1
|
Chuai X, Ye T, Zhao B, Wu Y, Guo C, Li F, Zhou J, Zhang K, Wang Y, Liu Y, Xie Y, Zhang J, Chiu S. Long-Lasting Protection and Dose Optimization of MPXV Polyvalent Mpox mRNA Vaccines Against Lethal Vaccinia Virus Challenge in Mice. J Med Virol 2025; 97:e70143. [PMID: 39726255 DOI: 10.1002/jmv.70143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
The outbreak of clade II monkeypox virus (MPXV) and the additional outbreak in Central Africa of clade I virus from 2023 have attracted worldwide attention. The development of a scalable and effective vaccine against the ongoing epidemic of mpox is urgently needed. We previously constructed two bivalent MPXV mRNA vaccines, LBA (B6R-A29L) and LAM (A35R-M1R), and a quadrivalent mRNA vaccine, LBAAM (B6R-A35R-A29L-M1R). These vaccines at a 20 µg dose could induce potential MPXV antigen-specific immune responses and provide protection against lethal VACV challenge. Compared with the individual bivalent mRNA vaccines, the two quadrivalent vaccines LBAAM and LBA& LAM displayed superior protective effects. To characterize these vaccines further, we monitored long-term immunity and protection as long as 28 weeks after initial immunization and optimized the immunization dosages to decrease the cost of production for future clinical use. Our results demonstrated that both the bivalent MPXV mRNA vaccine LAM (A35R-M1R) and the two tetravalent vaccines LBAAM and LBA& LAM could elicit long-lasting antigen-specific IgG antibodies as well as neutralizing antibodies against VACV and MPXV. They all provided complete protection against VACV challenge until 28 weeks post prime immunization. Moreover, the immunogenicity and protective efficacy of the two tetravalent vaccines (LBAAM and LBA& LAM) are dose dependent, and even the low-dose (1 µg) vaccine could provide sufficient protection against lethal VACV challenge. These results provide valuable clues for the further production of MPXV mRNA vaccines for use in humans.
Collapse
Affiliation(s)
- Xia Chuai
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega Science, Chinese Academy of Sciences, Wuhan, China
| | - Tianxi Ye
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Baoxin Zhao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega Science, Chinese Academy of Sciences, Wuhan, China
| | - Yan Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega Science, Chinese Academy of Sciences, Wuhan, China
| | - Chen Guo
- Guangzhou Henovcom Bioscience Co. Ltd., Guangzhou, China
| | - Fangxu Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega Science, Chinese Academy of Sciences, Wuhan, China
| | - Jinge Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kaiyue Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega Science, Chinese Academy of Sciences, Wuhan, China
| | - Yuping Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega Science, Chinese Academy of Sciences, Wuhan, China
| | - Yanhui Liu
- Guangzhou Henovcom Bioscience Co. Ltd., Guangzhou, China
| | - Yalin Xie
- Guangzhou Henovcom Bioscience Co. Ltd., Guangzhou, China
| | - Jiancun Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, Guangzhou, China
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China
| |
Collapse
|
2
|
Cotter CA, Ignacio MA, Americo JL, Earl PL, Mucker EM, Frey TR, Carfi A, Hooper JW, Freyn AW, Moss B. Mpox mRNA-1769 vaccine inhibits orthopoxvirus replication at intranasal, intrarectal, and cutaneous sites of inoculation. NPJ Vaccines 2024; 9:256. [PMID: 39719481 DOI: 10.1038/s41541-024-01052-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/12/2024] [Indexed: 12/26/2024] Open
Abstract
We previously reported that mice immunized twice with a lipid nanoparticle vaccine comprising four monkeypox viral mRNAs raised neutralizing antibodies and antigen-specific T cells and were protected against a lethal intranasal challenge with vaccinia virus (VACV). Here we demonstrated that the mRNA vaccine also protects mice against intranasal and intraperitoneal infections with monkeypox virus and bioluminescence imaging showed that vaccination greatly reduces or prevents VACV replication and spread from intranasal, rectal, and dermal inoculation sites. A single vaccination provided considerable protection that was enhanced by boosting for at least 4 months. Protection was related to the amount of mRNA inoculated, which correlated with neutralizing antibody levels. Furthermore, immunocompetent and immunodeficient mice lacking mature B and T cells that received serum from mRNA-immunized macaques before or after VACV challenge were protected. These findings provide insights into the mechanism and extent of mRNA vaccine-induced protection of orthopoxviruses and support clinical testing.
Collapse
Affiliation(s)
- Catherine A Cotter
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Maxinne A Ignacio
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey L Americo
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patricia L Earl
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Eric M Mucker
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | | | | | - Jay W Hooper
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | | | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Ye Q, Zhang D, Zhang RR, Xu Q, Huang XY, Huang B, Sun MX, Cong Z, Zhu L, Ma J, Li N, Zhang J, Chen T, Lu J, Hou Y, Chen X, Liu HT, Zhou C, Li RT, Wu M, Wang ZJ, Yin J, Qiu YF, Ying B, Tan WJ, Xue J, Qin CF. A penta-component mpox mRNA vaccine induces protective immunity in nonhuman primates. Nat Commun 2024; 15:10611. [PMID: 39639037 PMCID: PMC11621575 DOI: 10.1038/s41467-024-54909-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
The recent worldwide outbreaks of mpox prioritize the development of a safe and effective mRNA vaccine. The contemporary mpox virus (MPXV) exhibits changing virological and epidemiological features, notably affecting populations already vulnerable to human immunodeficiency virus (HIV). Herein, we profile the immunogenicity of AR-MPXV5, a penta-component mRNA vaccine targeting five specific proteins (M1R, E8L, A29L, A35R, and B6R) from the representative contemporary MPXV clade II strain, in both naive and simian immunodeficiency virus (SIV)-infected nonhuman primates. Immunization with two doses of AR-MPXV5 to cynomolgus macaques effectively elicits antibody responses and cellular responses. Importantly, based on the challenge model with a contemporary MPXV clade II strain, AR-MPXV5 demonstrates effective efficacy in preventing skin lesions, eliminating viremia and reducing viral loads in multiple tissues after challenge in naive male animals. More importantly, AR-MPXV5 is well-tolerated in stable chronic SIV-infected rhesus monkeys, while eliciting comparable MPXV-specific humoral and cellular responses in both naive and SIV-infected monkeys. Together, these results support further clinical development of the AR-MPXV5 vaccine.
Collapse
Affiliation(s)
- Qing Ye
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Dong Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Rong-Rong Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Qian Xu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xing-Yao Huang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Baoying Huang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Meng-Xu Sun
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Zhe Cong
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Lin Zhu
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Jianrong Ma
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Na Li
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Jingjing Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Ting Chen
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Jiahan Lu
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yongzhi Hou
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Xiang Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Hai-Tao Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Chao Zhou
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Rui-Ting Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Mei Wu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Zheng-Jian Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Jiye Yin
- National Beijing Center for Drug Safety Evaluation and Research, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ye-Feng Qiu
- Laboratory Animal Center, Academy of Military Medical Science, Beijing, China
| | - Bo Ying
- Suzhou Abogen Biosciences Co., Ltd., Suzhou, China
| | - Wen-Jie Tan
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Jing Xue
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China.
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Mason LMK, Betancur E, Riera-Montes M, Lienert F, Scheele S. MVA-BN vaccine effectiveness: A systematic review of real-world evidence in outbreak settings. Vaccine 2024; 42:126409. [PMID: 39413490 DOI: 10.1016/j.vaccine.2024.126409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND Mpox is a disease endemic to Central and West Africa. It caused outbreaks in non-endemic countries, mainly in 2022. The endemic Democratic Republic of Congo is currently experiencing its largest outbreak yet. The vaccine Modified Vaccinia Ankara-Bavarian Nordic (MVA-BN) is approved for active immunization against mpox and smallpox. Since the outbreak in 2022, real-world studies have assessed MVA-BN's vaccine effectiveness (VE) against mpox, and this systematic literature review aims to summarize the most current evidence. METHODS Medline (via PubMed), Embase, and LILACS were searched, as well as grey literature sources and publications' bibliographies to identify observational studies published between 1/Jan/2022 and 28/Feb/2024 that estimate the VE of MVA-BN against mpox or provide risk measures that allow calculation of these VE estimates. Data were presented descriptively in tables and text; the methodological quality of included records was assessed using NHLBI/NIH quality assessment tools. RESULTS The literature search identified 16 records that fit the inclusion criteria. The studies took place in high-income countries and were heterogeneous in design, setting, and definition of at-risk populations. MVA-BN VE estimates against mpox infection were assessed. Where the study population was exclusively or primarily those receiving pre-exposure prophylactic vaccination, the adjusted VE estimates ranged from 35 % to 86 % (n = 8 studies) for one dose and from 66 % to 90 % (n = 5) for two doses. Where only post-exposure prophylactic vaccination was assessed, adjusted VE estimates were reported for one dose only at 78 % and 89 % (n = 2). Additionally, MVA-BN reduced the risk of mpox-related hospitalization in one study and the severity of mpox clinical manifestations in two studies. CONCLUSIONS Despite heterogeneity in study design, setting, and at-risk populations, the reported VE estimates against mpox infection demonstrated the effectiveness of one or two doses of MVA-BN in the context of an outbreak across multiple countries.
Collapse
Affiliation(s)
| | | | | | | | - Suzanne Scheele
- Bavarian Nordic, Inc., Morrisville, North Carolina, United States of America
| |
Collapse
|
5
|
Gupta A, Rudra A, Reed K, Langer R, Anderson DG. Advanced technologies for the development of infectious disease vaccines. Nat Rev Drug Discov 2024; 23:914-938. [PMID: 39433939 DOI: 10.1038/s41573-024-01041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/23/2024]
Abstract
Vaccines play a critical role in the prevention of life-threatening infectious disease. However, the development of effective vaccines against many immune-evading pathogens such as HIV has proven challenging, and existing vaccines against some diseases such as tuberculosis and malaria have limited efficacy. The historically slow rate of vaccine development and limited pan-variant immune responses also limit existing vaccine utility against rapidly emerging and mutating pathogens such as influenza and SARS-CoV-2. Additionally, reactogenic effects can contribute to vaccine hesitancy, further undermining the ability of vaccination campaigns to generate herd immunity. These limitations are fuelling the development of novel vaccine technologies to more effectively combat infectious diseases. Towards this end, advances in vaccine delivery systems, adjuvants, antigens and other technologies are paving the way for the next generation of vaccines. This Review focuses on recent advances in synthetic vaccine systems and their associated challenges, highlighting innovation in the field of nano- and nucleic acid-based vaccines.
Collapse
Affiliation(s)
- Akash Gupta
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arnab Rudra
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Kaelan Reed
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel G Anderson
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA.
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
6
|
Mayer L, Weskamm LM, Addo MM. Next-generation mpox vaccines: efficacy of mRNA-1769 compared to modified vaccinia virus Ankara in non-human primates. Signal Transduct Target Ther 2024; 9:327. [PMID: 39562787 PMCID: PMC11576757 DOI: 10.1038/s41392-024-02058-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024] Open
Affiliation(s)
- Leonie Mayer
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.
| | - Leonie M Weskamm
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.
| | - Marylyn M Addo
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
7
|
Hickman HD, Moutsopoulos NM. Viral infection and antiviral immunity in the oral cavity. Nat Rev Immunol 2024:10.1038/s41577-024-01100-x. [PMID: 39533045 DOI: 10.1038/s41577-024-01100-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
Individual tissues have distinct antiviral properties garnered through various mechanisms, including physical characteristics, tissue-resident immune cells and commensal organisms. Although the oral mucosa has long been appreciated as a critical barrier tissue that is exposed to a continuous barrage of pathogens, many fundamental aspects of the antiviral immune response in this tissue remain unknown. Several viral pathogens, such as herpesviruses and human papillomaviruses, have been acknowledged both historically and at present for infections in the oral cavity that result in substantial clinical burden. However, recent viral outbreaks, including those with SARS-CoV-2 and mpox, featured oral symptoms even though these viruses are not generally considered oral pathogens. Ensuing studies have shown that the oral cavity is an important locale for viral infection and potential transmission of newly emergent or re-emergent pathogens, highlighting the need for an increased understanding of the mechanisms of antiviral immunity at this site. In this Review, we provide a broad overview of antiviral immune responses in the oral cavity and discuss common viral infections and their manifestations in the oral mucosa. In addition, we present current mouse models for the study of oral viral infections.
Collapse
Affiliation(s)
- Heather D Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Niki M Moutsopoulos
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Radaelli A, Zanotto C, Brambilla C, Adami T, Paolini F, Venuti A, Manuka A, Mehmeti I, De Giuli Morghen C. Different immunogens and prime-boost vaccination strategies affect the efficacy of recombinant candidate vaccines against pathogenic orthopoxviruses. Virol J 2024; 21:282. [PMID: 39511612 PMCID: PMC11542223 DOI: 10.1186/s12985-024-02534-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
Abstract
Although not as lethal as variola virus (VARV), the cause of smallpox, monkeypox virus (MPXV) represents a threat to public health, with important infection rates and mortality in several African countries and signs of spreading worldwide. MPXV may establish new reservoirs in non-endemic countries and can be considered a possible biological weapon. Human-to-human MPXV transmission is increasing with a growing susceptibility, coincident with the declining herd immunity against smallpox. The emerging threat of MPXV highlights the urgent need for protection from new zoonotic infections, as mankind is completely unprepared for encounters with new viruses. Preventive vaccination remains the most effective control against orthopoxviruses (OPXVs) such as MPXV and prime-boost vaccination strategies can significantly influence vaccine efficacy and enhance immune responses. Our study aimed at characterizing potential vaccine candidates against OPXV infections in a murine model using DNA, viral and protein recombinant vaccines using different prime-boost regimens. The experiments employed Vaccinia virus (VACV) A33, B5, L1, and A27 envelope proteins as immunogens for both priming and boosting. Priming was carried out using a mixture of four plasmids (4pVAXmix), and boosts employed fowlpox (FWPV) recombinants (4FPmix) and/or the purified recombinant proteins (4protmix), all of them expressing the same antigens. One or two doses of the same immunogens were tested and identical protocols were also compared for intranasal (i.n.) or intramuscular (i.m.) viral administration, before challenge with the highly pathogenic VACV VVIHD-J strain. Our results show that a single dose of any combined immunogen elicited a very low antibody response. Protein mixtures administered twice boosted the humoral response of DNA immunizations by electroporation (e. p.), but did not protect from viral challenge. The antibody neutralizing titer was inversely correlated with animals' weight loss, which was initially similar in all of the groups after the challenge, but was then reversed in mice that had been primed twice with the DNA recombinants and boosted twice with the FWPV recombinants.
Collapse
MESH Headings
- Animals
- Mice
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Immunization, Secondary/methods
- Viral Vaccines/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Vaccine Efficacy
- Female
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Vaccinia virus/immunology
- Vaccinia virus/genetics
- Vaccination/methods
- Mice, Inbred BALB C
- Vaccines, DNA/immunology
- Vaccines, DNA/administration & dosage
- Poxviridae Infections/prevention & control
- Poxviridae Infections/immunology
- Disease Models, Animal
- Orthopoxvirus/immunology
- Orthopoxvirus/genetics
- Monkeypox virus/immunology
- Monkeypox virus/genetics
- Viral Envelope Proteins/immunology
- Viral Envelope Proteins/genetics
- Mpox (monkeypox)
Collapse
Affiliation(s)
- Antonia Radaelli
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via Vanvitelli 32, Milan, 20129, Italy
- Faculty of Pharmacy, Catholic University "Our Lady of Good Counsel", Rr. Dritan Hoxha, 123, Tirana, Albania
| | - Carlo Zanotto
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via Vanvitelli 32, Milan, 20129, Italy.
- Laboratory of Molecular Virology and Recombinant Vaccine Development, Department of Medical Biotechnologies and Translational Medicine, University of Milan, Via Vanvitelli, 32, Milan, 20129, Italy.
| | - Chiara Brambilla
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via Vanvitelli 32, Milan, 20129, Italy
| | - Tommaso Adami
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via Vanvitelli 32, Milan, 20129, Italy
| | - Francesca Paolini
- UOSD Tumor Immunology and Immunotherapy, HPV UNIT, IRCCS Regina Elena National Cancer Institute, via Chianesi, 53, Rome, 00144, Italy
| | - Aldo Venuti
- UOSD Tumor Immunology and Immunotherapy, HPV UNIT, IRCCS Regina Elena National Cancer Institute, via Chianesi, 53, Rome, 00144, Italy
| | - Adriana Manuka
- Faculty of Pharmacy, Catholic University "Our Lady of Good Counsel", Rr. Dritan Hoxha, 123, Tirana, Albania
| | - Irsida Mehmeti
- Faculty of Pharmacy, Catholic University "Our Lady of Good Counsel", Rr. Dritan Hoxha, 123, Tirana, Albania
| | - Carlo De Giuli Morghen
- Faculty of Pharmacy, Catholic University "Our Lady of Good Counsel", Rr. Dritan Hoxha, 123, Tirana, Albania
| |
Collapse
|
9
|
Kong T, Du P, Ma R, Wang H, Ma X, Lu J, Gao Z, Qi H, Li R, Zhang H, Xia F, Liu Y, Wang R, Duan K, Wang Z, Wang Q, Gao GF. Single-chain A35R-M1R-B6R trivalent mRNA vaccines protect mice against both mpox virus and vaccinia virus. EBioMedicine 2024; 109:105392. [PMID: 39423738 PMCID: PMC11513793 DOI: 10.1016/j.ebiom.2024.105392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Mpox has spread to many countries around the world. While the existing live attenuated mpox vaccines are effective, advances in 21st century technologies now enable the development of vaccines with more specific antigens, clearer mechanisms, and more controllable side effects. METHODS We systematically evaluated the immunogenicity and protective efficacy of the A35R, M1R and B6R antigens of the mpox virus (MPXV). With these findings, we designed three single-chain trivalent mRNA vaccines (AMAB-wt, AMAB-C140S and AMB-C140S) by integrating the soluble regions of these antigens into single mRNA-encoded polypeptides based on their protein structures. Then, the immunogenicity and protective efficacy of these single-chain mRNA vaccines were evaluated in mice models against both VACV and MPXV. FINDINGS The three single-chain vaccines elicited neutralising antibodies that effectively neutralised both VACV and MPXV. The single-chain vaccines or cocktail vaccine containing mRNAs encoding soluble antigen (sA35R + sM1R + sB6R) exhibited 100% or 80% protection against a lethal dose of VACV challenge, while the cocktail of full-length antigens (A35 + M1 + B6) and the live attenuated vaccine, VACV Tian Tan (VACV-VTT), completely failed to protect mice. Moreover, the single-chain vaccines significantly reduced viral load in the lungs and ovaries of MPXV-challenged mice. INTERPRETATION Compared with the cocktail vaccines, our single-chain designs demonstrated similar or superior immunogenicity and protective efficacy. Importantly, the simplicity of the single-chain vaccines enhances both the controllability and accessibility of mpox vaccines. We believe these single-chain vaccines qualify as the next-generation mpox vaccines. FUNDING National Natural Science Foundation of China and Youth Innovation Promotion Association of the CAS.
Collapse
Affiliation(s)
- Tianxiang Kong
- School of Medicine, Tsinghua University, Beijing, 100190, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Pei Du
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Renyi Ma
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Han Wang
- College of Future Technology, Peking University, Beijing, 100871, China
| | - Xuehui Ma
- School of Medicine, Zhejiang University, Hangzhou, 310058, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian Lu
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Zhengrong Gao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Shenzhen Children's Hospital, Shenzhen, 518000, China
| | - Hai Qi
- School of Medicine, Tsinghua University, Beijing, 100190, China
| | - Ruiqi Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Hao Zhang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, 430207, China
| | - Fei Xia
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, 430207, China
| | - Yuanlang Liu
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, 430207, China
| | - Ruyu Wang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, 430207, China
| | - Kai Duan
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, 430207, China
| | - Zejun Wang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, 430207, China
| | - Qihui Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - George F Gao
- School of Medicine, Tsinghua University, Beijing, 100190, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
10
|
Pardi N, Krammer F. mRNA vaccines for infectious diseases - advances, challenges and opportunities. Nat Rev Drug Discov 2024; 23:838-861. [PMID: 39367276 DOI: 10.1038/s41573-024-01042-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/06/2024]
Abstract
The concept of mRNA-based vaccines emerged more than three decades ago. Groundbreaking discoveries and technological advancements over the past 20 years have resolved the major roadblocks that initially delayed application of this new vaccine modality. The rapid development of nucleoside-modified COVID-19 mRNA vaccines demonstrated that this immunization platform is easy to develop, has an acceptable safety profile and can be produced at a large scale. The flexibility and ease of antigen design have enabled mRNA vaccines to enter development for a wide range of viruses as well as for various bacteria and parasites. However, gaps in our knowledge limit the development of next-generation mRNA vaccines with increased potency and safety. A deeper understanding of the mechanisms of action of mRNA vaccines, application of novel technologies enabling rational antigen design, and innovative vaccine delivery strategies and vaccination regimens will likely yield potent novel vaccines against a wide range of pathogens.
Collapse
Affiliation(s)
- Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
11
|
Garcia-Atutxa I, Mondragon-Teran P, Huerta-Saquero A, Villanueva-Flores F. Advancements in monkeypox vaccines development: a critical review of emerging technologies. Front Immunol 2024; 15:1456060. [PMID: 39464881 PMCID: PMC11502315 DOI: 10.3389/fimmu.2024.1456060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/20/2024] [Indexed: 10/29/2024] Open
Abstract
Monkeypox (mpox) is a zoonotic illness caused by the monkeypox virus (MPXV), with higher health concerns among people who are pregnant, children, and persons who are immunocompromised, including people with untreated and advanced HIV disease. Significant progress has been made in developing vaccines against mpox, yet critical challenges and limitations persist in ensuring their effectiveness, safety, and accessibility. The pertinence of this review is highlighted by the World Health Organization's declaration of a global health emergency on August 14, 2024, due to the recent mpox outbreak, underscoring the critical necessity for effective vaccine solutions in the face of a rapidly evolving virus. Here, we comprehensively analyze various vaccine platforms utilized in mpox prevention, including attenuated and non-replicating virus vaccines, viral vector-based vaccines, recombinant protein vaccines, and DNA and mRNA vaccines. We evaluate the advantages and limitations of each platform, highlighting the urgent need for ongoing research and innovation to enhance vaccine efficacy and safety. Recent advancements, such as incorporating immunostimulatory sequences, improved delivery systems, and developing polyvalent vaccines, are explored for their potential to offer broader protection against diverse orthopoxvirus strains. This work underscores the need to optimize currently available vaccines and investigate novel vaccination strategies to address future public health emergencies effectively. By focusing on these advanced methodologies, we aim to contribute to the development of robust and adaptable vaccine solutions for mpox and other related viral threats.
Collapse
Affiliation(s)
- Igor Garcia-Atutxa
- Computer Science Department, Universidad Católica de Murcia (UCAM), Murcia, Spain
| | - Paul Mondragon-Teran
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA) Unidad Morelos del Instituto Politécnico Nacional (IPN), Xochitepec, Morelos, Mexico
| | - Alejandro Huerta-Saquero
- Departamento de Bionanotecnología, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México (UNAM), Ensenada, Mexico
| | - Francisca Villanueva-Flores
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA) Unidad Morelos del Instituto Politécnico Nacional (IPN), Xochitepec, Morelos, Mexico
| |
Collapse
|
12
|
Mucker EM, Freyn AW, Bixler SL, Cizmeci D, Atyeo C, Earl PL, Natarajan H, Santos G, Frey TR, Levin RH, Meni A, Arunkumar GA, Stadlbauer D, Jorquera PA, Bennett H, Johnson JC, Hardcastle K, Americo JL, Cotter CA, Koehler JW, Davis CI, Shamblin JD, Ostrowski K, Raymond JL, Ricks KM, Carfi A, Yu WH, Sullivan NJ, Moss B, Alter G, Hooper JW. Comparison of protection against mpox following mRNA or modified vaccinia Ankara vaccination in nonhuman primates. Cell 2024; 187:5540-5553.e10. [PMID: 39236707 DOI: 10.1016/j.cell.2024.08.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024]
Abstract
In 2022, mpox virus (MPXV) spread worldwide, causing 99,581 mpox cases in 121 countries. Modified vaccinia Ankara (MVA) vaccine use reduced disease in at-risk populations but failed to deliver complete protection. Lag in manufacturing and distribution of MVA resulted in additional MPXV spread, with 12,000 reported cases in 2023 and an additional outbreak in Central Africa of clade I virus. These outbreaks highlight the threat of zoonotic spillover by Orthopoxviruses. mRNA-1769, an mRNA-lipid nanoparticle (LNP) vaccine expressing MPXV surface proteins, was tested in a lethal MPXV primate model. Similar to MVA, mRNA-1769 conferred protection against challenge and further mitigated symptoms and disease duration. Antibody profiling revealed a collaborative role between neutralizing and Fc-functional extracellular virion (EV)-specific antibodies in viral restriction and ospinophagocytic and cytotoxic antibody functions in protection against lesions. mRNA-1769 enhanced viral control and disease attenuation compared with MVA, highlighting the potential for mRNA vaccines to mitigate future pandemic threats.
Collapse
Affiliation(s)
- Eric M Mucker
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | | | - Sandra L Bixler
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | | | | | - Patricia L Earl
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Jeffrey L Americo
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Catherine A Cotter
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeff W Koehler
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Christopher I Davis
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Joshua D Shamblin
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Kristin Ostrowski
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Jo Lynne Raymond
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Keersten M Ricks
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | | | | | - Nancy J Sullivan
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, USA; Department of Virology, Immunology, and Microbiology, Boston University School of Medicine, Boston, MA, USA; Department of Biology, Boston University, Boston, MA, USA
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Jay W Hooper
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA.
| |
Collapse
|
13
|
Song S, Ren Z, Chen J, Li M, Jiang Y, Liu Y, Zhang B, Lu H, Zhao W, Shen C, Yang Y. Analysis of binding and authentic virus-neutralizing activities of immune sera induced by various monkeypox virus antigens. Immunol Res 2024; 72:902-907. [PMID: 38829493 DOI: 10.1007/s12026-024-09499-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
Monkeypox cases continue to increase globally, and there is an urgent need to develop a highly effective vaccine against monkeypox. This study investigated the binding and authentic-virus neutralizing activities of sera from mice immunized with EEV (extracellularly enveloped viruses) antigens B6R and A35R, and IMV (intrinsic material viruses) antigens M1R, A29L, E8L, and H3L against monkeypox virus. The results showed that immunizations of A35R and E8L could only induce lower titers of binding antibodies, in contrast, immunization of M1R induced the highest titers of binding antibodies, while immunization of B6R, H3L, and A29L induced moderate titers of binding antibodies. For the live monkeypox virus neutralization assay, the results showed that immunization with two doses of EEV antigen B6R did not effectively induce humoral immune responses to neutralize monkeypox live virus, immunization with EEV-A35R only induced weak monkeypox-neutralizing antibodies. In contrast, the immunization of the four types of monkeypox virus IMV antigens can all induce neutralizing antibodies against authentic monkeypox virus, among them, A29L and H3L induced the highest neutralizing antibody titers. The results of this study provide important references for the selection of antigens in the development of the next generation of monkeypox vaccines.
Collapse
Affiliation(s)
- Shuo Song
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Zuning Ren
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - Jiayin Chen
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - Mengjun Li
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - Yushan Jiang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - Yingxia Liu
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Bao Zhang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - Hongzhou Lu
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, People's Republic of China.
| | - Wei Zhao
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China.
- Ministry of Education, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Guangzhou, People's Republic of China.
| | - Chenguang Shen
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China.
- Ministry of Education, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Guangzhou, People's Republic of China.
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
| | - Yang Yang
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, People's Republic of China.
| |
Collapse
|
14
|
Yi XM, Lei YL, Li M, Zhong L, Li S. The monkeypox virus-host interplays. CELL INSIGHT 2024; 3:100185. [PMID: 39144256 PMCID: PMC11321328 DOI: 10.1016/j.cellin.2024.100185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 08/16/2024]
Abstract
Monkeypox virus (MPXV) is a DNA virus belonging to the Orthopoxvirus genus within the Poxviridae family which can cause a zoonotic infection. The unexpected non-endemic outbreak of mpox in 2022 is considered as a new global threat. It is imperative to take proactive measures, including enhancing our understanding of MPXV's biology and pathogenesis, and developing novel antiviral strategies. The host immune responses play critical roles in defensing against MPXV infection while the virus has also evolved multiple strategies for immune escape. This review summarizes the biological features, antiviral immunity, immune evasion mechanisms, pathogenicity, and prevention strategies for MPXV.
Collapse
Affiliation(s)
- Xue-Mei Yi
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ya-Li Lei
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Mi Li
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Li Zhong
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Shu Li
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
15
|
Li Y, Wang L, Chen S. An overview of the progress made in research into the Mpox virus. Med Res Rev 2024. [PMID: 39318037 DOI: 10.1002/med.22085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/05/2024] [Accepted: 09/01/2024] [Indexed: 09/26/2024]
Abstract
Mpox is a zoonotic illness caused by the Mpox virus (MPXV), a member of the Orthopoxvirus family. Although a few cases have been reported outside Africa, it was originally regarded as an endemic disease limited to African countries. However, the Mpox outbreak of 2022 was remarkable in that the infection spread to more than 123 countries worldwide, causing thousands of infections and deaths. The ongoing Mpox outbreak has been declared as a public health emergency of international concern by the World Health Organization. For a better management and control of the epidemic, this review summarizes the research advances and important scientific findings on MPXV by reviewing the current literature on epidemiology, clinical characteristics, diagnostic methods, prevention and treatment measures, and animal models of MPXV. This review provides useful information to raise awareness about the transmission, symptoms, and protective measures of MPXV, serving as a theoretical guide for relevant institutions to control MPXV.
Collapse
Affiliation(s)
- Yansheng Li
- Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound lmaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Department of Critical Care Medicine, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Lianrong Wang
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Shi Chen
- Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound lmaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Department of Critical Care Medicine, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
16
|
Cotter CA, Ignacio MA, Americo JL, Earl PL, Mucker EM, Hooper JW, Frey TR, Carfi A, Freyn AW, Moss B. Mpox mRNA-1769 Vaccine Inhibits Orthopoxvirus Replication at Intranasal, Intrarectal, and Cutaneous Sites of Inoculation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613928. [PMID: 39372733 PMCID: PMC11451744 DOI: 10.1101/2024.09.19.613928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The increasing incidence of mpox in Africa and the recent global outbreak with evidence of sexual transmission have stimulated interest in new vaccines and therapeutics. Our previous study demonstrated that mice immunized twice with a quadrivalent lipid nanoparticle vaccine comprising four monkeypox virus mRNAs raised neutralizing antibodies and antigen-specific T cells and were protected against a lethal intranasal challenge with vaccinia virus. Here we extended these findings by using live animal imaging to demonstrate that the mRNA vaccine greatly reduced virus replication and spread from an intranasal site of inoculation and prevented detectable replication at intrarectal and cutaneous inoculation sites. Moreover, considerable protection was achieved with a single vaccination and a booster vaccination enhanced protection for at least 4 months. Protection was related to the amount of mRNA inoculated, which correlated with neutralizing antibody levels. The role of antibody in protection was demonstrated by passive transfer of immune serum pre- or post-challenge to immunocompetent and immunodeficient mice lacking mature B and T cells and therefore unable to mount an adaptive response. These findings provide insights into the mechanism and extent of mRNA vaccine induced protection of orthopoxviruses and support clinical testing.
Collapse
|
17
|
Finn MB, Penfound TA, Salehi S, Ogega CO, Dold C, Plante O, Dale JB. Immunogenicity of a 30-valent M protein mRNA group A Streptococcus vaccine. Vaccine 2024; 42:126205. [PMID: 39141987 DOI: 10.1016/j.vaccine.2024.126205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/19/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Group A Streptococcus (Strep A) causes both uncomplicated and severe invasive infections, as well as the post-infection complications acute rheumatic fever and rheumatic heart disease. Despite the high global burden of disease resulting from Strep A infections, there is not a licensed vaccine. A 30-valent M protein-based vaccine has previously been shown to be immunogenic in animal models and in a Phase I clinical trial (NCT02564237). Here, we assessed the immunogenicity of a 30-valent messenger (m)RNA vaccine designed to express the same M peptide targets as the 30-valent protein vaccine and compared it with the protein vaccine. METHODS Female New Zealand white rabbits were immunized with one of four vaccine formulations (3 doses of each formulation at days 1, 28, and 56): soluble mRNA (100 μg/animal), C-terminal transmembrane mRNA (100 μg/animal), protein vaccine (400 μg/animal), or a non-translatable RNA control (100 μg/animal). Serum was collected one day prior to the first dose and on days 42 and 70. Rabbit serum samples were assayed for antibody levels against synthetic M peptides by ELISA. HL-60 opsonophagocytic killing (OPK) assays were performed to assess functional antibody levels. RESULTS Serum IgG levels were similar for the mRNA and protein vaccines. The CtTM version of the mRNA vaccine elicited slightly higher antibody levels than the mRNA designed to express soluble proteins. OPK activity was similar for the mRNA and protein vaccines, regardless of M type. CONCLUSIONS The total antibody responses and functional antibody levels elicited by the 30-valent mRNA Strep A vaccines were similar to those observed following immunization with the analogous protein vaccine. The mRNA vaccine platform provides potential advantages to protein-based vaccines including inherent adjuvant activity, increased production efficiency, lower cost, and the potential to rapidly change epitopes/peptides, all of which are important considerations related to multivalent Strep A vaccine development.
Collapse
MESH Headings
- Animals
- Female
- Rabbits
- Antibodies, Bacterial/blood
- Antibodies, Bacterial/immunology
- Antigens, Bacterial/immunology
- Antigens, Bacterial/genetics
- Bacterial Outer Membrane Proteins/immunology
- Bacterial Outer Membrane Proteins/genetics
- Carrier Proteins/immunology
- Carrier Proteins/genetics
- Immunogenicity, Vaccine
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- Streptococcal Infections/prevention & control
- Streptococcal Infections/immunology
- Streptococcal Vaccines/immunology
- Streptococcal Vaccines/administration & dosage
- Streptococcal Vaccines/genetics
- Streptococcus pyogenes/immunology
- Streptococcus pyogenes/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Clinical Trials, Phase I as Topic
Collapse
Affiliation(s)
| | - Thomas A Penfound
- Department of Medicine, University of Tennessee Health Science Center, 956 Court Ave., Memphis, TN 38163, USA
| | - Sanaz Salehi
- Department of Medicine, University of Tennessee Health Science Center, 956 Court Ave., Memphis, TN 38163, USA
| | | | | | - Obadiah Plante
- Moderna, Inc., 325 Binney St., Cambridge, MA 02142, USA.
| | - James B Dale
- Department of Medicine, University of Tennessee Health Science Center, 956 Court Ave., Memphis, TN 38163, USA.
| |
Collapse
|
18
|
Collier ARY, McMahan K, Jacob-Dolan C, Liu J, Borducchi EN, Moss B, Barouch DH. Rapid Decline of Mpox Antibody Responses Following MVA-BN Vaccination. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.10.24313399. [PMID: 39314978 PMCID: PMC11419240 DOI: 10.1101/2024.09.10.24313399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The replication-incompetent modified vaccinia Ankara-Bavarian Nordic vaccine (MVA-BN; Jynneos) was deployed during the 2022 clade IIb mpox outbreak. On August 14, 2024, the World Health Organization declared the mpox clade Ib outbreak in the Democratic Republic of the Congo a public health emergency of international concern, which has raised the question about the durability of vaccine immunity after MVA-BN vaccination. In this study, we show that the MVA-BN vaccine generated mpox serum antibody responses that largely waned after 6-12 months.
Collapse
Affiliation(s)
- Ai-ris Y. Collier
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Katherine McMahan
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Jinyan Liu
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dan H. Barouch
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Ganesan A, Arunagiri T, Mani S, Kumaran VR, Sk G, Elumalai S, Kannaiah KP, Chanduluru HK. Mpox treatment evolution: past milestones, present advances, and future directions. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03385-0. [PMID: 39225831 DOI: 10.1007/s00210-024-03385-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
An underestimated worldwide health concern, Monkeypox (Mpox) is becoming a bigger menace to the world's population. After smallpox was eradicated in 1970, Mpox was found in a rural region of Africa and quickly spread to other African countries. The etiological agent of the Mpox infection, the Mpox virus, is constantly evolving, and its capability for cross-species transmission led to a global outbreak in 2022 which led to several deaths throughout the world. This review aims to showcase the progressive treatment methods and emerging innovations in the diagnostic and prevention strategies for controlling Mpox. The clinical trial data for antiviral drugs were systematically collected and analyzed using statistical tests to determine the most effective antiviral treatment. Emerging viral protein inhibitors that are under investigation for Mpox treatment were also scrutinized in this review. Additionally, modern diagnostic methods, such as the Streamlined CRISPR On Pod Evaluation platform (SCOPE) and graphene quantum rods were reviewed, and the efficacy of mRNA vaccines with traditional smallpox vaccines used for Mpox were compared. The statistical analysis revealed that tecovirimat (TCV) is the most effective antiviral drug among the other evaluated drugs, showing superior efficacy in clinical trials. Similarly, mRNA vaccines offer greater effectiveness compared to conventional smallpox vaccines. Furthermore, emerging nanomedicine and herbal drug candidates were highlighted as potential future treatments for Mpox. The findings underscore the effectiveness of TCV in treating Mpox and highlight significant advancements in preventive treatments. The review also points to innovative approaches in vaccine technology and potential future therapies, including nanomedicine and herbal remedies, which may enhance Mpox management.
Collapse
Affiliation(s)
- Alagammai Ganesan
- SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Thirumalai Arunagiri
- SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Suganandhini Mani
- SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Vamsi Ravi Kumaran
- SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Gayathrii Sk
- SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Sandhiya Elumalai
- SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Kanaka Parvathi Kannaiah
- SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India.
| | - Hemanth Kumar Chanduluru
- SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
20
|
Zapatero-Belinchón FJ, Kumar P, Ott M, Schwartz O, Sigal A. Understanding emerging and re-emerging viruses to facilitate pandemic preparedness. Nat Microbiol 2024; 9:2208-2211. [PMID: 39198691 DOI: 10.1038/s41564-024-01789-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Affiliation(s)
| | - Priti Kumar
- Yale University School of Medicine, New Haven, CT, USA.
| | - Melanie Ott
- Gladstone Institute of Virology, University of California, San Francisco, San Francisco, CA, USA.
| | | | - Alex Sigal
- Africa Health Research Institute, Durban, South Africa.
| |
Collapse
|
21
|
Huang P, Xia M, Vago FS, Jiang W, Tan M. A Pseudovirus Nanoparticle Displaying the Vaccinia Virus L1 Protein Elicited High Neutralizing Antibody Titers and Provided Complete Protection to Mice against Mortality Caused by a Vaccinia Virus Challenge. Vaccines (Basel) 2024; 12:846. [PMID: 39203972 PMCID: PMC11359793 DOI: 10.3390/vaccines12080846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/16/2024] [Accepted: 07/21/2024] [Indexed: 09/03/2024] Open
Abstract
The recent worldwide incidence of mpox infection and concerns about future emerging variants of mpox viruses highlight the need for the development of a new generation of mpox vaccines. To achieve this goal, we utilized our norovirus S nanoparticle vaccine platform to produce and evaluate two pseudovirus nanoparticles (PVNPs), S-L1 and S-J1. These PVNPs displayed the L1 neutralizing antigen target of the vaccinia virus and a yet-untested J1 antigen of the mpox virus, respectively, with the aim of creating an effective nanoparticle-based mpox vaccine. Each self-assembled PVNP consists of an inner shell resembling the interior layer of the norovirus capsid and multiple L1 or J1 antigens on the surface. The PVNPs improved the antibody responses toward the displayed L1 or J1 antigens in mice, resulting in significantly greater L1/J1-specific IgG and IgA titers than those elicited by the corresponding free L1 or J1 antigens. After immunization with the S-L1 PVNPs, the mouse sera exhibited high neutralizing antibody titers against the vaccinia virus, and the S-L1 PVNPs provided mice with 100% protection against mortality caused by vaccinia virus challenge. In contrast, the S-J1 PVNPs induced low neutralizing antibody titers and conferred mice weak protective immunity. These data confirm that the L1 protein is an excellent vaccine target and that the readily available S-L1 PVNPs are a promising mpox vaccine candidate worthy of further development.
Collapse
Affiliation(s)
- Pengwei Huang
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; (P.H.); (M.X.)
| | - Ming Xia
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; (P.H.); (M.X.)
| | - Frank S. Vago
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; (F.S.V.); (W.J.)
| | - Wen Jiang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; (F.S.V.); (W.J.)
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; (P.H.); (M.X.)
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
22
|
Ye T, Zhou J, Guo C, Zhang K, Wang Y, Liu Y, Zhou J, Xie Y, Li E, Gong R, Zhang J, Chuai X, Chiu S. Polyvalent mpox mRNA vaccines elicit robust immune responses and confer potent protection against vaccinia virus. Cell Rep 2024; 43:114269. [PMID: 38787725 DOI: 10.1016/j.celrep.2024.114269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/14/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The 2022 mpox outbreak led the World Health Organization (WHO) to declare it a public health emergency of international concern (PHEIC). There is a need to develop more effective and safer mpox virus (MPXV)-specific vaccines in response to the mpox epidemic. The mRNA vaccine is a promising platform to protect against MPXV infection. In this study, we construct two bivalent MPXV mRNA vaccines, designated LBA (B6R-A29L) and LAM (A35R-M1R), and a quadrivalent mRNA vaccine, LBAAM (B6R-A35R-A29L-M1R). The immunogenicity and protective efficacy of these vaccines alone or in combination were evaluated in a lethal mouse model. All mRNA vaccine candidates could elicit potential antigen-specific humoral and cellular immune responses and provide protection against vaccinia virus (VACV) infection. The protective effect of the combination of two bivalent mRNA vaccines and the quadrivalent vaccine was superior to that of the individual bivalent mRNA vaccine. Our study provides valuable insights for the development of more efficient and safer mRNA vaccines against mpox.
Collapse
Affiliation(s)
- Tianxi Ye
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega Science, Chinese Academy of Sciences, Wuhan, Hubei 430207, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinge Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega Science, Chinese Academy of Sciences, Wuhan, Hubei 430207, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Guo
- Guangzhou Henovcom Bioscience Co., Ltd., Guangzhou, Guangdong 510700, China
| | - Kaiyue Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega Science, Chinese Academy of Sciences, Wuhan, Hubei 430207, China
| | - Yuping Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega Science, Chinese Academy of Sciences, Wuhan, Hubei 430207, China
| | - Yanhui Liu
- Guangzhou Henovcom Bioscience Co., Ltd., Guangzhou, Guangdong 510700, China
| | - Junhui Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega Science, Chinese Academy of Sciences, Wuhan, Hubei 430207, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yalin Xie
- Guangzhou Henovcom Bioscience Co., Ltd., Guangzhou, Guangdong 510700, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China; Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, Anhui 230027, China
| | - Rui Gong
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei 430207, China; Hubei Jiangxia Laboratory, Wuhan, Hubei 430200, China.
| | - Jiancun Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, Guangzhou 510530, China.
| | - Xia Chuai
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega Science, Chinese Academy of Sciences, Wuhan, Hubei 430207, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China; Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, Anhui 230027, China.
| |
Collapse
|
23
|
Moss B. Understanding the biology of monkeypox virus to prevent future outbreaks. Nat Microbiol 2024; 9:1408-1416. [PMID: 38724757 DOI: 10.1038/s41564-024-01690-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 03/26/2024] [Indexed: 06/07/2024]
Abstract
Historically, monkeypox (mpox) was a zoonotic disease endemic in Africa. However, in 2022, a global outbreak occurred following a substantial increase in cases in Africa, coupled with spread by international travellers to other continents. Between January 2022 and October 2023, about 91,000 confirmed cases from 115 countries were reported, leading the World Health Organization to declare a public health emergency. The basic biology of monkeypox virus (MPXV) can be inferred from other poxviruses, such as vaccinia virus, and confirmed by genome sequencing. Here the biology of MPXV is reviewed, together with a discussion of adaptive changes during MPXV evolution and implications for transmission. Studying MPXV biology is important to inform specific host interactions, to aid in ongoing outbreaks and to predict those in the future.
Collapse
Affiliation(s)
- Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
24
|
Yang Y, Niu S, Shen C, Yang L, Song S, Peng Y, Xu Y, Guo L, Shen L, Liao Z, Liu J, Zhang S, Cui Y, Chen J, Chen S, Huang T, Wang F, Lu H, Liu Y. Longitudinal viral shedding and antibody response characteristics of men with acute infection of monkeypox virus: a prospective cohort study. Nat Commun 2024; 15:4488. [PMID: 38802350 PMCID: PMC11130326 DOI: 10.1038/s41467-024-48754-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Understanding of infection dynamics is important for public health measures against monkeypox virus (MPXV) infection. Herein, samples from multiple body sites and environmental fomites of 77 acute MPXV infections (HIV co-infection: N = 42) were collected every two to three days and used for detection of MPXV DNA, surface protein specific antibodies and neutralizing titers. Skin lesions show 100% positivity rate of MPXV DNA, followed by rectum (88.16%), saliva (83.78%) and oropharynx (78.95%). Positivity rate of oropharynx decreases rapidly after 7 days post symptom onset (d.p.o), while the rectum and saliva maintain a positivity rate similar to skin lesions. Viral dynamics are similar among skin lesions, saliva and oropharynx, with a peak at about 6 d.p.o. In contrast, viral levels in the rectum peak at the beginning of symptom onset and decrease rapidly thereafter. 52.66% of environmental fomite swabs are positive for MPXV DNA, with highest positivity rate (69.89%) from air-conditioning air outlets. High seropositivity against A29L (100%) and H3L (94.74%) are detected, while a correlation between IgG endpoint titers and neutralizing titers is only found for A29L. Most indexes are similar between HIV and Non-HIV participants, while HIV and rectitis are associated with higher viral loads in rectum.
Collapse
Affiliation(s)
- Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China.
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious diseases, Shenzhen, China.
- National Clinical Research Center for Infectious Disease, Shenzhen, China.
| | - Shiyu Niu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious diseases, Shenzhen, China
- National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Chenguang Shen
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Liuqing Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious diseases, Shenzhen, China
| | - Shuo Song
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious diseases, Shenzhen, China
| | - Yun Peng
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious diseases, Shenzhen, China
| | - Yifan Xu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious diseases, Shenzhen, China
| | - Liping Guo
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious diseases, Shenzhen, China
| | - Liang Shen
- Department of Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Zhonghui Liao
- School of Public Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Jiexiang Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious diseases, Shenzhen, China
| | - Shengjie Zhang
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious diseases, Shenzhen, China
| | - Yanxin Cui
- School of Public Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Jiayin Chen
- National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Si Chen
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious diseases, Shenzhen, China
| | - Ting Huang
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious diseases, Shenzhen, China
| | - Fuxiang Wang
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China.
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious diseases, Shenzhen, China.
- National Clinical Research Center for Infectious Disease, Shenzhen, China.
| | - Hongzhou Lu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China.
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious diseases, Shenzhen, China.
- National Clinical Research Center for Infectious Disease, Shenzhen, China.
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China.
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious diseases, Shenzhen, China.
| |
Collapse
|
25
|
Chi H, Zhao SQ, Chen RY, Suo XX, Zhang RR, Yang WH, Zhou DS, Fang M, Ying B, Deng YQ, Qin CF. Rapid development of double-hit mRNA antibody cocktail against orthopoxviruses. Signal Transduct Target Ther 2024; 9:69. [PMID: 38531869 DOI: 10.1038/s41392-024-01766-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 03/28/2024] Open
Abstract
The Orthopoxvirus genus, especially variola virus (VARV), monkeypox virus (MPXV), remains a significant public health threat worldwide. The development of therapeutic antibodies against orthopoxviruses is largely hampered by the high cost of antibody engineering and manufacturing processes. mRNA-encoded antibodies have emerged as a powerful and universal platform for rapid antibody production. Herein, by using the established lipid nanoparticle (LNP)-encapsulated mRNA platform, we constructed four mRNA combinations that encode monoclonal antibodies with broad neutralization activities against orthopoxviruses. In vivo characterization demonstrated that a single intravenous injection of each LNP-encapsulated mRNA antibody in mice resulted in the rapid production of neutralizing antibodies. More importantly, mRNA antibody treatments showed significant protection from weight loss and mortality in the vaccinia virus (VACV) lethal challenge mouse model, and a unique mRNA antibody cocktail, Mix2a, exhibited superior in vivo protection by targeting both intracellular mature virus (IMV)-form and extracellular enveloped virus (EEV)-form viruses. In summary, our results demonstrate the proof-of-concept production of orthopoxvirus antibodies via the LNP-mRNA platform, highlighting the great potential of tailored mRNA antibody combinations as a universal strategy to combat orthopoxvirus as well as other emerging viruses.
Collapse
Affiliation(s)
- Hang Chi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China
| | - Suo-Qun Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China
| | - Ru-Yi Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China
| | - Xing-Xing Suo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
| | - Rong-Rong Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China
| | - Wen-Hui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China
| | - Dong-Sheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China
| | - Min Fang
- School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Bo Ying
- Suzhou Abogen Biosciences Co., Ltd, Suzhou, 215123, Jiangsu, China
| | - Yong-Qiang Deng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China.
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China.
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, 100071, Beijing, China.
| |
Collapse
|
26
|
Yan H, Peng Y, Zhang J, Peng R, Feng X, Su J, Yi H, Lu Y, Gao S, Liu J, Yang M, Liu X, Gao S, Chen Z. Rapid and highly potent humoral responses to mpox nanovaccine candidates adjuvanted by thermostable scaffolds. Vaccine 2024; 42:2072-2080. [PMID: 38423815 DOI: 10.1016/j.vaccine.2024.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
Monkeypox (mpox) is a zoonotic disease caused by monkeypox virus (MPXV) of the orthopoxvirus genus. The emergence and global spread of mpox in 2022 was declared as a public health emergency by World Health Organization. This mpox pandemic alarmed us that mpox still threaten global public health. Live vaccines could be used for immunization for this disease with side effects. New alternative vaccines are urgently needed for this re-emerging disease. Specific antibody responses play key roles for protection against MPXV, therefore, vaccines that induce high humoral immunity will be ideal candidates. In the present study, we developed thermostable nanovaccine candidates for mpox by conjugating MPXV antigens with thermostable nanoscafolds. Three MPXV protective antigens, L1, A29, and A33, and the thermostable Aquafex aeolicus lumazine synthase (AaLS), were expressed in E. coli and purified by Ni-NTA methods. The nanovaccines were generated by conjugation of the antigens with AaLS. Thermal stability test results showed that the nanovaccines remained unchanged after one week storage under 37℃ and only partial degradation under 60℃, indicating high thermostability. Very interesting, one dose immunization with the nanovaccine could induce high potent antibody responses, and two dose induced 2-month high titers of antibodes. In vitro virus neutralization test showed that nanovaccine candidates induced significantly higher levels of neutralization antibodies than monomers. These results indicated that the AaLS conjugation nanovaccines of MPXV antigens are highly thermostable in terms of storage and antigenic, being good alternative vaccine candidates for this re-emerging disease.
Collapse
Affiliation(s)
- Haozhen Yan
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Yuanli Peng
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Jinsong Zhang
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Ruihao Peng
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - XiangNing Feng
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - JiaYue Su
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - HuaiMin Yi
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Yuying Lu
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Shan Gao
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Jinsong Liu
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Mingwei Yang
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Xinrui Liu
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Shenyang Gao
- Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University. Jinzhou 121001, China
| | - Zeliang Chen
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China; Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao 028000, China; Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University. Jinzhou 121001, China.
| |
Collapse
|
27
|
Zuiani A, Dulberger CL, De Silva NS, Marquette M, Lu YJ, Palowitch GM, Dokic A, Sanchez-Velazquez R, Schlatterer K, Sarkar S, Kar S, Chawla B, Galeev A, Lindemann C, Rothenberg DA, Diao H, Walls AC, Addona TA, Mensa F, Vogel AB, Stuart LM, van der Most R, Srouji JR, Türeci Ö, Gaynor RB, Şahin U, Poran A. A multivalent mRNA monkeypox virus vaccine (BNT166) protects mice and macaques from orthopoxvirus disease. Cell 2024; 187:1363-1373.e12. [PMID: 38366591 DOI: 10.1016/j.cell.2024.01.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/13/2023] [Accepted: 01/12/2024] [Indexed: 02/18/2024]
Abstract
In response to the 2022 outbreak of mpox driven by unprecedented human-to-human monkeypox virus (MPXV) transmission, we designed BNT166, aiming to create a highly immunogenic, safe, accessible, and scalable next-generation vaccine against MPXV and related orthopoxviruses. To address the multiple viral forms and increase the breadth of immune response, two candidate multivalent mRNA vaccines were evaluated pre-clinically: a quadrivalent vaccine (BNT166a; encoding the MPXV antigens A35, B6, M1, H3) and a trivalent vaccine (BNT166c; without H3). Both candidates induced robust T cell responses and IgG antibodies in mice, including neutralizing antibodies to both MPXV and vaccinia virus. In challenge studies, BNT166a and BNT166c provided complete protection from vaccinia, clade I, and clade IIb MPXV. Furthermore, immunization with BNT166a was 100% effective at preventing death and at suppressing lesions in a lethal clade I MPXV challenge in cynomolgus macaques. These findings support the clinical evaluation of BNT166, now underway (NCT05988203).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Özlem Türeci
- BioNTech SE, Mainz, Germany; HI-TRON - Helmholtz Institute for Translational Oncology Mainz by DKFZ, Mainz, Germany
| | | | - Uğur Şahin
- BioNTech SE, Mainz, Germany; TRON gGmbH - Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | | |
Collapse
|
28
|
Natami M, Gorgzadeh A, Gholipour A, Fatemi SN, Firouzeh N, Zokaei M, Mohammed Ali SH, Kheradjoo H, Sedighi S, Gholizadeh O, Kalavi S. An overview on mRNA-based vaccines to prevent monkeypox infection. J Nanobiotechnology 2024; 22:86. [PMID: 38429829 PMCID: PMC10908150 DOI: 10.1186/s12951-024-02355-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/20/2024] [Indexed: 03/03/2024] Open
Abstract
The human monkeypox virus (Mpox) is classified as a member of the Poxviridae family and belongs to the Orthopoxvirus genus. Mpox possesses double-stranded DNA, and there are two known genetic clades: those originating in West Africa and the Congo Basin, commonly known as Central African clades. Mpox may be treated with either the vaccinia vaccination or the therapeutics. Modifying the smallpox vaccine for treating and preventing Mpox has shown to be beneficial because of the strong link between smallpox and Mpox viruses and their categorization in the same family. Cross-protection against Mpox is effective with two Food and Drug Administration (FDA)-approved smallpox vaccines (ACAM2000 and JYNNEOSTM). However, ACAM2000 has the potential for significant adverse effects, such as cardiac issues, whereas JYNNEOS has a lower risk profile. Moreover, Mpox has managed to resurface, although with modified characteristics, due to the discontinuation and cessation of the smallpox vaccine for 40 years. The safety and efficacy of the two leading mRNA vaccines against SARS-CoV-2 and its many variants have been shown in clinical trials and subsequent data analysis. This first mRNA treatment model involves injecting patients with messenger RNA to produce target proteins and elicit an immunological response. High potency, the possibility of safe administration, low-cost manufacture, and quick development is just a few of the benefits of RNA-based vaccines that pave the way for a viable alternative to conventional vaccines. When protecting against Mpox infection, mRNA vaccines are pretty efficient and may one day replace the present whole-virus vaccines. Therefore, the purpose of this article is to provide a synopsis of the ongoing research, development, and testing of an mRNA vaccine against Mpox.
Collapse
Affiliation(s)
- Mohammad Natami
- Department of Urology, Shahid Mohammadi Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Arsalan Gholipour
- Free Researchers, Biotechnology and Nanobiotechnology, Babolsar, Iran
| | | | - Nima Firouzeh
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Maryam Zokaei
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | | - Shaylan Kalavi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Islamic Azad University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Wang H, Yin P, Zheng T, Qin L, Li S, Han P, Qu X, Wen J, Ding H, Wu J, Kong T, Gao Z, Hu S, Zhao X, Cao X, Fang M, Qi J, Xi JJ, Duan K, Yang X, Zhang Z, Wang Q, Tan W, Gao GF. Rational design of a 'two-in-one' immunogen DAM drives potent immune response against mpox virus. Nat Immunol 2024; 25:307-315. [PMID: 38182667 DOI: 10.1038/s41590-023-01715-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/17/2023] [Indexed: 01/07/2024]
Abstract
The global outbreak of the mpox virus (MPXV) in 2022 highlights the urgent need for safer and more accessible new-generation vaccines. Here, we used a structure-guided multi-antigen fusion strategy to design a 'two-in-one' immunogen based on the single-chain dimeric MPXV extracellular enveloped virus antigen A35 bivalently fused with the intracellular mature virus antigen M1, called DAM. DAM preserved the natural epitope configuration of both components and showed stronger A35-specific and M1-specific antibody responses and in vivo protective efficacy against vaccinia virus (VACV) compared to co-immunization strategies. The MPXV-specific neutralizing antibodies elicited by DAM were 28 times higher than those induced by live VACV vaccine. Aluminum-adjuvanted DAM vaccines protected mice from a lethal VACV challenge with a safety profile, and pilot-scale production confirmed the high yield and purity of DAM. Thus, our study provides innovative insights and an immunogen candidate for the development of alternative vaccines against MPXV and other orthopoxviruses.
Collapse
Affiliation(s)
- Han Wang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China.
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, School of Engineering Medicine, Beihang University, Beijing, China.
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Peng Yin
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, School of Engineering Medicine, Beihang University, Beijing, China
| | - Tingting Zheng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lanju Qin
- Department of Biological Sciences, School of life Science, Liaoning University, Shenyang, China
| | - Shihua Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Pu Han
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiao Qu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jun Wen
- Shanghai Junshi Biosciences, Shanghai, China
| | - Haoyi Ding
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Jiahao Wu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | | | - Zhengrong Gao
- Shenzhen Children's Hospital, Shenzhen, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Songtao Hu
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xin Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiangyu Cao
- Department of Biological Sciences, School of life Science, Liaoning University, Shenyang, China
| | - Min Fang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jianzhong Jeff Xi
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Kai Duan
- Wuhan Institute of Biological Products, Wuhan, China
| | | | | | - Qihui Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Wenjie Tan
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China.
| | - George Fu Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
30
|
Riccardo V, Pablo GC. Neutralization Determinants on Poxviruses. Viruses 2023; 15:2396. [PMID: 38140637 PMCID: PMC10747254 DOI: 10.3390/v15122396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Smallpox was a highly contagious disease caused by the variola virus. The disease affected millions of people over thousands of years and variola virus ranked as one of the deadliest viruses in human history. The complete eradication of smallpox in 1980, a major triumph in medicine, was achieved through a global vaccination campaign using a less virulent poxvirus, vaccinia virus. Despite this success, the herd immunity established by this campaign has significantly waned, and concerns are rising about the potential reintroduction of variola virus as a biological weapon or the emergence of zoonotic poxviruses. These fears were further fueled in 2022 by a global outbreak of monkeypox virus (mpox), which spread to over 100 countries, thereby boosting interest in developing new vaccines using molecular approaches. However, poxviruses are complex and creating modern vaccines against them is challenging. This review focuses on the structural biology of the six major neutralization determinants on poxviruses (D8, H3, A27, L1, B5, and A33), the localization of epitopes targeted by neutralizing antibodies, and their application in the development of subunit vaccines.
Collapse
Affiliation(s)
| | - Guardado-Calvo Pablo
- Structural Biology of Infectious Diseases Unit, Institut Pasteur, Université Paris Cité, F-75015 Paris, France;
| |
Collapse
|