1
|
Zhou JF, Zhang MR, Wang Q, Li MZ, Bai JS, Dai Q, Zhang YH, Yan MX, Li XH, Chen J, Liu YY, Liu CC, Ye J, Zhou B. Two novel compounds inhibit Flavivirus infection in vitro and in vivo by targeting lipid metabolism. J Virol 2024; 98:e0063524. [PMID: 39158346 PMCID: PMC11406969 DOI: 10.1128/jvi.00635-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/10/2024] [Indexed: 08/20/2024] Open
Abstract
Flavivirus infection capitalizes on cellular lipid metabolism to remodel the cellular intima, creating a specialized lipid environment conducive to viral replication, assembly, and release. The Japanese encephalitis virus (JEV), a member of the Flavivirus genus, is responsible for significant morbidity and mortality in both humans and animals. Currently, there are no effective antiviral drugs available to combat JEV infection. In this study, we embarked on a quest to identify anti-JEV compounds within a lipid compound library. Our research led to the discovery of two novel compounds, isobavachalcone (IBC) and corosolic acid (CA), which exhibit dose-dependent inhibition of JEV proliferation. Time-of-addition assays indicated that IBC and CA predominantly target the late stage of the viral replication cycle. Mechanistically, JEV nonstructural proteins 1 and 2A (NS1 and NS2A) impede 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK) activation by obstructing the liver kinase B1 (LKB1)-AMPK interaction, resulting in decreased p-AMPK expression and a consequent upsurge in lipid synthesis. In contrast, IBC and CA may stimulate AMPK by binding to its active allosteric site, thereby inhibiting lipid synthesis essential for JEV replication and ultimately curtailing viral infection. Most importantly, in vivo experiments demonstrated that IBC and CA protected mice from JEV-induced mortality, significantly reducing viral loads in the brain and mitigating histopathological alterations. Overall, IBC and CA demonstrate significant potential as effective anti-JEV agents by precisely targeting AMPK-associated signaling pathways. These findings open new therapeutic avenues for addressing infections caused by Flaviviruses. IMPORTANCE This study is the inaugural utilization of a lipid compound library in antiviral drug screening. Two lipid compounds, isobavachalcone (IBC) and corosolic acid (CA), emerged from the screening, exhibiting substantial inhibitory effects on the Japanese encephalitis virus (JEV) proliferation in vitro. In vivo experiments underscored their efficacy, with IBC and CA reducing viral loads in the brain and mitigating JEV-induced histopathological changes, effectively shielding mice from fatal JEV infection. Intriguingly, IBC and CA may activate 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK) by binding to its active site, curtailing the synthesis of lipid substances, and thus suppressing JEV proliferation. This indicates AMPK as a potential antiviral target. Remarkably, IBC and CA demonstrated suppression of multiple viruses, including Flaviviruses (JEV and Zika virus), porcine herpesvirus (pseudorabies virus), and coronaviruses (porcine deltacoronavirus and porcine epidemic diarrhea virus), suggesting their potential as broad-spectrum antiviral agents. These findings shed new light on the potential applications of these compounds in antiviral research.
Collapse
Affiliation(s)
- Jiang-Fei Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Meng-Ran Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qi Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mei-Zhen Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ji-Shan Bai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qi Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuan-Hang Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Meng-Xue Yan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Han Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jing Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ya-Yun Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chun-Chun Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Bin Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Wang L, Chen HJ, Wang ZG, Ning D, Zhao W, Rat V, Lamb DC, Pang DW, Liu SL. Mapping Extracellular Space Features of Viral Encephalitis to Evaluate the Proficiency of Anti-Viral Drugs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311457. [PMID: 38243660 DOI: 10.1002/adma.202311457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Indexed: 01/21/2024]
Abstract
The extracellular space (ECS) is an important barrier against viral attack on brain cells, and dynamic changes in ECS microstructure characteristics are closely related to the progression of viral encephalitis in the brain and the efficacy of antiviral drugs. However, mapping the precise morphological and rheological features of the ECS in viral encephalitis is still challenging so far. Here, a robust approach is developed using single-particle diffusional fingerprinting of quantum dots combined with machine learning to map ECS features in the brain and predict the efficacy of antiviral encephalitis drugs. These results demonstrated that this approach can characterize the microrheology and geometry of the brain ECS at different stages of viral infection and identify subtle changes induced by different drug treatments. This approach provides a potential platform for drug proficiency assessment and is expected to offer a reliable basis for the clinical translation of drugs.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Hua-Jie Chen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Di Ning
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Virgile Rat
- Physical Chemistry, Department of Chemistry, and Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-Universität, 81377, München, Germany
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, and Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-Universität, 81377, München, Germany
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| |
Collapse
|
3
|
Blaustein MP, Hamlyn JM. Sensational site: the sodium pump ouabain-binding site and its ligands. Am J Physiol Cell Physiol 2024; 326:C1120-C1177. [PMID: 38223926 PMCID: PMC11193536 DOI: 10.1152/ajpcell.00273.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
Cardiotonic steroids (CTS), used by certain insects, toads, and rats for protection from predators, became, thanks to Withering's trailblazing 1785 monograph, the mainstay of heart failure (HF) therapy. In the 1950s and 1960s, we learned that the CTS receptor was part of the sodium pump (NKA) and that the Na+/Ca2+ exchanger was critical for the acute cardiotonic effect of digoxin- and ouabain-related CTS. This "settled" view was upended by seven revolutionary observations. First, subnanomolar ouabain sometimes stimulates NKA while higher concentrations are invariably inhibitory. Second, endogenous ouabain (EO) was discovered in the human circulation. Third, in the DIG clinical trial, digoxin only marginally improved outcomes in patients with HF. Fourth, cloning of NKA in 1985 revealed multiple NKA α and β subunit isoforms that, in the rodent, differ in their sensitivities to CTS. Fifth, the NKA is a cation pump and a hormone receptor/signal transducer. EO binding to NKA activates, in a ligand- and cell-specific manner, several protein kinase and Ca2+-dependent signaling cascades that have widespread physiological effects and can contribute to hypertension and HF pathogenesis. Sixth, all CTS are not equivalent, e.g., ouabain induces hypertension in rodents while digoxin is antihypertensinogenic ("biased signaling"). Seventh, most common rodent hypertension models require a highly ouabain-sensitive α2 NKA and the elevated blood pressure is alleviated by EO immunoneutralization. These numerous phenomena are enabled by NKA's intricate structure. We have just begun to understand the endocrine role of the endogenous ligands and the broad impact of the ouabain-binding site on physiology and pathophysiology.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - John M Hamlyn
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
4
|
Mi Y, Guo Y, Luo X, Bai Y, Chen H, Wang M, Wang Y, Guo J. Natural products and derivatives as Japanese encephalitis virus antivirals. Pathog Dis 2024; 82:ftae022. [PMID: 39317665 PMCID: PMC11556344 DOI: 10.1093/femspd/ftae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/31/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024] Open
Abstract
Japanese encephalitis virus (JEV) causes acute Japanese encephalitis (JE) in humans and reproductive disorders in pigs. There are ~68 000 cases of JE worldwide each year, with ~13 600-20 400 deaths. JE infections have a fatality rate of one-third, and half of the survivors experience permanent neurological sequelae. The disease is prevalent throughout the Asia-Pacific region and has the potential to spread globally. JEV poses a serious threat to human life and health, and vaccination is currently the only strategy for long-term sustainable protection against JEV infection. However, licensed JEV vaccines are not effective against all strains of JEV. To date, there are no drugs approved for clinical use, and the development of anti-JEV drugs is urgently needed. Natural products are characterized by a wide range of sources, unique structures, and low prices, and this paper provides an overview of the research and development of anti-JEV bioactive natural products.
Collapse
Affiliation(s)
- Yunqi Mi
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China
| | - Yan Guo
- School of Modern Post, Xi’an University of Posts and Telecommunications, Xi’an 710061, China
| | - Xuliang Luo
- College of Animal Science and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Bai
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China
| | - Haonan Chen
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China
| | - Meihua Wang
- Faculty of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yang Wang
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China
| | - Jiao Guo
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China
| |
Collapse
|
5
|
Guo J, Mi Y, Guo Y, Bai Y, Wang M, Wang W, Wang Y. Current Advances in Japanese Encephalitis Virus Drug Development. Viruses 2024; 16:202. [PMID: 38399978 PMCID: PMC10892782 DOI: 10.3390/v16020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/14/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Japanese encephalitis virus (JEV) belongs to the Flaviviridae family and is a representative mosquito-borne flavivirus responsible for acute encephalitis and meningitis in humans. Despite the availability of vaccines, JEV remains a major public health threat with the potential to spread globally. According to the World Health Organization (WHO), there are an estimated 69,000 cases of JE each year, and this figure is probably an underestimate. The majority of JE victims are children in endemic areas, and almost half of the surviving patients have motor or cognitive sequelae. Thus, the absence of a clinically approved drug for the treatment of JE defines an urgent medical need. Recently, several promising and potential drug candidates were reported through drug repurposing studies, high-throughput drug library screening, and de novo design. This review focuses on the historical aspects of JEV, the biology of JEV replication, targets for therapeutic strategies, a target product profile, and drug development initiatives.
Collapse
Affiliation(s)
- Jiao Guo
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China; (J.G.); (Y.M.); (Y.B.)
| | - Yunqi Mi
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China; (J.G.); (Y.M.); (Y.B.)
| | - Yan Guo
- College of Animal Science and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Yang Bai
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China; (J.G.); (Y.M.); (Y.B.)
| | - Meihua Wang
- Faculty of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China;
| | - Wei Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yang Wang
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China; (J.G.); (Y.M.); (Y.B.)
| |
Collapse
|
6
|
de Sales-Neto JM, Madruga Carvalho DC, Arruda Magalhães DW, Araujo Medeiros AB, Soares MM, Rodrigues-Mascarenhas S. Zika virus: Antiviral immune response, inflammation, and cardiotonic steroids as antiviral agents. Int Immunopharmacol 2024; 127:111368. [PMID: 38103408 DOI: 10.1016/j.intimp.2023.111368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/27/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Zika virus (ZIKV) is a mosquito-borne virus first reported from humans in Nigeria in 1954. The first outbreak occurred in Micronesia followed by an outbreak in French Polynesia and another in Brazil when the virus was associated with numerous cases of severe neurological manifestations such as Guillain-Barre syndrome in adults and congenital zika syndrome in fetuses, particularly congenital microcephaly. Innate immunity is the first line of defense against ZIKV through triggering an antiviral immune response. Along with innate immune responses, a sufficient balance between anti- and pro-inflammatory cytokines and the amount of these cytokines are triggered to enhance the antiviral responses. Here, we reviewed the complex interplay between the mediators and signal pathways that coordinate antiviral immune response and inflammation as a key to understanding the development of the underlying diseases triggered by ZIKV. In addition, we summarize current and new therapeutic strategies for ZIKV infection, highlighting cardiotonic steroids as antiviral drugs for the development of this agent.
Collapse
Affiliation(s)
- José Marreiro de Sales-Neto
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | | | | | | - Mariana Mendonça Soares
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Sandra Rodrigues-Mascarenhas
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraíba, João Pessoa, PB, Brazil.
| |
Collapse
|
7
|
Subramani C, Sharma G, Chaira T, Barman TK. High content screening strategies for large-scale compound libraries with a focus on high-containment viruses. Antiviral Res 2024; 221:105764. [PMID: 38008193 DOI: 10.1016/j.antiviral.2023.105764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
A majority of viral diseases do not have FDA-approved drugs. The recent outbreaks caused by SARS-CoV-2, monkeypox, and Sudan ebolavirus have exposed the critical need for rapid screening and identification of antiviral compounds against emerging/re-emerging viral pathogens. A high-content screening (HCS) platform is becoming an essential part of the drug discovery process, thanks to developments in image acquisition and analysis. While HCS has several advantages, its full potential has not been realized in antiviral drug discovery compared to conventional drug screening approaches, such as fluorescence or luminescence-based microplate assays. Therefore, this review aims to summarize HCS workflow, strategies, and developments in image-based drug screening, focusing on high-containment viruses.
Collapse
Affiliation(s)
- Chandru Subramani
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Galveston National Laboratory, Galveston, TX, USA
| | - Ghanshyam Sharma
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Tridib Chaira
- Department of Pharmacology, SGT University, Gurugram, Haryana, India
| | - Tarani Kanta Barman
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Galveston National Laboratory, Galveston, TX, USA.
| |
Collapse
|
8
|
Saxena SK, Kumar S, Maurya VK, Nayak D, Kaushik S, Manchanda RK, Gadugu S. Antiviral and anti-inflammatory activity of novel belladonna formulation against Japanese encephalitis virus via inhibition of p65 nuclear translocation and TNF-α mediated NF-kB signaling. Biotechnol Genet Eng Rev 2023; 39:937-959. [PMID: 36718919 DOI: 10.1080/02648725.2023.2166258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/31/2022] [Indexed: 02/01/2023]
Abstract
Japanese encephalitis (JE) is a mosquito-borne flavivirus infection, a major cause of viral encephalitis in South-East Asia with a CFR of ~30% and no specific treatment. Therefore, a novel belladonna formulation (BCT) was prepared and its antiviral and anti-inflammatory activity was elucidated during Japanese encephalitis virus (JEV) infection. Anti-JEV role of BCT was investigated aiming to prevent the infection in the peripheral immune cells. Antiviral activity of BCT was evaluated by plaque reduction assay, cell survival and apoptosis assay. BCT-mediated reduction in JEV-envelope expression was measured by indirect immunofluorescence, RT-PCR and Western blot assays. NF-κB expression and p65 nuclear translocation assays were determined to explore the mechanism of the action of BCT. TNF-α level was measured to evaluate the anti-inflammatory role of BCT during JEV infection. Consequently, molecular docking was performed with the TRAF2-TRADD complex. Our data suggested that BCT treatment reduces the JEV-plaque formation, JEV-induced cytopathic effects and increases cell survival. The antiviral effect of BCT was confirmed by reduction in the JEV-envelope protein expression. Moreover, BCT treatment and prevents the NF-κB activation via preventing the nuclear translocation of p65 and reduces the TNF-α levels. Our molecular docking analysis suggested that belladonna alkaloids interfere with the TRAF2-TRADD complex that results in inhibition of TNF-induced NF-κB signaling. For the first time, our data suggested that BCT reduces JEV expression and interferes with TNF-induced NF-κB signaling, thereby increasing cell survival via preventing the p65 nuclear translocation and may be used for the treatment and prevention of JE.Abbreviation: CFR: Case fatality rate; CAM: Complementary and alternative medicines; COX-2: Cyclooxygenase-2; IκB: Inhibitor kappa B; JE: Japanese encephalitis; JEV: Japanese encephalitis virus; NF-κB: Nuclear factor kappa-light-chain-enhancer of activated B cells; ORF: Open reading frame; TNFR: Tumor necrosis factor receptor; TNF-α: Tumor necrosis factor-α; TRADD: TNFR1-associated death domain protein; TRAF2: TNF Receptor Associated Factor 2.
Collapse
Affiliation(s)
- Shailendra K Saxena
- Centre for Advanced Research, Faculty of Medicine, King George's Medical University, Lucknow, India
| | - Swatantra Kumar
- Centre for Advanced Research, Faculty of Medicine, King George's Medical University, Lucknow, India
| | - Vimal K Maurya
- Centre for Advanced Research, Faculty of Medicine, King George's Medical University, Lucknow, India
| | | | | | | | - Srinivasulu Gadugu
- Department of Medicine, JSPS Government Medical College, Hyderabad, India
| |
Collapse
|
9
|
Bo Z, Zhu J, Li X, Zhang C, Guo M, Cao Y, Zhang X, Wu Y. Identification of Na +/K +-ATPase Inhibitor Bufalin as a Novel Pseudorabies Virus Infection Inhibitor In Vitro and In Vivo. Int J Mol Sci 2023; 24:14479. [PMID: 37833925 PMCID: PMC10572507 DOI: 10.3390/ijms241914479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/02/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Pseudorabies virus (PRV), an alpha herpesvirus, induces significant economic losses to the swine industry and infects multiple kinds of animals. Therefore, it is of great importance to explore anti-PRV compounds. In this study, to explore the anti-PRV compounds, a library of natural compounds was screened through a cell-based ELISA assay, and it was discovered that bufalin, a Na+/K+-ATPase inhibitor, had a robust inhibitory effect on PRV replication. A time-of-addition experiment and temperature-shift assay showed that bufalin significantly inhibited the entry stage of PRV. NaCl- or KCl-treatment showed that NaCl could enhance the inhibitory effect of bufalin on PRV replication, whereas there was no significant effect under the treatment of KCl. Meanwhile, it was also found that bufalin possessed antiviral activity against other alpha herpesviruses, including human herpes simplex virus type 1 (HSV-1) and chicken Marek's disease virus (MDV). Finally, it was found that bufalin could decrease the viral load in multiple tissues, and reduce the morbidity and mortality in PRV-challenged BALB/c mice. Overall, our findings demonstrated that bufalin has the potential to be developed as an anti-PRV compound.
Collapse
Affiliation(s)
- Zongyi Bo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.B.)
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China
| | - Jinjin Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.B.)
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China
| | - Xiaojuan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.B.)
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China
| | - Chengcheng Zhang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China
| | - Mengjiao Guo
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China
| | - Yongzhong Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.B.)
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China
| | - Xiaorong Zhang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China
| | - Yantao Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.B.)
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
10
|
Guterres A. Viral load: We need a new look at an old problem? J Med Virol 2023; 95:e29061. [PMID: 37638475 DOI: 10.1002/jmv.29061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/22/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023]
Abstract
The concept of viral load was introduced in the 1980s to measure the amount of viral genetic material in a person's blood, primarily for human immunodeficiency virus (HIV). It has since become crucial for monitoring HIV infection progression and assessing the efficacy of antiretroviral therapy. However, during the coronavirus disease 2019 pandemic, the term "viral load" became widely popularized, not only for the scientific community but for the general population. Viral load plays a critical role in both clinical patient management and research, providing valuable insights for antiviral treatment strategies, vaccination efforts, and epidemiological control measures. As measuring viral load is so important, why don't researchers discuss the best way to do it? Is it simply acceptable to use raw Ct values? Relying solely on Ct values for viral load estimation can be problematic due to several reasons. First, Ct values can vary between different quantitative polymerase chain reaction assays, platforms, and laboratories, making it difficult to compare data across studies. Second, Ct values do not directly measure the quantity of viral particles in a sample and they can be influenced by various factors such as initial viral load, sample quality, and assay sensitivity. Moreover, variations in viral RNA extraction and reverse-transcription steps can further impact the accuracy of viral load estimation, emphasizing the need for careful interpretation of Ct values in viral load assessment. Interestingly, we did not observe scientific articles addressing different strategies to quantify viral load. The absence of standardized and validated methods impedes the implementation of viral load monitoring in clinical management. The variability in cell quantities within samples and the variation in viral particle numbers within infected cells further challenge accurate viral load measurement and interpretation. To advance the field and improve patient outcomes, there is an urgent need for the development and validation of tailored, standardized methods for precise viral load quantification.
Collapse
Affiliation(s)
- Alexandro Guterres
- Laboratório de Hantaviroses e Rickettsioses, Instituto Oswaldo Cruz Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos, Vice-Diretoria de Desenvolvimento Tecnológico, Bio-Manguinhos, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Srivastava KS, Jeswani V, Pal N, Bohra B, Vishwakarma V, Bapat AA, Patnaik YP, Khanna N, Shukla R. Japanese Encephalitis Virus: An Update on the Potential Antivirals and Vaccines. Vaccines (Basel) 2023; 11:vaccines11040742. [PMID: 37112654 PMCID: PMC10146181 DOI: 10.3390/vaccines11040742] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/29/2023] Open
Abstract
Japanese encephalitis virus (JEV) is the causal agent behind Japanese encephalitis (JE), a potentially severe brain infection that spreads through mosquito bites. JE is predominant over the Asia-Pacific Region and has the potential to spread globally with a higher rate of morbidity and mortality. Efforts have been made to identify and select various target molecules essential in JEV’s progression, but until now, no licensed anti-JEV drug has been available. From a prophylactic point of view, a few licensed JE vaccines are available, but various factors, viz., the high cost and different side effects imposed by them, has narrowed their global use. With an average occurrence of >67,000 cases of JE annually, there is an urgent need to find a suitable antiviral drug to treat patients at the acute phase, as presently only supportive care is available to mitigate infection. This systematic review highlights the current status of efforts put in to develop antivirals against JE and the available vaccines, along with their effectiveness. It also summarizes epidemiology, structure, pathogenesis, and potential drug targets that can be explored to develop a new range of anti-JEV drugs to combat JEV infection globally.
Collapse
|
12
|
Antiviral activity of ouabain against a Brazilian Zika virus strain. Sci Rep 2022; 12:12598. [PMID: 35871157 PMCID: PMC9308787 DOI: 10.1038/s41598-022-14243-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/14/2022] [Indexed: 11/20/2022] Open
Abstract
Zika virus (ZIKV) is an emerging arbovirus associated with neurological disorders. Currently, no specific vaccines or antivirals are available to treat the ZIKV infection. Ouabain, a cardiotonic steroid known as Na+/K+-ATPase inhibitor, has been previously described as an immunomodulatory substance by our group. Here, we evaluated for the first time the antiviral activity of this promising substance against a Brazilian ZIKV strain. Vero cells were treated with different concentrations of ouabain before and after the infection with ZIKV. The antiviral effect was evaluated by the TCID50 method and RT-qPCR. Ouabain presented a dose-dependent inhibitory effect against ZIKV, mainly when added post infection. The reduction of infectious virus was accompanied by a decrease in ZIKV RNA levels, suggesting that the mechanism of ZIKV inhibition by ouabain occurred at the replication step. In addition, our in silico data demonstrated a conformational stability and favorable binding free energy of ouabain in the biding sites of the NS5-RdRp and NS3-helicase proteins, which could be related to its mechanism of action. Taken together, these data demonstrate the antiviral activity of ouabain against a Brazilian ZIKV strain and evidence the potential of cardiotonic steroids as promising antiviral agents.
Collapse
|
13
|
Molecular Mechanism and Role of Japanese Encephalitis Virus Infection in Central Nervous System-Mediated Diseases. Viruses 2022; 14:v14122686. [PMID: 36560690 PMCID: PMC9781168 DOI: 10.3390/v14122686] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
The Japanese encephalitis virus (JEV) is the most common cause of neurodegenerative disease in Southeast Asia and the Western Pacific region; approximately 1.15 billion people are at risk, and thousands suffer from permanent neurological disorders across Asian countries, with 10-15 thousand people dying each year. JEV crosses the blood-brain barrier (BBB) and forms a complex with receptors on the surface of neurons. GRP78, Src, TLR7, caveolin-1, and dopamine receptor D2 are involved in JEV binding and entry into the neurons, and these receptors also play a role in carcinogenic activity in cells. JEV binds to GRP78, a member of the HSP70 overexpressed on malignant cells to enter neurons, indicating a higher chance of JEV infection in cancer patients. However, JEV enters human brain microvascular endothelial cells via an endocytic pathway mediated by caveolae and the ezrin protein and also targets dopamine-rich areas for infection of the midbrain via altering dopamine levels. In addition, JEV complexed with CLEC5A receptor of macrophage cells is involved in the breakdown of the BBB and central nervous system (CNS) inflammation. CLEC5A-mediated infection is also responsible for the influx of cytokines into the CNS. In this review, we discuss the neuronal and macrophage surface receptors involved in neuronal death.
Collapse
|
14
|
Implications of Microorganisms in Alzheimer's Disease. Curr Issues Mol Biol 2022; 44:4584-4615. [PMID: 36286029 PMCID: PMC9600878 DOI: 10.3390/cimb44100314] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022] Open
Abstract
Alzheimer’s disease (AD) is a deadly brain degenerative disorder that leads to brain shrinkage and dementia. AD is manifested with hyperphosphorylated tau protein levels and amyloid beta (Aβ) peptide buildup in the hippocampus and cortex regions of the brain. The nervous tissue of AD patients also contains fungal proteins and DNA which are linked to bacterial infections, suggesting that polymicrobial infections also occur in the brains of those with AD. Both immunohistochemistry and next-generation sequencing (NGS) techniques were employed to assess fungal and bacterial infections in the brain tissue of AD patients and non-AD controls, with the most prevalent fungus genera detected in AD patients being Alternaria, Botrytis, Candida, and Malassezia. Interestingly, Fusarium was the most common genus detected in the control group. Both AD patients and controls were also detectable for Proteobacteria, followed by Firmicutes, Actinobacteria, and Bacteroides for bacterial infection. At the family level, Burkholderiaceae and Staphylococcaceae exhibited higher levels in the brains of those with AD than the brains of the control group. Accordingly, there is thought to be a viscous cycle of uncontrolled neuroinflammation and neurodegeneration in the brain, caused by agents such as the herpes simplex virus type 1 (HSV1), Chlamydophilapneumonia, and Spirochetes, and the presence of apolipoprotein E4 (APOE4), which is associated with an increased proinflammatory response in the immune system. Systemic proinflammatory cytokines are produced by microorganisms such as Cytomegalovirus, Helicobacter pylori, and those related to periodontal infections. These can then cross the blood–brain barrier (BBB) and lead to the onset of dementia. Here, we reviewed the relationship between the etiology of AD and microorganisms (such as bacterial pathogens, Herpesviridae viruses, and periodontal pathogens) according to the evidence available to understand the pathogenesis of AD. These findings might guide a targeted anti-inflammatory therapeutic approach to AD.
Collapse
|
15
|
Sahu RC, Suthar T, Pathak A, Jain K. Interventions for the Prevention and Treatment of Japanese Encephalitis. Curr Infect Dis Rep 2022; 24:189-204. [PMID: 36187900 PMCID: PMC9510552 DOI: 10.1007/s11908-022-00786-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 11/04/2022]
Abstract
Purpose of Review Japanese encephalitis (JE), a clinical indication of JE virus–induced brain inflammation, is the most prevalent cause of viral encephalitis in the world. This review gives a comprehensive update on the epidemiology, clinical features, therapeutic trials and approaches for preventing the spread of JE. It also outlines the different JE vaccines used in various countries and recommendations for administration of JE vaccines. Recent Findings According to the WHO, annual incidence of JE is estimated to be approximately 68,000 cases worldwide. It is widespread across Asia–Pacific, with a potential for worldwide transmission. In endemic locations, JE is believed to affect children below 6 years of age, but in newly affected areas, both adults and children are at risk due to a lack of protective antibodies. Various vaccines have been developed for the prevention of JE and are being administered in endemic countries. Summary JE is a neuroinvasive disease that causes symptoms ranging from simple fever to severe encephalitis and death. Despite a vast number of clinical trials on various drugs, there is still no complete cure available, and it can only be prevented by adequate vaccination. Various nanotechnological approaches for the prevention and treatment of JE are outlined in this review.
Supplementary Information The online version contains supplementary material available at 10.1007/s11908-022-00786-1.
Collapse
|
16
|
Kumar S, Verma A, Yadav P, Dubey SK, Azhar EI, Maitra SS, Dwivedi VD. Molecular pathogenesis of Japanese encephalitis and possible therapeutic strategies. Arch Virol 2022; 167:1739-1762. [PMID: 35654913 PMCID: PMC9162114 DOI: 10.1007/s00705-022-05481-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/10/2022] [Indexed: 12/26/2022]
Abstract
Japanese encephalitis virus (JEV), a single-stranded, enveloped RNA virus, is a health concern across Asian countries, associated with severe neurological disorders, especially in children. Primarily, pigs, bats, and birds are the natural hosts for JEV, but humans are infected incidentally. JEV requires a few host proteins for its entry and replication inside the mammalian host cell. The endoplasmic reticulum (ER) plays a significant role in JEV genome replication and assembly. During this process, the ER undergoes stress due to its remodelling and accumulation of viral particles and unfolded proteins, leading to an unfolded protein response (UPR). Here, we review the overall strategy used by JEV to infect the host cell and various cytopathic effects caused by JEV infection. We also highlight the role of JEV structural proteins (SPs) and non-structural proteins (NSPs) at various stages of the JEV life cycle that are involved in up- and downregulation of different host proteins and are potentially relevant for developing efficient therapeutic drugs.
Collapse
Affiliation(s)
- Sanjay Kumar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| | - Akanksha Verma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Pardeep Yadav
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh 201310 India
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| | | | - Esam Ibraheem Azhar
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - S. S. Maitra
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Vivek Dhar Dwivedi
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| |
Collapse
|
17
|
Xu C, Li Y, Xiao Z, Yang J, Xue M, Jiang N, Meng Y, Liu W, Fan Y, Zhou Y. Proteomic and Phosphoproteomic Analyses Reveal Gibel Carp Responses to Cyprinid Herpesvirus 2 Infection. J Proteome Res 2022; 21:1961-1973. [DOI: 10.1021/acs.jproteome.2c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chen Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yiqun Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Zidong Xiao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- College of Fisheries, Huazhong Agricultural University, Wuhan 430072, China
| | - Jie Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| |
Collapse
|
18
|
Heger T, Zatloukal M, Kubala M, Strnad M, Gruz J. Procyanidin C1 from Viola odorata L. inhibits Na +,K +-ATPase. Sci Rep 2022; 12:7011. [PMID: 35487935 PMCID: PMC9055044 DOI: 10.1038/s41598-022-11086-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 04/13/2022] [Indexed: 01/30/2023] Open
Abstract
Members of the Viola genus play important roles in traditional Asian herbal medicine. This study investigates the ability of Viola odorata L. extracts to inhibit Na+,K+-ATPase, an essential animal enzyme responsible for membrane potential maintenance. The root extract of V. odorata strongly inhibited Na+,K+-ATPase, while leaf and seeds extracts were basically inactive. A UHPLC-QTOF-MS/MS metabolomic approach was used to identify the chemical principle of the root extract’s activity, resulting in the detection of 35,292 features. Candidate active compounds were selected by correlating feature area with inhibitory activity in 14 isolated fractions. This yielded a set of 15 candidate compounds, of which 14 were preliminarily identified as procyanidins. Commercially available procyanidins (B1, B2, B3 and C1) were therefore purchased and their ability to inhibit Na+,K+-ATPase was investigated. Dimeric procyanidins B1, B2 and B3 were found to be inactive, but the trimeric procyanidin C1 strongly inhibited Na+,K+-ATPase with an IC50 of 4.5 µM. This newly discovered inhibitor was docked into crystal structures mimicking the Na3E1∼P·ADP and K2E2·Pi states to identify potential interaction sites within Na+,K+-ATPase. Possible binding mechanisms and the principle responsible for the observed root extract activity are discussed.
Collapse
Affiliation(s)
- Tomas Heger
- Department of Experimental Biology, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Marek Zatloukal
- Department of Chemical Biology, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Martin Kubala
- Department of Experimental Physics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, Palacky University, Olomouc, Czech Republic
| | - Jiri Gruz
- Department of Experimental Biology, Faculty of Science, Palacky University, Olomouc, Czech Republic.
| |
Collapse
|
19
|
Antiviral drug research for Japanese encephalitis: an updated review. Pharmacol Rep 2022; 74:273-296. [PMID: 35182390 PMCID: PMC8964565 DOI: 10.1007/s43440-022-00355-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 12/23/2022]
Abstract
Japanese encephalitis (JE) caused by the Japanese encephalitis virus (JEV) is one of Asia's most common viral encephalitis. JEV is a flavivirus, common in rural and sub-urban regions of Asian countries. Although only 1% of JEV-infected individuals develop JE, there is a 20-30% chance of death among these individuals and possible neurological sequelae post-infection. No licensed anti-JE drugs are currently available, despite extensive efforts to develop them. Literature search was performed using databases such as PubMed Central, Google Scholar, Wiley Online Library, etc. using keywords such as Japanese encephalitis virus, antiviral drugs, antiviral drug screening, antiviral drug targets, etc. From around 230 papers/abstracts and research reviews retrieved and reviewed for this study, approximately 180 most relevant and important ones have been cited. Different approaches in drug testing and various antiviral drug targets explored so far have been thoroughly searched from the literature and compiled, besides addressing the future perspectives of the antiviral drug development strategies. Although the development of effective anti-JE drugs is an urgent issue, only supportive care is currently available. Recent advancements in understanding the biology of infection and new drug targets have been promising improvements. Despite hindrances such as the unavailability of a proper drug delivery system or a treatment regimen irrespective of the stage of infection, several promising anti-JE candidate molecules are in different phases of clinical trials. Nonetheless, efficient therapy against JEV is expected to be achieved with drug combinations and a highly targeted drug delivery system soon.
Collapse
|
20
|
Screening of novel synthetic derivatives of dehydroepiandrosterone for antivirals against flaviviruses infections. Virol Sin 2022; 37:94-106. [PMID: 35234626 PMCID: PMC8922432 DOI: 10.1016/j.virs.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 10/12/2021] [Indexed: 11/23/2022] Open
Abstract
Flaviviruses are important arthropod-borne pathogens that represent an immense global health problem. Their unprecedented epidemic rate and unpredictable clinical features underscore an urgent need for antiviral interventions. Dehydroepiandrosterone (DHEA) is a natural occurring adrenal-derived steroid in the human body that has been associated in protection against various infections. In the present study, the plaque assay based primary screening was conducted on 32 synthetic derivatives of DHEA against Japanese encephalitis virus (JEV) to identify potent anti-flaviviral compounds. Based on primary screening, HAAS-AV3026 and HAAS-AV3027 were selected as hits from DHEA derivatives that exhibited strong antiviral activity against JEV (IC50 = 2.13 and 1.98 μmol/L, respectively) and Zika virus (ZIKV) (IC50 = 3.73 and 3.42 μmol/L, respectively). Mechanism study indicates that HAAS-AV3026 and HAAS-AV3027 do not exhibit inhibitory effect on flavivirus binding and entry process, while significantly inhibit flavivirus infection at the replication stage. Moreover, indirect immunofluorescence assay, Western blot analyses, and quantitative reverse transcription-PCR (qRT-PCR) revealed a potent antiviral activity of DHEA derivatives hits against JEV and ZIKV in terms of inhibition of viral infection, protein production, and viral RNA synthesis in Vero cells. Taken together, our results may provide a basis for the development of new antivirals against flaviviruses. A total of 32 synthetic derivatives of dehydroepiandrosterone were screened for anti-flaviviral activity in Vero cells. HAAS-AV3026 and HAAS-AV3027 were selected as hits in the downstream studies exhibiting strong antiviral activities. Time-addition studies revealed that both hits were more effective for reducing virus propagation in post-infection treatment. Mechanism studies showed that these hits acted on the post-entry process (replication stage) of the flavivirus life cycle.
Collapse
|
21
|
Incerpi S, Gionfra F, De Luca R, Candelotti E, De Vito P, Percario ZA, Leone S, Gnocchi D, Rossi M, Caruso F, Scapin S, Davis PJ, Lin HY, Affabris E, Pedersen JZ. Extranuclear effects of thyroid hormones and analogs during development: An old mechanism with emerging roles. Front Endocrinol (Lausanne) 2022; 13:961744. [PMID: 36213288 PMCID: PMC9540375 DOI: 10.3389/fendo.2022.961744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Thyroid hormones, T3 (triiodothyronine) and T4 (thyroxine), induce a variety of long-term effects on important physiological functions, ranging from development and growth to metabolism regulation, by interacting with specific nuclear or cytosolic receptors. Extranuclear or nongenomic effects of thyroid hormones are mediated by plasma membrane or cytoplasmic receptors, mainly by αvβ3 integrin, and are independent of protein synthesis. A wide variety of nongenomic effects have now been recognized to be elicited through the binding of thyroid hormones to this receptor, which is mainly involved in angiogenesis, as well as in cell cancer proliferation. Several signal transduction pathways are modulated by thyroid hormone binding to αvβ3 integrin: protein kinase C, protein kinase A, Src, or mitogen-activated kinases. Thyroid hormone-activated nongenomic effects are also involved in the regulation of Na+-dependent transport systems, such as glucose uptake, Na+/K+-ATPase, Na+/H+ exchanger, and amino acid transport System A. Of note, the modulation of these transport systems is cell-type and developmental stage-dependent. In particular, dysregulation of Na+/K+-ATPase activity is involved in several pathological situations, from viral infection to cancer. Therefore, this transport system represents a promising pharmacological tool in these pathologies.
Collapse
Affiliation(s)
- Sandra Incerpi
- Department of Sciences, University Roma Tre, Roma, Italy
- *Correspondence: Sandra Incerpi, ; Jens Z. Pedersen,
| | - Fabio Gionfra
- Department of Sciences, University Roma Tre, Roma, Italy
| | - Roberto De Luca
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | | | - Paolo De Vito
- Department of Biology, University Tor Vergata, Rome, Italy
| | | | - Stefano Leone
- Department of Sciences, University Roma Tre, Roma, Italy
| | - Davide Gnocchi
- Interdisciplinary Department of Medicine, University of Bari, School of Medicine, Bari, Italy
| | - Miriam Rossi
- Department of Chemistry, Vassar College, Poughkeepsie, NY, United States
| | - Francesco Caruso
- Department of Chemistry, Vassar College, Poughkeepsie, NY, United States
| | - Sergio Scapin
- Department of Cellular and Developmental Biology, Sapienza University, Rome, Italy
| | - Paul J. Davis
- Department of Medicine, Albany Medical College, Albany, NY, United States
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, United States
| | - Hung-Yun Lin
- Department of Medicine, Albany Medical College, Albany, NY, United States
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, United States
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Traditional Herbal Medicine Research Center of Taipei, Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | | | - Jens Z. Pedersen
- Department of Biology, University Tor Vergata, Rome, Italy
- *Correspondence: Sandra Incerpi, ; Jens Z. Pedersen,
| |
Collapse
|
22
|
Li S, Ye M, Chen Y, Zhang Y, Li J, Liu W, Li H, Peng K. Screening of a Small Molecule Compound Library Identifies Toosendanin as an Inhibitor Against Bunyavirus and SARS-CoV-2. Front Pharmacol 2021; 12:735223. [PMID: 34858173 PMCID: PMC8632254 DOI: 10.3389/fphar.2021.735223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/18/2021] [Indexed: 01/04/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne virus causing serious infectious disease with a high case-fatality of up to 50% in severe cases. Currently, no effective drug has been approved for the treatment of SFTSV infection. Here, we performed a high-throughput screening of a natural extracts library for compounds with activities against SFTSV infection. Three hit compounds, notoginsenoside Ft1, punicalin, and toosendanin were identified for displaying high anti-SFTSV efficacy, in which, toosendanin showed the highest inhibition potency. Mechanistic investigation indicated that toosendanin inhibited SFTSV infection at the step of virus internalization. The anti-viral effect of toosendanin against SFTSV was further verified in mouse infection models, and the treatment with toosendanin significantly reduced viral load and histopathological changes in vivo. The antiviral activity of toosendanin was further expanded to another bunyavirus and the emerging SARS-CoV-2. This study revealed a broad anti-viral effect of toosendanin and indicated its potential to be developed as an anti-viral drug for clinical use.
Collapse
Affiliation(s)
- Shufen Li
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Meidi Ye
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yuanqiao Chen
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yulan Zhang
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jiachen Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ke Peng
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Chen L, Zhang M, Wang X, Liu Y, Bian J, Yan D, Yin W. Cardiac steroid ouabain transcriptionally increases human leukocyte antigen DR expression on monocytes. Steroids 2021; 175:108915. [PMID: 34508735 DOI: 10.1016/j.steroids.2021.108915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/31/2021] [Accepted: 08/30/2021] [Indexed: 01/18/2023]
Abstract
Sepsis is a life-threatening disease characterized by acute multiple organ dysfunction and immunosuppression that is also called as immunoparalysis. Increasing evidence suggests that immunoparalysis largely contributes to the high mortality of sepsis, but the effective remedies are lacking. As an important antigen presentation molecule, human leukocyte antigen DR (HLA-DR) is remarkably down-regulated in sepsis-induced immunoparalysis, therefore, re-stimulation of HLA-DR expression is expected to be useful in reversing immunoparalysis. We previously described that ouabain, as a Na+, K+-ATPase ligand, is able to counteract immunoparalysis by regulating TH1 cytokines expression. Here, we expanded the finding that ouabain not only prevents LPS-induced down-regulation of HLA-DR on monocytes, but also transcriptionally activates HLA-DR α/β expression mediated by CIITA4, IRF1, c-Src, and Stat1 phosphorylation. Since ouabain can improve sepsis-induced immunoparalysis by multiple mechanisms, we propose that ouabain may be a promising agent in septic therapy that deserves further investigation.
Collapse
Affiliation(s)
- Lili Chen
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Manli Zhang
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Xiya Wang
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Yongjian Liu
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Jinjun Bian
- Department of Anesthesiology and Critical Care, Changhai Hospital, Naval Medical University, Shanghai, China.
| | - Dong Yan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, China.
| | - Wu Yin
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
24
|
Mechanistic insights into the Japanese encephalitis virus RNA dependent RNA polymerase protein inhibition by bioflavonoids from Azadirachta indica. Sci Rep 2021; 11:18125. [PMID: 34518560 PMCID: PMC8437980 DOI: 10.1038/s41598-021-96917-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/18/2021] [Indexed: 02/05/2023] Open
Abstract
Japanese encephalitis (JE) virus is a flavivirus causing encephalitis causing neurological damage. RNA-dependent-RNA-polymerase (RdRp) is responsible for genome replication making it excellent anti-viral target. In this study, the crystal structure of JE RdRp (jRdRp) and bioflavonoids reported in Azadirachta indica were retrieved from specific databases. Structure-based virtual screening was employed using MTiOpenScreen server and top four compounds selected with the most negative docking scores. Conformations were redocked using AutoDock Vina; these complexes showed mechanistic interactions with Arg474, Gly605, Asp668, and Trp800 residues in the active site of jRdRp, i.e., guanosine-5′-triphosphate. Furthermore, 100 ns classical molecular dynamics simulation and binding free energy calculation showed stability of docked bioflavonoids in the active jRdRp pocket and significant contribution of van-der-Waals interactions for docked complex stability during simulation. Therefore, this study predicted the anti-viral activity of Gedunin, Nimbolide, Ohchinin acetate, and Kulactone against jRdRp and can be considered for further antiviral drug development.
Collapse
|
25
|
Sharma KB, Vrati S, Kalia M. Pathobiology of Japanese encephalitis virus infection. Mol Aspects Med 2021; 81:100994. [PMID: 34274157 DOI: 10.1016/j.mam.2021.100994] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022]
Abstract
Japanese encephalitis virus (JEV) is a flavivirus, spread by the bite of carrier Culex mosquitoes. The subsequent disease caused is Japanese encephalitis (JE), which is the leading global cause of virus-induced encephalitis. The disease is predominant in the entire Asia-Pacific region with the potential of global spread. JEV is highly neuroinvasive with symptoms ranging from mild fever to severe encephalitis and death. One-third of JE infections are fatal, and half of the survivors develop permanent neurological sequelae. Disease prognosis is determined by a series of complex and intertwined signaling events dictated both by the virus and the host. All flaviviruses, including JEV replicate in close association with ER derived membranes by channelizing the protein and lipid components of the ER. This leads to activation of acute stress responses in the infected cell-oxidative stress, ER stress, and autophagy. The host innate immune and inflammatory responses also enter the fray, the components of which are inextricably linked to the cellular stress responses. These are especially crucial in the periphery for dendritic cell maturation and establishment of adaptive immunity. The pathogenesis of JEV is a combination of direct virus induced neuronal cell death and an uncontrolled neuroinflammatory response. Here we provide a comprehensive review of the JEV life cycle and how the cellular stress responses dictate the pathobiology and resulting immune response. We also deliberate on how modulation of these stress pathways could be a potential strategy to develop therapeutic interventions, and define the persisting challenges.
Collapse
Affiliation(s)
- Kiran Bala Sharma
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Sudhanshu Vrati
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India.
| | - Manjula Kalia
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India.
| |
Collapse
|
26
|
RNA Interference Screening Reveals Requirement for Platelet-Derived Growth Factor Receptor Beta in Japanese Encephalitis Virus Infection. Antimicrob Agents Chemother 2021; 65:AAC.00113-21. [PMID: 33753340 PMCID: PMC8316074 DOI: 10.1128/aac.00113-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/16/2021] [Indexed: 01/22/2023] Open
Abstract
Mosquito-borne Japanese encephalitis virus (JEV) causes serious illness worldwide and is associated with high morbidity and mortality. To identify potential host therapeutic targets, a high-throughput receptor tyrosine kinase small interfering RNA library screening was performed with recombinant JEV particles. Platelet-derived growth factor receptor beta (PDGFRβ) was identified as a hit after two rounds of screening. Knockdown of PDGFRβ blocked JEV infection and transcomplementation of PDGFRβ could partly restore its infectivity. The PDGFRβ inhibitor imatinib, which has been approved for the treatment of malignant metastatic cancer, protected mice against JEV-induced lethality by decreasing the viral load in the brain while abrogating the histopathological changes associated with JEV infection. These findings demonstrated that PDGFRβ is important in viral infection and provided evidence for the potential to develop imatinib as a therapeutic intervention against JEV infection.
Collapse
|
27
|
Li X, Peng T. Strategy, Progress, and Challenges of Drug Repurposing for Efficient Antiviral Discovery. Front Pharmacol 2021; 12:660710. [PMID: 34017257 PMCID: PMC8129523 DOI: 10.3389/fphar.2021.660710] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
Emerging or re-emerging viruses are still major threats to public health. Prophylactic vaccines represent the most effective way to prevent virus infection; however, antivirals are more promising for those viruses against which vaccines are not effective enough or contemporarily unavailable. Because of the slow pace of novel antiviral discovery, the high disuse rates, and the substantial cost, repurposing of the well-characterized therapeutics, either approved or under investigation, is becoming an attractive strategy to identify the new directions to treat virus infections. In this review, we described recent progress in identifying broad-spectrum antivirals through drug repurposing. We defined the two major categories of the repurposed antivirals, direct-acting repurposed antivirals (DARA) and host-targeting repurposed antivirals (HTRA). Under each category, we summarized repurposed antivirals with potential broad-spectrum activity against a variety of viruses and discussed the possible mechanisms of action. Finally, we proposed the potential investigative directions of drug repurposing.
Collapse
Affiliation(s)
- Xinlei Li
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, College of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, College of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
28
|
Abstract
Lassa virus (LASV) belongs to the Old World Mammarenavirus genus (family Arenaviridae). At present, there are no approved drugs or vaccines specific for LASV. In this study, high-throughput screening of a botanical drug library was performed against LASV entry using a pseudotype virus bearing the LASV envelope glycoprotein complex (GPC). Two hit compounds, bergamottin and casticin, were identified as micromolar range inhibitors of LASV entry. A mechanistic study revealed that casticin inhibited LASV entry by blocking low pH-induced membrane fusion. Analysis of adaptive mutants demonstrated that the F446L mutation, located in the transmembrane domain of GP2, conferred resistance to casticin. Furthermore, casticin antiviral activity extends to the New World (NW) pathogenic mammarenaviruses, and mutation of the conserved F446 also conferred resistance to casticin in these viruses. Unlike casticin, bergamottin showed little effect on LASV GPC-mediated membrane fusion, instead inhibiting LASV entry by blocking endocytic trafficking. Notably, both compounds showed inhibitory effects on authentic lymphocytic choriomeningitis virus. Our study shows that both casticin and bergamottin are candidates for LASV therapy and that the conserved F446 in LASV GPC is important in drug resistance in mammarenaviruses.IMPORTANCE: Currently, there is no approved therapy to treat Lassa fever (LASF). Our goal was to identify potential candidate molecules for LASF therapy. Herein, we screened a botanical drug library and identified two compounds, casticin and bergamottin, that inhibited LASV entry via different mechanisms.
Collapse
|