1
|
Stomberski CT, Venetos NM, Zhou HL, Qian Z, Collison BR, Field SJ, Premont RT, Stamler JS. A multienzyme S-nitrosylation cascade regulates cholesterol homeostasis. Cell Rep 2022; 41:111538. [PMID: 36288700 PMCID: PMC9667709 DOI: 10.1016/j.celrep.2022.111538] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/03/2022] [Accepted: 09/30/2022] [Indexed: 11/03/2022] Open
Abstract
Accumulating evidence suggests that protein S-nitrosylation is enzymatically regulated and that specificity in S-nitrosylation derives from dedicated S-nitrosylases and denitrosylases that conjugate and remove S-nitrosothiols, respectively. Here, we report that mice deficient in the protein denitrosylase SCoR2 (S-nitroso-Coenzyme A Reductase 2; AKR1A1) exhibit marked reductions in serum cholesterol due to reduced secretion of the cholesterol-regulating protein PCSK9. SCoR2 associates with endoplasmic reticulum (ER) secretory machinery to control an S-nitrosylation cascade involving ER cargo-selection proteins SAR1 and SURF4, which moonlight as S-nitrosylases. SAR1 acts as a SURF4 nitrosylase and SURF4 as a PCSK9 nitrosylase to inhibit PCSK9 secretion, while SCoR2 counteracts nitrosylase activity by promoting PCSK9 denitrosylation. Inhibition of PCSK9 by an NO-based drug requires nitrosylase activity, and small-molecule inhibition of SCoR2 phenocopies the PCSK9-mediated reductions in cholesterol observed in SCoR2-deficient mice. Our results reveal enzymatic machinery controlling cholesterol levels through S-nitrosylation and suggest a distinct treatment paradigm for cardiovascular disease.
Collapse
Affiliation(s)
- Colin T Stomberski
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44016, USA; Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Nicholas M Venetos
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44016, USA; Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Hua-Lin Zhou
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44016, USA; Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44016, USA
| | - Zhaoxia Qian
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44016, USA
| | - Bryce R Collison
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Seth J Field
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44016, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44016, USA
| | - Richard T Premont
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44016, USA; Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44016, USA
| | - Jonathan S Stamler
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44016, USA; Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44016, USA.
| |
Collapse
|
2
|
Nakamura T, Oh CK, Zhang X, Lipton SA. Protein S-nitrosylation and oxidation contribute to protein misfolding in neurodegeneration. Free Radic Biol Med 2021; 172:562-577. [PMID: 34224817 PMCID: PMC8579830 DOI: 10.1016/j.freeradbiomed.2021.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/19/2022]
Abstract
Neurodegenerative disorders like Alzheimer's disease and Parkinson's disease are characterized by progressive degeneration of synapses and neurons. Accumulation of misfolded/aggregated proteins represents a pathological hallmark of most neurodegenerative diseases, potentially contributing to synapse loss and neuronal damage. Emerging evidence suggests that misfolded proteins accumulate in the diseased brain at least in part as a consequence of excessively generated reactive oxygen species (ROS) and reactive nitrogen species (RNS). Mechanistically, not only disease-linked genetic mutations but also known risk factors for neurodegenerative diseases, such as aging and exposure to environmental toxins, can accelerate production of ROS/RNS, which contribute to protein misfolding - in many cases mimicking the effect of rare genetic mutations known to be linked to the disease. This review will focus on the role of RNS-dependent post-translational modifications, such as S-nitrosylation and tyrosine nitration, in protein misfolding and aggregation. Specifically, we will discuss molecular mechanisms whereby RNS disrupt the activity of the cellular protein quality control machinery, including molecular chaperones, autophagy/lysosomal pathways, and the ubiquitin-proteasome system (UPS). Because chronic accumulation of misfolded proteins can trigger mitochondrial dysfunction, synaptic damage, and neuronal demise, further characterization of RNS-mediated protein misfolding may establish these molecular events as therapeutic targets for intervention in neurodegenerative diseases.
Collapse
Affiliation(s)
- Tomohiro Nakamura
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Chang-Ki Oh
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Xu Zhang
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Stuart A Lipton
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA; Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, CA, 92093, USA.
| |
Collapse
|
3
|
Mnatsakanyan R, Markoutsa S, Walbrunn K, Roos A, Verhelst SHL, Zahedi RP. Proteome-wide detection of S-nitrosylation targets and motifs using bioorthogonal cleavable-linker-based enrichment and switch technique. Nat Commun 2019; 10:2195. [PMID: 31097712 PMCID: PMC6522481 DOI: 10.1038/s41467-019-10182-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/18/2019] [Indexed: 01/03/2023] Open
Abstract
Cysteine modifications emerge as important players in cellular signaling and homeostasis. Here, we present a chemical proteomics strategy for quantitative analysis of reversibly modified Cysteines using bioorthogonal cleavable-linker and switch technique (Cys-BOOST). Compared to iodoTMT for total Cysteine analysis, Cys-BOOST shows a threefold higher sensitivity and considerably higher specificity and precision. Analyzing S-nitrosylation (SNO) in S-nitrosoglutathione (GSNO)-treated and non-treated HeLa extracts Cys-BOOST identifies 8,304 SNO sites on 3,632 proteins covering a wide dynamic range of the proteome. Consensus motifs of SNO sites with differential GSNO reactivity confirm the relevance of both acid-base catalysis and local hydrophobicity for NO targeting to particular Cysteines. Applying Cys-BOOST to SH-SY5Y cells, we identify 2,151 SNO sites under basal conditions and reveal significantly changed SNO levels as response to early nitrosative stress, involving neuro(axono)genesis, glutamatergic synaptic transmission, protein folding/translation, and DNA replication. Our work suggests SNO as a global regulator of protein function akin to phosphorylation and ubiquitination. Reversible cysteine modifications play important roles in cellular redox signaling. Here, the authors develop a chemical proteomics strategy that enables the quantitative analysis of endogenous cysteine nitrosylation sites and their dynamic regulation under nitrosative stress conditions.
Collapse
Affiliation(s)
- Ruzanna Mnatsakanyan
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Stavroula Markoutsa
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Kim Walbrunn
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Andreas Roos
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany.,Department of Neuropediatrics, Centre for Neuromuscular Disorders in Children, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany
| | - Steven H L Verhelst
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany.,Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49, Box 802, 3000, Leuven, Belgium
| | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany. .,Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, 5100 de Maisonneuve Blvd. West, Montreal, Quebec, H4A 3T2, Canada. .,Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, Quebec, H3T 1E2, Canada.
| |
Collapse
|
4
|
Bryan NS, Lefer DJ. Update on Gaseous Signaling Molecules Nitric Oxide and Hydrogen Sulfide: Strategies to Capture their Functional Activity for Human Therapeutics. Mol Pharmacol 2019; 96:109-114. [PMID: 31061006 DOI: 10.1124/mol.118.113910] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 05/02/2019] [Indexed: 11/22/2022] Open
Abstract
Discovery of the production of gaseous molecules, such as nitric oxide and hydrogen sulfide, within the human body began a new concept in cellular signaling. Over the past 30 years, these molecules have been investigated and found to have extremely important beneficial effects in numerous chronic diseases. Gaseous signaling molecules that diffuse in three dimensions apparently contradict the selectivity and specificity afforded by normal ligand receptor binding and activation. This new concept has also created hurdles in the development of safe and efficacious drug therapy based on these molecules. Mechanisms involving formation of more stable intermediates and second messengers allow for new strategies for safe and effective delivery of these molecules for human disease. The purpose of this review is to highlight the biologic effects of nitric oxide and hydrogen sulfide, their seemingly indistinguishable effects, and how these molecules can be safely harnessed for drug development and precursors or substrates administered for human consumption through applied physiology.
Collapse
Affiliation(s)
- Nathan S Bryan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas (N.S.B.); and Louisiana State University School of Medicine, New Orleans, Louisiana (D.J.L.)
| | - David J Lefer
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas (N.S.B.); and Louisiana State University School of Medicine, New Orleans, Louisiana (D.J.L.)
| |
Collapse
|
5
|
Nitric oxide mediated redox regulation of protein homeostasis. Cell Signal 2018; 53:348-356. [PMID: 30408515 DOI: 10.1016/j.cellsig.2018.10.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/27/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022]
Abstract
Nitric oxide is a versatile diffusible signaling molecule, whose biosynthesis by three NO synthases (NOS) is tightly regulated at transcriptional and posttranslational levels, availability of co-factors, and calcium binding. Above normal levels of NO have beneficial protective effects for example in the cardiovascular system, but also contribute to the pathophysiology in the context of inflammatory diseases, and to aging and neurodegeneration in the nervous system. The effect specificity relies on the functional and spatial specificity of the NOS isoenzymes, and on the duality of two major signaling mechanisms (i) activation of soluble guanylycylase (sGC)-dependent cGMP production and (ii) direct S-nitrosylation of redox sensitive cysteines of susceptible proteins. The present review summarizes the functional implications of S-nitrosylation in the context of proteostasis, and focuses on two NO target proteins, heat shock cognate of 70 kDa (Hsc70/HSPA8) and the ubiquitin 2 ligase (UBE2D), because both are modified on functionally critical cysteines and are key regulators of chaperone mediated and assisted autophagy and proteasomal protein degradation. SNO modifications of these candidates are associated with protein accumulations and adoption of a senescent phenotype of neuronal cells suggesting that S-nitrosylations of protein homeostatic machineries contribute to aging phenomena.
Collapse
|
6
|
Chernoff G, Bryan N, Park AM. Mesothelial Stem Cells and Stromal Vascular Fraction. Facial Plast Surg Clin North Am 2018; 26:487-501. [DOI: 10.1016/j.fsc.2018.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Nitric oxide contributes to protein homeostasis by S-nitrosylations of the chaperone HSPA8 and the ubiquitin ligase UBE2D. Redox Biol 2018; 20:217-235. [PMID: 30368041 PMCID: PMC6202877 DOI: 10.1016/j.redox.2018.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/25/2018] [Accepted: 10/02/2018] [Indexed: 02/06/2023] Open
Abstract
Upregulations of neuronal nitric oxide synthase (nNOS) in the rodent brain have been associated with neuronal aging. To address underlying mechanisms we generated SH-SY5Y neuronal cells constitutively expressing nNOS at a level similar to mouse brain (nNOS+ versus MOCK). Initial experiments revealed S-nitrosylations (SNO) of key players of protein homeostasis: heat shock cognate HSC70/HSPA8 within its nucleotide-binding site, and UBE2D ubiquitin conjugating enzymes at the catalytic site cysteine. HSPA8 is involved in protein folding, organelle import/export and chaperone-mediated LAMP2a-dependent autophagy (CMA). A set of deep redox and full proteome analyses, plus analysis of autophagy, CMA and ubiquitination with rapamycin and starvation as stimuli confirmed the initial observations and revealed a substantial increase of SNO modifications in nNOS+ cells, in particular targeting protein networks involved in protein catabolism, ubiquitination, carbohydrate metabolism and cell cycle control. Importantly, NO-independent reversible oxidations similarly occurred in both cell lines. Functionally, nNOS caused an accumulation of proteins, including CMA substrates and loss of LAMP2a. UBE2D activity and proteasome activity were impaired, resulting in dysregulations of cell cycle checkpoint proteins. The observed changes of protein degradation pathways caused an expansion of the cytoplasm, large lysosomes, slowing of the cell cycle and suppression of proliferation suggesting a switch of the phenotype towards aging, supported by downregulations of neuronal progenitor markers but increase of senescence-associated proteins. Hence, upregulation of nNOS in neuronal cells imposes aging by SNOing of key players of ubiquitination, chaperones and of substrate proteins leading to interference with crucial steps of protein homeostasis.
Collapse
|
8
|
Jankovic A, Korac A, Buzadzic B, Stancic A, Otasevic V, Ferdinandy P, Daiber A, Korac B. Targeting the NO/superoxide ratio in adipose tissue: relevance to obesity and diabetes management. Br J Pharmacol 2017; 174:1570-1590. [PMID: 27079449 PMCID: PMC5446578 DOI: 10.1111/bph.13498] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 12/21/2022] Open
Abstract
Insulin sensitivity and metabolic homeostasis depend on the capacity of adipose tissue to take up and utilize excess glucose and fatty acids. The key aspects that determine the fuel-buffering capacity of adipose tissue depend on the physiological levels of the small redox molecule, nitric oxide (NO). In addition to impairment of NO synthesis, excessive formation of the superoxide anion (О2•- ) in adipose tissue may be an important interfering factor diverting the signalling of NO and other reactive oxygen and nitrogen species in obesity, resulting in metabolic dysfunction of adipose tissue over time. Besides its role in relief from superoxide burst, enhanced NO signalling may be responsible for the therapeutic benefits of different superoxide dismutase mimetics, in obesity and experimental diabetes models. This review summarizes the role of NO in adipose tissue and highlights the effects of NO/О2•- ratio 'teetering' as a promising pharmacological target in the metabolic syndrome. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- Aleksandra Jankovic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”University of BelgradeBelgradeSerbia
| | - Aleksandra Korac
- Faculty of Biology, Center for Electron MicroscopyUniversity of BelgradeBelgradeSerbia
| | - Biljana Buzadzic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”University of BelgradeBelgradeSerbia
| | - Ana Stancic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”University of BelgradeBelgradeSerbia
| | - Vesna Otasevic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”University of BelgradeBelgradeSerbia
| | - Péter Ferdinandy
- Department of Pharmacology and PharmacotherapySemmelweis UniversityBudapestHungary
- Pharmahungary GroupSzegedHungary
| | - Andreas Daiber
- Center for Cardiology ‐ Cardiology 1, Molecular CardiologyUniversity Medical CenterMainzGermany
| | - Bato Korac
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”University of BelgradeBelgradeSerbia
| |
Collapse
|
9
|
Jiang H, Polhemus DJ, Islam KN, Torregrossa AC, Li Z, Potts A, Lefer DJ, Bryan NS. Nebivolol Acts as a S-Nitrosoglutathione Reductase Inhibitor. J Cardiovasc Pharmacol Ther 2016; 21:478-85. [DOI: 10.1177/1074248415626300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/12/2015] [Indexed: 11/15/2022]
Abstract
Background and Purpose: Published data on nebivolol reveal selective β1 adrenergic selectively along with novel nitric oxide (NO)-dependent vasodilatory properties. However, the exact molecular mechanism is unknown. Protein S-nitrosylation constitutes a large part of the ubiquitous influence of NO on cellular signal transduction and is involved in a number of human diseases. More recently, protein denitrosylation has been shown to play a major role in controlling cellular S-nitrosylation (SNO). Several enzymes have been reported to catalyze the reduction of SNOs and are viewed as candidate denitrosylases. One of the first described is known as S-nitrosoglutathione reductase (GSNOR). Importantly, GSNOR has been shown to play a role in regulating SNO signaling downstream of the β-adrenergic receptor and is therefore operative in cellular signal transduction. Pharmacological inhibition or genetic deletion of GSNOR leads to enhanced vasodilation and characteristic of known effects of nebivolol. Structurally, nebivolol is similar to known inhibitors of GSNOR. Therefore, we hypothesize that some of the known effects of nebivolol may occur through this mechanism. Experimental Approach: Using cell culture systems, tissue organ bath, and intact animal models, we report that nebivolol treatment leads to a dose-dependent accumulation of nitrosothiols in cells, and this is associated with an enhanced vasodilation by S-nitrosoglutathione. Key Results: These data suggest a new mechanism of action of nebivolol that may explain in part the reported NO activity. Conclusions and Implications: Because exogenous mediators of protein SNO or denitrosylation can substantially affect the development or progression of disease, this may call for new utility of nebivolol.
Collapse
Affiliation(s)
- Hong Jiang
- Texas Therapeutics Institute at Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - David J. Polhemus
- LSU Health Science Center, Cardiovascular Center of Excellence, New Orleans, LA, USA
| | - Kazi N. Islam
- LSU Health Science Center, Cardiovascular Center of Excellence, New Orleans, LA, USA
| | - Ashley C. Torregrossa
- Texas Therapeutics Institute at Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Zhen Li
- LSU Health Science Center, Cardiovascular Center of Excellence, New Orleans, LA, USA
| | - Amy Potts
- Texas Therapeutics Institute at Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - David J. Lefer
- LSU Health Science Center, Cardiovascular Center of Excellence, New Orleans, LA, USA
| | - Nathan S. Bryan
- Texas Therapeutics Institute at Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
10
|
Zhang HH, Lechuga TJ, Chen Y, Yang Y, Huang L, Chen DB. Quantitative Proteomics Analysis of VEGF-Responsive Endothelial Protein S-Nitrosylation Using Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and LC-MS/MS. Biol Reprod 2016; 94:114. [PMID: 27075618 PMCID: PMC4939742 DOI: 10.1095/biolreprod.116.139337] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/08/2016] [Accepted: 04/06/2016] [Indexed: 12/20/2022] Open
Abstract
Adduction of a nitric oxide moiety (NO•) to cysteine(s), termed S-nitrosylation (SNO), is a novel mechanism for NO to regulate protein function directly. However, the endothelial SNO-protein network that is affected by endogenous and exogenous NO is obscure. This study was designed to develop a quantitative proteomics approach using stable isotope labeling by amino acids in cell culture for comparing vascular endothelial growth factor (VEGFA)- and NO donor-responsive endothelial nitroso-proteomes. Primary placental endothelial cells were labeled with "light" (L-(12)C6 (14)N4-Arg and L-(12)C6 (14)N2-Lys) or "heavy" (L-(13)C6 (15)N4-Arg and L-(13)C6 (15)N2-Lys) amino acids. The light cells were treated with an NO donor nitrosoglutathione (GSNO, 1 mM) or VEGFA (10 ng/ml) for 30 min, while the heavy cells received vehicle as control. Equal amounts of cellular proteins from the light (GSNO or VEGFA treated) and heavy cells were mixed for labeling SNO-proteins by the biotin switch technique and then trypsin digested. Biotinylated SNO-peptides were purified for identifying SNO-proteins by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Ratios of light to heavy SNO-peptides were calculated for determining the changes of the VEGFA- and GSNO-responsive endothelial nitroso-proteomes. A total of 387 light/heavy pairs of SNO-peptides were identified, corresponding to 213 SNO-proteins that include 125 common and 27 VEGFA- and 61 GSNO-responsive SNO-proteins. The specific SNO-cysteine(s) in each SNO-protein were simultaneously identified. Pathway analysis revealed that SNO-proteins are involved in various endothelial functions, including proliferation, motility, metabolism, and protein synthesis. We collectively conclude that endogenous NO on VEGFA stimulation and exogenous NO from GSNO affect common and different SNO-protein networks, implicating SNO as a critical mechanism for VEGFA stimulation of angiogenesis.
Collapse
Affiliation(s)
- Hong-Hai Zhang
- Department of Obstetrics and Gynecology, University of California, Irvine, California
| | - Thomas J Lechuga
- Department of Obstetrics and Gynecology, University of California, Irvine, California
| | - Yuezhou Chen
- Department of Obstetrics and Gynecology, University of California, Irvine, California
| | - Yingying Yang
- Department of Biophysics and Physiology, University of California, Irvine, California
| | - Lan Huang
- Department of Biophysics and Physiology, University of California, Irvine, California
| | - Dong-Bao Chen
- Department of Obstetrics and Gynecology, University of California, Irvine, California
| |
Collapse
|
11
|
Peroxynitrite is Involved in the Apoptotic Death of Cultured Cerebellar Granule Neurons Induced by Staurosporine, but not by Potassium Deprivation. Neurochem Res 2015; 41:316-27. [PMID: 26700430 DOI: 10.1007/s11064-015-1805-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 01/13/2023]
Abstract
Nitric oxide (NO) regulates numerous physiological process and is the main source of reactive nitrogen species (RNS). NO promotes cell survival, but it also induces apoptotic death having been involved in the pathogenesis of several neurodegenerative diseases. NO and superoxide anion react to form peroxynitrite, which accounts for most of the deleterious effects of NO. The mechanisms by which these molecules regulate the apoptotic process are not well understood. In this study, we evaluated the role of NO and peroxynitrite in the apoptotic death of cultured cerebellar granule neurons (CGN), which are known to experience apoptosis by staurosporine (St) or potassium deprivation (K5). We found that CGN treated with the peroxynitrite catalyst, FeTTPs were completely rescued from St-induced death, but not from K5-induced death. On the other hand, the inhibition of the inducible nitric oxide synthase partially protected cell viability in CGN treated with K5, but not with St, while the inhibitor L-NAME further reduced the cell viability in St, but it did not affect K5. Finally, an inhibitor of the soluble guanylate cyclase (sGC) diminished the cell viability in K5, but not in St. Altogether, these results shows that NO promotes cell survival in K5 through sGC-cGMP and promotes cell death by other mechanisms, while in St NO promotes cell survival independently of cGMP and peroxynitrite results critical for St-induced death. Our results suggest that RNS are differentially handled by CGN during cell death depending on the death-inducing conditions.
Collapse
|
12
|
Qu Z, Greenlief CM, Gu Z. Quantitative Proteomic Approaches for Analysis of Protein S-Nitrosylation. J Proteome Res 2015; 15:1-14. [DOI: 10.1021/acs.jproteome.5b00857] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - C. Michael Greenlief
- Department
of Chemistry, University of Missouri College of Arts and Science, Columbia, Missouri 65211, United States
| | - Zezong Gu
- Harry S. Truman Veterans’ Hospital, Columbia, Missouri 65201, United States
| |
Collapse
|
13
|
Chung HS, Murray CI, Venkatraman V, Crowgey EL, Rainer PP, Cole RN, Bomgarden RD, Rogers JC, Balkan W, Hare JM, Kass DA, Van Eyk JE. Dual Labeling Biotin Switch Assay to Reduce Bias Derived From Different Cysteine Subpopulations: A Method to Maximize S-Nitrosylation Detection. Circ Res 2015; 117:846-57. [PMID: 26338901 DOI: 10.1161/circresaha.115.307336] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/03/2015] [Indexed: 01/09/2023]
Abstract
RATIONALE S-nitrosylation (SNO), an oxidative post-translational modification of cysteine residues, responds to changes in the cardiac redox-environment. Classic biotin-switch assay and its derivatives are the most common methods used for detecting SNO. In this approach, the labile SNO group is selectively replaced with a single stable tag. To date, a variety of thiol-reactive tags have been introduced. However, these methods have not produced a consistent data set, which suggests an incomplete capture by a single tag and potentially the presence of different cysteine subpopulations. OBJECTIVE To investigate potential labeling bias in the existing methods with a single tag to detect SNO, explore if there are distinct cysteine subpopulations, and then, develop a strategy to maximize the coverage of SNO proteome. METHODS AND RESULTS We obtained SNO-modified cysteine data sets for wild-type and S-nitrosoglutathione reductase knockout mouse hearts (S-nitrosoglutathione reductase is a negative regulator of S-nitrosoglutathione production) and nitric oxide-induced human embryonic kidney cell using 2 labeling reagents: the cysteine-reactive pyridyldithiol and iodoacetyl based tandem mass tags. Comparison revealed that <30% of the SNO-modified residues were detected by both tags, whereas the remaining SNO sites were only labeled by 1 reagent. Characterization of the 2 distinct subpopulations of SNO residues indicated that pyridyldithiol reagent preferentially labels cysteine residues that are more basic and hydrophobic. On the basis of this observation, we proposed a parallel dual-labeling strategy followed by an optimized proteomics workflow. This enabled the profiling of 493 SNO sites in S-nitrosoglutathione reductase knockout hearts. CONCLUSIONS Using a protocol comprising 2 tags for dual-labeling maximizes overall detection of SNO by reducing the previously unrecognized labeling bias derived from different cysteine subpopulations.
Collapse
Affiliation(s)
- Heaseung Sophia Chung
- From the Department of Biological Chemistry (H.S.C., C.I.M., R.N.C., J.E.V.E.), Division of Cardiology, Department of Medicine (V.V., P.P.R., D.A.K., J.E.V.E.), The Johns Hopkins NHLBI Proteomics Innovation Center on Heart Failure (H.S.C., V.V., D.A.K., J.E.V.E.), Department of Medicine, Mass Spectrometry and Proteomic Core Facility (R.N.C.), Johns Hopkins University School of Medicine, Baltimore, MD; Thermo Fisher Scientific, Rockford, IL (R.D.B., J.C.R.); Advanced Clinical Biosystems Research Institute, Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (V.V., E.L.C., J.E.V.E.); Department of Medicine, Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (W.B., J.M.H.); Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada (C.I.M.); and Division of Cardiology, Medical University of Graz, Austria (P.P.R.)
| | - Christopher I Murray
- From the Department of Biological Chemistry (H.S.C., C.I.M., R.N.C., J.E.V.E.), Division of Cardiology, Department of Medicine (V.V., P.P.R., D.A.K., J.E.V.E.), The Johns Hopkins NHLBI Proteomics Innovation Center on Heart Failure (H.S.C., V.V., D.A.K., J.E.V.E.), Department of Medicine, Mass Spectrometry and Proteomic Core Facility (R.N.C.), Johns Hopkins University School of Medicine, Baltimore, MD; Thermo Fisher Scientific, Rockford, IL (R.D.B., J.C.R.); Advanced Clinical Biosystems Research Institute, Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (V.V., E.L.C., J.E.V.E.); Department of Medicine, Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (W.B., J.M.H.); Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada (C.I.M.); and Division of Cardiology, Medical University of Graz, Austria (P.P.R.)
| | - Vidya Venkatraman
- From the Department of Biological Chemistry (H.S.C., C.I.M., R.N.C., J.E.V.E.), Division of Cardiology, Department of Medicine (V.V., P.P.R., D.A.K., J.E.V.E.), The Johns Hopkins NHLBI Proteomics Innovation Center on Heart Failure (H.S.C., V.V., D.A.K., J.E.V.E.), Department of Medicine, Mass Spectrometry and Proteomic Core Facility (R.N.C.), Johns Hopkins University School of Medicine, Baltimore, MD; Thermo Fisher Scientific, Rockford, IL (R.D.B., J.C.R.); Advanced Clinical Biosystems Research Institute, Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (V.V., E.L.C., J.E.V.E.); Department of Medicine, Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (W.B., J.M.H.); Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada (C.I.M.); and Division of Cardiology, Medical University of Graz, Austria (P.P.R.)
| | - Erin L Crowgey
- From the Department of Biological Chemistry (H.S.C., C.I.M., R.N.C., J.E.V.E.), Division of Cardiology, Department of Medicine (V.V., P.P.R., D.A.K., J.E.V.E.), The Johns Hopkins NHLBI Proteomics Innovation Center on Heart Failure (H.S.C., V.V., D.A.K., J.E.V.E.), Department of Medicine, Mass Spectrometry and Proteomic Core Facility (R.N.C.), Johns Hopkins University School of Medicine, Baltimore, MD; Thermo Fisher Scientific, Rockford, IL (R.D.B., J.C.R.); Advanced Clinical Biosystems Research Institute, Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (V.V., E.L.C., J.E.V.E.); Department of Medicine, Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (W.B., J.M.H.); Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada (C.I.M.); and Division of Cardiology, Medical University of Graz, Austria (P.P.R.)
| | - Peter P Rainer
- From the Department of Biological Chemistry (H.S.C., C.I.M., R.N.C., J.E.V.E.), Division of Cardiology, Department of Medicine (V.V., P.P.R., D.A.K., J.E.V.E.), The Johns Hopkins NHLBI Proteomics Innovation Center on Heart Failure (H.S.C., V.V., D.A.K., J.E.V.E.), Department of Medicine, Mass Spectrometry and Proteomic Core Facility (R.N.C.), Johns Hopkins University School of Medicine, Baltimore, MD; Thermo Fisher Scientific, Rockford, IL (R.D.B., J.C.R.); Advanced Clinical Biosystems Research Institute, Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (V.V., E.L.C., J.E.V.E.); Department of Medicine, Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (W.B., J.M.H.); Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada (C.I.M.); and Division of Cardiology, Medical University of Graz, Austria (P.P.R.)
| | - Robert N Cole
- From the Department of Biological Chemistry (H.S.C., C.I.M., R.N.C., J.E.V.E.), Division of Cardiology, Department of Medicine (V.V., P.P.R., D.A.K., J.E.V.E.), The Johns Hopkins NHLBI Proteomics Innovation Center on Heart Failure (H.S.C., V.V., D.A.K., J.E.V.E.), Department of Medicine, Mass Spectrometry and Proteomic Core Facility (R.N.C.), Johns Hopkins University School of Medicine, Baltimore, MD; Thermo Fisher Scientific, Rockford, IL (R.D.B., J.C.R.); Advanced Clinical Biosystems Research Institute, Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (V.V., E.L.C., J.E.V.E.); Department of Medicine, Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (W.B., J.M.H.); Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada (C.I.M.); and Division of Cardiology, Medical University of Graz, Austria (P.P.R.)
| | - Ryan D Bomgarden
- From the Department of Biological Chemistry (H.S.C., C.I.M., R.N.C., J.E.V.E.), Division of Cardiology, Department of Medicine (V.V., P.P.R., D.A.K., J.E.V.E.), The Johns Hopkins NHLBI Proteomics Innovation Center on Heart Failure (H.S.C., V.V., D.A.K., J.E.V.E.), Department of Medicine, Mass Spectrometry and Proteomic Core Facility (R.N.C.), Johns Hopkins University School of Medicine, Baltimore, MD; Thermo Fisher Scientific, Rockford, IL (R.D.B., J.C.R.); Advanced Clinical Biosystems Research Institute, Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (V.V., E.L.C., J.E.V.E.); Department of Medicine, Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (W.B., J.M.H.); Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada (C.I.M.); and Division of Cardiology, Medical University of Graz, Austria (P.P.R.)
| | - John C Rogers
- From the Department of Biological Chemistry (H.S.C., C.I.M., R.N.C., J.E.V.E.), Division of Cardiology, Department of Medicine (V.V., P.P.R., D.A.K., J.E.V.E.), The Johns Hopkins NHLBI Proteomics Innovation Center on Heart Failure (H.S.C., V.V., D.A.K., J.E.V.E.), Department of Medicine, Mass Spectrometry and Proteomic Core Facility (R.N.C.), Johns Hopkins University School of Medicine, Baltimore, MD; Thermo Fisher Scientific, Rockford, IL (R.D.B., J.C.R.); Advanced Clinical Biosystems Research Institute, Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (V.V., E.L.C., J.E.V.E.); Department of Medicine, Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (W.B., J.M.H.); Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada (C.I.M.); and Division of Cardiology, Medical University of Graz, Austria (P.P.R.)
| | - Wayne Balkan
- From the Department of Biological Chemistry (H.S.C., C.I.M., R.N.C., J.E.V.E.), Division of Cardiology, Department of Medicine (V.V., P.P.R., D.A.K., J.E.V.E.), The Johns Hopkins NHLBI Proteomics Innovation Center on Heart Failure (H.S.C., V.V., D.A.K., J.E.V.E.), Department of Medicine, Mass Spectrometry and Proteomic Core Facility (R.N.C.), Johns Hopkins University School of Medicine, Baltimore, MD; Thermo Fisher Scientific, Rockford, IL (R.D.B., J.C.R.); Advanced Clinical Biosystems Research Institute, Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (V.V., E.L.C., J.E.V.E.); Department of Medicine, Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (W.B., J.M.H.); Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada (C.I.M.); and Division of Cardiology, Medical University of Graz, Austria (P.P.R.)
| | - Joshua M Hare
- From the Department of Biological Chemistry (H.S.C., C.I.M., R.N.C., J.E.V.E.), Division of Cardiology, Department of Medicine (V.V., P.P.R., D.A.K., J.E.V.E.), The Johns Hopkins NHLBI Proteomics Innovation Center on Heart Failure (H.S.C., V.V., D.A.K., J.E.V.E.), Department of Medicine, Mass Spectrometry and Proteomic Core Facility (R.N.C.), Johns Hopkins University School of Medicine, Baltimore, MD; Thermo Fisher Scientific, Rockford, IL (R.D.B., J.C.R.); Advanced Clinical Biosystems Research Institute, Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (V.V., E.L.C., J.E.V.E.); Department of Medicine, Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (W.B., J.M.H.); Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada (C.I.M.); and Division of Cardiology, Medical University of Graz, Austria (P.P.R.)
| | - David A Kass
- From the Department of Biological Chemistry (H.S.C., C.I.M., R.N.C., J.E.V.E.), Division of Cardiology, Department of Medicine (V.V., P.P.R., D.A.K., J.E.V.E.), The Johns Hopkins NHLBI Proteomics Innovation Center on Heart Failure (H.S.C., V.V., D.A.K., J.E.V.E.), Department of Medicine, Mass Spectrometry and Proteomic Core Facility (R.N.C.), Johns Hopkins University School of Medicine, Baltimore, MD; Thermo Fisher Scientific, Rockford, IL (R.D.B., J.C.R.); Advanced Clinical Biosystems Research Institute, Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (V.V., E.L.C., J.E.V.E.); Department of Medicine, Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (W.B., J.M.H.); Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada (C.I.M.); and Division of Cardiology, Medical University of Graz, Austria (P.P.R.)
| | - Jennifer E Van Eyk
- From the Department of Biological Chemistry (H.S.C., C.I.M., R.N.C., J.E.V.E.), Division of Cardiology, Department of Medicine (V.V., P.P.R., D.A.K., J.E.V.E.), The Johns Hopkins NHLBI Proteomics Innovation Center on Heart Failure (H.S.C., V.V., D.A.K., J.E.V.E.), Department of Medicine, Mass Spectrometry and Proteomic Core Facility (R.N.C.), Johns Hopkins University School of Medicine, Baltimore, MD; Thermo Fisher Scientific, Rockford, IL (R.D.B., J.C.R.); Advanced Clinical Biosystems Research Institute, Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (V.V., E.L.C., J.E.V.E.); Department of Medicine, Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (W.B., J.M.H.); Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada (C.I.M.); and Division of Cardiology, Medical University of Graz, Austria (P.P.R.).
| |
Collapse
|
14
|
Hu J, Huang X, Chen L, Sun X, Lu C, Zhang L, Wang Y, Zuo J. Site-specific nitrosoproteomic identification of endogenously S-nitrosylated proteins in Arabidopsis. PLANT PHYSIOLOGY 2015; 167:1731-46. [PMID: 25699590 PMCID: PMC4378176 DOI: 10.1104/pp.15.00026] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/02/2015] [Indexed: 05/18/2023]
Abstract
Nitric oxide (NO) regulates multiple developmental events and stress responses in plants. A major biologically active species of NO is S-nitrosoglutathione (GSNO), which is irreversibly degraded by GSNO reductase (GSNOR). The major physiological effect of NO is protein S-nitrosylation, a redox-based posttranslational modification mechanism by covalently linking an NO molecule to a cysteine thiol. However, little is known about the mechanisms of S-nitrosylation-regulated signaling, partly due to limited S-nitrosylated proteins being identified. In this study, we identified 1,195 endogenously S-nitrosylated peptides in 926 proteins from the Arabidopsis (Arabidopsis thaliana) by a site-specific nitrosoproteomic approach, which, to date, is the largest data set of S-nitrosylated proteins among all organisms. Consensus sequence analysis of these peptides identified several motifs that contain acidic, but not basic, amino acid residues flanking the S-nitrosylated cysteine residues. These S-nitrosylated proteins are involved in a wide range of biological processes and are significantly enriched in chlorophyll metabolism, photosynthesis, carbohydrate metabolism, and stress responses. Consistently, the gsnor1-3 mutant shows the decreased chlorophyll content and altered photosynthetic properties, suggesting that S-nitrosylation is an important regulatory mechanism in these processes. These results have provided valuable resources and new clues to the studies on S-nitrosylation-regulated signaling in plants.
Collapse
Affiliation(s)
- Jiliang Hu
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.H., L.C., J.Z.), and State Key Laboratory of Molecular Developmental Biology (X.H., Y.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;Graduate University of Chinese Academy of Sciences, Beijing 100049, China (J.H., L.C.); andInstitute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.S., C.L., L.Z.)
| | - Xiahe Huang
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.H., L.C., J.Z.), and State Key Laboratory of Molecular Developmental Biology (X.H., Y.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;Graduate University of Chinese Academy of Sciences, Beijing 100049, China (J.H., L.C.); andInstitute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.S., C.L., L.Z.)
| | - Lichao Chen
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.H., L.C., J.Z.), and State Key Laboratory of Molecular Developmental Biology (X.H., Y.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;Graduate University of Chinese Academy of Sciences, Beijing 100049, China (J.H., L.C.); andInstitute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.S., C.L., L.Z.)
| | - Xuwu Sun
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.H., L.C., J.Z.), and State Key Laboratory of Molecular Developmental Biology (X.H., Y.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;Graduate University of Chinese Academy of Sciences, Beijing 100049, China (J.H., L.C.); andInstitute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.S., C.L., L.Z.)
| | - Congming Lu
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.H., L.C., J.Z.), and State Key Laboratory of Molecular Developmental Biology (X.H., Y.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;Graduate University of Chinese Academy of Sciences, Beijing 100049, China (J.H., L.C.); andInstitute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.S., C.L., L.Z.)
| | - Lixin Zhang
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.H., L.C., J.Z.), and State Key Laboratory of Molecular Developmental Biology (X.H., Y.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;Graduate University of Chinese Academy of Sciences, Beijing 100049, China (J.H., L.C.); andInstitute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.S., C.L., L.Z.)
| | - Yingchun Wang
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.H., L.C., J.Z.), and State Key Laboratory of Molecular Developmental Biology (X.H., Y.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;Graduate University of Chinese Academy of Sciences, Beijing 100049, China (J.H., L.C.); andInstitute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.S., C.L., L.Z.)
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.H., L.C., J.Z.), and State Key Laboratory of Molecular Developmental Biology (X.H., Y.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;Graduate University of Chinese Academy of Sciences, Beijing 100049, China (J.H., L.C.); andInstitute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.S., C.L., L.Z.)
| |
Collapse
|
15
|
Zhang HH, Lechuga TJ, Tith T, Wang W, Wing DA, Chen DB. S-nitrosylation of cofilin-1 mediates estradiol-17β-stimulated endothelial cytoskeleton remodeling. Mol Endocrinol 2015; 29:434-44. [PMID: 25635941 DOI: 10.1210/me.2014-1297] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Rapid nitric oxide (NO) production via endothelial NO synthase (eNOS) activation represents a major signaling pathway for the cardiovascular protective effects of estrogens; however, the pathways after NO biosynthesis that estrogens use to function remain largely unknown. Covalent adduction of a NO moiety to cysteines, termed S-nitrosylation (SNO), has emerged as a key route for NO to directly regulate protein function. Cofilin-1 (CFL1) is a small actin-binding protein essential for actin dynamics and cytoskeleton remodeling. Despite being identified as a major SNO protein in endothelial cells, whether SNO regulates CFL-1 function is unknown. We hypothesized that estradiol-17β (E2β) stimulates SNO of CFL1 via eNOS-derived NO and that E2β-induced SNO-CFL1 mediates cytoskeleton remodeling in endothelial cells. Point mutation studies determined Cys80 as the primary SNO site among the 4 cysteines (Cys39/80/139/147) in CFL1. Substitutions of Cys80 with Ala or Ser were used to prepare the SNO-mimetic/deficient (C80A/S) CFL1 mutants. Recombinant wild-type (wt) and mutant CFL1 proteins were prepared; their actin-severing activity was determined by real-time fluorescence imaging analysis. The activity of C80A CFL1 was enhanced to that of the constitutively active S3/A CFL1, whereas the other mutants had no effects. C80A/S mutations lowered Ser3 phosphorylation. Treatment with E2β increased filamentous (F)-actin and filopodium formation in endothelial cells, which were significantly reduced in cells overexpressing wt-CFL. Overexpression of C80A, but not C80S, CFL1 decreased basal F-actin and further suppressed E2β-induced F-actin and filopodium formation compared with wt-CFL1 overexpression. Thus, SNO(Cys80) of cofilin-1 via eNOS-derived NO provides a novel pathway for mediating estrogen-induced endothelial cell cytoskeleton remodeling.
Collapse
Affiliation(s)
- Hong-hai Zhang
- Departments of Obstetrics and Gynecology (H-h.Z., T.J.L., T.T., W.W., D.A.W., D-b.C.) and Pathology (T.J.L., D-b.C.), University of California, Irvine, Irvine, California 92697
| | | | | | | | | | | |
Collapse
|
16
|
Lamotte O, Bertoldo JB, Besson-Bard A, Rosnoblet C, Aimé S, Hichami S, Terenzi H, Wendehenne D. Protein S-nitrosylation: specificity and identification strategies in plants. Front Chem 2015; 2:114. [PMID: 25750911 PMCID: PMC4285867 DOI: 10.3389/fchem.2014.00114] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 12/08/2014] [Indexed: 12/23/2022] Open
Abstract
The role of nitric oxide (NO) as a major regulator of plant physiological functions has become increasingly evident. To further improve our understanding of its role, within the last few years plant biologists have begun to embrace the exciting opportunity of investigating protein S-nitrosylation, a major reversible NO-dependent post-translational modification (PTM) targeting specific Cys residues and widely studied in animals. Thanks to the development of dedicated proteomic approaches, in particular the use of the biotin switch technique (BST) combined with mass spectrometry, hundreds of plant protein candidates for S-nitrosylation have been identified. Functional studies focused on specific proteins provided preliminary comprehensive views of how this PTM impacts the structure and function of proteins and, more generally, of how NO might regulate biological plant processes. The aim of this review is to detail the basic principle of protein S-nitrosylation, to provide information on the biochemical and structural features of the S-nitrosylation sites and to describe the proteomic strategies adopted to investigate this PTM in plants. Limits of the current approaches and tomorrow's challenges are also discussed.
Collapse
Affiliation(s)
- Olivier Lamotte
- CNRS, UMR 1347 Agroécologie Dijon, France ; ERL CNRS 6300 Dijon, France
| | - Jean B Bertoldo
- Departamento de Bioquímica Centro de Ciências Biológicas, Centro de Biologia Molecular Estrutural, Universidade Federal de Santa Catarina Florianópolis, Brasil
| | - Angélique Besson-Bard
- ERL CNRS 6300 Dijon, France ; Université de Bourgogne, UMR 1347 Agroécologie Dijon, France
| | - Claire Rosnoblet
- ERL CNRS 6300 Dijon, France ; Université de Bourgogne, UMR 1347 Agroécologie Dijon, France
| | - Sébastien Aimé
- ERL CNRS 6300 Dijon, France ; Institut National de la Recherche Agronomique, UMR 1347 Agroécologie Dijon, France
| | - Siham Hichami
- ERL CNRS 6300 Dijon, France ; Université de Bourgogne, UMR 1347 Agroécologie Dijon, France
| | - Hernán Terenzi
- Departamento de Bioquímica Centro de Ciências Biológicas, Centro de Biologia Molecular Estrutural, Universidade Federal de Santa Catarina Florianópolis, Brasil
| | - David Wendehenne
- ERL CNRS 6300 Dijon, France ; Université de Bourgogne, UMR 1347 Agroécologie Dijon, France
| |
Collapse
|
17
|
Vanzo E, Ghirardo A, Merl-Pham J, Lindermayr C, Heller W, Hauck SM, Durner J, Schnitzler JP. S-nitroso-proteome in poplar leaves in response to acute ozone stress. PLoS One 2014; 9:e106886. [PMID: 25192423 PMCID: PMC4156402 DOI: 10.1371/journal.pone.0106886] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/01/2014] [Indexed: 11/26/2022] Open
Abstract
Protein S-nitrosylation, the covalent binding of nitric oxide (NO) to protein cysteine residues, is one of the main mechanisms of NO signaling in plant and animal cells. Using a combination of the biotin switch assay and label-free LC-MS/MS analysis, we revealed the S-nitroso-proteome of the woody model plant Populus x canescens. Under normal conditions, constitutively S-nitrosylated proteins in poplar leaves and calli comprise all aspects of primary and secondary metabolism. Acute ozone fumigation was applied to elicit ROS-mediated changes of the S-nitroso-proteome. This treatment changed the total nitrite and nitrosothiol contents of poplar leaves and affected the homeostasis of 32 S-nitrosylated proteins. Multivariate data analysis revealed that ozone exposure negatively affected the S-nitrosylation status of leaf proteins: 23 proteins were de-nitrosylated and 9 proteins had increased S-nitrosylation content compared to the control. Phenylalanine ammonia-lyase 2 (log2[ozone/control] = −3.6) and caffeic acid O-methyltransferase (−3.4), key enzymes catalyzing important steps in the phenylpropanoid and subsequent lignin biosynthetic pathways, respectively, were de-nitrosylated upon ozone stress. Measuring the in vivo and in vitro phenylalanine ammonia-lyase activity indicated that the increase of the phenylalanine ammonia-lyase activity in response to acute ozone is partly regulated by de-nitrosylation, which might favor a higher metabolic flux through the phenylpropanoid pathway within minutes after ozone exposure.
Collapse
Affiliation(s)
- Elisa Vanzo
- Research Unit Environmental Simulation, Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andrea Ghirardo
- Research Unit Environmental Simulation, Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Juliane Merl-Pham
- Research Unit Protein Science, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christian Lindermayr
- Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Werner Heller
- Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Stefanie M. Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jörg Durner
- Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation, Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
- * E-mail:
| |
Collapse
|
18
|
Satohisa S, Zhang HH, Feng L, Yang YY, Huang L, Chen DB. Endogenous NO upon estradiol-17β stimulation and NO donor differentially regulate mitochondrial S-nitrosylation in endothelial cells. Endocrinology 2014; 155:3005-16. [PMID: 24877627 PMCID: PMC4098011 DOI: 10.1210/en.2013-2174] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adduction of a nitric oxide (NO) moiety (NO(•)) to cysteines termed as S-nitrosylation (SNO) has emerged as a crucial mechanism for NO signaling crucial for mediating the vascular effects of estrogens. Mitochondrion is a known vascular risk factor; however, the effects of estrogens on mitochondrial SNO are incompletely understood. In this study we determined the effects of estradiol-17β (E2β) on mitochondrial protein SNO in primary human umbilical vein endothelial cells and compared the mitochondrial nitroso-proteomes in E2β- and a NO donor S-nitrosoglutathione (GSNO)-treated cells using a proteomics approach. Treatment with 10 nM E2β and 1 mM GSNO for 30 minutes significantly increased the levels of mitochondrial SNO-proteins. Subcellular localization of SNO-proteins showed mitochondria as the major cellular organelle for protein SNO in response to E2β and GSNO. E2β stimulated mitochondrial endothelial nitric oxide synthase (eNOS) phosphorylation and mitochondrial protein SNO that was enhanced by overexpression of mitochondrion or Golgi, but not membrane targeting eNOS constructs. We identified 11, 32, and 54 SNO-proteins in the mitochondria from the untreated, E2β-, and GSNO-treated human umbilical vein endothelial cells, respectively. Comparisons of the nitroso-proteomes revealed that common and different mitochondrial SNO-proteins were affected by endogenous NO on E2β stimulation and exogenous NO from donor. These SNO-proteins were associated with various mitochondrial functions, including energy and redox regulation, transport, iron homeostasis, translation, mitochondrial morphology, and apoptosis, etc. Collectively, we conclude that estrogens rapidly stimulate protein SNO in endothelial mitochondria via mitochondrial eNOS, providing a mechanism for mediating the vascular effects of estrogens.
Collapse
Affiliation(s)
- Seiro Satohisa
- Departments of Obstetrics and Gynecology (S.S., H-h.Z., L.F., D-b.C.), Biophysics and Physiology (Y-y.Y., L.H.), and Pathology (D-b.C.), University of California, Irvine, California 92697
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
SIGNIFICANCE Mitochondrial dynamics describes the continuous change in the position, size, and shape of mitochondria within cells. The morphological and functional complexity of neurons, the remarkable length of their processes, and the rapid changes in metabolic requirements arising from their intrinsic excitability render these cells particularly dependent on effective mitochondrial function and positioning. The rules that govern these changes and their functional significance are not fully understood, yet the dysfunction of mitochondrial dynamics has been implicated as a pathogenetic factor in a number of diseases, including disorders of the central and peripheral nervous systems. RECENT ADVANCES In recent years, a number of mutations of genes encoding proteins that play important roles in mitochondrial dynamics and function have been discovered in patients with Charcot-Marie-Tooth (CMT) disease, a hereditary peripheral neuropathy. These findings have directly linked mitochondrial pathology to the pathology of peripheral nerve and have identified certain aspects of mitochondrial dynamics as potential early events in the pathogenesis of CMT. In addition, mitochondrial dysfunction has now been implicated in the pathogenesis of noninherited neuropathies, including diabetic and inflammatory neuropathies. CRITICAL ISSUES The role of mitochondria in peripheral nerve diseases has been mostly examined in vitro, and less so in animal models. FUTURE DIRECTIONS This review examines available evidence for the role of mitochondrial dynamics in the pathogenesis of peripheral neuropathies, their relevance in human diseases, and future challenges for research in this field.
Collapse
Affiliation(s)
- Marija Sajic
- Department of Neuroinflammation, UCL Institute of Neurology , Queen Square, London, United Kingdom
| |
Collapse
|
20
|
Iyer AKV, Rojanasakul Y, Azad N. Nitrosothiol signaling and protein nitrosation in cell death. Nitric Oxide 2014; 42:9-18. [PMID: 25064181 DOI: 10.1016/j.niox.2014.07.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 06/01/2014] [Accepted: 07/10/2014] [Indexed: 10/25/2022]
Abstract
Nitric oxide, a reactive free radical, is an important signaling molecule that can lead to a plethora of cellular effects affecting homeostasis. A well-established mechanism by which NO manifests its effect on cellular functions is the post-translational chemical modification of cysteine thiols in substrate proteins by a process known as S-nitrosation. Studies that investigate regulation of cellular functions through NO have increasingly established S-nitrosation as the primary modulatory mechanism in their respective systems. There has been a substantial increase in the number of reports citing various candidate proteins undergoing S-nitrosation, which affects cell-death and -survival pathways in a number of tissues including heart, lung, brain and blood. With an exponentially growing list of proteins being identified as substrates for S-nitrosation, it is important to assimilate this information in different cell/tissue systems in order to gain an overall view of protein regulation of both individual proteins and a class of protein substrates. This will allow for broad mapping of proteins as a function of S-nitrosation, and help delineate their global effects on pathophysiological responses including cell death and survival. This information will not only provide a much better understanding of overall functional relevance of NO in the context of various disease states, it will also facilitate the generation of novel therapeutics to combat specific diseases that are driven by NO-mediated S-nitrosation.
Collapse
Affiliation(s)
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26505, USA
| | - Neelam Azad
- Department of Pharmaceutical Sciences, Hampton University, Hampton, VA 23668, USA
| |
Collapse
|
21
|
Jakob U, Kriwacki R, Uversky VN. Conditionally and transiently disordered proteins: awakening cryptic disorder to regulate protein function. Chem Rev 2014; 114:6779-805. [PMID: 24502763 PMCID: PMC4090257 DOI: 10.1021/cr400459c] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, United States
| | - Richard Kriwacki
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Vladimir N. Uversky
- Department of Molecular Medicine, University of South Florida, Tampa, Florida 33612, United States
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
22
|
Htet Hlaing K, Clément MV. Formation of protein S-nitrosylation by reactive oxygen species. Free Radic Res 2014; 48:996-1010. [DOI: 10.3109/10715762.2014.942842] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Qu Z, Meng F, Bomgarden RD, Viner RI, Li J, Rogers JC, Cheng J, Greenlief CM, Cui J, Lubahn DB, Sun GY, Gu Z. Proteomic quantification and site-mapping of S-nitrosylated proteins using isobaric iodoTMT reagents. J Proteome Res 2014; 13:3200-11. [PMID: 24926564 PMCID: PMC4084841 DOI: 10.1021/pr401179v] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
S-Nitrosylation is a redox-based protein post-translational
modification in response to nitric oxide signaling and is involved
in a wide range of biological processes. Detection and quantification
of protein S-nitrosylation have been challenging
tasks due to instability and low abundance of the modification. Many
studies have used mass spectrometry (MS)-based methods with different
thiol-reactive reagents to label and identify proteins with S-nitrosylated cysteine (SNO-Cys). In this study, we developed
a novel iodoTMT switch assay (ISA) using an isobaric set of thiol-reactive
iodoTMTsixplex reagents to specifically detect and quantify protein S-nitrosylation. Irreversible labeling of SNO-Cys with the
iodoTMTsixplex reagents enables immune-affinity detection of S-nitrosylated proteins, enrichment of iodoTMT-labeled peptides
by anti-TMT resin, and importantly, unambiguous modification site-mapping
and multiplex quantification by liquid chromatography–tandem
MS. Additionally, we significantly improved anti-TMT peptide enrichment
efficiency by competitive elution. Using ISA, we identified a set
of SNO-Cys sites responding to lipopolysaccharide (LPS) stimulation
in murine BV-2 microglial cells and revealed effects of S-allyl cysteine from garlic on LPS-induced protein S-nitrosylation in antioxidative signaling and mitochondrial metabolic
pathways. ISA proved to be an effective proteomic approach for quantitative
analysis of S-nitrosylation in complex samples and
will facilitate the elucidation of molecular mechanisms of nitrosative
stress in disease.
Collapse
Affiliation(s)
- Zhe Qu
- Department of Pathology and Anatomical Sciences, ‡Department of Biochemistry, and §Center for Translational Neuroscience, University of Missouri School of Medicine , Columbia, Missouri, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Jia C, Lin X, Wang Z. Prediction of protein S-nitrosylation sites based on adapted normal distribution bi-profile Bayes and Chou's pseudo amino acid composition. Int J Mol Sci 2014; 15:10410-23. [PMID: 24918295 PMCID: PMC4100159 DOI: 10.3390/ijms150610410] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/12/2014] [Accepted: 05/20/2014] [Indexed: 11/16/2022] Open
Abstract
Protein S-nitrosylation is a reversible post-translational modification by covalent modification on the thiol group of cysteine residues by nitric oxide. Growing evidence shows that protein S-nitrosylation plays an important role in normal cellular function as well as in various pathophysiologic conditions. Because of the inherent chemical instability of the S-NO bond and the low abundance of endogenous S-nitrosylated proteins, the unambiguous identification of S-nitrosylation sites by commonly used proteomic approaches remains challenging. Therefore, computational prediction of S-nitrosylation sites has been considered as a powerful auxiliary tool. In this work, we mainly adopted an adapted normal distribution bi-profile Bayes (ANBPB) feature extraction model to characterize the distinction of position-specific amino acids in 784 S-nitrosylated and 1568 non-S-nitrosylated peptide sequences. We developed a support vector machine prediction model, iSNO-ANBPB, by incorporating ANBPB with the Chou’s pseudo amino acid composition. In jackknife cross-validation experiments, iSNO-ANBPB yielded an accuracy of 65.39% and a Matthew’s correlation coefficient (MCC) of 0.3014. When tested on an independent dataset, iSNO-ANBPB achieved an accuracy of 63.41% and a MCC of 0.2984, which are much higher than the values achieved by the existing predictors SNOSite, iSNO-PseAAC, the Li et al. algorithm, and iSNO-AAPair. On another training dataset, iSNO-ANBPB also outperformed GPS-SNO and iSNO-PseAAC in the 10-fold crossvalidation test.
Collapse
Affiliation(s)
- Cangzhi Jia
- Department of Mathematics, Dalian Maritime University, Dalian 116026, China.
| | - Xin Lin
- Department of Mathematics, Dalian Maritime University, Dalian 116026, China.
| | - Zhiping Wang
- Department of Mathematics, Dalian Maritime University, Dalian 116026, China.
| |
Collapse
|
25
|
Zaręba-Kozioł M, Szwajda A, Dadlez M, Wysłouch-Cieszyńska A, Lalowski M. Global analysis of S-nitrosylation sites in the wild type (APP) transgenic mouse brain-clues for synaptic pathology. Mol Cell Proteomics 2014; 13:2288-305. [PMID: 24895380 DOI: 10.1074/mcp.m113.036079] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by an early synaptic loss, which strongly correlates with the severity of dementia. The pathogenesis and causes of characteristic AD symptoms are not fully understood. Defects in various cellular cascades were suggested, including the imbalance in production of reactive oxygen and nitrogen species. Alterations in S-nitrosylation of several proteins were previously demonstrated in various AD animal models and patients. In this work, using combined biotin-switch affinity/nano-LC-MS/MS and bioinformatic approaches we profiled endogenous S-nitrosylation of brain synaptosomal proteins from wild type and transgenic mice overexpressing mutated human Amyloid Precursor Protein (hAPP). Our data suggest involvement of S-nitrosylation in the regulation of 138 synaptic proteins, including MAGUK, CamkII, or synaptotagmins. Thirty-eight proteins were differentially S-nitrosylated in hAPP mice only. Ninety-five S-nitrosylated peptides were identified for the first time (40% of total, including 33 peptides exclusively in hAPP synaptosomes). We verified differential S-nitrosylation of 10 (26% of all identified) synaptosomal proteins from hAPP mice, by Western blotting with specific antibodies. Functional enrichment analysis linked S-nitrosylated proteins to various cellular pathways, including: glycolysis, gluconeogenesis, calcium homeostasis, ion, and vesicle transport, suggesting a basic role of this post-translational modification in the regulation of synapses. The linkage of SNO-proteins to axonal guidance and other processes related to APP metabolism exclusively in the hAPP brain, implicates S-nitrosylation in the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Monika Zaręba-Kozioł
- From the ‡Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Michał Dadlez
- From the ‡Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Maciej Lalowski
- ¶Biomedicum Helsinki, Institute of Biomedicine, Biochemistry/Developmental Biology, Meilahti Clinical Proteomics Core Unit, University of Helsinki, Finland; ‖Folkhälsan Institute of Genetics, Helsinki, Finland
| |
Collapse
|
26
|
Merino JJ, Arce C, Naddaf A, Bellver-Landete V, Oset-Gasque MJ, González MP. The nitric oxide donor SNAP-induced amino acid neurotransmitter release in cortical neurons. Effects of blockers of voltage-dependent sodium and calcium channels. PLoS One 2014; 9:e90703. [PMID: 24598811 PMCID: PMC3944624 DOI: 10.1371/journal.pone.0090703] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 02/04/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The discovery that nitric oxide (NO) functions as a signalling molecule in the nervous system has radically changed the concept of neuronal communication. NO induces the release of amino acid neurotransmitters but the underlying mechanisms remain to be elucidated. FINDINGS The aim of this work was to study the effect of NO on amino acid neurotransmitter release (Asp, Glu, Gly and GABA) in cortical neurons as well as the mechanism underlying the release of these neurotransmitters. Cortical neurons were stimulated with SNAP, a NO donor, and the release of different amino acid neurotransmitters was measured by HPLC. The involvement of voltage dependent Na+ and Ca2+ channels as well as cGMP in its mechanism of action was evaluated. CONCLUSIONS Our results indicate that NO induces release of aspartate, glutamate, glycine and GABA in cortical neurons and that this release is inhibited by ODQ, an inhibitor of soluble guanylate cyclase. Thus, the NO effect on amino acid neurotransmission could be mediated by cGMP formation in cortical neurons. Our data also demonstrate that the Na+ and Ca2+ voltage- dependent calcium channels are involved in the NO effects on cortical neurons.
Collapse
Affiliation(s)
- José Joaquín Merino
- Departamento de Bioquímica y Biología Molecular II. Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica (IUIN). Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Carmen Arce
- Departamento de Bioquímica y Biología Molecular II. Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica (IUIN). Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Ahmad Naddaf
- Faculty of Pharmacy, Isra University, Amman, Jordan
| | - Victor Bellver-Landete
- Departamento de Bioquímica y Biología Molecular II. Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica (IUIN). Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Maria Jesús Oset-Gasque
- Departamento de Bioquímica y Biología Molecular II. Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica (IUIN). Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - María Pilar González
- Departamento de Bioquímica y Biología Molecular II. Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica (IUIN). Universidad Complutense de Madrid (UCM), Madrid, Spain
| |
Collapse
|
27
|
IL-15 maintains T-cell survival via S-nitrosylation-mediated inhibition of caspase-3. Cell Death Differ 2014; 21:904-14. [PMID: 24510126 DOI: 10.1038/cdd.2014.10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 12/27/2013] [Accepted: 01/08/2014] [Indexed: 12/18/2022] Open
Abstract
Caspase activity is critical for both T-cell survival and death. However, little is known regarding what determines caspase activity in cycling T cells. Interleukin (IL)-2 and IL-15 confer very different susceptibilities to T-cell death. We therefore considered that IL-2 and IL-15 differentially regulate caspase activity to influence T-cell survival. We observed that IL-2-cultured primary murine effector T cells manifested elevated levels of caspase-3 activity compared with IL-15-cultured T cells. T cell receptor (TCR) restimulation further increased caspase activity and induced considerable cell death in IL-2-cultured T cells, but provoked only a minimal increase of caspase activity and cell death in IL-15-cultured T cells. IL-2 sensitization to cell death was caspase-3 mediated. Interestingly, increased active caspase-3 levels with IL-2 were independent of active initiator caspase-8 and caspase-9 that were similar with IL-2 and IL-15. Rather, caspase-3 activity was inhibited by posttranslational S-nitrosylation in IL-15-cultured T cells, but not in the presence of IL-2. This paralleled increased reactive nitrogen and oxygen species with IL-15 and reduced glycolysis. Taken together, these data suggest that the metabolic state conferred by IL-15 inhibits T-cell apoptosis in part by maintaining low levels of active caspase-3 via S-nitrosylation.
Collapse
|
28
|
Jiang H, Torregrossa AC, Potts A, Pierini D, Aranke M, Garg HK, Bryan NS. Dietary nitrite improves insulin signaling through GLUT4 translocation. Free Radic Biol Med 2014; 67:51-7. [PMID: 24157451 DOI: 10.1016/j.freeradbiomed.2013.10.809] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 01/31/2023]
Abstract
Diabetes mellitus type 2 is a syndrome of disordered metabolism with inappropriate hyperglycemia owing to a reduction in the biological effectiveness of insulin. Type 2 diabetes is associated with an impaired nitric oxide (NO) pathway that probably serves as the key link between metabolic disorders and cardiovascular disease. Insulin-mediated translocation of GLUT4 involves the PI3K/Akt kinase signal cascade that results in activation of endothelial NO synthase (eNOS). eNOS is dysfunctional during diabetes. We hypothesize that loss of eNOS-derived NO terminates the signaling cascade and therefore cannot activate GLUT4 translocation and that dietary nitrite may repair this pathway. In this study, we administered 50mg/L sodium nitrite to db/db diabetic mice for 4 weeks. After 4 weeks treatment, the db/db mice experienced less weight gain, improved fasting glucose levels, and reduced insulin levels. Cell culture experiments using CHO-HIRc-myc-GLUT4eGFP cell lines stably expressing insulin receptor and myc-GLUT4eGFP protein, as well as L6 skeletal muscle cells stably expressing rat GLUT4 with a Myc epitope (L6-GLUT4myc), showed that NO, nitrite, and GSNO stimulate GLUT4 translocation independent of insulin, which is inhibited by NEM. Collectively our data suggest that nitrite improves insulin signaling through restoration of NO-dependent nitrosation of GLUT4 signaling translocation. These data suggest that NO-mediated nitrosation of GLUT4 by nitrite or other nitrosating agents is necessary and sufficient for GLUT4 translocation in target tissue. Description of this pathway may justify a high-nitrate/nitrite diet along with the glycemic index to provide a safe and nutritional regimen for the management and treatment of diabetes.
Collapse
Affiliation(s)
- Hong Jiang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, Health Science Center, Houston, TX 77030, USA
| | - Ashley C Torregrossa
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, Health Science Center, Houston, TX 77030, USA
| | - Amy Potts
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, Health Science Center, Houston, TX 77030, USA
| | - Dan Pierini
- California State University at Fullerton, Fullerton, CA 92831, USA
| | - Mayank Aranke
- The University of Texas at Austin, Austin, TX 78712, USA
| | - Harsha K Garg
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, Health Science Center, Houston, TX 77030, USA
| | - Nathan S Bryan
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, Health Science Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX 77030, USA.
| |
Collapse
|
29
|
Deeb RS, Nuriel T, Cheung C, Summers B, Lamon BD, Gross SS, Hajjar DP. Characterization of a cellular denitrase activity that reverses nitration of cyclooxygenase. Am J Physiol Heart Circ Physiol 2013; 305:H687-98. [PMID: 23792683 PMCID: PMC3761327 DOI: 10.1152/ajpheart.00876.2012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 06/20/2013] [Indexed: 12/11/2022]
Abstract
Protein 3-nitrotyrosine (3-NT) formation is frequently regarded as a simple biomarker of disease, an irreversible posttranslational modification that can disrupt protein structure and function. Nevertheless, evidence that protein 3-NT modifications may be site selective and reversible, thus allowing for physiological regulation of protein activity, has begun to emerge. We have previously reported that cyclooxygenase (COX)-1 undergoes heme-dependent nitration of Tyr(385), an internal and catalytically essential residue. In the present study, we demonstrate that nitrated COX-1 undergoes a rapid reversal of nitration by substrate-selective and biologically regulated denitrase activity. Using nitrated COX-1 as a substrate, denitrase activity was validated and quantified by analytic HPLC with electrochemical detection and determined to be constitutively active in murine and human endothelial cells, macrophages, and a variety of tissue samples. Smooth muscle cells, however, contained little denitrase activity. Further characterizing this denitrase activity, we found that it was inhibited by free 3-NT and may be enhanced by endogenous nitric oxide and exogenously administered carbon monoxide. Finally, we describe a purification protocol that results in significant enrichment of a discrete denitrase-containing fraction, which maintains activity throughout the purification process. These findings reveal that nitrated COX-1 is a substrate for a denitrase in cells and tissues, implying that the reciprocal processes of nitration and denitration may modulate bioactive lipid synthesis in the setting of inflammation. In addition, our data reveal that denitration is a controlled process that may have broad importance for regulating cell signaling events in nitric oxide-generating systems during oxidative/nitrosative stress.
Collapse
MESH Headings
- Adaptation, Physiological/physiology
- Animals
- Cell Line
- Cells, Cultured
- Cyclooxygenase 1/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Humans
- Macrophages/cytology
- Macrophages/metabolism
- Mice
- Mice, Inbred C57BL
- Models, Animal
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Nitrates/metabolism
- Nitric Oxide/metabolism
- Nitric Oxide Synthase/metabolism
- Oxidative Stress/physiology
- Oxidoreductases/metabolism
- Rats
- Tyrosine/analogs & derivatives
- Tyrosine/metabolism
Collapse
Affiliation(s)
- Ruba S Deeb
- Department of Pathology, Weill Cornell Medical College, Cornell University, New York, New York
| | | | | | | | | | | | | |
Collapse
|
30
|
Lu C, Kavalier A, Lukyanov E, Gross SS. S-sulfhydration/desulfhydration and S-nitrosylation/denitrosylation: a common paradigm for gasotransmitter signaling by H2S and NO. Methods 2013; 62:177-81. [PMID: 23811297 DOI: 10.1016/j.ymeth.2013.05.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 05/28/2013] [Indexed: 12/20/2022] Open
Abstract
Sulfhydryl groups on protein Cys residues undergo an array of oxidative reactions and modifications, giving rise to a virtual redox zip code with physiological and pathophysiological relevance for modulation of protein structure and functions. While over two decades of studies have established NO-dependent S-nitrosylation as ubiquitous and fundamental for the regulation of diverse protein activities, proteomic methods for studying H2S-dependent S-sulfhydration have only recently been described and now suggest that this is also an abundant modification with potential for global physiological importance. Notably, protein S-sulfhydration and S-nitrosylation bear striking similarities in terms of their chemical and biological determinants, as well as reversal of these modifications via group-transfer to glutathione, followed by the removal from glutathione by enzymes that have apparently evolved to selectively catalyze denitrosylation and desulfhydration. Here we review determinants of protein and low-molecular-weight thiol S-sulfhydration/desulfhydration, similarities with S-nitrosylation/denitrosylation, and methods that are being employed to investigate and quantify these gasotransmitter-mediated cell signaling systems.
Collapse
Affiliation(s)
- Changyuan Lu
- Department of Pharmacology, Weill Cornell College of Medicine, 1300 York Avenue, New York, NY, USA
| | | | | | | |
Collapse
|
31
|
Su D, Shukla AK, Chen B, Kim JS, Nakayasu E, Qu Y, Aryal U, Weitz K, Clauss TR, Monroe ME, Camp DG, Bigelow DJ, Smith RD, Kulkarni RN, Qian WJ. Quantitative site-specific reactivity profiling of S-nitrosylation in mouse skeletal muscle using cysteinyl peptide enrichment coupled with mass spectrometry. Free Radic Biol Med 2013; 57:68-78. [PMID: 23277143 PMCID: PMC3771501 DOI: 10.1016/j.freeradbiomed.2012.12.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 11/12/2012] [Accepted: 12/13/2012] [Indexed: 12/18/2022]
Abstract
S-nitrosylation, the formation of S-nitrosothiol (SNO), is an important reversible thiol oxidation event that has been increasingly recognized for its role in cell signaling. Although many proteins susceptible to S-nitrosylation have been reported, site-specific identification of physiologically relevant SNO modifications remains an analytical challenge because of the low abundance and labile nature of this modification. Herein we present further improvement and optimization of the recently reported resin-assisted cysteinyl peptide enrichment protocol for SNO identification and its application to mouse skeletal muscle to identify specific cysteine sites sensitive to S-nitrosylation by a quantitative reactivity profiling strategy. Our results indicate that the protein- and peptide-level enrichment protocols provide comparable specificity and coverage of SNO-peptide identifications. S-nitrosylation reactivity profiling was performed by quantitatively comparing the site-specific SNO modification levels in samples treated with S-nitrosoglutathione, an NO donor, at two different concentrations (i.e., 10 and 100 μM). The reactivity profiling experiments led to the identification of 488 SNO-modified sites from 197 proteins with specificity of ∼95% at the unique peptide level, i.e., ∼95% of enriched peptides contain cysteine residues as the originally SNO-modified sites. Among these sites, 281 from 145 proteins were considered more sensitive to S-nitrosylation based on the ratios of observed SNO levels between the two treatments. These SNO-sensitive sites are more likely to be physiologically relevant. Many of the SNO-sensitive proteins are localized in mitochondria, contractile fiber, and actin cytoskeleton, suggesting the susceptibility of these subcellular compartments to redox regulation. Moreover, these observed SNO-sensitive proteins are primarily involved in metabolic pathways, including the tricarboxylic acid cycle, glycolysis/gluconeogenesis, glutathione metabolism, and fatty acid metabolism, suggesting the importance of redox regulation in muscle metabolism and insulin action.
Collapse
Affiliation(s)
- Dian Su
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Anil K. Shukla
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Baowei Chen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Jong-Seo Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Ernesto Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Yi Qu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Uma Aryal
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Karl Weitz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Therese R.W. Clauss
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Matthew E. Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - David G. Camp
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Diana J. Bigelow
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Rohit N. Kulkarni
- Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| |
Collapse
|
32
|
Grau M, Pauly S, Ali J, Walpurgis K, Thevis M, Bloch W, Suhr F. RBC-NOS-dependent S-nitrosylation of cytoskeletal proteins improves RBC deformability. PLoS One 2013; 8:e56759. [PMID: 23424675 PMCID: PMC3570529 DOI: 10.1371/journal.pone.0056759] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/14/2013] [Indexed: 11/18/2022] Open
Abstract
Background Red blood cells (RBC) possess a nitric oxide synthase (RBC-NOS) whose activation depends on the PI3-kinase/Akt kinase pathway. RBC-NOS-produced NO exhibits important biological functions like maintaining RBC deformability. Until now, the cellular target structure for NO, to exert its influence on RBC deformability, remains unknown. In the present study we analyzed the modification of RBC-NOS activity by pharmacological treatments, the resulting influence on RBC deformability and provide first evidence for possible target proteins of RBC-NOS-produced NO in the RBC cytoskeletal scaffold. Methods/Findings Blood from fifteen male subjects was incubated with the NOS substrate L-arginine to directly stimulate enzyme activity. Direct inhibition of enzyme activity was induced by L-N5-(1-Iminoethyl)-ornithin (L-NIO). Indirect stimulation and inhibition of RBC-NOS were achieved by applying insulin and wortmannin, respectively, substances known to affect PI3-kinase/Akt kinase pathway. The NO donor sodium nitroprusside (SNP) and the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) were additionally applied as NO positive and negative controls, respectively. Immunohistochemical staining was used to determine phosphorylation and thus activation of RBC-NOS. As a marker for NO synthesis nitrite was measured in plasma and RBCs using chemiluminescence detection. S-nitrosylation of erythrocyte proteins was determined by biotin switch assay and modified proteins were identified using LC-MS. RBC deformability was determined by ektacytometry. The data reveal that activated RBC-NOS leads to increased NO production, S-nitrosylation of RBC proteins and RBC deformability, whereas RBC-NOS inhibition resulted in contrary effects. Conclusion/Significance This study first-time provides strong evidence that RBC-NOS-produced NO modifies RBC deformability through direct S-nitrosylation of cytoskeleton proteins, most likely α- and β-spectrins. Our data, therefore, gain novel insights into biological functions of RBC-NOS by connecting impaired RBC deformability abilities to specific posttranslational modifications of RBC proteins. By identifying likely NO-target proteins in RBC, our results will stimulate new therapeutic approaches for patients with microvascular disorders.
Collapse
Affiliation(s)
- Marijke Grau
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany.
| | | | | | | | | | | | | |
Collapse
|
33
|
Talipov MR, Timerghazin QK. Protein Control of S-Nitrosothiol Reactivity: Interplay of Antagonistic Resonance Structures. J Phys Chem B 2013; 117:1827-37. [DOI: 10.1021/jp310664z] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Marat R. Talipov
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin
53201-1881, United States
| | - Qadir K. Timerghazin
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin
53201-1881, United States
| |
Collapse
|
34
|
Lu CT, Huang KY, Su MG, Lee TY, Bretaña NA, Chang WC, Chen YJ, Chen YJ, Huang HD. DbPTM 3.0: an informative resource for investigating substrate site specificity and functional association of protein post-translational modifications. Nucleic Acids Res 2012. [PMID: 23193290 PMCID: PMC3531199 DOI: 10.1093/nar/gks1229] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Protein modification is an extremely important post-translational regulation that adjusts the physical and chemical properties, conformation, stability and activity of a protein; thus altering protein function. Due to the high throughput of mass spectrometry (MS)-based methods in identifying site-specific post-translational modifications (PTMs), dbPTM (http://dbPTM.mbc.nctu.edu.tw/) is updated to integrate experimental PTMs obtained from public resources as well as manually curated MS/MS peptides associated with PTMs from research articles. Version 3.0 of dbPTM aims to be an informative resource for investigating the substrate specificity of PTM sites and functional association of PTMs between substrates and their interacting proteins. In order to investigate the substrate specificity for modification sites, a newly developed statistical method has been applied to identify the significant substrate motifs for each type of PTMs containing sufficient experimental data. According to the data statistics in dbPTM, >60% of PTM sites are located in the functional domains of proteins. It is known that most PTMs can create binding sites for specific protein-interaction domains that work together for cellular function. Thus, this update integrates protein–protein interaction and domain–domain interaction to determine the functional association of PTM sites located in protein-interacting domains. Additionally, the information of structural topologies on transmembrane (TM) proteins is integrated in dbPTM in order to delineate the structural correlation between the reported PTM sites and TM topologies. To facilitate the investigation of PTMs on TM proteins, the PTM substrate sites and the structural topology are graphically represented. Also, literature information related to PTMs, orthologous conservations and substrate motifs of PTMs are also provided in the resource. Finally, this version features an improved web interface to facilitate convenient access to the resource.
Collapse
Affiliation(s)
- Cheng-Tsung Lu
- Department of Computer Science and Engineering, Yuan Ze University, Chung-Li 320, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
SNObase, a database for S-nitrosation modification. Protein Cell 2012; 3:929-33. [PMID: 23129220 DOI: 10.1007/s13238-012-2094-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 09/12/2012] [Indexed: 10/27/2022] Open
Abstract
S-Nitros(yl)ation is a ubiquitous redox-based post-translational modification of protein cysteine thiols by nitric oxide or its derivatives, which transduces the bioactivity of nitric oxide (NO) by regulation of protein conformation, activity, stability, localization and protein-protein interactions. These years, more and more S-nitrosated proteins were identified in physiological and pathological processes and the number is still growing. Here we developed a database named SNObase ( http://www.nitrosation.org ), which collected S-nitrosation targets extracted from literatures up to June 1st, 2012. SNObase contained 2561 instances, and provided information about S-nitrosation targets, sites, biological model, related diseases, trends of S-nitrosation level and effects of S-nitrosation on protein function. With SNObase, we did functional analysis for all the SNO targets: In the gene ontology (GO) biological process category, some processes were discovered to be related to S-nitrosation ("response to drug", "regulation of cell motion") besides the previously reported related processes. In the GO cellular component category, cytosol and mitochondrion were both enriched. From the KEGG pathway enrichment results, we found SNO targets were enriched in different diseases, which suggests possible significant roles of S-nitrosation in the progress of these diseases. This SNObase means to be a database with precise, comprehensive and easily accessible information, an environment to help researchers integrate data with comparison and relevancy analysis between different groups or works, and also an SNO knowledgebase offering feasibility for systemic and global analysis of S-nitrosation in interdisciplinary studies.
Collapse
|
36
|
Astier J, Kulik A, Koen E, Besson-Bard A, Bourque S, Jeandroz S, Lamotte O, Wendehenne D. Protein S-nitrosylation: what's going on in plants? Free Radic Biol Med 2012; 53:1101-10. [PMID: 22750205 DOI: 10.1016/j.freeradbiomed.2012.06.032] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 11/29/2022]
Abstract
Nitric oxide (NO) is now recognized as a key regulator of plant physiological processes. Understanding the mechanisms by which NO exerts its biological functions has been the subject of extensive research. Several components of the signaling pathways relaying NO effects in plants, including second messengers, protein kinases, phytohormones, and target genes, have been characterized. In addition, there is now compelling experimental evidence that NO partly operates through posttranslational modification of proteins, notably via S-nitrosylation and tyrosine nitration. Recently, proteome-wide scale analyses led to the identification of numerous protein candidates for S-nitrosylation in plants. Subsequent biochemical and in silico structural studies revealed certain mechanisms through which S-nitrosylation impacts their functions. Furthermore, first insights into the physiological relevance of S-nitrosylation, particularly in controlling plant immune responses, have been recently reported. Collectively, these discoveries greatly extend our knowledge of NO functions and of the molecular processes inherent to signal transduction in plants.
Collapse
Affiliation(s)
- Jéremy Astier
- Université de Bourgogne, UMR 1347 Agroécologie, BP 86510, F-21000 Dijon, France
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Lee TY, Chen YJ, Lu CT, Ching WC, Teng YC, Huang HD, Chen YJ. dbSNO: a database of cysteine S-nitrosylation. Bioinformatics 2012; 28:2293-5. [DOI: 10.1093/bioinformatics/bts436] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
38
|
Protein S-nitrosylation and cancer. Cancer Lett 2012; 320:123-9. [PMID: 22425962 DOI: 10.1016/j.canlet.2012.03.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 03/02/2012] [Accepted: 03/05/2012] [Indexed: 11/23/2022]
Abstract
Protein S-nitrosylation is a covalent post-translational modification through coupling of a nitric oxide (NO) moiety with the reactive thiol group of a protein cysteine residue to form an S-nitrosothiol (SNO). S-nitrosylation is a key mechanism in the transmission of NO-based cellular signals in the vital cellular processes, including transcription regulation, DNA repair, and apoptosis. Contemporary research has implicated dysregulation of S-nitrosylation in severe pathological events, including cancer onset, progression, and treatment resistance. The S-nitrosylation status may be directly linked to many cancer therapy outcomes as well as therapeutic-resistance, emphasizing the need to develop S-nitrosylation-related anti-cancer therapeutics. The role of S-nitrosylated proteins in the development and progression of cancer are varied, generating a critical need for a thorough review of the current dynamic research in this area.
Collapse
|
39
|
Luanpitpong S, Iyer AKV, Azad N, Wang L, Rojanasakul Y. Nitrosothiol Signaling in Anoikis Resistance and Cancer Metastasis. FORUM ON IMMUNOPATHOLOGICAL DISEASES AND THERAPEUTICS 2012; 3:141-154. [PMID: 23486647 PMCID: PMC3593302 DOI: 10.1615/forumimmundisther.2012006115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nitric oxide (NO) has been widely recognized as an important cell-signaling molecule that regulates various physiological and pathological processes. S-nitrosylation, or covalent attachment of NO to protein sulfhydryl groups, is a key mechanism by which NO regulates protein functions and cellular processes. In this article we discuss the various roles of NO and protein nitrosylation in cancer development, with a focus on cell invasion and anoikis resistance, both of which are key determinants of cancer metastasis. We specially address some of the mechanisms by which NO-mediated S-nitrosylation modulates substrates that have putative effects on key steps of metastasis. We propose that nitrosothiol signaling is a key regulatory mechanism common to several pathways involved in cancer progression and metastasis, and identifying such a mechanism will improve our understanding of the disease process and aid in the development of novel anticancer therapeutics.
Collapse
Affiliation(s)
- Sudjit Luanpitpong
- Department of Pharmaceutical Sciences, Hampton University, Hampton, Virginia
| | - Anand Krishnan V. Iyer
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, Virginia
| | - Neelam Azad
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, Virginia
| | - Liying Wang
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, Hampton University, Hampton, Virginia
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia
| |
Collapse
|
40
|
Zhang HH, Feng L, Wang W, Magness RR, Chen DB. Estrogen-responsive nitroso-proteome in uterine artery endothelial cells: role of endothelial nitric oxide synthase and estrogen receptor-β. J Cell Physiol 2011; 227:146-59. [PMID: 21374595 DOI: 10.1002/jcp.22712] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Covalent adduction of a NO moiety to cysteines (S-nitrosylation or SNO) is a major route for NO to directly regulate protein functions. In uterine artery endothelial cells (UAEC), estradiol-17β (E2) rapidly stimulated protein SNO that maximized within 10-30 min post-E2 exposure. E2-bovine serum albumin stimulated protein SNO similarly. Stimulation of SNO by both was blocked by ICI 182, 780, implicating mechanisms linked to specific estrogen receptors (ERs) localized on the plasma membrane. E2-induced protein SNO was attenuated by selective ERβ, but not ERα, antagonists. A specific ERβ but not ERα agonist was able to induce protein SNO. Overexpression of ERβ, but not ERα, significantly enhanced E2-induced SNO. Overexpression of both ERs increased basal SNO, but did not further enhance E2-stimulated SNO. E2-induced SNO was inhibited by N-nitro-L-arginine-methylester and specific endothelial NO synthase (eNOS) siRNA. Thus, estrogen-induced SNO is mediated by endogenous NO via eNOS and mainly ERβ in UAEC. We further analyzed the nitroso-proteomes by CyDye switch technique combined with two-dimensional (2D) fluorescence difference gel electrophoresis. Numerous nitrosoprotein (spots) were visible on the 2D gel. Sixty spots were chosen and subjected to matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Among the 54 identified, nine were novel SNO-proteins, 32 were increased, eight were decreased, and the rest were unchanged by E2. Tandom MS identified Cys139 as a specific site for SNO in GAPDH. Pathway analysis of basal and estrogen-responsive nitroso-proteomes suggested that SNO regulates diverse protein functions, directly implicating SNO as a novel mechanism for estrogen to regulate uterine endothelial function and thus uterine vasodilatation.
Collapse
Affiliation(s)
- Hong-hai Zhang
- Department of Obstetrics and Gynecology, University of California-Irvine, Irvine, California 92697, USA
| | | | | | | | | |
Collapse
|
41
|
Held JM, Gibson BW. Regulatory control or oxidative damage? Proteomic approaches to interrogate the role of cysteine oxidation status in biological processes. Mol Cell Proteomics 2011; 11:R111.013037. [PMID: 22159599 DOI: 10.1074/mcp.r111.013037] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxidation is a double-edged sword for cellular processes and its role in normal physiology, cancer and aging remains only partially understood. Although oxidative stress may disrupt biological function, oxidation-reduction (redox) reactions in a cell are often tightly regulated and play essential physiological roles. Cysteines lie at the interface between these extremes since the chemical properties that make specific thiols exquisitely redox-sensitive also predispose them to oxidative damage by reactive oxygen or nitrogen species during stress. Thus, these modifications can be either under reversible redox regulatory control or, alternatively, a result of reversible or irreversible oxidative damage. In either case, it has become increasingly important to assess the redox status of protein thiols since these modifications often impact such processes as catalytic activity, conformational alterations, or metal binding. To better understand the redox changes that accompany protein cysteine residues in complex biological systems, new experimental approaches have been developed to identify and characterize specific thiol modifications and/or changes in their overall redox status. In this review, we describe the recent technologies in redox proteomics that have pushed the boundaries for detecting and quantifying redox cysteine modifications in a cellular context. While there is no one-size-fits-all analytical solution, we highlight the rationale, strengths, and limitations of each technology in order to effectively apply them to specific biological questions. Several technological limitations still remain unsolved, however these approaches and future developments play an important role toward understanding the interplay between oxidative stress and redox signaling in health and disease.
Collapse
Affiliation(s)
- Jason M Held
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | | |
Collapse
|
42
|
Wu C, Parrott AM, Fu C, Liu T, Marino SM, Gladyshev VN, Jain MR, Baykal AT, Li Q, Oka S, Sadoshima J, Beuve A, Simmons WJ, Li H. Thioredoxin 1-mediated post-translational modifications: reduction, transnitrosylation, denitrosylation, and related proteomics methodologies. Antioxid Redox Signal 2011; 15:2565-604. [PMID: 21453190 PMCID: PMC3176348 DOI: 10.1089/ars.2010.3831] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite the significance of redox post-translational modifications (PTMs) in regulating diverse signal transduction pathways, the enzymatic systems that catalyze reversible and specific oxidative or reductive modifications have yet to be firmly established. Thioredoxin 1 (Trx1) is a conserved antioxidant protein that is well known for its disulfide reductase activity. Interestingly, Trx1 is also able to transnitrosylate or denitrosylate (defined as processes to transfer or remove a nitric oxide entity to/from substrates) specific proteins. An intricate redox regulatory mechanism has recently been uncovered that accounts for the ability of Trx1 to catalyze these different redox PTMs. In this review, we will summarize the available evidence in support of Trx1 as a specific disulfide reductase, and denitrosylation and transnitrosylation agent, as well as the biological significance of the diverse array of Trx1-regulated pathways and processes under different physiological contexts. The dramatic progress in redox proteomics techniques has enabled the identification of an increasing number of proteins, including peroxiredoxin 1, whose disulfide bond formation and nitrosylation status are regulated by Trx1. This review will also summarize the advancements of redox proteomics techniques for the identification of the protein targets of Trx1-mediated PTMs. Collectively, these studies have shed light on the mechanisms that regulate Trx1-mediated reduction, transnitrosylation, and denitrosylation of specific target proteins, solidifying the role of Trx1 as a master regulator of redox signal transduction.
Collapse
Affiliation(s)
- Changgong Wu
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School Cancer Center, Newark, 07103, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
INTRODUCTION It is becoming increasingly clear that many diseases are characterized or associated with perturbations in nitric oxide (NO) production/signaling. Therapeutics or strategies designed to restore normal NO homeostasis will likely have broad application and utility in human health. This highly complex and multi-step pathway for NO production and subsequent target activation provides many steps in the endogenous pathway that may be useful targets for drug development. Important therapeutic areas for NO-based therapies are inflammatory disorders, cardiovascular diseases, erectile dysfunction and metabolic disorders. AREAS COVERED The following review will discuss the endogenous NO pathway, highlight the current market and indications for NO-based therapeutics, as well as identify pathway targets currently under drug development. Each step along the NO pathway will be discussed including exogenous sources of NO, use of precursors to promote NO production and downstream pathways affected by NO production with advantages and disadvantages highlighted for each. EXPERT OPINION Development of NO-based therapeutics is and will continue to be a major focus of biotech and pharmaceutical companies. Understanding and utilizing dietary and nutritional strategies to restore NO homeostasis could allow for safer, quicker marketing of products that may be just as efficacious as drugs designed against specific targets.
Collapse
Affiliation(s)
- Nathan S Bryan
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine , The University of Texas Health Science Center at Houston,The Graduate School of Biomedical Sciences at Houston , Department of Integrative Biology and Pharmacology , 1825 Pressler St. 530C, Houston, TX 77030 , USA +1 713 500 2439 ; +1 713 500 2447 ;
| |
Collapse
|
44
|
Lee TY, Chen YJ, Lu TC, Huang HD, Chen YJ. SNOSite: exploiting maximal dependence decomposition to identify cysteine S-nitrosylation with substrate site specificity. PLoS One 2011; 6:e21849. [PMID: 21789187 PMCID: PMC3137596 DOI: 10.1371/journal.pone.0021849] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 06/07/2011] [Indexed: 11/18/2022] Open
Abstract
S-nitrosylation, the covalent attachment of a nitric oxide to (NO) the sulfur atom of cysteine, is a selective and reversible protein post-translational modification (PTM) that regulates protein activity, localization, and stability. Despite its implication in the regulation of protein functions and cell signaling, the substrate specificity of cysteine S-nitrosylation remains unknown. Based on a total of 586 experimentally identified S-nitrosylation sites from SNAP/L-cysteine-stimulated mouse endothelial cells, this work presents an informatics investigation on S-nitrosylation sites including structural factors such as the flanking amino acids composition, the accessible surface area (ASA) and physicochemical properties, i.e. positive charge and side chain interaction parameter. Due to the difficulty to obtain the conserved motifs by conventional motif analysis, maximal dependence decomposition (MDD) has been applied to obtain statistically significant conserved motifs. Support vector machine (SVM) is applied to generate predictive model for each MDD-clustered motif. According to five-fold cross-validation, the MDD-clustered SVMs could achieve an accuracy of 0.902, and provides a promising performance in an independent test set. The effectiveness of the model was demonstrated on the correct identification of previously reported S-nitrosylation sites of Bos taurus dimethylarginine dimethylaminohydrolase 1 (DDAH1) and human hemoglobin subunit beta (HBB). Finally, the MDD-clustered model was adopted to construct an effective web-based tool, named SNOSite (http://csb.cse.yzu.edu.tw/SNOSite/), for identifying S-nitrosylation sites on the uncharacterized protein sequences.
Collapse
Affiliation(s)
- Tzong-Yi Lee
- Department of Computer Science and Engineering, Yuan Ze University, Chung-Li, Taiwan
- * E-mail: (TYL); (YJC)
| | - Yi-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Tsung-Cheng Lu
- Department of Computer Science and Engineering, Yuan Ze University, Chung-Li, Taiwan
| | - Hsien-Da Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu, Taiwan
- Department of Biological Science and Technology, Hsin-Chu, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- * E-mail: (TYL); (YJC)
| |
Collapse
|
45
|
Ovadia H, Haim Y, Nov O, Almog O, Kovsan J, Bashan N, Benhar M, Rudich A. Increased adipocyte S-nitrosylation targets anti-lipolytic action of insulin: relevance to adipose tissue dysfunction in obesity. J Biol Chem 2011; 286:30433-30443. [PMID: 21724851 DOI: 10.1074/jbc.m111.235945] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Protein S-nitrosylation is a reversible protein modification implicated in both physiological and pathophysiological regulation of protein function. In obesity, skeletal muscle insulin resistance is associated with increased S-nitrosylation of insulin-signaling proteins. However, whether adipose tissue is similarly affected in obesity and, if so, what are the causes and functional consequences of increased S-nitrosylation in this tissue are unknown. Total protein S-nitrosylation was increased in intra-abdominal adipose tissue of obese humans and in high fat-fed or leptin-deficient ob/ob mice. Both the insulin receptor β-subunit and Akt were S-nitrosylated, correlating with body weight. Elevated protein and mRNA expression of inducible NO synthase and decreased protein levels of thioredoxin reductase were associated with increased adipose tissue S-nitrosylation. Cultured differentiated pre-adipocyte cell lines exposed to the NO donors S-nitrosoglutathione (GSNO) or S-nitroso-N-acetylpenicillamine exhibited diminished insulin-stimulated phosphorylation of Akt but not of GSK3 nor of insulin-stimulated glucose uptake. Yet the anti-lipolytic action of insulin was markedly impaired in both cultured adipocytes and in mice injected with GSNO prior to administration of insulin. In cells, impaired ability of insulin to diminish phosphorylated PKA substrates in response to isoproterenol suggested impaired insulin-induced activation of PDE3B. Consistently, increased S-nitrosylation of PDE3B was detected in adipose tissue of high fat-fed obese mice. Site-directed mutagenesis revealed that Cys-768 and Cys-1040, two putative sites for S-nitrosylation adjacent to the substrate-binding site of PDE3B, accounted for ∼50% of its GSNO-induced S-nitrosylation. Collectively, PDE3B and the anti-lipolytic action of insulin may constitute novel targets for increased S-nitrosylation of adipose tissue in obesity.
Collapse
Affiliation(s)
- Hilla Ovadia
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84103
| | - Yulia Haim
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84103
| | - Ori Nov
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84103
| | - Orna Almog
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84103
| | - Julia Kovsan
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84103
| | - Nava Bashan
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84103
| | - Moran Benhar
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096
| | - Assaf Rudich
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84103; National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84103, Israel.
| |
Collapse
|
46
|
Strategies and tools to explore protein S-nitrosylation. Biochim Biophys Acta Gen Subj 2011; 1820:684-8. [PMID: 21651963 DOI: 10.1016/j.bbagen.2011.05.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 05/16/2011] [Indexed: 11/20/2022]
Abstract
BACKGROUND A biochemical pathway by which nitric oxide accomplishes functional diversity is the specific modification of protein cysteine residues to form S-nitrosocysteine. This post-translational modification, S-nitrosylation, impacts protein function, interactions and location. However, comprehensive studies exploring protein signaling pathways or interrelated protein clusters that are regulated by S-nitrosylation have not been performed on a global scale. SCOPE OF REVIEW To provide insights to these important biological questions, sensitive, validated and quantitative proteomic approaches are required. This review summarizes current approaches for the global identification of S-nitrosylated proteins. MAJOR CONCLUSIONS The application of novel methods for identifying S-nitrosylated proteins, especially when combined with mass-spectrometry based proteomics to provide site-specific identification of the modified cysteine residues, promises to deliver critical clues for the regulatory role of this dynamic posttranslational modification in cellular processes. GENERAL SIGNIFICANCE Though several studies have established S-nitrosylation as a regulator of protein function in individual proteins, the biological chemistry and the structural elements that govern the specificity of this modification in vivo are vastly unknown. Additionally, a gap in knowledge exists concerning the potential global regulatory role(s) this modification may play in cellular physiology. By further studying S-nitrosylation at a global scale, a greater appreciation of nitric oxide and protein S-nitrosylation in cellular function can be achieved. This article is part of a Special Issue entitled Regulation of Cellular Processes by S-nitrosylation.
Collapse
|
47
|
Schonhoff CM, Ramasamy U, Anwer MS. Nitric oxide-mediated inhibition of taurocholate uptake involves S-nitrosylation of NTCP. Am J Physiol Gastrointest Liver Physiol 2011; 300:G364-70. [PMID: 21109590 PMCID: PMC3043645 DOI: 10.1152/ajpgi.00170.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The sodium-taurocholate (TC) cotransporting polypeptide (NTCP) facilitates bile formation by mediating sinusoidal Na(+)-TC cotransport. During sepsis-induced cholestasis, there is a decrease in NTCP-dependent uptake of bile acids and an increase in nitric oxide (NO) levels in hepatocytes. In rat hepatocytes NO inhibits Na(+)-dependent uptake of taurocholate. The aim of this study was to extend these findings to human NTCP and to further investigate the mechanism by which NO inhibits TC uptake. Using a human hepatoma cell line stably expressing NTCP (HuH-NTCP), we performed experiments with the NO donors sodium nitroprusside and S-nitrosocysteine and demonstrated that NO inhibits TC uptake in these cells. Kinetic analyses revealed that NO significantly decreased the V(max) but not the K(m) of TC uptake by NTCP, indicating noncompetitive inhibition. NO decreased the amount of NTCP in the plasma membrane, providing a molecular mechanism for the noncompetitive inhibition of TC uptake. One way that NO can modify protein function is through a posttranslational modification known as S-nitrosylation: the binding of NO to cysteine thiols. Using a biotin switch technique we observed that NTCP is S-nitrosylated under conditions in which NO inhibits TC uptake. Moreover, dithiothreitol reversed NO-mediated inhibition of TC uptake and S-nitrosylation of NTCP, indicating that NO inhibits TC uptake via modification of cysteine thiols. In addition, NO treatment led to a decrease in Ntcp phosphorylation. Taken together these results indicate that the inhibition of TC uptake by NO involves S-nitrosylation of NTCP.
Collapse
Affiliation(s)
- Christopher M. Schonhoff
- Department of Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts
| | - Umadevi Ramasamy
- Department of Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts
| | - M. Sawkat Anwer
- Department of Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts
| |
Collapse
|
48
|
Zhang HH, Wang YP, Chen DB. Analysis of nitroso-proteomes in normotensive and severe preeclamptic human placentas. Biol Reprod 2011; 84:966-75. [PMID: 21228217 DOI: 10.1095/biolreprod.110.090688] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nitric oxide (NO) plays a key role in placental biology, and placental dysfunction is the main pathogenesis pathway for preeclampsia, yet the direct placental targets of NO actions have not been determined. Covalent adduction of an NO moiety to cysteines, termed S-nitrosylation (SNO), is emerging as a key route by which NO can directly modulate protein functions. This study was conducted to analyze global S-nitroso (SNO)-proteins in human placentas and to determine if their levels differ in normotensive versus severe preeclamptic placentas. Although total nitrite/nitrate increased, total levels of SNO-proteins and nitrosylated forms of endothelial NO synthase and heat shock protein 90 were decreased by preeclampsia. We further compared normotensive and preeclamptic placental nitroso-proteomes (total SNO-protein profiles) by using a biotin and CyDye switch test combined with two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) and identified SNO-proteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Numerous SNO-proteins were displayed as spots on 2D-DIGE gels. One hundred spots of interest were excised; 46 spots were identified, of which 8 spots were novel SNO-proteins; levels of 15 spots were increased, and 6 spots were decreased, and the rest were unchanged by preeclampsia. Pathway analysis suggested that placental SNO-proteins are involved in regulating various cellular functions including protein synthesis, cell movement and metabolism, cell signaling, and other functions. These data therefore show for the first time that SNO is a crucial mechanism by which NO directly regulates placental proteins linked to various biological pathways. The significantly altered placental nitroso-proteome in preeclampsia suggests that SNO plays a role in the placental pathophysiology in preeclampsia.
Collapse
Affiliation(s)
- Hong-hai Zhang
- Department of Obstetrics and Gynecology, University of California-Irvine, CA, USA
| | | | | |
Collapse
|
49
|
Nath N, Chattopadhyay M, Pospishil L, Cieciura LZ, Goswami S, Kodela R, Saavedra JE, Keefer LK, Kashfi K. JS-K, a nitric oxide-releasing prodrug, modulates ß-catenin/TCF signaling in leukemic Jurkat cells: evidence of an S-nitrosylated mechanism. Biochem Pharmacol 2010; 80:1641-9. [PMID: 20797387 PMCID: PMC6959133 DOI: 10.1016/j.bcp.2010.08.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/13/2010] [Accepted: 08/16/2010] [Indexed: 12/17/2022]
Abstract
β-Catenin is a central player of the Wnt signaling pathway that regulates cell-cell adhesion and may promote leukemia cell proliferation. We examined whether JS-K, an NO-donating prodrug, modulates the Wnt/β-catenin/TCF-4 signaling pathway in Jurkat T-Acute Lymphoblastic Leukemia cells. JS-K inhibited Jurkat T cell growth in a concentration and time-dependent manner. The IC(50)s for cell growth inhibition were 14±0.7 and 9±1.2μM at 24 and 48h, respectively. Treatment of the cells with JS-K for 24h, caused a dose-dependent increase in apoptosis from 16±3.3% at 10μM to 74.8±2% at 100μM and a decrease in proliferation. This growth inhibition was also due, in part, to alterations in the different phases of the cell cycle. JS-K exhibited a dose-dependent cytotoxicity as measured by LDH release at 24h. However, between 2 and 8h, LDH release was less than 20% for any indicated JS-K concentration. The β-catenin/TCF-4 transcriptional inhibitory activity was reduced by 32±8, 63±5, and 93±2% at 2, 10, and 25μM JS-K, respectively, based on luciferase reporter assays. JS-K reduced nuclear β-catenin and cyclin D1 protein levels, but cytosolic β-catenin expression did not change. Based on a time-course assay of S-nitrosylation of proteins by a biotin switch assay, S-nitrsolyation of nuclear β-catenin was determined to precede its degradation. A comparison of the S-nitrosylated nuclear β-catenin to the total nuclear β-catenin showed that β-catenin protein levels were degraded at 24h, while S-nitrosylation of β-catenin occurred earlier at 0-6h. The NO scavenger PTIO abrogated the JS-K mediated degradation of β-catenin demonstrating the need for NO.
Collapse
Affiliation(s)
- Niharika Nath
- Department of Physiology and Pharmacology, City University of New York Medical School, 138th Street and Convent Avenue, New York, NY 10031, United States
- Department of Life Sciences, New York Institute of Technology, New York, NY, United States
| | - Mitali Chattopadhyay
- Department of Physiology and Pharmacology, City University of New York Medical School, 138th Street and Convent Avenue, New York, NY 10031, United States
| | - Liliya Pospishil
- Department of Physiology and Pharmacology, City University of New York Medical School, 138th Street and Convent Avenue, New York, NY 10031, United States
| | - Lucyna Z. Cieciura
- Department of Physiology and Pharmacology, City University of New York Medical School, 138th Street and Convent Avenue, New York, NY 10031, United States
| | - Satindra Goswami
- Department of Physiology and Pharmacology, City University of New York Medical School, 138th Street and Convent Avenue, New York, NY 10031, United States
| | - Ravinder Kodela
- Department of Physiology and Pharmacology, City University of New York Medical School, 138th Street and Convent Avenue, New York, NY 10031, United States
| | - Joseph E. Saavedra
- Basic Research Program, SAIC-Frederick Inc., National Cancer Institute at Frederick, Frederick, MD, United States
| | - Larry K. Keefer
- Laboratory of Comparative Carcinogenesis, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Khosrow Kashfi
- Department of Physiology and Pharmacology, City University of New York Medical School, 138th Street and Convent Avenue, New York, NY 10031, United States
| |
Collapse
|
50
|
Chen YJ, Ku WC, Lin PY, Chou HC, Khoo KH, Chen YJ. S-alkylating labeling strategy for site-specific identification of the s-nitrosoproteome. J Proteome Res 2010; 9:6417-39. [PMID: 20925432 DOI: 10.1021/pr100680a] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
S-nitrosylation, a post-translational modification of cysteine residues induced by nitric oxide, mediates many physiological functions. Due to the labile nature of S-nitrosylation, detection by mass spectrometry (MS) is challenging. Here, we developed an S-alkylating labeling strategy using the irreversible biotinylation on S-nitrosocysteines for site-specific identification of the S-nitrosoproteome by LC-MS/MS. Using COS-7 cells without endogenous nitric oxide synthase, we demonstrated that the S-alkylating labeling strategy substantially improved the blocking efficiency of free cysteines, minimized the false-positive identification caused by disulfide interchange, and increased the digestion efficiency for improved peptide identification using MS analyses. Using this strategy, we identified total 586 unique S-nitrosylation sites corresponding to 384 proteins in S-nitroso-N-acetylpenicillamine (SNAP)/l-cysteine-treated mouse MS-1 endothelial cells, including 234 previously unreported S-nitrosylated proteins. When the topologies of 84 identified transmembrane proteins were further analyzed, their S-nitrosylation sites were found to mostly face the cytoplasmic side, implying that S-nitrosylation occurs in the cytoplasm. In addition to the previously known acid/basic motifs, the ten deduced consensus motifs suggested that combination of local hydrophobicity and acid/base motifs in the tertiary structure contribute to the specificity of S-nitrosylation. Moreover, the S-nitrosylated cysteines showed preference on beta-strand, having lower relative surface accessibility at the S-nitrosocysteines.
Collapse
Affiliation(s)
- Yi-Ju Chen
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
| | | | | | | | | | | |
Collapse
|