1
|
Cazuza RA, Zagrai SM, Grieco AR, Avery TD, Abell AD, Wey HY, Loggia ML, Grace PM. 18 kDa Translocator protein (TSPO) is upregulated in rat brain after peripheral nerve injury and downregulated by diroximel fumarate. Brain Behav Immun 2025; 123:11-27. [PMID: 39218234 PMCID: PMC11624078 DOI: 10.1016/j.bbi.2024.08.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/31/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
Neuroimmune signaling is a key process underlying neuropathic pain. Clinical studies have demonstrated that 18 kDa translocator protein (TSPO), a putative marker of neuroinflammation, is upregulated in discrete brain regions of patients with chronic pain. However, no preclinical studies have investigated TSPO dynamics in the brain in the context of neuropathic pain and in response to analgesic treatments. We used positron emission tomography-computed tomography (PET-CT) and [18F]-PBR06 radioligand to measure TSPO levels in the brain across time after chronic constriction injury (CCI) of the sciatic nerve in both male and female rats. Up to 10 weeks post-CCI, TSPO expression was increased in discrete brain regions, including medial prefrontal cortex, somatosensory cortex, insular cortex, anterior cingulate cortex, motor cortex, ventral tegmental area, amygdala, midbrain, pons, medulla, and nucleus accumbens. TSPO was broadly upregulated across these regions at 4 weeks post CCI in males, and 10 weeks in females, though there were regional differences between the sexes. Using immunohistochemistry, we confirmed TSPO expression in these regions. We further demonstrated that TSPO was upregulated principally in microglia in the nucleus accumbens core, and astrocytes and endothelial cells in the nucleus accumbens shell. Finally, we tested whether TSPO upregulation was sensitive to diroximel fumarate, a drug that induces endogenous antioxidants via nuclear factor E2-related factor 2 (Nrf2). Diroximel fumarate alleviated neuropathic pain and reduced TSPO upregulation. Our findings indicate that TSPO is upregulated over the course of neuropathic pain development and is resolved by an antinociceptive intervention in animals with peripheral nerve injury.
Collapse
Affiliation(s)
- Rafael A Cazuza
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, USA
| | - Sever M Zagrai
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, USA
| | - Anamaria R Grieco
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, USA
| | - Thomas D Avery
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute for Photonics and Advanced Sensing (IPAS), Department of Chemistry, University of Adelaide, Adelaide, Australia
| | - Andrew D Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute for Photonics and Advanced Sensing (IPAS), Department of Chemistry, University of Adelaide, Adelaide, Australia
| | - Hsiao-Ying Wey
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Marco L Loggia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Peter M Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, USA.
| |
Collapse
|
2
|
Lin Z, Luo X, Wickman JR, Reddy D, DaCunza JT, Pande R, Tian Y, Kasimoglu EE, Triana V, Lee J, Furdui CM, Pink D, Sacan A, Ajit SK. Inflammatory pain resolution by mouse serum-derived small extracellular vesicles. Brain Behav Immun 2025; 123:422-441. [PMID: 39349284 DOI: 10.1016/j.bbi.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024] Open
Abstract
Current treatments for chronic pain have limited efficacy and significant side effects, warranting research on alternative strategies for pain management. One approach involves using small extracellular vesicles (sEVs), or exosomes, to transport beneficial biomolecular cargo to aid pain resolution. Exosomes are 30-150 nm sEVs that can be beneficial or harmful depending on their source and cargo composition. We report a comprehensive multi-modal analysis of different aspects of sEV characterization, miRNAs, and protein markers across sEV sources. To investigate the short- and long-term effects of mouse serum-derived sEVs in pain modulation, sEVs from naïve control or spared nerve injury (SNI) model male donor mice were injected intrathecally into naïve male recipient mice. These sEVs transiently increased basal mechanical thresholds, an effect mediated by opioid signaling as this outcome was blocked by naltrexone. Mass spectrometry of sEVs detected endogenous opioid peptide leu-enkephalin. sEVs from naïve female mice have higher levels of leu-enkephalin compared to male, matching the analgesic onset of leu-enkephalin in male recipient mice. In investigating the long-term effect of sEVs, we observed that a single prophylactic intrathecal injection of sEVs two weeks prior to induction of the pain model in recipient mice accelerated recovery from inflammatory pain after complete Freund's adjuvant (CFA) injection. Our exploratory studies examining immune cell populations in spinal cord and dorsal root ganglion using ChipCytometry suggested alterations in immune cell populations 14 days post-CFA. Flow cytometry confirmed increases in CD206+ macrophages in the spinal cord in sEV-treated mice. Collectively, these studies demonstrate multiple mechanisms by which sEVs can attenuate pain.
Collapse
Affiliation(s)
- Zhucheng Lin
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Mail Stop 488, Room 8223, Philadelphia, PA 19102, USA
| | - Xuan Luo
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Mail Stop 488, Room 8223, Philadelphia, PA 19102, USA
| | - Jason R Wickman
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Mail Stop 488, Room 8223, Philadelphia, PA 19102, USA
| | - Deepa Reddy
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Mail Stop 488, Room 8223, Philadelphia, PA 19102, USA
| | - Jason T DaCunza
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Mail Stop 488, Room 8223, Philadelphia, PA 19102, USA
| | - Richa Pande
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Mail Stop 488, Room 8223, Philadelphia, PA 19102, USA
| | - Yuzhen Tian
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Mail Stop 488, Room 8223, Philadelphia, PA 19102, USA
| | - Ezgi E Kasimoglu
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Mail Stop 488, Room 8223, Philadelphia, PA 19102, USA
| | | | - Jingyun Lee
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Desmond Pink
- Nanostics Inc., Edmonton, Alberta T5J 4P6, Canada
| | - Ahmet Sacan
- School of Biomedical Engineering, Science & Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | - Seena K Ajit
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Mail Stop 488, Room 8223, Philadelphia, PA 19102, USA.
| |
Collapse
|
3
|
Inyang KE, Sim J, Clark KB, Geron M, Monahan K, Evans C, O'Connell P, Laumet S, Peng B, Ma J, Heijnen CJ, Dantzer R, Scherrer G, Kavelaars A, Bernard M, Aldhamen YA, Folger JK, Bavencoffe A, Laumet G. Upregulation of delta opioid receptor by meningeal interleukin-10 prevents relapsing pain. Brain Behav Immun 2025; 123:399-410. [PMID: 39349285 PMCID: PMC11624093 DOI: 10.1016/j.bbi.2024.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024] Open
Abstract
Chronic pain often includes periods of transient amelioration and even remission that alternate with severe relapsing pain. While most research on chronic pain has focused on pain development and maintenance, there is a critical unmet need to better understand the mechanisms that underlie pain remission and relapse. We found that interleukin (IL)-10, a pain resolving cytokine, is produced by resident macrophages in the spinal meninges during remission from pain and signaled to IL-10 receptor-expressing sensory neurons. Using unbiased RNA-sequencing, we identified that IL-10 upregulated expression and antinociceptive activity of δ-opioid receptor (δOR) in the dorsal root ganglion. Genetic or pharmacological inhibition of either IL-10 signaling or δOR triggered relapsing pain. Overall, our findings, from electrophysiology, genetic manipulation, flow cytometry, pharmacology, and behavioral approaches, indicate that remission of pain is not simply a return to the naïve state. Instead, remission is an adapted homeostatic state associated with lasting pain vulnerability resulting from persisting neuroimmune interactions within the nociceptive system. Broadly, this sheds light on the elusive mechanisms underlying recurrence a common aspect across various chronic pain conditions.
Collapse
Affiliation(s)
| | - Jaewon Sim
- Department of Physiology, Michigan State University, East Lansing, MI, USA; Cell and Molecular Biology Graduate Program, Michigan State University, East Lansing, MI, USA
| | - Kimberly B Clark
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matan Geron
- Department of Cell Biology and Physiology, Department of Pharmacology, UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Karli Monahan
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Christine Evans
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Patrick O'Connell
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Sophie Laumet
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Bo Peng
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiacheng Ma
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cobi J Heijnen
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert Dantzer
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, Department of Pharmacology, UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA; New York Stem Cell Foundation - Robertson Investigator, University of North Carolina, Chapel Hill, NC, USA
| | - Annemieke Kavelaars
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew Bernard
- Flow Cytometry Core, Michigan State University, East Lansing, MI, USA
| | - Yasser A Aldhamen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Joseph K Folger
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Alexis Bavencoffe
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, MI, USA; Cell and Molecular Biology Graduate Program, Michigan State University, East Lansing, MI, USA; Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
4
|
Hartmannsberger B, Ben-Kraiem A, Kramer S, Guidolin C, Kazerani I, Doppler K, Thomas D, Gurke R, Sisignano M, Kalelkar PP, García AJ, Monje PV, Sammeth M, Nusrat A, Brack A, Krug SM, Sommer C, Rittner HL. TAM receptors mediate the Fpr2-driven pain resolution and fibrinolysis after nerve injury. Acta Neuropathol 2024; 149:1. [PMID: 39680199 DOI: 10.1007/s00401-024-02840-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
Nerve injury causes neuropathic pain and multilevel nerve barrier disruption. Nerve barriers consist of perineurial, endothelial and myelin barriers. So far, it is unclear whether resealing nerve barriers fosters pain resolution and recovery. To this end, we analysed the nerve barrier property portfolio, pain behaviour battery and lipidomics for precursors of specialized pro-resolving meditators (SPMs) and their receptors in chronic constriction injury of the rat sciatic nerve to identify targets for pain resolution by resealing the selected nerve barriers. Of the three nerve barriers-perineurium, capillaries and myelin-only capillary tightness specifically against larger molecules, such as fibrinogen, recuperated with pain resolution. Fibrinogen immunoreactivity was elevated in rats not only at the time of neuropathic pain but also in nerve biopsies from patients with (but not without) painful polyneuropathy, indicating that sealing of the vascular barrier might be a novel approach in pain treatment. Hydroxyeicosatetraenoic acid (15R-HETE), a precursor of aspirin-triggered lipoxin A4, was specifically upregulated at the beginning of pain resolution. Repeated local application of resolvin D1-laden nanoparticles or Fpr2 agonists sex-independently resulted in accelerated pain resolution and fibrinogen removal. Clearing macrophages (Cd206) were boosted and fibrinolytic pathways (Plat) were induced, while inflammation (Tnfα) and inflammasomes (Nlrp3) were unaffected by this treatment. Blocking TAM receptors (Tyro3, Axl and Mer) and tyrosine kinase receptors linking haemostasis and inflammation completely inhibited all the effects. In summary, nanoparticles can be used as transporters for fleeting lipids, such as SPMs, and therefore expand the array of possible therapeutic agents. Thus, the Fpr2-Cd206-TAM receptor axis may be a suitable target for strengthening the capillary barrier, removing endoneurial fibrinogen and boosting pain resolution in patients with chronic neuropathic pain.
Collapse
Affiliation(s)
- Beate Hartmannsberger
- Centre for Interdisciplinary Pain Medicine, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Adel Ben-Kraiem
- Centre for Interdisciplinary Pain Medicine, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research, Diet-Induced Metabolic Alterations Group, Leipzig, Germany
| | - Sofia Kramer
- Centre for Interdisciplinary Pain Medicine, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Carolina Guidolin
- Centre for Interdisciplinary Pain Medicine, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Ida Kazerani
- Centre for Interdisciplinary Pain Medicine, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Kathrin Doppler
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Dominique Thomas
- Goethe University, Frankfurt, Faculty of Medicine, Institute of Clinical Pharmacology, Frankfurt Am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence of Immune Mediate Diseases CIMD, Frankfurt Am Main, Germany
| | - Robert Gurke
- Goethe University, Frankfurt, Faculty of Medicine, Institute of Clinical Pharmacology, Frankfurt Am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence of Immune Mediate Diseases CIMD, Frankfurt Am Main, Germany
| | - Marco Sisignano
- Goethe University, Frankfurt, Faculty of Medicine, Institute of Clinical Pharmacology, Frankfurt Am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence of Immune Mediate Diseases CIMD, Frankfurt Am Main, Germany
| | - Pranav P Kalelkar
- George W. Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, USA
| | - Andrés J García
- George W. Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, USA
| | - Paula V Monje
- Department of Neurosurgery, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Michael Sammeth
- Department of Applied Sciences and Health, Coburg University of Applied Sciences and Art, Coburg, Germany
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Asma Nusrat
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Alexander Brack
- Centre for Interdisciplinary Pain Medicine, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Susanne M Krug
- Charité-Universitätsmedizin Berlin, Clinical Physiology/Nutritional Medicine, Berlin, Germany
| | - Claudia Sommer
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Heike L Rittner
- Centre for Interdisciplinary Pain Medicine, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
5
|
Zhang Z, Zhao W, Lv C, Wu Z, Liu W, Chang X, Yu Y, Xiao Z, He Y, Zhang H. Unraveling impact and potential mechanisms of baseline pain on efficacy of immunotherapy in lung cancer patients: a retrospective and bioinformatic analysis. Front Immunol 2024; 15:1456150. [PMID: 39654896 PMCID: PMC11625792 DOI: 10.3389/fimmu.2024.1456150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/30/2024] [Indexed: 12/12/2024] Open
Abstract
Objective Pain is a prevalent discomfort symptom associated with cancer, yet the correlations and potential mechanisms between pain and the efficacy of cancer immunotherapy remain uncertain. Methods Non-small cell lung cancer (NSCLC) patients who received immune checkpoint inhibitors (ICIs) in the inpatient department of Guangdong Provincial Hospital of Chinese Medicine from January 1, 2018, to December 31, 2021, were retrospectively enrolled. Through cox regression analysis, prognostic factors and independent prognostic factors affecting the efficacy of ICIs were identified, and a nomogram model was constructed. Hub cancer-related pain genes (CRPGs) were identified through bioinformatic analysis. Finally, the expression levels of hub CRPGs were detected using an enzyme-linked immunosorbent assay (ELISA). Results Before PSM, a total of 222 patients were enrolled in this study. Univariate and multivariate cox analysis indicated that bone metastasis and NRS scores were independent prognostic factors for the efficacy of ICIs. After PSM, a total of 94 people were enrolled in this study. Univariate cox analysis and multivariate cox analysis indicated that age, platelets, Dnlr, liver metastasis, bone metastasis, and NRS scores were independent prognostic factors for the efficacy of ICIs. A nomogram was constructed based on 6 independent prognostic factors with AUC values of 0.80 for 1-year, 0.73 for 2-year, and 0.80 for 3-year survival. ELISA assay results indicated that the level of CXCL12 significantly decreased compared to baseline after pain was relieved. Conclusion Baseline pain is an independent prognostic factor affecting the efficacy of ICIs in lung cancer, potentially through CXCL12-mediated inflammation promotion and immunosuppression.
Collapse
Affiliation(s)
- Zexin Zhang
- The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjie Zhao
- The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chang Lv
- The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zexia Wu
- The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenhao Liu
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuesong Chang
- Deparment of Oncology, Guangdong Province Hospital of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaya Yu
- Deparment of Oncology, Guangdong Province Hospital of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhenzhen Xiao
- Deparment of Oncology, Guangdong Province Hospital of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yihan He
- Deparment of Oncology, Guangdong Province Hospital of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haibo Zhang
- Deparment of Oncology, Guangdong Province Hospital of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
6
|
Chidambaran V, Duan Q, Pilipenko V, Glynn SM, Sproles A, Martin LJ, Lacagnina MJ, King CD, Ding L. The role of cytokines in acute and chronic postsurgical pain after major musculoskeletal surgeries in a quaternary pediatric center. Brain Behav Immun 2024; 122:596-603. [PMID: 39222726 PMCID: PMC11437349 DOI: 10.1016/j.bbi.2024.08.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/17/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
STUDY OBJECTIVE To determine if baseline cytokines/chemokines and their changes over postoperative days 0-2 (POD0-2) predict acute and chronic postsurgical pain (CPSP) after major surgery. DESIGN Prospective, observational, longitudinal nested study. SETTING University-affiliated quaternary children's hospital. PATIENTS Subjects (≥8 years old) with idiopathic scoliosis undergoing spine fusion or pectus excavatum undergoing Nuss procedure. MEASUREMENTS Demographics, surgical, psychosocial measures, pain scores, and opioid use over POD0-2 were collected. Cytokine concentrations were analyzed in serial blood samples collected before and up to two weeks after surgery, using Luminex bead arrays. After data preparation, relationships between pre- and post-surgical cytokine concentrations with acute (% time in moderate-severe pain over POD0-2) and chronic (pain score > 3/10 beyond 3 months post-surgery) post-surgical pain were analyzed using univariable and multivariable regression analyses with adjustment for covariates and mixed effects models were used to associate longitudinal cytokine concentrations with pain outcomes. MAIN RESULTS Analyses included 3,164 repeated measures of 16 cytokines/chemokines from 112 subjects (median age 15.3, IQR 13.5-17.0, 54.5 % female, 59.8 % pectus). Acute postsurgical pain was associated with higher baseline concentrations of GM-CSF (β = 0.95, SE 0.31; p = 0.003), IL-1β (β = 0.84, SE 0.36; p = 0.02), IL-2 (β = 0.78, SE 0.34; p = 0.03), and IL-12 p70 (β = 0.88, SE 0.40; p = 0.03) and longitudinal postoperative elevations in GM-CSF (β = 1.38, SE 0.57; p = 0.03), IFNγ (β = 1.36, SE 0.6; p = 0.03), IL-1β (β = 1.25, SE 0.59; p = 0.03), IL-7 (β = 1.65, SE 0.7; p = 0.02), and IL-12 p70 (β = 1.17, SE 0.58; p = 0.04). In contrast, CPSP was associated with lower baseline concentration of IL-8 (β = -0.39, SE 0.17; p = 0.02), and the risk of developing CPSP was elevated in patients with lower longitudinal postoperative concentrations of IL-6 (β = -0.57, SE 0.26; p = 0.03), IL-8 (β = -0.68, SE 0.24; p = 0.006), and IL-13 (β = -0.48, SE 0.22; p = 0.03). Covariates female (vs. male) sex and surgery type (pectus surgery vs. spine) were associated with higher odds for CPSP in baseline adjusted cytokine-CPSP association models for IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, TNFα, and IL-8, IL-10, respectively. CONCLUSION We identified pro-inflammatory cytokine profiles associated with higher risk of acute postoperative pain. Interestingly, pleiotropic cytokine IL-6, chemokine IL-8 (which promotes neutrophil infiltration and monocyte differentiation), and monocyte-released anti-inflammatory cytokine IL-13, were associated with lower CPSP risk. Our results suggest heterogenous outcomes of cytokine/chemokine signaling that can both promote and protect against post-surgical pain. These may serve as predictive and prognostic biomarkers of pain outcomes following surgery.
Collapse
Affiliation(s)
- Vidya Chidambaran
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| | - Qing Duan
- Division of Biostatistics and Epidemiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Valentina Pilipenko
- Division of Biostatistics and Epidemiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Susan M Glynn
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| | - Alyssa Sproles
- Division of Rheumatology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Lisa J Martin
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Michael J Lacagnina
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| | - Christopher D King
- Division of Behavioral Medicine and Clinical Psychology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Lili Ding
- Division of Biostatistics and Epidemiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
7
|
Lacagnina MJ, Willcox KF, Boukelmoune N, Bavencoffe A, Sankaranarayanan I, Barratt DT, Zuberi YA, Dayani D, Chavez MV, Lu JT, Farinotti AB, Shiers S, Barry AM, Mwirigi JM, Tavares-Ferreira D, Funk GA, Cervantes AM, Svensson CI, Walters ET, Hutchinson MR, Heijnen CJ, Price TJ, Fiore NT, Grace PM. B cells drive neuropathic pain-related behaviors in mice through IgG-Fc gamma receptor signaling. Sci Transl Med 2024; 16:eadj1277. [PMID: 39321269 PMCID: PMC11479571 DOI: 10.1126/scitranslmed.adj1277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 03/06/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
Neuroimmune interactions are essential for the development of neuropathic pain, yet the contributions of distinct immune cell populations have not been fully unraveled. Here, we demonstrate the critical role of B cells in promoting mechanical hypersensitivity (allodynia) after peripheral nerve injury in male and female mice. Depletion of B cells with a single injection of anti-CD20 monoclonal antibody at the time of injury prevented the development of allodynia. B cell-deficient (muMT) mice were similarly spared from allodynia. Nerve injury was associated with increased immunoglobulin G (IgG) accumulation in ipsilateral lumbar dorsal root ganglia (DRGs) and dorsal spinal cords. IgG was colocalized with sensory neurons and macrophages in DRGs and microglia in spinal cords. IgG also accumulated in DRG samples from human donors with chronic pain, colocalizing with a marker for macrophages and satellite glia. RNA sequencing revealed a B cell population in naive mouse and human DRGs. A B cell transcriptional signature was enriched in DRGs from human donors with neuropathic pain. Passive transfer of IgG from injured mice induced allodynia in injured muMT recipient mice. The pronociceptive effects of IgG are likely mediated through immune complexes interacting with Fc gamma receptors (FcγRs) expressed by sensory neurons, microglia, and macrophages, given that both mechanical allodynia and hyperexcitability of dissociated DRG neurons were abolished in nerve-injured FcγR-deficient mice. Consistently, the pronociceptive effects of IgG passive transfer were lost in FcγR-deficient mice. These data reveal that a B cell-IgG-FcγR axis is required for the development of neuropathic pain in mice.
Collapse
Affiliation(s)
- Michael J. Lacagnina
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kendal F. Willcox
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nabila Boukelmoune
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alexis Bavencoffe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77225, USA
| | - Ishwarya Sankaranarayanan
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Daniel T. Barratt
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
- Davies Livestock Research Centre, University of Adelaide, Roseworthy, SA 5371, Australia
| | - Younus A. Zuberi
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dorsa Dayani
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Melissa V. Chavez
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jonathan T. Lu
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Allison M. Barry
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Juliet M. Mwirigi
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Diana Tavares-Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | | | | | - Camilla I. Svensson
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Edgar T. Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77225, USA
| | - Mark R. Hutchinson
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
- Davies Livestock Research Centre, University of Adelaide, Roseworthy, SA 5371, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide, SA 5005, Australia
| | - Cobi J. Heijnen
- Department of Psychological Sciences, Rice University, Houston, TX 77005, USA
| | - Theodore J. Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Nathan T. Fiore
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Peter M. Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
8
|
McEachern EL, Zilic M, Sotocinal SG, Ghasemlou N, Mogil JS. The timing of the mouse hind paw incision does not influence postsurgical pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 16:100161. [PMID: 39188910 PMCID: PMC11345523 DOI: 10.1016/j.ynpai.2024.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024]
Abstract
Chronobiological approaches have emerged as tools to study pain and inflammation. Although time-of-day effects on the expression of pain after injury have been studied, it remains unaddressed whether the timing of the injury itself can alter subsequent pain behaviors. The aim of this study was to assess postsurgical pain behaviors in a mouse hind paw incision assay in a circadian-dependent manner. Incisions were made at one of four equally spaced time points over a 24-hour period, with evoked and spontaneous pain behaviors measured using the von Frey mechanical sensitivity test, Hargreaves' radiant heat paw-withdrawal test, and the Mouse Grimace Scale. Algesiometric testing was performed in C57BL/6 mice prior to and at multiple time points after incision injury, at the same time of day, until pain resolution. No statistically significant differences were observed between groups. This study adds to the literature on circadian rhythms and their influence on pain in the pursuit of more biologically informed pre- and postoperative care.
Collapse
Affiliation(s)
- Eleri L.F. McEachern
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Maria Zilic
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Susana G. Sotocinal
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Nader Ghasemlou
- Depts. of Biomedical & Molecular Sciences and Anesthesiology & Perioperative Medicine, Queen’s University, Kingston, ON, Canada
| | - Jeffrey S. Mogil
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Depts. of Psychology and Anesthesia, Faculties of Science, Medicine, and Dentistry, McGill University, Montreal, QC, Canada
| |
Collapse
|
9
|
Qin W, Gao J, Yan J, Han X, Lu W, Ma Z, Niu L, Jiao K. Microarray analysis of signalling interactions between inflammation and angiogenesis in subchondral bone in temporomandibular joint osteoarthritis. BIOMATERIALS TRANSLATIONAL 2024; 5:175-184. [PMID: 39351165 PMCID: PMC11438608 DOI: 10.12336/biomatertransl.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 10/04/2024]
Abstract
Inflammation and angiogenesis, the major pathological changes of osteoarthritis (OA), are closely associated with joint pain; however, pertinent signalling interactions within subchondral bone of osteoarthritic joints and potential contribution to the peripheral origin of OA pain remain to be elucidated. Herein we developed a unilateral anterior crossbite mouse model with osteoarthritic changes in the temporomandibular joint. Microarray-based transcriptome analysis, besides quantitative real-time polymerase chain reaction, was performed to identify differentially expressed genes (DEGs). Overall, 182 DEGs (fold change ≥ 2, P < 0.05) were identified between the control and unilateral anterior crossbite groups: 168 were upregulated and 14 were downregulated. On subjecting significant DEGs to enrichment analyses, inflammation and angiogenesis were identified as the most affected. Inflammation-related DEGs were mainly enriched in T cell activation and differentiation and in the mammalian target of rapamycin/nuclear factor-κB/tumour necrosis factor signalling. Furthermore, angiogenesis-related DEGs were mainly enriched in the Gene Ontology terms angiogenesis regulation and vasculature development and in the KEGG pathways of phosphoinositide 3-kinase-protein kinase B/vascular endothelial growth factor/hypoxia-inducible factor 1 signalling. Protein-protein interaction analysis revealed a close interaction between inflammation- and angiogenesis-related DEGs, suggesting that phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta (Pi3kcd), cathelicidin antimicrobial peptide (Camp), C-X-C motif chemokine receptor 4 (Cxcr4), and MYB proto-oncogene transcription factor (Myb) play a central role in their interaction. To summarize, our findings reveal that in subchondral bone of osteoarthritic joints, signal interaction is interrelated between inflammation and angiogenesis and associated with the peripheral origin of OA pain; moreover, our data highlight potential targets for the inhibition of OA pain.
Collapse
Affiliation(s)
- Wenpin Qin
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Jialu Gao
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Jianfei Yan
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Xiaoxiao Han
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Weicheng Lu
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Zhangyu Ma
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Lina Niu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Centre for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Kai Jiao
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
10
|
Qing L, Zhu Y, Yu C, Zhang Y, Ni J. Exploring the association between dietary Inflammatory Index and chronic pain in US adults using NHANES 1999-2004. Sci Rep 2024; 14:8726. [PMID: 38622145 PMCID: PMC11018766 DOI: 10.1038/s41598-024-58030-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
Chronic pain, a substantial public health issue, may be influenced by dietary patterns through systemic inflammation. This cross-sectional study explored the association between Dietary Inflammatory Index (DII) and chronic pain among 2581 American adults from NHANES data. The DII, ranging from - 4.98 to 4.69, reflects the inflammatory potential of the diet, with higher scores indicating greater pro-inflammatory capacity. Our findings showed no significant association between the continuous DII score and chronic pain prevalence. However, a nonlinear relationship emerged. When the DII was categorized, a significant association between higher DII scores (DII ≥ 2.5) and chronic pain prevalence was observed. The analysis uncovered a U-shaped pattern, with an inflection point at a DII score of - 0.9, indicating an association between both low and high levels of dietary inflammation are associated with higher pain prevalence. This nuanced interaction between dietary inflammation and chronic pain indicates the possibility of incorporating dietary modification into pain management strategies and underscores the need for further research into the long-term effects of diet on chronic pain.
Collapse
Affiliation(s)
- Lunxue Qing
- The First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Yingying Zhu
- The First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Changhe Yu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, 5 Haiyuncang, Dongcheng District, Beijing, 100700, China
| | - Yang Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, 5 Haiyuncang, Dongcheng District, Beijing, 100700, China.
| | - Jinxia Ni
- Dongzhimen Hospital, Beijing University of Chinese Medicine, 5 Haiyuncang, Dongcheng District, Beijing, 100700, China.
| |
Collapse
|
11
|
Chidambaran V, Duan Q, Pilipenko V, Glynn SM, Sproles A, Martin LJ, Lacagnina MJ, King CD, Ding L. The Role of Cytokines in Acute and Chronic Postsurgical Pain in Pediatric Patients after Major Musculoskeletal Surgeries. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.27.24304974. [PMID: 38585987 PMCID: PMC10996732 DOI: 10.1101/2024.03.27.24304974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Study Objective To determine if baseline cytokines and their changes over postoperative days 0-2 (POD0-2) predict acute and chronic postsurgical pain (CPSP) after major surgery. Design Prospective, observational, longitudinal nested study. Setting University-affiliated quaternary children's hospital. Patients Subjects (≥8 years old) with idiopathic scoliosis undergoing spine fusion or pectus excavatum undergoing Nuss procedure. Measurements Demographics, surgical, psychosocial measures, pain scores, and opioid use over POD0-2 were collected. Cytokine concentrations were analyzed in serial blood samples collected before and after (up to two weeks) surgery, using Luminex bead arrays. After data preparation, relationships between pre- and post-surgical cytokine concentrations with acute (% time in moderate-severe pain over POD0-2) and chronic (pain score>3/10 beyond 3 months post-surgery) pain were analyzed. After adjusting for covariates, univariate/multivariate regression analyses were conducted to associate baseline cytokine concentrations with postoperative pain, and mixed effects models were used to associate longitudinal cytokine concentrations with pain outcomes. Main Results Analyses included 3,164 measures of 16 cytokines from 112 subjects (median age 15.3, IQR 13.5-17.0, 54.5% female, 59.8% pectus). Acute postsurgical pain was associated with higher baseline concentrations of GM-CSF (β=0.95, SE 0.31; p=.003), IL-1β (β=0.84, SE 0.36; p=.02), IL-2 (β=0.78, SE 0.34; p=.03), and IL-12 p70 (β=0.88, SE 0.40; p=.03) and longitudinal postoperative elevations in GM-CSF (β=1.38, SE 0.57; p=.03), IFNγ (β=1.36, SE 0.6; p=.03), IL-1β (β=1.25, SE 0.59; p=.03), IL-7 (β=1.65, SE 0.7, p=.02), and IL-12 p70 (β=1.17, SE 0.58; p=.04). In contrast, CPSP was associated with lower baseline concentration of IL-8 (β= -0.39, SE 0.17; p=.02), and the risk of developing CPSP was elevated in patients with lower longitudinal postoperative concentrations of IL-6 (β= -0.57, SE 0.26; p=.03), IL-8 (β= -0.68, SE 0.24; p=.006), and IL-13 (β= -0.48, SE 0.22; p=.03). Furthermore, higher odds for CPSP were found for females (vs. males) for IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, and TNFα, and for pectus (vs. spine) surgery for IL-8 and IL-10. Conclusion We identified pro-inflammatory cytokines associated with increased acute postoperative pain and anti-inflammatory cytokines associated with lower CPSP risk, with potential to serve as predictive and prognostic biomarkers.
Collapse
Affiliation(s)
- Vidya Chidambaran
- Department of Anesthesiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Qing Duan
- Division of Biostatistics and Epidemiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Valentina Pilipenko
- Division of Biostatistics and Epidemiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Susan M. Glynn
- Department of Anesthesiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Alyssa Sproles
- Division of Rheumatology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Lisa J. Martin
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Michael J. Lacagnina
- Department of Anesthesiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Christopher D. King
- Division of Behavioral Medicine and Clinical Psychology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Lili Ding
- Division of Biostatistics and Epidemiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
12
|
Zhu X, Huang JY, Dong WY, Tang HD, Xu S, Wu Q, Zhang H, Cheng PK, Jin Y, Zhu MY, Zhao W, Mao Y, Wang H, Zhang Y, Wang H, Tao W, Tian Y, Bai L, Zhang Z. Somatosensory cortex and central amygdala regulate neuropathic pain-mediated peripheral immune response via vagal projections to the spleen. Nat Neurosci 2024; 27:471-483. [PMID: 38291284 DOI: 10.1038/s41593-023-01561-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/13/2023] [Indexed: 02/01/2024]
Abstract
Pain involves neuroimmune crosstalk, but the mechanisms of this remain unclear. Here we showed that the splenic T helper 2 (TH2) immune cell response is differentially regulated in male mice with acute versus chronic neuropathic pain and that acetylcholinergic neurons in the dorsal motor nucleus of the vagus (AChDMV) directly innervate the spleen. Combined in vivo recording and immune cell profiling revealed the following two distinct circuits involved in pain-mediated peripheral TH2 immune response: glutamatergic neurons in the primary somatosensory cortex (GluS1HL)→AChDMV→spleen circuit and GABAergic neurons in the central nucleus of the amygdala (GABACeA)→AChDMV→spleen circuit. The acute pain condition elicits increased excitation from GluS1HL neurons to spleen-projecting AChDMV neurons and increased the proportion of splenic TH2 immune cells. The chronic pain condition increased inhibition from GABACeA neurons to spleen-projecting AChDMV neurons and decreased splenic TH2 immune cells. Our study thus demonstrates how the brain encodes pain-state-specific immune responses in the spleen.
Collapse
Affiliation(s)
- Xia Zhu
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Ji-Ye Huang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Wan-Ying Dong
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Hao-Di Tang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Si Xu
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, P. R. China
| | - Qielan Wu
- Department of Oncology, The First Affiliated Hospital of USTC, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Huimin Zhang
- Department of Oncology, The First Affiliated Hospital of USTC, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Ping-Kai Cheng
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Yuxin Jin
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Meng-Yu Zhu
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, P. R. China
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, P. R. China
| | - Wan Zhao
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of University of Science and Technique of China, Hefei, P. R. China
| | - Yu Mao
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
- Department of Anesthesiology and Pain Management, The First Affiliated Hospital of Anhui Medical University, Hefei, P. R. China
| | - Haitao Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, P. R. China
| | - Yan Zhang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Hao Wang
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, P. R. China
| | - Wenjuan Tao
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, P. R. China.
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, P. R. China.
| | - Yanghua Tian
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, P. R. China.
| | - Li Bai
- Department of Oncology, The First Affiliated Hospital of USTC, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China.
| | - Zhi Zhang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China.
- Department of Biophysics and Neurobiology, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, P. R. China.
- The Center for Advanced Interdisciplinary Science and Biomedicine, Institute of Health and Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China.
| |
Collapse
|
13
|
Lin Z, Luo X, Wickman JR, Reddy D, Pande R, Tian Y, Triana V, Lee J, Furdui CM, Pink D, Sacan A, Ajit SK. Inflammatory pain resolution by mouse serum-derived small extracellular vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.578759. [PMID: 38405813 PMCID: PMC10888877 DOI: 10.1101/2024.02.16.578759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Chronic pain is a significant public health issue. Current treatments have limited efficacy and significant side effects, warranting research on alternative strategies for pain management. One approach involves using small extracellular vesicles (sEVs) to transport beneficial biomolecular cargo to aid pain resolution. Exosomes are 30-150 nm sEVs that can carry RNAs, proteins, and lipid mediators to recipient cells via circulation. Exosomes can be beneficial or harmful depending on their source and contents. To investigate the short and long-term effects of mouse serum-derived sEVs in pain modulation, sEVs from naïve control or spared nerve injury (SNI) model donor mice were injected intrathecally into naïve recipient mice. Basal mechanical thresholds transiently increased in recipient mice. This effect was mediated by opioid signaling as this outcome was blocked by naltrexone. Mass Spectrometry of sEVs detected endogenous opioid peptide leu-enkephalin. A single prophylactic intrathecal injection of sEVs two weeks prior to induction of the pain model in recipient mice delayed mechanical allodynia in SNI model mice and accelerated recovery from inflammatory pain after complete Freund's adjuvant (CFA) injection. ChipCytometry of spinal cord and dorsal root ganglion (DRG) from sEV treated mice showed that prophylactic sEV treatment reduced the number of natural killer (NK) and NKT cells in spinal cord and increased CD206+ anti-inflammatory macrophages in (DRG) after CFA injection. Further characterization of sEVs showed the presence of immune markers suggesting that sEVs can exert immunomodulatory effects in recipient mice to promote the resolution of inflammatory pain. Collectively, these studies demonstrate multiple mechanisms by which sEVs can attenuate pain.
Collapse
Affiliation(s)
- Zhucheng Lin
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Xuan Luo
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Jason R. Wickman
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Deepa Reddy
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Richa Pande
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Yuzhen Tian
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | | | - Jingyun Lee
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Cristina M. Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Desmond Pink
- Nanostics Inc., Edmonton, Alberta, T5J 4P6, Canada
| | - Ahmet Sacan
- School of Biomedical Engineering, Science & Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | - Seena K. Ajit
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| |
Collapse
|
14
|
Kim DK, Lee SW. Value of Edema-like Marrow Signal Intensity in Diagnosis of Joint Pain: Radiologists' Perspective. Semin Musculoskelet Radiol 2023; 27:649-654. [PMID: 37935211 DOI: 10.1055/s-0043-1775740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Musculoskeletal pain is a significant contributor to disability. The mechanism and target of the treatment should be optimized by imaging, but currently no accepted gold standard exists to image pain. In addition to end-organ pathology, other mediators also contribute to nociception, such as angiogenesis, axonal extension, immunologic modulation, and central sensitization. Recent research indicates that local inflammation is a significant contributor to pain in the extremities; therefore, we focus here on edema-like marrow signal intensity (ELMSI). We examine both the relevance of ELMSI for pain and novel imaging techniques.
Collapse
Affiliation(s)
- Dong Kyun Kim
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sheen-Woo Lee
- Department of Radiology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
15
|
Willemen HLDM, Santos Ribeiro PS, Broeks M, Meijer N, Versteeg S, Tiggeler A, de Boer TP, Małecki JM, Falnes PØ, Jans J, Eijkelkamp N. Inflammation-induced mitochondrial and metabolic disturbances in sensory neurons control the switch from acute to chronic pain. Cell Rep Med 2023; 4:101265. [PMID: 37944527 PMCID: PMC10694662 DOI: 10.1016/j.xcrm.2023.101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/24/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023]
Abstract
Pain often persists in patients with an inflammatory disease, even when inflammation has subsided. The molecular mechanisms leading to this failure in pain resolution and the transition to chronic pain are poorly understood. Mitochondrial dysfunction in sensory neurons links to chronic pain, but its role in resolution of inflammatory pain is unclear. Transient inflammation causes neuronal plasticity, called hyperalgesic priming, which impairs resolution of pain induced by a subsequent inflammatory stimulus. We identify that hyperalgesic priming in mice increases the expression of a mitochondrial protein (ATPSc-KMT) and causes mitochondrial and metabolic disturbances in sensory neurons. Inhibition of mitochondrial respiration, knockdown of ATPSCKMT expression, or supplementation of the affected metabolite is sufficient to restore resolution of inflammatory pain and prevents chronic pain development. Thus, inflammation-induced mitochondrial-dependent disturbances in sensory neurons predispose to a failure in resolution of inflammatory pain and development of chronic pain.
Collapse
Affiliation(s)
- Hanneke L D M Willemen
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Patrícia Silva Santos Ribeiro
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Melissa Broeks
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Nils Meijer
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Sabine Versteeg
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Annefien Tiggeler
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Teun P de Boer
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 Utrecht, the Netherlands
| | - Jędrzej M Małecki
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway; CRES-O - Centre for Embryology and Healthy Development, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Pål Ø Falnes
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway; CRES-O - Centre for Embryology and Healthy Development, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Judith Jans
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Niels Eijkelkamp
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands.
| |
Collapse
|
16
|
Sim J, O'Guin E, Monahan K, Sugimoto C, McLean SA, Albertorio-Sáez L, Zhao Y, Laumet S, Dagenais A, Bernard MP, Folger JK, Robison AJ, Linnstaedt SD, Laumet G. Interleukin-10-producing monocytes contribute to sex differences in pain resolution in mice and humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565129. [PMID: 37961295 PMCID: PMC10635095 DOI: 10.1101/2023.11.03.565129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Pain is closely associated with the immune system, which exhibits sexual dimorphism. For these reasons, neuro-immune interactions are suggested to drive sex differences in pain pathophysiology. However, our understanding of peripheral neuro-immune interactions on sex differences in pain resolution remains limited. Here, we have shown, in both a mouse model of inflammatory pain and in humans following traumatic pain, that males had higher levels of interleukin (IL)-10 than females, which were correlated with faster pain resolution. Following injury, we identified monocytes (CD11b+ Ly6C+ Ly6G-F4/80 mid ) as the primary source of IL-10, with IL-10-producing monocytes being more abundant in males than females. In a mouse model, neutralizing IL-10 signaling through antibodies, genetically ablating IL-10R1 in sensory neurons, or depleting monocytes with clodronate all impaired the resolution of pain hypersensitivity in both sexes. Furthermore, manipulating androgen levels in mice reversed the sexual dimorphism of pain resolution and the levels of IL-10-producing monocytes. These results highlight a novel role for androgen-driven peripheral IL-10-producing monocytes in the sexual dimorphism of pain resolution. These findings add to the growing concept that immune cells play a critical role in resolving pain and preventing the transition into chronic pain. Graphical abstract
Collapse
|
17
|
Rolls A. Immunoception: the insular cortex perspective. Cell Mol Immunol 2023; 20:1270-1276. [PMID: 37386172 PMCID: PMC10616063 DOI: 10.1038/s41423-023-01051-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/29/2023] [Indexed: 07/01/2023] Open
Abstract
To define the systemic neuroimmune interactions in health and disease, we recently suggested immunoception as a term that refers to the existence of bidirectional functional loops between the brain and the immune system. This concept suggests that the brain constantly monitors changes in immune activity and, in turn, can regulate the immune system to generate a physiologically synchronized response. Therefore, the brain has to represent information regarding the state of the immune system, which can occure in multiple ways. One such representation is an immunengram, a trace that is partially stored by neurons and partially by the local tissue. This review will discuss our current understanding of immunoception and immunengrams, focusing on their manifestation in a specific brain region, the insular cortex (IC).
Collapse
Affiliation(s)
- Asya Rolls
- Department of Immunology, Department of Neuroscience, Technion, Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
18
|
Chen O, Luo X, Ji RR. Macrophages and microglia in inflammation and neuroinflammation underlying different pain states. MEDICAL REVIEW (2021) 2023; 3:381-407. [PMID: 38283253 PMCID: PMC10811354 DOI: 10.1515/mr-2023-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/26/2023] [Indexed: 01/30/2024]
Abstract
Pain is a main symptom in inflammation, and inflammation induces pain via inflammatory mediators acting on nociceptive neurons. Macrophages and microglia are distinct cell types, representing immune cells and glial cells, respectively, but they share similar roles in pain regulation. Macrophages are key regulators of inflammation and pain. Macrophage polarization plays different roles in inducing and resolving pain. Notably, macrophage polarization and phagocytosis can be induced by specialized pro-resolution mediators (SPMs). SPMs also potently inhibit inflammatory and neuropathic pain via immunomodulation and neuromodulation. In this review, we discuss macrophage signaling involved in pain induction and resolution, as well as in maintaining physiological pain. Microglia are macrophage-like cells in the central nervous system (CNS) and drive neuroinflammation and pathological pain in various inflammatory and neurological disorders. Microglia-produced inflammatory cytokines can potently regulate excitatory and inhibitory synaptic transmission as neuromodulators. We also highlight sex differences in macrophage and microglial signaling in inflammatory and neuropathic pain. Thus, targeting macrophage and microglial signaling in distinct locations via pharmacological approaches, including immunotherapies, and non-pharmacological approaches will help to control chronic inflammation and chronic pain.
Collapse
Affiliation(s)
- Ouyang Chen
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Xin Luo
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ru-Rong Ji
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
19
|
Li T, Yue Y, Ma Y, Zhong Z, Guo M, Zhang J, Wang Z, Miao C. Fasting-mimicking diet alleviates inflammatory pain by inhibiting neutrophil extracellular traps formation and neuroinflammation in the spinal cord. Cell Commun Signal 2023; 21:250. [PMID: 37735678 PMCID: PMC10512659 DOI: 10.1186/s12964-023-01258-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/06/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Neutrophil extracellular traps (NETs) promote neuroinflammation and, thus, central nervous system (CNS) disease progression. However, it remains unclear whether CNS-associated NETs affect pain outcomes. A fasting-mimicking diet (FMD) alleviates neurological disorders by attenuating neuroinflammation and promoting nerve regeneration. Hence, in this study, we explore the role of NETs in the CNS during acute pain and investigate the role of FMD in inhibiting NETs and relieving pain. METHODS The inflammatory pain model was established by injecting complete Freund's adjuvant (CFA) into the hind paw of mice. The FMD diet regimen was performed during the perioperative period. PAD4 siRNA or CI-amidine (PAD4 inhibitor) was used to inhibit the formation of NETs. Monoamine oxidase-B (MAO-B) knockdown occurred by AAV-GFAP-shRNA or AAV-hSyn-shRNA or was inhibited by selegiline (an MAO-B inhibitor). The changes in NETs, neuroinflammation, and related signaling pathways were examined by western blot, immunofluorescence, ELISA, and flow cytometry. RESULTS In the acute phase of inflammatory pain, NETs accumulate in the spinal cords of mice. This is associated with exacerbated neuroinflammation. Meanwhile, inhibition of NETs formation alleviates allodynia and neuroinflammation in CFA mice. FMD inhibits NETs production and alleviates inflammatory pain, which is enhanced by treatment with the NETs inhibitor CI-amidine, and reversed by treatment with the NETs inducer phorbol 12-myristate 13-acetate (PMA). Mechanistically, the neutrophil-recruiting pathway MAO-B/5-hydroxyindoleacetic acid (5-HIAA) / G-protein-coupled receptor 35 (GPR35) and NETs-inducing pathway MAO-B/ Reactive oxygen species (ROS) are significantly upregulated during the development of inflammatory pain. MAO-B is largely expressed in astrocytes and neurons in the spinal cords of CFA mice. However, knockdown or inhibition of MAO-B effectively attenuates CFA-induced inflammatory pain, NETs formation, and neuroinflammation in the spinal cord. Moreover, within rescue experiments, MAO-B inhibitors synergistically enhance FMD-induced pain relief, NETs inhibition, and neuroinflammation attenuation, whereas supplementation with MAO-B downstream molecules (i.e., 5-HIAA and PMA) abolished this effect. CONCLUSIONS Neutrophil-released NETs in the spinal cord contribute to pain development. FMD inhibits NETs formation and NETs-induced neuroinflammation by inhibiting the MAO-B/5-HIAA/GPR35 and MAO-B/ROS pathways in astrocytes and neurons, thereby relieving pain progression. Video Abstract.
Collapse
Affiliation(s)
- Ting Li
- Department of Anesthesiology, Zhongshan Hospital, Fudan University; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Ying Yue
- Department of Anesthesiology, Zhongshan Hospital, Fudan University; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yan Ma
- Department of Anesthesiology, Zhongshan Hospital, Fudan University; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Ziwen Zhong
- Department of Anesthesiology, Zhongshan Hospital, Fudan University; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Miaomiao Guo
- Department of Anesthesiology, Zhongshan Hospital, Fudan University; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Jie Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Zhiping Wang
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| |
Collapse
|
20
|
Kim HW, Wang S, Davies AJ, Oh SB. The therapeutic potential of natural killer cells in neuropathic pain. Trends Neurosci 2023:S0166-2236(23)00133-9. [PMID: 37385878 DOI: 10.1016/j.tins.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 07/01/2023]
Abstract
Novel disease-modifying treatments for neuropathic pain are urgently required. The cellular immune response to nerve injury represents a promising target for therapeutic development. Recently, the role of natural killer (NK) cells in both CNS and PNS disease has been the subject of growing interest. In this opinion article, we set out the case for NK cell-based intervention as a promising avenue for development in the management of neuropathic pain. We explore the potential cellular and molecular targets of NK cells in the PNS by contrasting with their reported functional roles in CNS diseases, and we suggest strategies for using the beneficial functions of NK cells and immune-based therapeutics in the context of neuropathic pain.
Collapse
Affiliation(s)
- Hyoung Woo Kim
- Department of Neurobiology and Physiology, School of Dentistry, and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Shuaiwei Wang
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Alexander J Davies
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | - Seog Bae Oh
- Department of Neurobiology and Physiology, School of Dentistry, and Dental Research Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
21
|
Song XJ, Yang CL, Chen D, Yang Y, Mao Y, Cao P, Jiang A, Wang W, Zhang Z, Tao W. Up-regulation of LCN2 in the anterior cingulate cortex contributes to neural injury-induced chronic pain. Front Cell Neurosci 2023; 17:1140769. [PMID: 37362002 PMCID: PMC10285483 DOI: 10.3389/fncel.2023.1140769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/02/2023] [Indexed: 06/28/2023] Open
Abstract
Chronic pain caused by disease or injury affects more than 30% of the general population. The molecular and cellular mechanisms underpinning the development of chronic pain remain unclear, resulting in scant effective treatments. Here, we combined electrophysiological recording, in vivo two-photon (2P) calcium imaging, fiber photometry, Western blotting, and chemogenetic methods to define a role for the secreted pro-inflammatory factor, Lipocalin-2 (LCN2), in chronic pain development in mice with spared nerve injury (SNI). We found that LCN2 expression was upregulated in the anterior cingulate cortex (ACC) at 14 days after SNI, resulting in hyperactivity of ACC glutamatergic neurons (ACCGlu) and pain sensitization. By contrast, suppressing LCN2 protein levels in the ACC with viral constructs or exogenous application of neutralizing antibodies leads to significant attenuation of chronic pain by preventing ACCGlu neuronal hyperactivity in SNI 2W mice. In addition, administering purified recombinant LCN2 protein in the ACC could induce pain sensitization by inducing ACCGlu neuronal hyperactivity in naïve mice. This study provides a mechanism by which LCN2-mediated hyperactivity of ACCGlu neurons contributes to pain sensitization, and reveals a new potential target for treating chronic pain.
Collapse
Affiliation(s)
- Xiang-Jie Song
- Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chen-Ling Yang
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Danyang Chen
- Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yumeng Yang
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yu Mao
- Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Peng Cao
- Department of Neurology, Stroke Center, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Aijun Jiang
- Department of Endocrinology and Laboratory for Diabetes, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Wang
- Department of Endocrinology and Laboratory for Diabetes, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhi Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wenjuan Tao
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW The acute inflammatory reaction induced by tissue trauma causes pain but also promotes recovery. Recovery is highly variable among peoples. Effective acute pain (AP) management is very important but remains suboptimal what could affect long term outcomes. The review questions the impact of either failure or effectiveness of AP treatments and the choice of analgesic drugs on different long-term outcomes after tissue trauma. RECENT FINDINGS Pain control during mobilization is mandatory to reduce the risk of complications which exacerbate and prolong the inflammatory response to trauma, impairing physical recovery. Common analgesic treatments show considerable variability in effectiveness among peoples what argues for an urgent need to develop personalized AP management, that is, finding better responders to common analgesics and targeting challenging patients for more invasive procedures. Optimal multimodal analgesia to spare opioids administration remains a priority as opioids may enhance neuroinflammation, which underlies pain persistence and precipitates neurocognitive decline in frail patients. Finally, recent findings demonstrate that AP treatments which modulate nociceptive and inflammatory pain should be used with caution as drugs which inhibit inflammation like nonsteroidal antiinflammatory drugs and corticoids might interfere with natural recovery processes. SUMMARY Effective and safe AP management is of far greater importance than previously realized. Evidence of suboptimal AP management in many patients and recent reports pointing out the impact of current treatments on long term outcomes argue for further research in the field.
Collapse
Affiliation(s)
- Simon Delande
- Department of Anesthesiology, Cliniques Universitaires St Luc - University Catholic of Louvain, Brussels, Belgium
| | | |
Collapse
|
23
|
Abstract
SYNOPSIS: Central sensitization is an umbrella term for facilitated synaptic plasticity. This editorial (1) explains the differences between homosynaptic and heterosynaptic plasticity, (2) explains the role of glia cells in dorsal horn neuroplasticity, and (3) briefly discusses the clinical relevance of central sensitization and nociplastic pain. Part 5 covers wind-up, classical central sensitization, and long-term potentiation. J Orthop Sports Phys Ther 2023;53(1):1-4. doi:10.2519/jospt.2023.11569.
Collapse
|
24
|
Yu X, Ton AN, Niu Z, Morales BM, Chen J, Braz J, Lai MH, Barruet E, Liu H, Cheung K, Ali S, Chan T, Bigay K, Ho J, Nikolli I, Hansberry S, Wentworth K, Kriegstein A, Basbaum A, Hsiao EC. ACVR1-activating mutation causes neuropathic pain and sensory neuron hyperexcitability in humans. Pain 2023; 164:43-58. [PMID: 35442931 PMCID: PMC9582048 DOI: 10.1097/j.pain.0000000000002656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 03/01/2022] [Accepted: 04/08/2022] [Indexed: 01/09/2023]
Abstract
ABSTRACT Altered bone morphogenetic protein (BMP) signaling is associated with many musculoskeletal diseases. However, it remains unknown whether BMP dysfunction has direct contribution to debilitating pain reported in many of these disorders. Here, we identified a novel neuropathic pain phenotype in patients with fibrodysplasia ossificans progressiva (FOP), a rare autosomal-dominant musculoskeletal disorder characterized by progressive heterotopic ossification. Ninety-seven percent of these patients carry an R206H gain-of-function point mutation in the BMP type I receptor ACVR1 (ACVR1 R206H ), which causes neofunction to Activin A and constitutively activates signaling through phosphorylated SMAD1/5/8. Although patients with FOP can harbor pathological lesions in the peripheral and central nervous system, their etiology and clinical impact are unclear. Quantitative sensory testing of patients with FOP revealed significant heat and mechanical pain hypersensitivity. Although there was no major effect of ACVR1 R206H on differentiation and maturation of nociceptive sensory neurons (iSNs) derived from FOP induced pluripotent stem cells, both intracellular and extracellular electrophysiology analyses of the ACVR1 R206H iSNs displayed ACVR1-dependent hyperexcitability, a hallmark of neuropathic pain. Consistent with this phenotype, we recorded enhanced responses of ACVR1 R206H iSNs to TRPV1 and TRPA1 agonists. Thus, activated ACVR1 signaling can modulate pain processing in humans and may represent a potential target for pain management in FOP and related BMP pathway diseases.
Collapse
Affiliation(s)
- Xiaobing Yu
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, United States
| | - Amy N. Ton
- Division of Endocrinology and Metabolism, Department of Medicine, The Institute for Human Genetics, and the Program in Craniofacial Biology, University of California, San Francisco, CA, United States
| | - Zejun Niu
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, United States
- Department of Anesthesiology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Blanca M. Morales
- Division of Endocrinology and Metabolism, Department of Medicine, The Institute for Human Genetics, and the Program in Craniofacial Biology, University of California, San Francisco, CA, United States
| | - Jiadong Chen
- Department of Neurology, University of California, San Francisco, CA, United States. Dr. Chen is now with the Department of Neurology of Second Affiliated Hospital, Centre for Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Joao Braz
- Department of Anatomy, University of California San Francisco, San Francisco, CA, United States
| | - Michael H. Lai
- J. David Gladstone Institutes, San Francisco, CA, United States
| | - Emilie Barruet
- Division of Endocrinology and Metabolism, Department of Medicine, The Institute for Human Genetics, and the Program in Craniofacial Biology, University of California, San Francisco, CA, United States
| | - Hongju Liu
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, United States
- Department of Anesthesiology, Peking Union Medical College Hospital, Beijing, China
| | - Kin Cheung
- BioSAS Consulting, Inc, Wellesley, MA, United States
| | - Syed Ali
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, United States
| | - Tea Chan
- Division of Endocrinology and Metabolism, Department of Medicine, The Institute for Human Genetics, and the Program in Craniofacial Biology, University of California, San Francisco, CA, United States
| | - Katherine Bigay
- Division of Endocrinology and Metabolism, Department of Medicine, The Institute for Human Genetics, and the Program in Craniofacial Biology, University of California, San Francisco, CA, United States
| | - Jennifer Ho
- Division of Endocrinology and Metabolism, Department of Medicine, The Institute for Human Genetics, and the Program in Craniofacial Biology, University of California, San Francisco, CA, United States
| | - Ina Nikolli
- Division of Endocrinology and Metabolism, Department of Medicine, The Institute for Human Genetics, and the Program in Craniofacial Biology, University of California, San Francisco, CA, United States
| | - Steven Hansberry
- Division of Endocrinology and Metabolism, Department of Medicine, The Institute for Human Genetics, and the Program in Craniofacial Biology, University of California, San Francisco, CA, United States
- California Institute of Regenerative Medicine Bridges to Stem Cell Research Program, San Francisco State University, San Francisco, CA, United States
| | - Kelly Wentworth
- Division of Endocrinology and Metabolism, Department of Medicine, The Institute for Human Genetics, and the Program in Craniofacial Biology, University of California, San Francisco, CA, United States
| | - Arnold Kriegstein
- Department of Neurology, University of California, San Francisco, CA, United States. Dr. Chen is now with the Department of Neurology of Second Affiliated Hospital, Centre for Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Allan Basbaum
- Department of Anatomy, University of California San Francisco, San Francisco, CA, United States
| | - Edward C. Hsiao
- Division of Endocrinology and Metabolism, Department of Medicine, The Institute for Human Genetics, and the Program in Craniofacial Biology, University of California, San Francisco, CA, United States
| |
Collapse
|
25
|
The complex role of inflammation and gliotransmitters in Parkinson's disease. Neurobiol Dis 2023; 176:105940. [PMID: 36470499 PMCID: PMC10372760 DOI: 10.1016/j.nbd.2022.105940] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
Our understanding of the role of innate and adaptive immune cell function in brain health and how it goes awry during aging and neurodegenerative diseases is still in its infancy. Inflammation and immunological dysfunction are common components of Parkinson's disease (PD), both in terms of motor and non-motor components of PD. In recent decades, the antiquated notion that the central nervous system (CNS) in disease states is an immune-privileged organ, has been debunked. The immune landscape in the CNS influences peripheral systems, and peripheral immunological changes can alter the CNS in health and disease. Identifying immune and inflammatory pathways that compromise neuronal health and survival is critical in designing innovative and effective strategies to limit their untoward effects on neuronal health.
Collapse
|
26
|
Ye Q, Huang Z, Lu W, Yan F, Zeng W, Xie J, Zhong W. Identification of the common differentially expressed genes and pathogenesis between neuropathic pain and aging. Front Neurosci 2022; 16:994575. [PMCID: PMC9626798 DOI: 10.3389/fnins.2022.994575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background Neuropathic pain is a debilitating disease caused by damage or diseases of the somatosensory nervous system. Previous research has indicated potential associations between neuropathic pain and aging. However, the mechanisms by which they are interconnected remain unclear. In this study, we aim to identify the common differentially expressed genes (co-DEGs) between neuropathic pain and aging through integrated bioinformatics methods and further explore the underlying molecular mechanisms. Methods The microarray datasets GSE24982, GSE63442, and GSE63651 were downloaded from Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) and co-DEGs were first identified. Functional enrichment analyses, protein-protein Interaction (PPI) network, module construction and hub genes identification were performed. Immune infiltration analysis was conducted. Targeted transcription factors (TFs), microRNAs (miRNAs) and potential effective drug compounds for hub genes were also predicted. Results A total of 563 and 1,250 DEGs of neuropathic pain and aging were screened, respectively. 16 genes were further identified as co-DEGs. The functional analysis emphasizes the vital roles of the humoral immune response and complement and coagulation cascades in these two diseases. Cxcl14, Fblim1, RT1-Da, Serping1, Cfd, and Fcgr2b were identified as hub genes. Activated B cell, mast cell, activated dendritic cell, CD56 bright natural killer cell, effector memory CD8 + T cell, and type 2 T helper cell were significantly up-regulated in the pain and aging condition. Importantly, hub genes were found to correlate with the activated B cell, activated dendritic cell, Gamma delta T cell, central memory CD4 + T cell and mast cell in pain and aging diseases. Finally, Spic, miR-883-5p, and miR-363-5p et al. were predicted as the potential vital regulators for hub genes. Aldesleukin, Valziflocept, MGD-010, Cinryze, and Rhucin were the potential effective drugs in neuropathic pain and aging. Conclusion This study identified co-DEGs, revealed molecular mechanisms, demonstrated the immune microenvironment, and predicted the possible TFs, miRNAs regulation networks and new drug targets for neuropathic pain and aging, providing novel insights into further research.
Collapse
|
27
|
Lutke Schipholt IJ, Scholten-Peeters GGM, Koop MA, Bonnet P, Bontkes HJ, Coppieters MW. Systemic neuroimmune responses in people with non-specific neck pain and cervical radiculopathy, and associations with clinical, psychological, and lifestyle factors. Front Mol Neurosci 2022; 15:1003821. [PMID: 36311017 PMCID: PMC9608367 DOI: 10.3389/fnmol.2022.1003821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/20/2022] [Indexed: 08/09/2023] Open
Abstract
Neuroimmune responses remain understudied in people with neck pain. This study aimed to (1) compare a broad range of systemic neuroimmune responses in people with non-specific neck pain (N = 112), cervical radiculopathy (N = 25), and healthy participants (N = 23); and (2) explore their associations with clinical, psychological and lifestyle factors. Quantification of systemic neuroimmune responses involved ex vivo serum and in vitro evoked-release levels of inflammatory markers, and characterization of white blood cell phenotypes. Inflammatory indices were calculated to obtain a measure of total immune status and were considered the main outcomes. Differences between groups were tested using analyses of covariance (ANCOVA) and multivariable regression models. Compared to healthy participants, the ex vivo pro-inflammatory index was increased in people with non-specific neck pain (β = 0.70, p = 0.004) and people with cervical radiculopathy (β = 0.64, p = 0.04). There was no difference between non-specific neck pain and cervical radiculopathy (β = 0.23, p = 0.36). Compared to non-specific neck pain, people with cervical radiculopathy showed lower numbers of monocytes (β = -59, p = 0.01). There were no differences between groups following in vitro whole blood stimulation (p ≥ 0.23) or other differences in the number and phenotype of white blood cells (p ≥ 0.07). The elevated ex vivo neuroimmune responses in people with non-specific neck pain and radiculopathy support the contention that these conditions encompass inflammatory components that can be measured systemically. There were multiple significant associations with clinical, psychological and lifestyle factors, such as pain intensity (β = 0.25) and anxiety (β = 0.23) in non-specific neck pain, visceral adipose tissue (β = 0.43) and magnification (β = 0.59) in cervical radiculopathy, and smoking (β = 0.59) and visceral adipose tissue (β = 0.52) in healthy participants. These associations were modified by sex, indicating different neuroimmune associations for females and males.
Collapse
Affiliation(s)
- Ivo J. Lutke Schipholt
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Laboratory Medical Immunology, Department of Clinical Chemistry, Amsterdam University Medical Center, Amsterdam, Netherlands
- Department of Rehabilitation Medicine, Amsterdam University Medical Centre, Amsterdam, Netherlands
| | - Gwendolyne G. M. Scholten-Peeters
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Meghan A. Koop
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Laboratory Medical Immunology, Department of Clinical Chemistry, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Petra Bonnet
- Laboratory Medical Immunology, Department of Clinical Chemistry, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Hetty J. Bontkes
- Laboratory Medical Immunology, Department of Clinical Chemistry, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Michel W. Coppieters
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Menzies Health Institute Queensland, Griffith University, Brisbane, QLD, Australia
| |
Collapse
|
28
|
Abstract
Progress in neuroimmunology established that the nervous and the immune systems are two functionally related physiological systems. Unique sensory and immune receptors enable them to control interactions of the organism with the inner and the outer worlds. Both systems undergo an experience-driven selection process during their ontogeny. They share the same mediators/neurotransmitters and use synapses for intercellular communication. They keep a memory of previous experiences. Immune cells can affect nervous cells, nervous cells can affect immune cells, and they regulate each other. I however argue that the two systems differ by three major points: 1) Unlike the nervous system, the immune system has a loose anatomical structure, in which molecular and cellular events mostly occur at random; 2) The immune system can respond to molecules of the living world whereas the nervous system can respond to phenomena of the physical world; 3) Responses of the immune system act both on the organism and on the stimulus that triggered the response, whereas responses of the nervous system act on the organism only. The nervous and the immune systems therefore appear as two complementary systems of relations that closely work together, and whose reactivities are well-suited to deal with physical and biological stimuli, respectively. Its ability both to adapt the organism to the living world and to adapt the living world to the organism endows the immune system with powerful adaptive properties that enable the organism to live in peace with itself and with other living beings, whether pathogens or commensals.
Collapse
Affiliation(s)
- Marc Daëron
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université-CNRS-Inserm, Marseille, France
- Institut Pasteur-Université Paris Cité, Paris, France
- Institut d’histoire et de philosophie des sciences et des techniques, Université Paris 1 Panthéon Sorbonne-CNRS, Paris, France
- *Correspondence: Marc Daëron,
| |
Collapse
|
29
|
Abstract
Chronic pain affects 20% of adults and is one of the leading causes of disability worldwide. Women and girls are disproportionally affected by chronic pain. About half of chronic pain conditions are more common in women, with only 20% having a higher prevalence in men. There are also sex and gender differences in acute pain sensitivity. Pain is a subjective experience made up of sensory, cognitive, and emotional components. Consequently, there are multiple dimensions through which sex and gender can influence the pain experience. Historically, most preclinical pain research was conducted exclusively in male animals. However, recent studies that included females have revealed significant sex differences in the physiological mechanisms underlying pain, including sex specific involvement of different genes and proteins as well as distinct interactions between hormones and the immune system that influence the transmission of pain signals. Human neuroimaging has revealed sex and gender differences in the neural circuitry associated with pain, including sex specific brain alterations in chronic pain conditions. Clinical pain research suggests that gender can affect how an individual contextualizes and copes with pain. Gender may also influence the susceptibility to develop chronic pain. Sex and gender biases can impact how pain is perceived and treated clinically. Furthermore, the efficacy and side effects associated with different pain treatments can vary according to sex and gender. Therefore, preclinical and clinical research must include sex and gender analyses to understand basic mechanisms of pain and its relief, and to develop personalized pain treatment.
Collapse
Affiliation(s)
- Natalie R Osborne
- Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Karen D Davis
- Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Surgery, University of Toronto, Toronto, Canada.
| |
Collapse
|
30
|
Abstract
In most cases, tissue injuries lead to inflammation and sensitization. From a neuroscience perspective, this is why one usually hurts when one is injured. Peripheral sensitization is an essential principle in pain science, and it is associated with hyperalgesia, inflammation, and clinical pain conditions, including acute injuries and rheumatological diseases. This editorial explains peripheral sensitization, neurogenic inflammation, and the axon reflex, as well as the role of second messengers and peptidergic C-fibers. J Orthop Sports Phys Ther 2022;52(6):303-306. doi:10.2519/jospt.2022.11202.
Collapse
|
31
|
Parisien M, Lima LV, Dagostino C, El-Hachem N, Drury GL, Grant AV, Huising J, Verma V, Meloto CB, Silva JR, Dutra GGS, Markova T, Dang H, Tessier PA, Slade GD, Nackley AG, Ghasemlou N, Mogil JS, Allegri M, Diatchenko L. Acute inflammatory response via neutrophil activation protects against the development of chronic pain. Sci Transl Med 2022; 14:eabj9954. [PMID: 35544595 DOI: 10.1126/scitranslmed.abj9954] [Citation(s) in RCA: 152] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The transition from acute to chronic pain is critically important but not well understood. Here, we investigated the pathophysiological mechanisms underlying the transition from acute to chronic low back pain (LBP) and performed transcriptome-wide analysis in peripheral immune cells of 98 participants with acute LBP, followed for 3 months. Transcriptomic changes were compared between patients whose LBP was resolved at 3 months with those whose LBP persisted. We found thousands of dynamic transcriptional changes over 3 months in LBP participants with resolved pain but none in those with persistent pain. Transient neutrophil-driven up-regulation of inflammatory responses was protective against the transition to chronic pain. In mouse pain assays, early treatment with a steroid or nonsteroidal anti-inflammatory drug (NSAID) also led to prolonged pain despite being analgesic in the short term; such a prolongation was not observed with other analgesics. Depletion of neutrophils delayed resolution of pain in mice, whereas peripheral injection of neutrophils themselves, or S100A8/A9 proteins normally released by neutrophils, prevented the development of long-lasting pain induced by an anti-inflammatory drug. Analysis of pain trajectories of human subjects reporting acute back pain in the UK Biobank identified elevated risk of pain persistence for subjects taking NSAIDs. Thus, despite analgesic efficacy at early time points, the management of acute inflammation may be counterproductive for long-term outcomes of LBP sufferers.
Collapse
Affiliation(s)
- Marc Parisien
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Lucas V Lima
- Department of Psychology, Faculty of Science, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Concetta Dagostino
- Department of Medicine and Surgery, University of Parma, Parma 43126, Italy
| | - Nehme El-Hachem
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Gillian L Drury
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Audrey V Grant
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Jonathan Huising
- Department of Anesthesiology, Pain and Palliative Medicine, Radboudumc, Nijmegen 6525, Netherlands
| | - Vivek Verma
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Carolina B Meloto
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Jaqueline R Silva
- Departments of Anesthesiology and Perioperative Medicine and Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Gabrielle G S Dutra
- Department of Psychology, Faculty of Science, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Teodora Markova
- Department of Psychology, Faculty of Science, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Hong Dang
- Cystic Fibrosis Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Philippe A Tessier
- Department of Microbiology and Immunology, Faculty of Medicine, Laval University, Quebec City, Quebec G1V 0A6, Canada
| | - Gary D Slade
- Center for Pain Research and Innovation, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Andrea G Nackley
- Center for Translational Pain Medicine and Departments of Anesthesiology and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Nader Ghasemlou
- Departments of Anesthesiology and Perioperative Medicine and Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Jeffrey S Mogil
- Department of Psychology, Faculty of Science, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Massimo Allegri
- Pain Therapy Service, Policlinico of Monza Hospital, Monza 20900, Italy.,Pain Management and Neuromodulation Centre, Ensemble Hospitalier de la Côte, Morges 1110, Switzerland
| | - Luda Diatchenko
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1G1, Canada
| |
Collapse
|
32
|
Singh SK, Krukowski K, Laumet GO, Weis D, Alexander JF, Heijnen CJ, Kavelaars A. CD8+ T cell-derived IL-13 increases macrophage IL-10 to resolve neuropathic pain. JCI Insight 2022; 7:154194. [PMID: 35260535 PMCID: PMC8983134 DOI: 10.1172/jci.insight.154194] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/26/2022] [Indexed: 01/11/2023] Open
Abstract
Understanding the endogenous mechanisms regulating resolution of pain may identify novel targets for treatment of chronic pain. Resolution of chemotherapy-induced peripheral neuropathy (CIPN) after treatment completion depends on CD8+ T cells and on IL-10 produced by other cells. Using Rag2–/– mice lacking T and B cells and adoptive transfer of Il13–/– CD8+ T cells, we showed that CD8+ T cells producing IL-13 were required for resolution of CIPN. Intrathecal administration of anti–IL-13 delayed resolution of CIPN and reduced IL-10 production by dorsal root ganglion macrophages. Depleting local CD206+ macrophages also delayed resolution of CIPN. In vitro, TIM3+CD8+ T cells cultured with cisplatin, apoptotic cells, or phosphatidylserine liposomes produced IL-13, which induced IL-10 in macrophages. In vivo, resolution of CIPN was delayed by intrathecal administration of anti-TIM3. Resolution was also delayed in Rag2–/– mice reconstituted with Havcr2 (TIM3)–/– CD8+ T cells. Our data indicated that cell damage induced by cisplatin activated TIM3 on CD8+ T cells, leading to increased IL-13 production, which in turn induced macrophage IL-10 production and resolution of CIPN. Development of exogenous activators of the IL-13/IL-10 pain resolution pathway may provide a way to treat the underlying cause of chronic pain.
Collapse
Affiliation(s)
- Susmita K Singh
- Laboratories of Neuroimmunology, Department of Symptom Research, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Karen Krukowski
- Laboratories of Neuroimmunology, Department of Symptom Research, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Biological Sciences, Knoebel Institute for Healthy Aging, University of Denver, Denver, Colorado, USA
| | - Geoffroy O Laumet
- Laboratories of Neuroimmunology, Department of Symptom Research, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Physiology, College of Natural Science, Michigan State University, East Lansing, Michigan, USA
| | - Drew Weis
- Laboratories of Neuroimmunology, Department of Symptom Research, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jenolyn F Alexander
- Laboratories of Neuroimmunology, Department of Symptom Research, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Cobi J Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Annemieke Kavelaars
- Laboratories of Neuroimmunology, Department of Symptom Research, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
33
|
Ma Q. A functional subdivision within the somatosensory system and its implications for pain research. Neuron 2022; 110:749-769. [PMID: 35016037 PMCID: PMC8897275 DOI: 10.1016/j.neuron.2021.12.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/07/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022]
Abstract
Somatosensory afferents are traditionally classified by soma size, myelination, and their response specificity to external and internal stimuli. Here, we propose the functional subdivision of the nociceptive somatosensory system into two branches. The exteroceptive branch detects external threats and drives reflexive-defensive reactions to prevent or limit injury. The interoceptive branch senses the disruption of body integrity, produces tonic pain with strong aversive emotional components, and drives self-caring responses toward to the injured region to reduce suffering. The central thesis behind this functional subdivision comes from a reflection on the dilemma faced by the pain research field, namely, the use of reflexive-defensive behaviors as surrogate assays for interoceptive tonic pain. The interpretation of these assays is now being challenged by the discovery of distinct but interwoven circuits that drive exteroceptive versus interoceptive types of behaviors, with the conflation of these two components contributing partially to the poor translation of therapies from preclinical studies.
Collapse
Affiliation(s)
- Qiufu Ma
- Dana-Farber Cancer Institute and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
34
|
|