1
|
Carlin AF, Beadle JR, Ardanuy J, Clark AE, Rhodes V, Garretson AF, Murphy JA, Valiaeva N, Schooley RT, Frieman MB, Hostetler KY. Oral pharmacokinetics and efficacy of oral phospholipid remdesivir nucleoside prodrugs against SARS-CoV-2 in mice. Antimicrob Agents Chemother 2024; 68:e0103924. [PMID: 39240093 PMCID: PMC11459966 DOI: 10.1128/aac.01039-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024] Open
Abstract
Oral broad-spectrum antivirals are urgently needed for the treatment of many emerging and contemporary RNA viruses. We previously synthesized 1-O-octadecyl-2-O-benzyl-sn-glyceryl-P-RVn (ODBG-P-RVn, V2043), a phospholipid prodrug of GS-441524 (remdesivir nucleoside, RVn), and demonstrated its in vivo efficacy in a SARS-CoV-2 mouse model. Structure-activity relationship studies focusing on the prodrug scaffold identified two modifications, 3-fluoro-4-methoxy-benzyl (V2053) and 4-cyano-benzyl (V2067), that significantly enhanced the in vitro broad-spectrum antiviral activity against multiple RNA viruses when compared to V2043. Here, we demonstrate that V2043, V2053, and V2067 are all orally bioavailable, well-tolerated, and achieve high sustained plasma levels after single oral daily dosing. All three phospholipid prodrugs are significantly more active than RVn in vitro and significantly reduce SARS-CoV-2 lung titers in prophylaxis and treatment mouse models of SARS-CoV-2 B.1.351 infection. On a molar basis, V2043 and V2067 are substantially more active than obeldesivir/GS-5245 and molnupiravir in vivo. Together, these data support the continued development of phospholipid RVn prodrugs for the treatment of SARS-CoV-2 and other RNA viruses of clinical concern.
Collapse
Affiliation(s)
- Aaron F. Carlin
- Department of Pathology, University of California San Diego, La Jolla, California, USA
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - James R. Beadle
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Jeremy Ardanuy
- Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Pathogen Research, The University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Alex E. Clark
- Department of Pathology, University of California San Diego, La Jolla, California, USA
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Victoria Rhodes
- Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Pathogen Research, The University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Aaron F. Garretson
- Department of Pathology, University of California San Diego, La Jolla, California, USA
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Joyce A. Murphy
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Nadejda Valiaeva
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Robert T. Schooley
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Matthew B. Frieman
- Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Pathogen Research, The University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Karl Y. Hostetler
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
2
|
Novitsky V, Beckwith CG, Carpenter-Azevedo K, Shin J, Hague J, Sam S, Steingrimsson J, Huard RC, Lethbridge K, Sahu S, Rapoza K, Chandran K, Bazerman L, Hipolito E, Diaz I, Carnevale D, Guang A, Gillani F, Caliendo AM, Kantor R. Limited Short-Term Evolution of SARS-CoV-2 RNA-Dependent RNA Polymerase under Remdesivir Exposure in Upper Respiratory Compartments. Viruses 2024; 16:1511. [PMID: 39459846 PMCID: PMC11512361 DOI: 10.3390/v16101511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The extent of the SARS-CoV-2 short-term evolution under Remdesivir (RDV) exposure and whether it varies across different upper respiratory compartments are not fully understood. METHODS Patients hospitalized for COVID-19, with or without RDV therapy, were enrolled and completed up to three visits, in which they provided specimens from four respiratory compartments. Near full-length genome SARS-CoV-2 sequences were obtained from viral RNA, standard lineage and variant assignments were performed, and viral mutations in the RNA-dependent RNA polymerase (RdRp) region-the RDV target gene-were detected and compared between participants with and without RDV, across the four compartments, within participants across visits, and versus a larger sequence dataset. The statistical analysis used a generalized linear mixed-effects model. RESULTS A total of 139 sequences were obtained from 37 out of the 44 (84%) enrolled participants. The genotyping success varied across respiratory compartments, which ranged from 42% with oropharyngeal specimens to 67% with nasopharyngeal specimens and showed improvement with higher viral loads. No RdRp mutations known to be associated with RDV resistance were identified, and for 34 detected mutations at 32 amino acid positions that are not known as RDV-associated, there was no evidence of any associations with the RDV exposure, respiratory compartment, or time. At least 1 of these 34 mutations were detected in all participants, and some differed from the larger sequence dataset. CONCLUSIONS This study highlighted the SARS-CoV-2 short-term genomic stability within hosts and across upper respiratory compartments, which suggests a lack of evolution of RDV resistance over time. This contributes to our understanding of SARS-CoV-2 genomic dynamics.
Collapse
Affiliation(s)
- Vladimir Novitsky
- Department of Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; (V.N.); (C.G.B.); (J.H.); (S.S.); (F.G.); (A.M.C.)
| | - Curt G. Beckwith
- Department of Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; (V.N.); (C.G.B.); (J.H.); (S.S.); (F.G.); (A.M.C.)
| | - Kristin Carpenter-Azevedo
- State Health Laboratories, Rhode Island Department of Health, Providence, RI 02912, USA; (K.C.-A.); (R.C.H.)
| | - Jimin Shin
- School of Medicine, University of Connecticut, Farmington, CT 06030, USA;
| | - Joel Hague
- Department of Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; (V.N.); (C.G.B.); (J.H.); (S.S.); (F.G.); (A.M.C.)
| | - Soya Sam
- Department of Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; (V.N.); (C.G.B.); (J.H.); (S.S.); (F.G.); (A.M.C.)
| | - Jon Steingrimsson
- Department of Biostatistics, School of Public Health, Brown University, Providence, RI 02912, USA;
| | - Richard C. Huard
- State Health Laboratories, Rhode Island Department of Health, Providence, RI 02912, USA; (K.C.-A.); (R.C.H.)
| | - Kevin Lethbridge
- Rhode Island Hospital, Providence, RI 02912, USA; (K.L.); (E.H.); (I.D.); (D.C.)
| | - Sujata Sahu
- The Miriam Hospital, Providence, RI 02912, USA; (S.S.); (K.R.); (K.C.); (L.B.)
| | - Kim Rapoza
- The Miriam Hospital, Providence, RI 02912, USA; (S.S.); (K.R.); (K.C.); (L.B.)
| | - Karen Chandran
- The Miriam Hospital, Providence, RI 02912, USA; (S.S.); (K.R.); (K.C.); (L.B.)
| | - Lauri Bazerman
- The Miriam Hospital, Providence, RI 02912, USA; (S.S.); (K.R.); (K.C.); (L.B.)
| | - Evelyn Hipolito
- Rhode Island Hospital, Providence, RI 02912, USA; (K.L.); (E.H.); (I.D.); (D.C.)
| | - Isabella Diaz
- Rhode Island Hospital, Providence, RI 02912, USA; (K.L.); (E.H.); (I.D.); (D.C.)
| | - Daniella Carnevale
- Rhode Island Hospital, Providence, RI 02912, USA; (K.L.); (E.H.); (I.D.); (D.C.)
| | - August Guang
- Computational Biology Core, Center for Computation and Visualization, Brown University, Providence, RI 02912, USA;
| | - Fizza Gillani
- Department of Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; (V.N.); (C.G.B.); (J.H.); (S.S.); (F.G.); (A.M.C.)
- Rhode Island Hospital, Providence, RI 02912, USA; (K.L.); (E.H.); (I.D.); (D.C.)
| | - Angela M. Caliendo
- Department of Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; (V.N.); (C.G.B.); (J.H.); (S.S.); (F.G.); (A.M.C.)
| | - Rami Kantor
- Department of Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; (V.N.); (C.G.B.); (J.H.); (S.S.); (F.G.); (A.M.C.)
| |
Collapse
|
3
|
Pandey K, Acharya A, Pal D, Jain P, Singh K, Durden DL, Kutateladze TG, Deshpande AJ, Byrareddy SN. SRX3177, a CDK4/6-PI3K-BET inhibitor, in combination with an RdRp inhibitor, Molnupiravir, or an entry inhibitor MU-UNMC-2, has potent antiviral activity against the Omicron variant of SARS-CoV-2. Antiviral Res 2024; 227:105904. [PMID: 38729306 DOI: 10.1016/j.antiviral.2024.105904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Despite considerable progress in developing vaccines and antivirals to combat COVID-19, the rapid mutations of the SARS-CoV-2 genome have limited the durability and efficacy of the current vaccines and therapeutic interventions. Hence, it necessitates the development of novel therapeutic approaches or repurposing existing drugs that target either viral life cycle, host factors, or both. Here, we report that SRX3177, a potent triple-activity CDK4/6-PI3K-BET inhibitor, blocks replication of the SARS-CoV-2 Omicron variant with IC50 values at sub-micromolar concentrations without any impact on the cell proliferation of Calu-3 cells at and below its IC50 concentration. When SRX3177 is combined with EIDD-1931 (active moiety of a small-molecule prodrug Molnupiravir) or MU-UNMC-2 (a SARS-CoV-2 entry inhibitor) at a fixed doses matrix, a synergistic effect was observed, leading to the significant reduction in the dose of the individual compounds to achieve similar inhibition of SARS-CoV-2 replication. Herein, we report that the combination of SRX3177/MPV or SRX3177/UM-UNMC-2 has the potential for further development as a combinational therapy against SARS-CoV-2 and in any future outbreak of beta coronavirus.
Collapse
Affiliation(s)
- Kabita Pandey
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68131, USA
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68131, USA
| | - Dhananjaya Pal
- Molecular Targeted Therapeutics Laboratory, Levine Cancer Institute, Charlotte, NC, 28204, USA; Division of Hematology and Oncology, Department of Pediatrics, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA
| | - Prashant Jain
- Cancer Genome and Epigenetics Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92127, USA
| | - Kamal Singh
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Donald L Durden
- Molecular Targeted Therapeutics Laboratory, Levine Cancer Institute, Charlotte, NC, 28204, USA; Division of Hematology and Oncology, Department of Pediatrics, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Aniruddha J Deshpande
- Cancer Genome and Epigenetics Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92127, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68131, USA.
| |
Collapse
|
4
|
Iketani S, Ho DD. SARS-CoV-2 resistance to monoclonal antibodies and small-molecule drugs. Cell Chem Biol 2024; 31:632-657. [PMID: 38640902 PMCID: PMC11084874 DOI: 10.1016/j.chembiol.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/21/2024]
Abstract
Over four years have passed since the beginning of the COVID-19 pandemic. The scientific response has been rapid and effective, with many therapeutic monoclonal antibodies and small molecules developed for clinical use. However, given the ability for viruses to become resistant to antivirals, it is perhaps no surprise that the field has identified resistance to nearly all of these compounds. Here, we provide a comprehensive review of the resistance profile for each of these therapeutics. We hope that this resource provides an atlas for mutations to be aware of for each agent, particularly as a springboard for considerations for the next generation of antivirals. Finally, we discuss the outlook and thoughts for moving forward in how we continue to manage this, and the next, pandemic.
Collapse
Affiliation(s)
- Sho Iketani
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
5
|
Hedskog C, Spinner CD, Protzer U, Hoffmann D, Ko C, Gottlieb RL, Askar M, Roestenberg M, de Vries JJC, Carbo EC, Martin R, Li J, Han D, Rodriguez L, Parvangada A, Perry JK, Ferrer R, Antón A, Andrés C, Casares V, Günthard HF, Huber M, McComsey GA, Sadri N, Aberg JA, van Bakel H, Porter DP. No Remdesivir Resistance Observed in the Phase 3 Severe and Moderate COVID-19 SIMPLE Trials. Viruses 2024; 16:546. [PMID: 38675889 PMCID: PMC11053423 DOI: 10.3390/v16040546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Remdesivir (RDV) is a broad-spectrum nucleotide analog prodrug approved for the treatment of COVID-19 in hospitalized and non-hospitalized patients with clinical benefit demonstrated in multiple Phase 3 trials. Here we present SARS-CoV-2 resistance analyses from the Phase 3 SIMPLE clinical studies evaluating RDV in hospitalized participants with severe or moderate COVID-19 disease. The severe and moderate studies enrolled participants with radiologic evidence of pneumonia and a room-air oxygen saturation of ≤94% or >94%, respectively. Virology sample collection was optional in the study protocols. Sequencing and related viral load data were obtained retrospectively from participants at a subset of study sites with local sequencing capabilities (10 of 183 sites) at timepoints with detectable viral load. Among participants with both baseline and post-baseline sequencing data treated with RDV, emergent Nsp12 substitutions were observed in 4 of 19 (21%) participants in the severe study and none of the 2 participants in the moderate study. The following 5 substitutions emerged: T76I, A526V, A554V, E665K, and C697F. The substitutions T76I, A526V, A554V, and C697F had an EC50 fold change of ≤1.5 relative to the wildtype reference using a SARS-CoV-2 subgenomic replicon system, indicating no significant change in the susceptibility to RDV. The phenotyping of E665K could not be determined due to a lack of replication. These data reveal no evidence of relevant resistance emergence and further confirm the established efficacy profile of RDV with a high resistance barrier in COVID-19 patients.
Collapse
Affiliation(s)
- Charlotte Hedskog
- Gilead Sciences, Inc., Foster City, CA 94404, USA; (R.M.); (J.L.); (D.H.); (L.R.); (A.P.); (J.K.P.); (D.P.P.)
| | - Christoph D. Spinner
- TUM School of Medicine and Health, Department of Clinical Medicine—Clinical Department for Internal Medicine II, University Medical Center, Technical University of Munich, 81675 Munich, Germany;
| | - Ulrike Protzer
- German Center for Infection Research (DZIF), Munich Partner Site, 81675 Munich, Germany; (U.P.); (D.H.)
- Institute of Virology, Technical University of Munich School of Medicine, 81675 Munich, Germany;
- Institute of Virology, Helmholtz Munich, 85764 Munich, Germany
| | - Dieter Hoffmann
- German Center for Infection Research (DZIF), Munich Partner Site, 81675 Munich, Germany; (U.P.); (D.H.)
- Institute of Virology, Technical University of Munich School of Medicine, 81675 Munich, Germany;
| | - Chunkyu Ko
- Institute of Virology, Technical University of Munich School of Medicine, 81675 Munich, Germany;
- Institute of Virology, Helmholtz Munich, 85764 Munich, Germany
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Robert L. Gottlieb
- Center for Advanced Heart and Lung Disease, Department of Internal Medicine, Baylor University Medical Center, Dallas, TX 75246, USA; (R.L.G.); (M.A.)
- Baylor Scott & White Research Institute, Dallas, TX 75246, USA
- Department of Internal Medicine, Texas A&M Health Science Center, Dallas, TX 75246, USA
- Department of Internal Medicine, Burnett School of Medicine at TCU, Fort Worth, TX 76109, USA
| | - Medhat Askar
- Center for Advanced Heart and Lung Disease, Department of Internal Medicine, Baylor University Medical Center, Dallas, TX 75246, USA; (R.L.G.); (M.A.)
- QU Health and Department of Immunology, College of Medicine, Qatar University, Doha P.O. Box 2713, Qatar
| | - Meta Roestenberg
- Leiden University Medical Center for Infectious Diseases (LUCID), 2333 ZA Leiden, The Netherlands; (M.R.); (J.J.C.d.V.); (E.C.C.)
| | - Jutte J. C. de Vries
- Leiden University Medical Center for Infectious Diseases (LUCID), 2333 ZA Leiden, The Netherlands; (M.R.); (J.J.C.d.V.); (E.C.C.)
| | - Ellen C. Carbo
- Leiden University Medical Center for Infectious Diseases (LUCID), 2333 ZA Leiden, The Netherlands; (M.R.); (J.J.C.d.V.); (E.C.C.)
| | - Ross Martin
- Gilead Sciences, Inc., Foster City, CA 94404, USA; (R.M.); (J.L.); (D.H.); (L.R.); (A.P.); (J.K.P.); (D.P.P.)
| | - Jiani Li
- Gilead Sciences, Inc., Foster City, CA 94404, USA; (R.M.); (J.L.); (D.H.); (L.R.); (A.P.); (J.K.P.); (D.P.P.)
| | - Dong Han
- Gilead Sciences, Inc., Foster City, CA 94404, USA; (R.M.); (J.L.); (D.H.); (L.R.); (A.P.); (J.K.P.); (D.P.P.)
| | - Lauren Rodriguez
- Gilead Sciences, Inc., Foster City, CA 94404, USA; (R.M.); (J.L.); (D.H.); (L.R.); (A.P.); (J.K.P.); (D.P.P.)
| | - Aiyappa Parvangada
- Gilead Sciences, Inc., Foster City, CA 94404, USA; (R.M.); (J.L.); (D.H.); (L.R.); (A.P.); (J.K.P.); (D.P.P.)
| | - Jason K. Perry
- Gilead Sciences, Inc., Foster City, CA 94404, USA; (R.M.); (J.L.); (D.H.); (L.R.); (A.P.); (J.K.P.); (D.P.P.)
| | - Ricard Ferrer
- Vall d’Hebron Hospital Universitari, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Medicine Department, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (R.F.); (A.A.); (C.A.); (V.C.)
| | - Andrés Antón
- Vall d’Hebron Hospital Universitari, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Medicine Department, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (R.F.); (A.A.); (C.A.); (V.C.)
| | - Cristina Andrés
- Vall d’Hebron Hospital Universitari, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Medicine Department, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (R.F.); (A.A.); (C.A.); (V.C.)
| | - Vanessa Casares
- Vall d’Hebron Hospital Universitari, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Medicine Department, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (R.F.); (A.A.); (C.A.); (V.C.)
| | - Huldrych F. Günthard
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8057 Zurich, Switzerland;
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Grace A. McComsey
- Department of Medicine, University Hospitals of Cleveland and Case Western Reserve University, Cleveland, OH 44106, USA; (G.A.M.); (N.S.)
| | - Navid Sadri
- Department of Medicine, University Hospitals of Cleveland and Case Western Reserve University, Cleveland, OH 44106, USA; (G.A.M.); (N.S.)
| | - Judith A. Aberg
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Danielle P. Porter
- Gilead Sciences, Inc., Foster City, CA 94404, USA; (R.M.); (J.L.); (D.H.); (L.R.); (A.P.); (J.K.P.); (D.P.P.)
| |
Collapse
|
6
|
Tanino Y, Nishioka K, Yamamoto C, Watanabe Y, Daidoji T, Kawamoto M, Uda S, Kirito S, Nakagawa Y, Kasamatsu Y, Kawahara Y, Sakai Y, Nobori S, Inaba T, Ota B, Fujita N, Hoshino A, Nukui Y, Nakaya T. Emergence of SARS-CoV-2 with Dual-Drug Resistant Mutations During a Long-Term Infection in a Kidney Transplant Recipient. Infect Drug Resist 2024; 17:531-541. [PMID: 38348230 PMCID: PMC10860503 DOI: 10.2147/idr.s438915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/22/2024] [Indexed: 02/15/2024] Open
Abstract
Introduction Various therapeutic agents are being developed for the treatment of coronavirus disease 2019 (COVID-19). Therefore, it is crucial to accumulate information regarding the features of drug-resistant viruses to these antiviral drugs. Methods We investigated the emergence of dual-drug resistance in a kidney transplant recipient who received sotrovimab (from day 0) and remdesivir (RDV) (from day 8 to day 17). We sequenced the whole viral genomes from nasopharyngeal swabs taken on day 0 and seven points after starting treatment (on days 12, 19, 23, 37, 43, 48, and 58). The genetic traits of the wild-type (day 0) and descendant viruses (after day 12) were determined by comparing the genomes with those of a Wuhan strain and the day 0 wild-type strain, respectively. Three viral isolates (from samples collected on days 0, 23, and 37) were investigated for their escape ability and growth kinetics in vitro. Results The sotrovimab resistant mutation (S:E340K) and the RDV resistant mutation RdRp:V792I (nt: G15814A) emerged within 12 days (day 12) and 11 days (day 19) after the treatment, respectively. The day 23 isolate harboring S:E340K/RdRp:V791I was resistant to both sotrovimab and RDV, showing 364- and 2.73-fold higher resistance respectively, compared with the wild-type. Moreover, compared with the day 23 isolate, the day 37 isolate accumulated multiple additional mutations and had a higher level of resistance to both drugs. Conclusion Drug-resistant variants with double mutations (S:E340K/RdRp:V791I) became dominant within 23 days after starting treatment, suggesting that even a combination therapy involving sotrovimab and RDV, dual-drug resistant viruses may emerge rapidly in immunocompromised patients. The dual-resistant variants had lower virus yields than those of the wild-type virus in vitro, suggesting that they paid a fitness cost.
Collapse
Affiliation(s)
- Yoko Tanino
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Infection Control and Laboratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keisuke Nishioka
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Chie Yamamoto
- Department of Infection Control and Laboratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yohei Watanabe
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
- JST, MIRAI, Tokyo, Japan
| | - Tomo Daidoji
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Masataka Kawamoto
- Department of Forensics Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Sayaka Uda
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shoko Kirito
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuta Nakagawa
- Department of Infection Control and Laboratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yu Kasamatsu
- Department of Infection Control and Laboratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshiyuki Kawahara
- Kyoto Prefectural Institute of Public Health and Environment, Kyoto, Japan
| | - Yuri Sakai
- Kyoto Prefectural Institute of Public Health and Environment, Kyoto, Japan
| | - Shuji Nobori
- Department of Organ Transplantation and General Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tohru Inaba
- Department of Infection Control and Laboratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Bon Ota
- Department of Emergency Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naohisa Fujita
- Kyoto Prefectural Institute of Public Health and Environment, Kyoto, Japan
| | - Atsushi Hoshino
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoko Nukui
- Department of Infection Control and Laboratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
7
|
Lorenzo-Redondo R, de Sant’Anna Carvalho AM, Hultquist JF, Ozer EA. SARS-CoV-2 genomics and impact on clinical care for COVID-19. J Antimicrob Chemother 2023; 78:ii25-ii36. [PMID: 37995357 PMCID: PMC10667012 DOI: 10.1093/jac/dkad309] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/02/2023] [Indexed: 11/25/2023] Open
Abstract
The emergence and worldwide spread of SARS-CoV-2 during the COVID-19 pandemic necessitated the adaptation and rapid deployment of viral WGS and analysis techniques that had been previously applied on a more limited basis to other viral pathogens, such as HIV and influenza viruses. The need for WGS was driven in part by the low mutation rate of SARS-CoV-2, which necessitated measuring variation along the entire genome sequence to effectively differentiate lineages and characterize viral evolution. Several WGS approaches designed to maximize throughput and accuracy were quickly adopted by surveillance labs around the world. These broad-based SARS-CoV-2 genomic sequencing efforts revealed ongoing evolution of the virus, highlighted by the successive emergence of new viral variants throughout the course of the pandemic. These genomic insights were instrumental in characterizing the effects of viral mutations on transmissibility, immune escape and viral tropism, which in turn helped guide public health policy, the use of monoclonal antibody therapeutics and vaccine development strategies. As the use of direct-acting antivirals for the treatment of COVID-19 became more widespread, the potential for emergence of antiviral resistance has driven ongoing efforts to delineate resistance mutations and to monitor global sequence databases for their emergence. Given the critical role of viral genomics in the international effort to combat the COVID-19 pandemic, coordinated efforts should be made to expand global genomic surveillance capacity and infrastructure towards the anticipation and prevention of future pandemics.
Collapse
Affiliation(s)
- Ramon Lorenzo-Redondo
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Alexandre Machado de Sant’Anna Carvalho
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Judd F Hultquist
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Egon A Ozer
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| |
Collapse
|
8
|
Hirotsu Y, Kobayashi H, Kakizaki Y, Saito A, Tsutsui T, Kawaguchi M, Shimamura S, Hata K, Hanawa S, Toyama J, Miyashita Y, Omata M. Multidrug-resistant mutations to antiviral and antibody therapy in an immunocompromised patient infected with SARS-CoV-2. MED 2023; 4:813-824.e4. [PMID: 37683636 DOI: 10.1016/j.medj.2023.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/19/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Antiviral and antibody therapies for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are being recommended for high-risk patients, but the potential for the development of multidrug-resistant mutations in immunocompromised patients is unclear. METHODS To investigate the treatment course in cases of prolonged viral shedding in an immunocompromised patient with SARS-CoV-2 infection, we conducted longitudinal measurements of laboratory tests, chest computed tomography (CT) image evaluations, antibody titers, and antigen levels in nasopharyngeal swabs. Furthermore, we performed whole-genome sequencing and digital PCR analysis to examine the mechanisms of drug resistance. FINDINGS We present a case of a 65-year-old man with a history of malignant lymphoma who was treated with multiple antiviral and antibody therapies, including sotrovimab, remdesivir, paxlovid (nirmatrelvir/ritonavir), and molnupiravir. Initially, viral antigen levels decreased after treatments. However, after the virus rebounded, the patient showed no virologic response. The viral genome analysis revealed a single Omicron subvariant (BA.1.1), which evolved within the host during the disease progression. The viruses had acquired multiple resistance mutations to nirmatrelvir (3 chymotrypsin-like protease [3CLpro] E166 A/V), sotrovimab (spike P337L and E340K), and remdesivir (RNA-dependent RNA polymerase [RdRp] V166L). CONCLUSIONS Our results indicate that viruses with multidrug-resistant mutations and survival fitness persist in the infected subpopulation after drug selection pressure. FUNDING This study was supported by the JSPS KAKENHI Early-Career Scientists 18K16292 (Y.H.), Grant-in-Aid for Scientific Research (B) 20H03668 and 23H02955 (Y.H.), the YASUDA Medical Foundation (Y.H.), the Uehara Memorial Foundation (Y.H.), the Takeda Science Foundation (Y.H.), and Kato Memorial Bioscience Foundation (Y.H.).
Collapse
Affiliation(s)
- Yosuke Hirotsu
- Genome Analysis Center, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan.
| | - Hiroaki Kobayashi
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan
| | - Yumiko Kakizaki
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan
| | - Akitoshi Saito
- Department of Radiology, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan
| | - Toshiharu Tsutsui
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan
| | - Makoto Kawaguchi
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan
| | - Sou Shimamura
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan
| | - Kouki Hata
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan
| | - Syunya Hanawa
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan
| | - Jun Toyama
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan
| | - Yoshihiro Miyashita
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan
| | - Masao Omata
- Department of Gastroenterology, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan; The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
9
|
Hedskog C, Rodriguez L, Roychoudhury P, Huang ML, Jerome KR, Hao L, Ireton RC, Li J, Perry JK, Han D, Camus G, Greninger AL, Gale M, Porter DP. Viral Resistance Analyses From the Remdesivir Phase 3 Adaptive COVID-19 Treatment Trial-1 (ACTT-1). J Infect Dis 2023; 228:1263-1273. [PMID: 37466213 PMCID: PMC10629708 DOI: 10.1093/infdis/jiad270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Remdesivir is approved for treatment of coronavirus disease 2019 (COVID-19) in nonhospitalized and hospitalized adult and pediatric patients. Here we present severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) resistance analyses from the phase 3 ACTT-1 randomized placebo-controlled trial conducted in adult participants hospitalized with COVID-19. METHODS Swab samples were collected at baseline and longitudinally through day 29. SARS-CoV-2 genomes were sequenced using next-generation sequencing. Phenotypic analysis was conducted directly on participant virus isolates and/or using SARS-CoV-2 subgenomic replicons expressing mutations identified in the Nsp12 target gene. RESULTS Among participants with both baseline and postbaseline sequencing data, emergent Nsp12 substitutions were observed in 12 of 31 (38.7%) and 12 of 30 (40.0%) participants in the remdesivir and placebo arms, respectively. No emergent Nsp12 substitutions in the remdesivir arm were observed in more than 1 participant. Phenotyping showed low to no change in susceptibility to remdesivir relative to wild-type Nsp12 reference for the substitutions tested: A16V (0.8-fold change in EC50), P323L + V792I (2.2-fold), C799F (2.5-fold), K59N (1.0-fold), and K59N + V792I (3.4-fold). CONCLUSIONS The similar rate of emerging Nsp12 substitutions in the remdesivir and placebo arms and the minimal change in remdesivir susceptibility among tested substitutions support a high barrier to remdesivir resistance development in COVID-19 patients. Clinical Trials Registration. NCT04280705.
Collapse
Affiliation(s)
| | | | - Pavitra Roychoudhury
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Meei-Li Huang
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Keith R Jerome
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Linhui Hao
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Renee C Ireton
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Jiani Li
- Gilead Sciences, Inc, Foster City, California, USA
| | | | - Dong Han
- Gilead Sciences, Inc, Foster City, California, USA
| | | | - Alexander L Greninger
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
10
|
Gammeltoft KA, Zhou Y, Ryberg LA, Pham LV, Binderup A, Hernandez CRD, Offersgaard A, Fahnøe U, Peters GHJ, Ramirez S, Bukh J, Gottwein JM. Substitutions in SARS-CoV-2 Mpro Selected by Protease Inhibitor Boceprevir Confer Resistance to Nirmatrelvir. Viruses 2023; 15:1970. [PMID: 37766376 PMCID: PMC10536901 DOI: 10.3390/v15091970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Nirmatrelvir, which targets the SARS-CoV-2 main protease (Mpro), is the first-in-line drug for prevention and treatment of severe COVID-19, and additional Mpro inhibitors are in development. However, the risk of resistance development threatens the future efficacy of such direct-acting antivirals. To gain knowledge on viral correlates of resistance to Mpro inhibitors, we selected resistant SARS-CoV-2 under treatment with the nirmatrelvir-related protease inhibitor boceprevir. SARS-CoV-2 selected during five escape experiments in VeroE6 cells showed cross-resistance to nirmatrelvir with up to 7.3-fold increased half-maximal effective concentration compared to original SARS-CoV-2, determined in concentration-response experiments. Sequence analysis revealed that escape viruses harbored Mpro substitutions L50F and A173V. For reverse genetic studies, these substitutions were introduced into a cell-culture-infectious SARS-CoV-2 clone. Infectivity titration and analysis of genetic stability of cell-culture-derived engineered SARS-CoV-2 mutants showed that L50F rescued the fitness cost conferred by A173V. In the concentration-response experiments, A173V was the main driver of resistance to boceprevir and nirmatrelvir. Structural analysis of Mpro suggested that A173V can cause resistance by making boceprevir and nirmatrelvir binding less favorable. This study contributes to a comprehensive overview of the resistance profile of the first-in-line COVID-19 treatment nirmatrelvir and can thus inform population monitoring and contribute to pandemic preparedness.
Collapse
Affiliation(s)
- Karen Anbro Gammeltoft
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650 Hvidovre, Denmark; (K.A.G.); (Y.Z.); (L.A.R.); (L.V.P.); (A.B.); (C.R.D.H.); (A.O.); (U.F.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Yuyong Zhou
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650 Hvidovre, Denmark; (K.A.G.); (Y.Z.); (L.A.R.); (L.V.P.); (A.B.); (C.R.D.H.); (A.O.); (U.F.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Line Abildgaard Ryberg
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650 Hvidovre, Denmark; (K.A.G.); (Y.Z.); (L.A.R.); (L.V.P.); (A.B.); (C.R.D.H.); (A.O.); (U.F.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Long V. Pham
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650 Hvidovre, Denmark; (K.A.G.); (Y.Z.); (L.A.R.); (L.V.P.); (A.B.); (C.R.D.H.); (A.O.); (U.F.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Alekxander Binderup
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650 Hvidovre, Denmark; (K.A.G.); (Y.Z.); (L.A.R.); (L.V.P.); (A.B.); (C.R.D.H.); (A.O.); (U.F.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Carlos Rene Duarte Hernandez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650 Hvidovre, Denmark; (K.A.G.); (Y.Z.); (L.A.R.); (L.V.P.); (A.B.); (C.R.D.H.); (A.O.); (U.F.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Anna Offersgaard
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650 Hvidovre, Denmark; (K.A.G.); (Y.Z.); (L.A.R.); (L.V.P.); (A.B.); (C.R.D.H.); (A.O.); (U.F.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650 Hvidovre, Denmark; (K.A.G.); (Y.Z.); (L.A.R.); (L.V.P.); (A.B.); (C.R.D.H.); (A.O.); (U.F.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | | | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650 Hvidovre, Denmark; (K.A.G.); (Y.Z.); (L.A.R.); (L.V.P.); (A.B.); (C.R.D.H.); (A.O.); (U.F.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650 Hvidovre, Denmark; (K.A.G.); (Y.Z.); (L.A.R.); (L.V.P.); (A.B.); (C.R.D.H.); (A.O.); (U.F.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Judith Margarete Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650 Hvidovre, Denmark; (K.A.G.); (Y.Z.); (L.A.R.); (L.V.P.); (A.B.); (C.R.D.H.); (A.O.); (U.F.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
11
|
Blair HA. Remdesivir: A Review in COVID-19. Drugs 2023; 83:1215-1237. [PMID: 37589788 PMCID: PMC10474216 DOI: 10.1007/s40265-023-01926-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2023] [Indexed: 08/18/2023]
Abstract
Remdesivir (Veklury®), a nucleotide analogue prodrug with broad-spectrum antiviral activity, is approved for the treatment of coronavirus disease 2019 (COVID-19), the illness caused by severe acute respiratory syndrome coronavirus 2 infection. Unlike some antivirals, remdesivir has a low potential for drug-drug interactions. In the pivotal ACTT-1 trial in hospitalized patients with COVID-19, daily intravenous infusions of remdesivir significantly reduced time to recovery relative to placebo. Subsequent trials provided additional support for the efficacy of remdesivir in hospitalized patients with moderate or severe COVID-19, with a greater benefit seen in patients with minimal oxygen requirements at baseline. Clinical trials also demonstrated the efficacy of remdesivir in other patient populations, including outpatients at high risk for progression to severe COVID-19, as well as hospitalized paediatric patients. In terms of mortality, results were equivocal. However, remdesivir appeared to have a small mortality benefit in hospitalized patients who were not already being ventilated at baseline. Remdesivir was generally well tolerated in clinical trials, but pharmacovigilance data found an increased risk of hepatic, renal and cardiovascular adverse drug reactions in the real-world setting. In conclusion, remdesivir represents a useful treatment option for patients with COVID-19, particularly those who require supplemental oxygen.
Collapse
Affiliation(s)
- Hannah A Blair
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
12
|
Grimes SL, Choi YJ, Banerjee A, Small G, Anderson-Daniels J, Gribble J, Pruijssers AJ, Agostini ML, Abu-Shmais A, Lu X, Darst SA, Campbell E, Denison MR. A mutation in the coronavirus nsp13-helicase impairs enzymatic activity and confers partial remdesivir resistance. mBio 2023; 14:e0106023. [PMID: 37338298 PMCID: PMC10470589 DOI: 10.1128/mbio.01060-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 06/21/2023] Open
Abstract
Coronaviruses (CoVs) encode nonstructural proteins 1-16 (nsps 1-16) which form replicase complexes that mediate viral RNA synthesis. Remdesivir (RDV) is an adenosine nucleoside analog antiviral that inhibits CoV RNA synthesis. RDV resistance mutations have been reported only in the nonstructural protein 12 RNA-dependent RNA polymerase (nsp12-RdRp). We here show that a substitution mutation in the nsp13-helicase (nsp13-HEL A335V) of the betacoronavirus murine hepatitis virus (MHV) that was selected during passage with the RDV parent compound confers partial RDV resistance independently and additively when expressed with co-selected RDV resistance mutations in the nsp12-RdRp. The MHV A335V substitution did not enhance replication or competitive fitness compared to WT MHV and remained sensitive to the active form of the cytidine nucleoside analog antiviral molnupiravir (MOV). Biochemical analysis of the SARS-CoV-2 helicase encoding the homologous substitution (A336V) demonstrates that the mutant protein retained the ability to associate with the core replication proteins nsps 7, 8, and 12 but had impaired helicase unwinding and ATPase activity. Together, these data identify a novel determinant of nsp13-HEL enzymatic activity, define a new genetic pathway for RDV resistance, and demonstrate the importance of surveillance for and testing of helicase mutations that arise in SARS-CoV-2 genomes. IMPORTANCE Despite the development of effective vaccines against COVID-19, the continued circulation and emergence of new variants support the need for antivirals such as RDV. Understanding pathways of antiviral resistance is essential for surveillance of emerging variants, development of combination therapies, and for identifying potential new targets for viral inhibition. We here show a novel RDV resistance mutation in the CoV helicase also impairs helicase functions, supporting the importance of studying the individual and cooperative functions of the replicase nonstructural proteins 7-16 during CoV RNA synthesis. The homologous nsp13-HEL mutation (A336V) has been reported in the GISAID database of SARS-CoV-2 genomes, highlighting the importance of surveillance of and genetic testing for nucleoside analog resistance in the helicase.
Collapse
Affiliation(s)
- Samantha L. Grimes
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Young J. Choi
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, New York, USA
| | - Anoosha Banerjee
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, New York, USA
- Tri-Institutional Program in Chemical Biology, The Rockefeller University, New York, New York, USA
| | - Gabriel Small
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, New York, USA
| | - Jordan Anderson-Daniels
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jennifer Gribble
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Andrea J. Pruijssers
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, Tennessee, USA
| | - Maria L. Agostini
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alexandra Abu-Shmais
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xiaotao Lu
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Seth A. Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, New York, USA
| | - Elizabeth Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, New York, USA
| | - Mark R. Denison
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, Tennessee, USA
| |
Collapse
|
13
|
Takashita E, Fujisaki S, Morita H, Nagata S, Miura H, Nagashima M, Watanabe S, Takeda M, Kawaoka Y, Hasegawa H. Assessment of the frequency of SARS-CoV-2 Omicron variant escape from RNA-dependent RNA polymerase inhibitors and 3C-like protease inhibitors. Antiviral Res 2023:105671. [PMID: 37451629 DOI: 10.1016/j.antiviral.2023.105671] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
The emergence and spread of antiviral-resistant SARS-CoV-2 is of great concern. In this study, we evaluated the propensity of Omicron variants to escape from RNA-dependent RNA polymerase (RdRP) inhibitors and 3C-like protease (3CLpro) inhibitors. SARS-CoV-2 Delta and Omicron variants were serially passaged in vitro in the presence of RdRP inhibitors (remdesivir and molnupiravir) and 3CLpro inhibitors (nirmatrelvir and lufotrelvir) to detect SARS-CoV-2 escape mutants. After five passages with 3CLpro inhibitors, mutant viruses that escaped from 3CLpro inhibitors emerged; however, in the presence of RdRP inhibitors all variants disappeared within 2-4 passages. Our findings suggest that the frequency of SARS-CoV-2 mutant escape from RdRP inhibitors is lower than that from 3CLpro inhibitors. We also found that Delta variants were more likely to acquire amino acid substitutions associated with resistance to 3CLpro inhibitors under the selective pressure of this drug compared with Omicron variants.
Collapse
Affiliation(s)
- Emi Takashita
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan.
| | - Seiichiro Fujisaki
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
| | - Hiroko Morita
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
| | - Shiho Nagata
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
| | - Hideka Miura
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
| | - Mami Nagashima
- Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Shinji Watanabe
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
| | - Makoto Takeda
- Department of Virology Ⅲ, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan; Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan; Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan; Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, WI, 53711, USA; The University of Tokyo, Pandemic Preparedness, Infection, and Advanced Research Center, 4-6-1 Shirokanedai, Minato-ku, Tokyo, Japan
| | - Hideki Hasegawa
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
| |
Collapse
|
14
|
Kiso M, Furusawa Y, Uraki R, Imai M, Yamayoshi S, Kawaoka Y. In vitro and in vivo characterization of SARS-CoV-2 strains resistant to nirmatrelvir. Nat Commun 2023; 14:3952. [PMID: 37402789 PMCID: PMC10319741 DOI: 10.1038/s41467-023-39704-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 06/20/2023] [Indexed: 07/06/2023] Open
Abstract
Nirmatrelvir, an oral antiviral agent that targets a SARS-CoV-2 main protease (3CLpro), is clinically useful against infection with SARS-CoV-2 including its omicron variants. Since most omicron subvariants have reduced sensitivity to many monoclonal antibody therapies, potential SARS-CoV-2 resistance to nirmatrelvir is a major public health concern. Several amino acid substitutions have been identified as being responsible for reduced susceptibility to nirmatrelvir. Among them, we selected L50F/E166V and L50F/E166A/L167F in the 3CLpro because these combinations of substitutions are unlikely to affect virus fitness. We prepared and characterized delta variants possessing Nsp5-L50F/E166V and Nsp5-L50F/E166A/L167F. Both mutant viruses showed decreased susceptibility to nirmatrelvir and their growth in VeroE6/TMPRSS2 cells was delayed. Both mutant viruses showed attenuated phenotypes in a male hamster infection model, maintained airborne transmissibility, and were outcompeted by wild-type virus in co-infection experiments in the absence of nirmatrelvir, but less so in the presence of the drug. These results suggest that viruses possessing Nsp5-L50F/E166V and Nsp5-L50F/E166A/L167F do not become dominant in nature. However, it is important to closely monitor the emergence of nirmatrelvir-resistant SARS-CoV-2 variants because resistant viruses with additional compensatory mutations could emerge, outcompete the wild-type virus, and become dominant.
Collapse
Affiliation(s)
- Maki Kiso
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yuri Furusawa
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Ryuta Uraki
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Masaki Imai
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Seiya Yamayoshi
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan.
- International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
| | - Yoshihiro Kawaoka
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan.
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center, Tokyo, Japan.
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, USA.
| |
Collapse
|
15
|
Gonzalez-Reiche AS, Alshammary H, Schaefer S, Patel G, Polanco J, Carreño JM, Amoako AA, Rooker A, Cognigni C, Floda D, van de Guchte A, Khalil Z, Farrugia K, Assad N, Zhang J, Alburquerque B, Sominsky LA, Gleason C, Srivastava K, Sebra R, Ramirez JD, Banu R, Shrestha P, Krammer F, Paniz-Mondolfi A, Sordillo EM, Simon V, van Bakel H. Sequential intrahost evolution and onward transmission of SARS-CoV-2 variants. Nat Commun 2023; 14:3235. [PMID: 37270625 PMCID: PMC10239218 DOI: 10.1038/s41467-023-38867-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/16/2023] [Indexed: 06/05/2023] Open
Abstract
Persistent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections have been reported in immune-compromised individuals and people undergoing immune-modulatory treatments. Although intrahost evolution has been documented, direct evidence of subsequent transmission and continued stepwise adaptation is lacking. Here we describe sequential persistent SARS-CoV-2 infections in three individuals that led to the emergence, forward transmission, and continued evolution of a new Omicron sublineage, BA.1.23, over an eight-month period. The initially transmitted BA.1.23 variant encoded seven additional amino acid substitutions within the spike protein (E96D, R346T, L455W, K458M, A484V, H681R, A688V), and displayed substantial resistance to neutralization by sera from boosted and/or Omicron BA.1-infected study participants. Subsequent continued BA.1.23 replication resulted in additional substitutions in the spike protein (S254F, N448S, F456L, M458K, F981L, S982L) as well as in five other virus proteins. Our findings demonstrate not only that the Omicron BA.1 lineage can diverge further from its already exceptionally mutated genome but also that patients with persistent infections can transmit these viral variants. Thus, there is, an urgent need to implement strategies to prevent prolonged SARS-CoV-2 replication and to limit the spread of newly emerging, neutralization-resistant variants in vulnerable patients.
Collapse
Affiliation(s)
- Ana S Gonzalez-Reiche
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hala Alshammary
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sarah Schaefer
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gopi Patel
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jose Polanco
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Angela A Amoako
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Aria Rooker
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Christian Cognigni
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Daniel Floda
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Adriana van de Guchte
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Zain Khalil
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Keith Farrugia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Nima Assad
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jian Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bremy Alburquerque
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Levy A Sominsky
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Charles Gleason
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Komal Srivastava
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Juan David Ramirez
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Radhika Banu
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Paras Shrestha
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alberto Paniz-Mondolfi
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Emilia Mia Sordillo
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- The Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
16
|
Akinosoglou K, Rigopoulos EA, Schinas G, Kaiafa G, Polyzou E, Tsoupra S, Tzouvelekis A, Gogos C, Savopoulos C. Remdesivir Use in the Real-World Setting: An Overview of Available Evidence. Viruses 2023; 15:v15051167. [PMID: 37243253 DOI: 10.3390/v15051167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
In the years of Coronavirus Disease 2019 (COVID-19), various treatment options have been utilized. COVID-19 continues to circulate in the global population, and the evolution of the Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has posed significant challenges to the treatment and prevention of infection. Remdesivir (RDV), an anti-viral agent with in vitro efficacy against coronaviruses, is a potent and safe treatment as suggested by a plethora of in vitro and in vivo studies and clinical trials. Emerging real-world data have confirmed its effectiveness, and there are currently datasets evaluating its efficacy and safety against SARS-CoV-2 infections in various clinical scenarios, including some that are not in the SmPC recommendations according for COVID-19 pharmacotherapy. Remdesivir increases the chance of recovery, reduces progression to severe disease, lowers mortality rates, and exhibits beneficial post-hospitalization outcomes, especially when used early in the course of the disease. Strong evidence suggests the expansion of remdesivir use in special populations (e.g., pregnancy, immunosuppression, renal impairment, transplantation, elderly and co-medicated patients) where the benefits of treatment outweigh the risk of adverse effects. In this article, we attempt to overview the available real-world data of remdesivir pharmacotherapy. With the unpredictable course of COVID-19, we need to utilize all available knowledge to bridge the gap between clinical research and clinical practice and be sufficiently prepared for the future.
Collapse
Affiliation(s)
- Karolina Akinosoglou
- Division of Internal Medicine, University General Hospital of Patras, 265 04 Patras, Greece
- School of Medicine, University of Patras, 265 04 Patras, Greece
| | | | | | - Georgia Kaiafa
- 1st Medical Propedeutic Department of Internal Medicine, AHEPA, University Hospital of Thessaloniki, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Eleni Polyzou
- Division of Internal Medicine, University General Hospital of Patras, 265 04 Patras, Greece
- School of Medicine, University of Patras, 265 04 Patras, Greece
| | - Stamatia Tsoupra
- Division of Internal Medicine, University General Hospital of Patras, 265 04 Patras, Greece
- School of Medicine, University of Patras, 265 04 Patras, Greece
| | - Argyrios Tzouvelekis
- School of Medicine, University of Patras, 265 04 Patras, Greece
- Department of Pulmonology, University General Hospital of Patras, 265 04 Patras, Greece
| | | | - Christos Savopoulos
- 1st Medical Propedeutic Department of Internal Medicine, AHEPA, University Hospital of Thessaloniki, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| |
Collapse
|
17
|
Khadilkar A, Bunch ZL, Wagoner J, Ravindran V, Oda JM, Vidar WS, Clark TN, Manwill PK, Todd DA, Barr SA, Olinger LK, Fink SL, Strangman WK, Linington RG, MacMillan JB, Cech NB, Polyak SJ. Modulation of in Vitro SARS-CoV-2 Infection by Stephania tetrandra and Its Alkaloid Constituents. JOURNAL OF NATURAL PRODUCTS 2023; 86:1061-1073. [PMID: 37043739 PMCID: PMC10108733 DOI: 10.1021/acs.jnatprod.3c00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Indexed: 05/05/2023]
Abstract
Botanical natural products have been widely consumed for their purported usefulness against COVID-19. Here, six botanical species from multiple sources and 173 isolated natural product compounds were screened for blockade of wild-type (WT) SARS-CoV-2 infection in human 293T epithelial cells overexpressing ACE-2 and TMPRSS2 protease (293TAT). Antiviral activity was demonstrated by an extract from Stephania tetrandra. Extract fractionation, liquid chromatography-mass spectrometry (LC-MS), antiviral assays, and computational analyses revealed that the alkaloid fraction and purified alkaloids tetrandrine, fangchinoline, and cepharanthine inhibited WT SARS-CoV-2 infection. The alkaloids and alkaloid fraction also inhibited the delta variant of concern but not WT SARS-CoV-2 in VeroAT cells. Membrane permeability assays demonstrate that the alkaloids are biologically available, although fangchinoline showed lower permeability than tetrandrine. At high concentrations, the extract, alkaloid fractions, and pure alkaloids induced phospholipidosis in 293TAT cells and less so in VeroAT cells. Gene expression profiling during virus infection suggested that alkaloid fraction and tetrandrine displayed similar effects on cellular gene expression and pathways, while fangchinoline showed distinct effects on cells. Our study demonstrates a multifaceted approach to systematically investigate the diverse activities conferred by complex botanical mixtures, their cell-context specificity, and their pleiotropic effects on biological systems.
Collapse
Affiliation(s)
- Aswad Khadilkar
- Department
of Chemistry and Biochemistry, University
of California, Santa
Cruz, California 95964, United States
| | - Zoie L. Bunch
- Department
of Chemistry and Biochemistry, University
of North Carolina, Greensboro, North Carolina 27412, United States
| | - Jessica Wagoner
- Department
of Laboratory Medicine and Pathology, University
of Washington, Seattle, Washington 98195,United States
| | - Vandana Ravindran
- Oslo
Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo 0313, Norway
| | - Jessica M. Oda
- Department
of Laboratory Medicine and Pathology, University
of Washington, Seattle, Washington 98195,United States
| | - Warren S. Vidar
- Department
of Chemistry and Biochemistry, University
of North Carolina, Greensboro, North Carolina 27412, United States
| | - Trevor N. Clark
- Department
of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Preston K. Manwill
- Department
of Chemistry and Biochemistry, University
of North Carolina, Greensboro, North Carolina 27412, United States
| | - Daniel A. Todd
- Department
of Chemistry and Biochemistry, University
of North Carolina, Greensboro, North Carolina 27412, United States
| | - Sarah A. Barr
- Department
of Chemistry and Biochemistry, University
of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Lauren K. Olinger
- Department
of Biology and Marine Biology, University
of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Susan L. Fink
- Department
of Laboratory Medicine and Pathology, University
of Washington, Seattle, Washington 98195,United States
| | - Wendy K. Strangman
- Department
of Chemistry and Biochemistry, University
of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Roger G. Linington
- Department
of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - John B. MacMillan
- Department
of Chemistry and Biochemistry, University
of California, Santa
Cruz, California 95964, United States
| | - Nadja B. Cech
- Department
of Chemistry and Biochemistry, University
of North Carolina, Greensboro, North Carolina 27412, United States
| | - Stephen J. Polyak
- Department
of Laboratory Medicine and Pathology, University
of Washington, Seattle, Washington 98195,United States
| |
Collapse
|
18
|
Scotto R, Buonomo AR, Iuliano A, Foggia M, Sardanelli A, Villari R, Pinchera B, Gentile I, Federico II COVID-Team. Remdesivir Alone or in Combination with Monoclonal Antibodies as an Early Treatment to Prevent Severe COVID-19 in Patients with Mild/Moderate Disease at High Risk of Progression: A Single Centre, Real-Life Study. Vaccines (Basel) 2023; 11:200. [PMID: 36851078 PMCID: PMC9964994 DOI: 10.3390/vaccines11020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Early treatment with antivirals against SARS-CoV-2 infection can prevent the onset of severe COVID-19 in fragile and immunocompromised patients. In this real-life, prospective, observational study, we evaluated efficacy and safety of a 3-day early treatment with remdesivir in adult and fragile patients with a diagnosis of SARS-CoV-2 infection who referred to the COVID-19 early treatment service of Infectious Diseases Unit of University of Naples Federico from 10 January 2022 to 31 March 2022. The included patients could be treated with either remdesivir alone or with remdesivir plus a monoclonal antibody with activity against SARS-CoV-2. Among the 62 included patients, we showed low rates of hospitalization (8%), increase in oxygen supplementation (3.2%), ICU admission (1.6%) and death (1.6%). The rate of disease progression was 8% and it was similar in patients treated with remdesivir alone or in combination with monoclonal antibodies (6.7% and 9.4%, respectively; p = 0.531). The rate of adverse drug reaction was low and similar in the two groups (13.3% in patients treated with remdesivir, 15.6% in patients treated with the combination; p = 0.543). Most common adverse events were headache and fever. In conclusion, in our cohort of patients at a high risk of worse COVID-19 outcomes, an early course of remdesivir showed low rates of disease progression and adverse drug reactions.
Collapse
Affiliation(s)
| | - Antonio Riccardo Buonomo
- Department of Clinical Medicine and Surgery—Section of Infectious Diseases, University of Naples Federico II, Via S. Pansini 5, 80131 Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Tzou PL, Tao K, Sahoo MK, Kosakovsky Pond SL, Pinsky BA, Shafer RW. Sierra SARS-CoV-2 sequence and antiviral resistance analysis program. J Clin Virol 2022; 157:105323. [PMID: 36334368 PMCID: PMC9595491 DOI: 10.1016/j.jcv.2022.105323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/11/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Although most laboratories are capable of employing established protocols to perform full-genome SARS-CoV-2 sequencing, many are unable to assess sequence quality, select appropriate mutation-detection thresholds, or report on the potential clinical significance of mutations in the targets of antiviral therapy METHODS: We describe the technical aspects and benchmark the performance of Sierra SARS-CoV-2, a program designed to perform these functions on user-submitted FASTQ and FASTA sequence files and lists of Spike mutations. Sierra SARS-CoV-2 indicates which sequences contain an unexpectedly large number of unusual mutations and which mutations are associated with reduced susceptibility to clinical stage mAbs, the RdRP inhibitor remdesivir, or the Mpro inhibitor nirmatrelvir RESULTS: To assess the performance of Sierra SARS-CoV-2 on FASTQ files, we applied it to 600 representative FASTQ sequences and compared the results to the COVID-19 EDGE program. To assess its performance on FASTA files, we applied it to nearly one million representative FASTA sequences and compared the results to the GISAID mutation annotation. To assess its performance on mutations lists, we applied it to 13,578 distinct Spike RBD mutation patterns and showed that exactly or partially matching annotations were available for 88% of patterns CONCLUSION: Sierra SARS-CoV-2 leverages previously published data to improve the quality control of submitted viral genomic data and to provide functional annotation on the impact of mutations in the targets of antiviral SARS-CoV-2 therapy. The program can be found at https://covdb.stanford.edu/sierra/sars2/ and its source code at https://github.com/hivdb/sierra-sars2.
Collapse
Affiliation(s)
- Philip L Tzou
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA.
| | - Kaiming Tao
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Malaya K Sahoo
- Department of Pathology, Stanford University, Stanford, CA, USA
| | | | - Benjamin A Pinsky
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Pathology, Stanford University, Stanford, CA, USA
| | - Robert W Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
20
|
Wagoner J, Herring S, Hsiang TY, Ianevski A, Biering SB, Xu S, Hoffmann M, Pöhlmann S, Gale M, Aittokallio T, Schiffer JT, White JM, Polyak SJ. Combinations of Host- and Virus-Targeting Antiviral Drugs Confer Synergistic Suppression of SARS-CoV-2. Microbiol Spectr 2022; 10:e0333122. [PMID: 36190406 PMCID: PMC9718484 DOI: 10.1128/spectrum.03331-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 02/08/2023] Open
Abstract
Three directly acting antivirals (DAAs) demonstrated substantial reduction in COVID-19 hospitalizations and deaths in clinical trials. However, these agents did not completely prevent severe illness and are associated with cases of rebound illness and viral shedding. Combination regimens can enhance antiviral potency, reduce the emergence of drug-resistant variants, and lower the dose of each component in the combination. Concurrently targeting virus entry and virus replication offers opportunities to discover synergistic drug combinations. While combination antiviral drug treatments are standard for chronic RNA virus infections, no antiviral combination therapy has been approved for SARS-CoV-2. Here, we demonstrate that combining host-targeting antivirals (HTAs) that target TMPRSS2 and hence SARS-CoV-2 entry, with the DAA molnupiravir, which targets SARS-CoV-2 replication, synergistically suppresses SARS-CoV-2 infection in Calu-3 lung epithelial cells. Strong synergy was observed when molnupiravir, an oral drug, was combined with three TMPRSS2 (HTA) oral or inhaled inhibitors: camostat, avoralstat, or nafamostat. The combination of camostat plus molnupiravir was also effective against the beta and delta variants of concern. The pyrimidine biosynthesis inhibitor brequinar combined with molnupiravir also conferred robust synergistic inhibition. These HTA+DAA combinations had similar potency to the synergistic all-DAA combination of molnupiravir plus nirmatrelvir, the protease inhibitor found in paxlovid. Pharmacodynamic modeling allowed estimates of antiviral potency at all possible concentrations of each agent within plausible therapeutic ranges, suggesting possible in vivo efficacy. The triple combination of camostat, brequinar, and molnupiravir further increased antiviral potency. These findings support the development of HTA+DAA combinations for pandemic response and preparedness. IMPORTANCE Imagine a future viral pandemic where if you test positive for the new virus, you can quickly take some medicines at home for a few days so that you do not get too sick. To date, only single drugs have been approved for outpatient use against SARS-CoV-2, and we are learning that these have some limitations and may succumb to drug resistance. Here, we show that combinations of two oral drugs are better than the single ones in blocking SARS-CoV-2, and we use mathematical modeling to show that these drug combinations are likely to work in people. We also show that a combination of three oral drugs works even better at eradicating the virus. Our findings therefore bode well for the development of oral drug cocktails for at home use at the first sign of an infection by a coronavirus or other emerging viral pathogens.
Collapse
Affiliation(s)
- Jessica Wagoner
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Shawn Herring
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Tien-Ying Hsiang
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Aleksandr Ianevski
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Scott B. Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California—Berkeley, Berkeley, California, USA
| | - Shuang Xu
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, University of Göttingen, Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, University of Göttingen, Göttingen, Germany
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Oslo Centre for Biostatistics and Epidemiology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Joshua T. Schiffer
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Division of Allergy and Infectious Disease, University of Washington, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Judith M. White
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, USA
| | - Stephen J. Polyak
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
21
|
Hogan JI, Duerr R, Dimartino D, Marier C, Hochman S, Mehta S, Wang G, Heguy A. Remdesivir resistance in transplant recipients with persistent COVID-19. RESEARCH SQUARE 2022:rs.3.rs-1800050. [PMID: 35794888 PMCID: PMC9258299 DOI: 10.21203/rs.3.rs-1800050/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The medical community currently lacks robust data regarding the incidence, prevalence, and clinical significance of mutations associated with resistance to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) therapeutics. This report describes two renal transplant recipients who, after remdesivir exposure, developed a de novo V792I RNA-dependent RNA polymerase (RdRp) mutation that has recently been found to confer resistance to remdesivir in vitro . To the best of our knowledge, this publication is the first to document the emergence of V792I in patients treated with remdesivir. Our work underscores the critical need for augmented efforts to identify concerning mutations and address their clinical implications.
Collapse
|