis, chemical modifications, optical properties, and bioimaging applications of semiconductor QDs with particular references to metal chalcogenide QDs and bimetallic chalcogenide QDs. Also, this review highlights the toxicity and pharmacokinetics of QD bioconjugates.
Collapse
Affiliation(s)
- Jeladhara Sobhanan
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido 060-0810, Japan; Center for Adapting Flaws into Features, Department of Chemistry, Rice University, 6100 Main St., Houston, TX 77005, USA
| | - Jose V Rival
- Smart Materials Lab, Department of Nanoscience and Technology, University of Calicut, Kerala, India
| | - Abdulaziz Anas
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kerala 682 018, India.
| | | | - Yuta Takano
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido 060-0810, Japan; Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
| | - Vasudevanpillai Biju
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido 060-0810, Japan; Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan.
| |
Collapse
|
22
|
Yang X, Jin X, Zheng A, Duan P. Dual Band-Edge Enhancing Overall Performance of Upconverted Near-Infrared Circularly Polarized Luminescence for Anticounterfeiting. ACS NANO 2023; 17:2661-2668. [PMID: 36648200 DOI: 10.1021/acsnano.2c10646] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Circularly polarized luminescence (CPL) is one of the critical chiroptical properties for chiral nanomaterials, which exhibit wide potential applications in many research fields. However, it remains a big challenge for real application, limited by their small luminescence dissymmetry factor or low emission intensity. Here, an upconverted near-infrared circularly polarized luminescence (UC-NIR-CPL) system is constructed based on the chiroptical property of chiral liquid crystals, embedding with the lanthanide-doped upconversion nanoparticles. More importantly, a strategy for improving the overall performance of UC-NIR-CPL was proposed and realized by taking advantage of the "dual-band-edge enhancement effect", wherein the glum value was amplified, while the NIR emission intensity showed dual enhancement and the threshold of excitation was decreased. Based on the improved overall performance of the UC-NIR-CPL, which can be used as a distinctive covert light, a kind of photonic barcode with multiple encryptions was realized. These findings will upgrade the level of information encryption through improving the overall performance of CPL-active materials.
Collapse
Affiliation(s)
- Xuefeng Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, People's Republic of China
| | - Xue Jin
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, People's Republic of China
| | - Anyi Zheng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, People's Republic of China
| | - Pengfei Duan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People's Republic of China
| |
Collapse
|
23
|
Johnson BB. Factors in intention to get the COVID-19 vaccine change over time: Evidence from a two-wave U.S. study. HEALTH, RISK & SOCIETY 2023. [DOI: 10.1080/13698575.2023.2173727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
24
|
Li R, Yuan X, Zhang L, Jiang X, Li L, Zhang Y, Guo L, Dai X, Cheng H, Jiang X, Gou M. 3D printing of microneedle arrays for hair regeneration in a controllable region. MOLECULAR BIOMEDICINE 2023; 4:1. [PMID: 36602633 PMCID: PMC9816368 DOI: 10.1186/s43556-022-00102-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/07/2022] [Indexed: 01/06/2023] Open
Abstract
Hair loss is a common skin disease that causes intense emotional suffering. Hair regeneration in a personalized area is highly desirable for patients with different balding conditions. However, the existing pharmaceutical treatments have difficulty precisely regenerating hair in a desired area. Here, we show a method to precisely control the hair regeneration using customized microneedle arrays (MNAs). The MNA with a customized shape is fast fabricated by a static optical projection lithography process in seconds, which is a 3D printing technology developed by our group. In the mouse model, MNA treatment could induce hair regrowth in a defined area corresponding to the customized shape of MNA. And the regenerated hair promoted by MNAs had improved quality. Cellular and molecular analysis indicated that MNA treatment could recruit macrophages in situ and then initiate the proliferation of hair follicle stem cells, thereby improving hair regeneration. Meanwhile, the activation of the Wnt/β-catenin signaling pathway was observed in hair follicles. The expressions of Hgf, Igf 1 and Tnf-α were also upregulated in the treated skin, which may also be beneficial for the MNA-induced hair regeneration. This study provides a strategy to precisely control hair regeneration using customized microneedle arrays by recruiting macrophages in situ, which holds the promise for the personalized treatment of hair loss.
Collapse
Affiliation(s)
- Rong Li
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Xin Yuan
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, China ,grid.13291.380000 0001 0807 1581Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Li Zhang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Xuebing Jiang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Li Li
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Yi Zhang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Linghong Guo
- grid.13291.380000 0001 0807 1581Department of Dermatology, West China Hospital, Sichuan University, 610041 Chengdu, China ,grid.13291.380000 0001 0807 1581Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Xide Dai
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Hao Cheng
- Huahang Microcreate Technology Co., Ltd, 610042 Chengdu, China
| | - Xian Jiang
- grid.13291.380000 0001 0807 1581Department of Dermatology, West China Hospital, Sichuan University, 610041 Chengdu, China ,grid.13291.380000 0001 0807 1581Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Maling Gou
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, China
| |
Collapse
|
25
|
Wang R, Zhong T, Bian Q, Zhang S, Ma X, Li L, Xu Y, Gu Y, Yuan A, Hu W, Qin C, Gao J. PROTAC Degraders of Androgen Receptor-Integrated Dissolving Microneedles for Androgenetic Alopecia and Recrudescence Treatment via Single Topical Administration. SMALL METHODS 2023; 7:e2201293. [PMID: 36538748 DOI: 10.1002/smtd.202201293] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Androgenetic alopecia (AGA) is a transracial and cross-gender disease worldwide with a youth-oriented tendency, but it lacks effective treatment. The binding of androgen receptor (AR) and androgen plays an essential role in the occurrence and progression of AGA. Herein, novel proteolysis targeting chimera degrader of AR (AR-PROTAC) is synthesized and integrated with dissolving microneedles (PROTAC-MNs) to achieve AR destruction in hair follicles for AGA treatment. The PROTAC-MNs possess adequate mechanical capabilities for precise AR-PROTAC delivery into the hair follicle-residing regions for AR degradation. After applying only once topically, the PROTAC-MNs achieve an accelerated onset of hair regeneration as compared to the daily application of the first-line topical drug minoxidil. Intriguingly, PROTAC-MNs via single administration still realize superior hair regeneration in AGA recrudescence, which is the major drawback of minoxidil in clinical practice. With the degradation of AR, the PROTAC-MNs successfully regulate the signaling cascade related to hair growth and activate hair follicle stem cells. Furthermore, the PROTAC-MNs do not cause systemic toxicity or androgen deficiency-related chaos in vivo. Collectively, these AR-degrading dissolving microneedles with long-lasting efficacy, one-step administration, and high biocompatibility provide a great therapeutic potential for AGA treatment.
Collapse
Affiliation(s)
- Ruxuan Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tengjiang Zhong
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Qiong Bian
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, 010000, China
| | - Sai Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Xiaolu Ma
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Liming Li
- Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Yihua Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yueting Gu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Anran Yuan
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Weitong Hu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chong Qin
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jiangsu Engineering Research Center for New-type External and Transdermal Preparations, Changzhou, 213149, China
| |
Collapse
|
26
|
Singh P, Youden B, Carrier A, Oakes K, Servos M, Jiang R, Lin S, Nguyen TD, Zhang X. Photoresponsive polymeric microneedles: An innovative way to monitor and treat diseases. J Control Release 2023; 353:1050-1067. [PMID: 36549390 DOI: 10.1016/j.jconrel.2022.12.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Microneedles (MN) technology is an emerging technology for the transdermal delivery of therapeutics. When combined with photoresponsive (PR) materials, MNs can deliver therapeutics precisely and effectively with enhanced efficacy or synergistic effects. This review systematically summarizes the therapeutic applications of PRMNs in cancer therapy, wound healing, diabetes treatment, and diagnostics. Different PR approaches to activate and control the release of therapeutic agents from MNs are also discussed. Overall, PRMNs are a powerful tool for stimuli-responsive controlled-release therapeutic delivery to treat various diseases.
Collapse
Affiliation(s)
- Parbeen Singh
- Department of Mechanical Engineering, University of Connecticut, United States; School of Food and Drug, Shenzhen Key Laboratory of Fermentation Purification and Analysis, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Brian Youden
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada; Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Andrew Carrier
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| | - Ken Oakes
- Department of Biology, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| | - Mark Servos
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Runqing Jiang
- Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, Ontario N2G 1G3, Canada
| | - Sujing Lin
- School of Food and Drug, Shenzhen Key Laboratory of Fermentation Purification and Analysis, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Thanh D Nguyen
- Department of Mechanical Engineering, University of Connecticut, United States.
| | - Xu Zhang
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada.
| |
Collapse
|
27
|
Zhao X, Lim LJ, Ang SS, Tan ZK. Efficient Short-Wave Infrared Light-Emitting Diodes Based on Heavy-Metal-Free Quantum Dots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206409. [PMID: 36097727 DOI: 10.1002/adma.202206409] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Short-wave infrared (SWIR) light emission is important for a diverse range of modern applications, such as eye-safe depth sensing, light detection and ranging (LiDAR), facial recognition, eye tracking, optical communication, and health-monitoring technologies. However, there are a very limited number of known semiconductors that can emit efficiently in the SWIR spectral range. Presently, SWIR light-emitting diodes (LEDs) based on colloidal quantum dots (CQD) are dominated by lead chalcogenide systems, despite the presence of heavy metal and modest efficiencies. Here, a highly efficient SWIR LED based on heavy-metal-free indium arsenide (InAs) core-shell CQDs is presented. In the LED design, the implementation of an otherwise hole-transporting poly(vinylcarbazole) (PVK) layer on the electron-injecting side of the device stack leads to a surprising enhancement in device performance, giving remarkably high external quantum efficiencies (EQEs) of 13.3% at 1006 nm. Single-carrier device and optical investigations reveal the origins of enhancement to be the electronic decoupling of the CQD layer with the electron-injecting zinc oxide (ZnO) layer, which mitigates luminescence quenching and improves charge balance. This work marks one of the highest efficiencies reported for heavy-metal-free solution-processed LEDs in the SWIR spectral region, and can find significant applications in emerging consumer electronic technologies.
Collapse
Affiliation(s)
- Xiaofei Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Li Jun Lim
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Shun Sheng Ang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Zhi-Kuang Tan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- Solar Energy Research Institute of Singapore, National University of Singapore, 7 Engineering Drive 1, Singapore, 117574, Singapore
| |
Collapse
|
28
|
Mbituyimana B, Ma G, Shi Z, Yang G. Polymeric microneedles for enhanced drug delivery in cancer therapy. BIOMATERIALS ADVANCES 2022; 142:213151. [PMID: 36244246 DOI: 10.1016/j.bioadv.2022.213151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Microneedles (MNs) have attracted the interest of researchers. Polymeric MNs offer tremendous promise as drug delivery vehicles for bio-applications because of their high loading capacity, strong patient adherence, excellent biodegradability and biocompatibility, low toxicity, and extremely cheap cost. Incorporating enhanced-property nanomaterials into polymeric MNs matrix increases their features such as better mechanical strength, sustained drug delivery, lower toxicity, and higher therapeutic effects, therefore considerably increasing their biomedical application. This paper discusses polymeric MN fabrication techniques and the present status of polymeric MNs as a delivery method for enhanced drug delivery in cancer therapeutic applications. Furthermore, the opportunities and challenges of polymeric MNs for improved drug delivery in cancer therapy are highlighted.
Collapse
Affiliation(s)
- Bricard Mbituyimana
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guangrui Ma
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
29
|
Illari L, Restrepo NJ, Johnson NF. Losing the battle over best-science guidance early in a crisis: COVID-19 and beyond. SCIENCE ADVANCES 2022; 8:eabo8017. [PMID: 36170371 PMCID: PMC9519035 DOI: 10.1126/sciadv.abo8017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
Ensuring widespread public exposure to best-science guidance is crucial in any crisis, e.g., coronavirus disease 2019 (COVID-19), monkeypox, abortion misinformation, climate change, and beyond. We show how this battle got lost on Facebook very early during the COVID-19 pandemic and why the mainstream majority, including many parenting communities, had already moved closer to more extreme communities by the time vaccines arrived. Hidden heterogeneities in terms of who was talking and listening to whom explain why Facebook's own promotion of best-science guidance also appears to have missed key audience segments. A simple mathematical model reproduces the exposure dynamics at the system level. Our findings could be used to tailor guidance at scale while accounting for individual diversity and to help predict tipping point behavior and system-level responses to interventions in future crises.
Collapse
Affiliation(s)
- Lucia Illari
- Physics Department, George Washington University, Washington, D.C. 20052, USA
| | | | - Neil F. Johnson
- Physics Department, George Washington University, Washington, D.C. 20052, USA
| |
Collapse
|
30
|
Lu Y, Ren T, Zhang H, Jin Q, Shen L, Shan M, Zhao X, Chen Q, Dai H, Yao L, Xie J, Ye D, Lin T, Hong X, Deng K, Shen T, Pan J, Jia M, Ling J, Li P, Zhang Y, Wang H, Zhuang L, Gao C, Mao J, Zhu Y. A honeybee stinger-inspired self-interlocking microneedle patch and its application in myocardial infarction treatment. Acta Biomater 2022; 153:386-398. [PMID: 36116725 DOI: 10.1016/j.actbio.2022.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/18/2022] [Accepted: 09/07/2022] [Indexed: 11/01/2022]
Abstract
Weak tissue adhesion remains a major challenge in clinical translation of microneedle patches. Mimicking the structural features of honeybee stingers, stiff polymeric microneedles with unidirectionally backward-facing barbs were fabricated and embedded into various elastomer films to produce self-interlocking microneedle patches. The spirality of the barbing pattern was adjusted to increase interlocking efficiency. In addition, the micro-bleeding caused by microneedle puncturing adhered the porous surface of the patch substrate to the target tissue via coagulation. In the demonstrative application of myocardial infarction treatment, the bioinspired microneedle patches firmly fixed on challenging beating hearts, significantly reduced cardiac wall stress and strain in the infarct, and maintained left ventricular function and morphology. In addition, the microneedle patch was minimally invasively implanted onto beating porcine heart in 10 minutes, free of sutures and adhesives. Therefore, the honeybee stinger-inspired microneedles could provide an adaptive and convenient means to implant patches for various medical applications. STATEMENT OF SIGNIFICANCE: Adhesion between tissue and microneedle patches with smooth microneedles is usually weak. We introduce a novel barbing method of fabricating unidirectionally backward facing barbs with controllable spirality on the microneedles on microneedle patches. The microneedle patches self-interlock on mechanically dynamic beating hearts, similar to honeybee stingers. The micro-bleeding and coagulation on the porous surface provide additional adhesion force. The microneedle patches attenuate left ventricular remodeling via mechanical support and are compatible with minimally invasive implantation.
Collapse
Affiliation(s)
- Yuwen Lu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Tanchen Ren
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Hua Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiao Jin
- Institute of Genetics and Reproduction, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Liyin Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Mengqi Shan
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xinzhe Zhao
- Shanghai Banyun Med Tech Co., Ltd., Shanghai, 201203, China
| | - Qichao Chen
- Shanghai Banyun Med Tech Co., Ltd., Shanghai, 201203, China
| | - Haoli Dai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lin Yao
- State key laboratory of modern optical instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jieqi Xie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Di Ye
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tengxiang Lin
- State key laboratory of modern optical instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaoqian Hong
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Kaicheng Deng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ting Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiazhen Pan
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Mengyan Jia
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Peng Li
- State key laboratory of modern optical instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yue Zhang
- San Francisco Veterans Affairs Medical Center, CA, 94121, USA
| | - Huanan Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Lenan Zhuang
- Institute of Genetics and Reproduction, College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Jifu Mao
- College of Textiles, Donghua University, Shanghai, 201620, China.
| | - Yang Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China; Binjiang Institute of Zhejiang University, Hangzhou, 310053 China.
| |
Collapse
|
31
|
Microneedle patch tattoos. iScience 2022; 25:105014. [DOI: 10.1016/j.isci.2022.105014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/24/2022] [Accepted: 08/19/2022] [Indexed: 11/20/2022] Open
|
32
|
Zhong L, Li J, Zu B, Zhu X, Lei D, Wang G, Hu X, Zhang T, Dou X. Highly Retentive, Anti-Interference, and Covert Individual Marking Taggant with Exceptional Skin Penetration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201497. [PMID: 35748174 PMCID: PMC9443463 DOI: 10.1002/advs.202201497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The development of high-performance individual marking taggants is of great significance. However, the interaction between taggant and skin is not fully understood, and a standard for marking taggants has yet to be realized. To achieve a highly retentive, anti-interference, and covert individual marking fluorescent taggant, Mn2+ -doped NaYF4 :Yb/Er upconversion nanoparticles (UCNPs), are surface-functionalized with polyethyleneimine (PEI) to remarkably enhance the interaction between the amino groups and skin, and thus to facilitate the surface adhesion and chemical penetration of the taggant. Electrostatic interaction between PEI600 -UCNPs and skin as well as remarkable penetration inside the epidermis is responsible for excellent taggant retention capability, even while faced with robust washing, vigorous wiping, and rubbing for more than 100 cycles. Good anti-interference capability and reliable marking performance in real cases are ensured by an intrinsic upconversion characteristic with a distinct red luminescent emission under 980 nm excitation. The present methodology is expected to shed light on the design of high-performance individual marking taggants from the perspective of the underlying interaction between taggant and skin, and to help advance the use of fluorescent taggants for practical application, such as special character tracking.
Collapse
Affiliation(s)
- Lianggen Zhong
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jiguang Li
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Baiyi Zu
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
| | - Xiaodan Zhu
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Da Lei
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
| | - Guangfa Wang
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
| | - Xiaoyun Hu
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Tianshi Zhang
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xincun Dou
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
33
|
Sarmadi M, Ta C, VanLonkhuyzen AM, De Fiesta DC, Kanelli M, Sadeghi I, Behrens AM, Ingalls B, Menon N, Daristotle JL, Yu J, Langer R, Jaklenec A. Experimental and computational understanding of pulsatile release mechanism from biodegradable core-shell microparticles. SCIENCE ADVANCES 2022; 8:eabn5315. [PMID: 35857507 PMCID: PMC9278852 DOI: 10.1126/sciadv.abn5315] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/28/2022] [Indexed: 05/11/2023]
Abstract
Next-generation therapeutics require advanced drug delivery platforms with precise control over morphology and release kinetics. A recently developed microfabrication technique enables fabrication of a new class of injectable microparticles with a hollow core-shell structure that displays pulsatile release kinetics, providing such capabilities. Here, we study this technology and the resulting core-shell microstructures. We demonstrated that pulsatile release is governed by a sudden increase in porosity of the polymeric matrix, leading to the formation of a porous path connecting the core to the environment. Moreover, the release kinetics within the range studied remained primarily independent of the particle geometry but highly dependent on its composition. A qualitative technique was developed to study the pattern of pH evolution in the particles. A computational model successfully modeled deformations, indicating sudden expansion of the particle before onset of release. Results of this study contribute to the understanding and design of advanced drug delivery systems.
Collapse
Affiliation(s)
- Morteza Sarmadi
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christina Ta
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Abigail M. VanLonkhuyzen
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dominique C. De Fiesta
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maria Kanelli
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ilin Sadeghi
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Adam M. Behrens
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bailey Ingalls
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nandita Menon
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John L. Daristotle
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Julie Yu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Langer
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ana Jaklenec
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
34
|
Rabiee N, Ahmadi S, Soufi GJ, Hekmatnia A, Khatami M, Fatahi Y, Iravani S, Varma RS. Quantum dots against SARS-CoV-2: diagnostic and therapeutic potentials. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 2022; 97:1640-1654. [PMID: 35463806 PMCID: PMC9015521 DOI: 10.1002/jctb.7036] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 05/02/2023]
Abstract
The application of quantum dots (QDs) for detecting and treating various types of coronaviruses is very promising, as their low toxicity and high surface performance make them superior among other nanomaterials; in conjugation with fluorescent probes they are promising semiconductor nanomaterials for the detection of various cellular processes and viral infections. In view of the successful results for inhibiting SARS-CoV-2, functional QDs could serve eminent role in the growth of safe nanotherapy for the cure of viral infections in the near future; their large surface areas help bind numerous molecules post-synthetically. Functionalized QDs with high functionality, targeted selectivity, stability and less cytotoxicity can be employed for highly sensitive co-delivery and imaging/diagnosis. Besides, due to the importance of safety and toxicity issues, QDs prepared from plant sources (e.g. curcumin) are much more attractive, as they provide good biocompatibility and low toxicity. In this review, the recent developments pertaining to the diagnostic and inhibitory potentials of QDs against SARS-CoV-2 are deliberated including important challenges and future outlooks. © 2022 Society of Chemical Industry (SCI).
Collapse
Affiliation(s)
- Navid Rabiee
- Department of PhysicsSharif University of TechnologyTehranIran
- School of EngineeringMacquarie UniversitySydneyAustralia
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
- Cellular and Molecular Biology Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | | | - Ali Hekmatnia
- School of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Mehrdad Khatami
- Non‐communicable Diseases Research CenterBam University of Medical SciencesBamIran
- Department of Medical Biotechnology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of PharmacyTehran University of Medical SciencesTehranIran
- Nanotechnology Research Center, Faculty of PharmacyTehran University of Medical SciencesTehranIran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical SciencesIsfahan University of Medical SciencesIsfahanIran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and MaterialsCzech Advanced Technology and Research Institute, Palacký University in OlomoucOlomoucCzech Republic
| |
Collapse
|
35
|
Ali M, Namjoshi S, Benson HAE, Mohammed Y, Kumeria T. Dissolvable polymer microneedles for drug delivery and diagnostics. J Control Release 2022; 347:561-589. [PMID: 35525331 DOI: 10.1016/j.jconrel.2022.04.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
Dissolvable transdermal microneedles (μND) are promising micro-devices used to transport a wide selection of active compounds into the skin. To provide an effective therapeutic outcome, μNDs must pierce the human stratum corneum (~10 to 20 μm), without rupturing or bending during penetration, then release their cargo at the predetermined area and time. The ability of dissolvable μND arrays/patches to sufficiently pierce the skin is a crucial requirement, which depends on the material composition, μND geometry and fabrication techniques. This comprehensive review not only provides contemporary knowledge on the μND design approaches, but also the materials science facilitating these delivery systems and the opportunities these advanced materials can provide to enhance clinical outcomes.
Collapse
Affiliation(s)
- Masood Ali
- Therapeutics Research Group, The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD 4102, Australia
| | - Sarika Namjoshi
- Therapeutics Research Group, The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD 4102, Australia; Vaxxas Pty Ltd, Brisbane, Woolloongabba, QLD 4102, Australia
| | - Heather A E Benson
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; Basil Hetzel institute for Translational Health Research, Adelaide, SA 5001, Australia.
| | - Yousuf Mohammed
- Therapeutics Research Group, The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD 4102, Australia.
| | - Tushar Kumeria
- School of Materials Science and Engineering, The University of New South Wales, Sydney. NSW 2052, Australia; Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW 2052, Australia; School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| |
Collapse
|
36
|
Li Q, Xu R, Fan H, Xu J, Xu Y, Cao P, Zhang Y, Liang T, Zhang Y, Chen W, Wang Z, Wang L, Chen X. Smart Mushroom-Inspired Imprintable and Lightly Detachable (MILD) Microneedle Patterns for Effective COVID-19 Vaccination and Decentralized Information Storage. ACS NANO 2022; 16:7512-7524. [PMID: 35451839 PMCID: PMC9045675 DOI: 10.1021/acsnano.1c10718] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/15/2022] [Indexed: 05/20/2023]
Abstract
The key to controlling the spread of the coronavirus disease 2019 (COVID-19) and reducing mortality is highly dependent on the safe and effective use of vaccines for the general population. Current COVID-19 vaccination practices (intramuscular injection of solution-based vaccines) are limited by heavy reliance on medical professionals, poor compliance, and laborious vaccination recording procedures, resulting in a waste of health resources and low vaccination coverage, etc. In this study, we developed a smart mushroom-inspired imprintable and lightly detachable (MILD) microneedle platform for the effective and convenient delivery of multidose COVID-19 vaccines and decentralized vaccine information storage. The mushroom-like structure allows the MILD system to be easily pressed into the skin and detached from the patch base, acting as a "tattoo" to record the vaccine counts in situ without any storage equipment, offering quick accessibility and effortless readout, saving a great deal of valuable time and energy for both patients and health professionals. After loading inactivated SARS-CoV-2 virus-based vaccines, MILD system induced a high level of antibodies against the SARS-CoV-2 receptor-binding domain (RBD) in vivo without eliciting systemic toxicity and local damage. Collectively, this smart delivery platform serves as a promising carrier to improve COVID-19 vaccination efficacy through its dual capabilities of vaccine delivery and in situ data storage, thus exhibiting great potential for helping to contain the COVID-19 pandemic or a resurgence.
Collapse
Affiliation(s)
- Qilin Li
- Department of Clinical Laboratory, Union Hospital,
Tongji Medical College, Huazhong University of Science and
Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and
Regenerative Medicine, Union Hospital, Huazhong University of Science and
Technology, Wuhan 430022, China
| | - Rengui Xu
- Department of Clinical Laboratory, Union Hospital,
Tongji Medical College, Huazhong University of Science and
Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and
Regenerative Medicine, Union Hospital, Huazhong University of Science and
Technology, Wuhan 430022, China
| | - Huiling Fan
- Department of Clinical Laboratory, Union Hospital,
Tongji Medical College, Huazhong University of Science and
Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and
Regenerative Medicine, Union Hospital, Huazhong University of Science and
Technology, Wuhan 430022, China
| | - Jiarong Xu
- Department of Pharmacology, School of Basic Medicine,
Tongji Medical College, Huazhong University of Science and
Technology, Wuhan 430030, China
- Hubei Key Laboratory for Drug Target Researches and
Pharmacodynamic Evaluation, Huazhong University of Science and
Technology, Wuhan 430030, China
| | - Yunruo Xu
- Department of Clinical Laboratory, Union Hospital,
Tongji Medical College, Huazhong University of Science and
Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and
Regenerative Medicine, Union Hospital, Huazhong University of Science and
Technology, Wuhan 430022, China
| | - Peng Cao
- Department of Clinical Laboratory, Union Hospital,
Tongji Medical College, Huazhong University of Science and
Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and
Regenerative Medicine, Union Hospital, Huazhong University of Science and
Technology, Wuhan 430022, China
| | - Yan Zhang
- Research Center for Tissue Engineering and
Regenerative Medicine, Union Hospital, Huazhong University of Science and
Technology, Wuhan 430022, China
| | - Tao Liang
- Department of Clinical Laboratory, Union Hospital,
Tongji Medical College, Huazhong University of Science and
Technology, Wuhan 430022, China
| | - Yang Zhang
- Department of Clinical Laboratory, Union Hospital,
Tongji Medical College, Huazhong University of Science and
Technology, Wuhan 430022, China
| | - Wei Chen
- Department of Pharmacology, School of Basic Medicine,
Tongji Medical College, Huazhong University of Science and
Technology, Wuhan 430030, China
- Hubei Key Laboratory for Drug Target Researches and
Pharmacodynamic Evaluation, Huazhong University of Science and
Technology, Wuhan 430030, China
| | - Zheng Wang
- Research Center for Tissue Engineering and
Regenerative Medicine, Union Hospital, Huazhong University of Science and
Technology, Wuhan 430022, China
- Department of Gastrointestinal Surgery, Union
Hospital, Tongji Medical College, Huazhong, University of Science and
Technology, Wuhan 430022, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital,
Tongji Medical College, Huazhong University of Science and
Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and
Regenerative Medicine, Union Hospital, Huazhong University of Science and
Technology, Wuhan 430022, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology and Surgery, Yong Loo Lin
School of Medicine, National University of Singapore, 117597,
Singapore
- Departments of Chemical and Biomolecular Engineering,
and Biomedical Engineering, Faculty of Engineering, National University of
Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for
Translational Medicine, Yong Loo Lin School of Medicine, National University
of Singapore, 117597, Singapore
- Nanomedicine Translational Research Program, NUS
Center for Nanomedicine, Yong Loo Lin School of Medicine, National University
of Singapore, 117597, Singapore
| |
Collapse
|
37
|
Li Y, Zhang P, Tang W, McHugh KJ, Kershaw SV, Jiao M, Huang X, Kalytchuk S, Perkinson CF, Yue S, Qiao Y, Zhu L, Jing L, Gao M, Han B. Bright, Magnetic NIR-II Quantum Dot Probe for Sensitive Dual-Modality Imaging and Intensive Combination Therapy of Cancer. ACS NANO 2022; 16:8076-8094. [PMID: 35442624 DOI: 10.1021/acsnano.2c01153] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Improving the effectiveness of cancer therapy will require tools that enable more specific cancer targeting and improved tumor visualization. Theranostics have the potential for improving cancer care because of their ability to serve as both diagnostics and therapeutics; however, their diagnostic potential is often limited by tissue-associated light absorption and scattering. Herein, we develop CuInSe2@ZnS:Mn quantum dots (QDs) with intrinsic multifunctionality that both enable the accurate localization of small metastases and act as potent tumor ablation agents. By leveraging the growth kinetics of a ZnS shell on a biocompatible CuInSe2 core, Mn doping, and folic acid functionalization, we produce biocompatible QDs with high near-infrared (NIR)-II fluorescence efficiency up to 31.2%, high contrast on magnetic resonance imaging (MRI), and preferential distribution in 4T1 breast cancer tumors. MRI-enabled contrast of these nanoprobes is sufficient to timely identify small metastases in the lungs, which is critically important for preventing cancer spreading and recurrence. Further, exciting tumor-resident QDs with NIR light produces both fluorescence for tumor visualization through radiative recombination pathways as well as heat and radicals through nonradiative recombination pathways that kill cancer cells and initiate an anticancer immune response, which eliminates tumor and prevents tumor regrowth in 80% of mice.
Collapse
Affiliation(s)
- Yingying Li
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Peisen Zhang
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Wen Tang
- South China Advanced Institute for Soft Matter Science and Technology, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Kevin J McHugh
- Department of Bioengineering, Rice University, 6100 Main Street, MS-142, Houston, Texas 77005, United States
| | - Stephen V Kershaw
- Department of Materials Science and Engineering & Centre for Functional Photonics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 99077, Hong Kong SAR, China
| | - Mingxia Jiao
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaodan Huang
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Sergii Kalytchuk
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc 783 71, Czech Republic
| | - Collin F Perkinson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Saisai Yue
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuanyuan Qiao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lichong Zhu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lihong Jing
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Mingyuan Gao
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Buxing Han
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| |
Collapse
|
38
|
Abdellatif AAH, Younis MA, Alsharidah M, Al Rugaie O, Tawfeek HM. Biomedical Applications of Quantum Dots: Overview, Challenges, and Clinical Potential. Int J Nanomedicine 2022; 17:1951-1970. [PMID: 35530976 PMCID: PMC9076002 DOI: 10.2147/ijn.s357980] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/12/2022] [Indexed: 12/14/2022] Open
Abstract
Despite the massive advancements in the nanomedicines and their associated research, their translation into clinically-applicable products is still below promises. The latter fact necessitates an in-depth evaluation of the current nanomedicines from a clinical perspective to cope with the challenges hampering their clinical potential. Quantum dots (QDs) are semiconductors-based nanomaterials with numerous biomedical applications such as drug delivery, live imaging, and medical diagnosis, in addition to other applications beyond medicine such as in solar cells. Nevertheless, the power of QDs is still underestimated in clinics. In the current article, we review the status of QDs in literature, their preparation, characterization, and biomedical applications. In addition, the market status and the ongoing clinical trials recruiting QDs are highlighted, with a special focus on the challenges limiting the clinical translation of QDs. Moreover, QDs are technically compared to other commercially-available substitutes. Eventually, we inspire the technical aspects that should be considered to improve the clinical fate of QDs.
Collapse
Affiliation(s)
- Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, 51452, Saudi Arabia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| | - Mahmoud A Younis
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Mansour Alsharidah
- Department of Physiology, College of Medicine, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Osamah Al Rugaie
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unaizah, Al Qassim, 51911, Saudi Arabia
| | - Hesham M Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
39
|
Yang J, Yang J, Gong X, Zheng Y, Yi S, Cheng Y, Li Y, Liu B, Xie X, Yi C, Jiang L. Recent Progress in Microneedles-Mediated Diagnosis, Therapy, and Theranostic Systems. Adv Healthc Mater 2022; 11:e2102547. [PMID: 35034429 DOI: 10.1002/adhm.202102547] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/04/2022] [Indexed: 02/06/2023]
Abstract
Theranostic system combined diagnostic and therapeutic modalities is critical for the real-time monitoring of disease-related biomarkers and personalized therapy. Microneedles, as a multifunctional platform, are promising for transdermal diagnostics and drug delivery. They have shown attractive properties including painless skin penetration, easy self-administration, prominent therapeutic effects, and good biosafety. Herein, an overview of the microneedles-based diagnosis, therapies, and theranostic systems is given. Four microneedles-based detection methods are concluded based on the sensing mechanism: i) electrochemistry, ii) fluorometric, iii) colorimetric, and iv) Raman methods. Additionally, robust microneedles are suitable for implantable drug delivery. Microneedles-assisted transdermal drug delivery can be primarily classified as passive, active, and responsive drug release, based on the release mechanisms. Microneedles-assisted oral and implantable drug delivery mechanisms are also presented in this review. Furthermore, the key frontier developments in microneedles-mediated theranostic systems as the major selling points are emphasized in this review. These systems are classified into open-loop and closed-loop theranostic systems based on the indirectness and directness of feedback between the transdermal diagnosis and therapy, respectively. Finally, conclusions and future perspectives for next-generation microneedles-mediated theranostic systems are also discussed. Taken together, microneedle-based systems are promising as the new avenue for diagnosis, therapy, and disease-specific closed-loop theranostic applications.
Collapse
Affiliation(s)
- Jian Yang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Jingbo Yang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Xia Gong
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Ying Zheng
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Shengzhu Yi
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Yanxiang Cheng
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Yanjun Li
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Bin Liu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies School of Electronics and Information Technology Sun Yat‐Sen University Guangzhou 510006 P. R. China
| | - Changqing Yi
- Research Institute of Sun Yat‐Sen University in Shenzhen Shenzhen 518057 P. R. China
| | - Lelun Jiang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| |
Collapse
|
40
|
Bardosh K, de Figueiredo A, Gur-Arie R, Jamrozik E, Doidge J, Lemmens T, Keshavjee S, Graham JE, Baral S. The unintended consequences of COVID-19 vaccine policy: why mandates, passports and restrictions may cause more harm than good. BMJ Glob Health 2022; 7:e008684. [PMID: 35618306 PMCID: PMC9136690 DOI: 10.1136/bmjgh-2022-008684] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/05/2022] [Indexed: 11/04/2022] Open
Abstract
Vaccination policies have shifted dramatically during COVID-19 with the rapid emergence of population-wide vaccine mandates, domestic vaccine passports and differential restrictions based on vaccination status. While these policies have prompted ethical, scientific, practical, legal and political debate, there has been limited evaluation of their potential unintended consequences. Here, we outline a comprehensive set of hypotheses for why these policies may ultimately be counterproductive and harmful. Our framework considers four domains: (1) behavioural psychology, (2) politics and law, (3) socioeconomics, and (4) the integrity of science and public health. While current vaccines appear to have had a significant impact on decreasing COVID-19-related morbidity and mortality burdens, we argue that current mandatory vaccine policies are scientifically questionable and are likely to cause more societal harm than good. Restricting people's access to work, education, public transport and social life based on COVID-19 vaccination status impinges on human rights, promotes stigma and social polarisation, and adversely affects health and well-being. Current policies may lead to a widening of health and economic inequalities, detrimental long-term impacts on trust in government and scientific institutions, and reduce the uptake of future public health measures, including COVID-19 vaccines as well as routine immunisations. Mandating vaccination is one of the most powerful interventions in public health and should be used sparingly and carefully to uphold ethical norms and trust in institutions. We argue that current COVID-19 vaccine policies should be re-evaluated in light of the negative consequences that we outline. Leveraging empowering strategies based on trust and public consultation, and improving healthcare services and infrastructure, represent a more sustainable approach to optimising COVID-19 vaccination programmes and, more broadly, the health and well-being of the public.
Collapse
Affiliation(s)
- Kevin Bardosh
- School of Public Health, University of Washington, Seattle, Washington, USA
- Division of Infection Medicine, University of Edinburgh, Edinburgh, UK
| | - Alex de Figueiredo
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Rachel Gur-Arie
- Berman Institute of Bioethics, Johns Hopkins University, Baltimore, Maryland, USA
- Oxford-Johns Hopkins Global Infectious Disease Collaborative (GLIDE), University of Oxford, Oxford, UK
| | - Euzebiusz Jamrozik
- Oxford-Johns Hopkins Global Infectious Disease Collaborative (GLIDE), University of Oxford, Oxford, UK
- Ethox and the Wellcome Centre for Ethics and Humanities, University of Oxford, Oxford, UK
| | - James Doidge
- Intensive Care National Audit and Research Centre (ICNARC), London, UK
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Trudo Lemmens
- Faculty of Law and Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Salmaan Keshavjee
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Janice E Graham
- Department of Pediatrics (Infectious Diseases), Dalhousie University, Halifax, Nova Scotia, Canada
| | - Stefan Baral
- Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
41
|
Kabbani S, Karkoulian S, Balozian P, Rizk S. The Impact of Ethical Leadership, Commitment and Healthy/Safe Workplace Practices toward Employee Attitude to COVID-19 Vaccination/Implantation in the Banking Sector in Lebanon. Vaccines (Basel) 2022; 10:vaccines10030416. [PMID: 35335048 PMCID: PMC8950457 DOI: 10.3390/vaccines10030416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
This study investigates the effect of ethical leadership, commitment and healthy/safe workplace practices toward employee COVID-19 vaccination. In addition, this study examines the perception of employees from technological intrusive vaccination of chips or quantum dot. In our research, we adopted the social exchange theory as its theoretical framework. Moreover, an online questionnaire was distributed to employees working in the banking sector in Lebanon during the COVID-19 pandemic. In total, 244 bankers completed the survey. Data was analyzed by SPSS statistical software version 26 and SmartPLS to test the relationship between the variables. The results generated showed a positive relationship between ethical leadership, commitment, and safety influencing employees to accept vaccination but not necessarily technological intrusive vaccination (chip or quantum dot). We suggest that organizations should influence leaders to enhance proper behaviors and attitudes to create a healthy, safe, and ethical culture that consequently increases employees’ commitment. Finally, this study recommends future researchers to investigate the topic of COVID-19 vaccination and test other employees’ perception from different industries and countries.
Collapse
Affiliation(s)
- Samira Kabbani
- Adnan Kassar School of Business, Lebanese American University, Beirut 1102-2801, Lebanon; (S.K.); (S.K.); (P.B.)
| | - Silva Karkoulian
- Adnan Kassar School of Business, Lebanese American University, Beirut 1102-2801, Lebanon; (S.K.); (S.K.); (P.B.)
| | - Puzant Balozian
- Adnan Kassar School of Business, Lebanese American University, Beirut 1102-2801, Lebanon; (S.K.); (S.K.); (P.B.)
| | - Sandra Rizk
- Department of Natural Sciences, Lebanese American University, Beirut 1102-2801, Lebanon
- Correspondence:
| |
Collapse
|
42
|
Babity S, Couture F, Campos EVR, Hedtrich S, Hagen R, Fehr D, Bonmarin M, Brambilla D. A Naked Eye-Invisible Ratiometric Fluorescent Microneedle Tattoo for Real-Time Monitoring of Inflammatory Skin Conditions. Adv Healthc Mater 2022; 11:e2102070. [PMID: 34921529 DOI: 10.1002/adhm.202102070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/13/2021] [Indexed: 01/05/2023]
Abstract
The field of portable healthcare monitoring devices has an urgent need for the development of real-time, noninvasive sensing and detection methods for various physiological analytes. Currently, transdermal sensing techniques are severely limited in scope (i.e., measurement of heart rate or sweat composition), or else tend to be invasive, often needing to be performed in a clinical setting. This study proposes a minimally invasive alternative strategy, consisting of using dissolving polymeric microneedles to deliver naked eye-invisible functional fluorescent ratiometric microneedle tattoos directly to the skin for real-time monitoring and quantification of physiological and pathological parameters. Reactive oxygen species are overexpressed in the skin in association with various pathological conditions. Here, one demonstrates for the first time the microneedle-based delivery to the skin of active fluorescent sensors in the form of an invisible, ratiometric microneedle tattoo capable of sensing reactive oxygen species in a reconstructed human-based skin disease model, as well as an in vivo model of UV-induced dermal inflammation. One also elaborates a universal ratiometric quantification concept coupled with a custom-built, multiwavelength portable fluorescence detection system. Fully realized, this approach presents an opportunity for the minimally invasive monitoring of a broad range of physiological parameters through the skin.
Collapse
Affiliation(s)
- Samuel Babity
- Faculté de Pharmacie Université de Montréal C.P. 6128, Succursale Centre‐ville, Montréal Québec H3C 3J7 Canada
| | - Frédéric Couture
- TransBIOTech 201 Monseigneur‐Bourget Lévis Québec G6V 6Z9 Canada
- Nutraceuticals and Functional Foods Institute (INAF) Université Laval, Québec Québec G1K 7P4 Canada
- Centre intégré de santé et de services sociaux de Chaudière‐Appalaches Lévis Québec G6E 3E2 Canada
| | - Estefânia V. R. Campos
- Faculty of Pharmaceutical Sciences University of British Columbia 2405 Wesbrook Mall Vancouver British Columbia V6T 1Z3 Canada
- Human and Natural Sciences Center Federal University of ABC Santo Andre SP 09210‐580 Brazil
| | - Sarah Hedtrich
- Faculty of Pharmaceutical Sciences University of British Columbia 2405 Wesbrook Mall Vancouver British Columbia V6T 1Z3 Canada
| | - Raphael Hagen
- School of Engineering Zurich University of Applied Sciences Technikumstrasse 9 Winterthur 8400 Switzerland
| | - Daniel Fehr
- School of Engineering Zurich University of Applied Sciences Technikumstrasse 9 Winterthur 8400 Switzerland
| | - Mathias Bonmarin
- School of Engineering Zurich University of Applied Sciences Technikumstrasse 9 Winterthur 8400 Switzerland
| | - Davide Brambilla
- Faculté de Pharmacie Université de Montréal C.P. 6128, Succursale Centre‐ville, Montréal Québec H3C 3J7 Canada
| |
Collapse
|
43
|
Trends in Drug- and Vaccine-based Dissolvable Microneedle Materials and Methods of Fabrication. Eur J Pharm Biopharm 2022; 173:54-72. [DOI: 10.1016/j.ejpb.2022.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/24/2022] [Accepted: 02/19/2022] [Indexed: 12/18/2022]
|
44
|
Lopez-Cantu DO, Wang X, Carrasco-Magallanes H, Afewerki S, Zhang X, Bonventre JV, Ruiz-Esparza GU. From Bench to the Clinic: The Path to Translation of Nanotechnology-Enabled mRNA SARS-CoV-2 Vaccines. NANO-MICRO LETTERS 2022; 14:41. [PMID: 34981278 PMCID: PMC8722410 DOI: 10.1007/s40820-021-00771-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/12/2021] [Indexed: 05/02/2023]
Abstract
During the last decades, the use of nanotechnology in medicine has effectively been translated to the design of drug delivery systems, nanostructured tissues, diagnostic platforms, and novel nanomaterials against several human diseases and infectious pathogens. Nanotechnology-enabled vaccines have been positioned as solutions to mitigate the pandemic outbreak caused by the novel pathogen severe acute respiratory syndrome coronavirus 2. To fast-track the development of vaccines, unprecedented industrial and academic collaborations emerged around the world, resulting in the clinical translation of effective vaccines in less than one year. In this article, we provide an overview of the path to translation from the bench to the clinic of nanotechnology-enabled messenger ribonucleic acid vaccines and examine in detail the types of delivery systems used, their mechanisms of action, obtained results during each phase of their clinical development and their regulatory approval process. We also analyze how nanotechnology is impacting global health and economy during the COVID-19 pandemic and beyond.
Collapse
Affiliation(s)
- Diana O Lopez-Cantu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Division of Health Sciences and Technology, Harvard University - Massachusetts Institute of Technology, Boston, MA, 02115, USA
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, NL, Mexico
| | - Xichi Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Division of Health Sciences and Technology, Harvard University - Massachusetts Institute of Technology, Boston, MA, 02115, USA
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Hector Carrasco-Magallanes
- Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Tecnologico de Monterrey, School of Medicine and Health Sciences, 64849, Monterrey, NL, Mexico
| | - Samson Afewerki
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Division of Health Sciences and Technology, Harvard University - Massachusetts Institute of Technology, Boston, MA, 02115, USA
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Joseph V Bonventre
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Division of Health Sciences and Technology, Harvard University - Massachusetts Institute of Technology, Boston, MA, 02115, USA.
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Guillermo U Ruiz-Esparza
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Division of Health Sciences and Technology, Harvard University - Massachusetts Institute of Technology, Boston, MA, 02115, USA.
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
45
|
Zhang P, Jing L. Nanoprobes for Visualization of Cancer Pathology in Vivo※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
Roth GA, Picece VCTM, Ou BS, Luo W, Pulendran B, Appel EA. Designing spatial and temporal control of vaccine responses. NATURE REVIEWS. MATERIALS 2022; 7:174-195. [PMID: 34603749 PMCID: PMC8477997 DOI: 10.1038/s41578-021-00372-2] [Citation(s) in RCA: 137] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/08/2021] [Indexed: 05/02/2023]
Abstract
Vaccines are the key technology to combat existing and emerging infectious diseases. However, increasing the potency, quality and durability of the vaccine response remains a challenge. As our knowledge of the immune system deepens, it becomes clear that vaccine components must be in the right place at the right time to orchestrate a potent and durable response. Material platforms, such as nanoparticles, hydrogels and microneedles, can be engineered to spatially and temporally control the interactions of vaccine components with immune cells. Materials-based vaccination strategies can augment the immune response by improving innate immune cell activation, creating local inflammatory niches, targeting lymph node delivery and controlling the time frame of vaccine delivery, with the goal of inducing enhanced memory immunity to protect against future infections. In this Review, we highlight the biological mechanisms underlying strong humoral and cell-mediated immune responses and explore materials design strategies to manipulate and control these mechanisms.
Collapse
Affiliation(s)
- Gillie A. Roth
- Department of Bioengineering, Stanford University, Stanford, CA USA
| | - Vittoria C. T. M. Picece
- Department of Materials Science & Engineering, Stanford University, Stanford, CA USA
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Ben S. Ou
- Department of Bioengineering, Stanford University, Stanford, CA USA
| | - Wei Luo
- Institute for Immunity, Transplantation & Infection, Stanford University School of Medicine, Stanford, CA USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation & Infection, Stanford University School of Medicine, Stanford, CA USA
- ChEM-H Institute, Stanford University, Stanford, CA USA
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA USA
- Program in Immunology, Stanford University School of Medicine, Stanford, CA USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA USA
| | - Eric A. Appel
- Department of Bioengineering, Stanford University, Stanford, CA USA
- Department of Materials Science & Engineering, Stanford University, Stanford, CA USA
- ChEM-H Institute, Stanford University, Stanford, CA USA
- Department of Paediatrics — Endocrinology, Stanford University School of Medicine, Stanford, CA USA
| |
Collapse
|
47
|
Liu X, Li R, Yuan X, Yang L, Luo J, Jiang X, Gou Z, Li B, Jiang X, Gou M. Fast Customization of Microneedle Arrays by Static Optical Projection Lithography. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60522-60530. [PMID: 34889089 DOI: 10.1021/acsami.1c21489] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Customized microneedle arrays (CMNAs) hold great promise for precise transdermal delivery in a minimally invasive manner. Currently, the fast customization of microneedle arrays remains a great challenge. Here, we show a static optical projection lithography (SOPL) technology for fast 3D printing CMNAs. In this technology, the digital light is statically projected to induce the spatial polymerization of monomer solutions, and therefore microneedle formation can be precisely controlled by the intensity distribution of the projected light. The obtained CMNAs do not have the stair-like surface and layer-by-layer structure that are associated with the common 3D-printing technologies. This method enables fast fabrication of CMNAs with designed shape, size, and distribution in seconds without mechanical motion system. Up-conversion nanoparticles (UCNPs) were delivered into skin by the CMNAs, to form a personalized dot matrix for in vivo information storage. Under the irradiation of near-infrared (NIR) light, the UCNPs in skin displayed a visible dot matrix, presenting information encoded in the structure of CMNAs. This work demonstrates a SOPL technology for rapidly customizing high-quality microneedle arrays and a CMNA-mediated in vivo information storage strategy.
Collapse
Affiliation(s)
- Xuan Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Rong Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Xin Yuan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Ling Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Jing Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Xuebing Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Zhiyuan Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Bo Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
48
|
Microneedle-Mediated Vaccination: Innovation and Translation. Adv Drug Deliv Rev 2021; 179:113919. [PMID: 34375682 DOI: 10.1016/j.addr.2021.113919] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022]
Abstract
Vaccine administration by subcutaneous or intramuscular injection is the most commonly prescribed route for inoculation, however, it is often associated with some deficiencies such as low compliance, high professionalism, and risk of infection. Therefore, the application of microneedles for vaccine delivery has gained widespread interests in the past few years due to its high compliance, minimal invasiveness, and convenience. This review focuses on recent advances in the development and application of microneedles for vaccination based on different delivery strategies, and introduces the current status of microneedle-mediated vaccination in clinical translation. The prospects for its application including opportunities and challenges are further discussed.
Collapse
|
49
|
Zhang P, Meng J, Li Y, Yang C, Hou Y, Tang W, McHugh KJ, Jing L. Nanotechnology-enhanced immunotherapy for metastatic cancer. Innovation (N Y) 2021; 2:100174. [PMID: 34766099 PMCID: PMC8571799 DOI: 10.1016/j.xinn.2021.100174] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
A vast majority of cancer deaths occur as a result of metastasis. Unfortunately, effective treatments for metastases are currently lacking due to the difficulty of selectively targeting these small, delocalized tumors distributed across a variety of organs. However, nanotechnology holds tremendous promise for improving immunotherapeutic outcomes in patients with metastatic cancer. In contrast to conventional cancer immunotherapies, rationally designed nanomaterials can trigger specific tumoricidal effects, thereby improving immune cell access to major sites of metastasis such as bone, lungs, and lymph nodes, optimizing antigen presentation, and inducing a persistent immune response. This paper reviews the cutting-edge trends in nano-immunoengineering for metastatic cancers with an emphasis on different nano-immunotherapeutic strategies. Specifically, it discusses directly reversing the immunological status of the primary tumor, harnessing the potential of peripheral immune cells, preventing the formation of a pre-metastatic niche, and inhibiting the tumor recurrence through postoperative immunotherapy. Finally, we describe the challenges facing the integration of nanoscale immunomodulators and provide a forward-looking perspective on the innovative nanotechnology-based tools that may ultimately prove effective at eradicating metastatic diseases.
Collapse
Affiliation(s)
- Peisen Zhang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Junli Meng
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Yingying Li
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Chen Yang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Yi Hou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wen Tang
- South China Advanced Institute for Soft Matter Science and Technology, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Kevin J McHugh
- Department of Bioengineering, Rice University, 6100 Main Street, MS-142, Houston, TX 77005, USA
| | - Lihong Jing
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| |
Collapse
|
50
|
Skripka A, Mendez-Gonzalez D, Marin R, Ximendes E, Del Rosal B, Jaque D, Rodríguez-Sevilla P. Near infrared bioimaging and biosensing with semiconductor and rare-earth nanoparticles: recent developments in multifunctional nanomaterials. NANOSCALE ADVANCES 2021; 3:6310-6329. [PMID: 36133487 PMCID: PMC9417871 DOI: 10.1039/d1na00502b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/03/2021] [Indexed: 05/17/2023]
Abstract
Research in novel materials has been extremely active over the past few decades, wherein a major area of interest has been nanoparticles with special optical properties. These structures can overcome some of the intrinsic limitations of contrast agents routinely used in medical practice, while offering additional functionalities. Materials that absorb or scatter near infrared light, to which biological tissues are partially transparent, have attracted significant attention and demonstrated their potential in preclinical research. In this review, we provide an at-a-glance overview of the most recent developments in near infrared nanoparticles that could have far-reaching applications in the life sciences. We focus on materials that offer additional functionalities besides diagnosis based on optical contrast: multiple imaging modalities (multimodal imaging), sensing of physical and chemical cues (multivariate diagnosis), or therapeutic activity (theranostics). Besides presenting relevant case studies for each class of optically active materials, we discuss their design and safety considerations, detailing the potential hurdles that may complicate their clinical translation. While multifunctional nanomaterials have shown promise in preclinical research, the field is still in its infancy; there is plenty of room to maximize its impact in preclinical studies as well as to deliver it to the clinics.
Collapse
Affiliation(s)
- Artiom Skripka
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid Madrid 28049 Spain
- The Molecular Foundry, Lawrence Berkeley National Laboratory Berkeley California 94720 USA
| | - Diego Mendez-Gonzalez
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid Madrid 28049 Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Ctra. Colmenar km. 9.100 Madrid 28034 Spain
| | - Riccardo Marin
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid Madrid 28049 Spain
| | - Erving Ximendes
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid Madrid 28049 Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Ctra. Colmenar km. 9.100 Madrid 28034 Spain
| | - Blanca Del Rosal
- ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University 124 La Trobe St Melbourne VIC 3000 Australia
| | - Daniel Jaque
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid Madrid 28049 Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Ctra. Colmenar km. 9.100 Madrid 28034 Spain
| | - Paloma Rodríguez-Sevilla
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid Madrid 28049 Spain
| |
Collapse
|