1
|
Jose-Abrego A, Laguna-Meraz S, Roman S, Mariscal-Martinez IM, Panduro A. Hepatitis C Virus Resistance-Associated Substitutions in Mexico. Viruses 2025; 17:169. [PMID: 40006924 PMCID: PMC11860613 DOI: 10.3390/v17020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 02/27/2025] Open
Abstract
Hepatitis C virus (HCV) is susceptible to resistance-associated substitutions (RASs) in the NS3, NS5A, and NS5B nonstructural genes, key targets of the direct-acting antivirals (DAAs). This study aimed to assess the prevalence and distribution of RASs across different HCV subtypes in Mexico. A Genbank dataset of 566 HCV sequences was analyzed. Most sequences were from Mexico City (49.1%, 278/566) and Jalisco (39.4%, 223/566). The NS5B region was the most sequenced (59.7%, 338/566). The most frequent HCV subtypes were 1a (44.0%, 249/566), 1b (28.6%, 162/566), 2b (9.5%, 54/566), and 3a (6.2%, 35/566). Subtypes 1a (57.4%, 128/223) and 3a (12.6%, 28/223) were significantly higher in Jalisco than in Mexico City (34.2%, 95/278 and 2.5%, 7/278), whereas subtype 1b was higher in Mexico City (34.5%, 96/278 vs. 14.8%, 33/223). Subtype 1a increased from 2019 to 2024, representing 49.4% (123/249) of all reported cases. RASs were detected in NS3 (6.7%, 1/15), NS5A (2.9%, 3/102), and NS5B (0.3%, 1/349), with the most frequent mutations being Q80K, Y93H, and S282T, respectively, and detected in subtypes 1b (n = 3), 1a (n = 1), and 2a (n = 1). In conclusion, Mexico's HCV sequencing-based surveillance is limited. Subtype 1a predominated, but frequencies varied across states. The prevalence of RASs varied by gene from 0.3% to 6.7%. Establishing regional sequencing centers for NS3, NS5A, and NS5B is crucial to monitoring Mexico's DAA-resistant mutations and HCV subtype genetic diversity.
Collapse
Affiliation(s)
- Alexis Jose-Abrego
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, Fray Antonio Alcalde, Guadalajara 44280, Mexico; (A.J.-A.); (S.L.-M.); (S.R.); (I.M.M.-M.)
- Health Sciences Center, University of Guadalajara, Guadalajara 44340, Mexico
| | - Saul Laguna-Meraz
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, Fray Antonio Alcalde, Guadalajara 44280, Mexico; (A.J.-A.); (S.L.-M.); (S.R.); (I.M.M.-M.)
- Health Sciences Center, University of Guadalajara, Guadalajara 44340, Mexico
| | - Sonia Roman
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, Fray Antonio Alcalde, Guadalajara 44280, Mexico; (A.J.-A.); (S.L.-M.); (S.R.); (I.M.M.-M.)
- Health Sciences Center, University of Guadalajara, Guadalajara 44340, Mexico
| | - Irene M. Mariscal-Martinez
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, Fray Antonio Alcalde, Guadalajara 44280, Mexico; (A.J.-A.); (S.L.-M.); (S.R.); (I.M.M.-M.)
- Health Sciences Center, University of Guadalajara, Guadalajara 44340, Mexico
- Doctoral Program Molecular Biology in Medicine, Health Sciences Center, University of Guadalajara, Guadalajara 44340, Mexico
| | - Arturo Panduro
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, Fray Antonio Alcalde, Guadalajara 44280, Mexico; (A.J.-A.); (S.L.-M.); (S.R.); (I.M.M.-M.)
- Health Sciences Center, University of Guadalajara, Guadalajara 44340, Mexico
| |
Collapse
|
2
|
Samantaray M, Pattabiraman R, Murthy TPK, Ramaswamy A, Murahari M, Krishna S, Kumar SB. Structure-based virtual screening of natural compounds against wild and mutant (R1155K, A1156T and D1168A) NS3-4A protease of Hepatitis C virus. J Biomol Struct Dyn 2024; 42:8505-8522. [PMID: 37646701 DOI: 10.1080/07391102.2023.2246583] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
NS3-4A, a serine protease, is a primary target for drug development against Hepatitis C Virus (HCV). However, the effectiveness of potent next-generation protease inhibitors is limited by the emergence of mutations and resulting drug resistance. To address this, in this study a structure-based drug design approach is employed to screen a large library of 7320 natural compounds against both wild-type and mutant variants of NS3-4A protease. Telaprevir, a widely used protease inhibitor, was recruited as the control drug. The top 10 compounds with favorable binding affinities underwent drug-likeness evaluation. Based on ADMET studies, complexes of NP_024762 and NP_006776 were selected for molecular dynamic simulations. Principal component analysis (PCA) was employed to explore the conformational space and protein dynamics of the protein-ligand complex using a Free Energy Landscape (FEL) approach. The cosine values obtained from FEL analysis ranged from 0 to 1, and eigenvectors with cosine values below 0.2 were chosen for further analysis. To forecast binding free energies and evaluate energy contributions per residue, the MM-PBSA method was employed. The results highlighted the crucial role of amino acids in the catalytic domain for the binding of the protease with phytochemicals. Stable associations between the top compounds and the target protease were confirmed by the formation of hydrogen bonds in the binding pocket involving residues: His1057, Gly1137, Ser1139, and Ala1157. These findings suggest the potential of these compounds for further validation through biological evaluation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mahesh Samantaray
- Department of Bioinformatics, Pondicherry University, Pondicherry, India
| | - Ramya Pattabiraman
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | - T P Krishna Murthy
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | - Amutha Ramaswamy
- Department of Bioinformatics, Pondicherry University, Pondicherry, India
| | - Manikanta Murahari
- Department of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | - Swati Krishna
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | - S Birendra Kumar
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| |
Collapse
|
3
|
Boonma T, Nutho B, Darai N, Rungrotmongkol T, Nunthaboot N. Exploring of paritaprevir and glecaprevir resistance due to A156T mutation of HCV NS3/4A protease: molecular dynamics simulation study. J Biomol Struct Dyn 2021; 40:5283-5294. [PMID: 33430709 DOI: 10.1080/07391102.2020.1869587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Hepatitis C virus (HCV) NS3/4A serine protease is a promising drug target for the discovery of anti-HCV drugs. However, its amino acid mutations, particularly A156T, commonly lead to rapid emergence of drug resistance. Paritaprevir and glecaprevir, the newly FDA-approved HCV drugs, exhibit distinct resistance profiles against the A156T mutation of HCV NS3/4A serine protease. To illustrate their different molecular resistance mechanisms, molecular dynamics simulations and binding free energy calculations were carried out on the two compounds complexed with both wild-type (WT) and A156T variants of HCV NS3/4A protease. QM/MM-GBSA-based binding free energy calculations revealed that the binding affinities of paritaprevir and glecaprevir towards A156T NS3/4A were significantly reduced by ∼4 kcal/mol with respect to their WT complexes, which were in line with the experimental resistance folds. Moreover, the relatively weak intermolecular interactions with amino acids such as H57, R155, and T156 of NS3 protein, the steric effect and the destabilized protein binding surface, which is caused by the loss of salt bridge between R123 and D168, are the main contributions for the higher fold-loss in potency of glecaprevir due to A156T mutation. An insight into the difference of molecular mechanism of drug resistance against the A156T substitution among the two classes of serine protease inhibitors could be useful for further optimization of new generation HCV NS3/4A inhibitors with enhanced inhibitory potency.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Thitiya Boonma
- Supramolecular Chemistry Research Unit and Department of Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham, Thailand.,Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH‒CIC), Faculty of Science, Mahasarakham University, Maha Sarakham, Thailand
| | - Bodee Nutho
- Center of Excellence in Computational Chemistry (CECC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Nitchakan Darai
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Thanyada Rungrotmongkol
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand.,Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Nadtanet Nunthaboot
- Supramolecular Chemistry Research Unit and Department of Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham, Thailand.,Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH‒CIC), Faculty of Science, Mahasarakham University, Maha Sarakham, Thailand
| |
Collapse
|
4
|
Jiang X, Lv X, Chang L, Yan Y, Ji H, Sun H, Guo F, Rodgers MA, Yin P, Wang L. Molecular characterization of hepatitis C virus for subtype determination and resistance-associated substitutions detection among Chinese voluntary blood donors. Antiviral Res 2020; 181:104871. [PMID: 32717286 DOI: 10.1016/j.antiviral.2020.104871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/28/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The high prevalence of hepatitis C virus (HCV) infection and the resulting burden of the disease are significant issues to public health worldwide. Although direct-acting antiviral drugs (DAAs) with good tolerance and bioavailability are available, resistance-associated substitutions (RASs) often jeopardize the successful sustainment of virological responses in HCV treatment. High-frequency baseline RASs in treatment-naïve patients can lead to failures in DAA treatment. Clinical data on HCV RASs in patients from China are limited and require investigations. METHODS 262 HCV RNA positive plasma from Chinese blood donors were genotyped and amplified with subtype-specific primers for NS3 and NS5A regions. RASs were analyzed using Geno2pheno. The codon usage of each resistance-associated substitution was calculated for genetic barrier analysis. RESULTS The two main subtypes in mainland China were 1b and 2a, followed by subtype 6a, 3b, 3a, and 1a. In NS3 region of 1b subtype, substitutions (T54S, V55A, Y56F, Q80 K/L, S122 G/T, R117 H/C, V170I and S174A) were present in 89.7% (96/107) of the samples. Other RASs (M28L, R30Q, P58 L/S and Y93H) were observed in 22.1% (25/113) of the samples in NS5A region. A crucial RAS, Q80K, and two other mutations (S122G + V170I) was identified in the same sequence, which reduced its susceptibility to protease inhibitor ASV and resulted in resistance to SMV. In NS5A, Y93H was detected in 9.7% (11/113) of the 1b samples, leading to medium-to-high level resistance to all six commercialized NS5A inhibitors. S122G-NS3 and Y93H-NS5A occurred simultaneously in 38.1% (7/22) of the samples with mutations in both two regions. Moreover, codon usage of S122G-NS3 and Y93H-NS5A revealed that both variants had the lowest genetic barrier and required only one transition to confer resistance. CONCLUSIONS Low genetic barriers facilitated the generation of resistance mutants and threated the efficacy of DAA regimens. The baseline RASs posed a great challenge to real-world DAA application.
Collapse
Affiliation(s)
- Xinyi Jiang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, PR China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China.
| | - Xiaoting Lv
- Abbott Laboratories, Research and Development, Shanghai, PR China.
| | - Le Chang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, PR China.
| | - Ying Yan
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, PR China.
| | - Huimin Ji
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, PR China.
| | - Huizhen Sun
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, PR China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China.
| | - Fei Guo
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, PR China.
| | - Mary A Rodgers
- Abbott Laboratories, Infectious Disease Research, Abbott Park, IL, USA.
| | - Peng Yin
- Abbott Laboratories, Infectious Disease Research, Abbott Park, IL, USA.
| | - Lunan Wang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, PR China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China.
| |
Collapse
|
5
|
Palanisamy N, Kalaghatgi P, Akaberi D, Lundkvist Å, Chen ZW, Hu P, Lennerstrand J. Worldwide prevalence of baseline resistance-associated polymorphisms and resistance mutations in HCV against current direct-acting antivirals. Antivir Ther 2019; 23:485-493. [PMID: 29745936 DOI: 10.3851/imp3237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2018] [Indexed: 10/16/2022]
Abstract
BACKGROUND HCV infections can now be completely cured, thanks to the currently marketed direct-acting antivirals (DAAs). It is known that HCV patients carry viral populations with baseline polymorphisms and/or mutations that make them resistant against some of these DAAs, which can negatively impact the patient's treatment outcome. Using complete HCV coding sequences isolated from 1,306 treatment-naive patients of genotypes (GTs) 1, 2, 3, 4 and 6 from around the globe, we studied the prevalence of baseline resistance-associated polymorphisms (RAPs) and resistance mutations (RMs) against DAAs that are currently on the market or in clinical trials. METHODS The HCV genome sequences used in this study were retrieved from the NCBI database. RAPs and RMs, with reference to HCV GT1a, were identified using the HCV Geno2pheno web server. RESULTS Nearly 50% of the total amino acid positions (including NS3 protease, NS5A and NS5B) studied are baseline polymorphisms that differentiated one GT from the rest. A proportion of these baseline polymorphisms and baseline non-polymorphic RMs could confer a significant increase in resistance against DAAs. CONCLUSIONS In this study, we show the presence and prevalence of RAPs and RMs in DAA treatment-naive patients against currently used DAAs or DAAs in clinical trials. Our study suggests that RAPs and RMs profiling of HCV patients should be performed before the start of the therapy. Our results should be relevant especially in low- and middle-income countries, where the patients have a large variation of GTs and subtypes, and where the generic HCV treatment is now increasingly available.
Collapse
Affiliation(s)
- Navaneethan Palanisamy
- HBIGS, University of Heidelberg, Heidelberg, Germany.,Molecular and Cellular Engineering Group, BioQuant, University of Heidelberg, Heidelberg, Germany
| | - Prabhav Kalaghatgi
- Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarbrücken, Germany
| | - Dario Akaberi
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Åke Lundkvist
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Zhi-Wei Chen
- Department of Infectious Diseases, Institute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Hu
- Department of Infectious Diseases, Institute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Johan Lennerstrand
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Özen A, Prachanronarong K, Matthew AN, Soumana DI, Schiffer CA. Resistance outside the substrate envelope: hepatitis C NS3/4A protease inhibitors. Crit Rev Biochem Mol Biol 2019; 54:11-26. [PMID: 30821513 DOI: 10.1080/10409238.2019.1568962] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Direct acting antivirals have dramatically increased the efficacy and tolerability of hepatitis C treatment, but drug resistance has emerged with some of these inhibitors, including nonstructural protein 3/4 A protease inhibitors (PIs). Although many co-crystal structures of PIs with the NS3/4A protease have been reported, a systematic review of these crystal structures in the context of the rapidly emerging drug resistance especially for early PIs has not been performed. To provide a framework for designing better inhibitors with higher barriers to resistance, we performed a quantitative structural analysis using co-crystal structures and models of HCV NS3/4A protease in complex with natural substrates and inhibitors. By comparing substrate structural motifs and active site interactions with inhibitor recognition, we observed that the selection of drug resistance mutations correlates with how inhibitors deviate from viral substrates in molecular recognition. Based on this observation, we conclude that guiding the design process with native substrate recognition features is likely to lead to more robust small molecule inhibitors with decreased susceptibility to resistance.
Collapse
Affiliation(s)
- Ayşegül Özen
- a Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , Worcester , MA , USA
| | - Kristina Prachanronarong
- a Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , Worcester , MA , USA
| | - Ashley N Matthew
- a Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , Worcester , MA , USA
| | - Djade I Soumana
- a Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , Worcester , MA , USA
| | - Celia A Schiffer
- a Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , Worcester , MA , USA
| |
Collapse
|
7
|
Ashraf MU, Iman K, Khalid MF, Salman HM, Shafi T, Rafi M, Javaid N, Hussain R, Ahmad F, Shahzad-Ul-Hussan S, Mirza S, Shafiq M, Afzal S, Hamera S, Anwar S, Qazi R, Idrees M, Qureshi SA, Chaudhary SU. Evolution of efficacious pangenotypic hepatitis C virus therapies. Med Res Rev 2018; 39:1091-1136. [PMID: 30506705 DOI: 10.1002/med.21554] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022]
Abstract
Hepatitis C compromises the quality of life of more than 350 million individuals worldwide. Over the last decade, therapeutic regimens for treating hepatitis C virus (HCV) infections have undergone rapid advancements. Initially, structure-based drug design was used to develop molecules that inhibit viral enzymes. Subsequently, establishment of cell-based replicon systems enabled investigations into various stages of HCV life cycle including its entry, replication, translation, and assembly, as well as role of host proteins. Collectively, these approaches have facilitated identification of important molecules that are deemed essential for HCV life cycle. The expanded set of putative virus and host-encoded targets has brought us one step closer to developing robust strategies for efficacious, pangenotypic, and well-tolerated medicines against HCV. Herein, we provide an overview of the development of various classes of virus and host-directed therapies that are currently in use along with others that are undergoing clinical evaluation.
Collapse
Affiliation(s)
- Muhammad Usman Ashraf
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan.,Virology Laboratory, Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Kanzal Iman
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Farhan Khalid
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan.,Department of Biomedical Engineering, University of Engineering and Technology, Lahore, Pakistan
| | - Hafiz Muhammad Salman
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan.,Plant Biotechnology Laboratory, Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Talha Shafi
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Momal Rafi
- Department of Statistics, University of Gujrat, Gujrat, Pakistan
| | - Nida Javaid
- Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Rashid Hussain
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Fayyaz Ahmad
- Department of Statistics, University of Gujrat, Gujrat, Pakistan
| | | | - Shaper Mirza
- Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Shafiq
- Plant Biotechnology Laboratory, Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Samia Afzal
- Virology Laboratory, Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Sadia Hamera
- Department of Plant Genetics, Institute of Life Sciences, University of Rostock, Germany
| | - Saima Anwar
- Department of Biomedical Engineering, University of Engineering and Technology, Lahore, Pakistan
| | - Romena Qazi
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital & Research Centre, Lahore, Pakistan
| | - Muhammad Idrees
- Virology Laboratory, Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.,Hazara University, Mansehra, Pakistan
| | - Sohail A Qureshi
- Institute of Integrative Biosciences, CECOS-University of Information Technology and Emerging Sciences, Peshawar, Pakistan
| | - Safee Ullah Chaudhary
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| |
Collapse
|
8
|
Isosorbide-based peptidomimetics as inhibitors of hepatitis C virus serine protease. Bioorg Med Chem Lett 2017; 27:3661-3665. [DOI: 10.1016/j.bmcl.2017.07.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 11/21/2022]
|
9
|
Meeprasert A, Hannongbua S, Kungwan N, Rungrotmongkol T. Effect of D168V mutation in NS3/4A HCV protease on susceptibilities of faldaprevir and danoprevir. MOLECULAR BIOSYSTEMS 2017; 12:3666-3673. [PMID: 27731877 DOI: 10.1039/c6mb00610h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Hepatitis C virus (HCV) is a serious cause of liver inflammation, cirrhosis and the development of hepatocellular carcinoma. Its NS3/4A serine protease functions to cleave a specific peptide bond, which is an important step in HCV replication. Thus the NS3/4A protease has become one of the main drug-targets in the design and development of anti-HCV agents. Unfortunately, high mutation rates in HCV have been reported due to the lack of RNA proofreading activity resulting in drug resistance. Herein, all-atom molecular dynamics simulations were employed to understand and illustrate the effects of the NS3/4A D168V mutation on faldaprevir (FDV) and danoprevir (DNV) binding efficiency. The D168V mutation was shown to interrupt the hydrogen bonding network of Q80R155D168R123 embedded in the extended S2 and partial S4 subsites of the NS3 protein and as a result the R123 side chain was displaced and moved out from the binding pocket. By means of MM/PBSA and MM/GBSA binding free energy calculations, the FDV and DNV binding affinities were shown to be significantly reduced by ∼10-15 kcal mol-1 and ∼4-9 kcal mol-1 relative to the wild-type complexes, respectively, which somewhat agrees with the experimental resistance folds.
Collapse
Affiliation(s)
- Arthitaya Meeprasert
- Structural and Computational Biology Research Group, Department of Biochemistry, Faculty of Science Chulalongkorn University, 254, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Supot Hannongbua
- Computational Chemistry Unit Cell, Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Nawee Kungwan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thanyada Rungrotmongkol
- Structural and Computational Biology Research Group, Department of Biochemistry, Faculty of Science Chulalongkorn University, 254, Phayathai Road, Pathumwan, Bangkok 10330, Thailand and PhD Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
10
|
Abstract
Multiple direct-acting antiviral (DAA)-based regimens are currently approved that provide one or more interferon-free treatment options for hepatitis C virus (HCV) genotypes (G) 1-6. The choice of a DAA regimen, duration of therapy, and use of ribavirin depends on multiple viral and host factors, including HCV genotype, the detection of resistance-associated amino acid (aa) substitutions (RASs), prior treatment experience, and presence of cirrhosis. In regard to viral factors that may guide the treatment choice, the most important is the infecting genotype because a number of DAAs are genotype-designed. The potency and the genetic barrier may also impact the choice of treatment. One important and debated possible virologic factor that may negatively influence the response to DAAs is the presence of baseline RASs. Baseline resistance testing is currently not routinely considered or recommended for initiating HCV treatment, due to the overall high response rates (sustained virological response >90%) obtained. Exceptions are patients infected by HCV G1a when initiating treatment with simeprevir and elbasvir/grazoprevir or in those with cirrhosis prior to daclatasvir/sofosbuvir treatment because of natural polymorphisms demonstrated in sites of resistance. On the basis of these observations, first-line strategies should be optimized to overcome treatment failure due to HCV resistance.
Collapse
|
11
|
Ikram A, Obaid A, Awan FM, Hanif R, Naz A, Paracha RZ, Ali A, Janjua HA. Identification of drug resistance and immune-driven variations in hepatitis C virus (HCV) NS3/4A, NS5A and NS5B regions reveals a new approach toward personalized medicine. Antiviral Res 2016; 137:112-124. [PMID: 27984060 DOI: 10.1016/j.antiviral.2016.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 10/06/2016] [Accepted: 10/21/2016] [Indexed: 02/07/2023]
Abstract
Cellular immune responses (T cell responses) during hepatitis C virus (HCV) infection are significant factors for determining the outcome of infection. HCV adapts to host immune responses by inducing mutations in its genome at specific sites that are important for HLA processing/presentation. Moreover, HCV also adapts to resist potential drugs that are used to restrict its replication, such as direct-acting antivirals (DAAs). Although DAAs have significantly reduced disease burden, resistance to these drugs is still a challenge for the treatment of HCV infection. Recently, drug resistance mutations (DRMs) observed in HCV proteins (NS3/4A, NS5A and NS5B) have heightened concern that the emergence of drug resistance may compromise the effectiveness of DAAs. Therefore, the NS3/4A, NS5A and NS5B drug resistance variations were investigated in this study, and their prevalence was examined in a large number of protein sequences from all HCV genotypes. Furthermore, potential CD4+ and CD8+ T cell epitopes were predicted and their overlap with genetic variations was explored. The findings revealed that many reported DRMs within NS3/4A, NS5A and NS5B are not drug-induced; rather, they are already present in HCV strains, as they were also detected in HCV-naïve patients. This study highlights several hot spots in which HLA and drug selective pressure overlap. Interestingly, these overlapping mutations were frequently observed among many HCV genotypes. This study implicates that knowledge of the host HLA type and HCV subtype/genotype can provide important information in defining personalized therapy.
Collapse
Affiliation(s)
- Aqsa Ikram
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Pakistan
| | - Ayesha Obaid
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Pakistan
| | - Faryal Mehwish Awan
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Pakistan
| | - Rumeza Hanif
- Department of Healtcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Pakistan
| | - Anam Naz
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Pakistan
| | - Rehan Zafar Paracha
- Department of Computer Sciences, RCMS, National University of Sciences and Technology (NUST), Pakistan
| | - Amjad Ali
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Pakistan
| | - Hussnain Ahmed Janjua
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Pakistan.
| |
Collapse
|
12
|
Palanisamy N, Lennerstrand J. Biophysical Studies on HCV 1a NS3/4A Protease and Its Catalytic Triad in Wild Type and Mutants by the In Silico Approach. Interdiscip Sci 2016; 10:143-156. [PMID: 27311576 DOI: 10.1007/s12539-016-0177-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 05/17/2016] [Accepted: 06/01/2016] [Indexed: 02/05/2023]
Abstract
The hepatitis C virus (HCV), of the family flaviviridae, is one of the major causes of chronic liver diseases. Until the year 2012, HCV infections were treated using PEG-interferon and ribavirin combinations, which have a low cure rate and severe side effects. Currently, many direct-acting antivirals (DAAs) are available, e.g. protease inhibitors, NS5A and polymerase inhibitors. These drugs have proven to be efficient in interferon-free treatment combinations and capable of enhancing the cure rate to above 90 %. Unlike PEG-interferon and ribavirin combinations, DAAs select for resistance in HCV. The R155K mutation in the HCV was found to resist all the currently available protease inhibitors. Here, we studied biophysical parameters like pocket (cavity) geometries and stabilizing residues of HCV 1a NS3/4A protease in wild type and mutants. We also studied HCV 1a NS3/4A protease's catalytic residues: their accessibility, energy, flexibility and binding to Phase II oral protease inhibitor vedroprevir (GS-9451), and compared these parameters between wild type and mutant(s). All these studies were performed using various bioinformatics tools (e.g. Swiss-PdbViewer and Schrödinger's Maestro) and web servers (e.g. DoGSiteScorer, SRide, ASA-View, WHAT IF, elNémo, CABS-flex, PatchDock and PLIP). From our study, we found that introduction of R155K, A156T or D168A mutation to wild-type NS3/4A protease increases the pocket's volume, surface (in the R155K mutant, surface decreases), lipo surface and depth and decreases the number of stabilizing residues. Additionally, differences in catalytic residues' solvent accessibility, energy, root-mean-square deviation (RMSD) and flexibility between wild type and mutants might explain changes in the protease activity and the resistance to protease inhibitors.
Collapse
Affiliation(s)
- Navaneethan Palanisamy
- Synthetic Biology Group, Institute of Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, Im Neuenheimer Feld 267 (BioQuant), 69120, Heidelberg, Germany.
- The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), University of Heidelberg, Heidelberg, Germany.
- Section of Clinical Virology, Department of Medical Sciences, Uppsala University, 751 85, Uppsala, Sweden.
| | - Johan Lennerstrand
- Section of Clinical Virology, Department of Medical Sciences, Uppsala University, 751 85, Uppsala, Sweden
| |
Collapse
|
13
|
Hepatitis C Virus Genotype 1 to 6 Protease Inhibitor Escape Variants: In Vitro Selection, Fitness, and Resistance Patterns in the Context of the Infectious Viral Life Cycle. Antimicrob Agents Chemother 2016; 60:3563-78. [PMID: 27021330 DOI: 10.1128/aac.02929-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/21/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) NS3 protease inhibitors (PIs) are important components of novel HCV therapy regimens. Studies of PI resistance initially focused on genotype 1. Therefore, knowledge about the determinants of PI resistance for the highly prevalent genotypes 2 to 6 remains limited. Using Huh7.5 cell culture-infectious HCV recombinants with genotype 1 to 6 NS3 protease, we identified protease positions 54, 155, and 156 as hot spots for the selection of resistance substitutions under treatment with the first licensed PIs, telaprevir and boceprevir. Treatment of a genotype 2 isolate with the newer PIs vaniprevir, faldaprevir, simeprevir, grazoprevir, paritaprevir, and deldeprevir identified positions 156 and 168 as hot spots for resistance; the Y56H substitution emerged for three newer PIs. Substitution selection also depended on the specific recombinant. The substitutions identified conferred cross-resistance to several PIs; however, most substitutions selected under telaprevir or boceprevir treatment conferred less resistance to certain newer PIs. In a single-cycle production assay, across genotypes, PI treatment primarily decreased viral replication, which was rescued by PI resistance substitutions. The substitutions identified resulted in differential effects on viral fitness, depending on the original recombinant and the substitution. Across genotypes, fitness impairment induced by resistance substitutions was due primarily to decreased replication. Most combinations of substitutions that were identified increased resistance or fitness. Combinations of resistance substitutions with fitness-compensating substitutions either rescued replication or compensated for decreased replication by increasing assembly. This comprehensive study provides insight into the selection patterns and effects of PI resistance substitutions for HCV genotypes 1 to 6 in the context of the infectious viral life cycle, which is of interest for clinical and virological HCV research.
Collapse
|
14
|
Geno2pheno[HCV] - A Web-based Interpretation System to Support Hepatitis C Treatment Decisions in the Era of Direct-Acting Antiviral Agents. PLoS One 2016; 11:e0155869. [PMID: 27196673 PMCID: PMC4873220 DOI: 10.1371/journal.pone.0155869] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/05/2016] [Indexed: 12/18/2022] Open
Abstract
The face of hepatitis C virus (HCV) therapy is changing dramatically. Direct-acting antiviral agents (DAAs) specifically targeting HCV proteins have been developed and entered clinical practice in 2011. However, despite high sustained viral response (SVR) rates of more than 90%, a fraction of patients do not eliminate the virus and in these cases treatment failure has been associated with the selection of drug resistance mutations (RAMs). RAMs may be prevalent prior to the start of treatment, or can be selected under therapy, and furthermore they can persist after cessation of treatment. Additionally, certain DAAs have been approved only for distinct HCV genotypes and may even have subtype specificity. Thus, sequence analysis before start of therapy is instrumental for managing DAA-based treatment strategies. We have created the interpretation system geno2pheno[HCV] (g2p[HCV]) to analyse HCV sequence data with respect to viral subtype and to predict drug resistance. Extensive reviewing and weighting of literature related to HCV drug resistance was performed to create a comprehensive list of drug resistance rules for inhibitors of the HCV protease in non-structural protein 3 (NS3-protease: Boceprevir, Paritaprevir, Simeprevir, Asunaprevir, Grazoprevir and Telaprevir), the NS5A replicase factor (Daclatasvir, Ledipasvir, Elbasvir and Ombitasvir), and the NS5B RNA-dependent RNA polymerase (Dasabuvir and Sofosbuvir). Upon submission of up to eight sequences, g2p[HCV] aligns the input sequences, identifies the genomic region(s), predicts the HCV geno- and subtypes, and generates for each DAA a drug resistance prediction report. g2p[HCV] offers easy-to-use and fast subtype and resistance analysis of HCV sequences, is continuously updated and freely accessible under http://hcv.geno2pheno.org/index.php. The system was partially validated with respect to the NS3-protease inhibitors Boceprevir, Telaprevir and Simeprevir by using data generated with recombinant, phenotypic cell culture assays obtained from patients’ virus variants.
Collapse
|
15
|
Soumana DI, Kurt Yilmaz N, Prachanronarong KL, Aydin C, Ali A, Schiffer CA. Structural and Thermodynamic Effects of Macrocyclization in HCV NS3/4A Inhibitor MK-5172. ACS Chem Biol 2016; 11:900-9. [PMID: 26682473 DOI: 10.1021/acschembio.5b00647] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent advances in direct-acting antivirals against Hepatitis C Virus (HCV) have led to the development of potent inhibitors, including MK-5172, that target the viral NS3/4A protease with relatively low susceptibility to resistance. MK-5172 has a P2-P4 macrocycle and a unique binding mode among current protease inhibitors where the P2 quinoxaline packs against the catalytic residues H57 and D81. However, the effect of macrocyclization on this binding mode is not clear, as is the relation between macrocyclization, thermodynamic stabilization, and susceptibility to the resistance mutation A156T. We have determined high-resolution crystal structures of linear and P1-P3 macrocyclic analogs of MK-5172 bound to WT and A156T protease and compared these structures, their molecular dynamics, and experimental binding thermodynamics to the parent compound. We find that the "unique" binding mode of MK-5172 is conserved even when the P2-P4 macrocycle is removed or replaced with a P1-P3 macrocycle. While beneficial to decreasing the entropic penalty associated with binding, the constraint exerted by the P2-P4 macrocycle prevents efficient rearrangement to accommodate the A156T mutation, a deficit alleviated in the linear and P1-P3 analogs. Design of macrocyclic inhibitors against NS3/4A needs to achieve the best balance between exerting optimal conformational constraint for enhancing potency, fitting within the substrate envelope and allowing adaptability to be robust against resistance mutations.
Collapse
Affiliation(s)
- Djadé I. Soumana
- Department of Biochemistry
and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Nese Kurt Yilmaz
- Department of Biochemistry
and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Kristina L. Prachanronarong
- Department of Biochemistry
and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Cihan Aydin
- Department of Biochemistry
and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Akbar Ali
- Department of Biochemistry
and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Celia A. Schiffer
- Department of Biochemistry
and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| |
Collapse
|
16
|
HCV evolutionary genetics of SVR versus virologic failure assessed from the vaniprevir phase III registration trials. Antiviral Res 2016; 130:118-29. [PMID: 26947564 DOI: 10.1016/j.antiviral.2016.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/05/2016] [Accepted: 03/02/2016] [Indexed: 01/20/2023]
Abstract
UNLABELLED In the phase III registration studies conducted in Japan, Japanese HCV gt1 patients administered vaniprevir 300 mg twice daily plus pegylated interferon/ribavirin for 12 or 24 weeks achieved SVR24 rates of 83.7-84.5% among treatment-naïve patients, and 92.0-96.2% and 61.9% among breakthrough/relapsers or null-responders to prior interferon based therapy. As evidenced by direct sequencing, patients who did not achieve SVR24 principally failed due to treatment-emerging mutations at D168 or in a few cases R155. In this work, additional sequence analysis was conducted to address whether there were baseline polymorphisms associated with failure, evaluate the persistence of resistant virus among treatment failures, and assess for evidence of second site co-evolution with R155 or D168 mutations. To accomplish this, clonal sequencing (up to 40 clones per sample) was conducted on baseline, failure, and follow-up samples from all 38 patients among the vaniprevir treatment arms who met virologic failure criteria (37 gt1b, 1 gt1a, herein referred to as virologic failures) and baseline samples from 41 vaniprevir-treated SVR24 patients (all gt1b) selected among the three studies. SVR24 and virologic failure patients showed similar distributions of baseline polymorphisms previously associated with failure to one or more protease inhibitors. Furthermore, there was no evidence for baseline polymorphisms or a genetic signature across the NS3 protease domain specific to virologic failure patients, and which distinguishes them from baseline SVR24 sequences beyond a chance distribution. 24 of 32 virologic failures for whom baseline, failure, and follow-up samples were available showed reduced prevalence of the resistant virus first observed at the time of failure during the protocol-defined follow-up period of 24 weeks. Finally, pairwise analysis using either alignment or phylogenetic based methodologies provided no evidence for second site evolution with either the R155 or D168 mutations attributed to failure. This work supports and extends earlier findings based upon direct sequencing that attributed virologic failure to vaniprevir in the Phase III studies solely to the emergence of R155 or D168 mutations, with no apparent influence by other residues within the NS3 protease domain on treatment outcome. CLINICALTRIALS. GOVIDENTIFIERS NCT01370642, NCT01405937, NCT01405560.
Collapse
|
17
|
Fourati S, Pawlotsky JM. Virologic Tools for HCV Drug Resistance Testing. Viruses 2015; 7:6346-59. [PMID: 26690198 PMCID: PMC4690865 DOI: 10.3390/v7122941] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/28/2015] [Accepted: 11/30/2015] [Indexed: 12/22/2022] Open
Abstract
Recent advances in molecular biology have led to the development of new antiviral drugs that target specific steps of the Hepatitis C Virus (HCV) lifecycle. These drugs, collectively termed direct-acting antivirals (DAAs), include non-structural (NS) HCV protein inhibitors, NS3/4A protease inhibitors, NS5B RNA-dependent RNA polymerase inhibitors (nucleotide analogues and non-nucleoside inhibitors), and NS5A inhibitors. Due to the high genetic variability of HCV, the outcome of DAA-based therapies may be altered by the selection of amino-acid substitutions located within the targeted proteins, which affect viral susceptibility to the administered compounds. At the drug developmental stage, preclinical and clinical characterization of HCV resistance to new drugs in development is mandatory. In the clinical setting, accurate diagnostic tools have become available to monitor drug resistance in patients who receive treatment with DAAs. In this review, we describe tools available to investigate drug resistance in preclinical studies, clinical trials and clinical practice.
Collapse
Affiliation(s)
- Slim Fourati
- National Reference Center for Viral Hepatitis B, C, and D; Department of Virology, Hôpital Henri Mondor, Université Paris-Est and INSERM U955, Créteil 94010, France.
| | - Jean-Michel Pawlotsky
- National Reference Center for Viral Hepatitis B, C, and D; Department of Virology, Hôpital Henri Mondor, Université Paris-Est and INSERM U955, Créteil 94010, France.
| |
Collapse
|
18
|
Berger KL, Scherer J, Ranga M, Sha N, Stern JO, Quinson AM, Kukolj G. Baseline Polymorphisms and Emergence of Drug Resistance in the NS3/4A Protease of Hepatitis C Virus Genotype 1 following Treatment with Faldaprevir and Pegylated Interferon Alpha 2a/Ribavirin in Phase 2 and Phase 3 Studies. Antimicrob Agents Chemother 2015; 59:6017-25. [PMID: 26195509 PMCID: PMC4576130 DOI: 10.1128/aac.00932-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/10/2015] [Indexed: 02/08/2023] Open
Abstract
Analysis of data pooled from multiple phase 2 (SILEN-C1 to 3) and phase 3 studies (STARTVerso1 to 4) of the hepatitis C virus (HCV) nonstructural protein 3/4A (NS3/4A) protease inhibitor faldaprevir plus pegylated interferon alpha/ribavirin (PR) provides a comprehensive evaluation of baseline and treatment-emergent NS3/4A amino acid variants among HCV genotype-1 (GT-1)-infected patients. Pooled analyses of GT-1a and GT-1b NS3 population-based pretreatment sequences (n = 3,124) showed that faldaprevir resistance-associated variants (RAVs) at NS3 R155 and D168 were rare (<1%). No single, noncanonical NS3 protease or NS4A cofactor baseline polymorphism was associated with a reduced sustained virologic response (SVR) to faldaprevir plus PR, including Q80K. The GT-1b NS3 helicase polymorphism T344I was associated with reduced SVR to faldaprevir plus PR (P < 0.0001) but was not faldaprevir specific, as reduced SVR was also observed with placebo plus PR. Among patients who did not achieve SVR and had available NS3 population sequences (n = 507 GT-1a; n = 349 GT-1b), 94% of GT-1a and 83% of GT-1b encoded faldaprevir treatment-emergent RAVs. The predominant GT-1a RAV was R155K (88%), whereas GT-1b encoded D168 substitutions (78%) in which D168V was predominant (67%). The novel GT-1b NS3 S61L substitution emerged in 7% of virologic failures as a covariant with D168V, most often among the faldaprevir breakthroughs; S61L in combination with D168V had a minimal impact on faldaprevir susceptibility compared with that for D168V alone (1.5-fold difference in vitro). The median time to loss of D168 RAVs among GT-1b-infected patients who did not have a sustained virologic response at 12 weeks posttreatment (non-SVR12) after virologic failure was 5 months, which was shorter than the 14 months for R155 RAVs among GT-1a-infected non-SVR12 patients, suggesting that D168V is less fit than R155K in the absence of faldaprevir selective pressure.
Collapse
Affiliation(s)
- K L Berger
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut, USA
| | - J Scherer
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut, USA
| | - M Ranga
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut, USA
| | - N Sha
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut, USA
| | - J O Stern
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut, USA
| | - A-M Quinson
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut, USA
| | - G Kukolj
- Boehringer Ingelheim Ltd./Ltée, Burlington, Ontario, Canada
| |
Collapse
|
19
|
Rönsholt FF, Gerstoft J. Grazoprevir and elbasvir: a second-generation protease inhibitor and a second-generation NS5A inhibitor in a combination regimen for treatment of chronic hepatitis C. Future Virol 2015. [DOI: 10.2217/fvl.15.40] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ABSTRACT The emergence of direct acting antivirals against HCV infection has provided the opportunity for interferon free, all oral treatments for HCV infection in patients with HCV genotype 1 (GT1). This review describes the current data on the combination of grazoprevir and elbasvir, a second-generation NS3/4A inhibitor and a second-generation NS5A inhibitor, respectively. The regimen has shown promising results in Phase II trials in patients with GT1 with response rates >90%, even in patient groups that have been challenging to treat, such as patients with cirrhosis, HIV co-infection and previous null responders to treatment with pegylated IFN-α + ribavirin. Grazoprevir + elbasvir treatment is well tolerated. Phase III trials and trials including infections with GT2–4 + 6 are ongoing.
Collapse
Affiliation(s)
| | - Jan Gerstoft
- Department of Infectious Diseases, 8632 Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
20
|
Claveria-Gimeno R, Vega S, Grazu V, de la Fuente JM, Lanas A, Velazquez-Campoy A, Abian O. Rescuing compound bioactivity in a secondary cell-based screening by using γ-cyclodextrin as a molecular carrier. Int J Nanomedicine 2015; 10:2249-59. [PMID: 25834436 PMCID: PMC4371900 DOI: 10.2147/ijn.s79480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In vitro primary screening for identifying bioactive compounds (inhibitors, activators or pharmacological chaperones) against a protein target results in the discovery of lead compounds that must be tested in cell-based efficacy secondary screenings. Very often lead compounds do not succeed because of an apparent low potency in cell assays, despite an excellent performance in primary screening. Primary and secondary screenings differ significantly according to the conditions and challenges the compounds must overcome in order to interact with their intended target. Cellular internalization and intracellular metabolism are some of the difficulties the compounds must confront and different strategies can be envisaged for minimizing that problem. Using a novel screening procedure we have identified 15 compounds inhibiting the hepatitis C NS3 protease in an allosteric fashion. After characterizing biophysically the interaction with the target, some of the compounds were not able to inhibit viral replication in cell assays. In order to overcome this obstacle and potentially improve cellular internalization three of these compounds were complexed with γ-cyclodextrin. Two of them showed a five- and 16-fold activity increase, compared to their activity when delivered as free compounds in solution (while γ-cyclodextrin did not show antiviral activity by itself). The most remarkable result came from a third compound that showed no antiviral activity in cell assays when delivered free in solution, but its γ-cyclodextrin complex exhibited a 50% effective concentration of 5 μM. Thus, the antiviral activity of these compounds can be significantly improved, even completely rescued, using γ-cyclodextrin as carrier molecule.
Collapse
Affiliation(s)
- Rafael Claveria-Gimeno
- Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
- IIS Aragón, Zaragoza, Spain
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit IQFR-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, Spain
| | - Sonia Vega
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit IQFR-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, Spain
| | - Valeria Grazu
- Instituto de Nanociencia de Aragon (INA), Universidad de Zaragoza, Zaragoza, Spain
| | - Jesús M de la Fuente
- Instituto de Nanociencia de Aragon (INA), Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
- Institute NanoBiomedicine and Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Angel Lanas
- IIS Aragón, Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Servicio de Aparato Digestivo, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
- Department of Medicine, University of Zaragoza, Zaragoza, Spain
| | - Adrian Velazquez-Campoy
- IIS Aragón, Zaragoza, Spain
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit IQFR-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, Spain
- Fundacion ARAID, Government of Aragon, Spain
| | - Olga Abian
- Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
- IIS Aragón, Zaragoza, Spain
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit IQFR-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| |
Collapse
|
21
|
In vitro antiviral activity and preclinical and clinical resistance profile of miravirsen, a novel anti-hepatitis C virus therapeutic targeting the human factor miR-122. Antimicrob Agents Chemother 2014; 59:599-608. [PMID: 25385103 DOI: 10.1128/aac.04220-14] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Miravirsen is a β-D-oxy-locked nucleic acid-modified phosphorothioate antisense oligonucleotide targeting the liver-specific microRNA-122 (miR-122). Miravirsen demonstrated antiviral activity against hepatitis C virus (HCV) genotype 1b replicons with a mean 50% effective concentration (EC50) of 0.67 μM. No cytotoxicity was observed up to the highest concentration tested (>320 μM) in different cell culture models, yielding a therapeutic index of ≥ 297. Combination studies of miravirsen with interferon α2b, ribavirin, and nonnucleoside (VX-222) and nucleoside (2'-methylcytidine) inhibitors of NS5B, NS5A (BMS-790052), or NS3 (telaprevir) indicated additive interactions. Miravirsen demonstrated broad antiviral activity when tested against HCV replicons resistant to NS3, NS5A, and NS5B inhibitors with less than 2-fold reductions in susceptibility. In serial passage studies, an A4C nucleotide change was observed in the HCV 5' untranslated region (UTR) from cells passaged in the presence of up to 20 μM (40-fold the miravirsen EC50 concentration) at day 72 of passage but not at earlier time points (up to 39 days of passage). Likewise, a C3U nucleotide change was observed in the HCV 5'UTR from subjects with viral rebound after the completion of therapy in a miravirsen phase 2 clinical trial. An HCV variant constructed to contain the A4C change was fully susceptible to miravirsen. A C3U HCV variant demonstrated overall reductions in susceptibility to miravirsen but was fully susceptible to all other anti-HCV agents tested. In summary, miravirsen has demonstrated broad antiviral activity and a relatively high genetic barrier to resistance. The identification of nucleotide changes associated with miravirsen resistance should help further elucidate the biology of miR-122 interactions with HCV. (The clinical trial study has been registered at ClinicalTrials.gov under registration no. NCT01200420).
Collapse
|
22
|
Wyles DL, Gutierrez JA. Importance of HCV genotype 1 subtypes for drug resistance and response to therapy. J Viral Hepat 2014; 21:229-40. [PMID: 24597691 DOI: 10.1111/jvh.12230] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 12/12/2013] [Indexed: 12/11/2022]
Abstract
The treatment for patients infected with hepatitis C virus (HCV) genotype 1 has undergone major changes with the availability of direct-acting antivirals. Triple therapy, containing telaprevir or boceprevir, first-wave NS3 protease inhibitors, in combination with peginterferon and ribavirin, improved rates of sustained virologic response compared with peginterferon and ribavirin alone in patients with HCV genotype 1. However, the development of drug-resistant variants is a concern. In patients treated with telaprevir or boceprevir, different patterns of resistance are observed for the two major HCV genotype 1 subtypes, 1a and 1b. Genotype 1b is associated with a lower rate of resistant variant selection and better response to triple therapy compared with genotype 1a. Similar subtype-specific patterns have been observed for investigational direct-acting antivirals, including second-wave NS3 protease inhibitors, NS5A inhibitors and non-nucleoside NS5B inhibitors. This review explores resistance to approved and investigational direct-acting antivirals for the treatment of HCV, focusing on the differences between genotype 1a and genotype 1b. Finally, given the importance of HCV genotype 1 subtype on resistance and treatment outcomes, clinicians must also be aware of the tests currently available for genotype subtyping and their limitations.
Collapse
Affiliation(s)
- D L Wyles
- Division of Infectious Diseases, University of California, San Diego, CA, USA
| | | |
Collapse
|
23
|
Meeprasert A, Hannongbua S, Rungrotmongkol T. Key binding and susceptibility of NS3/4A serine protease inhibitors against hepatitis C virus. J Chem Inf Model 2014; 54:1208-17. [PMID: 24689657 DOI: 10.1021/ci400605a] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Hepatitis C virus (HCV) causes an infectious disease that manifests itself as liver inflammation, cirrhosis, and can lead to the development of liver cancer. Its NS3/4A serine protease is a potent target for drug design and development since it is responsible for cleavage of the scissile peptide bonds in the polyprotein important for the HCV life cycle. Herein, the ligand-target interactions and the binding free energy of the four current NS3/4A inhibitors (boceprevir, telaprevir, danoprevir, and BI201335) were investigated by all-atom molecular dynamics simulations with three different initial atomic velocities. The per-residue free energy decomposition suggests that the key residues involved in inhibitor binding were residues 41-43, 57, 81, 136-139, 155-159, and 168 in the NS3 domain. The van der Waals interactions yielded the main driving force for inhibitor binding at the protease active site for the cleavage reaction. In addition, the highest number of hydrogen bonds was formed at the reactive P1 site of the four studied inhibitors. Although the hydrogen bond patterns of these inhibitors were different, their P3 site was most likely to be recognized by the A157 backbone. Both molecular mechanic (MM)/Poisson-Boltzmann surface area and MM/generalized Born surface area approaches predicted the relative binding affinities of the four inhibitors in a somewhat similar trend to their experimentally derived biological activities.
Collapse
Affiliation(s)
- Arthitaya Meeprasert
- Computational Chemistry Unit Cell, Department of Chemistry, Faculty of Science, Chulalongkorn University , 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | | | | |
Collapse
|
24
|
Ivanisenko NV, Mishchenko EL, Akberdin IR, Demenkov PS, Likhoshvai VA, Kozlov KN, Todorov DI, Gursky VV, Samsonova MG, Samsonov AM, Clausznitzer D, Kaderali L, Kolchanov NA, Ivanisenko VA. A new stochastic model for subgenomic hepatitis C virus replication considers drug resistant mutants. PLoS One 2014; 9:e91502. [PMID: 24643004 PMCID: PMC3958367 DOI: 10.1371/journal.pone.0091502] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 02/12/2014] [Indexed: 12/17/2022] Open
Abstract
As an RNA virus, hepatitis C virus (HCV) is able to rapidly acquire drug resistance, and for this reason the design of effective anti-HCV drugs is a real challenge. The HCV subgenomic replicon-containing cells are widely used for experimental studies of the HCV genome replication mechanisms, for drug testing in vitro and in studies of HCV drug resistance. The NS3/4A protease is essential for virus replication and, therefore, it is one of the most attractive targets for developing specific antiviral agents against HCV. We have developed a stochastic model of subgenomic HCV replicon replication, in which the emergence and selection of drug resistant mutant viral RNAs in replicon cells is taken into account. Incorporation into the model of key NS3 protease mutations leading to resistance to BILN-2061 (A156T, D168V, R155Q), VX-950 (A156S, A156T, T54A) and SCH 503034 (A156T, A156S, T54A) inhibitors allows us to describe the long term dynamics of the viral RNA suppression for various inhibitor concentrations. We theoretically showed that the observable difference between the viral RNA kinetics for different inhibitor concentrations can be explained by differences in the replication rate and inhibitor sensitivity of the mutant RNAs. The pre-existing mutants of the NS3 protease contribute more significantly to appearance of new resistant mutants during treatment with inhibitors than wild-type replicon. The model can be used to interpret the results of anti-HCV drug testing on replicon systems, as well as to estimate the efficacy of potential drugs and predict optimal schemes of their usage.
Collapse
Affiliation(s)
- Nikita V. Ivanisenko
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Elena L. Mishchenko
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Ilya R. Akberdin
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Pavel S. Demenkov
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Vitaly A. Likhoshvai
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Konstantin N. Kozlov
- Department of Computational Biology, St. Petersburg State Polytechnical University, St. Petersburg, Russia
| | - Dmitry I. Todorov
- Department of Computational Biology, St. Petersburg State Polytechnical University, St. Petersburg, Russia
- Chebyshev Laboratory, St. Petersburg State University, St. Petersburg, Russia
| | - Vitaly V. Gursky
- Department of Computational Biology, St. Petersburg State Polytechnical University, St. Petersburg, Russia
- Theoretical Department, Ioffe Physical-Technical Institute of the Russian Academy of Sciences, St.Petersburg, Russia
| | - Maria G. Samsonova
- Department of Computational Biology, St. Petersburg State Polytechnical University, St. Petersburg, Russia
| | - Alexander M. Samsonov
- Department of Computational Biology, St. Petersburg State Polytechnical University, St. Petersburg, Russia
- Theoretical Department, Ioffe Physical-Technical Institute of the Russian Academy of Sciences, St.Petersburg, Russia
| | - Diana Clausznitzer
- Institute for Medical Informatics and Biometry, Technische Universität Dresden, Dresden, Germany
| | - Lars Kaderali
- Institute for Medical Informatics and Biometry, Technische Universität Dresden, Dresden, Germany
| | - Nikolay A. Kolchanov
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Vladimir A. Ivanisenko
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- PB-soft Llc, Novosibirsk, Russia
- * E-mail:
| |
Collapse
|
25
|
Ivanisenko NV, Mishchenko EL, Akberdin IR, Demenkov PS, Likhoshvai VA, Kozlov KN, Todorov DI, Samsonova MG, Samsonov AM, Kolchanov NA, Ivanisenko VA. Replication of the subgenomic hepatitis C virus replicon in the presence of the NS3 protease inhibitors: a stochastic model. Biophysics (Nagoya-shi) 2014. [DOI: 10.1134/s0006350913050059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
26
|
Triterpenoid Saponins Isolated from Platycodon grandiflorum Inhibit Hepatitis C Virus Replication. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:560417. [PMID: 24489585 PMCID: PMC3893781 DOI: 10.1155/2013/560417] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 09/09/2013] [Indexed: 12/09/2022]
Abstract
Hepatitis C virus (HCV) infection is a major cause of liver disease, including cirrhosis and hepatocellular carcinoma. Due to significant adverse effects and emergence of resistant strains of currently developed anti-HCV agents, plant extracts have been considered to be potential sources of new bioactive compounds against HCV. The aim of this study was to evaluate the functional effects of triterpenoid saponins contained in the root extract of Platycodon grandiflorum (PG) on viral enzyme activities and replication in both HCV replicon cells and cell culture grown HCV- (HCVcc-) infected cells. Inhibitory activities of triterpenoid saponins from PG were verified by NS5B RNA-dependent RNA polymerase assay and were further confirmed in the context of HCV replication. Six triterpenoid saponins (platycodin D, platycodin D2, platycodin D3, deapioplatycodin D, deapioplatycodin D2, and platyconic acid A), PG saponin mixture (PGSM), were identified as active components exerting anti-HCV activity. Importantly, PGSM exerted synergistic anti-HCV activity in combination with either interferon-α or NS5A inhibitors. We demonstrated that combinatorial treatment of PGSM and IFN-α efficiently suppressed colony formation with significant reduction in drug resistant variant of HCV. These data suggest that triterpenoid saponin may represent a novel anti-HCV therapeutic agent.
Collapse
|
27
|
In vitro phenotypic characterization of hepatitis C virus NS3 protease variants observed in clinical studies of telaprevir. Antimicrob Agents Chemother 2013; 57:6236-45. [PMID: 24100495 DOI: 10.1128/aac.01578-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Telaprevir is a linear, peptidomimetic small molecule that inhibits hepatitis C virus (HCV) replication by specifically inhibiting the NS3·4A protease. In phase 3 clinical studies, telaprevir in combination with peginterferon and ribavirin (PR) significantly improved sustained virologic response (SVR) rates in genotype 1 chronic HCV-infected patients compared with PR alone. In patients who do not achieve SVR after treatment with telaprevir-based regimens, variants with mutations in the NS3·4A protease region have been observed. Such variants can contribute to drug resistance and limit the efficacy of treatment. To gain a better understanding of the viral resistance profile, we conducted phenotypic characterization of the variants using HCV replicons carrying site-directed mutations. The most frequently observed (significantly enriched) telaprevir-resistant variants, V36A/M, T54A/S, R155K/T, and A156S, conferred lower-level resistance (3- to 25-fold), whereas A156T and V36M+R155K conferred higher-level resistance (>25-fold) to telaprevir. Rarely observed (not significantly enriched) variants included V36I/L and I132V, which did not confer resistance to telaprevir; V36C/G, R155G/I/M/S, V36A+T54A, V36L+R155K, T54S+R155K, and R155T+D168N, which conferred lower-level resistance to telaprevir; and A156F/N/V, V36A+R155K/T, V36M+R155T, V36A/M+A156T, T54A+A156S, T54S+A156S/T, and V36M+T54S+R155K, which conferred higher-level resistance to telaprevir. All telaprevir-resistant variants remained fully sensitive to alpha interferon, ribavirin, and HCV NS5B nucleoside and nonnucleoside polymerase inhibitors. In general, the replication capacity of telaprevir-resistant variants was lower than that of the wild-type replicon.
Collapse
|
28
|
Natural NS3 resistance polymorphisms occur frequently prior to treatment in HIV-positive patients with acute hepatitis C. AIDS 2013; 27:2485-8. [PMID: 23770494 DOI: 10.1097/qad.0b013e328363b1f9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
NS3 protease inhibitors are set to improve sustained virological response rates in HIV-positive patients with hepatitis C. We measured the prevalence of natural resistance polymorphisms in 38 acutely infected treatment-naive patients using direct and deep sequencing. Twenty six percent of patients (10/38) had a majority variant resistance mutation (in order of frequency; Q80K - 16%, V36M - 5%, T54S - 3%, V55A - 3%, and D168A - 3%). Low-frequency mutations were detected in all samples. Further studies are required to determine threshold levels associated with treatment failure.
Collapse
|
29
|
Abian O, Vega S, Sancho J, Velazquez-Campoy A. Allosteric inhibitors of the NS3 protease from the hepatitis C virus. PLoS One 2013; 8:e69773. [PMID: 23936097 PMCID: PMC3728351 DOI: 10.1371/journal.pone.0069773] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/15/2013] [Indexed: 12/14/2022] Open
Abstract
The nonstructural protein 3 (NS3) from the hepatitis C virus processes the non-structural region of the viral precursor polyprotein in infected hepatic cells. The NS3 protease activity has been considered a target for drug development since its identification two decades ago. Although specific inhibitors have been approved for clinical therapy very recently, resistance-associated mutations have already been reported for those drugs, compromising their long-term efficacy. Therefore, there is an urgent need for new anti-HCV agents with low susceptibility to resistance-associated mutations. Regarding NS3 protease, two strategies have been followed: competitive inhibitors blocking the active site and allosteric inhibitors blocking the binding of the accessory viral protein NS4A. In this work we exploit the intrinsic Zn+2-regulated plasticity of the protease to identify a new type of allosteric inhibitors. In the absence of Zn+2, the NS3 protease adopts a partially-folded inactive conformation. We found ligands binding to the Zn+2-free NS3 protease, trap the inactive protein, and block the viral life cycle. The efficacy of these compounds has been confirmed in replicon cell assays. Importantly, direct calorimetric assays reveal a low impact of known resistance-associated mutations, and enzymatic assays provide a direct evidence of their inhibitory activity. They constitute new low molecular-weight scaffolds for further optimization and provide several advantages: 1) new inhibition mechanism simultaneously blocking substrate and cofactor interactions in a non-competitive fashion, appropriate for combination therapy; 2) low impact of known resistance-associated mutations; 3) inhibition of NS4A binding, thus blocking its several effects on NS3 protease.
Collapse
Affiliation(s)
- Olga Abian
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit IQFR-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, Spain
- IIS Aragón, Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- * E-mail: (OA); (AVC)
| | - Sonia Vega
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit IQFR-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, Spain
| | - Javier Sancho
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit IQFR-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, Spain
- Department of Biochemistry and Molecular and Cell Biology, Universidad de Zaragoza, Zaragoza, Spain
| | - Adrian Velazquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit IQFR-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, Spain
- Department of Biochemistry and Molecular and Cell Biology, Universidad de Zaragoza, Zaragoza, Spain
- Fundación ARAID, Government of Aragon, Zaragoza, Spain
- * E-mail: (OA); (AVC)
| |
Collapse
|
30
|
|
31
|
Implications of baseline polymorphisms for potential resistance to NS3 protease inhibitors in Hepatitis C virus genotypes 1a, 2b and 3a. Antiviral Res 2013; 99:12-7. [DOI: 10.1016/j.antiviral.2013.04.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/12/2013] [Accepted: 04/23/2013] [Indexed: 02/07/2023]
|
32
|
Vega S, Neira JL, Marcuello C, Lostao A, Abian O, Velazquez-Campoy A. NS3 protease from hepatitis C virus: biophysical studies on an intrinsically disordered protein domain. Int J Mol Sci 2013; 14:13282-306. [PMID: 23803659 PMCID: PMC3742187 DOI: 10.3390/ijms140713282] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/04/2013] [Accepted: 06/13/2013] [Indexed: 12/14/2022] Open
Abstract
The nonstructural protein 3 (NS3) from the hepatitis C virus (HCV) is responsible for processing the non-structural region of the viral precursor polyprotein in infected hepatic cells. NS3 protease activity, located at the N-terminal domain, is a zinc-dependent serine protease. A zinc ion, required for the hydrolytic activity, has been considered as a structural metal ion essential for the structural integrity of the protein. In addition, NS3 interacts with another cofactor, NS4A, an accessory viral protein that induces a conformational change enhancing the hydrolytic activity. Biophysical studies on the isolated protease domain, whose behavior is similar to that of the full-length protein (e.g., catalytic activity, allosteric mechanism and susceptibility to inhibitors), suggest that a considerable global conformational change in the protein is coupled to zinc binding. Zinc binding to NS3 protease can be considered as a folding event, an extreme case of induced-fit binding. Therefore, NS3 protease is an intrinsically (partially) disordered protein with a complex conformational landscape due to its inherent plasticity and to the interaction with its different effectors. Here we summarize the results from a detailed biophysical characterization of this enzyme and present new experimental data.
Collapse
Affiliation(s)
- Sonia Vega
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit BIFI-IQFR (CSIC), University of Zaragoza, Zaragoza 50018, Spain; E-Mails: (S.V.); (J.L.N.)
| | - Jose L. Neira
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit BIFI-IQFR (CSIC), University of Zaragoza, Zaragoza 50018, Spain; E-Mails: (S.V.); (J.L.N.)
- Institute of Molecular and Cell Biology, Miguel Hernandez University, Elche (Alicante) 03202, Spain
| | - Carlos Marcuello
- Advanced Microscopy Laboratory (LMA), Institute of Nanoscience of Aragon (INA), University of Zaragoza, Zaragoza 50018, Spain; E-Mails: (C.M.); (A.L.)
| | - Anabel Lostao
- Advanced Microscopy Laboratory (LMA), Institute of Nanoscience of Aragon (INA), University of Zaragoza, Zaragoza 50018, Spain; E-Mails: (C.M.); (A.L.)
- ARAID Foundation, Government of Aragon, Zaragoza 50018, Spain
| | - Olga Abian
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit BIFI-IQFR (CSIC), University of Zaragoza, Zaragoza 50018, Spain; E-Mails: (S.V.); (J.L.N.)
- IIS Aragon–Aragon Health Science Institute (I+CS), Zaragoza 50009, Spain
- Network Biomedical Research Center on Hepatic and Digestive Diseases (CIBERehd), Barcelona 08036, Spain
- Authors to whom correspondence should be addressed; E-Mails: (O.A.); (A.V.-C.); Tel.: +34-976-761-000 (ext. 5417) (O.A.); +34-976-762-996 (A.V.-C.); Fax: +34-976-762-990 (O.A. & A.V.-C.)
| | - Adrian Velazquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit BIFI-IQFR (CSIC), University of Zaragoza, Zaragoza 50018, Spain; E-Mails: (S.V.); (J.L.N.)
- ARAID Foundation, Government of Aragon, Zaragoza 50018, Spain
- Department of Biochemistry and Cellular and Molecular Biology, Faculty of Sciences, University of Zaragoza, Zaragoza 50009, Spain
- Authors to whom correspondence should be addressed; E-Mails: (O.A.); (A.V.-C.); Tel.: +34-976-761-000 (ext. 5417) (O.A.); +34-976-762-996 (A.V.-C.); Fax: +34-976-762-990 (O.A. & A.V.-C.)
| |
Collapse
|
33
|
Lam JT, Jacob S. Boceprevir: a recently approved protease inhibitor for hepatitis C virus infection. Am J Health Syst Pharm 2013; 69:2135-9. [PMID: 23230035 DOI: 10.2146/ajhp110500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PURPOSE The pharmacologic properties, clinical efficacy, and safety profile of the first oral protease inhibitor approved for the treatment of chronic infection with hepatitis C virus (HCV) genotype 1 are reviewed. SUMMARY Boceprevir, approved by the Food and Drug Administration as an adjunct to the standard regimen for HCV genotype 1 infection (peginterferon alfa and ribavirin), is available in 200-mg capsules, to be administered thrice daily at seven-to nine-hour intervals (total daily dose, 2400 mg). In two Phase III clinical trials involving a total of nearly 1500 previously untreated patients who were not sufficiently responsive to or had relapsed after standard therapy, the adjunctive use of boceprevir was associated with significantly higher rates of sustained virologic response and a shorter cumulative duration of treatment. Adverse effects occurring significantly more often in clinical trial participants receiving boceprevir relative to control groups included anemia (47% versus 20%), dysgeusia (35% versus 16%), and neutropenia (25% versus 19%); these were generally not treatment-limiting effects. Due to the potential for serious or potentially life-threatening adverse events, boceprevir use is contraindicated in patients receiving any of a wide range of drugs whose clearance is highly dependent on cytochrome P-450 (CYP) isoenzymes 3A4/5 (e.g., cisapride, lovastatin, midazolam, sildenafil); boceprevir is also contraindicated for patients receiving potent CYP3A4/5 inducers such as carbamazepine, phenytoin, and rifampin, whose concurrent use can diminish boceprevir's virologic activity. Close monitoring is critical to ensure patient adherence to triple-drug therapy and, more broadly, to reduce the risk of the development and transmission of resistant HCV strains. CONCLUSION Previously untreated patients with chronic HCV monoinfection, as well as patients who do not respond adequately to or relapse after standard dual therapy, may benefit from adjunctive boceprevir therapy. Careful selection and close monitoring of patients receiving boceprevir are essential to avoid drug-drug interactions, reduce adverse effects, and optimize treatment outcomes.
Collapse
Affiliation(s)
- Jerika T Lam
- Inpatient Pharmacy Department, Kaiser Moreno Valley Hospital, Moreno Valley, CA 92555, USA.
| | | |
Collapse
|
34
|
Gising J, Belfrage AK, Alogheli H, Ehrenberg A, Åkerblom E, Svensson R, Artursson P, Karlén A, Danielson UH, Larhed M, Sandström A. Achiral pyrazinone-based inhibitors of the hepatitis C virus NS3 protease and drug-resistant variants with elongated substituents directed toward the S2 pocket. J Med Chem 2013; 57:1790-801. [PMID: 23517538 DOI: 10.1021/jm301887f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein we describe the design, synthesis, inhibitory potency, and pharmacokinetic properties of a novel class of achiral peptidomimetic HCV NS3 protease inhibitors. The compounds are based on a dipeptidomimetic pyrazinone glycine P3P2 building block in combination with an aromatic acyl sulfonamide in the P1P1' position. Structure-activity relationship data and molecular modeling support occupancy of the S2 pocket from elongated R(6) substituents on the 2(1H)-pyrazinone core and several inhibitors with improved inhibitory potency down to Ki = 0.11 μM were identified. A major goal with the design was to produce inhibitors structurally dissimilar to the di- and tripeptide-based HCV protease inhibitors in advanced stages of development for which cross-resistance might be an issue. Therefore, the retained and improved inhibitory potency against the drug-resistant variants A156T, D168V, and R155K further strengthen the potential of this class of inhibitors. A number of the inhibitors were tested in in vitro preclinical profiling assays to evaluate their apparent pharmacokinetic properties. The various R(6) substituents were found to have a major influence on solubility, metabolic stability, and cell permeability.
Collapse
Affiliation(s)
- Johan Gising
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wyles DL. Antiviral resistance and the future landscape of hepatitis C virus infection therapy. J Infect Dis 2013; 207 Suppl 1:S33-9. [PMID: 23390303 DOI: 10.1093/infdis/jis761] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The addition of hepatitis C virus (HCV) protease inhibitors (PIs) to interferon and ribavirin therapy has significantly improved the efficacy of treatment for HCV infection. However, for patients who do not respond to therapy, the selection of HCV variants with resistance to PIs is likely. Resistant variants, such as R155K and A156T/V, result in extensive cross-resistance to other HCV PIs. Despite the rapid and frequent appearance of PI-resistant HCV variants, the long-term clinical implications are unknown. In particular, progress in the development of other HCV antivirals, such as NS5A inhibitors, next-generation NS3 protease inhibitors, and NS5B nucleoside and nonnucleoside inhibitors, has provided a broad selection of potent antivirals such that interferon-free therapy is a reality. Promising results from early stages of interferon-free trials will be reviewed.
Collapse
Affiliation(s)
- David L Wyles
- Division of Infectious Diseases, University of California-San Diego, La Jolla, CA, USA.
| |
Collapse
|
36
|
Koutsoudakis G, Forns X, Pérez-Del-Pulgar S. [The molecular biology of hepatitis C virus]. GASTROENTEROLOGIA Y HEPATOLOGIA 2013; 36:280-93. [PMID: 23490024 DOI: 10.1016/j.gastrohep.2012.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 11/13/2012] [Indexed: 12/12/2022]
Abstract
Since the discovery of the hepatitis C virus (HCV), a plethora of experimental models have evolved, allowing the virus's life cycle and the pathogenesis of associated liver diseases to be investigated. These models range from inoculation of cultured cells with serum from patients with hepatitis C to the use of surrogate models for the study of specific stages of the HCV life cycle: retroviral pseudoparticles for the study of HCV entry, replicons for the study of HCV replication, and the HCV cell culture model, which reproduces the entire life cycle (replication and production of infectious particles). The use of these tools has been and remains crucial to identify potential therapeutic targets in the different stages of the virus's life cycle and to screen new antiviral drugs. A clear example is the recent approval of two viral protease inhibitors (boceprevir and telaprevir) in combination with pegylated interferon and ribavirin for the treatment of chronic hepatitis C. This review analyzes the advances made in the molecular biology of HCV and highlights possible candidates as therapeutic targets for the treatment of HCV infection.
Collapse
Affiliation(s)
- George Koutsoudakis
- Servicio de Hepatología, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, España
| | | | | |
Collapse
|
37
|
Margeridon-Thermet S, Shafer RW. Comparison of the Mechanisms of Drug Resistance among HIV, Hepatitis B, and Hepatitis C. Viruses 2012; 2:2696-739. [PMID: 21243082 PMCID: PMC3020796 DOI: 10.3390/v2122696] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human immunodeficiency virus (HIV), hepatitis B virus (HBV), and hepatitis C virus (HCV) are the most prevalent deadly chronic viral diseases. HIV is treated by small molecule inhibitors. HBV is treated by immunomodulation and small molecule inhibitors. HCV is currently treated primarily by immunomodulation but many small molecules are in clinical development. Although HIV is a retrovirus, HBV is a double-stranded DNA virus, and HCV is a single-stranded RNA virus, antiviral drug resistance complicates the development of drugs and the successful treatment of each of these viruses. Although their replication cycles, therapeutic targets, and evolutionary mechanisms are different, the fundamental approaches to identifying and characterizing HIV, HBV, and HCV drug resistance are similar. This review describes the evolution of HIV, HBV, and HCV within individuals and populations and the genetic mechanisms associated with drug resistance to each of the antiviral drug classes used for their treatment.
Collapse
|
38
|
Kügler J, Schmelz S, Gentzsch J, Haid S, Pollmann E, van den Heuvel J, Franke R, Pietschmann T, Heinz DW, Collins J. High affinity peptide inhibitors of the hepatitis C virus NS3-4A protease refractory to common resistant mutants. J Biol Chem 2012; 287:39224-32. [PMID: 22965230 DOI: 10.1074/jbc.m112.393843] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepatitis C virus (HCV) NS3-4A protease is essential for viral replication. All current small molecular weight drugs against NS3-4A are substrate peptidomimetics that have a similar binding and resistance profile. We developed inhibitory peptides (IPs) capping the active site and binding via a novel "tyrosine" finger at an alternative NS3-4A site that is of particular interest for further HCV drug development. The peptides are not cleaved due to a combination of geometrical constraints and impairment of the oxyanion hole function. Selection and optimization through combinatorial phagemid display, protein crystallography, and further modifications resulted in a 32-amino acid peptide with a K(i) of 0.53 nm. Inhibition of viral replication in cell culture was demonstrated by fusion to a cell-penetrating peptide. Negligible susceptibility to known (A156V and R155K) resistance mutations of the NS3-4A protease was observed. This work shows for the first time that antiviral peptides can target an intracellular site and reveals a novel druggable site on the HCV protease.
Collapse
Affiliation(s)
- Jonas Kügler
- Research Group Directed Evolution, Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Efficient replication of genotype 3a and 4a hepatitis C virus replicons in human hepatoma cells. Antimicrob Agents Chemother 2012; 56:5365-73. [PMID: 22869572 DOI: 10.1128/aac.01256-12] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Despite recent advances in the treatment of hepatitis C, the quest for pan-genotype, effective, and well-tolerated inhibitors continues. To facilitate these efforts, it is desirable to have in vitro replication systems for all major HCV genotypes. However, cell culture replication systems exist for only genotypes 1a, 1b, and 2a. In this study, we generated G418-selectable subgenomic replicons for prototype strains of genotypes 3a (S52) and 4a (ED43). Production of G418-resistant colonies by S52 and ED43 in Huh-7.5 cells required the amino acid substitutions S2210I and R2882G, respectively, cell culture adaptive mutations originally reported for genotype 1b replicons. RNA replication was confirmed by quantitative reverse transcription-PCR and detection of viral protein. Sequencing of multiple independent replicon clones revealed the presence of additional nonsynonymous mutations. Interestingly, all potentially adaptive mutations mapped to the NS3 protein. These mutations, when introduced back into original constructs, substantially increased colony formation efficiency. To make these replicons useful for high-throughput screening and evaluation of antiviral compounds, they were modified to express a chimeric fusion protein of firefly luciferase and neomycin phosphotransferase to yield stable replicon-expressing cells. Using these constructs, the inhibitory effects of beta interferon (IFN-β), an NS3 protease inhibitor, and an NS5B nucleoside polymerase inhibitor were readily detected by monitoring luciferase activity. In conclusion, we have established functional replicons for HCV genotypes 3a and 4a, important new additions to the armamentarium required to develop inhibitors with a pan-genotype activity.
Collapse
|
40
|
Summa V, Ludmerer SW, McCauley JA, Fandozzi C, Burlein C, Claudio G, Coleman PJ, Dimuzio JM, Ferrara M, Di Filippo M, Gates AT, Graham DJ, Harper S, Hazuda DJ, Huang Q, McHale C, Monteagudo E, Pucci V, Rowley M, Rudd MT, Soriano A, Stahlhut MW, Vacca JP, Olsen DB, Liverton NJ, Carroll SS. MK-5172, a selective inhibitor of hepatitis C virus NS3/4a protease with broad activity across genotypes and resistant variants. Antimicrob Agents Chemother 2012; 56:4161-7. [PMID: 22615282 PMCID: PMC3421554 DOI: 10.1128/aac.00324-12] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 05/09/2012] [Indexed: 02/07/2023] Open
Abstract
HCV NS3/4a protease inhibitors are proven therapeutic agents against chronic hepatitis C virus infection, with boceprevir and telaprevir having recently received regulatory approval as add-on therapy to pegylated interferon/ribavirin for patients harboring genotype 1 infections. Overcoming antiviral resistance, broad genotype coverage, and a convenient dosing regimen are important attributes for future agents to be used in combinations without interferon. In this communication, we report the preclinical profile of MK-5172, a novel P2-P4 quinoxaline macrocyclic NS3/4a protease inhibitor currently in clinical development. The compound demonstrates subnanomolar activity against a broad enzyme panel encompassing major hepatitis C virus (HCV) genotypes as well as variants resistant to earlier protease inhibitors. In replicon selections, MK-5172 exerted high selective pressure, which yielded few resistant colonies. In both rat and dog, MK-5172 demonstrates good plasma and liver exposures, with 24-h liver levels suggestive of once-daily dosing. When administered to HCV-infected chimpanzees harboring chronic gt1a or gt1b infections, MK-5172 suppressed viral load between 4 to 5 logs at a dose of 1 mg/kg of body weight twice daily (b.i.d.) for 7 days. Based on its preclinical profile, MK-5172 is anticipated to be broadly active against multiple HCV genotypes and clinically important resistance variants and highly suited for incorporation into newer all-oral regimens.
Collapse
|
41
|
Romano KP, Ali A, Aydin C, Soumana D, Özen A, Deveau LM, Silver C, Cao H, Newton A, Petropoulos CJ, Huang W, Schiffer CA. The molecular basis of drug resistance against hepatitis C virus NS3/4A protease inhibitors. PLoS Pathog 2012; 8:e1002832. [PMID: 22910833 PMCID: PMC3406087 DOI: 10.1371/journal.ppat.1002832] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/13/2012] [Indexed: 01/16/2023] Open
Abstract
Hepatitis C virus (HCV) infects over 170 million people worldwide and is the leading cause of chronic liver diseases, including cirrhosis, liver failure, and liver cancer. Available antiviral therapies cause severe side effects and are effective only for a subset of patients, though treatment outcomes have recently been improved by the combination therapy now including boceprevir and telaprevir, which inhibit the viral NS3/4A protease. Despite extensive efforts to develop more potent next-generation protease inhibitors, however, the long-term efficacy of this drug class is challenged by the rapid emergence of resistance. Single-site mutations at protease residues R155, A156 and D168 confer resistance to nearly all inhibitors in clinical development. Thus, developing the next-generation of drugs that retain activity against a broader spectrum of resistant viral variants requires a comprehensive understanding of the molecular basis of drug resistance. In this study, 16 high-resolution crystal structures of four representative protease inhibitors – telaprevir, danoprevir, vaniprevir and MK-5172 – in complex with the wild-type protease and three major drug-resistant variants R155K, A156T and D168A, reveal unique molecular underpinnings of resistance to each drug. The drugs exhibit differential susceptibilities to these protease variants in both enzymatic and antiviral assays. Telaprevir, danoprevir and vaniprevir interact directly with sites that confer resistance upon mutation, while MK-5172 interacts in a unique conformation with the catalytic triad. This novel mode of MK-5172 binding explains its retained potency against two multi-drug-resistant variants, R155K and D168A. These findings define the molecular basis of HCV N3/4A protease inhibitor resistance and provide potential strategies for designing robust therapies against this rapidly evolving virus. Hepatitis C virus (HCV) infects over 170 million people worldwide and is the leading cause of chronic liver diseases, including cirrhosis, liver failure, and liver cancer. New classes of directly-acting antiviral agents that target various HCV enzymes are being developed. Two such drugs that target the essential HCV NS3/4A protease are approved by the FDA and several others are at various stages of clinical development. These drugs, when used in combination with pegylated interferon and ribavirin, significantly improve treatment outcomes. However HCV evolves very quickly and drug resistance develops against directly-acting antiviral agents. Thus, despite the therapeutic success of NS3/4A protease inhibitors, their long-term effectiveness is challenged by drug resistance. Our study explains in atomic detail how and why drug resistance occurs for four chemically representative protease inhibitors –telaprevir, danoprevir, vaniprevir and MK-5172. Potentially with this knowledge, new drugs could be developed that are less susceptible to drug resistance. More generally, understanding the underlying mechanisms by which drug resistance occurs can be incorporated in drug development to many quickly evolving diseases.
Collapse
Affiliation(s)
- Keith P. Romano
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Akbar Ali
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Cihan Aydin
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Djade Soumana
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ayşegül Özen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Laura M. Deveau
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Casey Silver
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Hong Cao
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Alicia Newton
- Monogram Biosciences, San Francisco, California, United States of America
| | | | - Wei Huang
- Monogram Biosciences, San Francisco, California, United States of America
| | - Celia A. Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
42
|
Hepatitis C variability, patterns of resistance, and impact on therapy. Adv Virol 2012; 2012:267483. [PMID: 22851970 PMCID: PMC3407602 DOI: 10.1155/2012/267483] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/10/2012] [Indexed: 12/17/2022] Open
Abstract
Hepatitis C (HCV), a leading cause of chronic liver disease, cirrhosis, and hepatocellular carcinoma, is the most common indication for liver transplantation in the United States. Although annual incidence of infection has declined since the 1980s, aging of the currently infected population is expected to result in an increase in HCV burden. HCV is prone to develop resistance to antiviral drugs, and despite considerable efforts to understand the virus for effective treatments, our knowledge remains incomplete. This paper reviews HCV resistance mechanisms, the traditional treatment with and the new standard of care for hepatitis C treatment. Although these new treatments remain PEG-IFN-α- and ribavirin-based, they add one of the newly FDA approved direct antiviral agents, telaprevir or boceprevir. This new “triple therapy” has resulted in greater viral cure rates, although treatment failure remains a possibility. The future may belong to nucleoside/nucleotide analogues, non-nucleoside RNA-dependent RNA polymerase inhibitors, or cyclophilin inhibitors, and the treatment of HCV may ultimately parallel that of HIV. However, research should focus not only on effective treatments, but also on the development of a HCV vaccine, as this may prove to be the most cost-effective method of eradicating this disease.
Collapse
|
43
|
Shiryaev SA, Cheltsov AV, Strongin AY. Probing of exosites leads to novel inhibitor scaffolds of HCV NS3/4A proteinase. PLoS One 2012; 7:e40029. [PMID: 22768327 PMCID: PMC3388044 DOI: 10.1371/journal.pone.0040029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 06/01/2012] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Hepatitis C is a treatment-resistant disease affecting millions of people worldwide. The hepatitis C virus (HCV) genome is a single-stranded RNA molecule. After infection of the host cell, viral RNA is translated into a polyprotein that is cleaved by host and viral proteinases into functional, structural and non-structural, viral proteins. Cleavage of the polyprotein involves the viral NS3/4A proteinase, a proven drug target. HCV mutates as it replicates and, as a result, multiple emerging quasispecies become rapidly resistant to anti-virals, including NS3/4A inhibitors. METHODOLOGY/PRINCIPAL FINDINGS To circumvent drug resistance and complement the existing anti-virals, NS3/4A inhibitors, which are additional and distinct from the FDA-approved telaprevir and boceprevir α-ketoamide inhibitors, are required. To test potential new avenues for inhibitor development, we have probed several distinct exosites of NS3/4A which are either outside of or partially overlapping with the active site groove of the proteinase. For this purpose, we employed virtual ligand screening using the 275,000 compound library of the Developmental Therapeutics Program (NCI/NIH) and the X-ray crystal structure of NS3/4A as a ligand source and a target, respectively. As a result, we identified several novel, previously uncharacterized, nanomolar range inhibitory scaffolds, which suppressed of the NS3/4A activity in vitro and replication of a sub-genomic HCV RNA replicon with a luciferase reporter in human hepatocarcinoma cells. The binding sites of these novel inhibitors do not significantly overlap with those of α-ketoamides. As a result, the most common resistant mutations, including V36M, R155K, A156T, D168A and V170A, did not considerably diminish the inhibitory potency of certain novel inhibitor scaffolds we identified. CONCLUSIONS/SIGNIFICANCE Overall, the further optimization of both the in silico strategy and software platform we developed and lead compounds we identified may lead to advances in novel anti-virals.
Collapse
Affiliation(s)
- Sergey A. Shiryaev
- Inflammatory and Infectious Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Anton V. Cheltsov
- R&D Department, Q-MOL L.L.C., San Diego, California, United States of America
- * E-mail: (AVC) (AC); (AYS) (AS)
| | - Alex Y. Strongin
- Inflammatory and Infectious Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- * E-mail: (AVC) (AC); (AYS) (AS)
| |
Collapse
|
44
|
Gambarin-Gelwan M, Jacobson IM. Resistance-associated variants in chronic hepatitis C patients treated with protease inhibitors. Curr Gastroenterol Rep 2012; 14:47-54. [PMID: 22161022 DOI: 10.1007/s11894-011-0237-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Direct-acting antiviral agents in combination with pegylated interferon (PEG-IFN) and ribavirin (RBV) significantly improve sustained virologic response rate and reduce duration of therapy among both treatment-naïve and treatment-experienced patients with genotype 1 chronic hepatitis C. One of the most important considerations with both boceprevir and telaprevir is the potential development of resistant variants with therapy. Patients with poor intrinsic responsiveness to interferon, and those with incomplete virological suppression on protease inhibitor therapy, appear to be at higher risk for resistance. In this article we will define antiviral resistance and review the data on both in vitro and in vivo resistance to protease inhibitors, concentrating on data on boceprevir and telaprevir. We will also explore the significance of resistant variants present at the baseline, as well as the fate of the resistant variants and the ways to minimize the development of resistance to protease inhibitors.
Collapse
Affiliation(s)
- Maya Gambarin-Gelwan
- Division of Gastroenterology and Hepatology, Center for the Study of Hepatitis C, Weill Cornell Medical College, New York, NY 10021, USA.
| | | |
Collapse
|
45
|
Lim SR, Qin X, Susser S, Nicholas JB, Lange C, Herrmann E, Hong J, Arfsten A, Hooi L, Bradford W, Nájera I, Smith P, Zeuzem S, Kossen K, Sarrazin C, Seiwert SD. Virologic escape during danoprevir (ITMN-191/RG7227) monotherapy is hepatitis C virus subtype dependent and associated with R155K substitution. Antimicrob Agents Chemother 2012; 56:271-9. [PMID: 22064535 PMCID: PMC3256012 DOI: 10.1128/aac.05636-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/26/2011] [Indexed: 01/03/2023] Open
Abstract
Danoprevir is a hepatitis C virus (HCV) NS3/4A protease inhibitor that promotes multi-log(10) reductions in HCV RNA when administered as a 14-day monotherapy to patients with genotype 1 chronic HCV. Of these patients, 14/37 experienced a continuous decline in HCV RNA, 13/37 a plateau, and 10/37 a rebound. The rebound and continuous-decline groups experienced similar median declines in HCV RNA through day 7, but their results diverged notably at day 14. Plateau group patients experienced a lesser, but sustained, median HCV RNA decline. Baseline danoprevir susceptibility was similar across response groups but was reduced significantly at day 14 in the rebound group. Viral rebound in genotype 1b was uncommon (found in 2/23 patients). Population-based sequence analysis of NS3 and NS4A identified treatment-emergent substitutions at four amino acid positions in the protease domain of NS3 (positions 71, 155, 168, and 170), but only two (155 and 168) were in close proximity to the danoprevir binding site and carried substitutions that impacted danoprevir potency. R155K was the predominant route to reduced danoprevir susceptibility and was observed in virus isolated from all 10 rebound, 2/13 plateau, and 1/14 continuous-decline patients. Virus in one rebound patient additionally carried partial R155Q and D168E substitutions. Treatment-emergent substitutions in plateau patients were less frequently observed and more variable. Single-rebound patients carried virus with R155Q, D168V, or D168T. Clonal sequence analysis and drug susceptibility testing indicated that only a single patient displayed multiple resistance pathways. These data indicate the ascendant importance of R155K for viral escape during danoprevir treatment and may have implications for the clinical use of this agent.
Collapse
|
46
|
Darling JM, Lemon SM, Fried MW. Hepatitis C. SCHIFF'S DISEASES OF THE LIVER 2011:582-652. [DOI: 10.1002/9781119950509.ch25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
47
|
Boceprevir in the treatment of hepatitis C infection: rationale and clinical data. ACTA ACUST UNITED AC 2011. [DOI: 10.4155/cli.11.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
48
|
Resistance to anti-HCV protease inhibitors. Curr Opin Virol 2011; 1:599-606. [DOI: 10.1016/j.coviro.2011.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 10/01/2011] [Indexed: 02/07/2023]
|
49
|
Abstract
Treatment of chronic hepatitis C is currently based on a combination of pegylated interferon-o! and ribavirin. Neither drug exerts direct selective pressure on viral functions, meaning that interferon-a/ribavirin treatment failure is not due to selection of interferon-a- or ribavirin-resistant viral variants. Several novel antiviral approaches are currently in preclinical or clinical development, and most target viral enzymes and functions, such as hepatitis C virus protease and polymerase. These new drugs all potentially select resistant viral variants both in vitro and in vivo, and resistance is therefore likely to become an important issue in clinical practice.
Collapse
Affiliation(s)
- Jean-Michel Pawlotsky
- National Reference Center for Viral Hepatitis B, C and Delta, Department of Virology, Hôpital Henri Mondor, Université Paris 12, Créteil, France; and INSERM U955, Créteil, France
| |
Collapse
|
50
|
Shindo H, Maekawa S, Komase K, Sueki R, Miura M, Kadokura M, Shindo K, Amemiya F, Kitamura T, Nakayama Y, Inoue T, Sakamoto M, Okada SI, Asahina Y, Izumi N, Honda M, Kaneko S, Enomoto N. Characterization of naturally occurring protease inhibitor-resistance mutations in genotype 1b hepatitis C virus patients. Hepatol Int 2011; 6:482-90. [PMID: 22020822 DOI: 10.1007/s12072-011-9306-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 07/22/2011] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND AIMS Protease inhibitor (PI)-resistant hepatitis C virus (HCV) variants may be present in substantial numbers in PI-untreated patients according to recent reports. However, influence of these viruses in the clinical course of chronic hepatitis C has not been well characterized. METHODS The dominant HCV nonstructural 3 (NS3) amino acid sequences were determined in 261 HCV genotype 1b-infected Japanese patients before pegylated interferon plus ribavirin (PEG-IFN/RBV) therapy, and investigated the patients' clinical characteristics as well as treatment responses including sustained virological response (SVR) rate. HCV-NS3 sequences were also determined in 39 non-SVR patients after completion of the therapy. RESULTS Four single mutations (T54S, Q80K, I153V, and D168E) known to confer PI resistance were found in 35 of 261 patients (13.4%), and double mutations (I153V plus T54S/D168E) were found in 6 patients (2.3%). Responses to PEG-IFN/RBV therapy did not differ between patients with and without PI-resistance mutations (mutation group, SVR 48%; wild-type group, SVR 40%; P = 0.38). On the other hand, two mutations appeared in two non-SVR patients after PEG-IFN/RBV therapy (I153V and E168D, 5.1%). CONCLUSIONS PI-resistance-associated NS3 mutations exist in a substantial proportion of untreated HCV-1b-infected patients. The impact of these mutations in the treatment of PIs is unclear, but clinicians should pay attention to avoid further development of PI resistance.
Collapse
Affiliation(s)
- Hiroko Shindo
- First Department of Internal Medicine, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Shinya Maekawa
- First Department of Internal Medicine, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan.
| | - Kazuki Komase
- First Department of Internal Medicine, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Ryota Sueki
- First Department of Internal Medicine, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Mika Miura
- First Department of Internal Medicine, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Makoto Kadokura
- First Department of Internal Medicine, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Kuniaki Shindo
- First Department of Internal Medicine, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Fumitake Amemiya
- First Department of Internal Medicine, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Takatoshi Kitamura
- First Department of Internal Medicine, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Yasuhiro Nakayama
- First Department of Internal Medicine, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Taisuke Inoue
- First Department of Internal Medicine, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Minoru Sakamoto
- First Department of Internal Medicine, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Shun-Ichi Okada
- First Department of Internal Medicine, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Yasuhiro Asahina
- Division of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Namiki Izumi
- Division of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Masao Honda
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Nobuyuki Enomoto
- First Department of Internal Medicine, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan
| |
Collapse
|