1
|
Daniel BD, Inbaraj LR, Kumaravadivelu S, Subramanian K, Ramraj B, Manesh A. Optimizing Pyrazinamide Use: A Low-Hanging Fruit in Improving Outcomes with Tuberculous Meningitis? Narrative Review. Infect Dis Ther 2025:10.1007/s40121-024-01102-1. [PMID: 39752122 DOI: 10.1007/s40121-024-01102-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
Tuberculous meningitis (TBM) disables more than a third of its sufferers. Recent research has focused on optimizing the antitubercular regimen, mainly by increasing the dosage of rifampicin. However, pyrazinamide, with higher penetration into the central nervous system, is generally overlooked. We discuss the potential clinical impact of using pyrazinamide throughout antitubercular therapy in TBM, in contrast to only the intensive phase. This approach may improve the treatment outcomes and reduce disability in TBM. We summarize the available data regarding this approach from in vitro studies, clinical cohorts, toxicity data, and baseline resistance rates. Additionally, we discuss the two ongoing clinical trials evaluating this approach.
Collapse
Affiliation(s)
- Bella Devaleenal Daniel
- ICMR, National Institute for Research in Tuberculosis, No. 1, Mayor Sathyamoorthy Road, Chennai, Tamil Nadu, India.
| | - Leeberk Raja Inbaraj
- ICMR, National Institute for Research in Tuberculosis, No. 1, Mayor Sathyamoorthy Road, Chennai, Tamil Nadu, India
| | - Shanmugapriya Kumaravadivelu
- ICMR, National Institute for Research in Tuberculosis, No. 1, Mayor Sathyamoorthy Road, Chennai, Tamil Nadu, India
| | - Kathirvel Subramanian
- ICMR, National Institute for Research in Tuberculosis, No. 1, Mayor Sathyamoorthy Road, Chennai, Tamil Nadu, India
| | - Balaji Ramraj
- ICMR, National Institute for Research in Tuberculosis, No. 1, Mayor Sathyamoorthy Road, Chennai, Tamil Nadu, India
| | - Abi Manesh
- Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
2
|
Opperman M, Mason S, van der Westhuizen J, Loots DT, du Preez I. Urinary drug metabolite profiling of tuberculosis treatment failure using proton nuclear magnetic resonance. J Pharm Biomed Anal 2024; 248:116297. [PMID: 38906071 DOI: 10.1016/j.jpba.2024.116297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/23/2024]
Abstract
The underlying cause of tuberculosis (TB) treatment failure is still largely unknown. A 1H NMR approach was applied to identify and quantify a subset of TB drugs and drug metabolites: ethambutol (EMB), acetyl isoniazid (AcINH), isonicotinic acid, pyrazinamide (PZA), pyrazinoic acid and 5-hydroxy-pyrazinoic acid, from the urine of TB patients. Samples were collected before, during (weeks one, two and four) and after standardised TB treatment. The median concentrations of the EMB and PZA metabolites were comparable between the samples from patients with eventually cured and failed treatment outcomes. The INH metabolites showed comparatively elevated concentrations in the treatment failure patients during and after treatment. Variation in INH metabolite concentrations couldn't be associated with the varying acetylator genotypes, and it is therefore suggested that treatment failure is influenced more so by other conditions, such as environmental factors, or individual variation in other INH metabolic pathways.
Collapse
Affiliation(s)
- Monique Opperman
- Human Metabolomics, North-West University (Potchefstroom Campus), Private Bag x6001, Box 269, Potchefstroom 2531, South Africa
| | - Shayne Mason
- Human Metabolomics, North-West University (Potchefstroom Campus), Private Bag x6001, Box 269, Potchefstroom 2531, South Africa
| | - Jessica van der Westhuizen
- Human Metabolomics, North-West University (Potchefstroom Campus), Private Bag x6001, Box 269, Potchefstroom 2531, South Africa
| | - Du Toit Loots
- Human Metabolomics, North-West University (Potchefstroom Campus), Private Bag x6001, Box 269, Potchefstroom 2531, South Africa
| | - Ilse du Preez
- Human Metabolomics, North-West University (Potchefstroom Campus), Private Bag x6001, Box 269, Potchefstroom 2531, South Africa.
| |
Collapse
|
3
|
Rendic SP, Guengerich FP. Formation of potentially toxic metabolites of drugs in reactions catalyzed by human drug-metabolizing enzymes. Arch Toxicol 2024; 98:1581-1628. [PMID: 38520539 PMCID: PMC11539061 DOI: 10.1007/s00204-024-03710-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/20/2024] [Indexed: 03/25/2024]
Abstract
Data are presented on the formation of potentially toxic metabolites of drugs that are substrates of human drug metabolizing enzymes. The tabular data lists the formation of potentially toxic/reactive products. The data were obtained from in vitro experiments and showed that the oxidative reactions predominate (with 96% of the total potential toxication reactions). Reductive reactions (e.g., reduction of nitro to amino group and reductive dehalogenation) participate to the extent of 4%. Of the enzymes, cytochrome P450 (P450, CYP) enzymes catalyzed 72% of the reactions, myeloperoxidase (MPO) 7%, flavin-containing monooxygenase (FMO) 3%, aldehyde oxidase (AOX) 4%, sulfotransferase (SULT) 5%, and a group of minor participating enzymes to the extent of 9%. Within the P450 Superfamily, P450 Subfamily 3A (P450 3A4 and 3A5) participates to the extent of 27% and the Subfamily 2C (P450 2C9 and P450 2C19) to the extent of 16%, together catalyzing 43% of the reactions, followed by P450 Subfamily 1A (P450 1A1 and P450 1A2) with 15%. The P450 2D6 enzyme participated in an extent of 8%, P450 2E1 in 10%, and P450 2B6 in 6% of the reactions. All other enzymes participate to the extent of 14%. The data show that, of the human enzymes analyzed, P450 enzymes were dominant in catalyzing potential toxication reactions of drugs and their metabolites, with the major role assigned to the P450 Subfamily 3A and significant participation of the P450 Subfamilies 2C and 1A, plus the 2D6, 2E1 and 2B6 enzymes contributing. Selected examples of drugs that are activated or proposed to form toxic species are discussed.
Collapse
Affiliation(s)
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| |
Collapse
|
4
|
Wang S, Forsman LD, Xu C, Zhang H, Zhu Y, Shao G, Wang S, Cao J, Xiong H, Niward K, Schön T, Bruchfeld J, Zhu L, Alffenaar JW, Hu Y. Second-line antituberculosis drug exposure thresholds predictive of adverse events in multidrug-resistant tuberculosis treatment. Int J Infect Dis 2024; 140:62-69. [PMID: 38176643 DOI: 10.1016/j.ijid.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/06/2024] Open
Abstract
OBJECTIVES This study aimed to investigate the association between drug exposure and adverse events (AEs) during the standardized multidrug-resistant tuberculosis (MDR-TB) treatment, as well as to identify predictive drug exposure thresholds. METHODS We conducted a prospective, observational multicenter study among participants receiving standardized MDR-TB treatment between 2016 and 2019 in China. AEs were monitored throughout the treatment and their relationships to drug exposure (e.g., the area under the drug concentration-time curve from 0 to 24 h, AUC0-24 h) were analyzed. The thresholds of pharmacokinetic predictors of observed AEs were identified by boosted classification and regression tree (CART) and further evaluated by external validation. RESULTS Of 197 study participants, 124 (62.9%) had at least one AE, and 15 (7.6%) experienced serious AEs. The association between drug exposure and AEs was observed including bedaquiline, its metabolite M2, moxifloxacin and QTcF prolongation (QTcF >450 ms), linezolid and mitochondrial toxicity, cycloserine and psychiatric AEs. The CART-derived thresholds of AUC0-24 h predictive of the respective AEs were 3.2 mg·h/l (bedaquiline M2); 49.3 mg·h/l (moxifloxacin); 119.3 mg·h/l (linezolid); 718.7 mg·h/l (cycloserine). CONCLUSIONS This study demonstrated the drug exposure thresholds predictive of AEs for key drugs against MDR-TB treatment. Using the derived thresholds will provide the knowledge base for further randomized clinical trials of dose adjustment to minimize the risk of AEs.
Collapse
Affiliation(s)
- Sainan Wang
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Lina Davies Forsman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine, Division of Infectious Diseases, Karolinska Institutet Solna, Stockholm, Sweden
| | - Chunhua Xu
- Fengxian District Center for Disease Control and Prevention, Shanghai, China
| | - Haoyue Zhang
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Yue Zhu
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Ge Shao
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Shanshan Wang
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Jiayi Cao
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Haiyan Xiong
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Katarina Niward
- Department of Infectious Diseases in Östergötland, Region Östergötland and Institution for Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Thomas Schön
- Department of Infectious Diseases in Östergötland, Region Östergötland and Institution for Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Infectious Diseases, Kalmar County Hospital, Kalmar, Linköping University, Sweden
| | - Judith Bruchfeld
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine, Division of Infectious Diseases, Karolinska Institutet Solna, Stockholm, Sweden
| | - Limei Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Jan-Willem Alffenaar
- University of Sydney, Faculty of Medicine and Health, School of Pharmacy, Sydney, Australia; Westmead Hospital, Sydney, Australia; Sydney Institute for Infectious Diseases, University of Sydney, Sydney, Australia
| | - Yi Hu
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Datta S, Aggarwal D, Sehrawat N, Yadav M, Sharma V, Sharma A, Zghair AN, Dhama K, Sharma A, Kumar V, Sharma AK, Wang H. Hepatoprotective effects of natural drugs: Current trends, scope, relevance and future perspectives. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155100. [PMID: 37801892 DOI: 10.1016/j.phymed.2023.155100] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/02/2023] [Accepted: 09/17/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND The liver is a well-known player in the metabolism and removal of drugs. Drug metabolizing enzymes in the liver detoxify drugs and xenobiotics, ultimately leading to the acquisition of homeostasis. However, liver toxicity and cell damage are not only related to the nature and dosage of a particular drug but are also influenced by other factors such as aging, immune status, environmental contaminants, microbial metabolites, gender, obesity, and expression of individual genes Furthermore, factors such as drugs, alcohol, and environmental contaminants could induce oxidative stress, thereby impairing the regenerative potential of the liver and causing several diseases. Persons suffering from other ailments and those with comorbidities are found to be more prone to drug-induced toxicities. Moreover, drug composition and drug-drug interactions could further aggravate the risk of drug-induced hepatotoxicity. A plethora of mechanisms are responsible for initiating liver cell damage and further aggravating liver cell injury, followed by impairment of homeostasis, ultimately leading to the generation of reactive oxygen species, immune-suppression, and oxidative stress. OBJECTIVE To summarize the potential of phytochemicals and natural bioactive compounds to treat hepatotoxicity and other liver diseases. STUDY DESIGN A deductive qualitative content analysis approach was employed to assess the overall outcomes of the research and review articles pertaining to hepatoprotection induced by natural drugs, along with analysis of the interventions. METHODS An extensive literature search of bibliographic databases, including Web of Science, PUBMED, SCOPUS, GOOGLE SCHOLAR, etc., was carried out to understand the role of hepatoprotective effects of natural drugs. RESULTS Bioactive natural products, including curcumin, resveratrol, etc., have been seen as neutralizing agents against the side effects induced by the drugs. Moreover, these natural products are dietary and are readily available; thus, could be supplemented along with drugs to reduce toxicity to cells. Probiotics, prebiotics, and synbiotics have shown promise of improving overall liver functioning, and these should be evaluated more extensively for their hepatoprotective potential. Therefore, selecting an appropriate natural product or a bioactive compound that is free of toxicity and offers a reliable solution for drug-induced liver toxicity is quintessential. CONCLUSIONS The current review highlights the role of natural bioactive products in neutralizing drug-induced hepatotoxicity. Efforts have been made to delineate the possible underlying mechanism associated with the neutralization process.
Collapse
Affiliation(s)
- Sonal Datta
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Diwakar Aggarwal
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Nirmala Sehrawat
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Mukesh Yadav
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Varruchi Sharma
- Department of Biotechnology & Bioinformatics, Sri Guru Gobind Singh College, Chandigarh 160019, India
| | - Ajay Sharma
- Department of Chemistry, Career Point University, Tikker - Kharwarian, Hamirpur, Himachal Pradesh 176041, India
| | - Abdulrazzaq N Zghair
- College of Health and Medical Techniques, Middle Technical University, Baghdad, Iraq
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India
| | - Aanchal Sharma
- University Centre for Research and Development, University Institute of Biotechnology Chandigarh University, Gharuan, Mohali, India
| | - Vikas Kumar
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Anil K Sharma
- Department of Biotechnology, Amity University, Sector-82-A, IT City Road, Mohali, Punjab 140306, India.
| | - Hailian Wang
- Institute of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
6
|
Omokhua-Uyi AG, Madikizela B, Aro AO, Abdalla MA, Van Staden J, McGaw LJ. Flavonoids of Chromolaena odorata (L.) R.M.King & H.Rob. as potential leads for treatment against tuberculosis. SOUTH AFRICAN JOURNAL OF BOTANY : OFFICIAL JOURNAL OF THE SOUTH AFRICAN ASSOCIATION OF BOTANISTS = SUID-AFRIKAANSE TYDSKRIF VIR PLANTKUNDE : AMPTELIKE TYDSKRIF VAN DIE SUID-AFRIKAANSE GENOOTSKAP VAN PLANTKUNDIGES 2023; 158:158-165. [PMID: 37206481 PMCID: PMC10182713 DOI: 10.1016/j.sajb.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/11/2023] [Accepted: 05/01/2023] [Indexed: 05/21/2023]
Abstract
Tuberculosis (TB) is currently rated as the 13th leading cause of mortality and the second leading cause of death after COVID-19, and above AIDS. Existing challenges relating to the development of multidrug-resistant strains and dangerous side effects of currently used drugs add impetus to the search for additional TB treatments. Hence, interest has grown in the use of medicinal plants as a source of bioactive preparations with efficacy against TB-causing organisms, and also with the ability to ameliorate the negative effects of TB drugs. This study aimed to evaluate the antimycobacterial and hepatoprotective potentials of extracts and isolated flavonoid compounds from invasive Chromolaena odorata. Test organisms used were pathogenic Mycobacterium bovis and M. tuberculosis H37RV, and the fast-growing M. aurum, M. fortuitum and M. smegmatis. The selectivity index (SI) values of the test substances were determined through cytotoxicity assays to promote these extracts and compounds as leads for the development of effective and safe anti-tubercular drugs. The antimycobacterial activity was evaluated using a serial microdilution method, and the SI was calculated from the 50% lethal concentrations calculated from cytotoxicity tests. Hepatoprotective activity was determined using HepG2 liver cells treated with rifampicin as a toxin. The extracts and compounds had a range of antimycobacterial activity with minimum inhibitory concentration (MIC) values ranging from 0.031 to 2.5 mg/mL. Two flavonoid compounds, 5,7,4'-trimethoxy flavanone and 5‑hydroxy-3,7,4'-trimethoxyflavone showed promising antimycobacterial potential, and minimal toxicity was observed, as most SI values were higher than 1. The flavonoid compound 5,7,4'-trimethoxy flavanone had the highest SI (6.452), which was against M. tuberculosis H37RV. The HepG2 cells were reduced to 65% due to toxicity by rifampicin, however, the flavonoid compounds were able to improve cell viability to between 81 and 89% at different concentrations tested. Results obtained indicate that C. odorata may serve as a lead for the development of safe and effective antimycobacterial and hepatoprotective drugs.
Collapse
Affiliation(s)
- A G Omokhua-Uyi
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville 3201, South Africa
| | - B Madikizela
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - A O Aro
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - M A Abdalla
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - J Van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville 3201, South Africa
| | - L J McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| |
Collapse
|
7
|
Sharma S, Sharma V, Taneja S, Bhatia A, Anand A, Banerjee D, Patil AN. Pharmacokinetic Assessment of Pyrazinamide and Pyrazinoic Acid in Carbon tetrachloride-induced Liver Injury Model in Wistar Rats. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2023; 15:146-151. [PMID: 37705855 PMCID: PMC10496854 DOI: 10.4103/jpbs.jpbs_333_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/30/2023] [Accepted: 06/14/2023] [Indexed: 09/12/2023] Open
Abstract
Background We investigated the pharmacokinetic behavior of pyrazinamide (PZA) and pyrazinoic acid (PA) in the presence of carbon-tetrachloride (CCl4) plus antitubercular treatment (ATT) drug-induced liver injury (DILI) in rats. Methods Thirty rats utilized in the experiment were separated equally into five groups. Each rat was injected with 0.5 ml/kg CCl4 intra-peritoneal injection on day zero. Group, I rats did receive only CCl4 (single i.p. injection, 0.5 ml/Kg in olive oil in a 1:1 ratio). Groups II, III, IV, and V did receive daily oral PZA, PZA plus isoniazid (INH), rifampicin (RMP) plus pyrazinamide (PZA), and three drugs together, respectively, for 21-days. Pharmacokinetic sampling was performed at 0, 0.5,1,3,6,12 and 24 hours post-dosing on day-20. Liver function test (LFT) was assessed at days 0,1,7, and 21 days after CCl4 and ATT administration, and rats were sacrificed on the last experiment day. Results ATT treatment maintained the liver function changes initiated by CCl4 administration. An evidential LFT rise was observed in groups administered with pyrazinamide. Co-administration of Isoniazid caused a 2.02 and 1.78 times increase in Area-under-the-curve (AUC) values of PZA and PA, respectively (p < 0.05). Histological and oxidative-stress changes supported the biochemical and pharmacokinetic observations. Conclusion The enzyme inhibitory capacity of isoniazid is well-preservd in CCl4-induced liver injury.
Collapse
Affiliation(s)
- Swati Sharma
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Vishal Sharma
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sunil Taneja
- Department of Hepatology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Aishwarya Anand
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Dibyajyoti Banerjee
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Amol N. Patil
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
8
|
Teschke R. Molecular Idiosyncratic Toxicology of Drugs in the Human Liver Compared with Animals: Basic Considerations. Int J Mol Sci 2023; 24:ijms24076663. [PMID: 37047633 PMCID: PMC10095090 DOI: 10.3390/ijms24076663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Drug induced liver injury (DILI) occurs in patients exposed to drugs at recommended doses that leads to idiosyncratic DILI and provides an excellent human model with well described clinical features, liver injury pattern, and diagnostic criteria, based on patients assessed for causality using RUCAM (Roussel Uclaf Causality Assessment Method) as original method of 1993 or its update of 2016. Overall, 81,856 RUCAM based DILI cases have been published until mid of 2020, allowing now for an analysis of mechanistic issues of the disease. From selected DILI cases with verified diagnosis by using RUCAM, direct evidence was provided for the involvement of the innate and adapted immune system as well as genetic HLA (Human Leucocyte Antigen) genotypes. Direct evidence for a role of hepatic immune systems was substantiated by (1) the detection of anti-CYP (Cytochrome P450) isoforms in the plasma of affected patients, in line with the observation that 65% of the drugs most implicated in DILI are metabolized by a range of CYP isoforms, (2) the DIAIH (drug induced autoimmune hepatitis), a subgroup of idiosyncratic DILI, which is characterized by high RUCAM causality gradings and the detection of plasma antibodies such as positive serum anti-nuclear antibodies (ANA) and anti-smooth muscle antibodies (ASMA), rarely also anti-mitochondrial antibodies (AMA), (3) the effective treatment with glucocorticoids in part of an unselected RUCAM based DILI group, and (4) its rare association with the immune-triggered Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) caused by a small group of drugs. Direct evidence of a genetic basis of idiosyncratic DILI was shown by the association of several HLA genotypes for DILI caused by selected drugs. Finally, animal models of idiosyncratic DILI mimicking human immune and genetic features are not available and further search likely will be unsuccessful. In essence and based on cases of DILI with verified diagnosis using RUCAM for causality evaluation, there is now substantial direct evidence that immune mechanisms and genetics can account for idiosyncratic DILI by many but not all implicated drugs, which may help understand the mechanistic background of the disease and contribute to new approaches of therapy and prevention.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, D-63450 Hanau, Germany
- Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, D-60590 Frankfurt am Main, Germany
| |
Collapse
|
9
|
Lee IH, Cho ER, Kang DH. The effect of quercetin mediated photodynamic inactivation on apple juice properties at different temperature and its bactericidal mechanism. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Hegde PV, Aragaw WW, Cole MS, Jachak G, Ragunathan P, Sharma S, Harikishore A, Grüber G, Dick T, Aldrich CC. Structure activity relationship of pyrazinoic acid analogs as potential antimycobacterial agents. Bioorg Med Chem 2022; 74:117046. [PMID: 36228522 PMCID: PMC10551889 DOI: 10.1016/j.bmc.2022.117046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/02/2022]
Abstract
Tuberculosis (TB) remains a leading cause of infectious disease-related mortality and morbidity. Pyrazinamide (PZA) is a critical component of the first-line TB treatment regimen because of its sterilizing activity against non-replicating Mycobacterium tuberculosis (Mtb), but its mechanism of action has remained enigmatic. PZA is a prodrug converted by pyrazinamidase encoded by pncA within Mtb to the active moiety, pyrazinoic acid (POA) and PZA resistance is caused by loss-of-function mutations to pyrazinamidase. We have recently shown that POA induces targeted protein degradation of the enzyme PanD, a crucial component of the coenzyme A biosynthetic pathway essential in Mtb. Based on the newly identified mechanism of action of POA, along with the crystal structure of PanD bound to POA, we designed several POA analogs using structure for interpretation to improve potency and overcome PZA resistance. We prepared and tested ring and carboxylic acid bioisosteres as well as 3, 5, 6 substitutions on the ring to study the structure activity relationships of the POA scaffold. All the analogs were evaluated for their whole cell antimycobacterial activity, and a few representative molecules were evaluated for their binding affinity, towards PanD, through isothermal titration calorimetry. We report that analogs with ring and carboxylic acid bioisosteres did not significantly enhance the antimicrobial activity, whereas the alkylamino-group substitutions at the 3 and 5 position of POA were found to be up to 5 to 10-fold more potent than POA. Further development and mechanistic analysis of these analogs may lead to a next generation POA analog for treating TB.
Collapse
Affiliation(s)
- Pooja V Hegde
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Wassihun W Aragaw
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Malcolm S Cole
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Gorakhnath Jachak
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Priya Ragunathan
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| | - Sachin Sharma
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Amaravadhi Harikishore
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore.
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA; Departmentof Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA; Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA.
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
11
|
Transdermal diffusion of resveratrol by multilamellar liposomes: Effect of encapsulation on its stability. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
12
|
Rendić SP, Crouch RD, Guengerich FP. Roles of selected non-P450 human oxidoreductase enzymes in protective and toxic effects of chemicals: review and compilation of reactions. Arch Toxicol 2022; 96:2145-2246. [PMID: 35648190 PMCID: PMC9159052 DOI: 10.1007/s00204-022-03304-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/26/2022] [Indexed: 12/17/2022]
Abstract
This is an overview of the metabolic reactions of drugs, natural products, physiological compounds, and other (general) chemicals catalyzed by flavin monooxygenase (FMO), monoamine oxidase (MAO), NAD(P)H quinone oxidoreductase (NQO), and molybdenum hydroxylase enzymes (aldehyde oxidase (AOX) and xanthine oxidoreductase (XOR)), including roles as substrates, inducers, and inhibitors of the enzymes. The metabolism and bioactivation of selected examples of each group (i.e., drugs, "general chemicals," natural products, and physiological compounds) are discussed. We identified a higher fraction of bioactivation reactions for FMO enzymes compared to other enzymes, predominately involving drugs and general chemicals. With MAO enzymes, physiological compounds predominate as substrates, and some products lead to unwanted side effects or illness. AOX and XOR enzymes are molybdenum hydroxylases that catalyze the oxidation of various heteroaromatic rings and aldehydes and the reduction of a number of different functional groups. While neither of these two enzymes contributes substantially to the metabolism of currently marketed drugs, AOX has become a frequently encountered route of metabolism among drug discovery programs in the past 10-15 years. XOR has even less of a role in the metabolism of clinical drugs and preclinical drug candidates than AOX, likely due to narrower substrate specificity.
Collapse
Affiliation(s)
| | - Rachel D Crouch
- College of Pharmacy and Health Sciences, Lipscomb University, Nashville, TN, 37204, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| |
Collapse
|
13
|
Akhtar J, Singh S, Verma AK, Pal R, Nath R. A prospective observational study to evaluate Glutathione S-transferase gene polymorphism and its association with Antitubercular drugs induced liver injury in tertiary hospital. Indian J Tuberc 2022; 69:341-346. [PMID: 35760484 DOI: 10.1016/j.ijtb.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Anti-TB drugs are most common cause of idiosyncratic hepatotoxicity worldwide. Reactive metabolite formed during drug metabolism has been involved in a clinical toxicity are described as 'idiosyncratic' drug induce liver injury (DILI). We have observed the distribution of glutathione S -transferase (GST) gene polymorphism & its association with drug-induced liver injury in patients taking anti-tubercular treatment. METHODS A prospective observational study including 96 patients receiving anti-tubercular treatment. Blood sample was collected for LFT and gene extraction after ruling out other cause of liver injury. DNA extraction for GST gene was done follow by polymerase chain reaction to identify homozygous null mutation at GSTM1 and GSTT1 loci. Association of GSTM1 and GSTT1 gene with DILI was seen. RESULTS Out of 96 tubercular patients under treatment, drug induced liver injury was found in 21 (21.9%) patients and 75 does not develop DILI, GST M1 gene null mutation was observed in 14 (66.7%), GST T1 gene null mutation was observed in 9 (42.9%), Both GST gene null mutation was observed in 8 (38.1%) in DILI group. CONCLUSION The GSTM1 gene null mutation and both GSTM1 and T1 gene null mutation were a risk factor for the development of DILI. But there is no significant association between GSTT1 gene null mutation and DILI in TB patients.
Collapse
Affiliation(s)
- Javed Akhtar
- Department of Pharmacology & Therapeutics, King George Medical University, Lucknow, U.P, India
| | - Sarvesh Singh
- Department of Pharmacology & Therapeutics, King George Medical University, Lucknow, U.P, India
| | - Ajay Kumar Verma
- Department of Respiratory Medicine, King George Medical University, Lucknow, U.P, India
| | - Rishi Pal
- Department of Pharmacology & Therapeutics, King George Medical University, Lucknow, U.P, India
| | - Rajendra Nath
- Department of Pharmacology & Therapeutics, King George Medical University, Lucknow, U.P, India.
| |
Collapse
|
14
|
Wen Y, Zhang G, Wu X. The role of the farnesoid X receptor in quadruple anti-tuberculosis drug-induced liver injury. Toxicology 2022; 476:153256. [PMID: 35835356 DOI: 10.1016/j.tox.2022.153256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 01/07/2023]
Abstract
Anti-tuberculosis drugs-induced liver injury may be associated with the hepatic farnesoid X receptor (FXR). However, the relationship between isoniazid, rifampicin, pyrazinamide and ethambutol (HRZE) coadministration-induced liver injury and FXR has not been clarified. The purpose of this study was to clarify the role of FXR in HRZE-induced liver injury. To measure indices of liver injury, blood samples were collected from clinical tuberculosis patients who had taken HRZE for approximately two months; in these patients serum total bile acids were increased, while other hepatic biochemical indexes showed no significant changes. When Wistar rats were orally administered isoniazid (30 or 60 mg/kg) + rifampicin (45 or 90 mg/kg) + pyrazinamide (150 or 300 mg/kg) + ethambutol (75 or 150 mg/kg) in combination for 15 days, the expression and function of FXR was up-regulated, and hepatic bile acids were decreased. However, following 30 days of HRZE treatment the expression and function of FXR was down-regulated and bile acids accumulated in the liver, suggestive of hepatotoxicity. Treatment of HepaRG cells with HRZE lead to time- and dose- dependent cytotoxicity, with the expression of FXR up-regulated in early stage, but down-regulated with prolonged HRZE treatment, consistent with the results of animal experiments. In summary, HRZE may upregulate FXR with short-term administration, but more prolonged treatment appears to suppress FXR function, resulting in hepatic bile acid accumulation.
Collapse
Affiliation(s)
- Yuanjie Wen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China
| | - Guoqiang Zhang
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China
| | - Xin'an Wu
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China.
| |
Collapse
|
15
|
Mech-Warda P, Giełdoń A, Kawiak A, Maciejewska N, Olszewski M, Makowski M, Chylewska A. Low-Molecular Pyrazine-Based DNA Binders: Physicochemical and Antimicrobial Properties. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123704. [PMID: 35744829 PMCID: PMC9228100 DOI: 10.3390/molecules27123704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/24/2022]
Abstract
Pyrazine and its derivatives are a large group of compounds that exhibit broad biological activity, the changes of which can be easily detected by a substituent effect or a change in the functional group. The present studies combined theoretical research with the density functional theory (DFT) approach (B3LYP/6-311+G**) and experimental (potentiometric and spectrophotometric) analysis for a thorough understanding of the structure of chlorohydrazinopyrazine, its physicochemical and cytotoxic properties, and the site and nature of interaction with DNA. The obtained results indicated that 2-chloro-3-hydrazinopyrazine (2Cl3HP) displayed the highest affinity to DNA. Cytotoxicity studies revealed that the compound did not exhibit toxicity toward human dermal keratinocytes, which supported the potential application of 2Cl3HP in clinical use. The study also attempted to establish the possible equilibria occurring in the aqueous solution and, using both theoretical and experimental methods, clearly showed the hydrophilic nature of the compound. The experimental and theoretical results of the study confirmed the quality of the compound, as well as the appropriateness of the selected set of methods for similar research.
Collapse
Affiliation(s)
- Paulina Mech-Warda
- Department of Bioinorganic Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (P.M.-W.); (M.M.)
| | - Artur Giełdoń
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland;
| | - Anna Kawiak
- Institute of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland;
| | - Natalia Maciejewska
- Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland; (N.M.); (M.O.)
| | - Mateusz Olszewski
- Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland; (N.M.); (M.O.)
| | - Mariusz Makowski
- Department of Bioinorganic Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (P.M.-W.); (M.M.)
| | - Agnieszka Chylewska
- Department of Bioinorganic Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (P.M.-W.); (M.M.)
- Correspondence:
| |
Collapse
|
16
|
Jayanti RP, Long NP, Phat NK, Cho YS, Shin JG. Semi-Automated Therapeutic Drug Monitoring as a Pillar toward Personalized Medicine for Tuberculosis Management. Pharmaceutics 2022; 14:pharmaceutics14050990. [PMID: 35631576 PMCID: PMC9147223 DOI: 10.3390/pharmaceutics14050990] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 12/10/2022] Open
Abstract
Standard tuberculosis (TB) management has failed to control the growing number of drug-resistant TB cases worldwide. Therefore, innovative approaches are required to eradicate TB. Model-informed precision dosing and therapeutic drug monitoring (TDM) have become promising tools for adjusting anti-TB drug doses corresponding with individual pharmacokinetic profiles. These are crucial to improving the treatment outcome of the patients, particularly for those with complex comorbidity and a high risk of treatment failure. Despite the actual benefits of TDM at the bedside, conventional TDM encounters several hurdles related to laborious, time-consuming, and costly processes. Herein, we review the current practice of TDM and discuss the main obstacles that impede it from successful clinical implementation. Moreover, we propose a semi-automated TDM approach to further enhance precision medicine for TB management.
Collapse
Affiliation(s)
- Rannissa Puspita Jayanti
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 47392, Korea; (R.P.J.); (N.P.L.); (N.K.P.); (Y.-S.C.)
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Busan 47392, Korea
| | - Nguyen Phuoc Long
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 47392, Korea; (R.P.J.); (N.P.L.); (N.K.P.); (Y.-S.C.)
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Busan 47392, Korea
| | - Nguyen Ky Phat
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 47392, Korea; (R.P.J.); (N.P.L.); (N.K.P.); (Y.-S.C.)
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Busan 47392, Korea
| | - Yong-Soon Cho
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 47392, Korea; (R.P.J.); (N.P.L.); (N.K.P.); (Y.-S.C.)
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Busan 47392, Korea
| | - Jae-Gook Shin
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 47392, Korea; (R.P.J.); (N.P.L.); (N.K.P.); (Y.-S.C.)
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Busan 47392, Korea
- Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan 47392, Korea
- Correspondence: ; Tel.: +82-51-890-6709; Fax: +82-51-893-1232
| |
Collapse
|
17
|
Busby RW, Cai X, Yang S, Ramos L, Venkatarangan L, Shen H, Wax S, Sadeque AJM, De Colle C. Metopimazine is primarily metabolized by a liver amidase in humans. Pharmacol Res Perspect 2021; 10:e00903. [PMID: 34918875 PMCID: PMC8929364 DOI: 10.1002/prp2.903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/18/2021] [Indexed: 11/10/2022] Open
Abstract
Metopimazine (MPZ) is a peripherally restricted, dopamine D2 receptor antagonist used for four decades to treat acute nausea and vomiting. MPZ is currently under clinical investigation for the treatment of gastroparesis (GP). MPZ undergoes high first-pass metabolism that produces metopimazine acid (MPZA), the major circulating metabolite in humans. Despite a long history of use, the enzymes involved in the metabolism of MPZ have not been identified. Here we report a series of studies designed to identify potential MPZ metabolites in vitro, determine their clinical relevance in humans, and elucidate the enzymes responsible for their formation. The findings demonstrated that the formation of MPZA was primarily catalyzed by human liver microsomal amidase. Additionally, human liver cytosolic aldehyde oxidase (AO) catalyzes the formation of MPZA, in vitro, although to a much lesser extent. Neither cytochrome P450 enzymes nor flavin-monooxygenases (FMO) were involved in the formation MPZA, although two minor oxidative pathways were catalyzed by CYP3A4 and CYP2D6 in vitro. Analysis of plasma samples from subjects dosed 60 mg of MPZ verified that these oxidative pathways are very minor and that CYP enzyme involvement was negligible compared to microsomal amidase/hydrolase in overall MPZ metabolism in humans. The metabolism by liver amidase, an enzyme family not well defined in small molecule drug metabolism, with minimal metabolism by CYPs, differentiates this drug from current D2 antagonists used or in development for the treatment of GP.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stephen Wax
- Neurogastrx, Inc., Woburn, Massachusetts, USA
| | | | | |
Collapse
|
18
|
Ai X, Huang H, Miao Z, Zhou T, Wu H, Lai Y. Relationship between xanthine oxidase gene polymorphisms and anti-tuberculosis drug-induced liver injury in a Chinese population. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 93:104991. [PMID: 34229066 DOI: 10.1016/j.meegid.2021.104991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/16/2021] [Accepted: 07/01/2021] [Indexed: 12/23/2022]
Abstract
This study was designed to investigate the association of the xanthine oxidase (XO) polymorphisms and susceptibility to anti-tuberculosis drug-induced liver injury (ATDILI) in Chinese population. A total of 183 tuberculosis patients were enrolled. Patients with ATDILI were classified as cases and those without ATDILI were classified as controls. Genotyping for XO polymorphisms was determined by polymerase chain reaction and direct sequencing. The allele frequencies and genotype distribution was analyzed using the Chi square test to analyze the association between the gene polymorphisms and ATDILI. Binary logistic regression analysis was performed to assess the risk factors of ATDILI. A total of 21 patients were developed liver injury during anti-tuberculosis treatment in this study, with an incidence of 11.48%. In genotype analysis, no significant difference was observed in the alleles and genotypes frequencies of the six SNPs between two groups (P > 0.05). In haplotype analysis, carriers with GGGATA (rs1884725- rs2295475 -rs45523133- rs206812- rs206813- rs7575607) haplotype had a significantly higher risk of ATDILI compared with other haplotypes (OR = 2.445, 95%CI: 1.058-5.652, P < 0.05). This study suggested that the haplotype GGGATA constructed with rs206812 and rs7575607 mutant alleles might contribute to ATDILI susceptibility in a Chinese population.
Collapse
Affiliation(s)
- Xin Ai
- Department of Pharmacology, College of Pharmacy, Dali University, 32 Jia Shi Bo Ave, Dali 671000, Yunnan, People's Republic of China
| | - Hangxing Huang
- Department of Pharmacology, College of Pharmacy, Dali University, 32 Jia Shi Bo Ave, Dali 671000, Yunnan, People's Republic of China
| | - Zhimin Miao
- Department of Pharmacology, College of Pharmacy, Dali University, 32 Jia Shi Bo Ave, Dali 671000, Yunnan, People's Republic of China
| | - Tao Zhou
- Department of Pharmacology, College of Pharmacy, Dali University, 32 Jia Shi Bo Ave, Dali 671000, Yunnan, People's Republic of China
| | - He Wu
- Department of Pharmacology, College of Pharmacy, Dali University, 32 Jia Shi Bo Ave, Dali 671000, Yunnan, People's Republic of China
| | - Yong Lai
- Department of Pharmacology, College of Pharmacy, Dali University, 32 Jia Shi Bo Ave, Dali 671000, Yunnan, People's Republic of China..
| |
Collapse
|
19
|
Thalla M, Jala A, Borkar RM, Banerjee S. Development and validation of UPLC-MS/MS method for in vitro quantitative analysis of pyrazinamide in lipid core-shell nanoarchitectonics for improved metabolic stability. ACTA CHROMATOGR 2021. [DOI: 10.1556/1326.2021.00916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
AbstractPyrazinamide (PZA), a medication for tuberculosis, has high aqueous solubility and low permeability, undergoes extensive liver metabolism, and exhibits liver toxicity through its metabolites. To avoid this, PZA in lipid core-shell nanoarchitectonics has been formulated to target lymphatic uptake and provide metabolic stability to the incorporated drug. The UPLC-MS/MS method for reliable in vitro quantitative analysis of pyrazinamide (PZA) in lipid core-shell nanoarchitectonics as per ICH guidance was developed and validated using the HILIC column. The developed UPLC-MS/MS method is a simple, precise, accurate, reproducible, and sensitive method for the estimation of PZA in PZA-loaded lipid core-shell nanoarchitectonics for the in vitro determination of % entrapment efficiency, % loading of pyrazinamide, and microsomal stability of lipid core-shell nanoarchitectonics in human liver microsomes. The % entrapment efficiency was found to be 42.72% (±12.60). Lipid nanoarchitectonics was found to be stable in human liver microsomes, where %QH was found to be 6.20%, that is, low clearance. Thus, this formulation is suitable for preventing PZA-mediated extensive liver metabolism. These findings are relevant for the development of other lipid-mediated, suitable, stable nanoformulations containing PZA through various in vitro methods.
Collapse
Affiliation(s)
- Maharshi Thalla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari-781101, Kamrup, Assam, India
| | - Aishwarya Jala
- Department of Pharmaceutical Analysis, NIPER-Guwahati, Changsari-781101, Kamrup, Assam, India
| | - Roshan M. Borkar
- Department of Pharmaceutical Analysis, NIPER-Guwahati, Changsari-781101, Kamrup, Assam, India
| | - Subham Banerjee
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari-781101, Kamrup, Assam, India
| |
Collapse
|
20
|
Hussain Z, Zhu J, Ma X. Metabolism and Hepatotoxicity of Pyrazinamide, an Antituberculosis Drug. Drug Metab Dispos 2021; 49:679-682. [PMID: 34074731 PMCID: PMC8407665 DOI: 10.1124/dmd.121.000389] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/26/2021] [Indexed: 11/22/2022] Open
Abstract
Pyrazinamide (PZA) is an important component of a standard combination therapy against tuberculosis. However, PZA is hepatotoxic, and the underlying mechanisms are poorly understood. Biotransformation of PZA in the liver was primarily suggested behind its hepatoxicity. This review summarizes the knowledge of the key enzymes involved in PZA metabolism and discusses their contributions to PZA hepatotoxicity. SIGNIFICANCE STATEMENT: This review outlines the current understanding of PZA metabolism and hepatotoxicity. This work also highlights the gaps in this field, which can be used to guide the future studies on PZA-induced liver injury.
Collapse
Affiliation(s)
- Zahir Hussain
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Junjie Zhu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xiaochao Ma
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
21
|
Zhong T, Zhuang Z, Dong X, Wong KH, Wong WT, Wang J, He D, Liu S. Predicting Antituberculosis Drug-Induced Liver Injury Using an Interpretable Machine Learning Method: Model Development and Validation Study. JMIR Med Inform 2021; 9:e29226. [PMID: 34283036 PMCID: PMC8335604 DOI: 10.2196/29226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 01/18/2023] Open
Abstract
Background Tuberculosis (TB) is a pandemic, being one of the top 10 causes of death and the main cause of death from a single source of infection. Drug-induced liver injury (DILI) is the most common and serious side effect during the treatment of TB. Objective We aim to predict the status of liver injury in patients with TB at the clinical treatment stage. Methods We designed an interpretable prediction model based on the XGBoost algorithm and identified the most robust and meaningful predictors of the risk of TB-DILI on the basis of clinical data extracted from the Hospital Information System of Shenzhen Nanshan Center for Chronic Disease Control from 2014 to 2019. Results In total, 757 patients were included, and 287 (38%) had developed TB-DILI. Based on values of relative importance and area under the receiver operating characteristic curve, machine learning tools selected patients’ most recent alanine transaminase levels, average rate of change of patients’ last 2 measures of alanine transaminase levels, cumulative dose of pyrazinamide, and cumulative dose of ethambutol as the best predictors for assessing the risk of TB-DILI. In the validation data set, the model had a precision of 90%, recall of 74%, classification accuracy of 76%, and balanced error rate of 77% in predicting cases of TB-DILI. The area under the receiver operating characteristic curve score upon 10-fold cross-validation was 0.912 (95% CI 0.890-0.935). In addition, the model provided warnings of high risk for patients in advance of DILI onset for a median of 15 (IQR 7.3-27.5) days. Conclusions Our model shows high accuracy and interpretability in predicting cases of TB-DILI, which can provide useful information to clinicians to adjust the medication regimen and avoid more serious liver injury in patients.
Collapse
Affiliation(s)
- Tao Zhong
- Department of Tuberculosis Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Zian Zhuang
- Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong, Hong Kong.,Department of Biostatistics, University of California, Los Angeles, Los Angeles, CA, United States.,Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Xiaoli Dong
- Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - Ka Hing Wong
- Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - Wing Tak Wong
- Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - Jian Wang
- Department of Tuberculosis Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Daihai He
- Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong, Hong Kong.,Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Shengyuan Liu
- Department of Tuberculosis Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| |
Collapse
|
22
|
Onsori S, Montazeri S. Pyrazinamide Drug Adsorption on the Pristine and Doped C70 Fullerenes: A DFT/TDDFT Study. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02060-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
23
|
Factors Affecting the Pharmacokinetics of Pyrazinamide and Its Metabolites in Patients Coinfected with HIV and Implications for Individualized Dosing. Antimicrob Agents Chemother 2021; 65:e0004621. [PMID: 33875424 DOI: 10.1128/aac.00046-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pyrazinamide is a first-line drug used in the treatment of tuberculosis. High exposure to pyrazinamide and its metabolites may result in hepatotoxicity, whereas low exposure to pyrazinamide has been correlated with treatment failure of first-line antitubercular therapy. The aim of this study was to describe the pharmacokinetics and metabolism of pyrazinamide in patients coinfected with tuberculosis and HIV. We further aimed to identify demographic and clinical factors which affect the pharmacokinetics of pyrazinamide and its metabolites in order to suggest individualized dosing regimens. Plasma concentrations of pyrazinamide, pyrazinoic acid, and 5-hydroxypyrazinamide from 63 Rwandan patients coinfected with tuberculosis and HIV were determined by liquid chromatography-tandem mass spectrometry followed by nonlinear mixed-effects modeling. Females had a close to 50% higher relative pyrazinamide bioavailability compared to males. The distribution volumes of pyrazinamide and both metabolites were lower in patients on concomitant efavirenz-based HIV therapy. Furthermore, there was a linear relationship between serum creatinine and oral clearance of pyrazinoic acid. Simulations indicated that increasing doses from 25 mg/kg of body weight to 35 mg/kg and 50 mg/kg in females and males, respectively, would result in adequate exposure with regard to suggested thresholds and increase probability of target attainment to >0.9 for a MIC of 25 mg/liter. Further, lowering the dose by 40% in patients with high serum creatinine would prevent accumulation of toxic metabolites. Individualized dosing is proposed to decrease variability in exposure to pyrazinamide and its metabolites. Reducing the variability in exposure may lower the risk of treatment failure and resistance development.
Collapse
|
24
|
Teschke R, Uetrecht J. Mechanism of idiosyncratic drug induced liver injury (DILI): unresolved basic issues. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:730. [PMID: 33987428 PMCID: PMC8106057 DOI: 10.21037/atm-2020-ubih-05] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Clinical features of idiosyncratic drug induced liver injury (DILI) are well described in cases that have been assessed for causality using the Roussel Uclaf Causality Assessment Method (RUCAM), but our understanding of the mechanistic steps leading to injury is fragmentary. The difficulties describing mechanistic events can be traced back to the lack of an animal model of experimental idiosyncratic DILI that can mimic the genetic requirements of human idiosyncratic DILI. However, immune tolerance plays a dominant role in the immune response of the liver, and impairment of immune tolerance with immune checkpoint inhibitors increases DILI in both humans and animals. This may provide one method to study the individual steps involved. In general. the human DILI liver is a secret keeper providing little insight into what occurs in the diseased organ. Sufficient evidence exists that most idiosyncratic cases are mediated by the adaptive immune system, which depends on stimulation of the innate immune system, but the triggering factors are unknown. It is attractive to hypothesize that the gut microbiome plays a role; however, it is very difficult to study. Similarly, exosomes are likely to play an important role in communication between hepatic cells and the immune system, but there is a lack of data on blood exosomes in affected patients. Reactive metabolites are likely to play an important role. This is supported by the current analysis, which revealed an association between metabolism by cytochrome P450 and drugs most commonly involved in causing idiosyncratic DILI with causality verified by RUCAM. Circumstantial evidence suggests that reactive oxygen species (ROS) generated by cytochrome P450 could be responsible for the initial steps of injury, but details are unknown. In conclusion, most of the mechanistic steps leading to idiosyncratic DILI remain unclear.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Hanau, Academic Teaching Hospital of the Medical Faculty of the Goethe University Frankfurt/ Main, Frankfurt/Main, Germany
| | - Jack Uetrecht
- Department of Pharmaceutical Sciences, University of Toronto, ON, Canada
| |
Collapse
|
25
|
Metallodendrimer‐sensitised Cytochrome P450 3A4 Electrochemical Biosensor for TB Drugs. ELECTROANAL 2020. [DOI: 10.1002/elan.202060384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
A Rare Case of Acute Generalized Exanthematous Pustulosis with Drug-Induced Liver Injury caused by Pyrazinamide. SERBIAN JOURNAL OF DERMATOLOGY AND VENEREOLOGY 2020. [DOI: 10.2478/sjdv-2020-0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Acute Generalized Exanthemataous Pustulosis (AGEP) is a rare acute pustular eruption that is mostly induced by drugs. Aside from cutaneous eruptions, systemic symptoms such as leukocytosis, neutrophilia, and internal organ involvement such as liver, kidney, respiratory system, and bone marrow, may occur, although uncommon. Liver involvement usually results in a two- or three-fold increase of liver enzymes and rarely exceeds that. Pyrazinamide is the first-line anti-tuberculosis drug that is potentially hepatotoxic, but rarely shows dermatologic manifestations. We report a rare case of AGEP with drug induced liver injury due to pyrazinamide in a young patient with tuberculosis.
Collapse
|
27
|
Kwon BS, Kim Y, Lee SH, Lim SY, Lee YJ, Park JS, Cho YJ, Yoon HI, Lee CT, Lee JH. The high incidence of severe adverse events due to pyrazinamide in elderly patients with tuberculosis. PLoS One 2020; 15:e0236109. [PMID: 32692774 PMCID: PMC7373258 DOI: 10.1371/journal.pone.0236109] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/28/2020] [Indexed: 12/15/2022] Open
Abstract
Background Pyrazinamide (PZA) is a common drug that causes serious adverse events (SAEs). The aim of this study was to determine the incidence of and risk factors for SAEs due to PZA during first-line anti-tuberculosis treatment. Methods The medical records of patients with tuberculosis (TB) treated with PZA-containing regimens including first-line drugs—ethambutol, rifampicin, and isoniazid—from January 2003 to June 2016 were reviewed. SAEs were defined as side effects that led to drug discontinuation. The causative drug was determined based on the disappearance of the SAEs upon drug withdrawal and/or the recurrence of the same SAEs with re-challenge. Results Of 2,478 patients with TB, 16.4% experienced SAEs. The incidence of SAEs increased significantly as age increased, except with rifampin. PZA accounted for most SAEs (55.8%). Hepatotoxicity was the most common SAE due to PZA (44.5%), followed by gastrointestinal (GI) intolerance (23.8%). The risk of SAEs due to PZA increased significantly as age increased, when sex and comorbidities were adjusted (odds ratio, 1.013; 95% confidence interval, 1.004–1.023; P = 0.007). In the subgroup analysis, older age was an independent risk factor for GI intolerance but not for hepatotoxicity. Conclusion PZA was the most common drug associated with SAEs among the first-line anti-TB drugs, and old age was an independent factor for SAE occurrence. This study suggests that the early recognition of whether the causative agent is PZA may improve effective treatment compliance, particularly in elderly patients.
Collapse
Affiliation(s)
- Byoung Soo Kwon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam-Si, Gyeonggi-Do, South Korea
| | - Youlim Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam-Si, Gyeonggi-Do, South Korea
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine Chuncheon Sacred Heart Hospital, Chuncheon-si, Gangwon-do, South Korea
| | - Sang Hoon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam-Si, Gyeonggi-Do, South Korea
- Division of Pulmonology, Department of Internal Medicine, Severance Hospital, Institute of Chest Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Yoon Lim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam-Si, Gyeonggi-Do, South Korea
| | - Yeon Joo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam-Si, Gyeonggi-Do, South Korea
| | - Jong Sun Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam-Si, Gyeonggi-Do, South Korea
| | - Young-Jae Cho
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam-Si, Gyeonggi-Do, South Korea
| | - Ho Il Yoon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam-Si, Gyeonggi-Do, South Korea
| | - Choon-Taek Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam-Si, Gyeonggi-Do, South Korea
| | - Jae Ho Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam-Si, Gyeonggi-Do, South Korea
- * E-mail:
| |
Collapse
|
28
|
An Evaluation of the In Vitro Roles and Mechanisms of Silibinin in Reducing Pyrazinamide- and Isoniazid-Induced Hepatocellular Damage. Int J Mol Sci 2020; 21:ijms21103714. [PMID: 32466226 PMCID: PMC7279482 DOI: 10.3390/ijms21103714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis remains a significant infectious lung disease that affects millions of patients worldwide. Despite numerous existing drug regimens for tuberculosis, drug-induced liver injury is a major challenge that limits the effectiveness of these therapeutics. Two drugs that form the backbone of the commonly administered quadruple antitubercular regimen, that is, pyrazinamide (PZA) and isoniazid (INH), are associated with such hepatotoxicity. Yet, we lack safe and effective alternatives to the antitubercular regimen. Consequently, current research largely focuses on exploiting the hepatoprotective effect of nutraceutical compounds as complementary therapy. Silibinin, a herbal product widely believed to protect against various liver diseases, potentially provides a useful solution given its hepatoprotective mechanisms. In our study, we identified silibinin’s role in mitigating PZA- and INH-induced hepatotoxicity and elucidated a deeper mechanistic understanding of silibinin’s hepatoprotective ability. Silibinin preserved the viability of human foetal hepatocyte line LO2 when co-administered with 80 mM INH and decreased apoptosis induced by a combination of 40 mM INH and 10 mM PZA by reducing oxidative damage to mitochondria, proteins, and lipids. Taken together, this proof-of-concept forms the rational basis for the further investigation of silibinin’s hepatoprotective effect in subsequent preclinical studies and clinical trials.
Collapse
|
29
|
Liu L, Li X, Huang C, Bian Y, Liu X, Cao J, Qu W, Miao L. Bile acids, lipid and purine metabolism involved in hepatotoxicity of first-line anti-tuberculosis drugs. Expert Opin Drug Metab Toxicol 2020; 16:527-537. [PMID: 32436768 DOI: 10.1080/17425255.2020.1758060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Rifampin (RIF), isoniazid (INH) and pyrazinamide (PZA) are essential components of the short-term first-line anti-tuberculosis (anti-TB) chemotherapy regimen and can cause hepatotoxicity. However, the mechanism of anti-TB drug-induced hepatotoxicity (ATDH) is currently unclear. We investigate the relevant contributions to liver injury and the pathway of the above-mentioned drugs administered alone or in combination. METHODS UPLC-Q-TOF/MS-based metabolomics, bile acids (BAs) analysis and FXR/SHP detection were used to evaluate the toxicity of these drugs and clarify the underlying metabolism-related pathway. RESULTS In C57BL/6 mice administered the corrected clinical doses, RIF, INH and PZA could induced hepatotoxicity; with less toxicity in the combination therapy than RIF. The pathological biochemistry, BAs concentration and metabolically regulated FXR/SHP gene expression analyzes in mice were consistent with the metabolomics results. FXR played a role in the hepatotoxicity of anti-tuberculosis drugs in the obeticholic acid treated and FXR-/- mice. Additionally, the purine and lipid metabolic pathways were involved in ATDH. CONCLUSION ATDH was involved in bile acids and lipid and purine metabolism. The BAs metabolic pathway involvement in mice was validated in TB patients. The noninvasive metabolomics approach is more systemic than routine toxicity evaluation and can be used to assess compound toxicity and the underlying mechanism.
Collapse
Affiliation(s)
- Linsheng Liu
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University , Suzhou, China
| | - Xianglian Li
- College of Pharmaceutical Science, Soochow University , Suzhou, China
| | - Chenrong Huang
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University , Suzhou, China
| | - Yicong Bian
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University , Suzhou, China
| | - Xiaoxue Liu
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University , Suzhou, China
| | - Jun Cao
- Department of pharmacy, The Affiliated Infectious Diseases Hospital of Soochow University (The Fifth People's Hospital of Suzhou) , Suzhou, China
| | - Wenhao Qu
- College of Pharmaceutical Science, Soochow University , Suzhou, China
| | - Liyan Miao
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University , Suzhou, China.,College of Pharmaceutical Science, Soochow University , Suzhou, China
| |
Collapse
|
30
|
Juhás M, Kučerová L, Horáček O, Janďourek O, Kubíček V, Konečná K, Kučera R, Bárta P, Janoušek J, Paterová P, Kuneš J, Doležal M, Zitko J. N-Pyrazinoyl Substituted Amino Acids as Potential Antimycobacterial Agents-The Synthesis and Biological Evaluation of Enantiomers. Molecules 2020; 25:E1518. [PMID: 32230728 PMCID: PMC7181131 DOI: 10.3390/molecules25071518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 11/22/2022] Open
Abstract
Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis (Mtb), each year causing millions of deaths. In this article, we present the synthesis and biological evaluations of new potential antimycobacterial compounds containing a fragment of the first-line antitubercular drug pyrazinamide (PZA), coupled with methyl or ethyl esters of selected amino acids. The antimicrobial activity was evaluated on a variety of (myco)bacterial strains, including Mtb H37Ra, M. smegmatis, M. aurum, Staphylococcus aureus, Pseudomonas aeruginosa, and fungal strains, including Candida albicans and Aspergillus flavus. Emphasis was placed on the comparison of enantiomer activities. None of the synthesized compounds showed any significant activity against fungal strains, and their antibacterial activities were also low, the best minimum inhibitory concentration (MIC) value was 31.25 µM. However, several compounds presented high activity against Mtb. Overall, higher activity was seen in derivatives containing ʟ-amino acids. Similarly, the activity seems tied to the more lipophilic compounds. The most active derivative contained phenylglycine moiety (PC-ᴅ/ʟ-Pgl-Me, MIC < 1.95 µg/mL). All active compounds possessed low cytotoxicity and good selectivity towards Mtb. To the best of our knowledge, this is the first study comparing the activities of the ᴅ- and ʟ-amino acid derivatives of pyrazinamide as potential antimycobacterial compounds.
Collapse
Affiliation(s)
- Martin Juhás
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| | - Lucie Kučerová
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| | - Ondřej Horáček
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| | - Ondřej Janďourek
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| | - Vladimír Kubíček
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| | - Klára Konečná
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| | - Radim Kučera
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| | - Pavel Bárta
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| | - Jiří Janoušek
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| | - Pavla Paterová
- University Hospital Hradec Králové, Department of Clinical Microbiology, Sokolská 581, 500 05 Hradec Králové, Czech Republic;
| | - Jiří Kuneš
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| | - Martin Doležal
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| | - Jan Zitko
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| |
Collapse
|
31
|
Shabbir M, Afsar T, Razak S, Almajwal A, Khan MR. Phytochemical analysis and Evaluation of hepatoprotective effect of Maytenus royleanus leaves extract against anti-tuberculosis drug induced liver injury in mice. Lipids Health Dis 2020; 19:46. [PMID: 32178678 PMCID: PMC7077109 DOI: 10.1186/s12944-020-01231-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 03/09/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Myrin®-p Forte is an anti-tuberclosis agent that can cause hepatic injuries in clinical settings. Maytenus royleanus (Celastraceae) is a medicinal plant, possesses antioxidant and anticancer activities. The hepatoprotective effect of the methanol extract of Maytenus royleanus leaves (MEM) against Myrin®-p Forte induced hepatotoxicity in mice was investigated. METHODS Mice were randomly parted into six groups (n = 6). Fixed-dose combination of Myrin®-p Forte (13.5 mg/kg Rifampicin, 6.75 mg/kg Isoniazid, 36.0 mg/kg Pyrazinamide and 24.8 mg/kg Ethambutol; RIPE] was administered for 15 days to induce liver injury. In treatment groups MEM (200 mg/kg and 400 mg/kg doses) and Vitamin B6 (180mg/kg) were administered prior to RIPE. Control group received 2% DMSO. Serum liver function tests, DNA damage, tissue antioxidant enzymes and histopathological alterations were studied. HPLC analysis was performed to determine the chemical composition using standard compounds. RESULTS The quercitin, gallic acid, luteolin, viteixin, apigenin, kaempherol, hyperoside and myricetin contents of all samples were determined by reverse-phase HPLC. Quercetin (0.217 mg/g dry weight) and luteolin (0.141 mg/g dry weight) were the major flavonoids identified in MEM. Myrin®-p Forte markedly (p < 0.05) deteriorated lipid profile and upregulated the concentration of LDH, AST, ALP, ALT and γ-GT in serum along with DNA fragmentation (37.13 ± 0.47%) and histopathological injuries in hepatic tissues of mice compared with the control group. Myrin®-p Forte increased (p < 0.001) lipid peroxidation and H2O2 while decreased (p < 0.001) the activity level of CAT, SOD, POD, GPx, GST, GSR, γ-GT and GSH. Co-administration of MEM (200 mg/kg; 400 mg/kg) or the vitamin B6 (180 mg/kg) to Myrin®-p Forte administered mice significantly ameliorated LDL, cholesterol, HDL and triglyceride content. Furthermore, MEM dose dependently corrected serum liver function tests, decrease % DNA fragmentation (17.82 ± 0.35 and 7.21 ± 0.32 respectively), DNA damage. MEM treated protect RIPE induced oxidative damage by enhancing antioxidants to oxidants balance. Histological examination comprehends biochemical findings. CONCLUSION The antioxidant effects of MEM exerted the hepatoprotective potential against the Myrin®-p Forte induced hepatotoxicity in mice.
Collapse
Affiliation(s)
- Maria Shabbir
- Atta-ur-Rahman School of Applied Biosciences, NUST, Islamabad, Pakistan.,Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Muhammad Rashid Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| |
Collapse
|
32
|
Soni H, Kumar-M P, Mishra S, Bellam BL, Singh H, Mandavdhare HS, Medhi B, Dutta U, Sharma V. Risk of hepatitis with various reintroduction regimens of anti-tubercular therapy: a systematic review and network meta-analysis. Expert Rev Anti Infect Ther 2020; 18:171-179. [PMID: 31923369 DOI: 10.1080/14787210.2020.1714436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Hariom Soni
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Praveen Kumar-M
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shubhra Mishra
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Balaji L Bellam
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Harjeet Singh
- Department of General Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Harshal S Mandavdhare
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Usha Dutta
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vishal Sharma
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
33
|
Mangwani N, Singh PK, Kumar V. Medicinal plants: Adjunct treatment to tuberculosis chemotherapy to prevent hepatic damage. J Ayurveda Integr Med 2019; 11:522-528. [PMID: 31679802 PMCID: PMC7772497 DOI: 10.1016/j.jaim.2019.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/29/2018] [Accepted: 02/18/2019] [Indexed: 02/07/2023] Open
Abstract
The effectiveness of herbs for the management of chemically induced hepatotoxicity has been discussed by many researchers. However, there is a paucity of compressive literature on the significance of hepatoprotective plants for the management of anti-TB drug induced toxicity. Anti-TB drugs have been reported to causes hepatic damage, due to which, many patients across the globe discontinued the treatment. Medicinal plants have multiple therapeutic effects. The assessment of biological activity of plants against Mycobacterium and its use for hepatic recovery provides an effective treatment approach. Traditionally used medicinal plants are the rich source of phytochemicals and secondary metabolites. These compounds can restore normal function, enzymatic activity and structure of hepatic cells against anti-TB drug induced hepatotoxicity. The present review covers comprehensive details on different hepatoprotective and antimycobacterial plants studied during past few decades so that potential adjuvants can be studied for Tuberculosis chemotherapy.
Collapse
Affiliation(s)
- Neelam Mangwani
- Value Addition Research and Development-Human Health, National Innovation Foundation-India, Grambharti, Mahudi Road, Gandhinagar, 382650, Gujarat, India
| | - Pawan Kumar Singh
- Value Addition Research and Development-Human Health, National Innovation Foundation-India, Grambharti, Mahudi Road, Gandhinagar, 382650, Gujarat, India.
| | - Vipin Kumar
- Value Addition Research and Development-Human Health, National Innovation Foundation-India, Grambharti, Mahudi Road, Gandhinagar, 382650, Gujarat, India
| |
Collapse
|
34
|
Lamont EA, Baughn AD. Impact of the host environment on the antitubercular action of pyrazinamide. EBioMedicine 2019; 49:374-380. [PMID: 31669220 PMCID: PMC6945238 DOI: 10.1016/j.ebiom.2019.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 01/05/2023] Open
Abstract
Pyrazinamide remains the only drug in the tuberculosis pharmacopeia to drastically shorten first-line therapy from nine to six months. Due to its unparalleled ability to sterilize non-replicating bacilli and reduce relapse rates, PZA is expected to be irreplaceable in future therapies against tuberculosis. While the molecular target of PZA is unclear, recent pharmacokinetic studies using small animal models and patient samples have highlighted the importance of host metabolism and immune responses in PZA efficacy. Delineating which host factors are important for PZA action will be integral to the design of next-generation therapies to shorten current TB drug regimens as well as to overcome treatment limitations in some patients. In this review, we discuss evidence for influence of the host environment on PZA activity, targets for PZA mechanism of action, recent studies in PZA pharmacokinetics, PZA antagonism and synergy with other first-line anti-TB drugs, and implications for future research.
Collapse
Affiliation(s)
- Elise A Lamont
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Anthony D Baughn
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
35
|
Pérez-González MZ, Macías-Rubalcava ML, Hernández-Ortega S, Siordia-Reyes AG, Jiménez-Arellanes MA. Additional compounds and the therapeutic potential of Cnidoscolus chayamansa (McVaugh) against hepatotoxicity induced by antitubercular drugs. Biomed Pharmacother 2019; 117:109140. [PMID: 31387195 DOI: 10.1016/j.biopha.2019.109140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 01/16/2023] Open
Abstract
Previously non-isolated compounds (scopoletin and β-D-Glucopyranoside, (1R)-O-isopropyl 6-O-(2,3,4-tri-O-acetyl-β-D-xylopyranosyl)-2,3,4-triacetate) were isolated from an organic extract of the Cnidoscolus chayamansa stem. Also, lupeol acetate (main compound, 49.7 mg/g of dry extract) and scopoletin (0.19 mg/g of dry extract) were quantified by HPLC analysis from this organic extract. The protective activity of the C. chayamansa organic extract against hepatotoxicity induced by antitubercular drugs [Rifampicin (50 mg/kg), Isoniazid (50 mg/kg), and Pyrazinamide (100 mg/kg)] are reported. The extract was tested at 200 and 400 mg/kg in Balb/C mice during 85 days, using silymarin (2.5 mg/kg) as positive control. Liver damage was determined using biochemical parameters (AST, ALT, ALP, CHOL, HDL TG, Urea, and CREA), histological analysis, and evaluation of oxidative stress (SOD, CAT, Gpx, Lpx and POx). The extract at both doses favored body weight gain with respect to the anti-TB group; the dose of 200 mg/kg was better. Also, the extract at both doses decreased the values of transaminases (AST, ALT) enzymes (p < 0.05) vs. anti-TB group. In oxidative stress parameters, the SOD value was decreased, as were the levels of peroxidation of lipids and oxidative protein in the group with C. chayamansa extract at 200 and 400 mg/kg vs. the anti-TB group. Histological analyses from liver showed the absence of steatosis in the extract group at 400 mg/kg, and moderate steatosis in the silymarin and extract (at 200 mg/kg) groups with respect to anti-TB group, which demonstrated a steatosis. It should be noted that during the study period, none of the treated mice died. In conclusion, the CHCl3: MeOH extract of C. chayamansa has a hepatoprotective effect against hepatotoxicity induced by anti-TB drugs.
Collapse
Affiliation(s)
- Mariana Z Pérez-González
- Unidad de Investigación Médica (UIM) en Farmacología, UMAE Hospital de Especialidades, CORSE 2º piso, Centro Médico Nacional Siglo XXI (CMN-SXXI), Instituto Mexicano del Seguro Social (IMSS), Av. Cuauhtémoc 330, Col. Doctores, 06720, Ciudad de México (CDMX), Mexico
| | - Martha L Macías-Rubalcava
- Instituto de Química (I.Q.), Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Alcaldía Coyoacán, 04510, CDMX, Mexico; Departamento de Productos Naturales, I.Q., UNAM, Ciudad Universitaria, Alcaldía Coyoacán, 04510 CDMX, Mexico
| | - Simón Hernández-Ortega
- Instituto de Química (I.Q.), Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Alcaldía Coyoacán, 04510, CDMX, Mexico; Laboratorio de Rayos X, UNAM, Ciudad Universitaria, Alcaldía Coyoacán, 04510 CDMX, Mexico
| | - A Georgina Siordia-Reyes
- División de Histopatología, UMAE Hospital de Pediatría, CMN-SXXI, IMSS, Av. Cuauhtémoc 330, Col. Doctores, 06729, CDMX, Mexico
| | - María Adelina Jiménez-Arellanes
- Unidad de Investigación Médica (UIM) en Farmacología, UMAE Hospital de Especialidades, CORSE 2º piso, Centro Médico Nacional Siglo XXI (CMN-SXXI), Instituto Mexicano del Seguro Social (IMSS), Av. Cuauhtémoc 330, Col. Doctores, 06720, Ciudad de México (CDMX), Mexico.
| |
Collapse
|
36
|
Brewer CT, Yang L, Edwards A, Lu Y, Low J, Wu J, Lee RE, Chen T. The Isoniazid Metabolites Hydrazine and Pyridoxal Isonicotinoyl Hydrazone Modulate Heme Biosynthesis. Toxicol Sci 2019; 168:209-224. [PMID: 30517741 PMCID: PMC6390808 DOI: 10.1093/toxsci/kfy294] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In a mouse model, rifampicin and isoniazid combination treatment results in cholestatic liver injury that is associated with an increase in protoporphyrin IX, the penultimate heme precursor. Both ferrochelatase (FECH/Fech) and aminolevulinic acid synthase 1 (ALAS1/Alas1) are crucial enzymes in regulating heme biosynthesis. Isoniazid has recently been reported to upregulate Alas1 but downregulate Fech protein levels in mice; however, the mechanism by which isoniazid mediates disruption of heme synthesis has been unclear. Two metabolites of isoniazid, pyridoxal isonicotinoyl hydrazone (PIH, the isoniazid-vitamin B6 conjugate) and hydrazine, have been detected in the urine of humans treated with isoniazid. Here we show that, in primary human hepatocytes and the human hepatocellular carcinoma cell line HepG2/C3A, (1) isoniazid treatment increases Alas1 protein levels but decreases Fech levels; (2) hydrazine treatment upregulates Alas1 protein and Alas1 mRNA levels; (3) PIH treatment decreases Fech protein levels, but not Fech mRNA levels; and (4) PIH is detected after isoniazid treatment, with levels increasing further when exogenous vitamin B6 analogs are coadministered. In addition, the PIH-mediated downregulation of human FECH is associated with iron chelation. Together, these data demonstrate that hydrazine upregulates ALAS1, whereas PIH downregulates FECH, suggesting that the metabolites of isoniazid mediate its disruption of heme biosynthesis by contributing to protoporphyrin IX accumulation.
Collapse
Affiliation(s)
- Christopher Trent Brewer
- Department of Chemical Biology and Therapeutics, St Jude Children’s Research Hospital, Memphis, Tennessee 38105
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Lei Yang
- Department of Chemical Biology and Therapeutics, St Jude Children’s Research Hospital, Memphis, Tennessee 38105
| | - Anne Edwards
- Department of Chemical Biology and Therapeutics, St Jude Children’s Research Hospital, Memphis, Tennessee 38105
| | - Yan Lu
- Department of Chemical Biology and Therapeutics, St Jude Children’s Research Hospital, Memphis, Tennessee 38105
| | - Jonathan Low
- Department of Chemical Biology and Therapeutics, St Jude Children’s Research Hospital, Memphis, Tennessee 38105
| | - Jing Wu
- Department of Chemical Biology and Therapeutics, St Jude Children’s Research Hospital, Memphis, Tennessee 38105
| | - Richard E Lee
- Department of Chemical Biology and Therapeutics, St Jude Children’s Research Hospital, Memphis, Tennessee 38105
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St Jude Children’s Research Hospital, Memphis, Tennessee 38105
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| |
Collapse
|
37
|
Effect of Diabetes Mellitus on the Pharmacokinetics and Pharmacodynamics of Tuberculosis Treatment. Antimicrob Agents Chemother 2018; 62:AAC.01383-18. [PMID: 30126955 DOI: 10.1128/aac.01383-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 08/09/2018] [Indexed: 01/03/2023] Open
Abstract
Diabetes mellitus (DM) and tuberculosis (TB) are two common diseases with increasing geographic overlap and clinical interactions. The effect of DM and hemoglobin A1c (HbA1c) values on the pharmacokinetics (PK) and pharmacodynamics (PD) of anti-TB drugs remains poorly characterized. Newly diagnosed TB patients with and without DM starting fixed-dose, thrice-weekly treatment underwent sampling for PK assessments (predose and 0.5, 2, and 6 h postdose) during the intensive and continuation phases of treatment. The effect of DM and HbA1c values on the maximum concentration (C max) of rifampin, isoniazid, and pyrazinamide and the association between drug concentrations and microbiologic and clinical outcomes were assessed. Of 243 patients, 101 had DM. Univariate analysis showed significant reductions in the C max of pyrazinamide and isoniazid (but not rifampin) with DM or increasing HbA1c values. After adjusting for age, sex, and weight, DM was associated only with reduced pyrazinamide concentrations (adjusted geometric mean ratio = 0.74, P = 0.03). In adjusted Cox models, female gender (adjusted hazards ratio [aHR] = 1.75, P = 0.001), a lower smear grade with the Xpert assay (aHR = 1.40, P < 0.001), and the pyrazinamide C max (aHR = 0.99, P = 0.006) were independent predictors of sputum culture conversion to negative. Higher isoniazid or rifampin concentrations were associated with a faster time to culture conversion in patients with DM only. A pyrazinamide C max above the therapeutic target was associated with higher unfavorable outcomes (treatment failure, relapse, death) (odds ratio = 1.92, P = 0.04). DM and higher HbA1c values increased the risk of not achieving therapeutic targets for pyrazinamide (but not rifampin or isoniazid). Higher pyrazinamide concentrations, though, were associated with worse microbiologic and clinical outcomes. DM status also appeared to influence PK-PD relationships for isoniazid and rifampin.
Collapse
|
38
|
Baskaran UL, Sabina EP. Clinical and experimental research in antituberculosis drug-induced hepatotoxicity: a review. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2018; 15:27-36. [PMID: 28088257 DOI: 10.1016/s2095-4964(17)60319-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Drug-induced liver injury is the common adverse effect seen in patients receiving antituberculosis drugs (ATDs). There are several risk factors associated with the development of hepatotoxicity in such patients. Though there have been appreciable efforts taken by carrying out studies investigating the efficacy of several natural and synthetic compounds in minimising this effect, the only choice available for clinicians is withdrawal of drugs. This review would give a precise idea of ATD-induced hepatotoxicity, its underlying mechanisms and alternative therapies for the same.
Collapse
Affiliation(s)
| | - Evan Prince Sabina
- School of Biosciences and Technology, VIT University, Vellore-632014, Tamilnadu, India
| |
Collapse
|
39
|
rs1800796 of the IL6 gene is associated with increased risk for anti-tuberculosis drug-induced hepatotoxicity in Chinese Han children. Tuberculosis (Edinb) 2018; 111:71-77. [PMID: 30029918 DOI: 10.1016/j.tube.2018.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 05/13/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023]
Abstract
Previous studies have revealed the important contribution of the immune response and oxidative stress to the development of anti-tuberculosis drug-induced hepatotoxicity (ATDH). To investigate whether single-nucleotide polymorphisms (SNPs) of the cytokine gene interleukin-6 (IL6) and oxidative stress genes xanthine dehydrogenase/oxidase (XO) and inducible nitric oxide synthase (NOS2) were associated with susceptibility to ATDH, we performed a case-control study including 41 ATDH cases and 116 ATDH-free controls in Chinese Han children. Significant difference in the allele distribution of rs1800796 in the IL6 gene was observed between the case and control groups, and the G allele of rs1800796 was associated with an increased risk for ATDH (odds ratio: 2.48, 95%CI: 1.40-4.40, P = 0.002). However, no significant difference was observed in the allele and genotype distributions of the other SNPs of the IL6, XO and NOS2 genes between the case and control groups after Bonferroni correction. In addition, no interaction was found between all selected SNPs. These findings indicate that genetic variants of the IL6 gene might contribute to the development of ATDH in the Chinese Han pediatric population.
Collapse
|
40
|
Cao J, Mi Y, Shi C, Bian Y, Huang C, Ye Z, Liu L, Miao L. First-line anti-tuberculosis drugs induce hepatotoxicity: A novel mechanism based on a urinary metabolomics platform. Biochem Biophys Res Commun 2018; 497:485-491. [PMID: 29454961 DOI: 10.1016/j.bbrc.2018.02.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 02/05/2018] [Indexed: 01/10/2023]
Abstract
Tuberculosis (TB) has become a global public health and social threat. As clinical first-line drugs, rifampicin and isoniazid used in combination with pyrazinamide and ethambutol (the HRZE regimen) usually induce hepatotoxicity. However, the mechanisms underlying this phenomenon remain unclear, and studying the metabolic impact of co-treating TB patients with the HRZE regimen can provide new hepatotoxicity evidence. In this study, urine metabolites from TB patients were profiled using a high-resolution ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) platform. The tricarboxylic acid circulation, arginine and proline metabolism and purine metabolic pathways were found to be affected by anti-TB drugs. The levels of pyroglutamate, isocitrate, citrate, and xanthine were significantly decreased after the administration of HRZE. The above mentioned pathways were also different between drug-induced liver injury (DILI) and non-DILI patients. Urate and cis-4-octenedioic acid levels in the DILI group were significantly increased compared to those in the non-DILI group, while the cis-aconitate and hypoxanthine levels were significantly decreased. These results highlight that superoxide generation can aggravate the hepatotoxic effects of the HRZE regimen. In addition, our metabolomic approach had the ability to predict hepatotoxicity for clinical applications.
Collapse
Affiliation(s)
- Jun Cao
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China; The Fifth People's Hospital of Suzhou, Suzhou 215000, China
| | - Yijun Mi
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Cuilin Shi
- The Fifth People's Hospital of Suzhou, Suzhou 215000, China
| | - Yicong Bian
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Chenrong Huang
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Zhijian Ye
- The Fifth People's Hospital of Suzhou, Suzhou 215000, China
| | - Linsheng Liu
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Liyan Miao
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China.
| |
Collapse
|
41
|
Chen Y, Mo Q, Xie B, Ma B, Zang X, Zhou G, Cheng L, Zhou JH, Wang Y. Hepatoprotective Activity of Yigan Mingmu Oral Liquid against Isoniazid/Rifampicin-Induced Liver Injuries in Rats. Chin Med 2018. [DOI: 10.4236/cm.2018.94010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
42
|
Stability, biocompatibility and antioxidant activity of PEG-modified liposomes containing resveratrol. Int J Pharm 2017; 538:40-47. [PMID: 29294324 DOI: 10.1016/j.ijpharm.2017.12.047] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/27/2017] [Accepted: 12/29/2017] [Indexed: 11/23/2022]
Abstract
The present investigation reports the development of PEG-modified liposomes for the delivery of naturally occurring resveratrol. PEG-modified liposomes were prepared by direct sonication of the phospholipid aqueous dispersion, in the presence of two PEG-surfactants. Small, spherical, unilamellar vesicles were produced, as demonstrated by light scattering, cryo-TEM, and SAXS. The aging of the vesicles was assessed by using the Turbiscan® technology, and their physical stability was evaluated in vitro in simulated body fluids, results showing that the key features of the liposomes were preserved. The biocompatibility of the formulations was demonstrated in an ex vivo model of hemolysis in human erythrocytes. Further, the incorporation of resveratrol in PEG-modified liposomes did not affect its intrinsic antioxidant activity, as DPPH radical was almost completely inhibited, and the vesicles were also able to ensure an optimal protection against oxidative stress in an ex vivo human erythrocytes-based model. Therefore, the proposed PEG-modified liposomes, which were prepared by a simple and reliable method, represent an interesting approach to safely deliver resveratrol, ensuring the preservation of the carrier structural integrity in the biological fluids, and the antioxidant efficacy of the polyphenol to be exploited against oxidative stress associated with cancer.
Collapse
|
43
|
Pyrazinamide clearance is impaired among HIV/tuberculosis patients with high levels of systemic immune activation. PLoS One 2017; 12:e0187624. [PMID: 29095954 PMCID: PMC5667771 DOI: 10.1371/journal.pone.0187624] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/22/2017] [Indexed: 12/29/2022] Open
Abstract
Pyrazinamide is the main driver of sterilizing effect in the standard regimen in adults and older children, and this effect is concentration-dependent. Tuberculosis patients co-infected with human immunodeficiency virus (HIV) have an increased risk for poor tuberculosis treatment outcomes and adverse drug events. We sought to determine whether measures of systemic immune activation were related to pyrazinamide pharmacokinetics among HIV/tuberculosis patients. We conducted a prospective cohort study of pyrazinamide pharmacokinetics in HIV/tuberculosis patients in Gaborone, Botswana. Patients underwent intensive pharmacokinetic sampling before and after the initiation of antiretroviral therapy, which can increase immune activation in HIV/tuberculosis. Compartmental pharmacokinetic modeling was performed to determine whether variability in systemic immune activation was related to variability in pyrazinamide pharmacokinetic parameters. Forty HIV/tuberculosis patients completed the first pharmacokinetic sampling visit, and 24 patients returned for a second visit following antiretroviral therapy initiation. The pyrazinamide plasma concentration-versus-time data were best explained by a one-compartment model with first-order elimination, and a combined additive and proportional residual error model. Pyrazinamide clearance was higher in men than women. Expression of CD38 and HLA- DR on CD8+T cells, a measure of HIV-associated immune activation, was inversely related to pyrazinamide clearance, with increasing immune activation associated with decreasing pyrazinamide clearance. Future studies should verify this finding in larger numbers of tuberculosis patients with and without HIV co-infection.
Collapse
|
44
|
Coadministration of Allopurinol To Increase Antimycobacterial Efficacy of Pyrazinamide as Evaluated in a Whole-Blood Bactericidal Activity Model. Antimicrob Agents Chemother 2017; 61:AAC.00482-17. [PMID: 28739782 DOI: 10.1128/aac.00482-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/19/2017] [Indexed: 01/24/2023] Open
Abstract
Coadministering pyrazinamide (PZA) with the xanthine oxidase inhibitor allopurinol increases systemic levels of the active metabolite, pyrazinoic acid (POA), but the effects on bactericidal activity against tuberculosis are unknown. We randomized healthy volunteers to take a single dose of PZA (either 10 or 25 mg/kg of body weight) at the first visit and the same dose 7 days later, coadministered with allopurinol (100 mg daily; 2 days before to 1 day after the PZA dose). Blood was drawn at intervals until 48 h after each PZA dose, and drug levels were measured using liquid chromatography-tandem mass spectrometry. Whole-blood bactericidal activity (WBA) was measured by inoculating blood samples with Mycobacterium tuberculosis and estimating the change in bacterial CFU after 72 h of incubation. Allopurinol increased the POA area under the concentration-time curve from 0 to 8 h (AUC0-8) (18.32 h · μg/ml versus 24.63 h · μg/ml for PZA alone versus PZA plus allopurinol) (P < 0.001) and its peak plasma concentration (Cmax) (2.81 μg/ml versus 4.00 μg/ml) (P < 0.001). There was no effect of allopurinol on mean cumulative WBA (0.01 ± 0.02 ΔlogCFU versus 0.00 ± 0.02 ΔlogCFU for PZA alone versus PZA plus allopurinol) (P = 0.49). Higher systemic POA levels were associated with greater WBA levels (P < 0.001), but the relationship was evident only at low POA concentrations. The lack of an effect of allopurinol on WBA despite a significant increase in blood POA levels suggests that host-generated POA may be less effective than POA generated inside bacteria. Coadministration of allopurinol does not appear to be a useful strategy for increasing the efficacy of PZA in clinical practice. (This study has been registered at ClinicalTrials.gov under registration no. NCT02700347.).
Collapse
|
45
|
Pharmacokinetics of Pyrazinamide and Optimal Dosing Regimens for Drug-Sensitive and -Resistant Tuberculosis. Antimicrob Agents Chemother 2017; 61:AAC.00490-17. [PMID: 28607022 DOI: 10.1128/aac.00490-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/24/2017] [Indexed: 11/20/2022] Open
Abstract
Pyrazinamide is used in the treatment of tuberculosis (TB) because its sterilizing effect against tubercle bacilli allows the shortening of treatment. It is part of standard treatment for drug-susceptible and drug-resistant TB, and it is being considered as a companion drug in novel regimens. The aim of this analysis was to characterize factors contributing to the variability in exposure and to evaluate drug exposures using alternative doses, thus providing evidence to support revised dosing recommendations for drug-susceptible and multidrug-resistant tuberculosis (MDR-TB). Pyrazinamide pharmacokinetic (PK) data from 61 HIV/TB-coinfected patients in South Africa were used in the analysis. The patients were administered weight-adjusted doses of pyrazinamide, rifampin, isoniazid, and ethambutol in fixed-dose combination tablets according to WHO guidelines and underwent intensive PK sampling on days 1, 8, 15, and 29. The data were interpreted using nonlinear mixed-effects modeling. PK profiles were best described using a one-compartment model with first-order elimination. Allometric scaling was applied to disposition parameters using fat-free mass. Clearance increased by 14% from the 1st day to the 29th day of treatment. More than 50% of patients with weight less than 55 kg achieved lower pyrazinamide exposures at steady state than the targeted area under the concentration-time curve from 0 to 24 h of 363 mg · h/liter. Among patients with drug-susceptible TB, adding 400 mg to the dose for those weighing 30 to 54 kg improved exposure. Average pyrazinamide exposure in different weight bands among patients with MDR-TB could be matched by administering 1,500 mg, 1,750 mg, and 2,000 mg to patients in the 33- to 50-kg, 51- to 70-kg, and greater than 70-kg weight bands, respectively.
Collapse
|
46
|
Xu L, Zhang F, Xu C, Liu KG, Wu W, Tian YX. Is the Prophylactic Use of Hepatoprotectants Necessary in Anti-Tuberculosis Treatment? Chemotherapy 2017; 62:269-278. [PMID: 28490012 DOI: 10.1159/000465515] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/26/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND Liver injury is one of the serious side effects of anti-tuberculosis (TB) drugs. It is controversial whether hepatoprotectant prophylaxis is efficient and safe in anti-TB treatment, so we aimed to assess the efficacy and safety of hepatoprotectant prophylaxis in patients who had received anti-TB treatment. METHODS PubMed, the Cochrane library, Embase, Ovid, Springer link, Wiley, Elsevier, Web of Science, and the Karger Online Journal were systematically searched prior to April 2016 for articles related to hepatoprotectant prophylaxis in the treatment of TB. A meta-analysis was conducted to estimate the effect of hepatoprotective agents on liver function and adverse events (AEs) in patients who had received anti-TB drugs. The primary outcomes were changes in alanine transaminase (ALT) and aspartate transaminase (AST) levels. The other outcomes were drug-induced liver injury (DILI) and AEs. RESULTS In our review, 6 trials that involved 1,227 patients were included. Our analysis indicated that hepatoprotective agents exerted protective effects on liver function in patients who had received anti-TB drugs (weighted mean difference, WMD = -7.81, 95% CI [-12.26, -3.37], p = 0.0006 [ALT]; WMD = -7.07, 95% CI [-11.43, -2.72], p = 0.001 [AST]) in any age group. However, in the subgroup analysis of treatment duration, the use of hepatoprotective agents was not associated with significant changes in ALT and AST levels after 2 weeks of treatment and exhibited a positive effect on liver function after 4 weeks of treatment. Moreover, the use of hepatoprotectants significantly decreased the number of DILI cases (risk ratio, RR 0.50, 95% CI [0.34-0.73], p = 0.0004). However, the use of hepatoprotectants led to similar AEs in the control groups (RR 1.07, 95% CI [0.82-1.39], p = 0.62). CONCLUSIONS The use of hepatoprotective drugs may prevent liver injury in patients who are receiving anti-TB drugs without any significant AEs 4 weeks after the initiation of hepatoprotective medication.
Collapse
Affiliation(s)
- Li Xu
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Medical University, Xi'an, PR China
| | | | | | | | | | | |
Collapse
|
47
|
Rawat A, Chaturvedi S, Singh AK, Guleria A, Dubey D, Keshari AK, Raj V, Rai A, Prakash A, Kumar U, Kumar D, Saha S. Metabolomics approach discriminates toxicity index of pyrazinamide and its metabolic products, pyrazinoic acid and 5-hydroxy pyrazinoic acid. Hum Exp Toxicol 2017; 37:373-389. [PMID: 28425350 DOI: 10.1177/0960327117705426] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pyrazinamide (PYZ)-an essential component of primary drug regimen used for the treatment and management of multidrug resistant or latent tuberculosis-is well known for its hepatoxicity. However, the mechanism of PYZ-induced hepatotoxicity is still unknown to researchers. Studies have shown that the drug is metabolized in the liver to pyrazinoic acid (PA) and 5-hydroxy pyrazinoic acid (5-OHPA) which individually may cause different degrees of hepatotoxicity. To evaluate this hypothesis, PYZ, PA, and 5-OHPA were administered to albino Wistar rats orally (respectively, at 250, 125, and 125 mg kg-1 for 28 days). Compared to normal rats, PYZ and its metabolic products decreased the weights of dosed rats and induced liver injury and a status of oxidative stress as assessed by combined histopathological and biochemical analysis. Compared to normal controls, the biochemical and morphological changes were more aberrant in PA- and 5-OHPA-dosed rats with respect to those dosed with PYZ. Finally, the serum metabolic profiles of rats dosed with PYZ, PA, and 5-OHPA were measured and compared with those of normal control rats. With respect to normal control rats, the rats dosed with PYZ and 5-OHPA showed most aberrant metabolic perturbations in their sera as compared to those dosed with PA. Altogether, the study suggests that PYZ-induced hepatotoxicity might be associated with its metabolized products, where 5-OHPA contributes to a higher degree in its overall toxicity than PA.
Collapse
Affiliation(s)
- A Rawat
- 1 Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh, India.,2 Centre of Biomedical Research (CBMR), Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Lucknow, Uttar Pradesh, India
| | - S Chaturvedi
- 3 Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh, India.,4 Division of Pharmacokinetics and Metabolism (PKMD), CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - A K Singh
- 3 Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh, India
| | - A Guleria
- 2 Centre of Biomedical Research (CBMR), Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Lucknow, Uttar Pradesh, India
| | - D Dubey
- 1 Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh, India.,2 Centre of Biomedical Research (CBMR), Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Lucknow, Uttar Pradesh, India
| | - A K Keshari
- 3 Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh, India
| | - V Raj
- 3 Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh, India
| | - A Rai
- 3 Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh, India
| | - A Prakash
- 1 Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh, India
| | - U Kumar
- 2 Centre of Biomedical Research (CBMR), Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Lucknow, Uttar Pradesh, India
| | - D Kumar
- 2 Centre of Biomedical Research (CBMR), Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Lucknow, Uttar Pradesh, India
| | - S Saha
- 3 Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh, India
| |
Collapse
|
48
|
Protective Effect of Bicyclol on Anti-Tuberculosis Drug Induced Liver Injury in Rats. Molecules 2017; 22:molecules22040524. [PMID: 28387740 PMCID: PMC6153934 DOI: 10.3390/molecules22040524] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/20/2017] [Accepted: 03/20/2017] [Indexed: 12/17/2022] Open
Abstract
The present study was performed to investigate the effect of bicyclol, a synthetic anti-hepatitis drug with anti-oxidative and anti-inflammatory properties, on anti-tuberculosis (anti-TB) drug-induced liver injury and related mechanisms in rats. Bicyclol was given to rats by gavage 2 h before the oral administration of an anti-TB drug once a day for 30 days. Liver injury was evaluated by biochemical and histopathological examinations. Lipid peroxidation, mitochondrial function, and the activity of antioxidants were measured by spectrophotometric methods. Cytokines expression and CYP2E1 activity were determined by ELISA assay and liquid chromatography–tandem mass spectrometry (LC–MS/MS) analysis. The expressions of hepatic CYP2E1 and hepatocyte growth factor (HGF) were assessed by Western blotting. As a result, bicyclol significantly protected against anti-TB drug-induced liver injury by reducing the elevated serum aminotransferases levels and accumulation of hepatic lipids. Meanwhile, the histopathological changes were also attenuated in rats. The protective effect of bicyclol on anti-TB drug-induced hepatotoxicity was mainly due to its ability to attenuate oxidative stress, suppress the inflammatory cytokines and CYP2E1 expression, up-regulate the expression of HGF, and improve mitochondrial function. Furthermore, administration of bicyclol had no significant effect on the plasma pharmacokinetics of the anti-TB drug in rats.
Collapse
|
49
|
Guo HL, Hassan HM, Ding PP, Wang SJ, Chen X, Wang T, Sun LX, Zhang LY, Jiang ZZ. Pyrazinamide-induced hepatotoxicity is alleviated by 4-PBA via inhibition of the PERK-eIF2α-ATF4-CHOP pathway. Toxicology 2017; 378:65-75. [PMID: 28063906 DOI: 10.1016/j.tox.2017.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 12/11/2016] [Accepted: 01/03/2017] [Indexed: 12/30/2022]
Abstract
Pyrazinamide (PZA)-induced serious liver injury, but the exact mechanism of PZA-induces hepatotoxicity remains controversial. Endoplasmic reticulum (ER) stress-caused cell apoptosis plays a critical role in the development of drug-induced liver injury (DILI). However, the direct connection between PZA toxicity and ER stress is unknown. In this study, we describe the role of ER stress in PZA induced hepatotoxicity in vivo and in vitro. We found that PZA induces apoptosis in HepG2 cells, and causes liver damage in rats, characterized by increased serum ALT, AST and TBA levels. PZA impairs antioxidant defenses, although this effect did not play an important role in resulting liver injury. The ER stress related proteins GRP78, p-PERK, p-eIF2α, ATF4, CHOP and caspase12 were activated after PZA exposure both in vivo and in vitro. Furthermore, as an ER stress inhibitor, sodium 4-phenylbutyrate (4-PBA) could ameliorate PZA toxicity in HepG2 cells and rat liver. These results have potential implications for the pathogenesis of PZA-induced hepatotoxicity in which ER stress especially PERK-eIF2α-ATF4-CHOP pathway participates in hepatocellular injury.
Collapse
Affiliation(s)
- Hong-Li Guo
- Children's Hospital of Nanjing Medical University, Nanjing, 210008, China; Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Hozeifa M Hassan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, Faculty of Pharmacy, University of Gezira, Wad-Medani, Sudan
| | - Ping-Ping Ding
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Shao-Jie Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Xi Chen
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Tao Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China
| | - Li-Xin Sun
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, China
| | - Lu-Yong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China.
| | - Zhen-Zhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
50
|
Zhao H, Si ZH, Li MH, Jiang L, Fu YH, Xing YX, Hong W, Ruan LY, Li PM, Wang JS. Pyrazinamide-induced hepatotoxicity and gender differences in rats as revealed by a 1H NMR based metabolomics approach. Toxicol Res (Camb) 2017; 6:17-29. [PMID: 30090474 PMCID: PMC6062402 DOI: 10.1039/c6tx00245e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/04/2016] [Indexed: 12/14/2022] Open
Abstract
Pyrazinamide (PZA) is a well-known first line anti-tuberculosis drug used in combination with other drugs such as isoniazid and rifampicin. Unfortunately, PZA suffered from a high rate of hepatotoxicity and hyperuricemia, which has not been clearly elucidated, hindering its wide application for therapeutic purposes. The purpose of this investigation was to develop a model of rat sub-acute hepatotoxicity induced by PZA and to explore the affected metabolic pathways by a 1H NMR-based metabolomics approach complemented with histopathological analysis and clinical chemistry. Rats of both genders were administered with PZA by gavage at doses of 1.0 and 2.0 g kg-1 for 4 weeks. PZA decreased the weights of dosed rats and induced liver injury dose-dependently. The female rats were more sensitive to PZA induced damage. Orthogonal signal correction partial least-squares discriminant analysis (OSC-PLS-DA) of the NMR profiles of the rat liver and serum revealed that PZA produced a status of oxidative stress and disturbances in purine metabolism, energy metabolism and NAD+ metabolism in a gender-specific and dose-dependent manner. These findings could be helpful to clarify the mechanism of PZA-induced hepatotoxicity and hyperuricemia. This integrated metabolomics approach showcased its ability to characterize the global metabolic status of organisms, providing a powerful and feasible tool to probe drug induced toxicity or side effects.
Collapse
Affiliation(s)
- He Zhao
- Center for Molecular Metabolism , School of Environmental and Biological Engineering , Nanjing University of Science and Technology , 200 Xiao Ling Wei Street , Nanjing 210094 , PR China . ; ; Tel: +86 25 84303216
| | - Zhi-Hong Si
- Cancer Hospital , Chinese Academy of Sciences , 350 Shu Shan Hu Road , Hefei 230031 , PR China
| | - Ming-Hui Li
- Center for Molecular Metabolism , School of Environmental and Biological Engineering , Nanjing University of Science and Technology , 200 Xiao Ling Wei Street , Nanjing 210094 , PR China . ; ; Tel: +86 25 84303216
| | - Lei Jiang
- Center for Molecular Metabolism , School of Environmental and Biological Engineering , Nanjing University of Science and Technology , 200 Xiao Ling Wei Street , Nanjing 210094 , PR China . ; ; Tel: +86 25 84303216
| | - Yong-Hong Fu
- Center for Molecular Metabolism , School of Environmental and Biological Engineering , Nanjing University of Science and Technology , 200 Xiao Ling Wei Street , Nanjing 210094 , PR China . ; ; Tel: +86 25 84303216
| | - Yue-Xiao Xing
- Center for Molecular Metabolism , School of Environmental and Biological Engineering , Nanjing University of Science and Technology , 200 Xiao Ling Wei Street , Nanjing 210094 , PR China . ; ; Tel: +86 25 84303216
| | - Wei Hong
- Center for Molecular Metabolism , School of Environmental and Biological Engineering , Nanjing University of Science and Technology , 200 Xiao Ling Wei Street , Nanjing 210094 , PR China . ; ; Tel: +86 25 84303216
| | - Ling-Yu Ruan
- Center for Molecular Metabolism , School of Environmental and Biological Engineering , Nanjing University of Science and Technology , 200 Xiao Ling Wei Street , Nanjing 210094 , PR China . ; ; Tel: +86 25 84303216
| | - Pu-Ming Li
- Center for Molecular Metabolism , School of Environmental and Biological Engineering , Nanjing University of Science and Technology , 200 Xiao Ling Wei Street , Nanjing 210094 , PR China . ; ; Tel: +86 25 84303216
| | - Jun-Song Wang
- Center for Molecular Metabolism , School of Environmental and Biological Engineering , Nanjing University of Science and Technology , 200 Xiao Ling Wei Street , Nanjing 210094 , PR China . ; ; Tel: +86 25 84303216
| |
Collapse
|