1
|
Yang Q, Li L, Zhao G, Cui Q, Gong X, Ying L, Yang T, Fu M, Shen Z. Characterization of a multiresistance optrA- and lsa(E)-harbouring unconventional circularizable structure in Streptococcus suis. J Antimicrob Chemother 2024; 79:2528-2533. [PMID: 39086116 DOI: 10.1093/jac/dkae250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
OBJECTIVES To identify novel genetic elements facilitating the horizontal transfer of the oxazolidinone/phenicol resistance gene optrA and the pleuromutilin-lincosamide-streptogramin A resistance gene lsa(E) in Streptococcus suis. METHODS The complete genomes of S. suis HB18 and two transconjugants were obtained using both the Illumina and Nanopore platforms. MICs were determined by broth microdilution. Inverse PCR was performed to identify circular forms of the novel unconventional circularizable structure (UCS), genomic island (GI) and integrative and conjugative element (ICE). Conjugation experiments assessed the transferability of optrA and lsa(E) genes in S. suis. RESULTS S. suis HB18 carried a multiresistance gene cluster optrA-lsa(E)-lnu(B)-aphA-aadE-spw. This gene cluster, flanked by intact and truncated erm(B) in the same orientation, resided on a novel ICESsuHB18. Inverse PCR revealed the existence of a novel UCS, named UCS-optrA + lsa(E), which could excise the gene cluster optrA-lsa(E)-lnu(B)-aphA-aadE-spw and one copy of erm(B) from ICESsuHB18. Two transconjugants with different characteristics were obtained. In transconjugant T-JH-GI, UCS-optrA + lsa(E) excised from ICESsuHB18 inserted into the erm(B)-positive GI, designated GISsuHB18, generating the novel GISsuHB18-1. Meanwhile, in T-JH-ICE, genetic rearrangement events occurred in ICESsuHB18 and GISsuHB18, forming the novel ICESsuHB18-1. CONCLUSIONS This is the first report demonstrating the functionally active UCS-optrA + lsa(E) excising from ICESsuHB18 and inserting into the erm(B)-positive GISsuHB18 during the conjugation process. The location of optrA and lsa(E) on a multiresistance UCS enhances its persistence and dissemination.
Collapse
Affiliation(s)
- Qin Yang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Luxin Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Guanzheng Zhao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qingpo Cui
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaowei Gong
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Luyu Ying
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Tingting Yang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Mengjiao Fu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhangqi Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Sukumar S, Rahmanyar Z, El Jurf HQ, Akil WS, Hussain J, Martin FE, Ekanayake K, Martinez E. Mapping the oral resistome: a systematic review. J Med Microbiol 2024; 73:001866. [PMID: 39133536 PMCID: PMC11318793 DOI: 10.1099/jmm.0.001866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/17/2024] [Indexed: 08/13/2024] Open
Abstract
Studying individual ecological niches within the oral cavity is a logical first step to understanding the distribution of antimicrobial resistance genes (ARGs); however, it is not representative of the whole oral resistome. The aim of our systematic review was to provide a map of the oral resistome by reviewing the composition of individual niches. A total of 580 papers were retrieved from a search of all English language publications investigating the presence of oral ARGs in five electronic databases between January 2015 and August 2023. Fifteen studies [10 PCR and 5 next-generation sequencing (NGS)] were included in this review. The heterogeneity of methods precluded meta-analysis. ARGs are present throughout the oral cavity with 158 unique ARGs identified across 6 locations - supra and sub-gingival biofilm, mucosa, oropharynx, root canal system (RCS) and saliva. The supragingival biofilm had the highest resistome richness, while the RCS had the least. Tetracycline was the dominant antimicrobial resistance (AMR) class found. Three core genes were identified - tet(M), tet(O) and ermB.This review highlights the necessity of NGS studies to comprehensively characterize the oral resistome in its entirety. This is the logical foundation for future 'omics studies to truly understand the scope of the resistome and its contribution to AMR.
Collapse
Affiliation(s)
- Smitha Sukumar
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2000, Australia
| | - Zalmay Rahmanyar
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2000, Australia
| | - Hagaar Q. El Jurf
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2000, Australia
| | - William S. Akil
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2000, Australia
| | - Jafar Hussain
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2000, Australia
| | - F. Elizabeth Martin
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2000, Australia
| | - Kanchana Ekanayake
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2000, Australia
| | - Elena Martinez
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2000, Australia
- Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, New South Wales, 2145, Australia
| |
Collapse
|
3
|
Liu J, Liang Z, Zhongla M, Wang H, Sun X, Zheng J, Ding X, Yang F. Prevalence and Molecular Characteristics of Enterococci Isolated from Clinical Bovine Mastitis Cases in Ningxia. Infect Drug Resist 2024; 17:2121-2129. [PMID: 38828370 PMCID: PMC11141574 DOI: 10.2147/idr.s461587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/25/2024] [Indexed: 06/05/2024] Open
Abstract
Purpose This study aimed to investigate the prevalence and genetic characterization of enterococcal isolates (Enterococcus faecalis, Enterococcus faecium and Enterococcus hirae) isolated from clinical bovine mastitis cases in Ningxia, China. Patients and Methods The enterococci were identified by 16S rRNA amplification and sequencing. Antimicrobial resistance was determined by disc diffusion method. Virulence and antimicrobial resistance genes were detected by PCR assays. Results Overall, 198 enterococcal isolates were identified from 2897 mastitis samples, including 137 (4.7%) E. faecalis, 50 (1.7%) E. faecium and 11 (0.4%) E. hirae. E. faecalis, E. faecium and E. hirae isolates showed high resistance to tetracycline (92.7%, 68.0%, 90.9%), followed by erythromycin (86.9%, 76.0%, 72.7%). The multidrug-resistant strains of E. faecalis and E. faecium were 29 (21.2%) and 13 (26.0%), respectively. The resistance of E. faecalis, E. faecium and E. hirae isolates to tetracycline is mainly attributed to the presence of tetL (alone or combined with tetM and/or tetK), the erythromycin resistance to ermB (alone or combined with ermC and/or ermA). Moreover, cpd (94.2%), gelE (77.4%), efaAfs (93.4%), and esp (79.6%) were the most common virulence genes in E. faecalis. In E. faecium, except for the gene efaAfs (82.0%), other virulence genes are rarely found. Only two strains of E. hirae carrying asa1 gene were detected. Conclusion The results of this study can provide a reference for the prevention and treatment of bovine mastitis caused by enterococci.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, People’s Republic of China
| | - Zeyi Liang
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, People’s Republic of China
| | - Maocao Zhongla
- Gannan Animal Disease Prevention and Control Center, Hezuo, People’s Republic of China
| | - Hongsheng Wang
- Xiangyang Vocational and Technical College, Xiangyang, People’s Republic of China
| | - Xu Sun
- College of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou, People’s Republic of China
| | - Juanshan Zheng
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, People’s Republic of China
| | - Xuezhi Ding
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, People’s Republic of China
| | - Feng Yang
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, People’s Republic of China
| |
Collapse
|
4
|
Sawhney SS, Vargas RC, Wallace MA, Muenks CE, Lubbers BV, Fritz SA, Burnham CAD, Dantas G. Diagnostic and commensal Staphylococcus pseudintermedius genomes reveal niche adaptation through parallel selection of defense mechanisms. Nat Commun 2023; 14:7065. [PMID: 37923729 PMCID: PMC10624692 DOI: 10.1038/s41467-023-42694-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023] Open
Abstract
Staphylococcus pseudintermedius is historically understood as a prevalent commensal and pathogen of dogs, though modern clinical diagnostics reveal an expanded host-range that includes humans. It remains unclear whether differentiation across S. pseudintermedius populations is driven primarily by niche-type or host-species. We sequenced 501 diagnostic and commensal isolates from a hospital, veterinary diagnostic laboratory, and within households in the American Midwest, and performed a comparative genomics investigation contrasting human diagnostic, animal diagnostic, human colonizing, pet colonizing, and household-surface S. pseudintermedius isolates. Though indistinguishable by core and accessory gene architecture, diagnostic isolates harbor more encoded and phenotypic resistance, whereas colonizing and surface isolates harbor similar CRISPR defense systems likely reflective of common household phage exposures. Furthermore, household isolates that persist through anti-staphylococcal decolonization report elevated rates of base-changing mutations in - and parallel evolution of - defense genes, as well as reductions in oxacillin and trimethoprim-sulfamethoxazole susceptibility. Together we report parallel niche-specific bolstering of S. pseudintermedius defense mechanisms through gene acquisition or mutation.
Collapse
Affiliation(s)
- Sanjam S Sawhney
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rhiannon C Vargas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Meghan A Wallace
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Carol E Muenks
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian V Lubbers
- Department of Clinical Sciences, Kansas State University, Manhattan, KS, USA
| | - Stephanie A Fritz
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Carey-Ann D Burnham
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
5
|
National Surveillance of Tetracycline, Erythromycin, and Clindamycin Resistance in Invasive Streptococcus pyogenes: A Retrospective Study of the Situation in Spain, 2007-2020. Antibiotics (Basel) 2023; 12:antibiotics12010099. [PMID: 36671301 PMCID: PMC9854882 DOI: 10.3390/antibiotics12010099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND This work reports on antimicrobial resistance data for invasive Streptococcus pyogenes in Spain, collected by the 'Surveillance Program for Invasive Group A Streptococcus', in 2007-2020. METHODS emm typing was determined by sequencing. Susceptibility to penicillin, tetracycline, erythromycin, and clindamycin was determined via the E-test. tetM, tetO, msrD, mefA, ermB, ermTR, and ermT were sought by PCR. Macrolide-resistant phenotypes (M, cMLSB, and iMLSB) were detected using the erythromycin-clindamycin double-disk test. Resistant clones were identified via their emm type, multilocus sequence type (ST), resistance genotype, and macrolide resistance phenotype. RESULTS Penicillin susceptibility was universal. Tetracycline resistance was recorded for 237/1983 isolates (12.0%) (152 carried only tetM, 48 carried only tetO, and 33 carried both). Erythromycin resistance was detected in 172/1983 isolates (8.7%); ermB was present in 83, mefA in 58, msrD in 51, ermTR in 46, and ermT in 36. Clindamycin resistance (methylase-mediated) was present in 78/1983 isolates (3.9%). Eight main resistant clones were identified: two that were tetracycline-resistant only (emm22/ST46/tetM and emm77/ST63/tetO), three that were erythromycin-resistant only (emm4/ST39/mefA-msrD/M, emm12/ST36/mefA-msrD/M, and emm28/ST52/ermB/cMLSB), and three that were tetracycline-erythromycin co-resistant (emm11/ST403/tetM-ermB/cMLSB, emm77/ST63/tetO-ermTR/iMLSB, and emm77/ST63/tetM-tetO-ermTR/iMLSB). CONCLUSIONS Tetracycline, erythromycin, and clindamycin resistance rates declined between 2007 and 2020. Temporal variations in the proportion of resistant clones determined the change in resistance rates.
Collapse
|
6
|
Characterization of Streptococcus pneumoniae Macrolide Resistance and Its Mechanism in Northeast China over a 20-Year Period. Microbiol Spectr 2022; 10:e0054622. [PMID: 35938873 PMCID: PMC9602527 DOI: 10.1128/spectrum.00546-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Due to the resistance of Streptococcus pneumoniae to β-lactams, macrolides, and tetracyclines, treatment alternatives have become increasingly limited worldwide. We aim to describe the characterization of erythromycin-resistant S. pneumoniae (ERSP) strains in northeastern China over a period of 20 years. A total of 1,240 ERSP strains were collected and classified into five groups based on the ages of the patients. Etest strips and Kirby-Bauer disk diffusion were performed for drug susceptibility testing. The capsule swelling test was used for capsule typing. The phenotype of drug resistance was detected by the erythromycin and clindamycin double-disk method. The ermB, ermTR, mefA, and tetM genes were detected by PCR. Among the 1,240 ERSP strains, 510 were invasive isolates, and 730 were noninvasive isolates. The results of drug susceptibility testing showed that the rates of resistance to penicillin, amoxicillin, cefotaxime, ceftriaxone, meropenem, tetracycline, trimethoprim-sulfamethoxazole, and chloramphenicol varied among the different age groups. 19F, 19A, 23F, 14, and 6B were the serotypes that were commonly found among ERSP strains. Among all strains, 99.03% (1,228/1,240) exhibited an MLSB (macrolide-lincosamide-streptogramin B) resistance phenotype, of which 1,221 strains displayed a constitutive MLSB (cMLSB) phenotype and 7 strains showed an inducible MLSB (iMLSB) phenotype. All of these strains carried the ermB gene. In contrast, only 0.97% of strains of M phenotypes were found to carry the mefA gene. Both the ermB and mefA genes were detected in 704 strains that exhibited multidrug resistance, whereas the ermTR gene was not detected. Furthermore, 1,185 tetracycline-resistant strains were found to carry the tetM gene. Macrolide antimicrobial drugs should be used cautiously for the empirical treatment of S. pneumoniae infections. IMPORTANCE This study presents a retrospective analysis using 1,240 clinical erythromycin-resistant Streptococcus pneumoniae (ERSP) isolates collected in northeastern China between January 2000 and December 2019. The serotype distribution, corresponding vaccine coverage, as well as resistance phenotypes, genes, and mechanisms to macrolide and tetracycline of these isolates were systematically described, analyzed, and discussed. We hope that this study will inform clinicians in their respective regions when selecting antimicrobial agents. We also hope that this study is useful for researchers in related fields. Finally, we emphasize in this study that vaccination is the best preventive measure for S. pneumoniae infection considering its resistance to commonly used antibiotics. The determination of the S. pneumoniae serotype distribution also provides valuable empirical evidence for local health authorities when introducing appropriate vaccines in a specific area.
Collapse
|
7
|
Deekshit VK, Srikumar S. 'To be, or not to be' - the dilemma of 'silent' antimicrobial resistance genes in bacteria. J Appl Microbiol 2022; 133:2902-2914. [PMID: 35882476 DOI: 10.1111/jam.15738] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022]
Abstract
Antimicrobial resistance is a serious threat to public health that dramatically undermines our ability to treat bacterial infections. Microorganisms exhibit resistance to different drug classes by acquiring resistance determinants through multiple mechanisms including horizontal gene transfer. The presence of drug resistance genotypes is mostly associated with corresponding phenotypic resistance against the particular antibiotic. However, bacterial communities harboring silent antimicrobial resistance genes - genes whose presence is not associated with a corresponding resistant phenotype, do exist. Under suitable conditions, the expression pattern of such genes often revert and regain resistance, and could potentially lead to therapeutic failure. We often miss the presence of silent genes, since the current experimental paradigms are focused on resistant strains. Therefore, the knowledge on the prevalence, importance, and mechanism of silent antibiotic resistance genes in bacterial pathogens is very limited. Silent genes, therefore, provide an additional level of complexity in the war against drug-resistant bacteria, reminding us that not only phenotypically resistant strains but also susceptible strains should be carefully investigated. In this review, we discuss the presence of silent antimicrobial resistance genes in bacteria, their relevance, and their importance in public health.
Collapse
Affiliation(s)
- Vijaya Kumar Deekshit
- Nitte (Deemed to be University), Nitte University Center for Science Education and Research, Division of Infectious Diseases, Paneer Campus, Deralakatte, Mangaluru - 575018, Karnataka, India
| | - Shabarinath Srikumar
- Department of Food Science, College of Agriculture and Veterinary Medicine, UAE University, Al Ain, UAE
| |
Collapse
|
8
|
Effects of Pyroligneous Acid on Diversity and Dynamics of Antibiotic Resistance Genes in Alfalfa Silage. Microbiol Spectr 2022; 10:e0155422. [PMID: 35862964 PMCID: PMC9430785 DOI: 10.1128/spectrum.01554-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibiotic resistance genes (ARGs) are recognized as contaminants due to their potential risk for human and environment. The aim of the present study is to investigate the effects of pyroligneous acid (PA), a waste of biochar production, on fermentation characteristics, diversity, and dynamics of ARGs during ensiling of alfalfa using metagenomic analysis. The results indicated that PA decreased (P < 0.05) dry matter loss, pH value, gas production, coliform bacteria count, protease activity, and nonprotein-N, ammonia-N, and butyric acid contents and increased (P < 0.05) lactic acid content during ensiling. During fermentation, Bacteria, Firmicutes, and Lactobacillus were the most abundant at kingdom, phylum, and genus levels, respectively. Pyroligneous acid reduced the relative abundance of Bacteria and Firmicutes and increased that of Lactobacillus. The detected ARGs belonged to 36 drug classes, including mainly macrolides, tetracycline, lincosamides, and phenicol. These types of ARGs decreased during fermentation and were further reduced by PA. These types of ARGs were positively correlated (P < 0.05) with fermentation parameters like pH value and ammonia-N content and with bacterial communities. At the genus level, the top several drug classes, including macrolide, tetracycline, lincosamide, phenicol, oxazolidinone, streptogramin, pleuromutilin, and glycopeptide, were positively correlated with Staphylococcus, Streptococcus, Listeria, Bacillus, Klebsiella, Clostridium, and Enterobacter, the potential hosts of ARGs. Overall, ARGs in alfalfa silage were abundant and were influenced by the fermentation parameters and microbial community composition. Ensiling could be a feasible way to mitigate ARGs in forages. The addition of PA could not only improve fermentation quality but also reduce ARG pollution of alfalfa silage. IMPORTANCE Antibiotic resistance genes (ARGs) are considered environmental pollutants posing a potential human health risk. Silage is an important and traditional feed, mainly for ruminants. ARGs in silages might influence the diversity and distribution of ARGs in animal intestinal and feces and then the manure and the manured soil. However, the diversity and dynamics of ARGs in silage during fermentation are still unknown. We ensiled alfalfa, one of the most widely used forages, with or without pyroligneous acid (PA), which was proved to have the ability to reduce ARGs in soils. The results showed that ARGs in alfalfa silage were abundant and were influenced by the fermentation parameters and microbial community. The majority of ARGs in alfalfa silage reduced during fermentation. The addition of PA could improve silage quality and reduce ARG pollution in alfalfa silage. This study can provide useful information for understanding and controlling ARG pollution in animal production.
Collapse
|
9
|
Investigation of Antimicrobial Resistance Genes in Listeria monocytogenes from 2010 through to 2021. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095506. [PMID: 35564901 PMCID: PMC9099560 DOI: 10.3390/ijerph19095506] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023]
Abstract
Antimicrobial resistance (AMR) is a serious public health issue. Due to resistance to current antibiotics and a low rate of development of new classes of antimicrobials, AMR is a leading cause of death worldwide. Listeria monocytogenes is a deadly foodborne pathogen that causes listeriosis for the immunocompromised, the elderly, and pregnant women. Unfortunately, antimicrobial resistance has been reported in L. monocytogenes. This study conducted the first comprehensive statistical analysis of L. monocytogenes isolate data from the National Pathogen Detection Isolate Browser (NPDIB) to identify the trends for AMR genes in L. monocytogenes. Principal component analysis was firstly used to project the multi-dimensional data into two dimensions. Hierarchical clustering was then used to identify the significant AMR genes found in L. monocytogenes samples and to assess changes during the period from 2010 through to 2021. Statistical analysis of the data identified fosX, lin, abc-f, and tet(M) as the four most common AMR genes found in L. monocytogenes. It was determined that there was no increase in AMR genes during the studied time period. It was also observed that the number of isolates decreased from 2016 to 2020. This study establishes a baseline for the ongoing monitoring of L. monocytogenes for AMR genes.
Collapse
|
10
|
Wajima T, Hagimoto A, Tanaka E, Kawamura Y, Nakaminami H. Identification and characterization of a novel multidrug-resistant streptococcus, Streptococcus toyakuensis sp. nov., from a blood sample. J Glob Antimicrob Resist 2022; 29:316-322. [DOI: 10.1016/j.jgar.2022.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/06/2022] [Accepted: 04/26/2022] [Indexed: 11/28/2022] Open
|
11
|
Dong L, Meng L, Liu H, Wu H, Schroyen M, Zheng N, Wang J. Effect of Cephalosporin Treatment on the Microbiota and Antibiotic Resistance Genes in Feces of Dairy Cows with Clinical Mastitis. Antibiotics (Basel) 2022; 11:antibiotics11010117. [PMID: 35052994 PMCID: PMC8773067 DOI: 10.3390/antibiotics11010117] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 11/23/2022] Open
Abstract
Antibiotics are frequently used to treat dairy cows with mastitis. However, the potential effects of β-lactam antibiotics, such as cephalosporins, on the fecal microbiome is unknown. The objective was to investigate the effects of ceftiofur and cefquinome on the fecal microbiota and antibiotic resistance genes of dairy cows with mastitis. The fecal samples were collected from 8 dairy cows at the following periods: the start day (Day 0), medication (Days 1, 2, and 3), withdrawal (Days 4, 6, 7, and 8), and recovery (Days 9, 11, 13, and 15). 16S rRNA gene sequencing was applied to explore the changes in microbiota, and qPCR was used to investigate the antibiotic resistance genes. The cephalosporin treatment significantly decreased the microbial diversity and richness, indicated by the decreased Shannon and Chao 1 indexes, respectively (p < 0.05). The relative abundance of Bacteroides, Bacteroidaceae, Bacteroidales, and Bacteroidia increased, and the relative abundance of Clostridia, Clostridiales, Ethanoligenens, and Clostridium IV decreased at the withdrawal period. The cephalosporin treatment increased the relative abundance of β-lactam resistance genes (blaTEM and cfxA) at the withdrawal period (p < 0.05). In conclusion, the cephalosporin treatment decreased the microbial diversity and richness at the medication period, and increased the relative abundance of two β-lactam resistance genes at the withdrawal period.
Collapse
Affiliation(s)
- Lei Dong
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.D.); (L.M.); (H.L.); (H.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium;
| | - Lu Meng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.D.); (L.M.); (H.L.); (H.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huimin Liu
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.D.); (L.M.); (H.L.); (H.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haoming Wu
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.D.); (L.M.); (H.L.); (H.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Martine Schroyen
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium;
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.D.); (L.M.); (H.L.); (H.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (N.Z.); (J.W.); Tel.: +86-10-62816069 (J.W.)
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.D.); (L.M.); (H.L.); (H.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (N.Z.); (J.W.); Tel.: +86-10-62816069 (J.W.)
| |
Collapse
|
12
|
Stasiak M, Maćkiw E, Kowalska J, Kucharek K, Postupolski J. Silent Genes: Antimicrobial Resistance and Antibiotic Production. Pol J Microbiol 2022; 70:421-429. [PMID: 35003274 PMCID: PMC8702603 DOI: 10.33073/pjm-2021-040] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/15/2021] [Indexed: 11/05/2022] Open
Abstract
Silent genes are DNA sequences that are generally not expressed or expressed at a very low level. These genes become active as a result of mutation, recombination, or insertion. Silent genes can also be activated in laboratory conditions using pleiotropic, targeted genome-wide, or biosynthetic gene cluster approaches. Like every other gene, silent genes can spread through horizontal gene transfer. Most studies have focused on strains with phenotypic resistance, which is the most common subject. However, to fully understand the mechanism behind the spreading of antibiotic resistance, it is reasonable to study the whole resistome, including silent genes.
Collapse
Affiliation(s)
- Monika Stasiak
- Department of Food Safety, National Institute of Public Health NIH - National Research Institute, Warsaw, Poland
| | - Elżbieta Maćkiw
- Department of Food Safety, National Institute of Public Health NIH - National Research Institute, Warsaw, Poland
| | - Joanna Kowalska
- Department of Food Safety, National Institute of Public Health NIH - National Research Institute, Warsaw, Poland
| | - Katarzyna Kucharek
- Department of Food Safety, National Institute of Public Health NIH - National Research Institute, Warsaw, Poland
| | - Jacek Postupolski
- Department of Food Safety, National Institute of Public Health NIH - National Research Institute, Warsaw, Poland
| |
Collapse
|
13
|
Streptococcus sputorum, a Novel Member of Streptococcus with Multidrug Resistance, Exhibits Cytotoxicity. Antibiotics (Basel) 2021; 10:antibiotics10121532. [PMID: 34943744 PMCID: PMC8698525 DOI: 10.3390/antibiotics10121532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 11/29/2022] Open
Abstract
We describe the genomic and phenotypic characteristics of a novel member of Streptococcus with multidrug resistance (MDR) isolated from hospital samples. Strains SP218 and SP219 were identified as a novel Streptococcus, S. sputorum, using whole-genome sequencing and biochemical tests. Average nucleotide identity values of strains SP218 and SP219 with S. pseudopneumoniae IS7493 and S. pneumoniae ST556 were 94.3% and 93.3%, respectively. Genome-to-genome distance values of strains SP218 and SP219 with S. pseudopneumoniae IS7493 and S. pneumoniae ST556 were 56.70% (54–59.5%) and 56.40% (52.8–59.9%), respectively. The biochemical test results distinguished these strains from S. pseudopneumoniae and S. pneumoniae, particularly hydrolysis of equine urate and utilization of ribose to produce acid. These isolates were resistant to six major classes of antibiotics, which correlated with horizontal gene transfer and mutation. Notably, strain SP219 exhibited cytotoxicity against human lung epithelial cell line A549. Our results indicate the pathogenic potential of S. sputorum, and provide valuable insights into mitis group of streptococci.
Collapse
|
14
|
Li Y, Dominguez S, Nanduri SA, Rivers J, Mathis S, Li Z, McGee L, Chochua S, Metcalf BJ, Van Beneden CA, Beall B, Miller L. Genomic Characterization of Group A Streptococci Causing Pharyngitis and Invasive Disease in Colorado, USA, June 2016 - April 2017. J Infect Dis 2021; 225:1841-1851. [PMID: 34788828 PMCID: PMC9125432 DOI: 10.1093/infdis/jiab565] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/08/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The genomic features and transmission link of circulating Group A streptococcus (GAS) strains causing different disease types, such as pharyngitis and invasive disease, are not well understood. METHODS We used whole-genome sequencing (WGS) to characterize GAS isolates recovered from persons with pharyngitis and invasive disease in the Denver metropolitan area from June 2016 to April 2017. RESULTS GAS isolates were cultured from 236 invasive and 417 pharyngitis infections. WGS identified 34 emm types. Compared to pharyngitis isolates, invasive isolates were more likely to carry the erm family genes (23% vs. 7.4%, p<0.001), which confer resistance to erythromycin and clindamycin (including inducible resistance), and covS gene inactivation (7% vs. 0.5%, p<0.001). WGS identified 97 genomic clusters (433 isolates; 2-65 isolates per cluster) that consisted of genomically closely related isolates (median SNP (IQR) = 3 (1-4) within cluster). Thirty genomic clusters (200 isolates; 31% of all isolates) contained both pharyngitis and invasive isolates and were found in 11 emm types. CONCLUSIONS In the Denver metropolitan population, mixed disease types were commonly seen in clusters of closely related isolates, indicative of overlapping transmission networks. Antibiotic-resistance and covS inactivation was disproportionally associated with invasive disease.
Collapse
Affiliation(s)
- Yuan Li
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Samuel Dominguez
- University of Colorado School of Medicine Aurora, CO, USA; Children's Hospital Colorado Aurora, CO, USA
| | - Srinivas A Nanduri
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joy Rivers
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Saundra Mathis
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Zhongya Li
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Lesley McGee
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sopio Chochua
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Benjamin J Metcalf
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Chris A Van Beneden
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Bernard Beall
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Lisa Miller
- Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
15
|
Enrofloxacin Alters Fecal Microbiota and Resistome Irrespective of Its Dose in Calves. Microorganisms 2021; 9:microorganisms9102162. [PMID: 34683483 PMCID: PMC8537546 DOI: 10.3390/microorganisms9102162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 12/27/2022] Open
Abstract
Enrofloxacin is a fluoroquinolone drug used to prevent and control bovine respiratory disease (BRD) complex in multiple or single doses, ranging from 7.5 to 12.5 mg/kg body weight. Here, we examined the effects of high and low doses of a single subcutaneously injected enrofloxacin on gut microbiota and resistome in calves. Thirty-five calves sourced for this study were divided into five groups: control (n = 7), two low dose groups (n = 14, 7.5 mg/kg), and two high dose groups (n = 14, 12.5 mg/kg). One group in the low and high dose groups was challenged with Mannheimia haemolytica to induce BRD. Both alpha and beta diversities were significantly different between pre- and post-treatment microbial communities (q < 0.05). The high dose caused a shift in a larger number of genera than the low dose. Using metagenomic ProxiMeta Hi-C, 32 unique antimicrobial resistance genes (ARGs) conferring resistance to six antibiotic classes were detected with their reservoirs, and the high dose favored clonal expansion of ARG-carrying bacterial hosts. In conclusion, enrofloxacin treatment can alter fecal microbiota and resistome irrespective of its dose. Hi-C sequencing provides significant benefits for unlocking new insights into the ARG ecology of complex samples; however, limitations in sample size and sequencing depth suggest that further work is required to validate the findings.
Collapse
|
16
|
Danofloxacin Treatment Alters the Diversity and Resistome Profile of Gut Microbiota in Calves. Microorganisms 2021; 9:microorganisms9102023. [PMID: 34683343 PMCID: PMC8538188 DOI: 10.3390/microorganisms9102023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 12/25/2022] Open
Abstract
Fluoroquinolones, such as danofloxacin, are used to control bovine respiratory disease complex in beef cattle; however, little is known about their effects on gut microbiota and resistome. The objectives were to evaluate the effect of subcutaneously administered danofloxacin on gut microbiota and resistome, and the composition of Campylobacter in calves. Twenty calves were injected with a single dose of danofloxacin, and ten calves were kept as a control. The effects of danofloxacin on microbiota and the resistome were assessed using 16S rRNA sequencing, quantitative real-time PCR, and metagenomic Hi-C ProxiMeta. Alpha and beta diversities were significantly different (p < 0.05) between pre-and post-treatment samples, and the compositions of several bacterial taxa shifted. The patterns of association between the compositions of Campylobacter and other genera were affected by danofloxacin. Antimicrobial resistance genes (ARGs) conferring resistance to five antibiotics were identified with their respective reservoirs. Following the treatment, some ARGs (e.g., ant9, tet40, tetW) increased in frequencies and host ranges, suggesting initiation of horizontal gene transfer, and new ARGs (aac6, ermF, tetL, tetX) were detected in the post-treatment samples. In conclusion, danofloxacin induced alterations of gut microbiota and selection and enrichment of resistance genes even against antibiotics that are unrelated to danofloxacin.
Collapse
|
17
|
Shen L, Wang L, Liu C, Shi S, Takahashi T, Wang T. Community-acquired pneumonia: Trends in and research on drug resistance and advances in new antibiotics. Biosci Trends 2021; 15:266-275. [PMID: 34483225 DOI: 10.5582/bst.2021.01342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Community-acquired pneumonia (CAP) refers to infectious inflammation of the lung parenchyma developing outside of a hospital. CAP has quite a high mortality and morbidity rate worldwide, and especially among elderly patients. The increasing burden of CAP is due to antibiotic resistance, the growth of the elderly population, and underlying comorbidities. Streptococcus pneumoniae remains the most common bacterial pathogen causing CAP, but multi-drug resistance bacteria and potential pathogens have increased the difficulty and challenges of managing CAP. Although preventive measures, diagnostic techniques, and treatment strategies are constantly advancing and improving, the susceptibility of multi-drug resistant pathogens, such as including Methicillin-Resistant Staphylococcus aureus (MRSA), Klebsiella pneumoniae, and Pseudomonas aeruginosa, has not improved significantly in recent decades, thus highlighting the importance and necessity of developing new antibiotics for the treatment of CAP. New antimicrobials have been approved over the past few years that will expand treatment options for CAP, and especially for patients with potential comorbidities. This situation also offers the chance to reduce the abuse of antibiotics, their toxicities, and their adverse reactions and to provide effective personalized antibiotic treatment.
Collapse
Affiliation(s)
- Luyan Shen
- Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Lixiang Wang
- Department of Health Policy and Management, International University of Health and Welfare, Tokyo, Japan
| | - Cong Liu
- Department of Breast Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Shaomin Shi
- Department of Respiratory Medicine, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Tai Takahashi
- Department of Health Policy and Management, International University of Health and Welfare, Tokyo, Japan
| | - Tiejun Wang
- Department of Radiation Oncology, The Second Affiliated Hospital, Jilin University, Changchun, Jilin, China
| |
Collapse
|
18
|
Alves-Barroco C, Caço J, Roma-Rodrigues C, Fernandes AR, Bexiga R, Oliveira M, Chambel L, Tenreiro R, Mato R, Santos-Sanches I. New Insights on Streptococcus dysgalactiae subsp. dysgalactiae Isolates. Front Microbiol 2021; 12:686413. [PMID: 34335512 PMCID: PMC8319831 DOI: 10.3389/fmicb.2021.686413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
Streptococcus dysgalactiae subsp. dysgalactiae (SDSD) has been considered a strict animal pathogen. Nevertheless, the recent reports of human infections suggest a niche expansion for this subspecies, which may be a consequence of the virulence gene acquisition that increases its pathogenicity. Previous studies reported the presence of virulence genes of Streptococcus pyogenes phages among bovine SDSD (collected in 2002-2003); however, the identity of these mobile genetic elements remains to be clarified. Thus, this study aimed to characterize the SDSD isolates collected in 2011-2013 and compare them with SDSD isolates collected in 2002-2003 and pyogenic streptococcus genomes available at the National Center for Biotechnology Information (NCBI) database, including human SDSD and S. dysgalactiae subsp. equisimilis (SDSE) strains to track temporal shifts on bovine SDSD genotypes. The very close genetic relationships between humans SDSD and SDSE were evident from the analysis of housekeeping genes, while bovine SDSD isolates seem more divergent. The results showed that all bovine SDSD harbor Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas IIA system. The widespread presence of this system among bovine SDSD isolates, high conservation of repeat sequences, and the polymorphism observed in spacer can be considered indicators of the system activity. Overall, comparative analysis shows that bovine SDSD isolates carry speK, speC, speL, speM, spd1, and sdn virulence genes of S. pyogenes prophages. Our data suggest that these genes are maintained over time and seem to be exclusively a property of bovine SDSD strains. Although the bovine SDSD genomes characterized in the present study were not sequenced, the data set, including the high homology of superantigens (SAgs) genes between bovine SDSD and S. pyogenes strains, may indicate that events of horizontal genetic transfer occurred before habitat separation. All bovine SDSD isolates were negative for genes of operon encoding streptolysin S, except for sagA gene, while the presence of this operon was detected in all SDSE and human SDSD strains. The data set of this study suggests that the separation between the subspecies "dysgalactiae" and "equisimilis" should be reconsidered. However, a study including the most comprehensive collection of strains from different environments would be required for definitive conclusions regarding the two taxa.
Collapse
Affiliation(s)
- Cinthia Alves-Barroco
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology/FCT NOVA, Universidade NOVA de Lisboa, Caparica, Portugal
| | - João Caço
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology/FCT NOVA, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Catarina Roma-Rodrigues
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology/FCT NOVA, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology/FCT NOVA, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Ricardo Bexiga
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
| | - Manuela Oliveira
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
| | - Lélia Chambel
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Edifício TecLabs, Lisbon, Portugal
| | - Rogério Tenreiro
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Edifício TecLabs, Lisbon, Portugal
| | - Rosario Mato
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology/FCT NOVA, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Ilda Santos-Sanches
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology/FCT NOVA, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
19
|
Zalewska M, Błażejewska A, Czapko A, Popowska M. Antibiotics and Antibiotic Resistance Genes in Animal Manure - Consequences of Its Application in Agriculture. Front Microbiol 2021; 12:610656. [PMID: 33854486 PMCID: PMC8039466 DOI: 10.3389/fmicb.2021.610656] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
Antibiotic resistance genes (ARGs) are a relatively new type of pollutant. The rise in antibiotic resistance observed recently is closely correlated with the uncontrolled and widespread use of antibiotics in agriculture and the treatment of humans and animals. Resistant bacteria have been identified in soil, animal feces, animal housing (e.g., pens, barns, or pastures), the areas around farms, manure storage facilities, and the guts of farm animals. The selection pressure caused by the irrational use of antibiotics in animal production sectors not only promotes the survival of existing antibiotic-resistant bacteria but also the development of new resistant forms. One of the most critical hot-spots related to the development and dissemination of ARGs is livestock and poultry production. Manure is widely used as a fertilizer thanks to its rich nutrient and organic matter content. However, research indicates that its application may pose a severe threat to human and animal health by facilitating the dissemination of ARGs to arable soil and edible crops. This review examines the pathogens, potentially pathogenic microorganisms and ARGs which may be found in animal manure, and evaluates their effect on human health through their exposure to soil and plant resistomes. It takes a broader view than previous studies of this topic, discussing recent data on antibiotic use in farm animals and the effect of these practices on the composition of animal manure; it also examines how fertilization with animal manure may alter soil and crop microbiomes, and proposes the drivers of such changes and their consequences for human health.
Collapse
Affiliation(s)
- Magdalena Zalewska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Aleksandra Błażejewska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Agnieszka Czapko
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Popowska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
20
|
Chen L, Huang J, Huang X, He Y, Sun J, Dai X, Wang X, Shafiq M, Wang L. Horizontal Transfer of Different erm(B)-Carrying Mobile Elements Among Streptococcus suis Strains With Different Serotypes. Front Microbiol 2021; 12:628740. [PMID: 33841355 PMCID: PMC8032901 DOI: 10.3389/fmicb.2021.628740] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/03/2021] [Indexed: 11/24/2022] Open
Abstract
Macrolide-resistant Streptococcus suis is highly prevalent worldwide. The acquisition of the erm(B) gene mediated by mobile genetic elements (MGEs) in particular integrative and conjugative elements (ICEs) is recognized as the main reason for the rapid spread of macrolide-resistant streptococcal strains. However, knowledge about different erm(B)-carrying elements responsible for the widespread of macrolide resistance and their transferability in S. suis remains poorly understood. In the present study, two erm(B)- and tet(O)-harboring putative ICEs, designated as ICESsuYSB17_rplL and ICESsuYSJ15_rplL, and a novel erm(B)- and aadE-spw-like-carrying genomic island (GI), named GISsuJHJ17_rpsI, were identified to be excised from the chromosome and transferred among S. suis strains with different serotypes. ICESsuYSB17_rplL and ICESsuYSJ15_rplL were integrated downstream the rplL gene, a conserve locus of the ICESa2603 family. GISsuJHJ17_rpsI, with no genes belonging to the conjugation module, was integrated into the site of rpsI. All transconjugants did not exhibit obvious fitness cost by growth curve and competition assays when compared with the recipient. The results demonstrate that different erm(B)-carrying elements were presented and highlight the role of these elements in the dissemination of macrolide resistance in S. suis.
Collapse
Affiliation(s)
- Li Chen
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jinhu Huang
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xinxin Huang
- Technical Center for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai, China
| | - Yuping He
- Technical Center for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai, China
| | - Junjie Sun
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xingyang Dai
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaoming Wang
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Shafiq
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Liping Wang
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
21
|
Mudzana R, Mavenyengwa RT, Gudza-Mugabe M. Analysis of virulence factors and antibiotic resistance genes in group B streptococcus from clinical samples. BMC Infect Dis 2021; 21:125. [PMID: 33509097 PMCID: PMC7844887 DOI: 10.1186/s12879-021-05820-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 01/19/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Streptococcus agalacticae (Group B Streptococcus, GBS) is one of the most important causative agents of serious infections among neonates. This study was carried out to identify antibiotic resistance and virulence genes associated with GBS isolated from pregnant women. METHODS A total of 43 GBS isolates were obtained from 420 vaginal samples collected from HIV positive and negative women who were 13-35 weeks pregnant attending Antenatal Care at Chitungwiza and Harare Central Hospitals in Zimbabwe. Identification tests of GBS isolates was done using standard bacteriological methods and molecular identification testing. Antibiotic susceptibility testing was done using the modified Kirby-Bauer method and E-test strips. The boiling method was used to extract DNA and Polymerase Chain Reaction (PCR) was used to screen for 13 genes. Data was fed into SPSS 24.0. RESULTS Nine distinct virulence gene profiles were identified and hly-scpB-bca-rib 37.2% (16/43) was common. The virulence genes identified were namely hly 97.8% (42/43), scpB 90.1% (39/43), bca 86.0% (37/43), rib 69.8% (30/43) and bac 11.6% (5/43). High resistance to tetracycline 97.7% (42/43) was reported followed by 72.1% (31/43) cefazolin, 69.8% (30/43) penicillin G, 58.1% (25/43) ampicillin, 55.8% (24/43) clindamycin, 46.5% (20/43) ceftriaxone, 34.9% (15/43) chloramphenicol, and 30.2% (13/43) for both erythromycin and vancomycin using disk diffusion. Antibiotic resistance genes among the resistant and intermediate-resistant isolates showed high frequencies for tetM 97.6% (41/42) and low frequencies for ermB 34.5% (10/29), ermTR 10.3% (3/29), mefA 3.4% (1/29), tetO 2.4% (1/42) and linB 0% (0/35). The atr housekeeping gene yielded 100% (43/43) positive results, whilst the mobile genetic element IS1548 yielded 9.3% (4/43). CONCLUSION The study showed high prevalence of hly, scpB, bca and rib virulence genes in S. agalactiae strains isolated from pregnant women. Tetracycline resistance was predominantly caused by the tetM gene, whilst macrolide resistance was predominantly due to the presence of erm methylase, with the ermB gene being more prevalent. Multi-drug resistance coupled with the recovery of resistant isolates to antimicrobial agents such as penicillins indicates the importance of GBS surveillance and susceptibility tests. It was also observed that in vitro phenotypic resistance is not always accurately predicted by resistance genotypes.
Collapse
Affiliation(s)
- Raymond Mudzana
- Department of Medical Microbiology, National Polio Laboratory, University of Zimbabwe College of Health Sciences, P. O. Box A178, Avondale, Harare, Zimbabwe
| | - Rooyen T. Mavenyengwa
- Department of Medical Microbiology, National Polio Laboratory, University of Zimbabwe College of Health Sciences, P. O. Box A178, Avondale, Harare, Zimbabwe
| | - Muchaneta Gudza-Mugabe
- Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Room No. 3.22 Falmouth Building, Anzio Road, Observatory, Cape Town, 7925 South Africa
| |
Collapse
|
22
|
Nakano S, Fujisawa T, Ito Y, Chang B, Matsumura Y, Yamamoto M, Suga S, Ohnishi M, Nagao M. Streptococcus pneumoniae Serotype 12F-CC4846 and Invasive Pneumococcal Disease after Introduction of 13-Valent Pneumococcal Conjugate Vaccine, Japan, 2015-2017. Emerg Infect Dis 2020; 26:2660-2668. [PMID: 33079039 PMCID: PMC7588537 DOI: 10.3201/eid2611.200087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To prevent invasive pneumococcal disease (IPD), pneumococcal conjugate vaccines (PCVs) have been implemented in many countries; however, many cases of IPD still occur and can be attributable to nonvaccine serotypes of Streptococcus pneumoniae. In Japan, the number of IPD cases attributable to serotype 12F increased from 4.4% in 2015 to 24.6% in 2017 after 13-valent PCV was introduced. To clarify the associated genetic characteristics, we conducted whole-genome sequencing of 75 serotype 12F isolates. We identified 2 sequence types (STs) among the isolates: ST4846, which was the major type, and ST6945. Bayesian analysis suggested that these types diverged in »1942. Among serotype 12F-ST4846, we identified a major cluster, PC-JP12F, whose time of most recent common ancestor was estimated to be »2012. A phylogeographic analysis demonstrated that PC-JP12F isolates spread from the Kanto region, the most populated region in Japan, to other local regions.
Collapse
|
23
|
Alves-Barroco C, Rivas-García L, Fernandes AR, Baptista PV. Tackling Multidrug Resistance in Streptococci - From Novel Biotherapeutic Strategies to Nanomedicines. Front Microbiol 2020; 11:579916. [PMID: 33123110 PMCID: PMC7573253 DOI: 10.3389/fmicb.2020.579916] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
The pyogenic streptococci group includes pathogenic species for humans and other animals and has been associated with enduring morbidity and high mortality. The main reason for the treatment failure of streptococcal infections is the increased resistance to antibiotics. In recent years, infectious diseases caused by pyogenic streptococci resistant to multiple antibiotics have been raising with a significant impact to public health and veterinary industry. The rise of antibiotic-resistant streptococci has been associated to diverse mechanisms, such as efflux pumps and modifications of the antimicrobial target. Among streptococci, antibiotic resistance emerges from previously sensitive populations as result of horizontal gene transfer or chromosomal point mutations due to excessive use of antimicrobials. Streptococci strains are also recognized as biofilm producers. The increased resistance of biofilms to antibiotics among streptococci promote persistent infection, which comprise circa 80% of microbial infections in humans. Therefore, to overcome drug resistance, new strategies, including new antibacterial and antibiofilm agents, have been studied. Interestingly, the use of systems based on nanoparticles have been applied to tackle infection and reduce the emergence of drug resistance. Herein, we present a synopsis of mechanisms associated to drug resistance in (pyogenic) streptococci and discuss some innovative strategies as alternative to conventional antibiotics, such as bacteriocins, bacteriophage, and phage lysins, and metal nanoparticles. We shall provide focused discussion on the advantages and limitations of agents considering application, efficacy and safety in the context of impact to the host and evolution of bacterial resistance.
Collapse
Affiliation(s)
- Cinthia Alves-Barroco
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Lorenzo Rivas-García
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.,Biomedical Research Centre, University of Granada, Granada, Spain
| | - Alexandra R Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Pedro Viana Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
24
|
Wang X, Cong Z, Huang W, Li C. Molecular characterization of Streptococcus pneumoniae isolated from pediatric patients in Shanghai, China. Pediatr Pulmonol 2020; 55:2135-2141. [PMID: 32470194 DOI: 10.1002/ppul.24877] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/26/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND Streptococcus pneumoniae is a major cause of bacterial infection among infants and young children with high morbidity and mortality. The serotype distribution of S. pneumoniae varies with geography, time, age, and disease. AIM We aimed to investigate the current status of molecular characteristics of S. pneumoniae strains isolated from pediatric patients in Shanghai, China. METHODS Between 2016 and 2018, 73 clinical S. pneumoniae isolates were characterized by capsular serotype, multilocus sequence typing, antibiotic susceptibility, and resistant genes. RESULTS The most common serotypes were 19F (39.7%), 19A (16.4%), 6A (11.0%), 14 (9.6%), and 6B (8.2%). The coverage rates of the 7-, 10- and 13-valent pneumococcal conjugate vaccines were 64.4%, 64.4%, and 91.8%, respectively. The five predominant sequence types were ST271 (37.0%), ST320 (19.2%), ST3173 (11.0%), ST876 (6.8%), and ST81 (4.1%), which were mainly associated with serotypes 19F, 19A, 6A, 14, and 23F, respectively. The rates of resistance to penicillin and ceftriaxone were 21.9% and 39.7%, respectively. All strains displayed resistance to macrolides, 54.8% of which possessed both erm(B) and mef(A/E) genes, and 41.1% carried the erm(B) gene alone. Tn2010 (41.1%) was the most common transposon. CONCLUSIONS Clonal complex 271 (Taiwan19F-14 clone) played a dominant role in the dissemination of pneumococcal isolates. The prevalent serotypes indicated a lack of the 7-valent pneumococcal conjugate vaccine, which has not been included in national immunization programs in mainland China. The high rate of macrolide resistance made the empirical use of macrolides alone not suitable for treating pediatric pneumococcal disease.
Collapse
Affiliation(s)
- Xing Wang
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhilei Cong
- Department of Emergency, Huashan Hospital, Fudan University, Shanghai, China
| | - Weichun Huang
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Cong Li
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Li Y, Rivers J, Mathis S, Li Z, Velusamy S, Nanduri SA, Van Beneden CA, Snippes-Vagnone P, Lynfield R, McGee L, Chochua S, Metcalf BJ, Beall B. Genomic Surveillance of Streptococcus pyogenes Strains Causing Invasive Disease, United States, 2016-2017. Front Microbiol 2020; 11:1547. [PMID: 32849323 PMCID: PMC7396493 DOI: 10.3389/fmicb.2020.01547] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/16/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Streptococcus pyogenes is a major cause of severe, invasive infections in humans. The bacterial pathogen harbors a wide array of virulence factors and exhibits high genomic diversity. Rapid changes of circulating strains in a community are common. Understanding the current prevalence and dynamics of S. pyogenes lineages could inform vaccine development and disease control strategies. METHODS We used whole-genome sequencing (WGS) to characterize all invasive S. pyogenes isolates obtained through the United States Center for Disease Control and Prevention's Active Bacterial Core surveillance (ABCs) in 2016 and 2017. We determined the distribution of strain features, including emm type, antibiotic resistance determinants, and selected virulence factors. Changes in strain feature distribution between years 2016 and 2017 were evaluated. Phylogenetic analysis was used to identify expanding lineages within emm type. RESULTS Seventy-one emm types were identified from 3873 isolates characterized. The emm types targeted by a 30-valent M protein-based vaccine accounted for 3230 (89%) isolates. The relative frequencies of emm types collected during the 2 years were similar. While all isolates were penicillin-susceptible, erythromycin-resistant isolates increased from 273 (16% of 2016 isolates) to 432 (23% of 2017 isolates), mainly driven by increase of the erm-positive emm types 92 and 83. The prevalence of 24 virulence factors, including 11 streptococcal pyrogenic toxins, ranged from 6 to 90%. In each of three emm types (emm 49, 82, and 92), a subgroup of isolates significantly expanded between 2016 and 2017 compared to isolates outside of the subgroup (P-values < 0.0001). Specific genomic sequence changes were associated with these expanded lineages. CONCLUSIONS While the overall population structure of invasive S. pyogenes isolates in the United States remained stable, some lineages, including several that were antibiotic-resistant, increased between 2016 and 2017. Continued genomic surveillance can help monitor and characterize bacterial features associated with emerging strains from invasive infections.
Collapse
Affiliation(s)
- Yuan Li
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, United States Department of Health and Human Services, Atlanta, GA, United States
| | - Joy Rivers
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, United States Department of Health and Human Services, Atlanta, GA, United States
| | - Saundra Mathis
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, United States Department of Health and Human Services, Atlanta, GA, United States
| | - Zhongya Li
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, United States Department of Health and Human Services, Atlanta, GA, United States
| | - Srinivasan Velusamy
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, United States Department of Health and Human Services, Atlanta, GA, United States
| | - Srinivas A. Nanduri
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, United States Department of Health and Human Services, Atlanta, GA, United States
| | - Chris A. Van Beneden
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, United States Department of Health and Human Services, Atlanta, GA, United States
| | | | - Ruth Lynfield
- Minnesota Department of Health, St Paul, MN, United States
| | - Lesley McGee
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, United States Department of Health and Human Services, Atlanta, GA, United States
| | - Sopio Chochua
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, United States Department of Health and Human Services, Atlanta, GA, United States
| | - Benjamin J. Metcalf
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, United States Department of Health and Human Services, Atlanta, GA, United States
| | - Bernard Beall
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, United States Department of Health and Human Services, Atlanta, GA, United States
| |
Collapse
|
26
|
Beheshti M, Jabalameli F, Feizabadi MM, Hahsemi FB, Beigverdi R, Emaneini M. Molecular characterization, antibiotic resistance pattern and capsular types of invasive Streptococcus pneumoniae isolated from clinical samples in Tehran, Iran. BMC Microbiol 2020; 20:167. [PMID: 32546124 PMCID: PMC7298763 DOI: 10.1186/s12866-020-01855-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/12/2020] [Indexed: 11/18/2022] Open
Abstract
Background Streptococcus pneumoniae causes serious infections worldwide. The aim of this study was to determine the molecular characteristic, antibiotic resistance pattern and capsular types of invasive S. pneumoniae in Tehran, Iran. Results Of the 44 pneumococcal invasive isolates, 39 (89%) were isolated from children and 5 (11%) from adults. The results show that all pneumococcal isolates were susceptible to linezolid but had varying resistance to trimethoprim-sulfamethoxazole (86%), erythromycin (73%), tetracycline (66%), clindamycin (43%), penicillin (16%), chloramphenicol (14%) and levofloxacin (2%). The range of erythromycin, tetracycline and penicillin MICs were 2 - ≥ 256 μg/mL, 4 - ≥ 48 μg/mL, and 0.047 - ≥ 256 respectively. All of the penicillin resistant isolates were multidrug resistant (MDR) and in addition to penicillin were resistant to tetracycline, erythromycin and trimethoprim-sulfamethoxazole. The most common capsular types detected in 64% of the pneumococcal isolates was 6A/B, 19A, 15A, 23F. The multilocus sequence typing (MLST) of 10 pneumococcal isolates revealed 9 different sequence types (STs), including ST 15139 (capsular type 19A) and ST 15140 (capsular type 23F), which have not previously been reported. Conclusions The study revealed that the S. pneumoniae isolates belonged to diverse capsular types and clones with high rate of resistance to erythromycin, tetracycline, and penicillin.
Collapse
Affiliation(s)
- Maryam Beheshti
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Building No. 7, 100 Poursina St., Keshavarz Blvd, Tehran, 14167-53955, Iran
| | - Fereshteh Jabalameli
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Building No. 7, 100 Poursina St., Keshavarz Blvd, Tehran, 14167-53955, Iran
| | - Mohammad Mehdi Feizabadi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Building No. 7, 100 Poursina St., Keshavarz Blvd, Tehran, 14167-53955, Iran
| | - Farhad Bonakdar Hahsemi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Building No. 7, 100 Poursina St., Keshavarz Blvd, Tehran, 14167-53955, Iran
| | - Reza Beigverdi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Building No. 7, 100 Poursina St., Keshavarz Blvd, Tehran, 14167-53955, Iran
| | - Mohammad Emaneini
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Building No. 7, 100 Poursina St., Keshavarz Blvd, Tehran, 14167-53955, Iran.
| |
Collapse
|
27
|
Detection of a Novel, and Likely Ancestral, Tn 916-Like Element from a Human Saliva Metagenomic Library. Genes (Basel) 2020; 11:genes11050548. [PMID: 32422869 PMCID: PMC7288454 DOI: 10.3390/genes11050548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/01/2020] [Accepted: 05/12/2020] [Indexed: 01/22/2023] Open
Abstract
Tn916 is a conjugative transposon (CTn) and the first reported and most well characterised of the Tn916/Tn1545 family of CTns. Tn916-like elements have a characteristic modular structure and different members of this family have been identified based on similarities and variations in these modules. In addition to carrying genes encoding proteins required for their conjugation, Tn916-like elements also carry accessory, antimicrobial resistance genes; most commonly the tetracycline resistance gene, tet(M). Our study aimed to identify and characterise tetracycline resistance genes from the human saliva metagenome using a functional metagenomic approach. We identified a tetracycline-resistant clone, TT31, the sequencing of which revealed it to encode both tet(M) and tet(L). Comparison of the TT31 sequence with the accessory, regulation, and recombination modules of other Tn916-like elements indicated that a partial Tn916-like element encoding a truncated orf9 was cloned in TT31. Analysis indicated that a previous insertion within the truncated orf9 created the full length orf9 found in most Tn916-like transposons; demonstrating that orf9 is, in fact, the result of a gene fusion event. Thus, we hypothesise that the Tn916-like element cloned in TT31 likely represents an ancestral Tn916.
Collapse
|
28
|
Pallares-Vega R, Blaak H, van der Plaats R, de Roda Husman AM, Hernandez Leal L, van Loosdrecht MCM, Weissbrodt DG, Schmitt H. Determinants of presence and removal of antibiotic resistance genes during WWTP treatment: A cross-sectional study. WATER RESEARCH 2019; 161:319-328. [PMID: 31203037 DOI: 10.1016/j.watres.2019.05.100] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 05/21/2023]
Abstract
Wastewater treatment plants (WWTPs), linking human fecal residues and the environment, are considered as hotspots for the spread of antimicrobial resistance (AMR). In order to evaluate the role of WWTPs and underlying operational parameters for the removal of AMR, the presence and removal efficiency of a selected set of 6 antimicrobial resistance genes (ARGs) and 2 mobile genetic elements (MGEs) was evaluated by means of qPCR in influent and effluent samples from 62 Dutch WWTPs. The role of possible factors impacting the concentrations of ARGs and MGEs in the influent and their removal was identified through statistical analysis. ARGs and the class I integron-integrase gene (intI1) were, on average, removed to a similar extent (1.76 log reduction) or better (+0.30-1.90 logs) than the total bacteria (measured as 16S rRNA gene). In contrast, broad-host-range plasmids (IncP-1) had a significantly increased (p < 0.001) relative abundance after treatment. The presence of healthcare institutions in the area served did only slightly increase the concentrations of ARGs or MGEs in influent. From the extended panel of operational parameters, rainfall, increasing the hydraulic load of the plant, most significantly (p < 0.05) affected the treatment efficiency by decreasing it on average -0.38 logs per time the flow exceeded the average daily flow. Our results suggest that overall, WWTP treatments do not favor the proliferation of the assessed resistance genes but might increase the relative abundance of broad-host-range plasmids of the IncP-1 type.
Collapse
Affiliation(s)
- Rebeca Pallares-Vega
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands; Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Hetty Blaak
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | | | - Ana M de Roda Husman
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Lucia Hernandez Leal
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands
| | | | - David G Weissbrodt
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Heike Schmitt
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands; Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| |
Collapse
|
29
|
Holman DB, Yang W, Alexander TW. Antibiotic treatment in feedlot cattle: a longitudinal study of the effect of oxytetracycline and tulathromycin on the fecal and nasopharyngeal microbiota. MICROBIOME 2019; 7:86. [PMID: 31167657 PMCID: PMC6549328 DOI: 10.1186/s40168-019-0696-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/19/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND Beef cattle in North America frequently receive an antibiotic injection after feedlot placement to control and manage bovine respiratory disease. The potential collateral effect of these antibiotics on the bovine microbiome is largely unknown. Therefore, we determined the longitudinal impact of two commonly administered veterinary antibiotics, oxytetracycline and tulathromycin, on the fecal and nasopharyngeal (NP) microbiota of beef cattle that were transported to a feedlot. We also report the effect these antibiotics have on several antibiotic resistance determinants in both the fecal and NP microbiome. RESULTS Oxytetracycline and tulathromycin perturbation of the bovine fecal and NP microbiota was greatest at days 2 and 5. Although the NP microbiota of the tulathromycin-treated cattle had recovered by day 12, the NP microbiota of the oxytetracycline-treated group remained altered through day 34. Overall, the NP microbiota appeared to be more sensitive to antibiotic treatment than the fecal microbiota. Members of the bacterial Microbacteriaceae family were most notably affected by antibiotic administration in the NP microbiota. Both antibiotics protected against Pasteurella spp. in the nasopharynx at days 2 and 5. Despite very similar diets at both locations, the largest shift in the fecal and NP microbiota occurred after transport to the feedlot (P < 0.05). Antibiotic resistance determinants in the NP microbiome were also affected more strongly by antibiotic treatment than those in the fecal microbiome. Oxytetracycline increased the proportion of erm(X), sul2, tet(H), tet(M), and tet(W) in NP samples and tet(M) and tet(W) in fecal samples, at day 12 (P < 0.05). The effect of tulathromycin on the relative abundance of resistance genes in the NP microbiome was greatest at day 34 as erm(X), sul2, and tet(M) were enriched (P < 0.05). CONCLUSIONS Administration of a single injection of oxytetracycline and tulathromycin resulted in significant changes in the NP and fecal microbiota during the first 5 days after treatment. Antibiotic treatment also increased the relative abundance of several antibiotic resistance determinants in the fecal and NP microbiome at either day 12 or 34.
Collapse
Affiliation(s)
- Devin B Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Wenzhu Yang
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Trevor W Alexander
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada.
| |
Collapse
|
30
|
Akdoğan Kittana FN, Mustak IB, Hascelik G, Saricam S, Gurler N, Diker KS. Erythromycin-resistant Streptococcus pneumoniae: phenotypes, genotypes, transposons and pneumococcal vaccine coverage rates. J Med Microbiol 2019; 68:874-881. [PMID: 31116101 DOI: 10.1099/jmm.0.000995] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
PURPOSE To assess the antibiotic resistance, transposon profiles, serotype distribution and vaccine coverage rates in 110 erythromycin-resistant S. pneumoniae clinical isolates. METHODOLOGY Erythromycin, clindamycin, tetracycline, chloramphenicol and kanamycin susceptibilities were assessed using the E-test/disc diffusion method. Inducible macrolide resistance was tested using the erythromycin-clindamycin double disc diffusion test. Serogrouping and serotyping were performed using latex particle agglutination and the Quellung reaction, respectively. Drug resistance genes and transposon-specific genes were investigated by PCR. RESULTS Of the isolates, 93 % were resistant to clindamycin; 81 % were resistant to tetracycline; 76 % were multi-drug-resistant, having resistance to both clindamycin and tetracycline; and 12 % had extended-drug resistance, being resistant to clindamycin, tetracycline, chloramphenicol and kanamycin. The majority of isolates (88.2 %) exhibited the cMLSB phenotype. The association between the cMLSB phenotype and tetracycline resistance was related to transposons Tn2010 (38.2 %), Tn6002 (21.8 %) and Tn3872 (18.2 %). M and iMLSB phenotypes were observed in 7 and 5 % of the isolates, respectively. The most frequent serotype was 19 F (40 %). Among the erythromycin-resistant pneumococci, vaccine coverage rates for the 13-valent pneumococcal conjugate vaccine (PCV-13) and the 23-valent pneumococcal polysaccharide vaccine (PPSV-23) were 76.4 and 79.1 %, respectively, compared to 82.2 and 85.1 % transposon-carrying isolates. CONCLUSIONS Multi-drug resistance among erythromycin-resistant S. pneumoniae isolates mainly occurs due to the horizontal spread of the Tn916 family of transposons. The majority of the transposon-carrying isolates are covered by 13- and 23-valent pneumococcal vaccines. Since serotype distribution and transposons in S. pneumoniae isolates may change over time, close monitoring is essential.
Collapse
Affiliation(s)
| | - Inci Basak Mustak
- 2 Ankara University, Faculty of Veterinary Science, Department of Microbiology, Ankara Turkey
| | - Gulsen Hascelik
- 1 Hacettepe University, Faculty of Medicine, Department of Medical Microbiology, Ankara, Turkey
| | - Seyyide Saricam
- 2 Ankara University, Faculty of Veterinary Science, Department of Microbiology, Ankara Turkey
| | - Nezahat Gurler
- 3 Istanbul University, Faculty of Medicine, Department of Medical Microbiology, Istanbul, Turkey
| | - Kadir Serdar Diker
- 2 Ankara University, Faculty of Veterinary Science, Department of Microbiology, Ankara Turkey
| |
Collapse
|
31
|
Schroeder MR, Lohsen S, Chancey ST, Stephens DS. High-Level Macrolide Resistance Due to the Mega Element [ mef(E)/ mel] in Streptococcus pneumoniae. Front Microbiol 2019; 10:868. [PMID: 31105666 PMCID: PMC6491947 DOI: 10.3389/fmicb.2019.00868] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/04/2019] [Indexed: 01/06/2023] Open
Abstract
Transferable genetic elements conferring macrolide resistance in Streptococcus pneumoniae can encode the efflux pump and ribosomal protection protein, mef(E)/mel, in an operon of the macrolide efflux genetic assembly (Mega) element- or induce ribosomal methylation through a methyltransferase encoded by erm(B). During the past 30 years, strains that contain Mega or erm(B) or both elements on Tn2010 and other Tn916-like composite mobile genetic elements have emerged and expanded globally. In this study, we identify and define pneumococcal isolates with unusually high-level macrolide resistance (MICs > 16 μg/ml) due to the presence of the Mega element [mef(E)/mel] alone. High-level resistance due to mef(E)/mel was associated with at least two specific genomic insertions of the Mega element, designated Mega-2.IVa and Mega-2.IVc. Genome analyses revealed that these strains do not possess erm(B) or known ribosomal mutations. Deletion of mef(E)/mel in these isolates eliminated macrolide resistance. We also found that Mef(E) and Mel of Tn2010-containing pneumococci were functional but the high-level of macrolide resistance was due to Erm(B). Using in vitro competition experiments in the presence of macrolides, high-level macrolide-resistant S. pneumoniae conferred by either Mega-2.IVa or erm(B), had a growth fitness advantage over the lower-level, mef(E)/mel-mediated macrolide-resistant S. pneumoniae phenotypes. These data indicate the ability of S. pneumoniae to generate high-level macrolide resistance by macrolide efflux/ribosomal protection [Mef(E)/Mel] and that high-level resistance regardless of mechanism provides a fitness advantage in the presence of macrolides.
Collapse
Affiliation(s)
- Max R Schroeder
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States.,Laboratories of Microbial Pathogenesis, Department of Veterans Affairs Medical Center, Atlanta, GA, United States
| | - Sarah Lohsen
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Scott T Chancey
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States.,Laboratories of Microbial Pathogenesis, Department of Veterans Affairs Medical Center, Atlanta, GA, United States
| | - David S Stephens
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States.,Laboratories of Microbial Pathogenesis, Department of Veterans Affairs Medical Center, Atlanta, GA, United States
| |
Collapse
|
32
|
Popovic S, Hadnadjev M, Gajic I, Mijac V, Kekic D, Smitran A, Ranin L, Opavski N. Characterization of macrolide-resistant non-invasive pneumococci in the pre-vaccine era in Serbia. Acta Microbiol Immunol Hung 2018; 65:477-488. [PMID: 30010393 DOI: 10.1556/030.65.2018.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Numerous reports have confirmed that increased macrolide use in the treatment of respiratory tract infection has contributed to the emergence of antibiotic resistance worldwide. Studies have also shown that pneumococcal vaccine can reduce pneumococcal resistance. The aim of this study was to determine the prevalence of co-resistance to penicillin and other antibiotics in macrolide-resistant (MR) non-invasive pneumococcal isolates and to evaluate serotype distribution in resistant strains in the pre-vaccine era in Serbia. About 80% of MR isolates expressed the MLS phenotype with very high resistance to both erythromycin and clindamycin. A total of 132 (84.1%) MR isolates were multiresistant, i.e., they were resistant to erythromycin, penicillin, tetracycline, and trimethoprim-sulfamethoxazole. Among 157 MR pneumococci, 11 different serotypes were found. Four serotypes, 19F, 14, 6B, and 23F, accounted for 77.7% of all MR pneumococcal isolates. Among isolates with the cMLS phenotype, serotypes 19F and 14 were predominant, whereas serotype 6A was the most common among those with the M phenotype, followed by 14. In conclusion, co-resistance to macrolides and penicillin in our non-invasive pneumococcal isolates is high. The majority of tested strains (∼80%) belonged to the four serotypes (19F, 14, 6B, and 23F) that are included in all conjugate vaccine formulations.
Collapse
Affiliation(s)
- Suncica Popovic
- 1 Institute of Microbiology and Immunology, Medical Faculty University of Belgrade, Belgrade, Republic of Serbia
| | - Mirjana Hadnadjev
- 2 Department of Microbiology, Institute for Pulmonary Diseases of Vojvodina, Sremska Kamenica, Republic of Serbia
| | - Ina Gajic
- 1 Institute of Microbiology and Immunology, Medical Faculty University of Belgrade, Belgrade, Republic of Serbia
| | - Vera Mijac
- 1 Institute of Microbiology and Immunology, Medical Faculty University of Belgrade, Belgrade, Republic of Serbia
| | - Dusan Kekic
- 1 Institute of Microbiology and Immunology, Medical Faculty University of Belgrade, Belgrade, Republic of Serbia
| | - Aleksandra Smitran
- 3 Faculty of Medicine, Department of Microbiology, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Lazar Ranin
- 1 Institute of Microbiology and Immunology, Medical Faculty University of Belgrade, Belgrade, Republic of Serbia
| | - Natasa Opavski
- 1 Institute of Microbiology and Immunology, Medical Faculty University of Belgrade, Belgrade, Republic of Serbia
| |
Collapse
|
33
|
Thumu SCR, Halami PM. Conjugal transfer of erm(B) and multiple tet genes from Lactobacillus spp. to bacterial pathogens in animal gut, in vitro and during food fermentation. Food Res Int 2018; 116:1066-1075. [PMID: 30716890 DOI: 10.1016/j.foodres.2018.09.046] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/21/2018] [Accepted: 09/18/2018] [Indexed: 10/28/2022]
Abstract
Three strains of Lactobacillus comprising Lactobacillus salivarius (CHS-1E and CH7-1E) and Lactobacillus reuteri (CH2-2) previously isolated from chicken meat were analyzed for their transferability of antibiotic resistance (AR) genes to pathogenic strains under in vivo, in vitro, and during food fermentation. For in vivo model, Albino Wistar rats were inoculated with 1010 CFU/g/ml of Enterococcus faecalis JH2-2 (recipient). After 7 days, either of two donors L. salivarius CH7-1E or L. reuteri [harbouring erythromycin and tetracycline resistance genes] were introduced at a concentration of 109 CFU/ml daily for 1 week. Two days after donor introduction, there was a stable increase in the number of transconjugants in the animal faeces from 102 to 103 CFU/g and presented erm(B), tet(M), tet(L) and tet(W) in their genome like donor strains. Similar observations were made with in vitro filter mating between CHS-1E, CH2-2 and CH7-1E and E. faecalis JH2-2 with transfer frequencies of 1 × 10-4, 3.8 × 10-3 and 2 × 10-3 per donor cell respectively. With the results obtained in vivo and in vitro, the AR transferability of donor strains was estimated during food fermentation (chicken sausage, fermented milk or idli batter) with pathogenic recipient strains added as contaminants. At the end of mating period, phenotypic resistance to erythromycin and tetracycline in Listeria monocytogenes and Yersinia enterocolitica strains was observed. This study showed the ability of food borne Lactobacillus in diffusing their AR traits in diverse natural environments increasing their concern of AR dissemination in the food chain when used as food additives and/or probiotics.
Collapse
Affiliation(s)
- Surya Chandra Rao Thumu
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore 570 020, India
| | - Prakash M Halami
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore 570 020, India.
| |
Collapse
|
34
|
Morroni G, Brenciani A, Antonelli A, D'Andrea MM, Di Pilato V, Fioriti S, Mingoia M, Vignaroli C, Cirioni O, Biavasco F, Varaldo PE, Rossolini GM, Giovanetti E. Characterization of a Multiresistance Plasmid Carrying the optrA and cfr Resistance Genes From an Enterococcus faecium Clinical Isolate. Front Microbiol 2018; 9:2189. [PMID: 30271398 PMCID: PMC6142821 DOI: 10.3389/fmicb.2018.02189] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/27/2018] [Indexed: 12/11/2022] Open
Abstract
Enterococcus faecium E35048, a bloodstream isolate from Italy, was the first strain where the oxazolidinone resistance gene optrA was detected outside China. The strain was also positive for the oxazolidinone resistance gene cfr. WGS analysis revealed that the two genes were linked (23.1 kb apart), being co-carried by a 41,816-bp plasmid that was named pE35048-oc. This plasmid also carried the macrolide resistance gene erm(B) and a backbone related to that of the well-known Enterococcus faecalis plasmid pRE25 (identity 96%, coverage 65%). The optrA gene context was original, optrA being part of a composite transposon, named Tn6628, which was integrated into the gene encoding for the ζ toxin protein (orf19 of pRE25). The cfr gene was flanked by two ISEnfa5 insertion sequences and the element was inserted into an lnu(E) gene. Both optrA and cfr contexts were excisable. pE35048-oc could not be transferred to enterococcal recipients by conjugation or transformation. A plasmid-cured derivative of E. faecium E35048 was obtained following growth at 42°C, and the complete loss of pE35048-oc was confirmed by WGS. pE35048-oc exhibited some similarity but also notable differences from pEF12-0805, a recently described enterococcal plasmid from human E. faecium also co-carrying optrA and cfr; conversely it was completely unrelated to other optrA- and cfr-carrying plasmids from Staphylococcus sciuri. The optrA-cfr linkage is a matter of concern since it could herald the possibility of a co-spread of the two genes, both involved in resistance to last resort agents such as the oxazolidinones.
Collapse
Affiliation(s)
- Gianluca Morroni
- Infectious Diseases Clinic, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Andrea Brenciani
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Alberto Antonelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Marco Maria D'Andrea
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Vincenzo Di Pilato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Simona Fioriti
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Marina Mingoia
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Carla Vignaroli
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Oscar Cirioni
- Infectious Diseases Clinic, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Francesca Biavasco
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Pietro E Varaldo
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Eleonora Giovanetti
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
35
|
Vela AI, Villalón P, Sáez-Nieto JA, Chacón G, Domínguez L, Fernández-Garayzábal JF. Characterization of Streptococcus pyogenes from Animal Clinical Specimens, Spain. Emerg Infect Dis 2018; 23:2013-2016. [PMID: 29148379 PMCID: PMC5708255 DOI: 10.3201/eid2312.151146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Streptococcus pyogenes appears to be almost exclusively restricted to humans, with few reports on isolation from animals. We provide a detailed characterization (emm typing, pulsed-field gel electrophoresis [PFGE], and multilocus sequence typing [MLST]) of 15 S. pyogenes isolates from animals associated with different clinical backgrounds. We also investigated erythromycin resistance mechanisms and phenotypes and virulence genes. We observed 2 emm types: emm12 (11 isolates) and emm77 (4 isolates). Similarly, we observed 2 genetic linages, sequence type (ST) 26 and ST63. Most isolates exhibited the M macrolide resistance phenotype and the mefA/ermB genotype. Isolates were grouped into 2 clones on the basis of emm-MLST-PFGE-virulence gene profile combinations: clone 1, characterized by the combined genotype emm12-ST36-pulsotype A-speG; and clone 2, characterized by the genotype emm77-ST63-pulsotype B-speC. Our results do not show conclusively that animals may represent a new reservoir of S. pyogenes but indicate the ability of human-derived S. pyogenes isolates to colonize and infect animals.
Collapse
|
36
|
Extremely Low Prevalence of Erythromycin-Resistant Streptococcus pyogenes Isolates and Their Molecular Characteristics by M Protein Gene and Multilocus Sequence Typing Methods. Jundishapur J Microbiol 2018. [DOI: 10.5812/jjm.12779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
37
|
Abraham T, Sistla S. Trends in Antimicrobial Resistance Patterns of Group A Streptococci, Molecular Basis and Implications. Indian J Med Microbiol 2018; 36:186-191. [DOI: 10.4103/ijmm.ijmm_18_107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
38
|
Palma TH, Harth-Chú EN, Scott J, Stipp RN, Boisvert H, Salomão MF, Theobaldo JD, Possobon RF, Nascimento LC, McCafferty JW, Faller L, Duncan MJ, Mattos-Graner RO. Oral cavities of healthy infants harbour high proportions of Streptococcus salivarius strains with phenotypic and genotypic resistance to multiple classes of antibiotics. J Med Microbiol 2016; 65:1456-1464. [PMID: 27902365 DOI: 10.1099/jmm.0.000377] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Emerging antibiotic resistance in the oropharyngeal microbiota, of which Streptococcus salivarius is a prominent species, represents a challenge for treating paediatric populations. In this study, we investigated the role of Streptococcussalivarius as a reservoir for antibiotic resistance genes (ARG) in the oral microbiota by analysing 95 Streptococcussalivarius isolates from 22 healthy infants (2-16 months of age). MICs of penicillin G, amoxicillin, erythromycin, tetracycline, doxycycline and streptomycin were determined. ARG profiles were assessed in a subset of 21 strains by next-generation sequencing of genomes, followed by searches of assembled reads against the Comprehensive Antibiotic Resistance Database. Strains resistant to erythromycin, penicillins and tetracyclines were isolated from 83.3, 33.3 and 16.6 %, respectively, of infants aged 2 to 8 months with no prior antibiotic treatment. These percentages were100.0, 66.6 and 50.0 %, by 13 to 16 months of age. ARG or polymorphisms associated with antibiotic resistance were the most prevalent and involved genes for macrolide efflux (mel, mefA/E and macB), ribosomal protection [erm(B), tet(M) and tet(O)] and β-lactamase-like proteins. Phylogenetically related strains showing multidrug-resistant phenotypes harboured multidrug efflux ARG. Polymorphic genes associated with antibiotic resistance to drugs affecting DNA replication, folate synthesis, RNA/protein synthesis and regulators of antibiotic stress responses were detected. These data imply that Streptococcussalivarius strains established during maturation of the oral microbiota harbour a diverse array of functional ARG, even in the absence of antibiotic selective pressures, highlighting a potential role for this species in shaping antibiotic susceptibility profiles of oropharyngeal communities.
Collapse
Affiliation(s)
- Thaís H Palma
- Department of Oral Diagnosis, University of Campinas, São Paulo, Brazil
| | - Erika N Harth-Chú
- Department of Oral Diagnosis, University of Campinas, São Paulo, Brazil
| | - Jodie Scott
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA
| | - Rafael N Stipp
- Department of Oral Diagnosis, University of Campinas, São Paulo, Brazil
| | - Heike Boisvert
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA
| | | | | | - Rosana F Possobon
- Cepae - Research and Dental Care Center for Special Needs Patients of Piracicaba Dental School, University of Campinas, São Paulo, Brazil
| | - Leandro C Nascimento
- Laboratory of Genomics and Gene Expression (LGE), University of Campinas, São Paulo, Brazil
| | | | - Lina Faller
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA
| | - Margaret J Duncan
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA
| | | |
Collapse
|
39
|
Schroeder MR, Stephens DS. Macrolide Resistance in Streptococcus pneumoniae. Front Cell Infect Microbiol 2016; 6:98. [PMID: 27709102 PMCID: PMC5030221 DOI: 10.3389/fcimb.2016.00098] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/26/2016] [Indexed: 01/21/2023] Open
Abstract
Streptococcus pneumoniae is a common commensal and an opportunistic pathogen. Suspected pneumococcal upper respiratory infections and pneumonia are often treated with macrolide antibiotics. Macrolides are bacteriostatic antibiotics and inhibit protein synthesis by binding to the 50S ribosomal subunit. The widespread use of macrolides is associated with increased macrolide resistance in S. pneumoniae, and the treatment of pneumococcal infections with macrolides may be associated with clinical failures. In S. pneumoniae, macrolide resistance is due to ribosomal dimethylation by an enzyme encoded by erm(B), efflux by a two-component efflux pump encoded by mef (E)/mel(msr(D)) and, less commonly, mutations of the ribosomal target site of macrolides. A wide array of genetic elements have emerged that facilitate macrolide resistance in S. pneumoniae; for example erm(B) is found on Tn917, while the mef (E)/mel operon is carried on the 5.4- or 5.5-kb Mega element. The macrolide resistance determinants, erm(B) and mef (E)/mel, are also found on large composite Tn916-like elements most notably Tn6002, Tn2009, and Tn2010. Introductions of 7-valent and 13-valent pneumococcal conjugate vaccines (PCV-7 and PCV-13) have decreased the incidence of macrolide-resistant invasive pneumococcal disease, but serotype replacement and emergence of macrolide resistance remain an important concern.
Collapse
Affiliation(s)
| | - David S Stephens
- Departments of Medicine, Emory UniversityAtlanta, GA, USA; Departments of Microbiology and Immunology, Emory UniversityAtlanta, GA, USA; Departments of Epidemiology, Emory UniversityAtlanta, GA, USA
| |
Collapse
|
40
|
Characterization of a plasmid carrying cat, ermB and tetS genes in a foodborne Listeria monocytogenes strain and uptake of the plasmid by cariogenic Streptococcus mutans. Int J Food Microbiol 2016; 238:68-71. [PMID: 27592072 DOI: 10.1016/j.ijfoodmicro.2016.08.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/21/2016] [Accepted: 08/28/2016] [Indexed: 01/09/2023]
Abstract
A multi-drug resistant (MDR) Listeria monocytogenes isolate (serotype 1/2c) was recovered from a quick-frozen rice flour product collected from Langfang city in northern China. PCR screening identified the presence of cat, ermB and tetS genes. The plasmid profile of the strain showed the presence of an approximately 22.4-kb plasmid. Curing of this plasmid resulted in the loss of cat, ermB and tetS genes and increased susceptibility to several antibiotics, suggesting the involvement of the plasmid in multiple antibiotic resistances. Moreover, the plasmid was able to be uptaken by human oral pathogen Streptococcus mutans by natural transformation and resulted in the acquiring of multiple resistances in the transconjugants. This study contributes to our knowledge on acquired multi-drug resistance in foodborne pathogenic L.monocytogenes, which will add to a better understanding of effective clinical management of listeriosis.
Collapse
|
41
|
Tantivitayakul P, Lapirattanakul J, Vichayanrat T, Muadchiengka T. Antibiotic Resistance Patterns and Related Mobile Genetic Elements of Pneumococci and β-Hemolytic Streptococci in Thai Healthy Children. Indian J Microbiol 2016; 56:417-425. [PMID: 27784937 DOI: 10.1007/s12088-016-0607-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 06/23/2016] [Indexed: 11/29/2022] Open
Abstract
Transmission of antibiotic resistance genes among Streptococcus pneumoniae and beta-hemolytic streptococcus (BHS) was generally associated with transmissible genetic elements. The objectives of this study were to investigate carriage rate, antibiotic resistance and related mobile genetic elements of pneumococci and BHS from school-children. The pneumococci and BHS were recovered from 220 Thai school-children, and then tested for antibiotic susceptibility pattern by disc diffusion. Antibiotic resistance genes and related genetic elements were detected by PCR with specific primers. A total of 77 pneumococcal isolates were resistant to erythromycin (42 %), tetracycline (44 %), clindamycin (8 %), or penicillin (3 %). Fifty-four BHS isolates were resistant to erythromycin (28 %), tetracycline (52 %), or clindamycin (13 %). All isolates tested were 100 % sensitive to penicillin and levofloxacin. Among erythromycin-resistant streptococcal isolates showed different phenotypes of clindamycin resistance. It was found that isolated pneumococci showed constitutive clindamycin resistance (19 %), and inducible clindamycin resistance (12 %). The BHS isolates exhibited constitutive clindamycin resistance (40 %), and inducible resistance (20 %) phenotypes. The predominant erythromycin resistance genes in pneumococci and BHS were mefE and ermB, while the most common tetracycline resistance gene in this population was tetM. Furthermore, almost all erythromycin- and tetracycline-resistant streptococci (97 %) mainly contained various genetic elements, including mega elements and six different transposon types (Tn2009, Tn2017, Tn917, Tn3872, Tn6002 and Tn916). Therefore, carriages of pneumococci and BHS with multidrug resistance in children might be important reservoirs of antibiotic-resistance genes carried by transposons. Tn916-like elements could lead to dissemination of the antibiotic resistance genes among genus streptococcus in human oral cavity and nasopharynx.
Collapse
Affiliation(s)
- P Tantivitayakul
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, 6 Yothi Street, Rajthevi, Bangkok, 10400 Thailand
| | - J Lapirattanakul
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, 6 Yothi Street, Rajthevi, Bangkok, 10400 Thailand
| | - T Vichayanrat
- Department of Community Dentistry, Faculty of Dentistry, Mahidol University, Bangkok, 10400 Thailand
| | - T Muadchiengka
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, 6 Yothi Street, Rajthevi, Bangkok, 10400 Thailand
| |
Collapse
|
42
|
Kawaguchiya M, Urushibara N, Kobayashi N. Multidrug Resistance in Non-PCV13 Serotypes of Streptococcus pneumoniae in Northern Japan, 2014. Microb Drug Resist 2016; 23:206-214. [PMID: 27257915 DOI: 10.1089/mdr.2016.0054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Since the implementation of routine PCV13 immunization in Japan, nonvaccine serotypes (NVTs) have been increasing among clinical isolates of Streptococcus pneumoniae. In this study, susceptibility to 18 antibiotics was tested for all the 231 isolates with NVTs, which were collected from children <16 years of age in northern Japan in 2014 (July-November). High resistance rates were observed for macrolides (>90.9%), tetracycline (91.3%), and clindamycin (75.3%), while penicillin (PEN) nonsusceptibility (PNSP; MIC ≥0.12 μg/ml) was detected in 42.9% of the pneumococci [39.4%; PEN-intermediate S. pneumoniae (PISP), 3.5%; PEN-resistant S. pneumoniae (PRSP)]. All serotype 15A isolates were PRSP (MIC, ≥2 μg/ml) or PISP, and PNSP was prevalent in also serotypes 23A (96.9%), 6C (41%), and 35B (33.3%). Overall, 42.0% of the isolates showed multidrug resistance (MDR). Sequence types (STs) determined for 20 PNSP isolates with NVTs were ST63 (15A), STs 242 or 5832 (6C), STs 338 or 5242 (23A), and ST558 (35B). All the PNSP isolates possessed tet(M), and erm(B) or mefA(A/E), and 70% of them were gPRSP having three altered genes pbp1a, pbp2x, and pbp2b. Among alterations in transpeptidase-coding region of penicillin-binding proteins (PBPs), two substitutions of T371S in the STMK motif and TSQF574-577NTGY in PBP1a were common to all PRSP isolates. The present study showed the spread of PNSP in NVTs 15A, 23A, 6C, and 35B, and the emergence of the MDR international clone Sweden15A-ST63 in northern Japan.
Collapse
Affiliation(s)
- Mitsuyo Kawaguchiya
- Department of Hygiene, Sapporo Medical University School of Medicine , Sapporo, Japan
| | - Noriko Urushibara
- Department of Hygiene, Sapporo Medical University School of Medicine , Sapporo, Japan
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine , Sapporo, Japan
| |
Collapse
|
43
|
Li L, Ye L, Zhang S, Meng H. Isolation and Identification of Aerobic Bacteria Carrying Tetracycline and Sulfonamide Resistance Genes Obtained from a Meat Processing Plant. J Food Sci 2016; 81:M1480-4. [PMID: 27100915 DOI: 10.1111/1750-3841.13318] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 03/18/2016] [Accepted: 03/25/2016] [Indexed: 11/29/2022]
Abstract
Microbial contamination in food-processing plants can play a fundamental role in food quality and safety. The purpose of this study was to investigate aerobic bacteria carrying tetracycline and sulfonamide resistance genes from a meat processing plant as possible sources of meat contamination. One hundred swab samples from surfaces of conveyor belts, meat slicers, meat knives, benches, plastic trays, gloves, and aprons were analyzed. A total of 168 isolates belonging to 10 genera were obtained, including Pseudomonas sp. (n = 35), Acinetobacter sp. (n = 30), Aeromonas sp. (n = 20), Myroides sp. (n = 15), Serratia sp. (n = 15), Staphylococcus sp. (n = 14), Enterobacter sp. (n = 11), Escherichia coli (n = 10), Lactococcus sp. (n = 10), and Klebsiella sp. (n = 8). Of the 168 isolates investigated, 60.7% showed resistance to tetracycline and 57.7% to trimethoprim/sulfamethoxazole. The tetracycline resistance genes tetL, tetA, tetB, tetC, tetE, tetM, tetS, tetK, and tetX were found in the frequency of 7.7%, 6.0%, 4.8%, 4.8%, 3.6%, 3.6%, 3.6%, 1.2%, and 0.6%, respectively. Sulfonamide resistance genes sul1 and sul2 were observed in the frequency of 17.9% and 38.1%, respectively. The tetracycline resistance genes tetX was first found in Myroides sp. This investigation demonstrated that food contact surfaces in a meat processing plant may be sources of contamination of aerobic bacteria carrying tetracycline and sulfonamide antibiotic resistance genes.
Collapse
Affiliation(s)
- Lili Li
- College of Light Industry and Food Sciences, South China Univ. of Technology, Guangzhou, 510640, Guangdong, PR, China
| | - Lei Ye
- China and Research Inst. of Food Safety and Nutrition, Jinan., Univ, 510632, Guangzhou, Guangdong, PR, China
| | - Sen Zhang
- College of Light Industry and Food Sciences, South China Univ. of Technology, Guangzhou, 510640, Guangdong, PR, China
| | - Hecheng Meng
- College of Light Industry and Food Sciences, South China Univ. of Technology, Guangzhou, 510640, Guangdong, PR, China
| |
Collapse
|
44
|
Hassan NA, Maysaa ARD, Abdul KHA. Molecular screening for erythromycin resistance genes in Streptococcus pyogenes isolated from Iraqi patients with tonsilo-pharyngites. AFRICAN JOURNAL OF BIOTECHNOLOGY 2015; 14:2251-2257. [DOI: 10.5897/ajb2014.14365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
45
|
Gherardi G, Petrelli D, Di Luca MC, Pimentel de Araujo F, Bernaschi P, Repetto A, Bellesi J, Vitali LA. Decline in macrolide resistance rates among Streptococcus pyogenes causing pharyngitis in children isolated in Italy. Eur J Clin Microbiol Infect Dis 2015; 34:1797-802. [PMID: 26024763 PMCID: PMC4545180 DOI: 10.1007/s10096-015-2414-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 11/21/2022]
Abstract
Macrolides are often used to treat group A streptococcus (GAS) infections, but their resistance rates reached high proportions worldwide. The aim of the present study was to give an update on the characteristics and contemporary prevalence of macrolide-resistant pharyngeal GAS in Central Italy. A total of 592 isolates causing pharyngitis in children were collected in the period 2012–2013. Clonality was assessed by emm typing and pulsed-field gel electrophoresis (PFGE) for all macrolide-resistant strains and for selected susceptible isolates. Genetic determinants of resistance were screened by polymerase chain reaction (PCR). Forty-four GAS were erythromycin-resistant (7.4 %). Among them, 52.3 % and 50 % were clindamycin- and tetracycline-resistant, respectively. erm(B)-positive isolates (52.3 %) expressed the constitutive cMLSB phenotype. mef(A) and its associated M phenotype were recorded in 40.9 % of the cases. The remaining erm(A)-positive isolates expressed the iMLSB phenotype. Seventeen tetracycline-resistant isolates carried tet(M) and five isolates carried tet(O). Twenty-five emm types were found among all strains, with the predominance of emm types 12, 89, 1, and 4. Eleven emm types and 12 PFGE clusters characterized macrolide-resistant strains, with almost two-thirds belonging to emm12, emm4, and emm11. Macrolide-susceptible and -resistant emm types 12, 89, 11, and 4 shared related PFGE profiles. There was a dramatic decline in macrolide resistance in Central Italy among pharyngeal GAS isolates in 2012–2013 when compared to previous studies from the same region (p < 0.05), although macrolide consumption remained stable over the past 15 years. We observed a decrease in the proportion of macrolide-resistant strains within emm types commonly associated with macrolide resistance in the past, namely emm12, 1, and 89.
Collapse
Affiliation(s)
- G Gherardi
- University Campus Bio-Medico, 00128, Roma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Antimicrobial Resistance Profile and Genotypic Characteristics of Streptococcus suis Capsular Type 2 Isolated from Clinical Carrier Sows and Diseased Pigs in China. BIOMED RESEARCH INTERNATIONAL 2015; 2015:284303. [PMID: 26064892 PMCID: PMC4434170 DOI: 10.1155/2015/284303] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 10/20/2014] [Accepted: 10/28/2014] [Indexed: 01/24/2023]
Abstract
Streptococcus suis serotype 2 is an important zoonotic pathogen. Antimicrobial resistance phenotypes and genotypic characterizations of S. suis 2 from carrier sows and diseased pigs remain largely unknown. In this study, 96 swine S. suis type 2, 62 from healthy sows and 34 from diseased pigs, were analyzed. High frequency of tetracycline resistance was observed, followed by sulfonamides. The lowest resistance of S. suis 2 for β-lactams supports their use as the primary antibiotics to treat the infection of serotype 2. In contrast, 35 of 37 S. suis 2 with MLSB phenotypes were isolated from healthy sows, mostly encoded by the ermB and/or the mefA genes. Significantly lower frequency of mrp+/epf+/sly+ was observed among serotype 2 from healthy sows compared to those from diseased pigs. Furthermore, isolates from diseased pigs showed more homogeneously genetic patterns, with most of them clustered in pulsotypes A and E. The data indicate the genetic complexity of S. suis 2 between herds and a close linkage among isolates from healthy sows and diseased pigs. Moreover, many factors, such as extensive use of tetracycline or diffusion of Tn916 with tetM, might have favored for the pathogenicity and widespread dissemination of S. suis serotype 2.
Collapse
|
47
|
Valdezate S, Garrido N, Carrasco G, Villalón P, Medina-Pascual MJ, Saéz-Nieto JA. Resistance gene pool to co-trimoxazole in non-susceptible Nocardia strains. Front Microbiol 2015; 6:376. [PMID: 25972856 PMCID: PMC4412068 DOI: 10.3389/fmicb.2015.00376] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/12/2015] [Indexed: 01/11/2023] Open
Abstract
The soil-borne pathogen Nocardia sp. causes severe cutaneous, pulmonary, and central nervous system infections. Against them, co-trimoxazole (SXT) constitutes the mainstay of antimicrobial therapy. However, some Nocardia strains show resistance to SXT, but the underlying genetic basis is unknown. We investigated the presence of genetic resistance determinants and class 1–3 integrons in 76 SXT-resistant Nocardia strains by PCR and sequencing. By E test, these clinical strains showed SXT minimum inhibitory concentrations of ≥32:608 mg/L (ratio of 1:19 for trimethoprim: sulfamethoxazole). They belonged to 12 species, being the main representatives Nocardia farcinica (32%), followed by N. flavorosea (6.5%), N. nova (11.8%), N. carnea (10.5%), N. transvalensis (10.5%), and Nocardia sp. (6.5%). The prevalence of resistance genes in the SXT-resistant strains was as follows: sul1 and sul2 93.4 and 78.9%, respectively, dfrA(S1) 14.7%, blaTEM-1 and blaZ 2.6 and 2.6%, respectively, VIM-2 1.3%, aph(3′)-IIIa 40.8%, ermA, ermB, mefA, and msrD 2.6, 77.6, 14.4, and 5.2%, respectively, and tet(O), tet(M), and tet(L) 48.6, 25.0, and 3.9%, respectively. Detected amino acid changes in GyrA were not related to fluoroquinolone resistance, but probably linked to species polymorphism. Class 1 and 3 integrons were found in 93.42 and 56.57% strains, respectively. Class 2 integrons and sul3 genes were not detected. Other mechanisms, different than dfrA(S1), dfrD, dfrF, dfrG, and dfrK, could explain the strong trimethoprim resistance shown by the other 64 strains. For first time, resistance determinants commonly found in clinically important bacteria were detected in Nocardia sp. sul1, sul2, erm(B), and tet(O) were the most prevalent in the SXT-resistant strains. The similarity in their resistome could be due to a common genetic platform, in which these determinants are co-transferred.
Collapse
Affiliation(s)
- Sylvia Valdezate
- Servicio de Bacteriología and Taxonomía, Centro Nacional de Microbiología, Instituto de Salud Carlos III Madrid, Spain
| | - Noelia Garrido
- Servicio de Bacteriología and Taxonomía, Centro Nacional de Microbiología, Instituto de Salud Carlos III Madrid, Spain
| | - Gema Carrasco
- Servicio de Bacteriología and Taxonomía, Centro Nacional de Microbiología, Instituto de Salud Carlos III Madrid, Spain
| | - Pilar Villalón
- Servicio de Bacteriología and Taxonomía, Centro Nacional de Microbiología, Instituto de Salud Carlos III Madrid, Spain
| | - María J Medina-Pascual
- Servicio de Bacteriología and Taxonomía, Centro Nacional de Microbiología, Instituto de Salud Carlos III Madrid, Spain
| | - Juan A Saéz-Nieto
- Servicio de Bacteriología and Taxonomía, Centro Nacional de Microbiología, Instituto de Salud Carlos III Madrid, Spain
| |
Collapse
|
48
|
Resistance determinants and their association with different transposons in the antibiotic-resistant Streptococcus pneumoniae. BIOMED RESEARCH INTERNATIONAL 2015; 2015:836496. [PMID: 25883976 PMCID: PMC4391698 DOI: 10.1155/2015/836496] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/16/2015] [Accepted: 03/16/2015] [Indexed: 11/18/2022]
Abstract
Multiple resistance of Streptococcus pneumoniae is generally associated with their unique recombination-mediated genetic plasticity and possessing the mobile genetic elements. The aim of our study was to detect antibiotic resistance determinants and conjugative transposons in 138 antibiotic-resistant pneumococcal strains isolated from nasopharynx of healthy young children from Lublin, Poland. These strains resistant to tetracycline and/or to chloramphenicol/erythromycin/clindamycin were tested by PCR using the specific genes as markers. The presence of Tn916 family transposons, carrying tet(M) and int/xisTn916, was observed in all of the tested strains. Tn916 was detected in 16 strains resistant only to tetracycline. Tn6002 and Tn3872-related element were found among 99 erm(B)-carrying strains (83.8% and 3.0%, resp.). Eight strains harbouring mef(E) and erm(B) genes were detected, suggesting the presence of Tn2010 and Tn2017 transposons. Among 101 chloramphenicol-resistant strains, two variants of Tn5252-related transposon were distinguished depending on the presence of int/xis5252 genes specific for cat gene-containing Tn5252 (75.2% of strains) or int Sp23FST81 gene, specific for cat-containing ICESp23FST81 element (24.8% of strains). In 6 strains Tn916-like and Tn5252-like elements formed a Tn5253-like structure. Besides clonal dissemination of resistant strains of pneumococci in the population, horizontal transfer of conjugative transposons is an important factor of the high prevalence of antibiotic resistance.
Collapse
|
49
|
Mullany P, Allan E, Roberts AP. Mobile genetic elements in Clostridium difficile and their role in genome function. Res Microbiol 2015; 166:361-7. [PMID: 25576774 PMCID: PMC4430133 DOI: 10.1016/j.resmic.2014.12.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/10/2014] [Accepted: 12/13/2014] [Indexed: 11/25/2022]
Abstract
Approximately 11% the Clostridium difficile genome is made up of mobile genetic elements which have a profound effect on the biology of the organism. This includes transfer of antibiotic resistance and other factors that allow the organism to survive challenging environments, modulation of toxin gene expression, transfer of the toxin genes themselves and the conversion of non-toxigenic strains to toxin producers. Mobile genetic elements have also been adapted by investigators to probe the biology of the organism and the various ways in which these have been used are reviewed.
Collapse
Affiliation(s)
- Peter Mullany
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, 256 Gray's Inn Road, London WC1X 8LD, UK.
| | - Elaine Allan
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, 256 Gray's Inn Road, London WC1X 8LD, UK.
| | - Adam P Roberts
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, 256 Gray's Inn Road, London WC1X 8LD, UK.
| |
Collapse
|
50
|
Pinto TCA, Costa NS, Corrêa ABDA, de Oliveira ICM, de Mattos MC, Rosado AS, Benchetrit LC. Conjugative transfer of resistance determinants among human and bovine Streptococcus agalactiae. Braz J Microbiol 2014; 45:785-9. [PMID: 25477908 PMCID: PMC4204959 DOI: 10.1590/s1517-83822014000300004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/14/2014] [Indexed: 11/22/2022] Open
Abstract
Streptococcus agalactiae (GBS) is a major source of human perinatal diseases and bovine mastitis. Erythromycin (Ery) and tetracycline (Tet) are usually employed for preventing human and bovine infections although resistance to such agents has become common among GBS strains. Ery and Tet resistance genes are usually carried by conjugative transposons (CTns) belonging to the Tn916 family, but their presence and transferability among GBS strains have not been totally explored. Here we evaluated the presence of Tet resistance genes (tetM and tetO) and CTns among Ery-resistant (Ery-R) and Ery-susceptible (Ery-S) GBS strains isolated from human and bovine sources; and analyzed the ability for transferring resistance determinants between strains from both origins. Tet resistance and int-Tn genes were more common among Ery-R when compared to Ery-S isolates. Conjugative transfer of all resistance genes detected among the GBS strains included in this study (ermA, ermB, mef, tetM and tetO), in frequencies between 1.10−7 and 9.10−7, was possible from bovine donor strains to human recipient strain, but not the other way around. This is, to our knowledge, the first report of in vitro conjugation of Ery and Tet resistance genes among GBS strains recovered from different hosts.
Collapse
Affiliation(s)
- Tatiana Castro Abreu Pinto
- Instituto de Microbiologia Paulo de Góes Universidade Federal do Rio de Janeiro Rio de JaneiroRJ Brazil Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Natália Silva Costa
- Instituto de Microbiologia Paulo de Góes Universidade Federal do Rio de Janeiro Rio de JaneiroRJ Brazil Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ana Beatriz de Almeida Corrêa
- Instituto de Microbiologia Paulo de Góes Universidade Federal do Rio de Janeiro Rio de JaneiroRJ Brazil Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ivi Cristina Menezes de Oliveira
- Instituto de Microbiologia Paulo de Góes Universidade Federal do Rio de Janeiro Rio de JaneiroRJ Brazil Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcos Correa de Mattos
- Instituto de Microbiologia Paulo de Góes Universidade Federal do Rio de Janeiro Rio de JaneiroRJ Brazil Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Alexandre Soares Rosado
- Instituto de Microbiologia Paulo de Góes Universidade Federal do Rio de Janeiro Rio de JaneiroRJ Brazil Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Leslie Claude Benchetrit
- Instituto de Microbiologia Paulo de Góes Universidade Federal do Rio de Janeiro Rio de JaneiroRJ Brazil Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|