1
|
Zhao X, Zhao X, Di W, Wang C. Inhibitors of Cyclophilin A: Current and Anticipated Pharmaceutical Agents for Inflammatory Diseases and Cancers. Molecules 2024; 29:1235. [PMID: 38542872 PMCID: PMC10974348 DOI: 10.3390/molecules29061235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 04/07/2024] Open
Abstract
Cyclophilin A, a widely prevalent cellular protein, exhibits peptidyl-prolyl cis-trans isomerase activity. This protein is predominantly located in the cytosol; additionally, it can be secreted by the cells in response to inflammatory stimuli. Cyclophilin A has been identified to be a key player in many of the biological events and is therefore involved in several diseases, including vascular and inflammatory diseases, immune disorders, aging, and cancers. It represents an attractive target for therapeutic intervention with small molecule inhibitors such as cyclosporin A. Recently, a number of novel inhibitors of cyclophilin A have emerged. However, it remains elusive whether and how many cyclophilin A inhibitors function in the inflammatory diseases and cancers. In this review, we discuss current available data about cyclophilin A inhibitors, including cyclosporin A and its derivatives, quinoxaline derivatives, and peptide analogues, and outline the most recent advances in clinical trials of these agents. Inhibitors of cyclophilin A are poised to enhance our comprehension of the molecular mechanisms that underpin inflammatory diseases and cancers associated with cyclophilin A. This advancement will aid in the development of innovative pharmaceutical treatments in the future.
Collapse
Affiliation(s)
- Xuemei Zhao
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China; (X.Z.); (W.D.)
| | - Xin Zhao
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China; (X.Z.); (W.D.)
| | - Weihua Di
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China; (X.Z.); (W.D.)
| | - Chang Wang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China; (X.Z.); (W.D.)
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China
| |
Collapse
|
2
|
He Y, Zhou J, Gao H, Liu C, Zhan P, Liu X. Broad-spectrum antiviral strategy: Host-targeting antivirals against emerging and re-emerging viruses. Eur J Med Chem 2024; 265:116069. [PMID: 38160620 DOI: 10.1016/j.ejmech.2023.116069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/06/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
Viral infections are amongst the most prevalent diseases that pose a significant threat to human health. Targeting viral proteins or host factors represents two primary strategies for the development of antiviral drugs. In contrast to virus-targeting antivirals (VTAs), host-targeting antivirals (HTAs) offer advantages in terms of overcoming drug resistance and effectively combating a wide range of viruses, including newly emerging ones. Therefore, targeting host factors emerges as an extremely promising strategy with the potential to address critical challenges faced by VTAs. In recent years, extensive research has been conducted on the discovery and development of HTAs, leading to the approval of maraviroc, a chemokine receptor type 5 (CCR5) antagonist used for the treatment of HIV-1 infected individuals, with several other potential treatments in various stages of development for different viral infections. This review systematically summarizes advancements made in medicinal chemistry regarding various host targets and classifies them into four distinct catagories based on their involvement in the viral life cycle: virus attachment and entry, biosynthesis, nuclear import and export, and viral release.
Collapse
Affiliation(s)
- Yong He
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China
| | - Jiahui Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China
| | - Huizhan Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China
| | - Chuanfeng Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China.
| |
Collapse
|
3
|
Powell JT, Kayesh R, Ballesteros-Perez A, Alam K, Niyonshuti P, Soderblom EJ, Ding K, Xu C, Yue W. Assessing Trans-Inhibition of OATP1B1 and OATP1B3 by Calcineurin and/or PPIase Inhibitors and Global Identification of OATP1B1/3-Associated Proteins. Pharmaceutics 2023; 16:63. [PMID: 38258074 PMCID: PMC10818623 DOI: 10.3390/pharmaceutics16010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 are key determinants of drug-drug interactions (DDIs). Various drugs including the calcineurin inhibitor (CNI) cyclosporine A (CsA) exert preincubation-induced trans-inhibitory effects upon OATP1B1 and/or OATP1B3 (abbreviated as OATP1B1/3) by unknown mechanism(s). OATP1B1/3 are phosphoproteins; calcineurin, which dephosphorylates and regulates numerous phosphoproteins, has not previously been investigated in the context of preincubation-induced trans-inhibition of OATP1B1/3. Herein, we compare the trans-inhibitory effects exerted on OATP1B1 and OATP1B3 by CsA, the non-analogous CNI tacrolimus, and the non-CNI CsA analogue SCY-635 in transporter-overexpressing human embryonic kidney (HEK) 293 stable cell lines. Preincubation (10-60 min) with tacrolimus (1-10 µM) rapidly and significantly reduces OATP1B1- and OATP1B3-mediated transport up to 0.18 ± 0.03- and 0.20 ± 0.02-fold compared to the control, respectively. Both CsA and SCY-635 can trans-inhibit OATP1B1, with the inhibitory effects progressively increasing over a 60 min preincubation time. At each equivalent preincubation time, CsA has greater trans-inhibitory effects toward OATP1B1 than SCY-635. Preincubation with SCY-635 for 60 min yielded IC50 of 2.2 ± 1.4 µM against OATP1B1, which is ~18 fold greater than that of CsA (0.12 ± 0.04 µM). Furthermore, a proteomics-based screening for protein interactors was used to examine possible proteins and processes contributing to OATP1B1/3 regulation and preincubation-induced inhibition by CNIs and other drugs. A total of 861 and 357 proteins were identified as specifically associated with OATP1B1 and OATP1B3, respectively, including various protein kinases, ubiquitin-related enzymes, the tacrolimus (FK506)-binding proteins FKBP5 and FKBP8, and several known regulatory targets of calcineurin. The current study reports several novel findings that expand our understanding of impaired OATP1B1/3 function; these include preincubation-induced trans-inhibition of OATP1B1/3 by the CNI tacrolimus, greater preincubation-induced inhibition by CsA compared to its non-CNI analogue SCY-635, and association of OATP1B1/3 with various proteins relevant to established and candidate OATP1B1/3 regulatory processes.
Collapse
Affiliation(s)
- John T. Powell
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| | - Ruhul Kayesh
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| | - Alexandra Ballesteros-Perez
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| | - Khondoker Alam
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| | - Pascaline Niyonshuti
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| | - Erik J. Soderblom
- Proteomics and Metabolomics Core Facility, Duke University School of Medicine, Durham, NC 27708, USA
| | - Kai Ding
- Department of Biostatistics & Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.D.); (C.X.)
| | - Chao Xu
- Department of Biostatistics & Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.D.); (C.X.)
| | - Wei Yue
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| |
Collapse
|
4
|
Lu J, Liang F, Bai P, Liu C, Xu M, Sun Z, Tian W, Dong Y, Zhang Y, Quan Q, Khatri A, Shen Y, Marcantonio E, Crosby G, Culley D, Wang C, Yang G, Xie Z. Blood tau-PT217 contributes to the anesthesia/surgery-induced delirium-like behavior in aged mice. Alzheimers Dement 2023; 19:4110-4126. [PMID: 37249148 PMCID: PMC10524579 DOI: 10.1002/alz.13118] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/31/2023]
Abstract
INTRODUCTION Blood phosphorylated tau at threonine 217 (tau-PT217) is a newly established biomarker for Alzheimer's disease and postoperative delirium in patients. However, the mechanisms and consequences of acute changes in blood tau-PT217 remain largely unknown. METHODS We investigated the effects of anesthesia/surgery on blood tau-PT217 in aged mice, and evaluated the associated changes in B cell populations, neuronal excitability in anterior cingulate cortex, and delirium-like behavior using positron emission tomography imaging, nanoneedle technology, flow cytometry, electrophysiology, and behavioral tests. RESULTS Anesthesia/surgery induced acute increases in blood tau-PT217 via enhanced generation in the lungs and release from B cells. Tau-PT217 might cross the blood-brain barrier, increasing neuronal excitability and inducing delirium-like behavior. B cell transfer and WS635, a mitochondrial function enhancer, mitigated the anesthesia/surgery-induced changes. DISCUSSION Acute increases in blood tau-PT217 may contribute to brain dysfunction and postoperative delirium. Targeting B cells or mitochondrial function may have therapeutic potential for preventing or treating these conditions.
Collapse
Affiliation(s)
- Jing Lu
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, United States
| | - Feng Liang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, United States
| | - Ping Bai
- Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, United States
| | - Chenghao Liu
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, United States
- Chinese Academy of Sciences, Institute of Automation, Beijing, 100080, China
| | - Miao Xu
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, United States
- Department of Anesthesiology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Zhengwang Sun
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, United States
| | - Wenjie Tian
- Department of Cardiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, United States
| | - Yuanlin Dong
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, United States
| | - Yiying Zhang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, United States
| | - Qimin Quan
- NanoMosaic, Inc., Woburn, MA, 01801, United States
| | - Ashok Khatri
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, United States
| | - Yuan Shen
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, United States
- Anesthesia and Brain Research Institute, Tongji University School of Medicine, Shanghai, 200092, China
- Mental Health Center affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Edward Marcantonio
- Divisions of General Medicine and Primary Care and Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02115, United States
| | - Gregory Crosby
- Department of Anesthesiology, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA, 02115, United States
| | - Deborah Culley
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania Health System, Philadelphia, PA, 19104, United States
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, United States
| | - Guang Yang
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, 10032, United States
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, United States
| |
Collapse
|
5
|
Gurung D, Danielson JA, Tasnim A, Zhang JT, Zou Y, Liu JY. Proline Isomerization: From the Chemistry and Biology to Therapeutic Opportunities. BIOLOGY 2023; 12:1008. [PMID: 37508437 PMCID: PMC10376262 DOI: 10.3390/biology12071008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Proline isomerization, the process of interconversion between the cis- and trans-forms of proline, is an important and unique post-translational modification that can affect protein folding and conformations, and ultimately regulate protein functions and biological pathways. Although impactful, the importance and prevalence of proline isomerization as a regulation mechanism in biological systems have not been fully understood or recognized. Aiming to fill gaps and bring new awareness, we attempt to provide a wholistic review on proline isomerization that firstly covers what proline isomerization is and the basic chemistry behind it. In this section, we vividly show that the cause of the unique ability of proline to adopt both cis- and trans-conformations in significant abundance is rooted from the steric hindrance of these two forms being similar, which is different from that in linear residues. We then discuss how proline isomerization was discovered historically followed by an introduction to all three types of proline isomerases and how proline isomerization plays a role in various cellular responses, such as cell cycle regulation, DNA damage repair, T-cell activation, and ion channel gating. We then explore various human diseases that have been linked to the dysregulation of proline isomerization. Finally, we wrap up with the current stage of various inhibitors developed to target proline isomerases as a strategy for therapeutic development.
Collapse
Affiliation(s)
- Deepti Gurung
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH 43614, USA
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Jacob A Danielson
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Afsara Tasnim
- Department of Bioengineering, University of Toledo College of Engineering, Toledo, OH 43606, USA
| | - Jian-Ting Zhang
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Yue Zou
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Jing-Yuan Liu
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH 43614, USA
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
- Department of Bioengineering, University of Toledo College of Engineering, Toledo, OH 43606, USA
| |
Collapse
|
6
|
Schiene‐Fischer C, Fischer G, Braun M. Non-Immunosuppressive Cyclophilin Inhibitors. Angew Chem Int Ed Engl 2022; 61:e202201597. [PMID: 35290695 PMCID: PMC9804594 DOI: 10.1002/anie.202201597] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 01/05/2023]
Abstract
Cyclophilins, enzymes with peptidyl-prolyl cis/trans isomerase activity, are relevant to a large variety of biological processes. The most abundant member of this enzyme family, cyclophilin A, is the cellular receptor of the immunosuppressive drug cyclosporine A (CsA). As a consequence of the pathophysiological role of cyclophilins, particularly in viral infections, there is a broad interest in cyclophilin inhibition devoid of immunosuppressive activity. This Review first gives an introduction into the physiological and pathophysiological roles of cyclophilins. The presentation of non-immunosuppressive cyclophilin inhibitors will commence with drugs based on chemical modifications of CsA. The naturally occurring macrocyclic sanglifehrins have become other lead structures for cyclophilin-inhibiting drugs. Finally, de novo designed compounds, whose structures are not derived from or inspired by natural products, will be presented. Relevant synthetic concepts will be discussed, but the focus will also be on biochemical studies, structure-activity relationships, and clinical studies.
Collapse
Affiliation(s)
- Cordelia Schiene‐Fischer
- Institute of Biochemistry and BiotechnologyMartin-Luther-University Halle-Wittenberg06099Halle (Saale)Germany
| | - Gunter Fischer
- Max Planck Institute for Biophysical Chemistry37077GöttingenGermany
| | - Manfred Braun
- Institute of Organic and Macromolecular ChemistryHeinrich-Heine-University Düsseldorf40225DüsseldorfGermany
| |
Collapse
|
7
|
The role of cyclophilins in viral infec and the immune response. J Infect 2022; 85:365-373. [PMID: 35934139 DOI: 10.1016/j.jinf.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022]
|
8
|
Han J, Kyu Lee M, Jang Y, Cho WJ, Kim M. Repurposing of cyclophilin A inhibitors as broad-spectrum antiviral agents. Drug Discov Today 2022; 27:1895-1912. [PMID: 35609743 PMCID: PMC9123807 DOI: 10.1016/j.drudis.2022.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/30/2022] [Accepted: 05/18/2022] [Indexed: 12/28/2022]
Abstract
Cyclophilin A (CypA) is linked to diverse human diseases including viral infections. With the worldwide emergence of severe acute respiratory coronavirus 2 (SARS-CoV-2), drug repurposing has been highlighted as a strategy with the potential to speed up antiviral development. Because CypA acts as a proviral component in hepatitis C virus, coronavirus and HIV, its inhibitors have been suggested as potential treatments for these infections. Here, we review the structure of cyclosporin A and sanglifehrin A analogs as well as synthetic micromolecules inhibiting CypA; and we discuss their broad-spectrum antiviral efficacy in the context of the virus lifecycle.
Collapse
Affiliation(s)
- Jinhe Han
- College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Myoung Kyu Lee
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Yejin Jang
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Won-Jea Cho
- College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Meeheyin Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea; Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
9
|
Braun M, Schiene-Fischer C, Fischer G. Non‐Immunosuppressive Cyclophilin Inhibitors. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Manfred Braun
- Heinrich-Heine-Universität Düsseldorf: Heinrich-Heine-Universitat Dusseldorf Organic CHemistry Universitätsstr. 1 40225 Düsseldorf GERMANY
| | - Cordelia Schiene-Fischer
- Martin-Luther-Universität Halle-Wittenberg: Martin-Luther-Universitat Halle-Wittenberg Institute of Biochemistry and Biotechnology, GERMANY
| | - Gunter Fischer
- Max-Planck-Institut für Biophysikalische Chemie Abteilung Meiosis: Max-Planck-Institut fur Multidisziplinare Naturwissenschaften Abteilung Meiosis Max Planck Institute for Biophysical Chemistry GERMANY
| |
Collapse
|
10
|
Devaux CA, Melenotte C, Piercecchi-Marti MD, Delteil C, Raoult D. Cyclosporin A: A Repurposable Drug in the Treatment of COVID-19? Front Med (Lausanne) 2021; 8:663708. [PMID: 34552938 PMCID: PMC8450353 DOI: 10.3389/fmed.2021.663708] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/04/2021] [Indexed: 12/22/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is now at the forefront of major health challenge faced globally, creating an urgent need for safe and efficient therapeutic strategies. Given the high attrition rates, high costs, and quite slow development of drug discovery, repurposing of known FDA-approved molecules is increasingly becoming an attractive issue in order to quickly find molecules capable of preventing and/or curing COVID-19 patients. Cyclosporin A (CsA), a common anti-rejection drug widely used in transplantation, has recently been shown to exhibit substantial anti-SARS-CoV-2 antiviral activity and anti-COVID-19 effect. Here, we review the molecular mechanisms of action of CsA in order to highlight why this molecule seems to be an interesting candidate for the therapeutic management of COVID-19 patients. We conclude that CsA could have at least three major targets in COVID-19 patients: (i) an anti-inflammatory effect reducing the production of proinflammatory cytokines, (ii) an antiviral effect preventing the formation of the viral RNA synthesis complex, and (iii) an effect on tissue damage and thrombosis by acting against the deleterious action of angiotensin II. Several preliminary CsA clinical trials performed on COVID-19 patients report lower incidence of death and suggest that this strategy should be investigated further in order to assess in which context the benefit/risk ratio of repurposing CsA as first-line therapy in COVID-19 is the most favorable.
Collapse
Affiliation(s)
- Christian A. Devaux
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
- CNRS, Marseille, France
| | - Cléa Melenotte
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Marie-Dominique Piercecchi-Marti
- Department of Legal Medicine, Hôpital de la Timone, Marseille University Hospital Center, Marseille, France
- Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France
| | - Clémence Delteil
- Department of Legal Medicine, Hôpital de la Timone, Marseille University Hospital Center, Marseille, France
- Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France
| | - Didier Raoult
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
11
|
Lin J, Shen F, Lu J, Liang F, Zhang Y, Xie Z, Dong Y. WS635 Attenuates the Anesthesia/Surgery-Induced Cognitive Impairment in Mice. Front Aging Neurosci 2021; 13:688587. [PMID: 34366827 PMCID: PMC8335586 DOI: 10.3389/fnagi.2021.688587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/31/2021] [Indexed: 11/29/2022] Open
Abstract
Anesthesia/surgery has been reported to be associated with perioperative neurocognitive disorder (PND) in patients and induces cognitive impairment in mice. Previous studies demonstrate cyclosporine A (CsA) attenuates the anesthesia/surgery-induced cognitive impairment in mice. However, CsA has immunosuppressive effects and may not be routinely used to prevent or treat PND in patients. WS635 is a nonimmunosuppressive CsA analog. We, therefore, set out to determine whether WS635 could mitigate the anesthesia/surgery-induced cognitive impairment in mice. We performed abdominal surgery under 1.4% isoflurane anesthesia (anesthesia/surgery) for 2 h in 9 month-old wild-type (WT) mice. We treated the mice with CsA (10 mg/kg) or different doses (13.2 mg/kg, 26.4 mg/kg and 52.8 mg/kg) of WS635 before and after the anesthesia/surgery. Barnes maze and fear conditioning system (FCS) were employed to evaluate the cognitive function in mice. We measured the amounts of postsynaptic density (PSD)-95, synaptophysin, and ATP in the hippocampus and cortex of the mice using western blot and ATP Colorimetric/Fluorometric Assay, respectively. We found that the treatment with 52.8 mg/kg, but not 13.2 mg/kg or 26.4 mg/kg, of WS635 attenuated the anesthesia/surgery-induced cognitive impairment in mice and the reductions in the amounts of PSD-95, synaptophysin, and ATP in the mice brain tissues. These results have established a system to study WS635 further and suggest that we need to perform more experiments to determine whether WS635 can ultimately be used as one of the interventions for PND in patients.
Collapse
Affiliation(s)
- Jiefu Lin
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
- Department of Anesthesiology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, China
| | - Fuyi Shen
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing Lu
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
- Department of Anesthesiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Feng Liang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Yiying Zhang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Yuanlin Dong
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
12
|
Gallardo-Flores CE, Colpitts CC. Cyclophilins and Their Roles in Hepatitis C Virus and Flavivirus Infections: Perspectives for Novel Antiviral Approaches. Pathogens 2021; 10:902. [PMID: 34358052 PMCID: PMC8308494 DOI: 10.3390/pathogens10070902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/07/2021] [Accepted: 07/15/2021] [Indexed: 12/19/2022] Open
Abstract
Cyclophilins are cellular peptidyl-prolyl isomerases that play an important role in viral infections, with demonstrated roles in the replication of hepatitis C virus (HCV) and other viruses in the Flaviviridae family, such as dengue virus (DENV) and yellow fever virus (YFV). Here, we discuss the roles of cyclophilins in HCV infection and provide a comprehensive overview of the mechanisms underlying the requirement for cyclophilins during HCV replication. Notably, cyclophilin inhibitor therapy has been demonstrated to be effective in reducing HCV replication in chronically infected patients. While the roles of cyclophilins are relatively well-understood for HCV infection, cyclophilins are more recently emerging as host factors for flavivirus infection as well, providing potential new therapeutic avenues for these viral infections which currently lack antiviral therapies. However, further studies are required to elucidate the roles of cyclophilins in flavivirus replication. Here, we review the current knowledge of the role of cyclophilins in HCV infection to provide a conceptual framework to understand how cyclophilins may contribute to other viral infections, such as DENV and YFV. Improved understanding of the roles of cyclophilins in viral infection may open perspectives for the development of cyclophilin inhibitors as effective antiviral therapeutics for HCV and related viruses.
Collapse
Affiliation(s)
| | - Che C. Colpitts
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada;
| |
Collapse
|
13
|
Liang L, Lin R, Xie Y, Lin H, Shao F, Rui W, Chen H. The Role of Cyclophilins in Inflammatory Bowel Disease and Colorectal Cancer. Int J Biol Sci 2021; 17:2548-2560. [PMID: 34326693 PMCID: PMC8315013 DOI: 10.7150/ijbs.58671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Cyclophilins (Cyps) is a kind of ubiquitous protein family in organisms, which has biological functions such as promoting intracellular protein folding and participating in the pathological processes of inflammation and tumor. Inflammatory bowel disease (IBD) and colorectal cancer (CRC) are two common intestinal diseases, but the etiology and pathogenesis of these two diseases are still unclear. IBD and CRC are closely associated, IBD has always been considered as one of the main risks of CRC. However, the role of Cyps in these two related intestinal diseases is rarely studied and reported. In this review, the expression of CypA, CypB and CypD in IBD, especially ulcerative colitis (UC), and CRC, their relationship with the development of these two intestinal diseases, as well as the possible pathogenesis, were briefly summarized, so as to provide modest reference for clinical researches and treatments in future.
Collapse
Affiliation(s)
- Lifang Liang
- Department of Pathogenic Biology and Immunology, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
| | - Rongxiao Lin
- Centrefor Novel Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
| | - Ying Xie
- Centrefor Novel Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
| | - Huaqing Lin
- Centrefor Novel Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
- GDPU-HKU Zhongshan Biomedical Innovation Plaform, Zhongshan 528437, Guangdong Province, PR China
- Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
| | - Fangyuan Shao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Wen Rui
- Centrefor Novel Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
- Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou 510006, Guangdong Province, PR China
- Guangdong Cosmetics Engineering & Technology Research Center,Guangzhou 510006, Guangdong Province, PR China
| | - Hongyuan Chen
- Department of Pathogenic Biology and Immunology, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
- GDPU-HKU Zhongshan Biomedical Innovation Plaform, Zhongshan 528437, Guangdong Province, PR China
- Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou 510006, Guangdong Province, PR China
- Guangdong Cosmetics Engineering & Technology Research Center,Guangzhou 510006, Guangdong Province, PR China
| |
Collapse
|
14
|
Molecular Dynamic Simulation and Docking of Cyclophilin A Mutants with its Potential Inhibitors. JOURNAL OF CLINICAL AND BASIC RESEARCH 2021. [DOI: 10.52547/jcbr.5.2.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Almasi F, Mohammadipanah F. Hypothetical targets and plausible drugs of coronavirus infection caused by SARS-CoV-2. Transbound Emerg Dis 2021; 68:318-332. [PMID: 32662203 PMCID: PMC7405402 DOI: 10.1111/tbed.13734] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022]
Abstract
The world is confronting a dire situation due to the recent pandemic of the novel coronavirus disease (SARS-CoV-2) with the mortality rate passed over 470,000. Attaining efficient drugs evolve in parallel to the understanding of the SARS-CoV-2 pathogenesis. The current drugs in the pipeline and some plausible drugs are overviewed in this paper. Although different types of anti-viral targets are applicable for SARS-CoV-2 drug screenings, the more promising targets can be considered as 3C-like main protease (3Cl protease) and RNA polymerase. The remdesivir could be considered the closest bifunctional drug to the provisional clinical administration for SARS-CoV-2. The known molecular targets of the SARS-CoV-2 include fourteen targets, while four molecules of angiotensin-converting enzyme 2 (ACE2), cathepsin L, 3Cl protease and RNA-dependent RNA polymerase (RdRp) are suggested as more promising potential targets. Accordingly, dual-acting drugs as an encouraging solution in drug discovery are suggested. Emphasizing the potential route of SARS-CoV-2 infection and virus entry-related factors like integrins, cathepsin and ACE2 seems valuable. The potential molecular targets of each phase of the SARS-CoV-2 life cycle are discussed and highlighted in this paper. Much progress in understanding the SARS-CoV-2 and molecular details of its life cycle followed by the identification of new therapeutic targets are needed to lead us to an efficient approach in anti-SARS-CoV-2 drug discovery.
Collapse
Affiliation(s)
- Faezeh Almasi
- Pharmaceutical Biotechnology LabDepartment of Microbial BiotechnologySchool of Biology and Center of Excellence in Phylogeny of Living OrganismsCollege of ScienceUniversity of TehranTehranIran
| | - Fatemeh Mohammadipanah
- Pharmaceutical Biotechnology LabDepartment of Microbial BiotechnologySchool of Biology and Center of Excellence in Phylogeny of Living OrganismsCollege of ScienceUniversity of TehranTehranIran
| |
Collapse
|
16
|
Liu C, von Brunn A, Zhu D. Cyclophilin A and CD147: novel therapeutic targets for the treatment of COVID-19. MEDICINE IN DRUG DISCOVERY 2020; 7:100056. [PMID: 32835213 PMCID: PMC7364167 DOI: 10.1016/j.medidd.2020.100056] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/05/2020] [Accepted: 07/05/2020] [Indexed: 02/07/2023] Open
Abstract
The outbreak of pneumonia caused by a new coronavirus (SARS-CoV-2) occurred in December 2019, and spread rapidly throughout the world. There have been other severe coronavirus outbreaks worldwide, namely, severe acute respiratory syndrome (SARS-CoV) and Middle East respiratory syndrome (MERS-CoV). Because the genetic diversity of coronaviruses renders the design of vaccines complicated, broad spectrum-anti-coronavirus drugs have become a critical approach to control the coronavirus epidemic. Cyclophilin A is an important protein needed for coronavirus replication, and its inhibitor cyclosporine A has the ability to suppress coronavirus on a broad spectrum. CD147-S protein was found to be one route by which SARS-CoV-2 invades host cells, while CD147 was found to play a functional role in facilitating the infection of host cells by SARS-CoV. The CyPA/CD147 interaction may play a critical role in the ability of the SARS-CoV-2 virus to enter the host cells. However, cyclosporine A has immunosuppressive effects, so the conditions for its use as an antiviral drug are limited. As a result, cyclosporine A analogues without immunosuppressive side effects have attracted lots of interest. This review primarily discusses the drug development prospects of cyclophilin A as a therapeutic target for the treatment of coronavirus infection, especially coronavirus disease 2019 (COVID-19), and non-immunosuppressive cyclosporine analogues.
Collapse
Affiliation(s)
- Chenglong Liu
- School of Pharmacy, Fudan University, Shanghai, China, 201203
| | - Albrecht von Brunn
- Max-von-Pettenkofer Institute, Ludwig-Maximilians-University Munich and German Center for Infection Research, (DZIF), partner site Munich, 80336 Munich, Germany
| | - Di Zhu
- School of Pharmacy, Fudan University, Shanghai, China, 201203,Fudan affiliated Pudong Hospital, Fudan University, Shanghai, China 201100,Corresponding author at: School of Pharmacy, Fudan University, Shanghai, China 201203.
| |
Collapse
|
17
|
Makino T, Yoshimura S, Neya M, Yamanaka T, Sawada M, Tsujii E, Barrett D. Discovery of ASP5286: A novel non-immunosuppressive cyclophilin inhibitor for the treatment of HCV. Bioorg Med Chem Lett 2020; 30:127308. [DOI: 10.1016/j.bmcl.2020.127308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022]
|
18
|
Makino T, Ishida J, Yamanaka T, Ohki H, Uchida M, Sawada M, Barrett D. Discovery of a novel 9-position modified second-generation anti-HCV candidate via bioconversion and semi-synthesis of FR901459. Bioorg Med Chem Lett 2020; 30:127423. [PMID: 32731088 DOI: 10.1016/j.bmcl.2020.127423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/11/2020] [Accepted: 07/16/2020] [Indexed: 11/28/2022]
Abstract
Evidence that hepatitis C virus (HCV) utilizes cellular cyclophilin proteins in the virus replication cycle has increased attention on cyclophilin inhibitors as attractive therapeutic targets in the treatment of HCV. Previous reports have described a number of non-immunosuppressive cyclophilin inhibitors, most of which require many synthetic steps for their preparation. Sasamura et al. have previously reported the isolation of bioconversion derivative 4. This analog is a convenient starting point for optimization due to the presence of the readily modifiable primary hydroxyl group and because it shows moderate anti-HCV activity and decreased immunosuppressive activity. We have also established an efficient C-alkylation reaction at the 3-position. Through a detailed structure-activity relationship study, we discovered a new type of clinical candidate 14 which requires a short synthetic process and has potent anti-HCV activity and reduced immunosuppressive activity, as well as improved aqueous solubility and pharmacokinetics.
Collapse
Affiliation(s)
- Takuya Makino
- Drug Discovery Research, Astellas Pharma Inc.; 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan.
| | - Junya Ishida
- Drug Discovery Research, Astellas Pharma Inc.; 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Toshio Yamanaka
- Drug Discovery Research, Astellas Pharma Inc.; 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Hidenori Ohki
- Drug Discovery Research, Astellas Pharma Inc.; 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Masao Uchida
- Drug Discovery Research, Astellas Pharma Inc.; 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Masae Sawada
- Drug Discovery Research, Astellas Pharma Inc.; 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - David Barrett
- Drug Discovery Research, Astellas Pharma Inc.; 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| |
Collapse
|
19
|
Development of an efficient semisynthetic modification of FR901459 via a novel regioselective N, O-acyl migration. Bioorg Med Chem Lett 2020; 30:127251. [PMID: 32527551 DOI: 10.1016/j.bmcl.2020.127251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 11/21/2022]
Abstract
HCV utilizes cellular protein cyclophilins in the virus replication cycle and cyclophilin inhibitors have become a new class of anti-HCV agents. In our screening of natural products, we identified a unique cyclosporin analogue, FR901459, as a cyclophilin inhibitor with potent anti-HCV activity. In this work, we developed an efficient synthetic methodology to prepare FR901459 derivatives via an N, O-acyl migration reaction. This method allows us to efficiently manipulate the amino acid residues at the 3 position while avoiding lengthy total synthesis for each compound. By using this methodology, we discovered 4, which has superior anti-HCV activity and decreased immunosuppressive activity compared to FR901459.
Collapse
|
20
|
Winquist RJ, Gribkoff VK. Targeting putative components of the mitochondrial permeability transition pore for novel therapeutics. Biochem Pharmacol 2020; 177:113995. [PMID: 32339494 DOI: 10.1016/j.bcp.2020.113995] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022]
Abstract
Few discoveries have influenced drug discovery programs more than the finding that mitochondrial membranes undergo swings in permeability in response to cellular perturbations. The conductor of these permeability changes is the aptly named mitochondrial permeability transition pore which, although not yet precisely defined, is comprised of several integral proteins that differentially act to regulate the flux of ions, proteins and metabolic byproducts during the course of cellular physiological functions but also pathophysiological insults. Pursuit of the pore's exact identity remains a topic of keen interest, but decades of research have unearthed provocative functions for the integral proteins leading to their evaluation to develop novel therapeutics for a wide range of clinical indications. Chief amongst these targeted, integral proteins have been the Voltage Dependent Anion Channel (VDAC) and the F1FO ATP synthase. Research associated with the roles and ligands of VDAC has been extensive and we will expand upon 3 examples of ligand:VDAC interactions for consideration of drug discovery projects: Tubulin:VDAC1, Hexokinase I/II:VDAC1 and olesoxime:VDAC1. The discoveries that cyclosporine blocks mitochondrial permeability transition via binding to cyclophilin D, and that cyclophilin D is an important component of F1FO ATP synthase, has heightened interest in the F1FO ATP synthase as a focal point for drug discovery, and we will discuss 2 plausible campaigns associated with disease indications. To date no drug has emerged from prospective targeting these integral proteins; however, continued exploration such as the approaches suggested in this Commentary will increase the likelihood of providing important therapeutics for severely unmet medical needs.
Collapse
Affiliation(s)
- Raymond J Winquist
- Alkermes Pharmaceuticals Inc, 852 Winter Street, Waltham MA 02451, United States.
| | - Valentin K Gribkoff
- Yale University School of Medicine, Department of Internal Medicine, 333 Cedar St., New Haven, CT 06510, United States; TheraStat LLC, 44 Kings Grant Rd., Weston, MA 02493, United States
| |
Collapse
|
21
|
Ji X, Li Z. Medicinal chemistry strategies toward host targeting antiviral agents. Med Res Rev 2020; 40:1519-1557. [PMID: 32060956 PMCID: PMC7228277 DOI: 10.1002/med.21664] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 12/11/2022]
Abstract
Direct‐acting antiviral agents (DAAs) represent a class of drugs targeting viral proteins and have been demonstrated to be very successful in combating viral infections in clinic. However, DAAs suffer from several inherent limitations, including narrow‐spectrum antiviral profiles and liability to drug resistance, and hence there are still unmet needs in the treatment of viral infections. In comparison, host targeting antivirals (HTAs) target host factors for antiviral treatment. Since host proteins are probably broadly required for various viral infections, HTAs are not only perceived, but also demonstrated to exhibit broad‐spectrum antiviral activities. In addition, host proteins are not under the genetic control of viral genome, and hence HTAs possess much higher genetic barrier to drug resistance as compared with DAAs. In recent years, much progress has been made to the development of HTAs with the approval of chemokine receptor type 5 antagonist maraviroc for human immunodeficiency virus treatment and more in the pipeline for other viral infections. In this review, we summarize various host proteins as antiviral targets from a medicinal chemistry prospective. Challenges and issues associated with HTAs are also discussed.
Collapse
Affiliation(s)
- Xingyue Ji
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.,Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuorong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
22
|
Han J, Lee HW, Jin Y, Khadka DB, Yang S, Li X, Kim M, Cho WJ. Molecular design, synthesis, and biological evaluation of bisamide derivatives as cyclophilin A inhibitors for HCV treatment. Eur J Med Chem 2020; 188:112031. [PMID: 31923861 DOI: 10.1016/j.ejmech.2019.112031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/20/2019] [Accepted: 12/31/2019] [Indexed: 12/25/2022]
Abstract
Hepatitis C virus (HCV) is a major cause of end-stage liver diseases. Direct-acting antivirals (DAAs), including inhibitors of nonstructural proteins (NS3/4A protease, NS5A, and NS5B polymerase), represent key components of anti-HCV treatment. However, some DAAs are associated with increased drug resistance and undesired side effects. Previous reports have shown that bisamides could be a novel class of cyclophilin A (CypA) inhibitors for treating HCV as a member of combinational therapies. To fully elucidate structure-activity relationships of bisamide derivatives and find a better hit compound with diverse binding modes, 16 biamides were designed with the help of docking program. They were then synthesized using one-pot four-component Ugi reaction. 7e with selectivity index of more than 18.9 (50% effective concentration of 5.3 μM, but no cytotoxicity at 100 μM) and unique binding mode that could be dived into gatekeeper pocket was selected as a new hit compound. Surface plasmon resonance experiments revealed that 7e is able to bind to CypA with a KD of 3.66 μM. Taken together, these results suggest that 7e as a CypA inhibitor could be used as an alternative anti-HCV agent in combinational therapy in the future.
Collapse
Affiliation(s)
- Jinhe Han
- College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hye Won Lee
- Virus Research Group, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Yifeng Jin
- College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Daulat B Khadka
- College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Suhui Yang
- College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Xiaoli Li
- College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Meehyein Kim
- Virus Research Group, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea.
| | - Won-Jea Cho
- College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
23
|
|
24
|
Ma-Lauer Y, Zheng Y, Malešević M, von Brunn B, Fischer G, von Brunn A. Influences of cyclosporin A and non-immunosuppressive derivatives on cellular cyclophilins and viral nucleocapsid protein during human coronavirus 229E replication. Antiviral Res 2019; 173:104620. [PMID: 31634494 PMCID: PMC7114175 DOI: 10.1016/j.antiviral.2019.104620] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/27/2019] [Accepted: 10/11/2019] [Indexed: 01/06/2023]
Abstract
The well-known immunosuppressive drug cyclosporin A inhibits replication of various viruses including coronaviruses by binding to cellular cyclophilins thus inactivating their cis-trans peptidyl-prolyl isomerase function. Viral nucleocapsid proteins are inevitable for genome encapsidation and replication. Here we demonstrate the interaction between the N protein of HCoV-229E and cyclophilin A, not cyclophilin B. Cyclophilin inhibitors abolish this interaction. Upon infection, cyclophilin A stays evenly distributed throughout the cell, whereas cyclophilin B concentrates at ER-bleb-like structures. We further show the inhibitory potential of non-immunosuppressive CsA derivatives Alisporivir, NIM811, compound 3 on HCoV-229E-GFP and -Luciferase replication in human Huh-7.5 hepatoma cells at 18 and 48 h time points post infection with EC50 s at low micromolar ranges. Thus, non-immunosuppressive CsA derivatives effectively inhibit HCoV-229E replication suggesting them as possible candidates for the treatment of HCoV infection. The interruption of interaction between CypA and N protein by CsA and its derivatives suggest a mechanism how CypA inhibitors suppress viral replication. HCoV-229E replication is inhibited by Alisporivir, NIM811 and other non-immunosuppressive Cyclosporin A derivatives. HCoV-229E N protein interacts with cyclophilin A. Cyclophilin A is required for coronavirus replication. Cyclophilin B concentrates in bleb-like structures of the ER in HCoV-infected Huh7 cells.
Collapse
Affiliation(s)
- Yue Ma-Lauer
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University, Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, 80336, Munich, Germany
| | - Yu Zheng
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University, Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, 80336, Munich, Germany
| | - Miroslav Malešević
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Brigitte von Brunn
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University, Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, 80336, Munich, Germany
| | - Gunter Fischer
- Max-Planck-Institute of Biophysical Chemistry Goettingen, BO Halle, Germany
| | - Albrecht von Brunn
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University, Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, 80336, Munich, Germany.
| |
Collapse
|
25
|
Dujardin M, Madan V, Gandhi NS, Cantrelle FX, Launay H, Huvent I, Bartenschlager R, Lippens G, Hanoulle X. Cyclophilin A allows the allosteric regulation of a structural motif in the disordered domain 2 of NS5A and thereby fine-tunes HCV RNA replication. J Biol Chem 2019; 294:13171-13185. [PMID: 31315928 DOI: 10.1074/jbc.ra119.009537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/28/2019] [Indexed: 12/13/2022] Open
Abstract
Implicated in numerous human diseases, intrinsically disordered proteins (IDPs) are dynamic ensembles of interconverting conformers that often contain many proline residues. Whether and how proline conformation regulates the functional aspects of IDPs remains an open question, however. Here, we studied the disordered domain 2 of nonstructural protein 5A (NS5A-D2) of hepatitis C virus (HCV). NS5A-D2 comprises a short structural motif (PW-turn) embedded in a proline-rich sequence, whose interaction with the human prolyl isomerase cyclophilin A (CypA) is essential for viral RNA replication. Using NMR, we show here that the PW-turn motif exists in a conformational equilibrium between folded and disordered states. We found that the fraction of conformers in the NS5A-D2 ensemble that adopt the structured motif is allosterically modulated both by the cis/trans isomerization of the surrounding prolines that are CypA substrates and by substitutions conferring resistance to cyclophilin inhibitor. Moreover, we noted that this fraction is directly correlated with HCV RNA replication efficiency. We conclude that CypA can fine-tune the dynamic ensemble of the disordered NS5A-D2, thereby regulating viral RNA replication efficiency.
Collapse
Affiliation(s)
- Marie Dujardin
- University of Lille, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Vanesa Madan
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Neha S Gandhi
- School of Mathematical Sciences and Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - François-Xavier Cantrelle
- University of Lille, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Hélène Launay
- University of Lille, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Isabelle Huvent
- University of Lille, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Guy Lippens
- University of Lille, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Xavier Hanoulle
- University of Lille, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France.
| |
Collapse
|
26
|
Baumert TF, Berg T, Lim JK, Nelson DR. Status of Direct-Acting Antiviral Therapy for Hepatitis C Virus Infection and Remaining Challenges. Gastroenterology 2019; 156:431-445. [PMID: 30342035 PMCID: PMC6446912 DOI: 10.1053/j.gastro.2018.10.024] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022]
Abstract
Chronic infection with hepatitis C virus is a major cause of liver disease and hepatocellular carcinoma worldwide. After the discovery of hepatitis C virus 3 decades ago, the identification of the structure of the viral proteins, combined with high-throughput replicon models, enabled the discovery and development of direct-acting antivirals. These agents have revolutionized patient care, with cure rates of more than 90%. We review the status of direct-acting antiviral therapies for hepatitis C virus infection and discuss remaining challenges. We highlight licensed compounds, discuss the potential to shorten therapy even further, and review different options for treatment failure and resistance. We also provide an overview of clinical experience with generic agents and evidence for their efficacy. Finally, we discuss the need for new drugs and outline promising targets for future therapies.
Collapse
Affiliation(s)
- Thomas F Baumert
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Pôle Hépato-digestif, Institut Hospitalo-Universitaire, Nouvel Hôpital Civil, Strasbourg, France.
| | - Thomas Berg
- Section of Hepatology, Clinic for Gastroenterology and Rheumatology, University Clinic Leipzig, Leipzig, Germany
| | - Joseph K Lim
- Section of Digestive Diseases and Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut
| | - David R Nelson
- Department of Medicine, University of Florida, Gainesville, Florida.
| |
Collapse
|
27
|
Ashraf MU, Iman K, Khalid MF, Salman HM, Shafi T, Rafi M, Javaid N, Hussain R, Ahmad F, Shahzad-Ul-Hussan S, Mirza S, Shafiq M, Afzal S, Hamera S, Anwar S, Qazi R, Idrees M, Qureshi SA, Chaudhary SU. Evolution of efficacious pangenotypic hepatitis C virus therapies. Med Res Rev 2018; 39:1091-1136. [PMID: 30506705 DOI: 10.1002/med.21554] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022]
Abstract
Hepatitis C compromises the quality of life of more than 350 million individuals worldwide. Over the last decade, therapeutic regimens for treating hepatitis C virus (HCV) infections have undergone rapid advancements. Initially, structure-based drug design was used to develop molecules that inhibit viral enzymes. Subsequently, establishment of cell-based replicon systems enabled investigations into various stages of HCV life cycle including its entry, replication, translation, and assembly, as well as role of host proteins. Collectively, these approaches have facilitated identification of important molecules that are deemed essential for HCV life cycle. The expanded set of putative virus and host-encoded targets has brought us one step closer to developing robust strategies for efficacious, pangenotypic, and well-tolerated medicines against HCV. Herein, we provide an overview of the development of various classes of virus and host-directed therapies that are currently in use along with others that are undergoing clinical evaluation.
Collapse
Affiliation(s)
- Muhammad Usman Ashraf
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan.,Virology Laboratory, Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Kanzal Iman
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Farhan Khalid
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan.,Department of Biomedical Engineering, University of Engineering and Technology, Lahore, Pakistan
| | - Hafiz Muhammad Salman
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan.,Plant Biotechnology Laboratory, Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Talha Shafi
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Momal Rafi
- Department of Statistics, University of Gujrat, Gujrat, Pakistan
| | - Nida Javaid
- Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Rashid Hussain
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Fayyaz Ahmad
- Department of Statistics, University of Gujrat, Gujrat, Pakistan
| | | | - Shaper Mirza
- Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Shafiq
- Plant Biotechnology Laboratory, Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Samia Afzal
- Virology Laboratory, Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Sadia Hamera
- Department of Plant Genetics, Institute of Life Sciences, University of Rostock, Germany
| | - Saima Anwar
- Department of Biomedical Engineering, University of Engineering and Technology, Lahore, Pakistan
| | - Romena Qazi
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital & Research Centre, Lahore, Pakistan
| | - Muhammad Idrees
- Virology Laboratory, Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.,Hazara University, Mansehra, Pakistan
| | - Sohail A Qureshi
- Institute of Integrative Biosciences, CECOS-University of Information Technology and Emerging Sciences, Peshawar, Pakistan
| | - Safee Ullah Chaudhary
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| |
Collapse
|
28
|
Dujardin M, Bouckaert J, Rucktooa P, Hanoulle X. X-ray structure of alisporivir in complex with cyclophilin A at 1.5 Å resolution. Acta Crystallogr F Struct Biol Commun 2018; 74:583-592. [PMID: 30198892 PMCID: PMC6130424 DOI: 10.1107/s2053230x18010415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/18/2018] [Indexed: 12/14/2022] Open
Abstract
Alisporivir (ALV) is an 11-amino-acid hydrophobic cyclic peptide with N-methyl-D-alanine and N-ethyl-L-valine (NEV) residues at positions 3 and 4, respectively. ALV is a non-immunosuppressive cyclosporin A (CsA) derivative. This inhibitor targets cyclophilins (Cyps), a family of proteins with peptidyl-prolyl cis/trans isomerase enzymatic activity. Cyps act as protein chaperones and are involved in numerous cellular functions. Moreover, Cyps have been shown to be an essential cofactor for the replication of many viruses, including Hepatitis C virus and Human immunodeficiency virus, and have also been shown to be involved in mitochondrial diseases. For these reasons, cyclophilins represent an attractive drug target. The structure of ALV in complex with cyclophilin A (CypA), the most abundant Cyp in humans, has been determined at 1.5 Å resolution. This first structure of the CypA-ALV complex shows that the binding of ALV is highly similar to that of CsA. The high resolution allowed the unambiguous determination of the conformations of residues 3 and 4 in ALV when bound to its target. In particular, the side-chain conformation of NEV4 precludes the interaction of the CypA-ALV complex with calcineurin, a cellular protein phosphatase involved in the immune response, which explains the non-immunosuppressive property of ALV. This study provides detailed molecular insights into the CypA-ALV interaction.
Collapse
Affiliation(s)
- Marie Dujardin
- UGSF–UMR8576, University of Lille, CNRS, F-59000 Lille, France
| | - Julie Bouckaert
- UGSF–UMR8576, University of Lille, CNRS, F-59000 Lille, France
| | | | - Xavier Hanoulle
- UGSF–UMR8576, University of Lille, CNRS, F-59000 Lille, France
| |
Collapse
|
29
|
de Wilde AH, Pham U, Posthuma CC, Snijder EJ. Cyclophilins and cyclophilin inhibitors in nidovirus replication. Virology 2018; 522:46-55. [PMID: 30014857 PMCID: PMC7112023 DOI: 10.1016/j.virol.2018.06.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/13/2018] [Accepted: 06/18/2018] [Indexed: 12/12/2022]
Abstract
Cyclophilins (Cyps) belong to the family of peptidyl-prolyl isomerases (PPIases). The PPIase activity of most Cyps is inhibited by the immunosuppressive drug cyclosporin A and several of its non-immunosuppressive analogs, which can also block the replication of nidoviruses (arteriviruses and coronaviruses). Cyclophilins have been reported to play an essential role in the replication of several other RNA viruses, including human immunodeficiency virus-1, hepatitis C virus, and influenza A virus. Likewise, the replication of various nidoviruses was reported to depend on Cyps or other PPIases. This review summarizes our current understanding of this class of nidovirus-host interactions, including the potential function of in particular CypA and the inhibitory effect of Cyp inhibitors. Also the involvement of the FK-506-binding proteins and parvulins is discussed. The nidovirus data are placed in a broader perspective by summarizing the most relevant data on Cyp interactions and Cyp inhibitors for other RNA viruses. Nidovirus replication is inhibited by cyclophilin inhibitors. Arterivirus replication depends on cyclophilin A. Cyclosporin A blocks arterivirus RNA synthesis. Using cyclophilin inhibitors against nidoviruses in vivo needs more investigation.
Collapse
Affiliation(s)
- Adriaan H de Wilde
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Uyen Pham
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Clara C Posthuma
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric J Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
30
|
Ramsis TM, Abdel Karim SE, Vassilaki N, Frakolaki E, Kamal AAM, Zoidis G, Ahmed NS, Abadi AH. Expanding the chemical space of anti-HCV NS5A inhibitors by stereochemical exchange and peptidomimetic approaches. Arch Pharm (Weinheim) 2018; 351:e1800017. [PMID: 29799645 DOI: 10.1002/ardp.201800017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/28/2018] [Accepted: 05/02/2018] [Indexed: 02/05/2023]
Abstract
Here we report a series of potent anti-HCV agents bearing a symmetrical benzidine l-prolinamide backbone with different capping groups including alkyl/aryl carbamates of natural and unnatural valine and leucine amino acids. All compounds were investigated for their inhibitory activity in an HCV replicon assay on genotype 1b. The novel compounds share some chemical and clinical attributes of commercially available NS5A inhibitors. Compounds 5 and 6 with unnatural capping residue and ethyl and isobutyl carbamates showed EC50 values in the picomolar range with a low toxicity profile and selectivity indices of several orders of magnitude. These findings enlarge the chemical space from which NS5A inhibitors may be discovered by adopting unnatural amino acids, amino acids other than valine and carbamates other than methyl as the capping groups.
Collapse
Affiliation(s)
- Triveena M Ramsis
- Faculty of Pharmacy and Biotechnology, Department of Pharmaceutical Chemistry, German University in Cairo, Cairo, Egypt
| | - Shereen E Abdel Karim
- Faculty of Pharmacy and Biotechnology, Department of Pharmaceutical Chemistry, German University in Cairo, Cairo, Egypt
| | - Niki Vassilaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Efseveia Frakolaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Ahmed A M Kamal
- Pharmaceutical and Medicinal Chemistry, Department of Drug Design Optimization, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
| | - Grigoris Zoidis
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Nermin S Ahmed
- Faculty of Pharmacy and Biotechnology, Department of Pharmaceutical Chemistry, German University in Cairo, Cairo, Egypt
| | - Ashraf H Abadi
- Faculty of Pharmacy and Biotechnology, Department of Pharmaceutical Chemistry, German University in Cairo, Cairo, Egypt
| |
Collapse
|
31
|
Crouchet E, Wrensch F, Schuster C, Zeisel MB, Baumert TF. Host-targeting therapies for hepatitis C virus infection: current developments and future applications. Therap Adv Gastroenterol 2018; 11:1756284818759483. [PMID: 29619090 PMCID: PMC5871046 DOI: 10.1177/1756284818759483] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/15/2018] [Indexed: 02/04/2023] Open
Abstract
Chronic hepatitis C virus (HCV) infection is a leading cause of chronic liver diseases and hepatocellular carcinoma (HCC) worldwide. In the past few years, anti-HCV therapies have undergone a revolution with the approval of multiple direct-acting antivirals (DAAs), which enable interferon-free treatments with considerable improvement of sustained virologic response in patients. Today, DAAs have become the standard of care for HCV therapy. However, several limitations remain, which include access to therapy, treatment failure in a subset of patients and persistent risk of HCC development following cure in patients with advanced fibrosis. By targeting conserved host proteins involved in the HCV life cycle, host-targeting agents (HTAs) offer opportunities for pan-genotypic antiviral approaches with a high barrier to drug resistance. Moreover, when applied in combination with DAAs, HTAs could improve the management of difficult-to-treat patients by acting through a complementary mechanism of action. In this review, we summarize the different HTAs evaluated in preclinical and clinical development and discuss their potential role for anti-HCV therapies.
Collapse
Affiliation(s)
- Emilie Crouchet
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France Université de Strasbourg, Strasbourg, France
| | - Florian Wrensch
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France Université de Strasbourg, Strasbourg, France
| | - Catherine Schuster
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France Université de Strasbourg, Strasbourg, France
| | - Mirjam B. Zeisel
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France Université de Strasbourg, Strasbourg, France Inserm U1052, CNRS UMR 5286, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL), Lyon, France
| | | |
Collapse
|
32
|
Jia Z, Wang M, Li S, Li X, Bai XY, Xu Z, Yang Y, Li B, Li Y, Wu H. U-box ubiquitin ligase PPIL2 suppresses breast cancer invasion and metastasis by altering cell morphology and promoting SNAI1 ubiquitination and degradation. Cell Death Dis 2018; 9:63. [PMID: 29352246 PMCID: PMC5833831 DOI: 10.1038/s41419-017-0094-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/17/2017] [Accepted: 10/24/2017] [Indexed: 01/30/2023]
Abstract
Metastasis is the leading cause of breast cancer fatalities. To develop new therapeutic strategies, the mechanisms underlying breast cancer invasion and metastasis need to be further investigated. Peptidylprolyl isomerase (cyclophilin)-like 2 (PPIL2) is a U-box-type E3 ubiquitin ligase belonging to the cyclophilin family. Proteins within this family are the major cytosolic binding proteins of the immunosuppressant drug cyclosporine A (CsA). Although PPIL2 has been reported to potentially be involved in cell migration, its role in breast cancer is still unclear. Herein, we demonstrate that PPIL2 suppressed metastasis in a breast cancer model by altering cell morphology and suppressing the epithelial–mesenchymal transition (EMT) process. Moreover, elevated PPIL2 inhibited EMT and breast cancer invasion by interacting with the classical EMT transcription factor, SNAI1, to enhance its ubiquitin-dependent degradation. Furthermore, PPIL2 protein level and stability was upregulated after CsA treatment, indicating that PPIL2 might be involved in CsA-mediated repression of EMT in breast cancer. Analysis of tissue samples taken from breast cancer patients showed a significant correlation between the expression of PPIL2 and the degree of cancer invasion and metastasis. In summary, these results would shed light on a potential clinical use of CsA in breast cancer patients.
Collapse
Affiliation(s)
- Zhaojun Jia
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Miao Wang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Shujing Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Xiahui Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Xiao-Yan Bai
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Zhaowei Xu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Yangyang Yang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Bowen Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Yanan Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Huijian Wu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
33
|
A Abdullah A, Abdullah R, A Nazariah Z, N Balakrishnan K, Firdaus J Abdullah F, A Bala J, Mohd-Lila MA. Cyclophilin A as a target in the treatment of cytomegalovirus infections. Antivir Chem Chemother 2018; 26:2040206618811413. [PMID: 30449131 PMCID: PMC6243413 DOI: 10.1177/2040206618811413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 10/12/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Viruses are obligate parasites that depend on the cellular machinery of the host to regenerate and manufacture their proteins. Most antiviral drugs on the market today target viral proteins. However, the more recent strategies involve targeting the host cell proteins or pathways that mediate viral replication. This new approach would be effective for most viruses while minimizing drug resistance and toxicity. METHODS Cytomegalovirus replication, latency, and immune response are mediated by the intermediate early protein 2, the main protein that determines the effectiveness of drugs in cytomegalovirus inhibition. This review explains how intermediate early protein 2 can modify the action of cyclosporin A, an immunosuppressive, and antiviral drug. It also links all the pathways mediated by cyclosporin A, cytomegalovirus replication, and its encoded proteins. RESULTS Intermediate early protein 2 can influence the cellular cyclophilin A pathway, affecting cyclosporin A as a mediator of viral replication or anti-cytomegalovirus drug. CONCLUSION Cyclosporin A has a dual function in cytomegalovirus pathogenesis. It has the immunosuppressive effect that establishes virus replication through the inhibition of T-cell function. It also has an anti-cytomegalovirus effect mediated by intermediate early protein 2. Both of these functions involve cyclophilin A pathway.
Collapse
Affiliation(s)
- Ashwaq A Abdullah
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 2 Department of Microbiology, Faculty of Applied Science, Taiz University, Taiz, Yemen
| | - Rasedee Abdullah
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 3 Department of Veterinary Laboratory Diagnosis, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Zeenathul A Nazariah
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Krishnan N Balakrishnan
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Faez Firdaus J Abdullah
- 5 Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Jamilu A Bala
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 6 Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Bayero University Kano, Kano, Nigeria
| | - Mohd-Azmi Mohd-Lila
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| |
Collapse
|
34
|
Nielsen DS, Shepherd NE, Xu W, Lucke AJ, Stoermer MJ, Fairlie DP. Orally Absorbed Cyclic Peptides. Chem Rev 2017; 117:8094-8128. [PMID: 28541045 DOI: 10.1021/acs.chemrev.6b00838] [Citation(s) in RCA: 277] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Peptides and proteins are not orally bioavailable in mammals, although a few peptides are intestinally absorbed in small amounts. Polypeptides are generally too large and polar to passively diffuse through lipid membranes, while most known active transport mechanisms facilitate cell uptake of only very small peptides. Systematic evaluations of peptides with molecular weights above 500 Da are needed to identify parameters that influence oral bioavailability. Here we describe 125 cyclic peptides containing four to thirty-seven amino acids that are orally absorbed by mammals. Cyclization minimizes degradation in the gut, blood, and tissues by removing cleavable N- and C-termini and by shielding components from metabolic enzymes. Cyclization also folds peptides into bioactive conformations that determine exposure of polar atoms to solvation by water and lipids and therefore can influence oral bioavailability. Key chemical properties thought to influence oral absorption and bioavailability are analyzed, including molecular weight, octanol-water partitioning, hydrogen bond donors/acceptors, rotatable bonds, and polar surface area. The cyclic peptides violated to different degrees all of the limits traditionally considered to be important for oral bioavailability of drug-like small molecules, although fewer hydrogen bond donors and reduced flexibility generally favored oral absorption.
Collapse
Affiliation(s)
- Daniel S Nielsen
- Division of Chemistry and Structural Biology, and ‡Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| | - Nicholas E Shepherd
- Division of Chemistry and Structural Biology, and ‡Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| | - Weijun Xu
- Division of Chemistry and Structural Biology, and ‡Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| | - Andrew J Lucke
- Division of Chemistry and Structural Biology, and ‡Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| | - Martin J Stoermer
- Division of Chemistry and Structural Biology, and ‡Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| | - David P Fairlie
- Division of Chemistry and Structural Biology, and ‡Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| |
Collapse
|
35
|
Juvvadi PR, Lee SC, Heitman J, Steinbach WJ. Calcineurin in fungal virulence and drug resistance: Prospects for harnessing targeted inhibition of calcineurin for an antifungal therapeutic approach. Virulence 2017; 8:186-197. [PMID: 27325145 PMCID: PMC5354160 DOI: 10.1080/21505594.2016.1201250] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 01/26/2023] Open
Abstract
Increases in the incidence and mortality due to the major invasive fungal infections such as aspergillosis, candidiasis and cryptococcosis caused by the species of Aspergillus, Candida and Cryptococcus, are a growing threat to the immunosuppressed patient population. In addition to the limited armamentarium of the current classes of antifungal agents available (pyrimidine analogs, polyenes, azoles, and echinocandins), their toxicity, efficacy and the emergence of resistance are major bottlenecks limiting successful patient outcomes. Although these drugs target distinct fungal pathways, there is an urgent need to develop new antifungals that are more efficacious, fungal-specific, with reduced or no toxicity and simultaneously do not induce resistance. Here we review several lines of evidence which indicate that the calcineurin signaling pathway, a target of the immunosuppressive drugs FK506 and cyclosporine A, orchestrates growth, virulence and drug resistance in a variety of fungal pathogens and can be exploited for novel antifungal drug development.
Collapse
Affiliation(s)
- Praveen R. Juvvadi
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
| | - Soo Chan Lee
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Joseph Heitman
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - William J. Steinbach
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
36
|
Steadman VA, Pettit SB, Poullennec KG, Lazarides L, Keats AJ, Dean DK, Stanway SJ, Austin CA, Sanvoisin JA, Watt GM, Fliri HG, Liclican AC, Jin D, Wong MH, Leavitt SA, Lee YJ, Tian Y, Frey CR, Appleby TC, Schmitz U, Jansa P, Mackman RL, Schultz BE. Discovery of Potent Cyclophilin Inhibitors Based on the Structural Simplification of Sanglifehrin A. J Med Chem 2017; 60:1000-1017. [DOI: 10.1021/acs.jmedchem.6b01329] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Victoria A. Steadman
- Selcia Ltd., Fyfield Business & Research Park, Fyfield Road, Ongar, Essex CM5 0GS, United Kingdom
| | - Simon B. Pettit
- Selcia Ltd., Fyfield Business & Research Park, Fyfield Road, Ongar, Essex CM5 0GS, United Kingdom
| | - Karine G. Poullennec
- Selcia Ltd., Fyfield Business & Research Park, Fyfield Road, Ongar, Essex CM5 0GS, United Kingdom
| | - Linos Lazarides
- Selcia Ltd., Fyfield Business & Research Park, Fyfield Road, Ongar, Essex CM5 0GS, United Kingdom
| | - Andrew J. Keats
- Selcia Ltd., Fyfield Business & Research Park, Fyfield Road, Ongar, Essex CM5 0GS, United Kingdom
| | - David K. Dean
- Selcia Ltd., Fyfield Business & Research Park, Fyfield Road, Ongar, Essex CM5 0GS, United Kingdom
| | - Steven J. Stanway
- Selcia Ltd., Fyfield Business & Research Park, Fyfield Road, Ongar, Essex CM5 0GS, United Kingdom
| | - Carol A. Austin
- Selcia Ltd., Fyfield Business & Research Park, Fyfield Road, Ongar, Essex CM5 0GS, United Kingdom
| | - Jonathan A. Sanvoisin
- Selcia Ltd., Fyfield Business & Research Park, Fyfield Road, Ongar, Essex CM5 0GS, United Kingdom
| | - Gregory M. Watt
- Selcia Ltd., Fyfield Business & Research Park, Fyfield Road, Ongar, Essex CM5 0GS, United Kingdom
| | - Hans G. Fliri
- Cypralis Ltd., Babraham Research
Campus, Cambridge CB22
3AT, United Kingdom
| | - Albert C. Liclican
- Gilead Sciences, 333 Lakeside
Drive, Foster City, California 94404, United States
| | - Debi Jin
- Gilead Sciences, 333 Lakeside
Drive, Foster City, California 94404, United States
| | - Melanie H. Wong
- Gilead Sciences, 333 Lakeside
Drive, Foster City, California 94404, United States
| | - Stephanie A. Leavitt
- Gilead Sciences, 333 Lakeside
Drive, Foster City, California 94404, United States
| | - Yu-Jen Lee
- Gilead Sciences, 333 Lakeside
Drive, Foster City, California 94404, United States
| | - Yang Tian
- Gilead Sciences, 333 Lakeside
Drive, Foster City, California 94404, United States
| | - Christian R. Frey
- Gilead Sciences, 333 Lakeside
Drive, Foster City, California 94404, United States
| | - Todd C. Appleby
- Gilead Sciences, 333 Lakeside
Drive, Foster City, California 94404, United States
| | - Uli Schmitz
- Gilead Sciences, 333 Lakeside
Drive, Foster City, California 94404, United States
| | - Petr Jansa
- Gilead Sciences, 333 Lakeside
Drive, Foster City, California 94404, United States
| | - Richard L. Mackman
- Gilead Sciences, 333 Lakeside
Drive, Foster City, California 94404, United States
| | - Brian E. Schultz
- Gilead Sciences, 333 Lakeside
Drive, Foster City, California 94404, United States
| |
Collapse
|
37
|
Dunyak BM, Gestwicki JE. Peptidyl-Proline Isomerases (PPIases): Targets for Natural Products and Natural Product-Inspired Compounds. J Med Chem 2016; 59:9622-9644. [PMID: 27409354 DOI: 10.1021/acs.jmedchem.6b00411] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Peptidyl-proline isomerases (PPIases) are a chaperone superfamily comprising the FK506-binding proteins (FKBPs), cyclophilins, and parvulins. PPIases catalyze the cis/trans isomerization of proline, acting as a regulatory switch during folding, activation, and/or degradation of many proteins. These "clients" include proteins with key roles in cancer, neurodegeneration, and psychiatric disorders, suggesting that PPIase inhibitors could be important therapeutics. However, the active site of PPIases is shallow, solvent-exposed, and well conserved between family members, making selective inhibitor design challenging. Despite these hurdles, macrocyclic natural products, including FK506, rapamycin, and cyclosporin, bind PPIases with nanomolar or better affinity. De novo attempts to derive new classes of inhibitors have been somewhat less successful, often showcasing the "undruggable" features of PPIases. Interestingly, the most potent of these next-generation molecules tend to integrate features of the natural products, including macrocyclization or proline mimicry strategies. Here, we review recent developments and ongoing challenges in the inhibition of PPIases, with a focus on how natural products might inform the creation of potent and selective inhibitors.
Collapse
Affiliation(s)
- Bryan M Dunyak
- Department of Biological Chemistry, University of Michigan Medical School , 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109, United States.,Department of Pharmaceutical Chemistry, University of California at San Francisco , 675 Nelson Rising Lane, San Francisco, California 94158, United States
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, University of California at San Francisco , 675 Nelson Rising Lane, San Francisco, California 94158, United States
| |
Collapse
|
38
|
Matsson P, Doak BC, Over B, Kihlberg J. Cell permeability beyond the rule of 5. Adv Drug Deliv Rev 2016; 101:42-61. [PMID: 27067608 DOI: 10.1016/j.addr.2016.03.013] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/25/2016] [Accepted: 03/31/2016] [Indexed: 11/17/2022]
Abstract
Drug discovery for difficult targets that have large and flat binding sites is often better suited to compounds beyond the "rule of 5" (bRo5). However, such compounds carry higher pharmacokinetic risks, such as low solubility and permeability, and increased efflux and metabolism. Interestingly, recent drug approvals and studies suggest that cell permeable and orally bioavailable drugs can be discovered far into bRo5 space. Tactics such as reduction or shielding of polarity by N-methylation, bulky side chains and intramolecular hydrogen bonds may be used to increase cell permeability in this space, but often results in decreased solubility. Conformationally flexible compounds can, however, combine high permeability and solubility, properties that are keys for cell permeability and intestinal absorption. Recent developments in computational conformational analysis will aid design of such compounds and hence prediction of cell permeability. Transporter mediated efflux occurs for most investigated drugs in bRo5 space, however it is commonly overcome by high local intestinal concentrations on oral administration. In contrast, there is little data to support significant impact of transporter-mediated intestinal absorption in bRo5 space. Current knowledge of compound properties that govern transporter effects of bRo5 drugs is limited and requires further fundamental and comprehensive studies.
Collapse
Affiliation(s)
- Pär Matsson
- Department of Pharmacy, BMC, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
| | - Bradley C Doak
- Department of Medicinal Chemistry, MIPS, Monash University, 381 Royal Parade, Parkville, Victoria, Australia
| | - Björn Over
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | - Jan Kihlberg
- Department of Chemistry - BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
39
|
Caporale A, Mascanzoni F, Farina B, Sturlese M, Di Sorbo G, Fattorusso R, Ruvo M, Doti N. FRET-Protease-Coupled Peptidyl-Prolyl cis-trans Isomerase Assay: New Internally Quenched Fluorogenic Substrates for High-Throughput Screening. ACTA ACUST UNITED AC 2016; 21:701-12. [PMID: 27185744 DOI: 10.1177/1087057116650402] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/26/2016] [Indexed: 11/15/2022]
Abstract
In this work, a sensitive and convenient protease-based fluorimetric high-throughput screening (HTS) assay for determining peptidyl-prolyl cis-trans isomerase activity was developed. The assay was based on a new intramolecularly quenched substrate, whose fluorescence and structural properties were examined together with kinetic constants and the effects of solvents on its isomerization process. Pilot screens performed using the Library of Pharmacologically Active Compounds (LOPAC) and cyclophilin A (CypA), as isomerase model enzyme, indicated that the assay was robust for HTS, and that comparable results were obtained with a CypA inhibitor tested both manually and automatically. Moreover, a new compound that inhibits CypA activity with an IC50 in the low micromolar range was identified. Molecular docking studies revealed that the molecule shows a notable shape complementarity with the catalytic pocket confirming the experimental observations. Due to its simplicity and precision in the determination of extent of inhibition and reaction rates required for kinetic analysis, this assay offers many advantages over other commonly used assays.
Collapse
Affiliation(s)
- Andrea Caporale
- Istituto di Biostrutture e Bioimmagini-CNR and CIRPEB, Napoli, Italy Dipartimento di Farmacia, Università di Napoli "Federico II", Napoli, Italy
| | - Fabiola Mascanzoni
- Istituto di Biostrutture e Bioimmagini-CNR and CIRPEB, Napoli, Italy Dipartimento di Farmacia, Università di Napoli "Federico II", Napoli, Italy
| | | | - Mattia Sturlese
- Molecular Modeling Section, Dipartimento di Scienze del Farmaco, Università di Padova, Padova, Italy
| | - Gianluigi Di Sorbo
- Istituto di Biostrutture e Bioimmagini-CNR and CIRPEB, Napoli, Italy Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Seconda Università di Napoli, Caserta, Italy
| | - Roberto Fattorusso
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Seconda Università di Napoli, Caserta, Italy
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini-CNR and CIRPEB, Napoli, Italy
| | - Nunzianna Doti
- Istituto di Biostrutture e Bioimmagini-CNR and CIRPEB, Napoli, Italy
| |
Collapse
|
40
|
Khachatoorian R, French SW. Chaperones in hepatitis C virus infection. World J Hepatol 2016; 8:9-35. [PMID: 26783419 PMCID: PMC4705456 DOI: 10.4254/wjh.v8.i1.9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/01/2015] [Accepted: 12/18/2015] [Indexed: 02/06/2023] Open
Abstract
The hepatitis C virus (HCV) infects approximately 3% of the world population or more than 185 million people worldwide. Each year, an estimated 350000-500000 deaths occur worldwide due to HCV-associated diseases including cirrhosis and hepatocellular carcinoma. HCV is the most common indication for liver transplantation in patients with cirrhosis worldwide. HCV is an enveloped RNA virus classified in the genus Hepacivirus in the Flaviviridae family. The HCV viral life cycle in a cell can be divided into six phases: (1) binding and internalization; (2) cytoplasmic release and uncoating; (3) viral polyprotein translation and processing; (4) RNA genome replication; (5) encapsidation (packaging) and assembly; and (6) virus morphogenesis (maturation) and secretion. Many host factors are involved in the HCV life cycle. Chaperones are an important group of host cytoprotective molecules that coordinate numerous cellular processes including protein folding, multimeric protein assembly, protein trafficking, and protein degradation. All phases of the viral life cycle require chaperone activity and the interaction of viral proteins with chaperones. This review will present our current knowledge and understanding of the role of chaperones in the HCV life cycle. Analysis of chaperones in HCV infection will provide further insights into viral/host interactions and potential therapeutic targets for both HCV and other viruses.
Collapse
|
41
|
Trends in Antiviral Strategies. VIRUS AS POPULATIONS 2016. [PMCID: PMC7149557 DOI: 10.1016/b978-0-12-800837-9.00009-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Viral populations are true moving targets regarding the genomic sequences to be targeted in antiviral designs. Experts from different fields have expressed the need of new paradigms for antiviral interventions and viral disease control. This chapter reviews several strategies that aim at counteracting the adaptive capacity of viral quasispecies. The proposed designs are based on combinations of different antiviral drugs and immune modulators, or in the administration of virus-specific mutagenic agents, in an approach termed lethal mutagenesis of viruses. It consists of decreasing viral fitness by an excess of mutations that render viral proteins sub-optimal or non-functional. Viral extinction by lethal mutagenesis involves several sequential, overlapping steps that recapitulate the major concepts of intra-population interactions and genetic information stability discussed in preceding chapters. Despite the magnitude of the challenge, the chapter closes with some optimistic prospects for an effective control of viruses displaying error-prone replication, based on the combined targeting of replication fidelity and the induction of the innate immune response.
Collapse
|
42
|
Yang S, K R J, Lim S, Choi TG, Kim JH, Akter S, Jang M, Ahn HJ, Kim HY, Windisch MP, Khadka DB, Zhao C, Jin Y, Kang I, Ha J, Oh BC, Kim M, Kim SS, Cho WJ. Structure-Based Discovery of Novel Cyclophilin A Inhibitors for the Treatment of Hepatitis C Virus Infections. J Med Chem 2015; 58:9546-61. [PMID: 26613291 DOI: 10.1021/acs.jmedchem.5b01064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hepatitis C virus (HCV) is a major cause of end-stage liver disease. Direct-acting antivirals (DAAs), including inhibitors of nonstructural proteins (NS3/4A protease, NS5A, and NS5B polymerase), represent key components of anti-HCV treatment, but these are associated with increased drug resistance and toxicity. Thus, the development of host-targeted antiviral agents, such as cyclophilin A inhibitors, is an alternative approach for more effective, selective, and safer treatment. Starting with the discovery of a bis-amide derivative 5 through virtual screening, the lead compound 25 was developed using molecular modeling-based design and systematic exploration of the structure-activity relationship. The lead 25 lacked cytotoxicity, had potent anti-HCV activity, and showed selective and high binding affinity for CypA. Unlike cyclosporin A, 25 lacked immunosuppressive effects, successfully inhibited the HCV replication, restored host immune responses without acute toxicity in vitro and in vivo, and exhibited a high synergistic effect in combination with other drugs. These findings suggest that the bis-amides have significant potential to extend the arsenal of HCV therapeutics.
Collapse
Affiliation(s)
- Suhui Yang
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University , Gwangju 500-757, Republic of Korea
| | - Jyothi K R
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University , Seoul 130-701, Republic of Korea
| | - Sangbin Lim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University , Seoul 130-701, Republic of Korea
| | - Tae Gyu Choi
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University , Seoul 130-701, Republic of Korea
| | - Jin-Hwan Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University , Seoul 130-701, Republic of Korea
| | - Salima Akter
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University , Seoul 130-701, Republic of Korea
| | - Miran Jang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University , Seoul 130-701, Republic of Korea
| | - Hyun-Jong Ahn
- Department of Microbiology, School of Medicine, Kyung Hee University , Seoul 130-701, Republic of Korea
| | - Hee-Young Kim
- Applied Molecular Virology, Institute Pasteur Korea , Gyeonggi-do 463-400, Republic of Korea
| | - Marc P Windisch
- Applied Molecular Virology, Institute Pasteur Korea , Gyeonggi-do 463-400, Republic of Korea
| | - Daulat B Khadka
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University , Gwangju 500-757, Republic of Korea
| | - Chao Zhao
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University , Gwangju 500-757, Republic of Korea
| | - Yifeng Jin
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University , Gwangju 500-757, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University , Seoul 130-701, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University , Seoul 130-701, Republic of Korea
| | - Byung-Chul Oh
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science , Incheon 406-840, Republic of Korea
| | - Meehyein Kim
- Virus Research and Testing Group, Korea Research Institute of Chemical Technology , Daejeon 305-600, Republic of Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University , Seoul 130-701, Republic of Korea
| | - Won-Jea Cho
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University , Gwangju 500-757, Republic of Korea
| |
Collapse
|
43
|
Perales C, Quer J, Gregori J, Esteban JI, Domingo E. Resistance of Hepatitis C Virus to Inhibitors: Complexity and Clinical Implications. Viruses 2015; 7:5746-66. [PMID: 26561827 PMCID: PMC4664975 DOI: 10.3390/v7112902] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 12/20/2022] Open
Abstract
Selection of inhibitor-resistant viral mutants is universal for viruses that display quasi-species dynamics, and hepatitis C virus (HCV) is no exception. Here we review recent results on drug resistance in HCV, with emphasis on resistance to the newly-developed, directly-acting antiviral agents, as they are increasingly employed in the clinic. We put the experimental observations in the context of quasi-species dynamics, in particular what the genetic and phenotypic barriers to resistance mean in terms of exploration of sequence space while HCV replicates in the liver of infected patients or in cell culture. Strategies to diminish the probability of viral breakthrough during treatment are briefly outlined.
Collapse
Affiliation(s)
- Celia Perales
- Liver Unit, Internal Medicine, Laboratory of Malalties Hepàtiques, Vall d'Hebron Institut de Recerca-Hospital Universitari Vall d'Hebron (VHIR-HUVH), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
- Centro de Biologia Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08035 Barcelona, Spain.
| | - Josep Quer
- Liver Unit, Internal Medicine, Laboratory of Malalties Hepàtiques, Vall d'Hebron Institut de Recerca-Hospital Universitari Vall d'Hebron (VHIR-HUVH), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08035 Barcelona, Spain.
- Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.
| | - Josep Gregori
- Liver Unit, Internal Medicine, Laboratory of Malalties Hepàtiques, Vall d'Hebron Institut de Recerca-Hospital Universitari Vall d'Hebron (VHIR-HUVH), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08035 Barcelona, Spain.
- Roche Diagnostics SL, 08174 Sant Cugat del Vallès, Spain.
| | - Juan Ignacio Esteban
- Liver Unit, Internal Medicine, Laboratory of Malalties Hepàtiques, Vall d'Hebron Institut de Recerca-Hospital Universitari Vall d'Hebron (VHIR-HUVH), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08035 Barcelona, Spain.
- Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.
| | - Esteban Domingo
- Centro de Biologia Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08035 Barcelona, Spain.
| |
Collapse
|
44
|
Host-Targeting Agents to Prevent and Cure Hepatitis C Virus Infection. Viruses 2015; 7:5659-85. [PMID: 26540069 PMCID: PMC4664971 DOI: 10.3390/v7112898] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 09/25/2015] [Accepted: 10/19/2015] [Indexed: 12/13/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infection is a major cause of liver cirrhosis and hepatocellular carcinoma (HCC) which are leading indications of liver transplantation (LT). To date, there is no vaccine to prevent HCV infection and LT is invariably followed by infection of the liver graft. Within the past years, direct-acting antivirals (DAAs) have had a major impact on the management of chronic hepatitis C, which has become a curable disease in the majority of DAA-treated patients. In contrast to DAAs that target viral proteins, host-targeting agents (HTAs) interfere with cellular factors involved in the viral life cycle. By acting through a complementary mechanism of action and by exhibiting a generally higher barrier to resistance, HTAs offer a prospective option to prevent and treat viral resistance. Indeed, given their complementary mechanism of action, HTAs and DAAs can act in a synergistic manner to reduce viral loads. This review summarizes the different classes of HTAs against HCV infection that are in preclinical or clinical development and highlights their potential to prevent HCV infection, e.g., following LT, and to tailor combination treatments to cure chronic HCV infection.
Collapse
|
45
|
Hopkins S, Gallay PA. The role of immunophilins in viral infection. Biochim Biophys Acta Gen Subj 2015; 1850:2103-10. [PMID: 25445708 PMCID: PMC4491039 DOI: 10.1016/j.bbagen.2014.11.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/11/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Tremendous progress has been made in the past 20 years in understanding the roles played by immunophilins, and in particular the cyclophilins, in supporting the replication cycles of human viruses. A growing body of genetic and biochemical evidence and data from clinical trials confirm that cyclophilins are essential cofactors that contribute to establishing a permissive environment within the host cell that supports the replication of HIV-1 and HCV. Cyclophilin A regulates HIV-1 replication kinetics and infectivity, modulates sensitivity to host restriction factors, and cooperates in the transit of the pre-integration complex into the nucleus of infected cells. Cyclophilin A is an essential cofactor whose expression supports HCV-specific RNA replication in human hepatocytes. GENERAL SIGNIFICANCE Peptidyl-prolyl isomerase inhibitors have been used in clinical trials to validate cyclophilins as antiviral targets for the treatment of HIV-1 and Chronic Hepatitis C virus infection and as molecular probes to identify the roles played by immunophilins in supporting the replication cycles of human viruses. SCOPE OF REVIEW This review summarizes emerging research that defines the functions of immunophilins in supporting the replication cycles of HIV-1, HCV, HBV, coronaviruses, and other viral pathogens and describes new information that suggests a role for immunophilins in regulating innate immune responses against chronic viral infection. MAJOR CONCLUSIONS The dependence on cyclophilins by evolutionarily distinct viruses for accomplishing various steps in replication such as viral entry, initiation of genomic nucleic acid replication, viral genome uncoating, nuclear import and nuclear entry, emphasizes the potential of cyclophilin inhibitors as therapeutic agents. This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
Affiliation(s)
- Sam Hopkins
- Department of Clinical Research, Autoimmune Technologies, New Orleans, LA 70112 USA.
| | - Philippe A Gallay
- Department of Immunology & Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
46
|
von Brunn A, Ciesek S, von Brunn B, Carbajo-Lozoya J. Genetic deficiency and polymorphisms of cyclophilin A reveal its essential role for Human Coronavirus 229E replication. Curr Opin Virol 2015; 14:56-61. [PMID: 26318518 PMCID: PMC7102849 DOI: 10.1016/j.coviro.2015.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 08/06/2015] [Accepted: 08/10/2015] [Indexed: 12/15/2022]
Abstract
Replication of coronaviruses is inhibited in vitro by cyclosporin A, a well-known immunosuppressive drug which binds to cellular cyclophilins thus inactivating their enzymatic cis-trans peptidyl-prolyl isomerase function. Latter is required for proper folding of cellular proteins and of proteins of several viruses. Here, we summarize present knowledge on the role of cyclophilin A during coronavirus replication. We present data on the effect of cyclophilin A single nucleotide polymorphism mutants on the replication of human CoV-229E demonstrating the requirement of proper cyclophilin A function for virus propagation. Results define cellular cyclophilin A as a host target for inhibition of coronaviruses ranging from relatively mild common cold to highly pathogenic SARS-CoV and MERS-CoV viruses with the perspective of disclosing non-immunosuppressive cyclosporin A analogs to broadly inactivate the coronavirus family.
Collapse
Affiliation(s)
- Albrecht von Brunn
- Max-von-Pettenkofer Institute, Ludwig-Maximilians-Universität, München, Germany; German Center for Infection Research (DZIF), Germany.
| | - Sandra Ciesek
- German Center for Infection Research (DZIF), Germany; Department of Gastroenterology, Hepatology und Endocrinology, Medizinische Hochschule Hannover, Hannover, Germany
| | - Brigitte von Brunn
- Max-von-Pettenkofer Institute, Ludwig-Maximilians-Universität, München, Germany; German Center for Infection Research (DZIF), Germany
| | - Javier Carbajo-Lozoya
- Max-von-Pettenkofer Institute, Ludwig-Maximilians-Universität, München, Germany; German Center for Infection Research (DZIF), Germany
| |
Collapse
|
47
|
Yamashita M, Iida M, Tada M, Shirasago Y, Fukasawa M, Nagase S, Watari A, Ishii-Watabe A, Yagi K, Kondoh M. Discovery of anti-claudin-1 antibodies as candidate therapeutics against hepatitis C virus. J Pharmacol Exp Ther 2015; 353:112-8. [PMID: 25628391 DOI: 10.1124/jpet.114.217653] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Claudin-1 (CLDN1), a known host factor for hepatitis C virus (HCV) entry and cell-to-cell transmission, is a target molecule for inhibiting HCV infection. We previously developed four clones of mouse anti-CLDN1 monoclonal antibody (mAb) that prevented HCV infection in vitro. Two of these mAbs showed the highest antiviral activity. Here, we optimized the anti-CLDN1 mAbs as candidates for therapeutics by protein engineering. Although Fab fragments of the mAbs prevented in vitro HCV infection, their inhibitory effects were much weaker than those of the whole mAbs. In contrast, human chimeric IgG1 mAbs generated by grafting the variable domains of the mouse mAb light and heavy chains inhibited in vitro HCV infection as efficiently as the parental mouse mAbs. However, the chimeric IgG1 mAbs activated Fcγ receptor, suggesting that cytotoxicity against mAb-bound CLDN1-expressing cells occurred through the induction of antibody-dependent cellular cytotoxicity (ADCC). To avoid ADCC-induced side effects, we prepared human chimeric IgG4 mAbs. The chimeric IgG4 mAbs did not activate Fcγ receptor or induce ADCC, but they prevented in vitro HCV infection as efficiently as did the parental mouse mAbs. These findings indicate that the IgG4 form of human chimeric anti-CLDN1 mAb may be a candidate molecule for clinically applicable HCV therapy.
Collapse
Affiliation(s)
- Mayo Yamashita
- Laboratory of Bio-Functional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (M.Y., M.I., S.N., A.W., K.Y., M.K.); Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (M.T., A.I.-W.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (Y.S., M.F.); and Graduate School of Biological Science, Tokyo University of Science, Chiba, Japan (Y.S.)
| | - Manami Iida
- Laboratory of Bio-Functional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (M.Y., M.I., S.N., A.W., K.Y., M.K.); Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (M.T., A.I.-W.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (Y.S., M.F.); and Graduate School of Biological Science, Tokyo University of Science, Chiba, Japan (Y.S.)
| | - Minoru Tada
- Laboratory of Bio-Functional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (M.Y., M.I., S.N., A.W., K.Y., M.K.); Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (M.T., A.I.-W.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (Y.S., M.F.); and Graduate School of Biological Science, Tokyo University of Science, Chiba, Japan (Y.S.)
| | - Yoshitaka Shirasago
- Laboratory of Bio-Functional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (M.Y., M.I., S.N., A.W., K.Y., M.K.); Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (M.T., A.I.-W.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (Y.S., M.F.); and Graduate School of Biological Science, Tokyo University of Science, Chiba, Japan (Y.S.)
| | - Masayoshi Fukasawa
- Laboratory of Bio-Functional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (M.Y., M.I., S.N., A.W., K.Y., M.K.); Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (M.T., A.I.-W.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (Y.S., M.F.); and Graduate School of Biological Science, Tokyo University of Science, Chiba, Japan (Y.S.)
| | - Shotaro Nagase
- Laboratory of Bio-Functional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (M.Y., M.I., S.N., A.W., K.Y., M.K.); Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (M.T., A.I.-W.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (Y.S., M.F.); and Graduate School of Biological Science, Tokyo University of Science, Chiba, Japan (Y.S.)
| | - Akihiro Watari
- Laboratory of Bio-Functional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (M.Y., M.I., S.N., A.W., K.Y., M.K.); Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (M.T., A.I.-W.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (Y.S., M.F.); and Graduate School of Biological Science, Tokyo University of Science, Chiba, Japan (Y.S.)
| | - Akiko Ishii-Watabe
- Laboratory of Bio-Functional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (M.Y., M.I., S.N., A.W., K.Y., M.K.); Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (M.T., A.I.-W.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (Y.S., M.F.); and Graduate School of Biological Science, Tokyo University of Science, Chiba, Japan (Y.S.)
| | - Kiyohito Yagi
- Laboratory of Bio-Functional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (M.Y., M.I., S.N., A.W., K.Y., M.K.); Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (M.T., A.I.-W.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (Y.S., M.F.); and Graduate School of Biological Science, Tokyo University of Science, Chiba, Japan (Y.S.)
| | - Masuo Kondoh
- Laboratory of Bio-Functional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (M.Y., M.I., S.N., A.W., K.Y., M.K.); Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (M.T., A.I.-W.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (Y.S., M.F.); and Graduate School of Biological Science, Tokyo University of Science, Chiba, Japan (Y.S.)
| |
Collapse
|
48
|
Nath PR, Isakov N. Insights into peptidyl-prolyl cis–trans isomerase structure and function in immunocytes. Immunol Lett 2015; 163:120-31. [DOI: 10.1016/j.imlet.2014.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 10/27/2014] [Accepted: 11/03/2014] [Indexed: 12/30/2022]
|
49
|
Lawen A. Biosynthesis of cyclosporins and other natural peptidyl prolyl cis/trans isomerase inhibitors. Biochim Biophys Acta Gen Subj 2014; 1850:2111-20. [PMID: 25497210 DOI: 10.1016/j.bbagen.2014.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/01/2014] [Accepted: 12/04/2014] [Indexed: 01/11/2023]
Abstract
BACKGROUND Peptidyl-prolyl-cis/trans-isomerases (PPIases) are ubiquitously expressed and have been implicated in a wide range of biological functions. Their inhibition is beneficial in immunosuppression, cancer treatment, treatment of autoimmune diseases, protozoan and viral infections. SCOPE OF REVIEW Three classes of PPIases are known, each class having their own specific inhibitors. This review will cover the present knowledge on the biosynthesis of the natural PPIase inhibitors. These include for the cyclophilins: the cyclosporins, the analogues of peptolide SDZ 214-103 and the sanglifehrins; for the FKBPs: ascomycin, rapamycin and FK506 and for the parvulins the naphtoquinone juglone. MAJOR CONCLUSIONS Over the last thirty years much progress has been made in understanding PPIase function and the biosynthesis of natural PPIase inhibitors. Non-immunosuppressive analogues were discovered and served as lead compounds for the development of novel antiviral drugs. There are, however, still unsolved questions which deserve further research into this exciting field. GENERAL SIGNIFICANCE As all the major natural inhibitors of the cyclophilins and FKBPs are synthesized by complex non-ribosomal peptide synthetases and/or polyketide synthases, total chemical synthesis is not a viable option. Thus, fully understanding the modular enzyme systems involved in their biosynthesis may help engineering enzymes capable of synthesizing novel PPIase inhibitors with improved functions for a wide range of conditions. This article is part of a Special Issue entitled Proline-directed Foldases: Cell signaling catalysts and drug targets.
Collapse
Affiliation(s)
- Alfons Lawen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Victoria 3800, Australia.
| |
Collapse
|
50
|
In vitro and in vivo antiviral activity and resistance profile of ombitasvir, an inhibitor of hepatitis C virus NS5A. Antimicrob Agents Chemother 2014; 59:979-87. [PMID: 25451055 DOI: 10.1128/aac.04226-14] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ombitasvir (ABT-267) is a hepatitis C virus (HCV) NS5A inhibitor with picomolar potency, pan-genotypic activity, and 50% effective concentrations (EC50s) of 0.82 to 19.3 pM against HCV genotypes 1 to 5 and 366 pM against genotype 6a. Ombitasvir retained these levels of potency against a panel of 69 genotype 1 to 6 chimeric replicons containing the NS5A gene derived from HCV-infected patients, despite the existence of natural sequence diversity within NS5A. In vitro resistance selection identified variants that conferred resistance to ombitasvir in the HCV NS5A gene at amino acid positions 28, 30, 31, 58, and 93 in genotypes 1 to 6. Ombitasvir was evaluated in vivo in a 3-day monotherapy study in 12 HCV genotype 1-infected patients at 5, 25, 50, or 200 mg dosed once daily. All patients in the study were HCV genotype 1a infected and were without preexisting resistant variants at baseline as determined by clonal sequencing. Decreases in HCV RNA up to 3.1 log10 IU/ml were observed. Resistance-associated variants at position 28, 30, or 93 in NS5A were detected in patient samples 48 hours after the first dose. Clonal sequencing analysis indicated that wild-type virus was largely suppressed by ombitasvir during 3-day monotherapy, and at doses higher than 5 mg, resistant variant M28V was also suppressed. Ombitasvir was well tolerated at all doses, and there were no serious or severe adverse events. These data support clinical development of ombitasvir in combination with inhibitors targeting HCV NS3/4A protease (ABT-450 with ritonavir) and HCV NS5B polymerase (ABT-333, dasabuvir) for the treatment of chronic HCV genotype 1 infection. (Study M12-116 is registered at ClinicalTrials.gov under registration no. NCT01181427.).
Collapse
|