1
|
Jiang W, Peng J, Jiang N, Zhang W, Liu S, Li J, Duan D, Li Y, Peng C, Yan Y, Zhao Y, Han G. Chitosan Phytate Nanoparticles: A Synergistic Strategy for Effective Dental Caries Prevention. ACS NANO 2024; 18:13528-13537. [PMID: 38747549 DOI: 10.1021/acsnano.3c11806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Dental caries is a widespread oral disease that poses a significant medical challenge. Traditional caries prevention methods, primarily the application of fluoride, often fall short in effectively destroying biofilms and preventing enamel demineralization, thereby providing limited efficacy in halting the progression of caries over time. To address this issue, we have developed a green and cost-effective synergistic strategy for the prevention of dental caries. By combining natural sodium phytate and chitosan, we have created chitosan-sodium phytate nanoparticles that offer both the antimicrobial properties of chitosan and the enamel demineralization-inhibiting capabilities of sodium phytate. In an ex vivo biofilm model of human teeth, we found that these nanoparticles effectively prevent biofilm buildup and acid damage to the mineralized tissue. Additionally, topical treatment of dental caries in rodent models has shown that these nanoparticles effectively suppress disease progression without negatively impacting oral microbiota diversity or causing harm to the gingival-mucosal tissues, unlike traditional prevention methods.
Collapse
Affiliation(s)
- Weibo Jiang
- Department of Stomatology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Department of Orthodontics, Wuxi Stomatology Hospital, Health Road 6, Wuxi 214001, China
| | - Jing Peng
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, LRB 806, Worcester, Massachusetts 01605, United States
| | - Nan Jiang
- Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Wenyi Zhang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Shuang Liu
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Jianmin Li
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Dengyi Duan
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yiming Li
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Cheng Peng
- Department of Stomatology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yongfa Yan
- Department of Stomatology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yang Zhao
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, LRB 806, Worcester, Massachusetts 01605, United States
| | - Gang Han
- Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, LRB 806, Worcester, Massachusetts 01605, United States
| |
Collapse
|
2
|
Carneiro BT, de Castro FNAM, Benetti F, Nima G, Suzuki TYU, André CB. Flavonoids effects against bacteria associated to periodontal disease and dental caries: a scoping review. BIOFOULING 2024; 40:99-113. [PMID: 38425046 DOI: 10.1080/08927014.2024.2321965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
This scoping review focused on exploring the efficacy of flavonoids against bacteria associated with dental caries and periodontal diseases. Inclusion criteria comprise studies investigating the antibacterial effects of flavonoids against bacteria linked to caries or periodontal diseases, both pure or diluted in vehicle forms. The search, conducted in August 2023, in databases including PubMed/MEDLINE, Scopus, Web of Science, Embase, LILACS, and Gray Literature. Out of the initial 1125 studies, 79 met the inclusion criteria, majority in vitro studies. Prominent flavonoids tested included epigallocatechin-gallate, apigenin, quercetin, and myricetin. Predominant findings consistently pointed to bacteriostatic, bactericidal, and antibiofilm activities. The study primarily investigated bacteria associated with dental caries, followed by periodontopathogens. A higher number of publications presented positive antibacterial results against Streptococcus mutans in comparison to Porphyromonas gingivalis. These encouraging findings underline the potential applicability of commercially available flavonoids in materials or therapies, underscoring the need for further exploration in this field.
Collapse
Affiliation(s)
- Bruna Tavares Carneiro
- Departament of Restorative Dentistry, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Francine Benetti
- Departament of Restorative Dentistry, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gabriel Nima
- Departament of Biomaterials, School of Dentistry, Universidad de los Andes, Santiago, Chile
| | - Thais Yumi Umeda Suzuki
- Departament of Restorative Dentistry, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Carolina Bosso André
- Departament of Restorative Dentistry, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
3
|
Rudin L, Bornstein MM, Shyp V. Inhibition of biofilm formation and virulence factors of cariogenic oral pathogen Streptococcus mutans by natural flavonoid phloretin. J Oral Microbiol 2023; 15:2230711. [PMID: 37416858 PMCID: PMC10321187 DOI: 10.1080/20002297.2023.2230711] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/30/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023] Open
Abstract
Objectives To evaluate the effect and mechanism of action of the flavonoid phloretin on the growth and sucrose-dependent biofilm formation of Streptococcus mutans. Methods Minimum inhibitory concentration, viability, and biofilm susceptibility assays were conducted to assess antimicrobial and antibiofilm effect of phloretin. Biofilm composition and structure were analysed with scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Water-soluble (WSG) and water-insoluble glucan (WIG) were determined using anthrone method. Lactic acid measurements and acid tolerance assay were performed to assess acidogenicity and aciduricity. Reverse transcription quantitative PCR (RT-qPCR) was used to measure the expression of virulence genes essential for surface attachment, biofilm formation, and quorum sensing. Results Phloretin inhibited S. mutans growth and viability in a dose-dependent manner. Furthermore, it reduced gtfB and gtfC gene expression, correlating with the reduction of extracellular polysaccharides (EPS)/bacteria and WIG/WSG ratio. Inhibition of comED and luxS gene expression, involved in stress tolerance, was associated with compromised acidogenicity and aciduricity of S. mutans. Conclusions Phloretin exhibits antibacterial properties against S. mutans, modulates acid production and tolerance, and reduces biofilm formation. Clinical significance Phloretin is a promising natural compound with pronounced inhibitory effect on key virulence factors of the cariogenic pathogen, S. mutans.
Collapse
Affiliation(s)
- Lucille Rudin
- Department Research, University Center for Dental Medicine Basel UZB, University of Basel, Basel, Switzerland
| | - Michael M. Bornstein
- Department of Oral Health & Medicine, University Center for Dental Medicine Basel UZB, University of BaselBaselSwitzerland
- Head of the Department of Oral Health & Medicine, University Center for Dental Medicine Basel UZB, University of Basel. Mattenstrasse 40, Basel, Switzerland
| | - Viktoriya Shyp
- Postdoctoral Researcher. Department Research, University Center for Dental Medicine Basel UZB
- Department of Oral Health & Medicine, University Center for Dental Medicine Basel UZB, University of Basel. Mattenstrasse 40, Basel, Switzerland
| |
Collapse
|
4
|
Effect of Extracts, Fractions, and Isolated Molecules of Casearia sylvestris to Control Streptococcus mutans Cariogenic Biofilm. Antibiotics (Basel) 2023; 12:antibiotics12020329. [PMID: 36830240 PMCID: PMC9952592 DOI: 10.3390/antibiotics12020329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
The effects of extracts, fractions, and molecules of Casearia sylvestris to control the cariogenic biofilm of Streptococcus mutans were evaluated. First, the antimicrobial and antibiofilm (initial and pre-formed biofilms) in prolonged exposure (24 h) models were investigated. Second, formulations (with and without fluoride) were assessed for topical effects (brief exposure) on biofilms. Third, selected treatments were evaluated via bacterium growth inhibition curves associated with gene expression and scanning electron microscopy. In initial biofilms, the ethyl acetate (AcOEt) and ethanolic (EtOH) fractions from Brasília (BRA/DF; 250 µg/mL) and Presidente Venceslau/SP (Water/EtOH 60:40 and Water/EtOH 40:60; 500 µg/mL) reduced ≥6-logs vs. vehicle. Only the molecule Caseargrewiin F (CsF; 125 µg/mL) reduced the viable cell count of pre-formed biofilms (5 logs vs. vehicle). For topical effects, no formulation affected biofilm components. For the growth inhibition assay, CsF yielded a constant recovery of surviving cells (≅3.5 logs) until 24 h (i.e., bacteriostatic), and AcOEt_BRA/DF caused progressive cell death, without cells at 24 h (i.e., bactericidal). CsF and AcOEt_BRA/DF damaged S. mutans cells and influenced the expression of virulence genes. Thus, an effect against biofilms occurred after prolonged exposure due to the bacteriostatic and/or bactericidal capacity of a fraction and a molecule from C. sylvestris.
Collapse
|
5
|
Bu F, Liu M, Xie Z, Chen X, Li G, Wang X. Targeted Anti-Biofilm Therapy: Dissecting Targets in the Biofilm Life Cycle. Pharmaceuticals (Basel) 2022; 15:1253. [PMID: 36297365 PMCID: PMC9611117 DOI: 10.3390/ph15101253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/13/2024] Open
Abstract
Biofilm is a crucial virulence factor for microorganisms that causes chronic infection. After biofilm formation, the bacteria present improve drug tolerance and multifactorial defense mechanisms, which impose significant challenges for the use of antimicrobials. This indicates the urgent need for new targeted technologies and emerging therapeutic strategies. In this review, we focus on the current biofilm-targeting strategies and those under development, including targeting persistent cells, quorum quenching, and phage therapy. We emphasize biofilm-targeting technologies that are supported by blocking the biofilm life cycle, providing a theoretical basis for design of targeting technology that disrupts the biofilm and promotes practical application of antibacterial materials.
Collapse
Affiliation(s)
| | | | | | | | | | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
6
|
Abstract
Dental caries is a multifactorial biofilm- and sugar-dependent disease. This study investigated the influence of different agents on the induction of surviving Streptococcus mutans cells after successive treatment cycles and characterized the biofilms formed by these cells recovered posttreatment. The agents (with their main targets listed in parentheses) were compound 1771 (lipoteichoic acids), 4′ hydroxychalcone (exopolysaccharides), myricetin (exopolysaccharides), tt-farnesol (cytoplasmatic membrane), sodium fluoride (enolase—glycolysis), chlorhexidine (antimicrobial), and vehicle. Recovered cells from biofilms were generated from exposure to each agent during 10 cycles of consecutive treatments (modeled on a polystyrene plate bottom). The recovered cell counting was different for each agent. The recovered cells from each group were grown as biofilms on saliva-coated hydroxyapatite discs (culture medium with sucrose/starch). In S. mutans biofilms formed by cells recovered from biofilms previously exposed to compound 1771, 4′ hydroxychalcone, or myricetin, cells presented higher expression of the 16S rRNA, gyrA (DNA replication and transcription), gtfB (insoluble exopolysaccharides), and eno (enolase—glycolysis) genes and lower quantities of insoluble dry weight and insoluble exopolysaccharides than those derived from other agents. These findings were confirmed by the smaller biovolume of bacteria and/or exopolysaccharides and the biofilm distribution (coverage area). Moreover, preexposure to chlorhexidine increased exopolysaccharide production. Therefore, agents with different targets induce cells with distinct biofilm formation capacities, which is critical for developing formulations for biofilm control. IMPORTANCE This article addresses the effect of distinct agents with distinct targets in the bacterial cell (cytoplasmatic membrane and glycolysis), the cell’s extracellular synthesis of exopolysaccharides that are important for cariogenic extracellular matrix construction and biofilm buildup in the generation of cells that persisted after treatment, and how these cells form biofilms in vitro. For example, if preexposure to an agent augments the production of virulence determinants, such as exopolysaccharides, its clinical value may be inadequate. Modification of biofilm formation capacity after exposure to agents is critical for the development of formulations for biofilm control to prevent caries, a ubiquitous disease associated with biofilm and diet.
Collapse
|
7
|
Lobo CI, Barbugli PA, Rocha GR, Klein MI. Topical Application of 4'-Hydroxychalcone in Combination with tt-Farnesol Is Effective against Candida albicans and Streptococcus mutans Biofilms. ACS OMEGA 2022; 7:22773-22786. [PMID: 35811935 PMCID: PMC9260900 DOI: 10.1021/acsomega.2c02318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Candida albicans and Streptococcus mutans interaction in the presence of dietary sucrose yields a complex biofilm with an organized and structured extracellular matrix that increases the tolerance to environmental stress, including antimicrobials. Both species are found in severe early childhood caries lesions. Thus, compounds 4'-hydroxychalcone (C135) (flavonoid intermediate metabolites), tt-farnesol (Far) (terpenoid), and sodium fluoride (F) were tested either isolated or combined as topical treatments (5 min twice daily) against C. albicans and S. mutans dual-species biofilms grown on saliva-coated hydroxyapatite discs. The biofilms were evaluated for gene expression, microbial population, biochemical components, and three-dimensional (3D) structural organization via confocal microscopy and scanning electron microscopy (SEM). The cytotoxicity of formulations was tested on the keratinocyte monolayer. C135 + Far + F promoted lower gene expression of fungal genes associated with β-glucan synthesis (BGL2, FKS1) and remodeling (XOG1, PHR1, PHR2), oxidative stress (SOD1), and drug tolerance (CDR1, ERG11) and higher expression of bacterial nox1 (oxidative and acidic stress tolerance). C135 + Far yielded less insoluble exopolysaccharides, biomass, and proteins (insoluble portion) and lower expression of BGL2, ERG11, SOD1, and PHR2. C135 + F, C135 + Far + F, and C135 rendered lower biomass, thickness, and coverage percentage (confocal microscopy). C135 + Far and C135 + Far + F maintained C. albicans as yeast morphology (SEM). Therefore, the formulations with C135 affected fungal and bacterial targets but exerted a more pronounced effect against fungal cells.
Collapse
|
8
|
Wen ZT, Huang X, Ellepola K, Liao S, Li Y. Lactobacilli and human dental caries: more than mechanical retention. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35671222 DOI: 10.1099/mic.0.001196] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lactobacilli have been considered as major contributors to human dental caries for over a century. Recent in vitro model studies have shown that when compared to Streptococcus mutans, a keystone pathogen of human dental caries, the ability of lactobacilli to form biofilms is poor, although differences exist between the different major species. Further studies using molecular and bioinformatics approaches provide evidence that multiple mechanisms, including adhesin-receptor mediated physical contact with S. mutans, facilitate the adherence and establishment of lactobacilli on the tooth surface. There is also evidence that under conditions like continuous sugar consumption, weak acids and other antimicrobials such as bacteriocins from lactobacilli can become detrimental to the microbial community, especially those in the proximity. Details on the underlying mechanisms of how different Lactobacillus sp. establish and persist in the highly complex microbiota on the tooth surface await further investigation.
Collapse
Affiliation(s)
- Zezhang T Wen
- Department of Prosthodontics, School of Dentistry and Department of Microbiology, Immunology and Parasitology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Xiaochang Huang
- Department of Prosthodontics, School of Dentistry and Department of Microbiology, Immunology and Parasitology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Present address: Analysis and Testing Center, Nanchang University, 235 Nanjing East Load, Qingshan Lake District, Nanchang, PR China
| | - Kassapa Ellepola
- Department of Prosthodontics, School of Dentistry and Department of Microbiology, Immunology and Parasitology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Present address: Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA
| | - Sumei Liao
- Department of Prosthodontics, School of Dentistry and Department of Microbiology, Immunology and Parasitology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Yihong Li
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornel University, Ithaca, NY, USA
| |
Collapse
|
9
|
Roncari Rocha G, Sims KR, Xiao B, Klein MI, Benoit DS. Nanoparticle carrier co-delivery of complementary antibiofilm drugs abrogates dual species cariogenic biofilm formation in vitro. J Oral Microbiol 2021; 14:1997230. [PMID: 34868474 PMCID: PMC8635615 DOI: 10.1080/20002297.2021.1997230] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Dental caries is a multifactorial disease caused by pathogenic biofilm. In particular, Streptococcus mutans synthesizes biofilm exopolysaccharides, while Candida albicans is associated with the development of severe carious lesions. AIM This study aimed to prevent the formation of S. mutans and C. albicans biofilms by exploiting pH-sensitive nanoparticle carriers (NPCs) with high affinity to exopolysaccharides to increase the substantivity of multi-targeted antibiofilm drugs introduced topically in vitro. METHODS Dual-species biofilms were grown on saliva-coated hydroxyapatite discs with sucrose. Twice-daily, 1.5 min topical treatment regimens of unloaded and drug-loaded NPC were used. Drugs included combinations of two or three compounds with distinct, complementary antibiofilm targets: tt-farnesol (terpenoid; bacterial acid tolerance, fungal quorum sensing), myricetin (flavonoid; exopolysaccharides inhibitor), and 1771 (lipoteichoic acid inhibitor; bacterial adhesion and co-aggregation). Biofilms were evaluated for biomass, microbial population, and architecture. RESULTS NPC delivering tt-farnesol and 1771 with or without myricetin completely prevented biofilm formation by impeding biomass accumulation, bacterial and fungal population growth, and exopolysaccharide matrix deposition (vs. control unloaded NPC). Both formulations hindered acid production, maintaining the pH of spent media above the threshold for enamel demineralization. However, treatments had no effect on pre-established dual-species biofilms. CONCLUSION Complementary antibiofilm drug-NPC treatments prevented biofilm formation by targeting critical virulence factors of acidogenicity and exopolysaccharides synthesis.
Collapse
Affiliation(s)
- Guilherme Roncari Rocha
- Department of Dental Materials and Prosthodontics, São Paulo State University, São Paulo, Brazil
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Kenneth R. Sims
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Baixue Xiao
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Marlise I. Klein
- Department of Dental Materials and Prosthodontics, São Paulo State University, São Paulo, Brazil
| | - Danielle S.W. Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Materials Science Program, University of Rochester, Ny, USA
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester, Ny, USA
- Center for Oral Biology, University of Rochester, NY, USA
- Department of Chemical Engineering, University of Rochester, Ny, USA
| |
Collapse
|
10
|
Mishra K, Bukavina L, Ghannoum M. Symbiosis and Dysbiosis of the Human Mycobiome. Front Microbiol 2021; 12:636131. [PMID: 34630340 PMCID: PMC8493257 DOI: 10.3389/fmicb.2021.636131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 08/04/2021] [Indexed: 12/13/2022] Open
Abstract
The influence of microbiological species has gained increased visibility and traction in the medical domain with major revelations about the role of bacteria on symbiosis and dysbiosis. A large reason for these revelations can be attributed to advances in deep-sequencing technologies. However, the research on the role of fungi has lagged. With the continued utilization of sequencing technologies in conjunction with traditional culture assays, we have the opportunity to shed light on the complex interplay between the bacteriome and the mycobiome as they relate to human health. In this review, we aim to offer a comprehensive overview of the human mycobiome in healthy and diseased states in a systematic way. The authors hope that the reader will utilize this review as a scaffolding to formulate their understanding of the mycobiome and pursue further research.
Collapse
Affiliation(s)
- Kirtishri Mishra
- University Hospitals Cleveland Medical Center, Urology Institute, Cleveland, OH, United States.,Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Laura Bukavina
- University Hospitals Cleveland Medical Center, Urology Institute, Cleveland, OH, United States.,Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Mahmoud Ghannoum
- Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, United States.,Center for Medical Mycology, and Integrated Microbiome Core, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, United States.,Department of Dermatology, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
11
|
Khalid S, Gao A, Wang G, Chu PK, Wang H. Tuning surface topographies on biomaterials to control bacterial infection. Biomater Sci 2021; 8:6840-6857. [PMID: 32812537 DOI: 10.1039/d0bm00845a] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microbial contamination and subsequent formation of biofilms frequently cause failure of surgical implants and a good understanding of the bacteria-surface interactions is vital to the design and safety of biomaterials. In this review, the physical and chemical factors that are involved in the various stages of implant-associated bacterial infection are described. In particular, topographical modification strategies that have been employed to mitigate bacterial adhesion via topographical mechanisms are summarized and discussed comprehensively. Recent advances have improved our understanding about bacteria-surface interactions and have enabled biomedical engineers and researchers to develop better and more effective antibacterial surfaces. The related interdisciplinary efforts are expected to continue in the quest for next-generation medical devices to attain the ultimate goal of improved clinical outcomes and reduced number of revision surgeries.
Collapse
Affiliation(s)
- Saud Khalid
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | | | | | | | | |
Collapse
|
12
|
Hu P, Lv B, Yang K, Lu Z, Ma J. Discovery of myricetin as an inhibitor against Streptococcus mutans and an anti-adhesion approach to biofilm formation. Int J Med Microbiol 2021; 311:151512. [PMID: 33971542 DOI: 10.1016/j.ijmm.2021.151512] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022] Open
Abstract
Streptococcus mutans (S. mutans) are cariogenic microorganisms. Sortase A (SrtA) is a transpeptidase that attaches Pac to the cell surface. The biofilm formation of S. mutans is promoted by SrtA regulated Pac. Myricetin (Myr) has a variety of pharmacological properties, including inhibiting SrtA activity of Staphylococcus aureus. The purpose of this research was to investigate the inhibitory effect of Myr on SrtA of S. mutans and its subsequent influence on the biofilm formation. Here, Myr was discovered as a potent inhibitor of S. mutans SrtA, with an IC50 of 48.66 ± 1.48 μM, which was lower than the minimum inhibitory concentration (MIC) of 512 ug/mL. Additionally, immunoblot and biofilm assays demonstrated that Myr at a sub-MIC level could reduce adhesion and biofilm formation of S. mutans. The reduction of biofilm was possibly caused by the decreased amount of Pac on the cells' surface by releasing Pac into the medium via inhibiting SrtA activity. Molecular dynamics simulations and mutagenesis assays suggested that Met123, Ile191, and Arg213 of SrtA were pivotal for the interaction of SrtA and Myr. Our findings indicate that Myr is a promising candidate for the control of dental caries by modulating Pac-involved adhesive mechanisms without developing drug resistance to S.mutans.
Collapse
Affiliation(s)
- Ping Hu
- Center of Stomatology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, Hubei, People's Republic of China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Bibo Lv
- Pediatric Department of Stomatology, Affiliated Xiangyang Stomatological Hospital of Hubei University of Arts and Science, No. 6, Jianhua Road, Xiangyang, Hubei, People's Republic of China
| | - Kongxi Yang
- Center of Stomatology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, Hubei, People's Republic of China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Zimin Lu
- Department of Medicinal Chemistry, School of Pharmacy, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China
| | - Jingzhi Ma
- Center of Stomatology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, Hubei, People's Republic of China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
13
|
Compounds with Distinct Targets Present Diverse Antimicrobial and Antibiofilm Efficacy against Candida albicans and Streptococcus mutans, and Combinations of Compounds Potentiate Their Effect. J Fungi (Basel) 2021; 7:jof7050340. [PMID: 33924814 PMCID: PMC8146248 DOI: 10.3390/jof7050340] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/16/2021] [Accepted: 04/25/2021] [Indexed: 12/13/2022] Open
Abstract
Candida albicans and Streptococcus mutans interact synergistically in biofilms associated with a severe form of dental caries. Their synergism is driven by dietary sucrose. Thus, it is necessary to devise strategies to hinder the development of those biofilms and prevent cavities. Six compounds [tt-farnesol (sesquiterpene alcohol that decreases the bacterium acidogenicity and aciduricity and a quorum sensing fungal molecule), myricetin (flavonoid that interferes with S. mutans exopolysaccharides production), two 2'-hydroxychalcones and 4'-hydroxychalcone (intermediate metabolites for flavonoids), compound 1771 (inhibitor of lipoteichoic synthase in Gram-positive bacteria)] with targets in both fungus and bacterium and their products were investigated for their antimicrobial and antibiofilm activities against single-species cultures. The compounds and concentrations effective on single-species biofilms were tested alone and combined with or without fluoride to control initial and pre-formed dual-species biofilms. All the selected treatments eliminated both species on initial biofilms. In contrast, some combinations eliminated the bacterium and others the fungus in pre-formed biofilms. The combinations 4'-hydroxychalcone+tt-farnesol+myricetin, 4'-hydroxychalcone+tt-farnesol+fluoride, and all compounds together with fluoride were effective against both species in pre-formed biofilms. Therefore, combinations of compounds with distinct targets can prevent C. albicans and S. mutans dual-species biofilm build-up in vitro.
Collapse
|
14
|
André CB, Rosalen PL, Giannini M, Bueno-Silva B, Pfeifer CS, Ferracane JL. Incorporation of Apigenin and tt-Farnesol into dental composites to modulate the Streptococcus mutans virulence. Dent Mater 2021; 37:e201-e212. [PMID: 33422299 PMCID: PMC7981265 DOI: 10.1016/j.dental.2020.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/05/2020] [Accepted: 12/22/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The aim of this in vitro study was to incorporate two anti-caries agents, Apigenin and tt-Farnesol, to resin composite and resin cement to reduce the virulence of Streptococcus mutans around dental restorations. METHODS Apigenin (Api, 5 mM) and tt-Farnesol (Far, 5 mM) were added alone, together, and combined with fluoride (F). Biofilm of S. mutans was grown on composite discs, and the dry-weight, bacterial viability, and the polysaccharides (alkali-soluble, intracellular and water-soluble) were quantified. CLSM images of the S. mutans biofilm were obtained after three years of water-storage. The effect of the additions on the physicochemical properties and the composite colorimetric parameters were also analyzed. RESULTS The additions did not affect bacterial viability. Api alone and combined with Far or combined with Far and F decreased the bacterial dry-weight, alkali-soluble and intracellular polysaccharides. After three years, the composites containing the additions presented a greater EPS matrix on the top of biofilm. Statistical difference was obtained for the degree of conversion; however, the maximum polymerization rate and curing kinetics were unaffected by the additions. No difference was observed for the water-soluble polysaccharides, flexural strength, and elastic modulus. Api increased the yellowness of the composites. SIGNIFICANCE Api, alone and combined, reduced the expression of virulence of S. mutans without jeopardizing the physicochemical properties of the composites.
Collapse
Affiliation(s)
- Carolina Bosso André
- Department of Restorative Dentistry, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Pedro Luiz Rosalen
- Department of Biosciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil; Biological Sciences Graduate Program, Federal University of Alfenas, Alfenas, MG, Brazil.
| | - Marcelo Giannini
- Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil.
| | - Bruno Bueno-Silva
- Dental Research Division, School of Dentistry, Guarulhos University, Guarulhos, SP, Brazil.
| | - Carmem Silvia Pfeifer
- Department of Biomaterials and Biomechanics, School of Dentistry, Oregon Health & Science University, Portland, OR, USA.
| | - Jack Liborio Ferracane
- Department of Biomaterials and Biomechanics, School of Dentistry, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
15
|
Sims KR, Maceren JP, Liu Y, Rocha GR, Koo H, Benoit DSW. Dual antibacterial drug-loaded nanoparticles synergistically improve treatment of Streptococcus mutans biofilms. Acta Biomater 2020; 115:418-431. [PMID: 32853808 PMCID: PMC7530141 DOI: 10.1016/j.actbio.2020.08.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
Dental caries (i.e., tooth decay), which is caused by biofilm formation on tooth surfaces, is the most prevalent oral disease worldwide. Unfortunately, many anti-biofilm drugs lack efficacy within the oral cavity due to poor solubility, retention, and penetration into biofilms. While drug delivery systems (DDS) have been developed to overcome these hurdles and improve traditional antimicrobial treatments, including farnesol, efficacy is still modest due to myriad resistance mechanisms employed by biofilms, suggesting that synergistic drug treatments may be more efficacious. Streptococcus mutans (S. mutans), a cariogenic pathogen and biofilm forming model organism, has several key virulence factors including acidogenicity and exopolysaccharide (EPS) matrix synthesis. Flavonoids, such as myricetin, can reduce both biofilm acidogenicity and EPS synthesis. Therefore, a nanoparticle carrier (NPC) DDS with flexibility to co-load farnesol in the hydrophobic core and myricetin within the cationic corona, was tested in vitro using established and developing S. mutans biofilms. Co-loaded NPC treatments effectively disrupted biofilm biomass (i.e., dry weight) and reduced biofilm viability by ~3 log CFU/mL versus single drug-only controls in developing biofilms, suggesting dual-drug delivery exhibits synergistic anti-biofilm effects. Mechanistic studies revealed that co-loaded NPCs synergistically inhibited planktonic bacterial growth compared to controls and reduced S. mutans acidogenicity due to decreased atpD expression, a gene associated with acid tolerance. Moreover, the myricetin-loaded NPC corona enhanced NPC binding to tooth-mimetic surfaces, which can increase drug efficacy through improved retention at the biofilm-apatite interface. Altogether, these findings suggest promise for co-delivery of myricetin and farnesol DDS as an alternative anti-biofilm treatment to prevent dental caries.
Collapse
Affiliation(s)
- Kenneth R Sims
- University of Rochester School of Medicine and Dentistry, Translational Biomedical Science, Rochester, NY, United States; University of Rochester, Department of Biomedical Engineering, Rochester, NY, United States
| | - Julian P Maceren
- University of Rochester, Department of Chemistry, Rochester, NY, United States
| | - Yuan Liu
- University of Pennsylvania, Center for Innovation and Precision Dentistry, School of Dental Medicine, Department of Orthodontics, Philadelphia, PA, United States
| | - Guilherme R Rocha
- University of Rochester, Department of Biomedical Engineering, Rochester, NY, United States; São Paulo State University, Department of Dental Materials and Prosthodontics, Araraquara, São Paulo, Brazil
| | - Hyun Koo
- University of Pennsylvania, Center for Innovation and Precision Dentistry, School of Dental Medicine, Department of Orthodontics, Philadelphia, PA, United States
| | - Danielle S W Benoit
- University of Rochester, Department of Biomedical Engineering, Rochester, NY, United States; University of Rochester, Materials Science Program, NY, United States; University of Rochester, Department of Orthopaedics and Center for Musculoskeletal Research, NY, United States; University of Rochester, Center for Oral Biology, NY, United States; University of Rochester, Department of Chemical Engineering, NY, United States.
| |
Collapse
|
16
|
Jiang Y, Geng M, Bai L. Targeting Biofilms Therapy: Current Research Strategies and Development Hurdles. Microorganisms 2020; 8:microorganisms8081222. [PMID: 32796745 PMCID: PMC7465149 DOI: 10.3390/microorganisms8081222] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/31/2020] [Accepted: 08/07/2020] [Indexed: 01/05/2023] Open
Abstract
Biofilms are aggregate of microorganisms in which cells are frequently embedded within a self-produced matrix of extracellular polymeric substance (EPS) and adhere to each other and/or to a surface. The development of biofilm affords pathogens significantly increased tolerances to antibiotics and antimicrobials. Up to 80% of human bacterial infections are biofilm-associated. Dispersal of biofilms can turn microbial cells into their more vulnerable planktonic phenotype and improve the therapeutic effect of antimicrobials. In this review, we focus on multiple therapeutic strategies that are currently being developed to target important structural and functional characteristics and drug resistance mechanisms of biofilms. We thoroughly discuss the current biofilm targeting strategies from four major aspects—targeting EPS, dispersal molecules, targeting quorum sensing, and targeting dormant cells. We explain each aspect with examples and discuss the main hurdles in the development of biofilm dispersal agents in order to provide a rationale for multi-targeted therapy strategies that target the complicated biofilms. Biofilm dispersal is a promising research direction to treat biofilm-associated infections in the future, and more in vivo experiments should be performed to ensure the efficacy of these therapeutic agents before being used in clinic.
Collapse
|
17
|
Yi Y, Wang L, Chen L, Lin Y, Luo Z, Chen Z, Li T, Wu J, Zhong Z. Farnesal-loaded pH-sensitive polymeric micelles provided effective prevention and treatment on dental caries. J Nanobiotechnology 2020; 18:89. [PMID: 32527262 PMCID: PMC7291565 DOI: 10.1186/s12951-020-00633-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/12/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Farnesol is a sesquiterpene from propolis and citrus fruit that shows promising anti-bacterial activity for caries treatment and prevention, but its hydrophobicity limits the clinical application. We aimed to develop the novel polymeric micelles (PMs) containing a kind of derivative of farnesol and a ligand of pyrophosphate (PPi) that mediated PMs to adhere tightly with the tooth enamel. RESULTS Farnesal (Far) was derived from farnesol and successfully linked to PEG via an acid-labile hydrazone bond to form PEG-hyd-Far, which was then conjugated to PPi and loaded into PMs to form the aimed novel drug delivery system, PPi-Far-PMs. The in vitro test about the binding of PPi-Far-PMs to hydroxyapatite showed that PPi-Far-PMs could bind rapidly to hydroxyapatite and quickly release Far under the acidic conditions. Results from the mechanical testing and the micro-computed tomography indicated that PPi-Far-PMs could restore the microarchitecture of teeth with caries. Moreover, PPi-Far-PMs diminished the incidence and severity of smooth and sulcal surface caries in rats that were infected with Streptococcus mutans while being fed with a high-sucrose diet. The anti-caries efficacy of free Far can be improved significantly by PPi-Far-PMs through the effective binding of it with tooth enamel via PPi. CONCLUSIONS This novel drug-delivery system may be useful for the treatment and prevention of dental caries as well as the targeting therapy of anti-bacterial drugs in the oral disease.
Collapse
Affiliation(s)
- Youping Yi
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Lujun Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Lin Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yan Lin
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zhongling Luo
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zhenyu Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Ting Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jianming Wu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Zhirong Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
18
|
Modulation of Lipoteichoic Acids and Exopolysaccharides Prevents Streptococcus mutans Biofilm Accumulation. Molecules 2020; 25:molecules25092232. [PMID: 32397430 PMCID: PMC7249192 DOI: 10.3390/molecules25092232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 11/19/2022] Open
Abstract
Dental caries is a diet–biofilm-dependent disease. Streptococcus mutans contributes to cariogenic biofilms by producing an extracellular matrix rich in exopolysaccharides and acids. The study aimed to determine the effect of topical treatments with compound 1771 (modulates lipoteichoic acid (LTA) metabolism) and myricetin (affects the synthesis of exopolysaccharides) on S. mutans biofilms. In vitro S. mutans UA159 biofilms were grown on saliva-coated hydroxyapatite discs, alternating 0.1% sucrose and 0.5% sucrose plus 1% starch. Twice-daily topical treatments were performed with both agents alone and combined with and without fluoride: compound 1771 (2.6 µg/mL), myricetin (500 µg/mL), 1771 + myricetin, fluoride (250 ppm), 1771 + fluoride, myricetin + fluoride, 1771 + myricetin + fluoride, and vehicle. Biofilms were evaluated via microbiological, biochemical, imaging, and gene expression methods. Compound 1771 alone yielded less viable counts, biomass, exopolysaccharides, and extracellular LTA. Moreover, the combination 1771 + myricetin + fluoride decreased three logs of bacterium counts, 60% biomass, >74% exopolysaccharides, and 20% LTA. The effect of treatments on extracellular DNA was not pronounced. The combination strategy affected the size of microcolonies and exopolysaccharides distribution and inhibited the expression of genes linked to insoluble exopolysaccharides synthesis. Therefore, compound 1771 prevented the accumulation of S. mutans biofilm; however, the effect was more pronounced when it was associated with fluoride and myricetin.
Collapse
|
19
|
Ghilini F, Pissinis DE, Miñán A, Schilardi PL, Diaz C. How Functionalized Surfaces Can Inhibit Bacterial Adhesion and Viability. ACS Biomater Sci Eng 2019; 5:4920-4936. [DOI: 10.1021/acsbiomaterials.9b00849] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Fiorela Ghilini
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP − CONICET, CC16 Suc 4 (1900), La Plata, Buenos Aires, Argentina
| | - Diego E. Pissinis
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP − CONICET, CC16 Suc 4 (1900), La Plata, Buenos Aires, Argentina
| | - Alejandro Miñán
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP − CONICET, CC16 Suc 4 (1900), La Plata, Buenos Aires, Argentina
| | - Patricia L. Schilardi
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP − CONICET, CC16 Suc 4 (1900), La Plata, Buenos Aires, Argentina
| | - Carolina Diaz
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP − CONICET, CC16 Suc 4 (1900), La Plata, Buenos Aires, Argentina
| |
Collapse
|
20
|
Krüger W, Vielreicher S, Kapitan M, Jacobsen ID, Niemiec MJ. Fungal-Bacterial Interactions in Health and Disease. Pathogens 2019; 8:E70. [PMID: 31117285 PMCID: PMC6630686 DOI: 10.3390/pathogens8020070] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/02/2019] [Accepted: 05/16/2019] [Indexed: 12/28/2022] Open
Abstract
Fungi and bacteria encounter each other in various niches of the human body. There, they interact directly with one another or indirectly via the host response. In both cases, interactions can affect host health and disease. In the present review, we summarized current knowledge on fungal-bacterial interactions during their commensal and pathogenic lifestyle. We focus on distinct mucosal niches: the oral cavity, lung, gut, and vagina. In addition, we describe interactions during bloodstream and wound infections and the possible consequences for the human host.
Collapse
Affiliation(s)
- Wibke Krüger
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
| | - Sarah Vielreicher
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
| | - Mario Kapitan
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
- Center for Sepsis Control and Care, Jena 07747, Germany.
| | - Ilse D Jacobsen
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
- Center for Sepsis Control and Care, Jena 07747, Germany.
- Institute of Microbiology, Friedrich Schiller University, Jena 07743, Germany.
| | - Maria Joanna Niemiec
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
- Center for Sepsis Control and Care, Jena 07747, Germany.
| |
Collapse
|
21
|
Lobo CIV, Rinaldi TB, Christiano CMS, De Sales Leite L, Barbugli PA, Klein MI. Dual-species biofilms of Streptococcus mutans and Candida albicans exhibit more biomass and are mutually beneficial compared with single-species biofilms. J Oral Microbiol 2019; 11:1581520. [PMID: 31681463 PMCID: PMC6807867 DOI: 10.1080/20002297.2019.1581520] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/26/2019] [Accepted: 02/06/2019] [Indexed: 12/02/2022] Open
Abstract
Background: Streptococcus mutans (Sm) and Candida albicans (Ca) are found in biofilms of early childhood caries. Objective: To characterize in vitro dual- and single-species biofilms of Sm and Ca formed on saliva-coated hydroxyapatite discs in the presence of sucrose. Design: Evaluation of biofilms included biochemical [biomass, proteins, matrix’s water-soluble (WSP) and alkali-soluble (ASP) polysaccharides, microbiological, 3D structure, gene expression, and stress tolerance analyses. Results: Biomass and proteins were higher for dual-species and lower for Ca (p = 0.001). Comparison of Sm single- and dual-species biofilms revealed no significant difference in Sm numbers or quantity of WSP (p > 0.05). Dual-species biofilms contained a higher population of Ca (p < 0.001). The quantity of ASP was higher in dual-species biofilms (vs Ca single-species biofilms; p = 0.002). The 3D structure showed larger microcolonies and distinct distribution of Sm-derived exopolysaccharides in dual-species biofilms. Compared with dual-species biofilms, expression of gtfB (ASP) and nox1 (oxidative stress) was higher for single-species of Sm whilst expression of BGL2 (matrix), PHR1 (matrix, acid tolerance) and SOD1 (oxidative stress) was higher in single-species of Ca. There was no difference for acid tolerance genes (Sm atpD and Ca PHR2), which was confirmed by acid tolerance challenge. Dual-species biofilms were more tolerant to oxidative and antimicrobial stresses (p < 0.05). Conclusions: Dual-species biofilms present greater 3D complexity, thereby, making them more resistant to stress conditions.
Collapse
Affiliation(s)
- Carmélia Isabel Vitorino Lobo
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), School of Dentistry, Araraquara, Brazil
| | - Talita Baptista Rinaldi
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), School of Dentistry, Araraquara, Brazil
| | | | - Luana De Sales Leite
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), School of Dentistry, Araraquara, Brazil
| | - Paula Aboud Barbugli
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), School of Dentistry, Araraquara, Brazil
| | - Marlise Inêz Klein
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), School of Dentistry, Araraquara, Brazil
| |
Collapse
|
22
|
Sims KR, Liu Y, Hwang G, Jung HI, Koo H, Benoit DSW. Enhanced design and formulation of nanoparticles for anti-biofilm drug delivery. NANOSCALE 2018; 11:219-236. [PMID: 30525159 PMCID: PMC6317749 DOI: 10.1039/c8nr05784b] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Biofilms are surface-bound, structured microbial communities underpinning persistent bacterial infections. Biofilms often create acidic pH microenvironments, providing opportunities to leverage responsive drug delivery systems to improve antibacterial efficacy. Here, the antibacterial efficacy of novel formulations containing pH-responsive polymer nanoparticle carriers (NPCs) and farnesol, a hydrophobic antibacterial drug, were investigated. Multiple farnesol-loaded NPCs, which varied in overall molecular weight and corona-to-core molecular weight ratios (CCRs), were tested using standard and saturated drug loading conditions. NPCs loaded at saturated conditions exhibited ∼300% greater drug loading capacity over standard conditions. Furthermore, saturated loading conditions sustained zero-ordered drug release over 48 hours, which was 3-fold longer than using standard farnesol loading. Anti-biofilm activity of saturated NPC loading was markedly amplified using Streptococcus mutans as a biofilm-forming model organism. Specifically, reductions of ∼2-4 log colony forming unit (CFU) were obtained using microplate and saliva-coated hydroxyapatite biofilm assays. Mechanistically, the new formulation reduced total biomass by disrupting insoluble glucan formation and increased NPC-cell membrane localization. Finally, thonzonium bromide, a highly potent, FDA-approved antibacterial drug with similar alkyl chain structure to farnesol, was also loaded into NPCs and used to treat S. mutans biofilms. Similar to farnesol-loaded NPCs, thonzonium bromide-loaded NPCs increased drug loading capacity ≥2.5-fold, demonstrated nearly zero-order release kinetics over 96 hours, and reduced biofilm cell viability by ∼6 log CFU. This work provides foundational insights that may lead to clinical translation of novel topical biofilm-targeting therapies, such as those for oral diseases.
Collapse
Affiliation(s)
- Kenneth R. Sims
- Translational Biomedical Science, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
| | - Yuan Liu
- Biofilm Research Lab, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Geelsu Hwang
- Biofilm Research Lab, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hoi In Jung
- Department of Preventive Dentistry & Public Oral Health, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Hyun Koo
- Biofilm Research Lab, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Corresponding Authors: ,
| | - Danielle S. W. Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States
- Center for Oral Biology, University of Rochester, Rochester, New York, United States
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York, United States
- Department of Chemical Engineering, University of Rochester, Rochester, New York, United States
- Corresponding Authors: ,
| |
Collapse
|
23
|
dos Santos A, André CB, Martim GC, Schuquel ITA, Pfeifer CS, Ferracane JL, Tominaga TT, Khalil NM, Radovanovic E, Girotto EM. Methacrylate saccharide-based monomers for dental adhesive systems. INTERNATIONAL JOURNAL OF ADHESION & ADHESIVES 2018; 87:1-11. [PMID: 31130758 PMCID: PMC6533006 DOI: 10.1016/j.ijadhadh.2018.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The aim of this in vitro study was to synthesize three new methacrylate monomers based on the modification of saccharides structures (glucose-Gluc, sucrose-Sucr and chitosan-Chit) with glycidyl methacrylate, and to use them in the composition of dental adhesives. Three methacrylate saccharide monomers were synthesized and characterized by mid-IR, 1H and 13C NMR, antioxidant activity and cytotoxic effect. Monomers included: one monosaccharide - Gluc-MA; one disaccharide - Sucr-MA; and one polysaccharide - Chit-MA. Primers containing HEMA, methacrylate saccharide monomers at concentrations of 0 (control), 1, 2 or 4 wt%, 60 wt% ethanol aqueous solution (pH3.0) and initiator system were formulated. Primers were used in conjunction with a bond step and composite paste to restore caries-free third molars, and dentin bond strength (24 hours and 6 month of storage in water), and antimicrobial activity (Alamar Blue test) were tested. Degree of conversion (DC) and maximum rate of polymerization (Rpmax) of the primers themselves were also analyzed. The mid-IR, 1H and 13C spectrum confirmed the presence of vinyl group on the structure of saccharides. Chit-MA showed low antioxidant activity and did not present a cytotoxic effect. Gluc-MA and Sucr-MA possess antioxidant and cytotoxic activity, concentration dependent. In the presence of methacrylate saccharide monomers, the primers showed DC comparable to the control group, except Gluc-MA4%, Sucr-MA4% and Chit-MA1%, which showed a range of 64.6 from 58.5 %DC. Rpmax was not statistically different for all the groups (p = 0.01). The bond strength of Sucr-MA1% increased from 25.7 (±2.8) to 40.6 (±5.3) MPa after 6 months of storage. All the synthesized monomers showed some antimicrobial activity after polymerization. Gluc-MA and Chit-MA 4% and Sucr-MA 1, 2 and 4% led to decrease bacterial metabolism. Sucr-MA 1% showed better results regarding the decrease in bacterial metabolism and increasing the bond strength after 6 months of storage.
Collapse
Affiliation(s)
- Andressa dos Santos
- Materials Chemistry and Sensors Laboratories, Department of Chemistry, State University of Maringa, Colombo Avenue, 5790, Maringá, PR, Brazil
- Division of Biomaterials and Biomechanics, School of Dentistry, Oregon Health and Science University, 2730 SW Moody Avenue, Portland, OR, United State of America
| | - Carolina B. André
- Department of Restorative Dentistry, Piracicaba Dental School, State University of Campinas, Limeira Avenue, 901, Piracicaba, SP, Brazil
| | - Gedalias C. Martim
- Materials Chemistry and Sensors Laboratories, Department of Chemistry, State University of Maringa, Colombo Avenue, 5790, Maringá, PR, Brazil
| | - Ivania T. A. Schuquel
- Materials Chemistry and Sensors Laboratories, Department of Chemistry, State University of Maringa, Colombo Avenue, 5790, Maringá, PR, Brazil
| | - Carmem S. Pfeifer
- Division of Biomaterials and Biomechanics, School of Dentistry, Oregon Health and Science University, 2730 SW Moody Avenue, Portland, OR, United State of America
| | - Jack L. Ferracane
- Division of Biomaterials and Biomechanics, School of Dentistry, Oregon Health and Science University, 2730 SW Moody Avenue, Portland, OR, United State of America
| | - Tania T. Tominaga
- Department of Physics, State University of the Midwest, Simeao Camargo Varela de Sá Street, 03, Guarapuava, PR, Brazil
| | - Najeh M. Khalil
- Department of Pharmacy, State University of the Midwest, Simeao Camargo Varela de Sá Street, 03, Guarapuava, PR, Brazil
| | - Eduardo Radovanovic
- Materials Chemistry and Sensors Laboratories, Department of Chemistry, State University of Maringa, Colombo Avenue, 5790, Maringá, PR, Brazil
| | - Emerson M. Girotto
- Materials Chemistry and Sensors Laboratories, Department of Chemistry, State University of Maringa, Colombo Avenue, 5790, Maringá, PR, Brazil
| |
Collapse
|
24
|
Nijampatnam B, Zhang H, Cai X, Michalek SM, Wu H, Velu SE. Inhibition of Streptococcus mutans Biofilms by the Natural Stilbene Piceatannol Through the Inhibition of Glucosyltransferases. ACS OMEGA 2018; 3:8378-8385. [PMID: 30087944 PMCID: PMC6072251 DOI: 10.1021/acsomega.8b00367] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Removal of oral biofilms involves the use of broad-spectrum antimicrobials, which eradicate both pathogenic and protective oral commensal species. Ideal therapeutics for dental caries should be able to selectively inhibit pathogenic biofilms caused by Streptococcus mutans. S. mutans extracellular glucosyltransferases (Gtfs), particularly GtfB and GtfC, synthesize predominantly water-insoluble glucans, which contribute to the structural scaffold of biofilms. The lead stilbene identified through our docking study against the catalytic domain of GtfC is a natural product known as piceatannol, which inhibited S. mutans biofilm formation in a dose-dependent manner, with considerable selectivity over growth inhibition of S. mutans and commensal streptococci. Binding kinetic analysis of piceatannol was performed using Octet RED against both GtfB and GtfC, which produced low micromolar KD values. Piceatannol inhibited S. mutans colonization in an in vivo drosophila model and a rat model of dental caries.
Collapse
Affiliation(s)
- Bhavitavya Nijampatnam
- Department
of Chemistry, University of Alabama at Birmingham, 901 14th Street S, Birmingham, Alabama 35294, United States
| | - Hua Zhang
- Department
of Pediatric Dentistry, University of Alabama at Birmingham, 1919 7th Avenue South, Birmingham, Alabama 35294, United States
| | - Xia Cai
- Department
of Microbiology, University of Alabama at
Birmingham, 1720 2nd
Avenue South, Birmingham, Alabama 35294, United
States
| | - Suzanne M. Michalek
- Department
of Microbiology, University of Alabama at
Birmingham, 1720 2nd
Avenue South, Birmingham, Alabama 35294, United
States
| | - Hui Wu
- Department
of Pediatric Dentistry, University of Alabama at Birmingham, 1919 7th Avenue South, Birmingham, Alabama 35294, United States
| | - Sadanandan E. Velu
- Department
of Chemistry, University of Alabama at Birmingham, 901 14th Street S, Birmingham, Alabama 35294, United States
| |
Collapse
|
25
|
Nanosynthesis of Silver-Calcium Glycerophosphate: Promising Association against Oral Pathogens. Antibiotics (Basel) 2018; 7:antibiotics7030052. [PMID: 29954143 PMCID: PMC6163287 DOI: 10.3390/antibiotics7030052] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/07/2018] [Accepted: 06/25/2018] [Indexed: 12/01/2022] Open
Abstract
Nanobiomaterials combining remineralization and antimicrobial abilities would bring important benefits to control dental caries. This study aimed to produce nanocompounds containing calcium glycerophosphate (CaGP) and silver nanoparticles (AgNP) by varying the reducing agent of silver nitrate (sodium borohydride (B) or sodium citrate (C)), the concentration of silver (1% or 10%), and the CaGP forms (nano or commercial), and analyze its characterization and antimicrobial activity against ATCC Candida albicans (10231) and Streptococcus mutans (25175) by the microdilution method. Controls of AgNP were produced and silver ions (Ag+) were quantified in all of the samples. X-ray diffraction, UV-Vis, and scanning electron microscopy (SEM) analysis demonstrated AgNP associated with CaGP. Ag+ ions were considerably higher in AgCaGP/C. C. albicans was susceptible to nanocompounds produced with both reducing agents, regardless of Ag concentration and CaGP form, being Ag10%CaGP-N/C the most effective compound (19.5–39.0 µg Ag mL−1). While for S. mutans, the effectiveness was observed only for AgCaGP reduced by citrate, also presenting Ag10%CaGP-N the highest effectiveness (156.2–312.5 µg Ag mL−1). Notably, CaGP enhanced the silver antimicrobial potential in about two- and eight-fold against C. albicans and S. mutans when compared with the AgNP controls (from 7.8 to 3.9 and from 250 to 31.2 µg Ag mL−1, respectively). The synthesis that was used in this study promoted the formation of AgNP associated with CaGP, and although the use of sodium borohydride (B) resulted in a pronounced reduction of Ag+, the composite AgCaGP/B was less effective against the microorganisms that were tested.
Collapse
|
26
|
Bhagavathy S, Mahendiran C, Kanchana R. Identification of glucosyl transferase inhibitors from Psidium guajava against Streptococcus mutans in dental caries. J Tradit Complement Med 2018; 9:124-137. [PMID: 30963047 PMCID: PMC6435953 DOI: 10.1016/j.jtcme.2017.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 09/10/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022] Open
Abstract
Dental caries is a multi factorial disease that starts with microbiological shifts affected by salivary flow, composition, exposure to fluoride, consumption of dietary sugars, and preventive behaviours. The Streptococcus mutans (S. mutans) is an initiator of caries because there is a variety of a virulence factor unique to the bacterium that has been isolated and plays an important role in caries formation. The aim of the present study is to identify the beneficial effect of bioactive compounds in Psidium guajava (P. guajava) and its inhibitory role against S. mutans in dental caries. The methanolic extract was used for analysis of GC-MS for the identification of bioactive compounds. The results confirm the existence of 7 different compounds. The identified bioactive compounds were corynan-17-ol, 18,19-didehydro-10-methyoxy-acetate, Copaene, 3Bicyclo(5.2.0)nonane, 2-methylene-4,8,8-trimethyl-4-vinyl,Azulene,1,2,3a,4,5,6,7-octahydro-1,4-dimethyl-7-methylethenyl) [1R- (1a,3aa′,4a′,7a′)], α-Caryophyllene, Alloaromadendrene oxide-(1) and Androstan-17-one, 3-ethyl-3-hydroxy-, (5a). The saliva of dental caries during and after treatment of aqueous leaf extract was used for the analysis of bacterial load and determining the activity of Glucosyl transferase (GTF). The result obtained at different time intervals, showed significant decrease (P < 0.01) in the bacterial load of saliva on P. guajava treatment. The molecular docking studies identified the interaction between GTF and the bioactive compounds of P. guajava. The anticariogenic active compounds interacted through active sites of sucrose and inhibit the formation of glucan. The study suggested that it could be maximized the anticariogenic effect of the selected medicinal plant, and further focus is needed to identify the combined plant extract to explore the additional protection against dental caries.
Collapse
|
27
|
Rocha GR, Florez Salamanca EJ, de Barros AL, Lobo CIV, Klein MI. Effect of tt-farnesol and myricetin on in vitro biofilm formed by Streptococcus mutans and Candida albicans. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:61. [PMID: 29444673 PMCID: PMC5813409 DOI: 10.1186/s12906-018-2132-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 02/08/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND Dental caries is considered a multifactorial disease, in which microorganisms play an important role. The diet is decisive in the biofilm formation because it provides the necessary resources for cellular growth and exopolysaccharides synthesis. Exopolysaccharides are the main components of the extracellular matrix (ECM). The ECM provides a 3D structure, support for the microorganisms and form diffusion-limited environments (acidic niches) that cause demineralization of the dental enamel. Streptococcus mutans is the main producer of exopolysaccharides. Candida albicans is detected together with S. mutans in biofilms associated with severe caries lesions. Thus, this study aimed to determine the effect of tt-farnesol and myricetin topical treatments on cariogenic biofilms formed by Streptococcus mutans and Candida albicans. METHODS In vitro dual-species biofilms were grown on saliva-coated hydroxyapatite discs, using tryptone-yeast extract broth with 1% sucrose (37 °C, 5% CO2). Twice-daily topical treatments were performed with: vehicle (ethanol 15%, negative control), 2 mM myricetin, 4 mM tt-farnesol, myricetin + tt-farnesol, myricetin + tt-farnesol + fluoride (250 ppm), fluoride, and chlorhexidine digluconate (0.12%; positive control). After 67 h, biofilms were evaluated to determine biofilm biomass, microbial population, and water-soluble and -insoluble exopolysaccharides in the ECM. RESULTS Only the positive control yielded a reduced quantity of biomass and microbial population, while tt-farnesol treatment was the least efficient in reducing C. albicans population. The combination therapy myricetin + farnesol + fluoride significantly reduced water-soluble exopolysaccharides in the ECM (vs. negative control; p < 0.05; ANOVA one-way, followed by Tukey's test), similarly to the positive control. CONCLUSIONS Therefore, the combination therapy negatively influenced an important virulence trait of cariogenic biofilms. However, the concentrations of both myricetin and tt-farnesol should be increased to produce a more pronounced effect to control these biofilms.
Collapse
Affiliation(s)
- Guilherme Roncari Rocha
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), School of Dentistry, Araraquara, Rua Humaitá, 1680, Araraquara, Sao Paulo 14801-903 Brazil
| | - Elkin Jahir Florez Salamanca
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), School of Dentistry, Araraquara, Rua Humaitá, 1680, Araraquara, Sao Paulo 14801-903 Brazil
| | - Ana Letícia de Barros
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), School of Dentistry, Araraquara, Rua Humaitá, 1680, Araraquara, Sao Paulo 14801-903 Brazil
| | - Carmélia Isabel Vitorino Lobo
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), School of Dentistry, Araraquara, Rua Humaitá, 1680, Araraquara, Sao Paulo 14801-903 Brazil
| | - Marlise Inêz Klein
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), School of Dentistry, Araraquara, Rua Humaitá, 1680, Araraquara, Sao Paulo 14801-903 Brazil
| |
Collapse
|
28
|
Koo H, Allan RN, Howlin RP, Hall-Stoodley L, Stoodley P. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol 2017; 15:740-755. [PMID: 28944770 PMCID: PMC5685531 DOI: 10.1038/nrmicro.2017.99] [Citation(s) in RCA: 1004] [Impact Index Per Article: 143.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Biofilm formation is a key virulence factor for a wide range of microorganisms that cause chronic infections. The multifactorial nature of biofilm development and drug tolerance imposes great challenges for the use of conventional antimicrobials and indicates the need for multi-targeted or combinatorial therapies. In this Review, we focus on current therapeutic strategies and those under development that target vital structural and functional traits of microbial biofilms and drug tolerance mechanisms, including the extracellular matrix and dormant cells. We emphasize strategies that are supported by in vivo or ex vivo studies, highlight emerging biofilm-targeting technologies and provide a rationale for multi-targeted therapies aimed at disrupting the complex biofilm microenvironment.
Collapse
Affiliation(s)
- Hyun Koo
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, PA, USA
| | - Raymond N Allan
- Clinical and Experimental Sciences, Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
- Southampton NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Robert P Howlin
- Centre for Biological Sciences, University of Southampton, Southampton, UK
- Southampton NIHR Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Luanne Hall-Stoodley
- Southampton NIHR Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Department of Microbial Infection and Immunity, Centre for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, USA
| | - Paul Stoodley
- Department of Microbial Infection and Immunity, Centre for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, USA
- Depts. Orthopaedics and Microbiology, The Ohio State University, Columbus, Ohio, USA
- National Center for Advanced Tribology at Southampton (nCATS), Faculty of Engineering and the Environment, University of Southampton, UK
| |
Collapse
|
29
|
Wang H, Ren D. Controlling Streptococcus mutans and Staphylococcus aureus biofilms with direct current and chlorhexidine. AMB Express 2017; 7:204. [PMID: 29143221 PMCID: PMC5688048 DOI: 10.1186/s13568-017-0505-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022] Open
Abstract
Microbial biofilms formed on biomaterials are major causes of chronic infections. Among them, Gram-positive bacteria Streptococcus mutans and Staphylococcus aureus are important pathogens causing infections associated with dental caries (tooth-decay) and other medical implants. Unfortunately, current antimicrobial approaches are ineffective in disrupting established biofilms and new methods are needed to improve the efficacy. In this study, we report that the biofilm cells of S. mutans and S. aureus can be effectively killed by low-level direct current (DC) and through synergy in concurrent treatment with DC and chlorhexidine (CHX) at low concentrations. For example, after treatment with 28 µA/cm2 DC and 50 µg/mL CHX for 1 h, the viability of biofilm cells was reduced by approximately 4 and 5 logs for S. mutans and S. aureus, respectively. These results are useful for developing more effective approaches to control pathogenic biofilms.
Collapse
|
30
|
Abstract
Objectives: To evaluate the efficacy of Salvadora persica (Miswak) products on cariogenic bacteria in comparison with ordinary toothpaste. Methods: The study was conducted in Zakho city, Kurdistan region, Iraq during the period from October 2013 to January 2014. A randomized controlled clinical trial of 40 students randomly allocated into 4 groups. They were instructed to use Mismark toothpaste, Miswak mouthwash, and ordinary toothpaste with water or with normal saline. Salivary samples were collected at 3-time intervals: before, immediately after use, and after 2 weeks of use. The effect of each method on Streptococcus mutans and Lactobacilli was evaluated by using caries risk test. Results: One-way repeated measure analysis of variance (ANOVA), one-way ANOVA, and least significant difference tests were used. Miswak wash has a significant reduction effect on both bacteria immediately and after 2 weeks of use. Miswak paste has a similar effect on Lactobacilli, while Streptococcus mutans showed a significant decrease only after 2 weeks of use. Ordinary paste showed a non significant effect on both bacteria at both time intervals; while the addition of normal saline showed a significant effect on both bacteria only after 2 weeks of use. Conclusion: Miswak products, especially mouth wash, were more effective in reducing the growth of cariogenic bacteria than ordinary toothpaste.
Collapse
Affiliation(s)
- Samim A Al-Dabbagh
- Department of Family and Community Medicine, College of Medicine, University of Duhok, Kurdistan region, Iraq. E-mail.
| | | | | |
Collapse
|
31
|
Senpuku H, Yonezawa H, Yoneda S, Suzuki I, Nagasawa R, Narisawa N. SMU.940 regulates dextran-dependent aggregation and biofilm formation in Streptococcus mutans. Mol Oral Microbiol 2017; 33:47-58. [PMID: 28845576 DOI: 10.1111/omi.12196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2017] [Indexed: 11/30/2022]
Abstract
The oral bacterium Streptococcus mutans is the principal agent in the development of dental caries. Biofilm formation by S. mutans requires bacterial attachment, aggregation, and glucan formation on the tooth surface under sucrose supplementation conditions. Our previous microarray analysis of clinical strains identified 74 genes in S. mutans that were related to biofilm morphology; however, the roles of almost all of these genes in biofilm formation are poorly understood. We investigated the effects of 21 genes randomly selected from our previous study regarding S. mutans biofilm formation, regulation by the complement pathway, and responses to competence-stimulating peptide. Eight competence-stimulating peptide-dependent genes were identified, and their roles in biofilm formation and aggregation were examined by mutational analyses of the S. mutansUA159 strain. Of these eight genes, the inactivation of the putative hemolysin III family SMU.940 gene of S. mutansUA159 promoted rapid dextran-dependent aggregation and biofilm formation in tryptic soy broth without dextrose (TSB) with 0.25% glucose and slightly reduced biofilm formation in TSB with 0.25% sucrose. The SMU.940 mutant showed higher expression of GbpC and gbpC gene than wild-type. GbpC is known to be involved in the dextran-dependent aggregation of S. mutans. An SMU.940-gbpC double mutant strain was constructed in the SMU.940 mutant background. The gbpC mutation completely abolished the dextran-dependent aggregation of the SMU.940 mutant. In addition, the aggregation of the mutant was abrogated by dextranase. These findings suggest that SMU.940 controls GbpC expression, and contributes to the regulation of dextran-dependent aggregation and biofilm formation.
Collapse
Affiliation(s)
- Hidenobu Senpuku
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Hideo Yonezawa
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.,Department of Infectious Diseases, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Saori Yoneda
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.,Department of Microbiology, Faculty of Medicine, Kagawa University, Takamatsu, Japan
| | - Itaru Suzuki
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.,Department of Pediatric Dentistry, Nihon University at Matsudo, Chiba, Japan
| | - Ryo Nagasawa
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.,Graduate School of Science and Engineering, Hosei University, Shinjuku-ku, Tokyo, Japan
| | - Naoki Narisawa
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.,Department of Food Science and Technology, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| |
Collapse
|
32
|
André CB, Rosalen PL, Galvão LCDC, Fronza BM, Ambrosano GMB, Ferracane JL, Giannini M. Modulation of Streptococcus mutans virulence by dental adhesives containing anti-caries agents. Dent Mater 2017; 33:1084-1092. [DOI: 10.1016/j.dental.2017.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/12/2017] [Accepted: 07/08/2017] [Indexed: 01/13/2023]
|
33
|
Sivaranjani M, Prakash M, Gowrishankar S, Rathna J, Pandian SK, Ravi AV. In vitro activity of alpha-mangostin in killing and eradicating Staphylococcus epidermidis RP62A biofilms. Appl Microbiol Biotechnol 2017; 101:3349-3359. [DOI: 10.1007/s00253-017-8231-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/14/2017] [Accepted: 03/07/2017] [Indexed: 11/24/2022]
|
34
|
Garcia SS, Blackledge MS, Michalek S, Su L, Ptacek T, Eipers P, Morrow C, Lefkowitz EJ, Melander C, Wu H. Targeting of Streptococcus mutans Biofilms by a Novel Small Molecule Prevents Dental Caries and Preserves the Oral Microbiome. J Dent Res 2017; 96:807-814. [PMID: 28571487 DOI: 10.1177/0022034517698096] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dental caries is a costly and prevalent disease characterized by the demineralization of the tooth's enamel. Disease outcome is influenced by host factors, dietary intake, cariogenic bacteria, and other microbes. The cariogenic bacterial species Streptococcus mutans metabolizes sucrose to initiate biofilm formation on the tooth surface and consequently produces lactic acid to degrade the tooth's enamel. Persistence of S. mutans biofilms in the oral cavity can lead to tooth decay. To date, no anticaries therapies that specifically target S. mutans biofilms but do not disturb the overall oral microbiome are available. We screened a library of 2-aminoimidazole antibiofilm compounds with a biofilm dispersion assay and identified a small molecule that specifically targets S. mutans biofilms. At 5 µM, the small molecule annotated 3F1 dispersed 50% of the established S. mutans biofilm but did not disperse biofilms formed by the commensal species Streptococcus sanguinis or Streptococcus gordonii. 3F1 dispersed S. mutans biofilms independently of biofilm-related factors such as antigen I/II and glucosyltransferases. 3F1 treatment effectively prevented dental caries by controlling S. mutans in a rat caries model without perturbing the oral microbiota. Our study demonstrates that selective targeting of S. mutans biofilms by 3F1 was able to effectively reduce dental caries in vivo without affecting the overall oral microbiota shaped by the intake of dietary sugars, suggesting that the pathogenic biofilm-specific treatment is a viable strategy for disease prevention.
Collapse
Affiliation(s)
- S S Garcia
- 1 Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA.,2 Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M S Blackledge
- 3 Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - S Michalek
- 2 Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - L Su
- 1 Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - T Ptacek
- 2 Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.,4 Schools of Dentistry and Medicine, Center for Clinical and Translational Science, University of Alabama at Birmingham, Birmingham, AL, USA
| | - P Eipers
- 5 Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - C Morrow
- 5 Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - E J Lefkowitz
- 5 Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - C Melander
- 3 Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - H Wu
- 1 Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
35
|
Nguyen PTM, Schultze N, Boger C, Alresley Z, Bolhuis A, Lindequist U. Anticaries and antimicrobial activities of methanolic extract from leaves of Cleistocalyx operculatus L. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2016.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
36
|
Sadeghinejad L, Cvitkovitch DG, Siqueira WL, Santerre JP, Finer Y. Triethylene Glycol Up-Regulates Virulence-Associated Genes and Proteins in Streptococcus mutans. PLoS One 2016; 11:e0165760. [PMID: 27820867 PMCID: PMC5098727 DOI: 10.1371/journal.pone.0165760] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/17/2016] [Indexed: 01/30/2023] Open
Abstract
Triethylene glycol dimethacrylate (TEGDMA) is a diluent monomer used pervasively in dental composite resins. Through hydrolytic degradation of the composites in the oral cavity it yields a hydrophilic biodegradation product, triethylene glycol (TEG), which has been shown to promote the growth of Streptococcus mutans, a dominant cariogenic bacterium. Previously it was shown that TEG up-regulated gtfB, an important gene contributing to polysaccharide synthesis function in biofilms. However, molecular mechanisms related to TEG’s effect on bacterial function remained poorly understood. In the present study, S. mutans UA159 was incubated with clinically relevant concentrations of TEG at pH 5.5 and 7.0. Quantitative real-time PCR, proteomics analysis, and glucosyltransferase enzyme (GTF) activity measurements were employed to identify the bacterial phenotypic response to TEG. A S. mutans vicK isogenic mutant (SMΔvicK1) and its associated complemented strain (SMΔvicK1C), an important regulatory gene for biofilm-associated genes, were used to determine if this signaling pathway was involved in modulation of the S. mutans virulence-associated genes. Extracted proteins from S. mutans biofilms grown in the presence and absence of TEG were subjected to mass spectrometry for protein identification, characterization and quantification. TEG up-regulated gtfB/C, gbpB, comC, comD and comE more significantly in biofilms at cariogenic pH (5.5) and defined concentrations. Differential response of the vicK knock-out (SMΔvicK1) and complemented strains (SMΔvicK1C) implicated this signalling pathway in TEG-modulated cellular responses. TEG resulted in increased GTF enzyme activity, responsible for synthesizing insoluble glucans involved in the formation of cariogenic biofilms. As well, TEG increased protein abundance related to biofilm formation, carbohydrate transport, acid tolerance, and stress-response. Proteomics data was consistent with gene expression findings for the selected genes. These findings demonstrate a mechanistic pathway by which TEG derived from commercial resin materials in the oral cavity promote S. mutans pathogenicity, which is typically associated with secondary caries.
Collapse
Affiliation(s)
- Lida Sadeghinejad
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Dennis G. Cvitkovitch
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Walter L. Siqueira
- Schulich Dentistry and Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - J. Paul Santerre
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Yoav Finer
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
37
|
Galvão LCC, Rosalen PL, Rivera-Ramos I, Franco GCN, Kajfasz JK, Abranches J, Bueno-Silva B, Koo H, Lemos JA. Inactivation of the spxA1 or spxA2 gene of Streptococcus mutans decreases virulence in the rat caries model. Mol Oral Microbiol 2016; 32:142-153. [PMID: 27037617 DOI: 10.1111/omi.12160] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2016] [Indexed: 01/20/2023]
Abstract
In oral biofilms, the major environmental challenges encountered by Streptococcus mutans are acid and oxidative stresses. Previously, we showed that the transcriptional regulators SpxA1 and SpxA2 are involved in general stress survival of S. mutans with SpxA1 playing a primary role in activation of antioxidant and detoxification strategies whereas SpxA2 serves as a back up activator of oxidative stress genes. We have also found that spxA1 mutant strains (∆spxA1 and ∆spxA1∆spxA2) are outcompeted by peroxigenic oral streptococci in vitro and have impaired abilities to colonize the teeth of rats fed a highly cariogenic diet. Here, we show that the Spx proteins can also exert regulatory roles in the expression of additional virulence attributes of S. mutans. Competence activation is significantly impaired in Δspx strains and the production of mutacin IV and V is virtually abolished in ΔspxA1 strains. Unexpectedly, the ∆spxA2 strain showed increased production of glucans from sucrose, without affecting the total amount of bacteria within biofilms when compared with the parent strain. By using the rat caries model, we showed that the capacity of the ΔspxA1 and ΔspxA2 strains to cause caries on smooth tooth surfaces is significantly impaired. The ∆spxA2 strain also formed fewer lesions on sulcal surfaces. This report reveals that global regulation via Spx contributes to the cariogenic potential of S. mutans and highlights that animal models are essential in the characterization of bacterial traits implicated in virulence.
Collapse
Affiliation(s)
- L C C Galvão
- Center for Oral Biology and Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.,Department of Physiological Sciences, Dentistry School of Piracicaba, State University of Campinas, Piracicaba, SP, Brazil
| | - P L Rosalen
- Department of Physiological Sciences, Dentistry School of Piracicaba, State University of Campinas, Piracicaba, SP, Brazil
| | - I Rivera-Ramos
- Center for Oral Biology and Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - G C N Franco
- Department of Physiological Sciences, Dentistry School of Piracicaba, State University of Campinas, Piracicaba, SP, Brazil.,Department of General Biology, Laboratory of Physiology and Pathophysiology, State University of Ponta Grossa, Ponta Grossa, PR, Brazil
| | - J K Kajfasz
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - J Abranches
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - B Bueno-Silva
- Department of Physiological Sciences, Dentistry School of Piracicaba, State University of Campinas, Piracicaba, SP, Brazil.,Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - H Koo
- Biofilm Research Laboratory, Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, University of Pennsylvania, Philadelphia, PA, USA
| | - J A Lemos
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| |
Collapse
|
38
|
Schlafer S, Meyer RL. Confocal microscopy imaging of the biofilm matrix. J Microbiol Methods 2016; 138:50-59. [PMID: 26979645 DOI: 10.1016/j.mimet.2016.03.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 11/28/2022]
Abstract
The extracellular matrix is an integral part of microbial biofilms and an important field of research. Confocal laser scanning microscopy is a valuable tool for the study of biofilms, and in particular of the biofilm matrix, as it allows real-time visualization of fully hydrated, living specimens. Confocal microscopes are held by many research groups, and a number of methods for qualitative and quantitative imaging of the matrix have emerged in recent years. This review provides an overview and a critical discussion of techniques used to visualize different matrix compounds, to determine the concentration of solutes and the diffusive properties of the biofilm matrix.
Collapse
Affiliation(s)
- Sebastian Schlafer
- Department of Dentistry, HEALTH, Aarhus University, Vennelyst Boulevard 9, 8000 Aarhus C, Denmark.
| | - Rikke L Meyer
- Interdisciplinary Nanoscience Center (iNANO), Science and Technology, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark; Department of Bioscience, Science and Technology, Aarhus University, Ny Munkegade 114, 8000 Aarhus C, Denmark.
| |
Collapse
|
39
|
Fernandes RA, Monteiro DR, Arias LS, Fernandes GL, Delbem ACB, Barbosa DB. Biofilm formation by Candida albicans and Streptococcus mutans in the presence of farnesol: a quantitative evaluation. BIOFOULING 2016; 32:329-338. [PMID: 26905659 DOI: 10.1080/08927014.2016.1144053] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The aim of this study was to evaluate the effect of the QS molecule farnesol on single and mixed species biofilms formed by Candida albicans and Streptococcus mutans. The anti-biofilm effect of farnesol was assessed through total biomass quantification, counting of colony forming units (CFUs) and evaluation of metabolic activity. Biofilms were also analyzed by scanning electron microscopy (SEM). It was observed that farnesol reduced the formation of single and mixed biofilms, with significant reductions of 37% to 90% and 64% to 96%, respectively, for total biomass and metabolic activity. Regarding cell viability, farnesol treatment promoted significant log reductions in the number of CFUs, ie 1.3-4.2 log10 and 0.67-5.32 log10, respectively, for single and mixed species biofilms. SEM images confirmed these results, showing decreases in the number of cells in all biofilms. In conclusion, these findings highlight the role of farnesol as an alternative agent with the potential to reduce the formation of pathogenic biofilms.
Collapse
Affiliation(s)
- Renan Aparecido Fernandes
- a Department of Pediatric Dentistry and Public Health , Aracatuba Dental School , UNESP , Araçatuba/São Paulo , Brazil
- b Department of Dental Materials and Prosthodontics , Aracatuba Dental School , UNESP , Araçatuba/São Paulo , Brazil
| | - Douglas Roberto Monteiro
- a Department of Pediatric Dentistry and Public Health , Aracatuba Dental School , UNESP , Araçatuba/São Paulo , Brazil
| | - Laís Salomão Arias
- a Department of Pediatric Dentistry and Public Health , Aracatuba Dental School , UNESP , Araçatuba/São Paulo , Brazil
| | - Gabriela Lopes Fernandes
- a Department of Pediatric Dentistry and Public Health , Aracatuba Dental School , UNESP , Araçatuba/São Paulo , Brazil
- b Department of Dental Materials and Prosthodontics , Aracatuba Dental School , UNESP , Araçatuba/São Paulo , Brazil
| | - Alberto Carlos Botazzo Delbem
- a Department of Pediatric Dentistry and Public Health , Aracatuba Dental School , UNESP , Araçatuba/São Paulo , Brazil
| | - Debora Barros Barbosa
- b Department of Dental Materials and Prosthodontics , Aracatuba Dental School , UNESP , Araçatuba/São Paulo , Brazil
| |
Collapse
|
40
|
Pandit S, Cai JN, Song KY, Jeon JG. Identification of anti-biofilm components in Withania somnifera and their effect on virulence of Streptococcus mutans biofilms. J Appl Microbiol 2015; 119:571-81. [PMID: 25976122 DOI: 10.1111/jam.12851] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 04/14/2015] [Accepted: 05/12/2015] [Indexed: 12/21/2022]
Abstract
AIMS The aim of this study was to identify components of the Withania somnifera that could show anti-virulence activity against Streptococcus mutans biofilms. METHODS AND RESULTS The anti-acidogenic activity of fractions separated from W. somnifera was compared, and then the most active anti-acidogenic fraction was chemically characterized using gas chromatography-mass spectroscopy. The effect of the identified components on the acidogenicity, aciduricity and extracellular polymeric substances (EPS) formation of S. mutans UA159 biofilms was evaluated. The change in accumulation and acidogenicity of S. mutans UA159 biofilms by periodic treatments (10 min per treatment) with the identified components was also investigated. Of the fractions, n-hexane fraction showed the strongest anti-acidogenic activity and was mainly composed of palmitic, linoleic and oleic acids. Of the identified components, linoleic and oleic acids strongly affected the acid production rate, F-ATPase activity and EPS formation of the biofilms. Periodic treatment with linoleic and oleic acids during biofilm formation also inhibited the biofilm accumulation and acid production rate of the biofilms without killing the biofilm bacteria. CONCLUSIONS These results suggest that linoleic and oleic acids may be effective agents for restraining virulence of S. mutans biofilms. SIGNIFICANCE AND IMPACT OF THE STUDY Linoleic and oleic acids may be promising agents for controlling virulence of cariogenic biofilms and subsequent dental caries formation.
Collapse
Affiliation(s)
- S Pandit
- Department of Preventive Dentistry, School of Dentistry, Institute of Oral Bioscience and BK 21 Plus Program, Chonbuk National University, Jeonju, Korea
| | - J N Cai
- Department of Preventive Dentistry, School of Dentistry, Institute of Oral Bioscience and BK 21 Plus Program, Chonbuk National University, Jeonju, Korea
| | - K Y Song
- Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| | - J G Jeon
- Department of Preventive Dentistry, School of Dentistry, Institute of Oral Bioscience and BK 21 Plus Program, Chonbuk National University, Jeonju, Korea.,Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| |
Collapse
|
41
|
Howlin R, Fabbri S, Offin D, Symonds N, Kiang K, Knee R, Yoganantham D, Webb J, Birkin P, Leighton T, Stoodley P. Removal of Dental Biofilms with an Ultrasonically Activated Water Stream. J Dent Res 2015; 94:1303-9. [DOI: 10.1177/0022034515589284] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Acidogenic bacteria within dental plaque biofilms are the causative agents of caries. Consequently, maintenance of a healthy oral environment with efficient biofilm removal strategies is important to limit caries, as well as halt progression to gingivitis and periodontitis. Recently, a novel cleaning device has been described using an ultrasonically activated stream (UAS) to generate a cavitation cloud of bubbles in a freely flowing water stream that has demonstrated the capacity to be effective at biofilm removal. In this study, UAS was evaluated for its ability to remove biofilms of the cariogenic pathogen Streptococcus mutans UA159, as well as Actinomyces naeslundii ATCC 12104 and Streptococcus oralis ATCC 9811, grown on machine-etched glass slides to generate a reproducible complex surface and artificial teeth from a typodont training model. Biofilm removal was assessed both visually and microscopically using high-speed videography, confocal scanning laser microscopy (CSLM), and scanning electron microscopy (SEM). Analysis by CSLM demonstrated a statistically significant 99.9% removal of S. mutans biofilms exposed to the UAS for 10 s, relative to both untreated control biofilms and biofilms exposed to the water stream alone without ultrasonic activation ( P < 0.05). The water stream alone showed no statistically significant difference in removal compared with the untreated control ( P = 0.24). High-speed videography demonstrated a rapid rate (151 mm2 in 1 s) of biofilm removal. The UAS was also highly effective at S. mutans, A. naeslundii, and S. oralis biofilm removal from machine-etched glass and S. mutans from typodont surfaces with complex topography. Consequently, UAS technology represents a potentially effective method for biofilm removal and improved oral hygiene.
Collapse
Affiliation(s)
- R.P. Howlin
- National Institute for Health Research Southampton Respiratory Biomedical Research Unit, Southampton Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - S. Fabbri
- National Centre for Advanced Tribology, Faculty of Engineering and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - D.G. Offin
- Chemistry, University of Southampton, Southampton, UK
| | - N. Symonds
- National Centre for Advanced Tribology, Faculty of Engineering and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - K.S. Kiang
- Southampton Nanofabrication Centre Electronics & Computer Science, University of Southampton, Southampton, UK
| | - R.J. Knee
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - D.C. Yoganantham
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - J.S. Webb
- National Institute for Health Research Southampton Respiratory Biomedical Research Unit, Southampton Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - P.R. Birkin
- Chemistry, University of Southampton, Southampton, UK
| | - T.G. Leighton
- Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
- Institute of Sound and Vibration Research, University of Southampton, Southampton, UK
| | - P. Stoodley
- National Centre for Advanced Tribology, Faculty of Engineering and Institute for Life Sciences, University of Southampton, Southampton, UK
- Departments of Microbial Infection and Immunity and Orthopaedics, Center for Microbial Interface Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
42
|
Horev B, Klein MI, Hwang G, Li Y, Kim D, Koo H, Benoit DS. pH-activated nanoparticles for controlled topical delivery of farnesol to disrupt oral biofilm virulence. ACS NANO 2015; 9:2390-404. [PMID: 25661192 PMCID: PMC4395463 DOI: 10.1021/nn507170s] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Development of effective therapies to control oral biofilms is challenging, as topically introduced agents must avoid rapid clearance from biofilm-tooth interfaces while targeting biofilm microenvironments. Additionally, exopolysaccharides-matrix and acidification of biofilm microenvironments are associated with cariogenic (caries-producing) biofilm virulence. Thus, nanoparticle carriers capable of binding to hydroxyapatite (HA), saliva-coated HA (sHA), and exopolysaccharides with enhanced drug release at acidic pH were developed. Nanoparticles are formed from diblock copolymers composed of 2-(dimethylamino)ethyl methacrylate (DMAEMA), butyl methacrylate (BMA), and 2-propylacrylic acid (PAA) (p(DMAEMA)-b-p(DMAEMA-co-BMA-co-PAA)) that self-assemble into ∼21 nm cationic nanoparticles. Nanoparticles exhibit outstanding adsorption affinities (∼244 L-mmol(-1)) to negatively charged HA, sHA, and exopolysaccharide-coated sHA due to strong electrostatic interactions via multivalent tertiary amines of p(DMAEMA). Owing to hydrophobic cores, nanoparticles load farnesol, a hydrophobic antibacterial drug, at ∼22 wt %. Farnesol release is pH-dependent with t1/2 = 7 and 15 h for release at pH 4.5 and 7.2, as nanoparticles undergo core destabilization at acidic pH, characteristic of cariogenic biofilm microenvironments. Importantly, topical applications of farnesol-loaded nanoparticles disrupted Streptococcus mutans biofilms 4-fold more effectively than free farnesol. Mechanical stability of biofilms treated with drug-loaded nanoparticles was compromised, resulting in >2-fold enhancement in biofilm removal under shear stress compared to free farnesol and controls. Farnesol-loaded nanoparticles effectively attenuated biofilm virulence in vivo using a clinically relevant topical treatment regimen (2×/day) in a rodent dental caries disease model. Strikingly, treatment with farnesol-loaded nanoparticles reduced both the number and severity of carious lesions, while free farnesol had no effect. Nanoparticle carriers have great potential to enhance the efficacy of antibiofilm agents through multitargeted binding and pH-responsive drug release due to microenvironmental triggers.
Collapse
Affiliation(s)
- Benjamin Horev
- Department of Biomedical Engineering, University of Rochester, NY 14627, United States
| | - Marlise I. Klein
- Center for Oral Biology, University of Rochester, NY 14627, United States
| | - Geelsu Hwang
- Biofilm Research Lab, Levy Center for Oral Health, University of Pennsylvania, PA 19104, United States
| | - Yong Li
- Biofilm Research Lab, Levy Center for Oral Health, University of Pennsylvania, PA 19104, United States
| | - Dongyeop Kim
- Biofilm Research Lab, Levy Center for Oral Health, University of Pennsylvania, PA 19104, United States
| | - Hyun Koo
- Center for Oral Biology, University of Rochester, NY 14627, United States
- Biofilm Research Lab, Levy Center for Oral Health, University of Pennsylvania, PA 19104, United States
- Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, PA 19104, United States
- Address correspondence to: ;
| | - Danielle S.W. Benoit
- Department of Biomedical Engineering, University of Rochester, NY 14627, United States
- Department of Chemical Engineering, University of Rochester, NY 14627, United States
- Center of Musculoskeletal Research, University of Rochester, NY 14627, United States
| |
Collapse
|
43
|
The Effect of Essential Oils and Bioactive Fractions on Streptococcus mutans and Candida albicans Biofilms: A Confocal Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:871316. [PMID: 25821503 PMCID: PMC4363662 DOI: 10.1155/2015/871316] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 02/06/2015] [Accepted: 02/09/2015] [Indexed: 01/01/2023]
Abstract
The essential oils (EO) and bioactive fractions (BF) from Aloysia gratissima, Baccharis dracunculifolia, Coriandrum sativum, Cyperus articulatus, and Lippia sidoides were proven to have strong antimicrobial activity on planktonic microorganisms; however, little is known about their effects on the morphology or viability of oral biofilms. Previously, we determined the EO/fractions with the best antimicrobial activity against Streptococcus mutans and Candida spp. In this report, we used a confocal analysis to investigate the effect of these EO and BF on the morphology of S. mutans biofilms (thickness, biovolume, and architecture) and on the metabolic viability of C. albicans biofilms. The analysis of intact treated S. mutans biofilms showed no statistical difference for thickness in all groups compared to the control. However, a significant reduction in the biovolume of extracellular polysaccharides and bacteria was observed for A. gratissima and L. sidoides groups, indicating that these BF disrupt biofilm integrity and may have created porosity in the biofilm. This phenomenon could potentially result in a weakened structure and affect biofilm dynamics. Finally, C. sativum EO drastically affected C. albicans viability when compared to the control. These results highlight the promising antimicrobial activity of these plant species and support future translational research on the treatment of dental caries and oral candidiasis.
Collapse
|
44
|
Nguyen PTM, Falsetta ML, Hwang G, Gonzalez-Begne M, Koo H. α-Mangostin disrupts the development of Streptococcus mutans biofilms and facilitates its mechanical removal. PLoS One 2014; 9:e111312. [PMID: 25350668 PMCID: PMC4211880 DOI: 10.1371/journal.pone.0111312] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/19/2014] [Indexed: 12/21/2022] Open
Abstract
α-Mangostin (αMG) has been reported to be an effective antimicrobial agent against planktonic cells of Streptococcus mutans, a biofilm-forming and acid-producing cariogenic organism. However, its anti-biofilm activity remains to be determined. We examined whether αMG, a xanthone purified from Garcinia mangostana L grown in Vietnam, disrupts the development, acidogenicity, and/or the mechanical stability of S. mutans biofilms. Treatment regimens simulating those experienced clinically (twice-daily, 60 s exposure each) were used to assess the bioactivity of αMG using a saliva-coated hydroxyapatite (sHA) biofilm model. Topical applications of early-formed biofilms with αMG (150 µM) effectively reduced further biomass accumulation and disrupted the 3D architecture of S. mutans biofilms. Biofilms treated with αMG had lower amounts of extracellular insoluble and intracellular iodophilic polysaccharides (30-45%) than those treated with vehicle control (P<0.05), while the number of viable bacterial counts was unaffected. Furthermore, αMG treatments significantly compromised the mechanical stability of the biofilm, facilitating its removal from the sHA surface when subjected to a constant shear stress of 0.809 N/m2 (>3-fold biofilm detachment from sHA vs. vehicle-treated biofilms; P<0.05). Moreover, acid production by S. mutans biofilms was disrupted following αMG treatments (vs. vehicle-control, P<0.05). The activity of enzymes associated with glucan synthesis, acid production, and acid tolerance (glucosyltransferases B and C, phosphotransferase-PTS system, and F1F0-ATPase) were significantly inhibited by αMG. The expression of manL, encoding a key component of the mannose PTS, and gtfB were slightly repressed by αMG treatment (P<0.05), while the expression of atpD (encoding F-ATPase) and gtfC genes was unaffected. Hence, this study reveals that brief exposures to αMG can disrupt the development and structural integrity of S. mutans biofilms, at least in part via inhibition of key enzymatic systems associated with exopolysaccharide synthesis and acidogenicity. αMG could be an effective anti-virulence additive for the control and/or removal of cariogenic biofilms.
Collapse
Affiliation(s)
- Phuong Thi Mai Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Megan L. Falsetta
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Geelsu Hwang
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mireya Gonzalez-Begne
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Hyun Koo
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
45
|
Souza JLS, da Silva AF, Carvalho PHA, Pacheco BS, Pereira CMP, Lund RG. Aliphatic fatty acids and esters: inhibition of growth and exoenzyme production of Candida, and their cytotoxicity in vitro: anti-Candida effect and cytotoxicity of fatty acids and esters. Arch Oral Biol 2014; 59:880-6. [PMID: 24907517 DOI: 10.1016/j.archoralbio.2014.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 04/09/2014] [Accepted: 05/12/2014] [Indexed: 10/25/2022]
Abstract
The secretion of extracellular phospholipases and proteinases of Candida has been described as a relevant virulence factor in human infections. Aliphatic fatty acids have antimicrobial properties, but the mechanism by which they affect the virulence factors of microorganisms, such as Candida, is still unclear, and there are a few reports about their toxicity. The current study investigated the in vitro antifungal activity, exoenzyme production and cytotoxicity of some aliphatic fatty acids and their ester derivatives against the Candida species. The minimum inhibitory concentration and minimum fungicidal concentrations of aliphatic medium-chain fatty acids, methyl and ethyl esters were performed using the CLSI M27-A3 method and the cytotoxicity assay was performed according to ISO 10993-5. The influence of these compounds in the inhibition of the production of hydrolytic enzymes, phospholipases and proteinases by Candida was also investigated. Data analysis was performed using the one-way ANOVA method (p≤0.05). In relation to the MIC against Candida species, the fatty acid with the best result was Lauric acid, although its ester derivatives showed no activity. The inhibition of phospholipase production was more significant than the inhibition of proteinase production by Candida. Tested fatty acids revealed more than 80% cell viability in their MIC concentrations. Additionally, a cell viability of 100% was reported at concentrations of anti-enzymatic effect. Therefore, the potential use of these fatty acids could be the basis for more antimicrobial tests.
Collapse
Affiliation(s)
- Juliana L S Souza
- Laboratory of Microbiology, Postgraduate Program in Biochemistry and Bioprospection, Federal University of Pelotas (UFPel) - Gonçalves Chaves, 457/702, 96015-560 Pelotas, RS, Brazil
| | - Adriana F da Silva
- School of Dentistry, Federal University of Pelotas (UFPel) - Gonçalves Chaves, 457/503, 96015-560 Pelotas, RS, Brazil
| | - Pedro H A Carvalho
- Laboratory of Microbiology, Postgraduate Program in Biochemistry and Bioprospection, Federal University of Pelotas (UFPel) - Gonçalves Chaves, 457/702, 96015-560 Pelotas, RS, Brazil
| | - Bruna S Pacheco
- Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Cláudio M P Pereira
- Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Rafael G Lund
- Laboratory of Microbiology, Postgraduate Program in Biochemistry and Bioprospection, Federal University of Pelotas (UFPel) - Gonçalves Chaves, 457/702, 96015-560 Pelotas, RS, Brazil.
| |
Collapse
|
46
|
DiCicco M, Neethirajan S, Weese JS, Singh A. In vitro synergism of fosfomycin and clarithromycin antimicrobials against methicillin-resistant Staphylococcus pseudintermedius. BMC Microbiol 2014; 14:129. [PMID: 24886369 PMCID: PMC4036705 DOI: 10.1186/1471-2180-14-129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/14/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Bacterial biofilms are of tremendous concern for clinicians, as they can compromise the ability of the immune system and antimicrobial therapy to resolve chronic and recurrent infections. Novel antimicrobial therapies or combinations targeted against biofilm establishment and growth subsequently represent a promising new option for the treatment of chronic infectious diseases. In this study, we treated bacterial biofilms produced by methicillin-resistant Staphylococcus pseudintermedius (MRSP) with a combination of fosfomycin and clarithromycin. We selected these agents, because they prevent biofilm formation and induce antimicrobial synergism that may also target other staphylococci. RESULTS We determined that the combination of fosfomycin and clarithromycin better impairs S. pseudintermedius biofilm formation compared to treatment with either therapy alone (P < 0.05). Morphological examination of these biofilms via scanning electron microscopy demonstrated that fosfomycin alone does impact biofilm formation on orthopaedic implants. However, this activity is enhanced in the presence of clarithromycin. We propose that the bacteriostatic activity of clarithromycin is accentuated when fosfoymcin is present, as it may allow better penetration into the biofilm matrix, allowing fosfomycin access to sessile bacteria near the surface of attachment. CONCLUSIONS Here, we demonstrate that the combination of fosfomycin and clarithromycin may be a useful therapy that could improve the clinical outcomes of treating antimicrobial resistant MRSP biofilms.
Collapse
Affiliation(s)
- Matthew DiCicco
- BioNano Laboratory, School of Engineering, University of Guelph, Guelph N1G 2 W1, Canada
| | - Suresh Neethirajan
- BioNano Laboratory, School of Engineering, University of Guelph, Guelph N1G 2 W1, Canada
| | - J Scott Weese
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph N1G 2 W1, Canada
| | - Ameet Singh
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Guelph N1G 2 W1, Canada
| |
Collapse
|
47
|
Liu H, Zhao D, Chang J, Yan L, Zhao F, Wu Y, Xu T, Gong T, Chen L, He N, Wu Y, Han S, Qu D. Efficacy of novel antibacterial compounds targeting histidine kinase YycG protein. Appl Microbiol Biotechnol 2014; 98:6003-13. [PMID: 24737057 PMCID: PMC4057637 DOI: 10.1007/s00253-014-5685-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/09/2014] [Accepted: 03/11/2014] [Indexed: 12/27/2022]
Abstract
Treating staphylococcal biofilm-associated infections is challenging. Based on the findings that compound 2 targeting the HK domain of Staphylococcus epidermidis YycG has bactericidal and antibiofilm activities against staphylococci, six newly synthesized derivatives were evaluated for their antibacterial activities. The six derivatives of compound 2 inhibited autophosphorylation of recombinant YycG′ and the IC50 values ranged from 24.2 to 71.2 μM. The derivatives displayed bactericidal activity against planktonic S. epidermidis or Staphylococcus aureus strains in the MIC range of 1.5–3.1 μM. All the derivatives had antibiofilm activities against the 6- and 24-h biofilms of S. epidermidis. Compared to the prototype compound 2, they had less cytotoxicity for Vero cells and less hemolytic activity for human erythrocytes. The derivatives showed antibacterial activities against clinical methicillin-resistant staphylococcal isolates. The structural modification of YycG inhibitors will assist the discovery of novel agents to eliminate biofilm infections and multidrug-resistant staphylococcal infections.
Collapse
Affiliation(s)
- Huayong Liu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Stewart PS. Biophysics of biofilm infection. Pathog Dis 2014; 70:212-8. [PMID: 24376149 PMCID: PMC3984611 DOI: 10.1111/2049-632x.12118] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 11/25/2013] [Accepted: 12/03/2013] [Indexed: 01/22/2023] Open
Abstract
This article examines a likely basis of the tenacity of biofilm infections that has received relatively little attention: the resistance of biofilms to mechanical clearance. One way that a biofilm infection persists is by withstanding the flow of fluid or other mechanical forces that work to wash or sweep microorganisms out of the body. The fundamental criterion for mechanical persistence is that the biofilm failure strength exceeds the external applied stress. Mechanical failure of the biofilm and release of planktonic microbial cells is also important in vivo because it can result in dissemination of infection. The fundamental criterion for detachment and dissemination is that the applied stress exceeds the biofilm failure strength. The apparent contradiction for a biofilm to both persist and disseminate is resolved by recognizing that biofilm material properties are inherently heterogeneous. There are also mechanical aspects to the ways that infectious biofilms evade leukocyte phagocytosis. The possibility of alternative therapies for treating biofilm infections that work by reducing biofilm cohesion could (1) allow prevailing hydrodynamic shear to remove biofilm, (2) increase the efficacy of designed interventions for removing biofilms, (3) enable phagocytic engulfment of softened biofilm aggregates, and (4) improve phagocyte mobility and access to biofilm.
Collapse
Affiliation(s)
- Philip S. Stewart
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717-3980, USA, (406) 994-1960 (phone), (406) 994-6098 (fax)
| |
Collapse
|
49
|
Abstract
In the last half-decade or so, interest in the bacterial part of the human microbiome and its role in maintaining health have received considerable attention. Since 2009, over 300 publications have appeared describing the oral bacterial microbiome. Strikingly, fungi in the oral cavity have been studied exclusively in relation to pathologies. However, little to nothing is known about a role of fungi in establishing and maintaining a healthy oral ecology. In a healthy ecology, balance is maintained by the combined positive and negative influences between and among its members. Interactions between fungi and bacteria occur primarily at a physical and chemical level. Physical interactions are represented by (co-)adhesion and repulsion (exclusion), while chemical interactions include metabolic dependencies, quorum-sensing, and the production of antimicrobial agents. Information obtained from oral model systems and also from studies on the role of fungi in gastro-intestinal ecology indicates that fungi influence bacterial behavior through these different interactions. This review describes our current knowledge of the interactions between fungi and bacteria and aims to illustrate that further research is required to establish the role of fungi in maintaining a healthy oral cavity.
Collapse
Affiliation(s)
- B.P. Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Free University Amsterdam, Amsterdam, The Netherlands
| | - S. Kidwai
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Free University Amsterdam, Amsterdam, The Netherlands
| | - J.M. ten Cate
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Free University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
50
|
Jung JE, Pandit S, Jeon JG. Identification of linoleic acid, a main component of the n-hexane fraction from Dryopteris crassirhizoma, as an anti-Streptococcus mutans biofilm agent. BIOFOULING 2014; 30:789-798. [PMID: 25115514 DOI: 10.1080/08927014.2014.930446] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Dryopteris crassirhizoma is a semi-evergreen plant. Previous studies have shown the potential of this plant as an agent for the control of cariogenic biofilms. In this study, the main antibacterial components of the plant were identified by correlating gas chromatography-mass spectrometry data with the antibacterial activity of chloroform and n-hexane fractions and then evaluating the activity of the most potent antibacterial component against Streptococcus mutans UA159 biofilms. The most potent antibacterial component was linoleic acid, a main component of the n-hexane fraction. Linoleic acid reduced viability in a dose dependent manner and reduced biofilm accumulation during initial and mature biofilm formation. Furthermore, when the biofilms were briefly treated with linoleic acid (10 min/treatment, a total of six times), the dry weight of the biofilms was significantly diminished. In addition, the anti-biofilm activity of the n-hexane fraction was similar to that of linoleic acid. These results suggest that the n-hexane fraction of D. crassirhizoma and linoleic acid may be useful for controlling cariogenic biofilms.
Collapse
Affiliation(s)
- Ji-Eun Jung
- a Department of Preventive Dentistry, School of Dentistry, Institute of Oral Bioscience and BK 21 Plus Program , Chonbuk National University , Jeonju , Republic of Korea
| | | | | |
Collapse
|