1
|
Sette KM, Garcia AR, Tinoco LW, Pinheiro AS, Rodrigues IA. Meliponini Geopropolis Extracts Induce ROS Production and Death in Leishmania amazonensis Promastigotes and Axenic Amastigotes In Vitro. BIOLOGY 2025; 14:162. [PMID: 40001930 PMCID: PMC11851448 DOI: 10.3390/biology14020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025]
Abstract
Leishmania amazonensis, a cause of cutaneous leishmaniasis in Brazil, is a neglected disease with toxic and inconsistently effective treatments. The parasite's survival depends on managing oxidative stress, making redox-regulating enzymes potential therapeutic targets. Geopropolis, a resinous product from native stingless bees, shows promising antiparasitic effects. This study aims to evaluate the anti-L. amazonensis activity of geopropolis produced by Melipona bicolor, M. marginara, M. mondury, and M. quadrifasciata (two samples), targeting enzymes responsible for the parasite's redox balance. Ethanol extracts of geopropolis produced by each bee (BCRL, MRGT, MNDY, MNDA(1), and MNDA(2), respectively) were analyzed for total phenolics and flavonoids. Promastigotes and axenic amastigotes were treated with various extract concentrations, and parasite viability was assessed using the resazurin reduction method. Cytotoxicity was tested on peritoneal macrophages, RAW 264.7, VERO cell lines (MTT assay), and erythrocytes (hemolysis assay). Additionally, mitochondrial dehydrogenase activity, reactive oxygen species (ROS) production, the inhibition of recombinant arginase, and autophagic activity were also evaluated in treated parasites. MRGT showed the highest levels of phenolics (762 mg GAE/g) and flavonoids (345 mg QE/g). MDRY was more effective against promastigote and axenic amastigote forms (IC50 = 168 and 19.7 µg/mL, respectively). MRGT showed lower cytotoxicity against RAW 264.7 and VERO (CC50 = 654 µg/mL and 981 µg/mL, respectively). Erythrocytes exhibited reduced sensitivity to MNDA(2) (HC50 = 710 µg/mL). The activity of dehydrogenases and LiARG was reduced by treating the parasites with the extracts following the induction of ROS and autophagic activity. These results highlight geopropolis extracts as a source of substances with anti-L. amazonensis activity capable of inducing oxidative stress on the parasite.
Collapse
Affiliation(s)
- Kamila M. Sette
- Programa de Pós Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (K.M.S.); (A.R.G.)
| | - Andreza R. Garcia
- Programa de Pós Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (K.M.S.); (A.R.G.)
| | - Luzineide W. Tinoco
- Laboratório Multiusuário de Análises por RMN, Instituto de Pesquisa de Produtos Naturais, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Anderson S. Pinheiro
- Laboratório de Bioquímica Molecular, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Igor A. Rodrigues
- Laboratório de Investigação de Substâncias Bioativas, Departamento de Produtos Naturais, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
2
|
Dos Santos GP, Coelho AC, Reimão JQ. The latest progress in assay development in leishmaniasis drug discovery: a review of the available papers on PubMed from the past year. Expert Opin Drug Discov 2025; 20:177-192. [PMID: 39760656 DOI: 10.1080/17460441.2025.2450787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/09/2024] [Accepted: 01/05/2025] [Indexed: 01/07/2025]
Abstract
INTRODUCTION Leishmaniasis is a significant neglected tropical disease with limited treatment options that urgently requires ongoing efforts in drug discovery. Recent advances have focused on the development of new assays and methods to identify effective therapeutic candidates. AREAS COVERED This review explores recent trends and methodologies in leishmaniasis drug discovery, with a particular focus on in silico and in vitro studies, as well as in vivo validation, using animal models. A detailed analysis of recent studies was provided, discussing the methodologies employed, such as manual and automated parasite quantification, and the use of fluorescence and luminescence-based techniques. Additionally, global research trends were analyzed, highlighting the leading countries in scientific output and the collaborative efforts driving advancements in this field. EXPERT OPINION The field of leishmaniasis drug discovery has rapidly progressed in the last years, but the lack of standardized methodologies and limited in vivo validation remain significant hurdles. To advance promising treatments to clinical trials, cross-validation of preclinical findings and interdisciplinary collaboration are essential. Increased funding and global partnerships are also crucial to accelerate the discovery and development of alternative and effective therapies.
Collapse
Affiliation(s)
- Gabriela P Dos Santos
- Laboratory of Preclinical Assays and Research of Alternative Sources of Innovative Therapy for Toxoplasmosis and Other Sicknesses (PARASITTOS), Faculdade de Medicina de Jundiaí, Jundiaí, Brazil
| | - Adriano C Coelho
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Juliana Q Reimão
- Laboratory of Preclinical Assays and Research of Alternative Sources of Innovative Therapy for Toxoplasmosis and Other Sicknesses (PARASITTOS), Faculdade de Medicina de Jundiaí, Jundiaí, Brazil
| |
Collapse
|
3
|
González-Matos M, Aguado ME, Izquierdo M, Monzote L, González-Bacerio J. Compounds with potentialities as novel chemotherapeutic agents in leishmaniasis at preclinical level. Exp Parasitol 2024; 260:108747. [PMID: 38518969 DOI: 10.1016/j.exppara.2024.108747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Leishmaniasis are neglected infectious diseases caused by kinetoplastid protozoan parasites from the genus Leishmania. These sicknesses are present mainly in tropical regions and almost 1 million new cases are reported each year. The absence of vaccines, as well as the high cost, toxicity or resistance to the current drugs determines the necessity of new treatments against these pathologies. In this review, several compounds with potentialities as new antileishmanial drugs are presented. The discussion is restricted to the preclinical level and molecules are organized according to their chemical nature, source and molecular targets. In this manner, we present antimicrobial peptides, flavonoids, withanolides, 8-aminoquinolines, compounds from Leish-Box, pyrazolopyrimidines, and inhibitors of tubulin polymerization/depolymerization, topoisomerase IB, proteases, pteridine reductase, N-myristoyltransferase, as well as enzymes involved in polyamine metabolism, response against oxidative stress, signaling pathways, and sterol biosynthesis. This work is a contribution to the general knowledge of these compounds as antileishmanial agents.
Collapse
Affiliation(s)
- Maikel González-Matos
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Mirtha Elisa Aguado
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Maikel Izquierdo
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Lianet Monzote
- Department of Parasitology, Center for Research, Diagnosis and Reference, Tropical Medicine Institute "Pedro Kourí", Autopista Novia Del Mediodía Km 6½, La Lisa, La Habana, Cuba.
| | - Jorge González-Bacerio
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba; Department of Biochemistry, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba.
| |
Collapse
|
4
|
Zahedifard F, Bansal M, Sharma N, Kumar S, Shen S, Singh P, Rathi B, Zoltner M. Phenotypic screening reveals a highly selective phthalimide-based compound with antileishmanial activity. PLoS Negl Trop Dis 2024; 18:e0012050. [PMID: 38527083 PMCID: PMC10994559 DOI: 10.1371/journal.pntd.0012050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/04/2024] [Accepted: 03/05/2024] [Indexed: 03/27/2024] Open
Abstract
Pharmacophores such as hydroxyethylamine (HEA) and phthalimide (PHT) have been identified as potential synthons for the development of compounds against various parasitic infections. In order to further advance our progress, we conducted an experiment utilising a collection of PHT and HEA derivatives through phenotypic screening against a diverse set of protist parasites. This approach led to the identification of a number of compounds that exhibited significant effects on the survival of Entamoeba histolytica, Trypanosoma brucei, and multiple life-cycle stages of Leishmania spp. The Leishmania hits were pursued due to the pressing necessity to expand our repertoire of reliable, cost-effective, and efficient medications for the treatment of leishmaniases. Antileishmanials must possess the essential capability to efficiently penetrate the host cells and their compartments in the disease context, to effectively eliminate the intracellular parasite. Hence, we performed a study to assess the effectiveness of eradicating L. infantum intracellular amastigotes in a model of macrophage infection. Among eleven L. infantum growth inhibitors with low-micromolar potency, PHT-39, which carries a trifluoromethyl substitution, demonstrated the highest efficacy in the intramacrophage assay, with an EC50 of 1.2 +/- 3.2 μM. Cytotoxicity testing of PHT-39 in HepG2 cells indicated a promising selectivity of over 90-fold. A chemogenomic profiling approach was conducted using an orthology-based method to elucidate the mode of action of PHT-39. This genome-wide RNA interference library of T. brucei identified sensitivity determinants for PHT-39, which included a P-type ATPase that is crucial for the uptake of miltefosine and amphotericin, strongly indicating a shared route for cellular entry. Notwithstanding the favourable properties and demonstrated efficacy in the Plasmodium berghei infection model, PHT-39 was unable to eradicate L. major infection in a murine infection model of cutaneous leishmaniasis. Currently, PHT-39 is undergoing derivatization to optimize its pharmacological characteristics.
Collapse
Affiliation(s)
- Farnaz Zahedifard
- Drug Discovery and Evaluation Unit, Department of Parasitology, Faculty of Science, Charles University in Prague, Biocev, Vestec, Czech Republic
| | - Meenakshi Bansal
- H. G. Khorana Centre for Chemical Biology, Department of Chemistry, Hansraj College, University of Delhi, Delhi, India
- Department of Chemistry, Deenbandhu Chhotu Ram, University of Science & Technology, Murthal, Sonepat Haryana, India
| | - Neha Sharma
- H. G. Khorana Centre for Chemical Biology, Department of Chemistry, Hansraj College, University of Delhi, Delhi, India
| | - Sumit Kumar
- Department of Chemistry, Deenbandhu Chhotu Ram, University of Science & Technology, Murthal, Sonepat Haryana, India
| | - Siqi Shen
- Drug Discovery and Evaluation Unit, Department of Parasitology, Faculty of Science, Charles University in Prague, Biocev, Vestec, Czech Republic
| | - Priyamvada Singh
- Department of Chemistry, Miranda House, University of Delhi, Delhi, India
- Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi, India
| | - Brijesh Rathi
- H. G. Khorana Centre for Chemical Biology, Department of Chemistry, Hansraj College, University of Delhi, Delhi, India
- Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi, India
| | - Martin Zoltner
- Drug Discovery and Evaluation Unit, Department of Parasitology, Faculty of Science, Charles University in Prague, Biocev, Vestec, Czech Republic
| |
Collapse
|
5
|
Baert L, Rudy S, Pellisson M, Doll T, Rocchetti R, Kaiser M, Mäser P, Müller M. Induced pluripotent stem cell-derived human macrophages as an infection model for Leishmania donovani. PLoS Negl Trop Dis 2024; 18:e0011559. [PMID: 38166146 PMCID: PMC10786377 DOI: 10.1371/journal.pntd.0011559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/12/2024] [Accepted: 12/19/2023] [Indexed: 01/04/2024] Open
Abstract
The parasite Leishmania donovani is one of the species causing visceral leishmaniasis in humans, a deadly infection claiming up to 40,000 lives each year. The current drugs for leishmaniasis treatment have severe drawbacks and there is an urgent need to find new anti-leishmanial compounds. However, the search for drug candidates is complicated by the intracellular lifestyle of Leishmania. Here, we investigate the use of human induced pluripotent stem cell (iPS)-derived macrophages (iMACs) as host cells for L. donovani. iMACs obtained through embryoid body differentiation were infected with L. donovani promastigotes, and high-content imaging techniques were used to optimize the iMACs seeding density and multiplicity of infection, allowing us to reach infection rates up to 70% five days after infection. IC50 values obtained for miltefosine and amphotericin B using the infected iMACs or mouse peritoneal macrophages as host cells were comparable and in agreement with the literature, showing the potential of iMACs as an infection model for drug screening.
Collapse
Affiliation(s)
- Lore Baert
- Swiss Tropical and Public Health Institute (SwissTPH), Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Serena Rudy
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Mélanie Pellisson
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Thierry Doll
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Romina Rocchetti
- Swiss Tropical and Public Health Institute (SwissTPH), Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute (SwissTPH), Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute (SwissTPH), Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Matthias Müller
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
6
|
Kavouris JA, McCall LI, Giardini MA, De Muylder G, Thomas D, Garcia-Pérez A, Cantizani J, Cotillo I, Fiandor JM, McKerrow JH, De Oliveira CI, Siqueira-Neto JL, González S, Brown LE, Schaus SE. Discovery of pyrazolopyrrolidinones as potent, broad-spectrum inhibitors of Leishmania infection. FRONTIERS IN TROPICAL DISEASES 2023; 3:1011124. [PMID: 36818551 PMCID: PMC9937549 DOI: 10.3389/fitd.2022.1011124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Introduction Leishmaniasis is a parasitic disease that affects more than 1 million people worldwide annually, predominantly in resource-limited settings. The challenge in compound development is to exhibit potent activity against the intracellular stage of the parasite (the stage present in the mammalian host) without harming the infected host cells. We have identified a compound series (pyrazolopyrrolidinones) active against the intracellular parasites of Leishmania donovani and L. major; the causative agents of visceral and cutaneous leishmaniasis in the Old World, respectively. Methods In this study, we performed medicinal chemistry on a newly discovered antileishmanial chemotype, with over 100 analogs tested. Studies included assessments of antileishmanial potency, toxicity towards host cells, and in vitro ADME screening of key drug properties. Results and discussion Members of the series showed high potency against the deadliest form, visceral leishmaniasis (approximate EC50 ≥ 0.01 μM without harming the host macrophage up to 10.0 μM). In comparison, the most efficient monotherapy treatment for visceral leishmaniasis is amphotericin B, which presents similar activity in the same assay (EC50 = 0.2 μM) while being cytotoxic to the host cell at 5.0 μM. Continued development of this compound series with the Discovery Partnership with Academia (DPAc) program at the GlaxoSmithKline Diseases of the Developing World (GSK DDW) laboratories found that the compounds passed all of GSK's criteria to be defined as a potential lead drug series for leishmaniasis. Conclusion Here, we describe preliminary structure-activity relationships for antileishmanial pyrazolopyrrolidinones, and our progress towards the identification of candidates for future in vivo assays in models of visceral and cutaneous leishmaniasis.
Collapse
Affiliation(s)
- John A. Kavouris
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts, United States of America
| | - Laura-Isobel McCall
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Miriam A. Giardini
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Geraldine De Muylder
- Department of Pathology, Sandler Center for Drug Discovery, University of California San Francisco, San Francisco, California, United States of America
| | - Diane Thomas
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Adolfo Garcia-Pérez
- Global Health Medicines R&D, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Juan Cantizani
- Global Health Medicines R&D, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Ignacio Cotillo
- Global Health Medicines R&D, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Jose M. Fiandor
- Global Health Medicines R&D, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - James H. McKerrow
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America.,Department of Pathology, Sandler Center for Drug Discovery, University of California San Francisco, San Francisco, California, United States of America
| | - Camila I. De Oliveira
- HUPES, Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT) -Salvador, Brazil; Instituto de Investigação em Imunologia (iii-INCT), São Paulo, Brazil
| | - Jair L. Siqueira-Neto
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America.,Department of Pathology, Sandler Center for Drug Discovery, University of California San Francisco, San Francisco, California, United States of America
| | - Silvia González
- Global Health Medicines R&D, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Lauren E. Brown
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts, United States of America
| | - Scott E. Schaus
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts, United States of America.,Correspondence: Scott E. Schaus,
| |
Collapse
|
7
|
Gopu B, Kour P, Pandian R, Singh K. Insights into the drug screening approaches in leishmaniasis. Int Immunopharmacol 2023; 114:109591. [PMID: 36700771 DOI: 10.1016/j.intimp.2022.109591] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/25/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Leishmaniasis, a tropically neglected disease, is responsible for the high mortality and morbidity ratio in poverty-stricken areas. Currently, no vaccine is available for the complete cure of the disease. Current chemotherapeutic regimens face the limitations of drug resistance and toxicity concerns indicating a great need to develop better chemotherapeutic leads that are orally administrable, potent, non-toxic, and cost-effective. The anti-leishmanial drug discovery process accelerated the desire for large-scale drug screening assays and high-throughput screening (HTS) technology to identify new chemo-types that can be used as potential drug molecules to control infection. Using the HTS approach, about one million compounds can be screened daily within the shortest possible time for biological activity using automation tools, miniaturized assay formats, and large-scale data analysis. Classical and modern in vitro screening assays have led to the progression of active compounds further to ex vivo and in vivo studies. In the present review, we emphasized on the HTS approaches employed in the leishmanial drug discovery program. Recent in vitro screening assays are widely explored to discover new chemical scaffolds. Developing appropriate experimental animal models and their related techniques is necessary to understand the pathophysiological processes and disease host responses, paving the way for unraveling novel therapies against leishmaniasis.
Collapse
Affiliation(s)
- Boobalan Gopu
- Animal House Facility, Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Parampreet Kour
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Ramajayan Pandian
- Animal House Facility, Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
8
|
Xanthine Analogs Suppress Trypanosoma cruzi Infection In Vitro Using PDEs as Targets. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Trypanosoma cruzi (T. cruzi), the causative agent of Chagas disease, has infected 6 million people, putting 70 million people at risk worldwide. Presently, very limited drugs are available, and these have severe side effects. Hence, there is an urgency to delve into other pathways and targets for novel drugs. Trypanosoma cruzi (T. cruzi) expresses a number of different cyclic AMP (cAMP)-specific phosphodiesterases (PDEs). cAMP is one of the key regulators of mammalian cell proliferation and differentiation, and it also plays an important role in T. cruzi growth. Very few studies have demonstrated the important role of cyclic nucleotide-specific PDEs in T. cruzi’s survival. T. cruzi phosphodiesterase C (TcrPDEC) has been proposed as a potential new drug target for treating Chagas disease. In the current study, we screen several analogs of xanthine for potency against trypomastigote and amastigote growth in vitro using three different strains of T. cruzi (Tulahuen, Y and CA-1/CL72). One of the potent analogs, GVK14, has been shown to inhibit all three strains of amastigotes in host cells as well as axenic cultures. In conclusion, xanthine analogs that inhibit T. cruzi PDE may provide novel alternative therapeutic options for Chagas disease.
Collapse
|
9
|
Pinheiro AC, de Souza MVN. Current leishmaniasis drug discovery. RSC Med Chem 2022; 13:1029-1043. [PMID: 36324493 PMCID: PMC9491386 DOI: 10.1039/d1md00362c] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 08/12/2022] [Indexed: 01/09/2023] Open
Abstract
Leishmaniasis is a complex protozoan infectious disease and, associated with malnutrition, poor health services and unavailability of prophylactic control measures, neglected populations are particularly affected. Current drug regimens are outdated and associated with some drawbacks, such as cytotoxicity and resistance, and the development of novel, efficacious and less toxic drug regimens is urgently required. In addition, leishmanial pathogenesis is not well established or understood, and a prophylactic vaccine is an unfulfilled goal. Human kinetoplastid protozoan infections, including leishmaniasis, have been neglected for many years, and in an attempt to overcome this situation, some new drug targets were recently identified, enabling the development of new drugs and vaccines. Compounds from new drug classes have also shown excellent antileishmanial activities, some of the most promising ones included in clinical trials, and could be a hope to control the disease burden of this endemic disease in the near future. In this review, we discuss the limitations of current control methods, explore the wide range of compounds that are being screened and identified as antileishmanial drug prototypes, summarize the advances in identifying new drug targets aiming at innovative treatments and explore the state-of-art vaccine development field, including immunomodulation strategies.
Collapse
|
10
|
Arbon D, Ženíšková K, Šubrtová K, Mach J, Štursa J, Machado M, Zahedifard F, Leštinová T, Hierro-Yap C, Neuzil J, Volf P, Ganter M, Zoltner M, Zíková A, Werner L, Sutak R. Repurposing of MitoTam: Novel Anti-Cancer Drug Candidate Exhibits Potent Activity against Major Protozoan and Fungal Pathogens. Antimicrob Agents Chemother 2022; 66:e0072722. [PMID: 35856666 PMCID: PMC9380531 DOI: 10.1128/aac.00727-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/07/2022] [Indexed: 11/20/2022] Open
Abstract
Many of the currently available anti-parasitic and anti-fungal frontline drugs have severe limitations, including adverse side effects, complex administration, and increasing occurrence of resistance. The discovery and development of new therapeutic agents is a costly and lengthy process. Therefore, repurposing drugs with already established clinical application offers an attractive, fast-track approach for novel treatment options. In this study, we show that the anti-cancer drug candidate MitoTam, a mitochondria-targeted analog of tamoxifen, efficiently eliminates a wide range of evolutionarily distinct pathogens in vitro, including pathogenic fungi, Plasmodium falciparum, and several species of trypanosomatid parasites, causative agents of debilitating neglected tropical diseases. MitoTam treatment was also effective in vivo and significantly reduced parasitemia of two medically important parasites, Leishmania mexicana and Trypanosoma brucei, in their respective animal infection models. Functional analysis in the bloodstream form of T. brucei showed that MitoTam rapidly altered mitochondrial functions, particularly affecting cellular respiration, lowering ATP levels, and dissipating mitochondrial membrane potential. Our data suggest that the mode of action of MitoTam involves disruption of the inner mitochondrial membrane, leading to rapid organelle depolarization and cell death. Altogether, MitoTam is an excellent candidate drug against several important pathogens, for which there are no efficient therapies and for which drug development is not a priority.
Collapse
Affiliation(s)
- Dominik Arbon
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Kateřina Ženíšková
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Karolína Šubrtová
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Jan Mach
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Jan Štursa
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Marta Machado
- Graduate Program in Areas of Basic and Applied Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Farnaz Zahedifard
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Tereza Leštinová
- Faculty of Sciences, Charles University, Department of Parasitology, Prague, Czech Republic
| | - Carolina Hierro-Yap
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
- School of Pharmacy and Medical Science, Griffith University, Southport, Queensland, Australia
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Volf
- Faculty of Sciences, Charles University, Department of Parasitology, Prague, Czech Republic
| | - Markus Ganter
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Zoltner
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Lukáš Werner
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Robert Sutak
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
11
|
Identification of L. infantum trypanothione synthetase inhibitors with leishmanicidal activity from a (non-biased) in-house chemical library. Eur J Med Chem 2022; 243:114675. [DOI: 10.1016/j.ejmech.2022.114675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022]
|
12
|
Palmer-Young EC, Schwarz RS, Chen Y, Evans JD. Can floral nectars reduce transmission of Leishmania? PLoS Negl Trop Dis 2022; 16:e0010373. [PMID: 35551517 PMCID: PMC9098005 DOI: 10.1371/journal.pntd.0010373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/29/2022] [Indexed: 11/19/2022] Open
Abstract
Background Insect-vectored Leishmania are responsible for loss of more disability-adjusted life years than any parasite besides malaria. Elucidation of the environmental factors that affect parasite transmission by vectors is essential to develop sustainable methods of parasite control that do not have off-target effects on beneficial insects or environmental health. Many phytochemicals that inhibit growth of sand fly-vectored Leishmania—which have been exhaustively studied in the search for phytochemical-based drugs—are abundant in nectars, which provide sugar-based meals to infected sand flies. Principle findings In a quantitative meta-analysis, we compare inhibitory phytochemical concentrations for Leishmania to concentrations present in floral nectar and pollen. We show that nectar concentrations of several flowering plant species exceed those that inhibit growth of Leishmania cell cultures, suggesting an unexplored, landscape ecology-based approach to reduce Leishmania transmission. Significance If nectar compounds are as effective against parasites in the sand fly gut as predicted from experiments in vitro, strategic planting of antiparasitic phytochemical-rich floral resources or phytochemically enriched baits could reduce Leishmania loads in vectors. Such interventions could provide an environmentally friendly complement to existing means of disease control. Leishmania parasites infect over a million people each year—including over 200,000 infections with deadly visceral leishmaniasis—resulting in a greater health burden than any human parasite besides malaria. Leishmania infections of humans are transmitted by blood-feeding sand flies, which also consume floral nectar. Nectar contains many chemicals that inhibit Leishmania growth and are candidate treatments for infection of humans. However, these same compounds could also reduce infection in nectar-consuming sand flies. By combining existing data on the chemistry of nectar and sensitivity of Leishmania to plant compounds, we show that some floral nectars contain sufficient chemical concentrations to inhibit growth of insect-stage Leishmania. Our results suggest that consumption of these nectars could reduce parasite loads in sand flies and transmission of parasites to new human hosts. In contrast to insecticide-based methods of sand fly control, incorporation of antiparasitic nectar sources into landscapes and domestic settings could benefit public health without threatening beneficial insects. These findings suggest an unexplored, landscape-based approach to reduce transmission of a major neglected tropical disease worldwide.
Collapse
Affiliation(s)
- Evan C. Palmer-Young
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, United States of America
- * E-mail: ,
| | - Ryan S. Schwarz
- Department of Biology, Fort Lewis College, Durango, Colorado, United States of America
| | - Yanping Chen
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, United States of America
| | - Jay D. Evans
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, United States of America
| |
Collapse
|
13
|
Mathias F, Kabri Y, Brun D, Primas N, Di Giorgio C, Vanelle P. Synthesis and Anti- Trypanosoma cruzi Biological Evaluation of Novel 2-Nitropyrrole Derivatives. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072163. [PMID: 35408570 PMCID: PMC9000427 DOI: 10.3390/molecules27072163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/17/2022] [Accepted: 03/25/2022] [Indexed: 01/25/2023]
Abstract
Human American trypanosomiasis, called Chagas disease, caused by T. cruzi protozoan infection, represents a major public health problem, with about 7000 annual deaths in Latin America. As part of the search for new and safe anti-Trypanosoma cruzi derivatives involving nitroheterocycles, we report herein the synthesis of ten 1-substituted 2-nitropyrrole compounds and their biological evaluation. After an optimization phase, a convergent synthesis methodology was used to obtain these new final compounds in two steps from the 2-nitropyrrole starting product. All the designed derivatives follow Lipinski’s rule of five. The cytotoxicity evaluation on CHO cells showed no significant cytotoxicity, except for compound 3 (CC50 = 24.3 µM). Compound 18 appeared to show activity against T. cruzi intracellular amastigotes form (EC50 = 3.6 ± 1.8 µM) and good selectivity over the vero host cells. Unfortunately, this compound 18 showed an insufficient maximum effect compared to the reference drug (nifurtimox). Whether longer duration treatments may eliminate all parasites remains to be explored.
Collapse
Affiliation(s)
- Fanny Mathias
- Equipe Pharmaco-Chimie Radicalaire, CNRS, ICR UMR 7273, Faculté de Pharmacie, Aix Marseille University, 27 Boulevard Jean Moulin, CS30064, CEDEX 05, 13385 Marseille, France; (F.M.); (Y.K.); (D.B.); (N.P.)
- Assistance Publique-Hôpitaux de Marseille (APHM), Pharmacie Usage Intérieur, Hôpital Nord, Chemin-des-Bourrely, 13015 Marseille, France
| | - Youssef Kabri
- Equipe Pharmaco-Chimie Radicalaire, CNRS, ICR UMR 7273, Faculté de Pharmacie, Aix Marseille University, 27 Boulevard Jean Moulin, CS30064, CEDEX 05, 13385 Marseille, France; (F.M.); (Y.K.); (D.B.); (N.P.)
| | - Damien Brun
- Equipe Pharmaco-Chimie Radicalaire, CNRS, ICR UMR 7273, Faculté de Pharmacie, Aix Marseille University, 27 Boulevard Jean Moulin, CS30064, CEDEX 05, 13385 Marseille, France; (F.M.); (Y.K.); (D.B.); (N.P.)
| | - Nicolas Primas
- Equipe Pharmaco-Chimie Radicalaire, CNRS, ICR UMR 7273, Faculté de Pharmacie, Aix Marseille University, 27 Boulevard Jean Moulin, CS30064, CEDEX 05, 13385 Marseille, France; (F.M.); (Y.K.); (D.B.); (N.P.)
- Assistance Publique-Hôpitaux de Marseille (APHM), Service Central de la Qualité et de l’Information Pharmaceutiques (SCQIP), Hôpital de la Conception, 147, Boulevard Baille, 13005 Marseille, France
| | - Carole Di Giorgio
- Laboratoire de Mutagénèse Environnementale, CNRS, IRD, Aix Marseille University, IMBE UMR 7263, Avignon University, 13385 Marseille, France;
| | - Patrice Vanelle
- Equipe Pharmaco-Chimie Radicalaire, CNRS, ICR UMR 7273, Faculté de Pharmacie, Aix Marseille University, 27 Boulevard Jean Moulin, CS30064, CEDEX 05, 13385 Marseille, France; (F.M.); (Y.K.); (D.B.); (N.P.)
- Assistance Publique-Hôpitaux de Marseille (APHM), Service Central de la Qualité et de l’Information Pharmaceutiques (SCQIP), Hôpital de la Conception, 147, Boulevard Baille, 13005 Marseille, France
- Correspondence: ; Tel.: +33-4-9183-5580
| |
Collapse
|
14
|
Dantas RF, Torres-Santos EC, Silva FP. Past and future of trypanosomatids high-throughput phenotypic screening. Mem Inst Oswaldo Cruz 2022; 117:e210402. [PMID: 35293482 PMCID: PMC8920514 DOI: 10.1590/0074-02760210402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022] Open
Abstract
Diseases caused by trypanosomatid parasites affect millions of people mainly living in developing countries. Novel drugs are highly needed since there are no vaccines and available treatment has several limitations, such as resistance, low efficacy, and high toxicity. The drug discovery process is often analogous to finding a needle in the haystack. In the last decades a so-called rational drug design paradigm, heavily dependent on computational approaches, has promised to deliver new drugs in a more cost-effective way. Paradoxically however, the mainstay of these computational methods is data-driven, meaning they need activity data for new compounds to be generated and available in databases. Therefore, high-throughput screening (HTS) of compounds still is a much-needed exercise in drug discovery to fuel other rational approaches. In trypanosomatids, due to the scarcity of validated molecular targets and biological complexity of these parasites, phenotypic screening has become an essential tool for the discovery of new bioactive compounds. In this article we discuss the perspectives of phenotypic HTS for trypanosomatid drug discovery with emphasis on the role of image-based, high-content methods. We also propose an ideal cascade of assays for the identification of new drug candidates for clinical development using leishmaniasis as an example.
Collapse
Affiliation(s)
- Rafael Ferreira Dantas
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica Experimental de Computacional de Fármacos, Rio de Janeiro, RJ, Brasil
| | - Eduardo Caio Torres-Santos
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica de Tripanosomatídeos, Rio de Janeiro, RJ, Brasil
| | - Floriano Paes Silva
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica Experimental de Computacional de Fármacos, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
15
|
de Lucio H, García-Marín J, Sánchez-Alonso P, García-Soriano JC, Toro MÁ, Vaquero JJ, Gago F, Alajarín R, Jiménez-Ruiz A. Pyridazino-pyrrolo-quinoxalinium salts as highly potent and selective leishmanicidal agents targeting trypanothione reductase. Eur J Med Chem 2022; 227:113915. [PMID: 34695777 DOI: 10.1016/j.ejmech.2021.113915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/04/2022]
Abstract
Fifteen pyridazino-pyrrolo-quinoxalinium salts were synthesized and tested for their antiprotozoal activity against Leishmania infantum amastigotes. Eleven of them turned out to be leishmanicidal, with EC50 values in the nanomolar range, and displayed low toxicity against the human THP-1 cell line. Selectivity indices for these compounds range from 10 to more than 1000. Compounds 3b and 3f behave as potent inhibitors of the oxidoreductase activity of the essential enzyme trypanothione disulfide reductase (TryR). Interestingly, binding of 3f is not affected by high trypanothione concentrations, as revealed by the noncompetitive pattern of inhibition observed when tested in the presence of increasing concentrations of this substrate. Furthermore, when analyzed at varying NADPH concentrations, the characteristic pattern of hyperbolic uncompetitive inhibition supports the view that binding of NADPH to TryR is a prerequisite for inhibitor-protein association. Similar to other TryR uncompetitive inhibitors for NADPH, 3f is responsible for TryR-dependent reduction of cytochrome c in a reaction that is typically inhibited by superoxide dismutase.
Collapse
Affiliation(s)
- Héctor de Lucio
- Departamento de Biología de Sistemas, Universidad de Alcalá, E-28805, Alcalá de Henares, Madrid, Spain.
| | - Javier García-Marín
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805, Alcalá de Henares, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Ctra, Colmenar Viejo, km. 9100, 28034, Madrid, Spain; Instituto de Investigación Química Andrés Manuel del Río (IQAR), Universidad de Alcalá, 28805, Alcalá de Henares, Madrid, Spain.
| | - Patricia Sánchez-Alonso
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805, Alcalá de Henares, Madrid, Spain.
| | | | - Miguel Ángel Toro
- Departamento de Biología de Sistemas, Universidad de Alcalá, E-28805, Alcalá de Henares, Madrid, Spain.
| | - Juan J Vaquero
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805, Alcalá de Henares, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Ctra, Colmenar Viejo, km. 9100, 28034, Madrid, Spain; Instituto de Investigación Química Andrés Manuel del Río (IQAR), Universidad de Alcalá, 28805, Alcalá de Henares, Madrid, Spain.
| | - Federico Gago
- Área de Farmacología, Departamento de Ciencias Biomédicas, Unidad Asociada al IQM-CSIC, Universidad de Alcalá, E-28805, Alcalá de Henares, Madrid, Spain.
| | - Ramón Alajarín
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805, Alcalá de Henares, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Ctra, Colmenar Viejo, km. 9100, 28034, Madrid, Spain; Instituto de Investigación Química Andrés Manuel del Río (IQAR), Universidad de Alcalá, 28805, Alcalá de Henares, Madrid, Spain.
| | - Antonio Jiménez-Ruiz
- Departamento de Biología de Sistemas, Universidad de Alcalá, E-28805, Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
16
|
Benítez D, Medeiros A, Quiroga C, Comini MA. A Simple Bioluminescent Assay for the Screening of Cytotoxic Molecules Against the Intracellular Form of Leishmania infantum. Methods Mol Biol 2022; 2524:127-147. [PMID: 35821468 DOI: 10.1007/978-1-0716-2453-1_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This chapter describes a viability assay for the intracellular (amastigote) and clinically relevant form of Leishmania infantum that is based on the detection of bioluminescence (BL) signal. The assay uses a reporter cell line of L. infantum that expresses constitutively a redshifted luciferase from Photinus pyralis and murine macrophages (cell line J774.A1) as host cells for infection. The host cell line was selected because it is a differentiated cell line, easy to manipulate in vitro, and advantageous for ethical reasons. This chapter introduces an assay designed for the screening of bioactive compounds/molecules employing a 96-well microplate and a 24 h treatment. The assay setup shows excellent balance between simplicity (cell culture manipulation/infection and timing) and quality parameters, as well as potential to detect drug-like molecules acting in a fast and cytotoxic manner.
Collapse
Affiliation(s)
- Diego Benítez
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay.
| | - Andrea Medeiros
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Cristina Quiroga
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Marcelo A Comini
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay.
| |
Collapse
|
17
|
Mazire P, Agarwal V, Roy A. Road-map of pre-clinical treatment for Visceral Leishmaniasis. Drug Dev Res 2021; 83:317-327. [PMID: 34962315 DOI: 10.1002/ddr.21907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/03/2021] [Accepted: 12/14/2021] [Indexed: 11/07/2022]
Abstract
Visceral leishmaniasis (VL) or Kala-azar, is the most lethal form of leishmaniasis, is still prevalent in many countries where it is endemic. It is a threat to human life caused by protozoan parasite Leishmania donovani. The severity of the disease is further increased as the treated individuals might have a chance of developing Post Kala-azar Dermal Leishmaniasis (PKDL) in the long run. Moreover, several countries have reported high number of HIV-VL co-infected patients. Therefore, there is a dire need for the development of efficient diagnostic methods and drugs in order to combat the disease and to control the spread of disease. At present, the treatment for VL entirely relies on therapeutic drugs as no vaccine is available yet. Ever since 1900s a series of drugs have been invented and used for treatment of VL; but the need for one such cost-effective treatment that would completely cure the disease with minimal side-effects, low relapse rate with high efficacy and less toxicity remains yet to be fulfilled. Therefore, identifying novel compounds is very crucial to develop potent antileishmanial agents. Thus, this review enlists several instances of drug development, including the pharmacokinetic and pharmacodynamic properties of antileishmanial drugs, different experimental animal models used to investigate the disease progression and to analyze treatment dosage and pharmacological aspect of drugs. Furthermore, the existing gap in drug development and future measures to improve the process are also discussed in this review.
Collapse
Affiliation(s)
- Priyanka Mazire
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Vartika Agarwal
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Amit Roy
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
18
|
Cohen A, Azas N. Challenges and Tools for In Vitro Leishmania Exploratory Screening in the Drug Development Process: An Updated Review. Pathogens 2021; 10:1608. [PMID: 34959563 PMCID: PMC8703296 DOI: 10.3390/pathogens10121608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
Leishmaniases are a group of vector-borne diseases caused by infection with the protozoan parasites Leishmania spp. Some of them, such as Mediterranean visceral leishmaniasis, are zoonotic diseases transmitted from vertebrate to vertebrate by a hematophagous insect, the sand fly. As there is an endemic in more than 90 countries worldwide, this complex and major health problem has different clinical forms depending on the parasite species involved, with the visceral form being the most worrying since it is fatal when left untreated. Nevertheless, currently available antileishmanial therapies are significantly limited (low efficacy, toxicity, adverse side effects, drug-resistance, length of treatment, and cost), so there is an urgent need to discover new compounds with antileishmanial activity, which are ideally inexpensive and orally administrable with few side effects and a novel mechanism of action. Therefore, various powerful approaches were recently applied in many interesting antileishmanial drug development programs. The objective of this review is to focus on the very first step in developing a potential drug and to identify the exploratory methods currently used to screen in vitro hit compounds and the challenges involved, particularly in terms of harmonizing the results of work carried out by different research teams. This review also aims to identify innovative screening tools and methods for more extensive use in the drug development process.
Collapse
Affiliation(s)
- Anita Cohen
- IHU Méditerranée Infection, Aix Marseille University, IRD (Institut de Recherche pour le Développement), AP-HM (Assistance Publique—Hôpitaux de Marseille), SSA (Service de Santé des Armées), VITROME (Vecteurs—Infections Tropicales et Méditerranéennes), 13005 Marseille, France;
| | | |
Collapse
|
19
|
Olías-Molero AI, de la Fuente C, Cuquerella M, Torrado JJ, Alunda JM. Antileishmanial Drug Discovery and Development: Time to Reset the Model? Microorganisms 2021; 9:2500. [PMID: 34946102 PMCID: PMC8703564 DOI: 10.3390/microorganisms9122500] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 01/27/2023] Open
Abstract
Leishmaniasis is a vector-borne parasitic disease caused by Leishmania species. The disease affects humans and animals, particularly dogs, provoking cutaneous, mucocutaneous, or visceral processes depending on the Leishmania sp. and the host immune response. No vaccine for humans is available, and the control relies mainly on chemotherapy. However, currently used drugs are old, some are toxic, and the safer presentations are largely unaffordable by the most severely affected human populations. Moreover, its efficacy has shortcomings, and it has been challenged by the growing reports of resistance and therapeutic failure. This manuscript presents an overview of the currently used drugs, the prevailing model to develop new antileishmanial drugs and its low efficiency, and the impact of deconstruction of the drug pipeline on the high failure rate of potential drugs. To improve the predictive value of preclinical research in the chemotherapy of leishmaniasis, several proposals are presented to circumvent critical hurdles-namely, lack of common goals of collaborative research, particularly in public-private partnership; fragmented efforts; use of inadequate surrogate models, especially for in vivo trials; shortcomings of target product profile (TPP) guides.
Collapse
Affiliation(s)
- Ana Isabel Olías-Molero
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.I.O.-M.); (C.d.l.F.); (M.C.)
| | - Concepción de la Fuente
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.I.O.-M.); (C.d.l.F.); (M.C.)
| | - Montserrat Cuquerella
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.I.O.-M.); (C.d.l.F.); (M.C.)
| | - Juan J. Torrado
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - José M. Alunda
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.I.O.-M.); (C.d.l.F.); (M.C.)
| |
Collapse
|
20
|
Zulfiqar B, Avery VM. Assay development in leishmaniasis drug discovery: a comprehensive review. Expert Opin Drug Discov 2021; 17:151-166. [PMID: 34818139 DOI: 10.1080/17460441.2022.2002843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Cutaneous, muco-cutaneous and visceral leishmaniasis occur due to an infection with the protozoan parasite Leishmania. The current therapeutic options are limited mainly due to extensive toxicity, emerging resistance and variation in efficacy based on species and strain of the Leishmania parasite. There exists a high unmet medical need to identify new chemical starting points for drug discovery to tackle the disease. AREAS COVERED The authors have highlighted the recent progress, limitations and successes achieved in assay development for leishmaniasis drug discovery. EXPERT OPINION It is true that sophisticated and robust phenotypic in vitro assays have been developed during the last decade, however limitations and challenges remain with respect to variation in activity reported between different research groups and success in translating in vitro outcomes in vivo. The variability is not only due to strain and species differences but also a lack of well-defined criteria and assay conditions, e.g. culture media, host cell type, assay formats, parasite form used, multiplicity of infection and incubation periods. Thus, there is an urgent need for more physiologically relevant assays that encompass multi-species phenotypic approaches to identify new chemical starting points for leishmaniasis drug discovery.
Collapse
Affiliation(s)
- Bilal Zulfiqar
- Discovery Biology, Griffith University, Brisbane, Australia
| | - Vicky M Avery
- Discovery Biology, Griffith University, Brisbane, Australia.,Discovery Biology, Griffith University Drug Discovery Programme for Cancer Therapeutics, Brisbane, Australia.,School of Environment and Sciences, Griffith University, Brisbane, Australia
| |
Collapse
|
21
|
Staffen IV, Banhuk FW, Tomiotto-Pellissier F, da Silva Bortoleti BT, Pavanelli WR, Ayala TS, Menolli RA. Chalcone-rich extracts from Lonchocarpus cultratus roots present in vitro leishmanicidal and immunomodulatory activity. J Pharm Pharmacol 2021; 74:77-87. [PMID: 34791343 DOI: 10.1093/jpp/rgab155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022]
Abstract
OBJECTIVES This study aimed to evaluate the in vitro anti-Leishmania activity of chalcone-rich three extracts (LDR, LHR and LMR) from Lonchocarpus cultratus (Vell.) A.M.G. Azevedo & H.C. Lima against L. amazonensis. Also, the immunomodulatory and antioxidant capacity was assessed. METHODS Successive extraction with hexane, dichloromethane and methanol were performed to obtain LHR, LDR and LMR extracts from L. cultratus roots, which were characterized by 1H NMR. Promastigotes, amastigotes and peritoneal macrophages were exposed to crescent concentrations of the three extracts, and after incubation, the inhibition rates were determined to both types of cells, and morphological analyses were performed on the parasite. The immunomodulatory activity was determined against stimulated macrophages. KEY FINDINGS LDR, LHR and LMR inhibited promastigote cell growth (IC50 0.62 ± 0.3, 0.94 ± 0.5 and 1.28 ± 0.73 µg/ml, respectively) and reduced the number of amastigotes inside macrophages (IC50 1.36 ± 0.14, 1.54 ± 0.26 and 4.09 ± 0.88 µg/ml, respectively). The cytotoxicity against murine macrophages resulted in a CC50 of 13.12 ± 1.92, 92.93 ± 9.1 and >300 µg/ml, resulting in high selectivity index to promastigotes and amastigotes. The extracts also inhibited the nitric oxide secretion in RAW 264.7 macrophages. The antioxidant capacity resulted in a higher scavenger LMR ability. CONCLUSIONS These results suggest that L. cultratus extracts have anti-Leishmania potential, are non-toxic, and immunosuppress macrophages in vitro.
Collapse
Affiliation(s)
- Izabela Virginia Staffen
- Laboratory of Applied Immunology, Center of Medical and Pharmaceutical Sciences, Western Paraná State University (Unioeste), Cascavel, Paraná, Brazil
| | - Fernanda Weyand Banhuk
- Laboratory of Applied Immunology, Center of Medical and Pharmaceutical Sciences, Western Paraná State University (Unioeste), Cascavel, Paraná, Brazil
| | - Fernanda Tomiotto-Pellissier
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute (ICC/Fiocruz/PR), Curitiba, Paraná, Brazil.,Molecular Virology Laboratory, Carlos Chagas Institute (ICC/Fiocruz/PR), Curitiba, Paraná, Brazil
| | - Bruna Taciane da Silva Bortoleti
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute (ICC/Fiocruz/PR), Curitiba, Paraná, Brazil.,Molecular Virology Laboratory, Carlos Chagas Institute (ICC/Fiocruz/PR), Curitiba, Paraná, Brazil
| | - Wander Rogério Pavanelli
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute (ICC/Fiocruz/PR), Curitiba, Paraná, Brazil
| | - Thaís Soprani Ayala
- Laboratory of Applied Immunology, Center of Medical and Pharmaceutical Sciences, Western Paraná State University (Unioeste), Cascavel, Paraná, Brazil
| | - Rafael Andrade Menolli
- Laboratory of Applied Immunology, Center of Medical and Pharmaceutical Sciences, Western Paraná State University (Unioeste), Cascavel, Paraná, Brazil
| |
Collapse
|
22
|
Tadele M, Abay SM, Asaga P, Makonnen E, Hailu A. In vitro growth inhibitory activity of Medicines for Malaria Venture pathogen box compounds against Leishmania aethiopica. BMC Pharmacol Toxicol 2021; 22:71. [PMID: 34784983 PMCID: PMC8594108 DOI: 10.1186/s40360-021-00538-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 10/28/2021] [Indexed: 12/02/2022] Open
Abstract
Introduction Leishmania aethiopica (L. aethiopica) is responsible for different forms of cutaneous leishmaniasis (CL) in Ethiopia. Treatment heavily depends on limited drugs, together with drawbacks like toxicity and microbial resistance. The current research aimed to investigate in vitro growth inhibitory activity of Medicines for Malaria Ventures - Pathogen Box (MMV - PB) compounds against L. aethiopica clinical isolate. Methodology Four hundred MMV – PB compounds were screened against L. aethiopica using resazurin based colourimetric assay. Compounds with > 70% inhibition were further tested using macrophage based intracellular amastigote assay. Cytotoxic and hemolytic activity of candidate hits were assessed on THP1- cells and sheep red blood cells (RBCs), respectively. In vitro drug interaction study was also conducted for the most potent hit using the combination index method. Results At the test concentration of 1 μM, twenty-three compounds showed > 50% inhibition of promastigotes parasite growth, of which 11 compounds showed > 70% inhibition. The 50% growth inhibition (IC50) of the 11 compounds was ranged from 0.024 to 0.483 μM in anti-promastigote assay and from 0.064 to 0.899 μM in intracellular amastigote assay. Candidate compounds demonstrated good safety on sheep RBCs and THP-1 cell lines. MMV688415 demonstrated a slight hemolytic activity on sheep RBC (5.3% at 25 μM) and THP-1 cell line (CC20 = 25 μM) while MMV690102 inhibited half of THP-1 cells at 36.5 μM (selectivity index = 478). No synergistic activity was observed from the combinations of MMV690102 and amphotericin B (CI > 1), and MMV690102 and Pentamidine (CI > 1) at lower and higher combination points. Conclusion The present study identified a panel of compounds that can be used as a novel starting point for lead optimization. MMV690102 appears to be the most potent inhibitor against L. aethiopica promastigotes and amastigotes. Future works should investigate the antileishmanial mechanism of action and in vivo antileishmanial activities of identified hits. Supplementary Information The online version contains supplementary material available at 10.1186/s40360-021-00538-2.
Collapse
Affiliation(s)
- Markos Tadele
- Animal Health Research Program, Ethiopian Institute of Agricultural Research, Holetta, Ethiopia.
| | - Solomon M Abay
- Department of Pharmacology and Clinical Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Peter Asaga
- Institute of Human Virology, University Freiburg Medical Centre, Freiburg, Germany
| | - Eyasu Makonnen
- Department of Pharmacology and Clinical Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.,Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Asrat Hailu
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.,Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
23
|
Want MY, Yadav P, Khan R, Chouhan G, Islamuddin M, Aloyouni SY, Chattopadhyay AP, AlOmar SY, Afrin F. Critical Antileishmanial in vitro Effects of Highly Examined Gold Nanoparticles. Int J Nanomedicine 2021; 16:7285-7295. [PMID: 34737566 PMCID: PMC8560327 DOI: 10.2147/ijn.s268548] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 09/15/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction The current therapeutic armory for visceral leishmaniasis (VL) caused by Leishmania donovani complex is inadequate, coupled with serious limitations. Combination therapy has proved ineffective due to mounting resistance; however, the search for safe and effective drugs is desirable, in the absence of any vaccine. There is a growing interest in the application of nanoparticles for the therapeutic effectiveness of leishmaniasis. Aimed in this direction, we assessed the antileishmanial effect of gold nanoparticles (GNP) against L. donovani in vitro. Methods GNP were synthesized and characterized for particle size by dynamic light scattering (DLS) and atomic force microscopy (AFM) and for optical properties by UV-visible spectroscopy. Cytotoxicity of GNP was measured by the MTT proliferation assay. The antileishmanial activity of the nanoparticles was evaluated against L. donovani promastigotes and macrophage-infected amastigotes in vitro. Results GNP showed a strong SPR peak at 520 nm and mean particle size, polydispersity index (PDI), and zeta potential of 56.0 ± 10 nm, 0.3 ± 0.1 and −27.0 ± 3 mV, respectively. The GNPs were smooth and spherical with a mean particle diameter of 20 ± 5 nm. Nanoparticles [1.2–100 µM] did not reveal any cytotoxicity on RAW 264.7 murine macrophage cell line, but exerted significant activity against both promastigotes and amastigote stages of L. donovani with 50% inhibitory concentrations (IC50) of 18.4 ± 0.4 µM and 5.0 ± 0.3 µM, respectively. GNP showed significant antileishmanial activity with deformed morphology of parasites and the least number of surviving promastigotes after growth reversibility analysis. Conclusion GNP may provide a platform to conjugate antileishmanial drugs onto the surface of nanoparticles to enhance their therapeutic effectiveness against VL. Further work is warranted, involving more in-depth mechanistic studies and in vivo investigations.
Collapse
Affiliation(s)
- Muzamil Yaqub Want
- Parasite Immunology Laboratory, Department of Biotechnology, Jamia Hamdard (Hamdard University), New Delhi, 110062, India.,Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Priya Yadav
- Parasite Immunology Laboratory, Department of Biotechnology, Jamia Hamdard (Hamdard University), New Delhi, 110062, India.,Department of Microbiology, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Rakin Khan
- Parasite Immunology Laboratory, Department of Biotechnology, Jamia Hamdard (Hamdard University), New Delhi, 110062, India
| | - Garima Chouhan
- Parasite Immunology Laboratory, Department of Biotechnology, Jamia Hamdard (Hamdard University), New Delhi, 110062, India.,Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201306, India
| | - Mohammad Islamuddin
- Parasite Immunology Laboratory, Department of Biotechnology, Jamia Hamdard (Hamdard University), New Delhi, 110062, India.,Molecular Virology and Vaccinology Laboratory, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Sheka Yagub Aloyouni
- Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | | | - Suliman Yousef AlOmar
- Doping Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Farhat Afrin
- Parasite Immunology Laboratory, Department of Biotechnology, Jamia Hamdard (Hamdard University), New Delhi, 110062, India.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Taibah University, Madina, 41477, Saudi Arabia
| |
Collapse
|
24
|
Domínguez-Asenjo B, Gutiérrez-Corbo C, Álvarez-Bardón M, Pérez-Pertejo Y, Balaña-Fouce R, Reguera RM. Ex Vivo Phenotypic Screening of Two Small Repurposing Drug Collections Identifies Nifuratel as a Potential New Treatment against Visceral and Cutaneous Leishmaniasis. ACS Infect Dis 2021; 7:2390-2401. [PMID: 34114790 DOI: 10.1021/acsinfecdis.1c00139] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Leishmaniases are vector-borne neglected diseases caused by single-celled parasites. The search for new antileishmanial drugs has experienced a strong boost thanks to the application of bioimaging to phenotypic screenings based on intracellular amastigotes. Mouse splenic explants infected with fluorescent strains of Leishmania are proven tools of drug discovery, where hits can be easily transferred to preclinical in vivo models. We have developed a two-staged platform for antileishmanial drugs. First, we screened two commercial collections of repurposing drugs with a total of 1769 compounds in ex vivo mouse splenocytes infected with an infrared emitting Leishmania infantum strain. The most active and safest compounds were scaled-up to in vivo models of chronic Leishmania donovani visceral leishmaniasis and Leishmania major cutaneous leishmaniasis. From the total of 1769 compounds, 12 hits with selective indices >35 were identified, and 4 of them were tested in vivo in a model of L. donovani visceral leishmaniasis. Nifuratel, a repurposed synthetic nitrofuran, when administered orally at 50 mg/kg bw once or twice a day for 10 days, caused >80% reduction in the parasitic load. Furthermore, the intralesional administration of nifuratel in a model of cutaneous leishmaniasis by L. major produced the parasitological cure. From the previous results we have deduced the great capacity of mouse splenic explants to identify new hits, a model which could be easily transferred to in vivo models, as well as the potential use of nifuratel as an alternative to the current treatment of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Bárbara Domínguez-Asenjo
- Department of Biomedical Sciences, Faculty of Veterinary Medicine, University of León, 24071 León, Spain
| | - Camino Gutiérrez-Corbo
- Department of Biomedical Sciences, Faculty of Veterinary Medicine, University of León, 24071 León, Spain
| | - María Álvarez-Bardón
- Department of Biomedical Sciences, Faculty of Veterinary Medicine, University of León, 24071 León, Spain
| | - Yolanda Pérez-Pertejo
- Department of Biomedical Sciences, Faculty of Veterinary Medicine, University of León, 24071 León, Spain
| | - Rafael Balaña-Fouce
- Department of Biomedical Sciences, Faculty of Veterinary Medicine, University of León, 24071 León, Spain
| | - Rosa M. Reguera
- Department of Biomedical Sciences, Faculty of Veterinary Medicine, University of León, 24071 León, Spain
| |
Collapse
|
25
|
Kaushik D, Granato JT, Macedo GC, Dib PRB, Piplani S, Fung J, da Silva AD, Coimbra ES, Petrovsky N, Salunke DB. Toll-like receptor-7/8 agonist kill Leishmania amazonensis by acting as pro-oxidant and pro-inflammatory agent. J Pharm Pharmacol 2021; 73:1180-1190. [PMID: 33940589 PMCID: PMC8359742 DOI: 10.1093/jpp/rgab063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 03/29/2021] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Evaluation of the anti-Leishmanial activity of imidazoquinoline-based TLR7/8 agonists. METHODS TLR7/8-active imidazoquinolines (2 and 3) were synthesized and assessed for activity against Leishmania amazonensis-intracellular amastigotes using mouse peritoneal macrophages. The production of reactive oxygen species (ROS), nitric oxide (NO) and cytokines was determined in infected and non-infected macrophages. KEY FINDINGS The imidazoquinolines, 2 and 3, were primarily agonists of TLR7 with compound 3 also showing modest TLR8 activity. Docking studies showed them to occupy the same binding pocket on TLR7 and 8 as the known agonists, imiquimod and resiquimod. Compounds 2 and 3 inhibited the growth of L. amazonensis-intracellular amastigotes with the most potent compound (3, IC50 = 5.93 µM) having an IC50 value close to miltefosine (IC50 = 4.05 µM), a known anti-Leishmanial drug. Compound 3 induced macrophages to produce ROS, NO and inflammatory cytokines that likely explain the anti-Leishmanial effects. CONCLUSIONS This study shows that activating TLR7 using compounds 2 or 3 induces anti-Leishmanial activity associated with induction of free radicals and inflammatory cytokines able to kill the parasites. While 2 and 3 had a very narrow cytotoxicity window for macrophages, this identifies the possibility to further develop this chemical scaffold to less cytotoxic TLR7/8 agonist for potential use as anti-Leishmanial drug.
Collapse
Affiliation(s)
- Deepender Kaushik
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| | - Juliana T Granato
- Departamento de Parasitologia, Microbiologia e Imunologia, I.C.B., Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, Brazil
| | - Gilson C Macedo
- Departamento de Parasitologia, Microbiologia e Imunologia, I.C.B., Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, Brazil
| | - Paula R B Dib
- Departamento de Parasitologia, Microbiologia e Imunologia, I.C.B., Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, Brazil
| | - Sakshi Piplani
- Vaxine Pty Ltd., Warradale, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Johnson Fung
- Vaxine Pty Ltd., Warradale, South Australia, Australia
| | - Adilson D da Silva
- Departamento de Química, I.C.E., Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, Brazil
| | - Elaine S Coimbra
- Departamento de Parasitologia, Microbiologia e Imunologia, I.C.B., Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, Brazil
| | - Nikolai Petrovsky
- Vaxine Pty Ltd., Warradale, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Deepak B Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India
- National Interdisciplinary Centre of Vaccine, Immunotherapeutics and Antimicrobials (NICOVIA), Panjab University, Chandigarh, India
| |
Collapse
|
26
|
Dias-Lopes G, Zabala-Peñafiel A, de Albuquerque-Melo BC, Souza-Silva F, Menaguali do Canto L, Cysne-Finkelstein L, Alves CR. Axenic amastigotes of Leishmania species as a suitable model for in vitro studies. Acta Trop 2021; 220:105956. [PMID: 33979642 DOI: 10.1016/j.actatropica.2021.105956] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/26/2022]
Abstract
Leishmania spp. are etiological agents of infection diseases, which in some cases can be fatal. The main forms of their biological cycle, promastigotes and amastigotes, can be maintained in vitro. While promastigotes are easier to maintain, amastigotes are more complex and can be obtained through different ways, including infection assays of tissues or in vitro cells, and differentiation from promastigotes to axenic amastigotes. Several protocols have been proposed for in vitro differentiation for at least 12 Leishmania spp. of both subgenera, Leishmania and Viannia. In this review we propose a critical summary of axenic amastigotes induction, as well as the impact of these strategies on metabolic pathways and regulatory networks analyzed by omics approaches. The parameters used by different research groups show considerable variations in temperature, pH and induction stages, as highlighted here for Leishmania (Viannia) braziliensis. Therefore, a consensus on strategies for inducing amastigogenesis is necessary to improve accuracy and even define stage-specific biomarkers. In fact, the axenic amastigote model has contributed to elucidate several aspects of the parasite cycle, however, since it does not reproduce the intracellular environment, its use requires several precautions. In addition, we present a discussion about using axenic amastigotes for drug screening, suggesting the need of a more sensitive methodology to verify cell viability in these tests. Collectively, this review explores the advantages and limitations found in studies with axenic amastigotes, done for more than 30 years, and discuss the gaps that impair their use as a suitable model for in vitro studies.
Collapse
|
27
|
Biological Evaluation and Mechanistic Studies of Quinolin-(1 H)-Imines as a New Chemotype against Leishmaniasis. Antimicrob Agents Chemother 2021; 65:e0151320. [PMID: 33903112 DOI: 10.1128/aac.01513-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leishmaniasis is one of the most challenging neglected tropical diseases and remains a global threat to public health. Currently available therapies for leishmaniases present significant drawbacks and are rendered increasingly inefficient due to parasite resistance, making the need for more effective, safer, and less expensive drugs an urgent one. In our efforts to identify novel chemical scaffolds for the development of antileishmanial agents, we have screened in-house antiplasmodial libraries against axenic and intracellular forms of Leishmania infantum, Leishmania amazonensis, and Leishmania major. Several of the screened compounds showed half-maximal inhibitory concentrations (IC50s) against intracellular L. infantum parasites in the submicromolar range (compounds 1h, IC50 = 0.9 μM, and 1n, IC50 = 0.7 μM) and selectivity indexes of 11 and 9.7, respectively. Compounds also displayed activity against L. amazonensis and L. major parasites, albeit in the low micromolar range. Mechanistic studies revealed that compound 1n efficiently inhibits oxygen consumption and significantly decreases the mitochondrial membrane potential in L. infantum axenic amastigotes, suggesting that this chemotype acts, at least in part, by interfering with mitochondrial function. Structure-activity analysis suggests that compound 1n is a promising antileishmanial lead and emphasizes the potential of the quinoline-(1H)-imine chemotype for the future development of new antileishmanial agents.
Collapse
|
28
|
Fattahi Bafghi A, Haghirosadat BF, Yazdian F, Mirzaei F, Pourmadadi M, Pournasir F, Hemati M, Pournasir S. A novel delivery of curcumin by the efficient nanoliposomal approach against Leishmania major. Prep Biochem Biotechnol 2021; 51:990-997. [PMID: 34060984 DOI: 10.1080/10826068.2021.1885045] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Several side effects and drug resistance accompany the current therapies for Leishmaniasis. Nanoliposomal curcumin is applied as a new therapy approach instead of current therapy. In this study, nanoliposomal curcumin was prepared using thin-film hydration method and characterized based on encapsulation efficiency, size, and zeta potential. Curcumin was successfully loaded into nanoliposomes with an encapsulation efficiency of 92%. The surface charge of the nanoparticle was neutral, and the size of nanoparticle was 176.5 nm. Nanoliposomal curcumin is in spherical shape without any agglomeration. Cell viability assay was performed on HFF cell line to show biocompatibility of liposome nanoparticles. Anti-Leishmanial effect of different concentrations of liposomal curcumin (0.05-30 μg mL-1) and amphotericin B (25 μg mL-1) were studied on Leishmania major [MRHO/IR/75/ER] at various hours (24, 48, and 72) using hemocytometer technique. Nanoliposomal curcumin inhibitory concentration (IC50) at hours 24, 48, and 72 were 6.41, 3.8, and 2.33 µg mL-1, respectively. As prepared nanoliposomal curcumin showed a significant antileishmanial effect and induced a better and more tangible effect on the survival of L. major promastigotes and could be suitable candidates for further investigations.
Collapse
Affiliation(s)
- Ali Fattahi Bafghi
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Bibi Fatemeh Haghirosadat
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Sciences and Technology, University of Tehran, Tehran, Iran
| | - Farzaneh Mirzaei
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mehrab Pourmadadi
- Department of Life Science Engineering, Faculty of New Sciences and Technology, University of Tehran, Tehran, Iran
| | - Fahimeh Pournasir
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahdie Hemati
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Soheila Pournasir
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
29
|
Thomas M, Brand S, De Rycker M, Zuccotto F, Lukac I, Dodd PG, Ko EJ, Manthri S, McGonagle K, Osuna-Cabello M, Riley J, Pont C, Simeons F, Stojanovski L, Thomas J, Thompson S, Viayna E, Fiandor JM, Martin J, Wyatt PG, Miles TJ, Read KD, Marco M, Gilbert IH. Scaffold-Hopping Strategy on a Series of Proteasome Inhibitors Led to a Preclinical Candidate for the Treatment of Visceral Leishmaniasis. J Med Chem 2021; 64:5905-5930. [PMID: 33904304 PMCID: PMC8154566 DOI: 10.1021/acs.jmedchem.1c00047] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
There
is an urgent need for new treatments for visceral leishmaniasis
(VL), a parasitic infection which impacts heavily large areas of East
Africa, Asia, and South America. We previously reported on the discovery
of GSK3494245/DDD01305143 (1) as a preclinical candidate
for VL and, herein, we report on the medicinal chemistry program that
led to its identification. A hit from a phenotypic screen was optimized
to give a compound with in vivo efficacy, which was
hampered by poor solubility and genotoxicity. The work on the original
scaffold failed to lead to developable compounds, so an extensive
scaffold-hopping exercise involving medicinal chemistry design, in silico profiling, and subsequent synthesis was utilized,
leading to the preclinical candidate. The compound was shown to act
via proteasome inhibition, and we report on the modeling of different
scaffolds into a cryo-EM structure and the impact this has on our
understanding of the series’ structure–activity relationships.
Collapse
Affiliation(s)
- Michael Thomas
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, Dundee DD1 5EH, U.K
| | - Stephen Brand
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, Dundee DD1 5EH, U.K
| | - Manu De Rycker
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, Dundee DD1 5EH, U.K
| | - Fabio Zuccotto
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, Dundee DD1 5EH, U.K
| | - Iva Lukac
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, Dundee DD1 5EH, U.K
| | - Peter G Dodd
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, Dundee DD1 5EH, U.K
| | - Eun-Jung Ko
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, Dundee DD1 5EH, U.K
| | - Sujatha Manthri
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, Dundee DD1 5EH, U.K
| | - Kate McGonagle
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, Dundee DD1 5EH, U.K
| | - Maria Osuna-Cabello
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, Dundee DD1 5EH, U.K
| | - Jennifer Riley
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, Dundee DD1 5EH, U.K
| | - Caterina Pont
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, Dundee DD1 5EH, U.K
| | - Frederick Simeons
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, Dundee DD1 5EH, U.K
| | - Laste Stojanovski
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, Dundee DD1 5EH, U.K
| | - John Thomas
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, Dundee DD1 5EH, U.K
| | - Stephen Thompson
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, Dundee DD1 5EH, U.K
| | - Elisabet Viayna
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, Dundee DD1 5EH, U.K
| | - Jose M Fiandor
- Global Health R&D, GlaxoSmithKline, Tres Cantos 28760, Spain
| | - Julio Martin
- Global Health R&D, GlaxoSmithKline, Tres Cantos 28760, Spain
| | - Paul G Wyatt
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, Dundee DD1 5EH, U.K
| | - Timothy J Miles
- Global Health R&D, GlaxoSmithKline, Tres Cantos 28760, Spain
| | - Kevin D Read
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, Dundee DD1 5EH, U.K
| | - Maria Marco
- Global Health R&D, GlaxoSmithKline, Tres Cantos 28760, Spain
| | - Ian H Gilbert
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, Dundee DD1 5EH, U.K
| |
Collapse
|
30
|
Vásquez-Ocmín PG, Gadea A, Cojean S, Marti G, Pomel S, Van Baelen AC, Ruiz-Vásquez L, Ruiz Mesia W, Figadère B, Ruiz Mesia L, Maciuk A. Metabolomic approach of the antiprotozoal activity of medicinal Piper species used in Peruvian Amazon. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113262. [PMID: 32818574 DOI: 10.1016/j.jep.2020.113262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/24/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In the Peruvian Amazon as in the tropical countries of South America, the use of medicinal Piper species (cordoncillos) is common practice, particularly against symptoms of infection by protozoal parasites. However, there is few documented information about the practical aspects of their use and few scientific validation. The starting point of this work was a set of interviews of people living in six rural communities from the Peruvian Amazon (Alto Amazonas Province) about their uses of plants from Piper genus: one community of Amerindian native people (Shawi community) and five communities of mestizos. Infections caused by parasitic protozoa take a huge toll on public health in the Amazonian communities, who partly fight it using traditional remedies. Validation of these traditional practices contributes to public health care efficiency and may help to identify new antiprotozoal compounds. AIMS OF STUDY To record and validate the use of medicinal Piper species by rural people of Alto Amazonas Province (Peru) and annotate active compounds using a correlation study and a data mining approach. MATERIALS AND METHODS Rural communities were interviewed about traditional medication against parasite infections with medicinal Piper species. Ethnopharmacological surveys were undertaken in five mestizo villages, namely: Nueva Arica, Shucushuyacu, Parinari, Lagunas and Esperanza, and one Shawi community (Balsapuerto village). All communities belong to the Alto Amazonas Province (Loreto region, Peru). Seventeen Piper species were collected according to their traditional use for the treatment of parasitic diseases, 35 extracts (leaves or leaves and stems) were tested in vitro on P. falciparum (3D7 chloroquine-sensitive strain and W2 chloroquine-resistant strain), Leishmania donovani LV9 strain and Trypanosoma brucei gambiense. Assessments were performed on HUVEC cells and RAW 264.7 macrophages. The annotation of active compounds was realized by metabolomic analysis and molecular networking approach. RESULTS Nine extracts were active (IC50 ≤ 10 μg/mL) on 3D7 P. falciparum and only one on W2 P. falciparum, six on L. donovani (axenic and intramacrophagic amastigotes) and seven on Trypanosoma brucei gambiense. Only one extract was active on all three parasites (P. lineatum). After metabolomic analyses and annotation of compounds active on Leishmania, P. strigosum and P. pseudoarboreum were considered as potential sources of leishmanicidal compounds. CONCLUSIONS This ethnopharmacological study and the associated in vitro bioassays corroborated the relevance of use of Piper species in the Amazonian traditional medicine, especially in Peru. A series of Piper species with few previously available phytochemical data have good antiprotozoal activity and could be a starting point for subsequent promising work. Metabolomic approach appears to be a smart, quick but still limited methodology to identify compounds with high probability of biological activity.
Collapse
Affiliation(s)
- Pedro G Vásquez-Ocmín
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France; UMR152 PHARMADEV, IRD, UPS, Université de Toulouse, Toulouse, France.
| | - Alice Gadea
- Université de Paris, CiTCoM, UMR CNRS 8038, Paris, France
| | - Sandrine Cojean
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France; CNR du Paludisme, AP-HP, Hôpital Bichat - Claude Bernard, F-75018, Paris, France
| | - Guillaume Marti
- Laboratoire de Recherche en Sciences Végétales UMR 5546 UPS/CNRS, Plateforme MetaboHUB - MetaToul - Métabolites Végétaux, Auzeville-Tolosan, France
| | - Sébastien Pomel
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | | | - Liliana Ruiz-Vásquez
- Laboratorio de Investigación de Productos Naturales Antiparasitarios de la Amazonia (LIPNAA), Universidad Nacional de la Amazonía Peruana (UNAP), AA. HH. "Nuevo San Lorenzo", Pasaje Paujiles S/N, San Juan, Iquitos, Peru
| | - Wilfredo Ruiz Mesia
- Laboratorio de Investigación de Productos Naturales Antiparasitarios de la Amazonia (LIPNAA), Universidad Nacional de la Amazonía Peruana (UNAP), AA. HH. "Nuevo San Lorenzo", Pasaje Paujiles S/N, San Juan, Iquitos, Peru
| | - Bruno Figadère
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | - Lastenia Ruiz Mesia
- Laboratorio de Investigación de Productos Naturales Antiparasitarios de la Amazonia (LIPNAA), Universidad Nacional de la Amazonía Peruana (UNAP), AA. HH. "Nuevo San Lorenzo", Pasaje Paujiles S/N, San Juan, Iquitos, Peru
| | - Alexandre Maciuk
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France.
| |
Collapse
|
31
|
Maaroufi Z, Cojean S, Loiseau PM, Yahyaoui M, Agnely F, Abderraba M, Mekhloufi G. In vitro antileishmanial potentialities of essential oils from Citrus limon and Pistacia lentiscus harvested in Tunisia. Parasitol Res 2021; 120:1455-1469. [PMID: 33426571 DOI: 10.1007/s00436-020-06952-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/28/2020] [Indexed: 10/22/2022]
Abstract
Leishmaniasis is a tropical parasitic disease that affects up to 12 million people worldwide. Current chemotherapies have limitations such as toxicity, high cost, and parasite resistance. This work aims to select an essential oil (EssOil) isolated from the Tunisian flora as a new antileishmanial candidate. Two plants were chosen for their antileishmanial potential: Citrus limon (Citrus) and Pistacia lentiscus (Pistacia). Each of these plants was harvested from two different sites (area 1 and area 2). Extracted EssOils were characterized using GC-MS. Their antiparasitic activity against axenic and intracellular Leishmania major amastigotes and their cytotoxicity were assessed. Citrus EssOil from area 1 displayed an interesting activity against L. major intramacrophage amastigotes with IC50 value at 4.2 ± 1.3 μg/mL. Interestingly, this activity was close to that of miltefosine. Moderate activities against intracellular amastigote were observed for Pistacia EssOil from area 1 and Citrus EssOil from area 2. However, low cytotoxicity with high selectivity index was proved only for Citrus EssOil from area 1, revealing its safety for macrophages. This study also demonstrated for the first time the antileishmanial activity of EssOil extracted from Citrus limon leaves. The EssOil interesting activity could be related to the lipophilic properties of terpenes that were shown in literature to contribute to the disruption of parasite intracellular metabolic pathways.
Collapse
Affiliation(s)
- Zeineb Maaroufi
- CNRS, Institut Galien Paris-Saclay, Université Paris-Saclay, 92296, Châtenay-Malabry, France.,Laboratoire Matériaux Molécules et applications, Institut préparatoire des études scientifiques et techniques (IPEST), Univ. de Carthage, La Marsa, Tunisia
| | - Sandrine Cojean
- CNRS, BioCIS, Université Paris-Saclay, 92290, Châtenay-Malabry, France
| | | | - Marwa Yahyaoui
- Laboratoire Matériaux Molécules et applications, Institut préparatoire des études scientifiques et techniques (IPEST), Univ. de Carthage, La Marsa, Tunisia
| | - Florence Agnely
- CNRS, Institut Galien Paris-Saclay, Université Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Manef Abderraba
- Laboratoire Matériaux Molécules et applications, Institut préparatoire des études scientifiques et techniques (IPEST), Univ. de Carthage, La Marsa, Tunisia
| | - Ghozlene Mekhloufi
- CNRS, Institut Galien Paris-Saclay, Université Paris-Saclay, 92296, Châtenay-Malabry, France.
| |
Collapse
|
32
|
Van Bocxlaer K, Croft SL. Pharmacokinetics and pharmacodynamics in the treatment of cutaneous leishmaniasis - challenges and opportunities. RSC Med Chem 2021; 12:472-482. [PMID: 34041488 PMCID: PMC8128043 DOI: 10.1039/d0md00343c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022] Open
Abstract
Pharmacological efficacy is obtained when adequate concentrations of a potent drug reach the target site. In cutaneous leishmaniasis, a heterogeneous disease characterised by a variety of skin manifestations from simple nodules, skin discoloration, plaques to extensive disseminated forms, the parasites are found in the dermal layers of the skin. Treatment thus involves the release of the active compound from the formulation (administered either topically or systemically), it's permeation into the skin, accumulation by the local macrophages and further transport into the phagolysosome of the macrophage. The pharmacodynamic activity of a drug against the parasite is relatively straight forward to evaluate both in vivo and in vitro. The pharmacokinetic processes taking place inside the skin are more complex to elucidate due to the multi-lamellar structure of the skin, heterogeneous distribution of drugs within the tissue, the difficulty of accessing the site of infection complicating sampling and the lack of surrogate markers reflecting the activity of a drug in the skin. This review will discuss the difficulties encountered when investigating drug distribution, PK PD relationships and efficacy in the skin with a focus on cutaneous leishmaniasis treatment.
Collapse
Affiliation(s)
- Katrien Van Bocxlaer
- Department of Biology, York Biomedical Research Institute, University of York York YO10 5DD UK +44 (0) 19 0432 8855
| | - Simon L Croft
- Department of Infection Biology, London School of Hygiene & Tropical Medicine London WC1E 7HT UK
| |
Collapse
|
33
|
Luczywo A, Sauter IP, Silva Ferreira TC, Cortez M, Romanelli GP, Sathicq G, Asís SE. Microwave‐assisted synthesis of 2‐styrylquinoline‐4‐carboxylic acid derivatives to improve the toxic effect against
Leishmania (Leishmania) amazonensis. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ayelen Luczywo
- Facultad de Farmacia y Bioquímica, Departamento de Química Orgánica Universidad de Buenos Aires Buenos Aires Argentina
| | - Ismael Pretto Sauter
- Laboratório de Imunobiologia da Interação Leishmania‐macrófagos, Departamento de Parasitologia Instituto de Ciências Biomédicas, Universidade de São Paulo São Paulo Brazil
| | - Thalita Camêlo Silva Ferreira
- Laboratório de Imunobiologia da Interação Leishmania‐macrófagos, Departamento de Parasitologia Instituto de Ciências Biomédicas, Universidade de São Paulo São Paulo Brazil
| | - Mauro Cortez
- Laboratório de Imunobiologia da Interação Leishmania‐macrófagos, Departamento de Parasitologia Instituto de Ciências Biomédicas, Universidade de São Paulo São Paulo Brazil
| | - Gustavo P. Romanelli
- Centro de Investigación y Desarrollo en Ciencias Aplicadas “Dr. Jorge J. Ronco” (CINDECA‐CONICET‐CCT‐La Plata) Universidad Nacional de La Plata La Plata Argentina
| | - Gabriel Sathicq
- Centro de Investigación y Desarrollo en Ciencias Aplicadas “Dr. Jorge J. Ronco” (CINDECA‐CONICET‐CCT‐La Plata) Universidad Nacional de La Plata La Plata Argentina
| | - Silvia E. Asís
- Facultad de Farmacia y Bioquímica, Departamento de Química Orgánica Universidad de Buenos Aires Buenos Aires Argentina
| |
Collapse
|
34
|
Souza Silva JA, Tunes LG, Coimbra RS, Ascher DB, Pires DEV, Monte-Neto RL. Unveiling six potent and highly selective antileishmanial agents via the open source compound collection 'Pathogen Box' against antimony-sensitive and -resistant Leishmania braziliensis. Biomed Pharmacother 2020; 133:111049. [PMID: 33378956 DOI: 10.1016/j.biopha.2020.111049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
Despite all efforts to provide new chemical entities to tackle leishmaniases, we are still dependent on a the limited drug arsenal, together with drawbacks like toxicity and drug-resistant parasites. Collaborative drug discovery emerged as an option to speed up the way to find alternative antileishmanial agents. This is the case of Medicines for Malaria Ventures - MMV, that promotes an open source drug discovery initiative to fight diseases worldwide. Here, we screened 400 compounds from 'Pathogen Box' (PBox) collection against Leishmania braziliensis, the main etiological agent of cutaneous leishmaniasis in Brazil. Twenty-three compounds were able to inhibit ≥ 80 % L. braziliensis growth at 5 μM. Six out of the PBox selected 23 compounds were found to be highly selective against L. braziliensis intracellular amastigotes with selectivity index varying from > 104 to > 746 and IC50s ranging from 47 to 480 nM. The compounds were also active against antimony-resistant L. braziliensis isolated from the field or laboratory selected mutants, revealing the potential on treating patients infected with drug resistant parasites. Most of the selected compounds were known to be active against kinetoplastids, however, two compounds (MMV688703 and MMV676477) were part of toxoplasmosis and tuberculosis 'PBox' disease set, reinforcing the potential of phenotyping screening to unveil drug repurposing. Here we applied a computational prediction of pharmacokinetic properties using the ADMET predictor pkCSM (http://biosig.unimelb.edu.au/pkcsm/). The tool offered clues on potential drug development needs and can support further in vivo studies. Molecular docking analysis identified CRK3 (LbrM.35.0660), CYP450 (LbrM.30.3580) and PKA (LbrM.18.1180) as L. braziliensis targets for MMV676604, MMV688372 and MMV688703, respectively. Compounds from 'Pathogen Box' thus represents a new hope for novel (or repurposed) small molecules source to tackle leishmaniases.
Collapse
Affiliation(s)
- Juliano A Souza Silva
- Instituto René Rachou - Fiocruz Minas, Av. Augusto de Lima, 1715, Belo Horizonte, 30190-009, MG, Brazil.
| | - Luiza G Tunes
- Instituto René Rachou - Fiocruz Minas, Av. Augusto de Lima, 1715, Belo Horizonte, 30190-009, MG, Brazil.
| | - Roney S Coimbra
- Instituto René Rachou - Fiocruz Minas, Av. Augusto de Lima, 1715, Belo Horizonte, 30190-009, MG, Brazil.
| | - David B Ascher
- Structural Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Institute, 30 Flemington Rd, Parkville, VIC 3052, Melbourne, Australia; Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, VIC 3004, Melbourne, Australia.
| | - Douglas E V Pires
- Instituto René Rachou - Fiocruz Minas, Av. Augusto de Lima, 1715, Belo Horizonte, 30190-009, MG, Brazil; School of Computing and Information Systems, The University of Melbourne, Doug McDonell Building, VIC 3010, Parkville, Melbourne, Australia.
| | - Rubens L Monte-Neto
- Instituto René Rachou - Fiocruz Minas, Av. Augusto de Lima, 1715, Belo Horizonte, 30190-009, MG, Brazil.
| |
Collapse
|
35
|
Thomas MG, De Rycker M, Ajakane M, Crouch SD, Campbell L, Daugan A, Fra G, Guerrero C, Mackenzie CJ, MacLean L, Manthri S, Martin F, Norval S, Osuna-Cabello M, Riley J, Shishikura Y, Miguel-Siles J, Simeons FRC, Stojanovski L, Thomas J, Thompson S, Velasco RF, Fiandor JM, Wyatt PG, Read KD, Gilbert IH, Miles TJ. Identification of 6-amino-1 H-pyrazolo[3,4- d]pyrimidines with in vivo efficacy against visceral leishmaniasis. RSC Med Chem 2020; 11:1168-1177. [PMID: 33479621 PMCID: PMC7651859 DOI: 10.1039/d0md00203h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/07/2020] [Indexed: 11/21/2022] Open
Abstract
The development of a chemical series with oral efficacy against visceral leishmaniasis is described.
Visceral leishmaniasis (VL) affects millions of people across the world, largely in developing nations. It is fatal if left untreated and the current treatments are inadequate. As such, there is an urgent need for new, improved medicines. In this paper, we describe the identification of a 6-amino-N-(piperidin-4-yl)-1H-pyrazolo[3,4-d]pyrimidine scaffold and its optimization to give compounds which showed efficacy when orally dosed in a mouse model of VL.
Collapse
Affiliation(s)
- Michael G Thomas
- Drug Discovery Unit , Wellcome Centre for Anti-Infectives Research , Division of Biological Chemistry and Drug Discovery , School of Life Sciences , University of Dundee , Dundee DD1 5EH , UK .
| | - Manu De Rycker
- Drug Discovery Unit , Wellcome Centre for Anti-Infectives Research , Division of Biological Chemistry and Drug Discovery , School of Life Sciences , University of Dundee , Dundee DD1 5EH , UK .
| | - Myriam Ajakane
- Centre de Recherche , GlaxoSmithKline , Les Ulis, 25,27 Avenue du Quebec , 91140 Villebon sur Yvette , France
| | - Sabrinia D Crouch
- Global Health R&D , GlaxoSmithKline , Calle Severo Ochoa, 2, 28760 Tres Cantos , Madrid , Spain .
| | - Lorna Campbell
- Drug Discovery Unit , Wellcome Centre for Anti-Infectives Research , Division of Biological Chemistry and Drug Discovery , School of Life Sciences , University of Dundee , Dundee DD1 5EH , UK .
| | - Alain Daugan
- Centre de Recherche , GlaxoSmithKline , Les Ulis, 25,27 Avenue du Quebec , 91140 Villebon sur Yvette , France
| | - Gloria Fra
- GalChimia S.A. , Cebreiro s/n, 15823, O Pino , A Coruña , Spain
| | - César Guerrero
- GalChimia S.A. , Cebreiro s/n, 15823, O Pino , A Coruña , Spain
| | - Claire J Mackenzie
- Drug Discovery Unit , Wellcome Centre for Anti-Infectives Research , Division of Biological Chemistry and Drug Discovery , School of Life Sciences , University of Dundee , Dundee DD1 5EH , UK .
| | - Lorna MacLean
- Drug Discovery Unit , Wellcome Centre for Anti-Infectives Research , Division of Biological Chemistry and Drug Discovery , School of Life Sciences , University of Dundee , Dundee DD1 5EH , UK .
| | - Sujatha Manthri
- Drug Discovery Unit , Wellcome Centre for Anti-Infectives Research , Division of Biological Chemistry and Drug Discovery , School of Life Sciences , University of Dundee , Dundee DD1 5EH , UK .
| | - Franck Martin
- Centre de Recherche , GlaxoSmithKline , Les Ulis, 25,27 Avenue du Quebec , 91140 Villebon sur Yvette , France
| | - Suzanne Norval
- Drug Discovery Unit , Wellcome Centre for Anti-Infectives Research , Division of Biological Chemistry and Drug Discovery , School of Life Sciences , University of Dundee , Dundee DD1 5EH , UK .
| | - Maria Osuna-Cabello
- Drug Discovery Unit , Wellcome Centre for Anti-Infectives Research , Division of Biological Chemistry and Drug Discovery , School of Life Sciences , University of Dundee , Dundee DD1 5EH , UK .
| | - Jennifer Riley
- Drug Discovery Unit , Wellcome Centre for Anti-Infectives Research , Division of Biological Chemistry and Drug Discovery , School of Life Sciences , University of Dundee , Dundee DD1 5EH , UK .
| | - Yoko Shishikura
- Drug Discovery Unit , Wellcome Centre for Anti-Infectives Research , Division of Biological Chemistry and Drug Discovery , School of Life Sciences , University of Dundee , Dundee DD1 5EH , UK .
| | - Juan Miguel-Siles
- Global Health R&D , GlaxoSmithKline , Calle Severo Ochoa, 2, 28760 Tres Cantos , Madrid , Spain .
| | - Frederick R C Simeons
- Drug Discovery Unit , Wellcome Centre for Anti-Infectives Research , Division of Biological Chemistry and Drug Discovery , School of Life Sciences , University of Dundee , Dundee DD1 5EH , UK .
| | - Laste Stojanovski
- Drug Discovery Unit , Wellcome Centre for Anti-Infectives Research , Division of Biological Chemistry and Drug Discovery , School of Life Sciences , University of Dundee , Dundee DD1 5EH , UK .
| | - John Thomas
- Drug Discovery Unit , Wellcome Centre for Anti-Infectives Research , Division of Biological Chemistry and Drug Discovery , School of Life Sciences , University of Dundee , Dundee DD1 5EH , UK .
| | - Stephen Thompson
- Drug Discovery Unit , Wellcome Centre for Anti-Infectives Research , Division of Biological Chemistry and Drug Discovery , School of Life Sciences , University of Dundee , Dundee DD1 5EH , UK .
| | - Raul F Velasco
- GalChimia S.A. , Cebreiro s/n, 15823, O Pino , A Coruña , Spain
| | - Jose M Fiandor
- Global Health R&D , GlaxoSmithKline , Calle Severo Ochoa, 2, 28760 Tres Cantos , Madrid , Spain .
| | - Paul G Wyatt
- Drug Discovery Unit , Wellcome Centre for Anti-Infectives Research , Division of Biological Chemistry and Drug Discovery , School of Life Sciences , University of Dundee , Dundee DD1 5EH , UK .
| | - Kevin D Read
- Drug Discovery Unit , Wellcome Centre for Anti-Infectives Research , Division of Biological Chemistry and Drug Discovery , School of Life Sciences , University of Dundee , Dundee DD1 5EH , UK .
| | - Ian H Gilbert
- Drug Discovery Unit , Wellcome Centre for Anti-Infectives Research , Division of Biological Chemistry and Drug Discovery , School of Life Sciences , University of Dundee , Dundee DD1 5EH , UK .
| | - Timothy J Miles
- Global Health R&D , GlaxoSmithKline , Calle Severo Ochoa, 2, 28760 Tres Cantos , Madrid , Spain .
| |
Collapse
|
36
|
Scarim CB, Chin CM. Current Approaches to Drug Discovery for Chagas Disease: Methodological Advances. Comb Chem High Throughput Screen 2020; 22:509-520. [PMID: 31608837 DOI: 10.2174/1386207322666191010144111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/31/2019] [Accepted: 09/06/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND In recent years, there has been an improvement in the in vitro and in vivo methodology for the screening of anti-chagasic compounds. Millions of compounds can now have their activity evaluated (in large compound libraries) by means of high throughput in vitro screening assays. OBJECTIVE Current approaches to drug discovery for Chagas disease. METHOD This review article examines the contribution of these methodological advances in medicinal chemistry in the last four years, focusing on Trypanosoma cruzi infection, obtained from the PubMed, Web of Science, and Scopus databases. RESULTS Here, we have shown that the promise is increasing each year for more lead compounds for the development of a new drug against Chagas disease. CONCLUSION There is increased optimism among those working with the objective to find new drug candidates for optimal treatments against Chagas disease.
Collapse
Affiliation(s)
- Cauê B Scarim
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil.,Lapdesf - Laboratory of Research and Development of Drugs, Araraquara, São Paulo, Brazil
| | - Chung M Chin
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil.,Lapdesf - Laboratory of Research and Development of Drugs, Araraquara, São Paulo, Brazil
| |
Collapse
|
37
|
Mahmoud AB, Danton O, Kaiser M, Khalid S, Hamburger M, Mäser P. HPLC-Based Activity Profiling for Antiprotozoal Compounds in Croton gratissimus and Cuscuta hyalina. Front Pharmacol 2020; 11:1246. [PMID: 32922290 PMCID: PMC7456963 DOI: 10.3389/fphar.2020.01246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
In a screening of Sudanese medicinal plants for antiprotozoal activity, the chloroform fractions obtained by liquid-liquid partitioning from ethanolic extracts of fruits of Croton gratissimus var. gratissimus and stems of Cuscuta hyalina Roth ex Schult. exhibited in vitro activity against axenically grown Leishmania donovani amastigotes. This antileishmanial activity was localized by HPLC-based activity profiling. Targeted preparative isolation afforded flavonoids 1–6, 3-methoxy-4-hydroxybenzoic acid (7), and benzyltetrahydroisoquinoline alkaloids laudanine (8) and laudanosine (9) from C. gratissimus, and pinoresinol (10), isorhamnetin (11), (-)-pseudosemiglabrin (12), and kaempferol (13) from C. hyalina. The antiprotozoal activity of 1–13 against L. donovani (axenic and intracellular amastigotes), Trypanosoma brucei rhodesiense (bloodstream forms), and Plasmodium falciparum (erythrocytic stages), and the cytotoxicity in L6 murine myoblast cells were determined in vitro. Quercetin-3,7-dimethylether (6) showed the highest activity against axenic L. donovani (IC50, 4.5 µM; selectivity index [SI], 12.3), P. falciparum (IC50, 7.3 µM; SI, 7.6), and T. b. rhodesiense (IC50, 2.4 µM; SI, 23.2). The congener ayanin (2) exhibited moderate antileishmanial (IC50, 8.2 µM; SI, 12.2), antiplasmodial (IC50, 7.8 µM; SI, 12.9), and antitrypanosomal activity (IC50, 11.2 µM; SI, 8.9). None of the compounds showed notable activity against the intramacrophage form of L. donovani.
Collapse
Affiliation(s)
- Abdelhalim Babiker Mahmoud
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Faculty of Science, University of Basel, Basel, Switzerland.,Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | | | - Marcel Kaiser
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Faculty of Science, University of Basel, Basel, Switzerland
| | - Sami Khalid
- Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan.,Faculty of Pharmacy, University of Science and Technology, Omdurman, Sudan
| | | | - Pascal Mäser
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Faculty of Science, University of Basel, Basel, Switzerland
| |
Collapse
|
38
|
Thomas MG, De Rycker M, Wall RJ, Spinks D, Epemolu O, Manthri S, Norval S, Osuna-Cabello M, Patterson S, Riley J, Simeons FRC, Stojanovski L, Thomas J, Thompson S, Naylor C, Fiandor JM, Wyatt PG, Marco M, Wyllie S, Read KD, Miles TJ, Gilbert IH. Identification and Optimization of a Series of 8-Hydroxy Naphthyridines with Potent In Vitro Antileishmanial Activity: Initial SAR and Assessment of In Vivo Activity. J Med Chem 2020; 63:9523-9539. [PMID: 32663005 PMCID: PMC7748245 DOI: 10.1021/acs.jmedchem.0c00705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
![]()
Visceral
leishmaniasis (VL) is a parasitic infection that results
in approximately 26 000–65 000 deaths annually.
The available treatments are hampered by issues such as toxicity,
variable efficacy, and unsuitable dosing options. The need for new
treatments is urgent and led to a collaboration between the Drugs
for Neglected Diseases initiative (DNDi), GlaxoSmithKline (GSK), and the University of Dundee. An 8-hydroxynaphthyridine
was identified as a start point, and an early compound demonstrated
weak efficacy in a mouse model of VL but was hampered by glucuronidation.
Efforts to address this led to the development of compounds with improved in vitro profiles, but these were poorly tolerated in vivo. Investigation of the mode of action (MoA) demonstrated
that activity was driven by sequestration of divalent metal cations,
a mechanism which was likely to drive the poor tolerability. This
highlights the importance of investigating MoA and pharmacokinetics
at an early stage for phenotypically active series.
Collapse
Affiliation(s)
- Michael G Thomas
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Manu De Rycker
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Richard J Wall
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Daniel Spinks
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Ola Epemolu
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Sujatha Manthri
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Suzanne Norval
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Maria Osuna-Cabello
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Stephen Patterson
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Jennifer Riley
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Frederick R C Simeons
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Laste Stojanovski
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - John Thomas
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Stephen Thompson
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Claire Naylor
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Jose M Fiandor
- Global Health R&D, GlaxoSmithKline, Tres Cantos 28760, Spain
| | - Paul G Wyatt
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Maria Marco
- Global Health R&D, GlaxoSmithKline, Tres Cantos 28760, Spain
| | - Susan Wyllie
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Kevin D Read
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Timothy J Miles
- Global Health R&D, GlaxoSmithKline, Tres Cantos 28760, Spain
| | - Ian H Gilbert
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
39
|
Anderson O, Beckett J, Briggs CC, Natrass LA, Cranston CF, Wilkinson EJ, Owen JH, Mir Williams R, Loukaidis A, Bouillon ME, Pritchard D, Lahmann M, Baird MS, Denny PW. An investigation of the antileishmanial properties of semi-synthetic saponins. RSC Med Chem 2020; 11:833-842. [PMID: 33479679 PMCID: PMC7651632 DOI: 10.1039/d0md00123f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/21/2020] [Indexed: 12/25/2022] Open
Abstract
Leishmaniasis is a neglected tropical disease caused by insect-vector borne protozoan parasites of the, Leishmania species. Whilst infection threatens and affects millions of the global poor, vaccines are absent and drug therapy limited. Extensive efforts have recently been made to discover new leads from small molecule synthetic compound libraries held by industry; however, the number of new chemical entities identified and entering development as anti-leishmanials has been very low. This has led to increased interest in the possibility of discovering naturally derived compounds with potent antileishmanial activity which may be developed towards clinical applications. Plant-derived triterpenoid and steroidal saponins have long been considered as anti-microbials and here we describe an investigation of a library of 137 natural (9) and semi-synthetic saponins (128) for activity against Leishmania mexicana, a causative agent of cutaneous leishmaniasis. The triterpenoid sapogenin, hederagenin, readily obtained in large quantities from Hedera helix (common ivy), was converted into a range of 128 derivatives. These semi-synthetic compounds, as well as saponins isolated from ivy, were examined with a phenotypic screening approach to identify potent and selective anti-leishmanial hits. This led to the identification of 12 compounds, including the natural saponin gypsogenin, demonstrating high potency (ED50 < 10.5 μM) against axenic L. mexicana amastigotes, the mammalian pathogenic form. One of these, hederagenin disuccinate, was sufficiently non-toxic to the macrophage host cell to facilitate further analyses, selectivity index (SI) > 10. Whilst this was not active in an infected cell model, the anti-leishmanial properties of hederagenin-derivatives have been demonstrated, and the possibility of improving the selectivity of natural hederagenin through chemical modification has been established.
Collapse
Affiliation(s)
- Orlagh Anderson
- Department of Biosciences and Centre for Global Infectious Diseases , Durham University , Stockton Road , Durham , DH1 3LE , UK . ; Tel: +44 (0)191 3343983
| | - Joseph Beckett
- Department of Biosciences and Centre for Global Infectious Diseases , Durham University , Stockton Road , Durham , DH1 3LE , UK . ; Tel: +44 (0)191 3343983
| | - Carla C Briggs
- Department of Biosciences and Centre for Global Infectious Diseases , Durham University , Stockton Road , Durham , DH1 3LE , UK . ; Tel: +44 (0)191 3343983
| | - Liam A Natrass
- Department of Biosciences and Centre for Global Infectious Diseases , Durham University , Stockton Road , Durham , DH1 3LE , UK . ; Tel: +44 (0)191 3343983
- Department of Chemistry and Centre for Global Infectious Diseases , Durham University , Stockton Road , Durham , DH1 3LE , UK
| | - Charles F Cranston
- Department of Biosciences and Centre for Global Infectious Diseases , Durham University , Stockton Road , Durham , DH1 3LE , UK . ; Tel: +44 (0)191 3343983
| | - Elizabeth J Wilkinson
- Department of Chemistry , School of Natural Science , Bangor University , Gwynedd LL57 2UW , UK
| | - Jack H Owen
- Department of Chemistry , School of Natural Science , Bangor University , Gwynedd LL57 2UW , UK
| | - Rhodri Mir Williams
- Department of Chemistry , School of Natural Science , Bangor University , Gwynedd LL57 2UW , UK
| | - Angelos Loukaidis
- Department of Chemistry , School of Natural Science , Bangor University , Gwynedd LL57 2UW , UK
| | - Marc E Bouillon
- Department of Chemistry , School of Natural Science , Bangor University , Gwynedd LL57 2UW , UK
| | - Deiniol Pritchard
- Naturiol Bangor Ltd , Alun Roberts Building , Bangor University , Gwynedd LL57 2UW , UK
| | - Martina Lahmann
- Department of Chemistry , School of Natural Science , Bangor University , Gwynedd LL57 2UW , UK
| | - Mark S Baird
- Naturiol Bangor Ltd , Alun Roberts Building , Bangor University , Gwynedd LL57 2UW , UK
| | - Paul W Denny
- Department of Biosciences and Centre for Global Infectious Diseases , Durham University , Stockton Road , Durham , DH1 3LE , UK . ; Tel: +44 (0)191 3343983
| |
Collapse
|
40
|
Bhattacharya A, Corbeil A, do Monte-Neto RL, Fernandez-Prada C. Of Drugs and Trypanosomatids: New Tools and Knowledge to Reduce Bottlenecks in Drug Discovery. Genes (Basel) 2020; 11:genes11070722. [PMID: 32610603 PMCID: PMC7397081 DOI: 10.3390/genes11070722] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
Leishmaniasis (Leishmania species), sleeping sickness (Trypanosoma brucei), and Chagas disease (Trypanosoma cruzi) are devastating and globally spread diseases caused by trypanosomatid parasites. At present, drugs for treating trypanosomatid diseases are far from ideal due to host toxicity, elevated cost, limited access, and increasing rates of drug resistance. Technological advances in parasitology, chemistry, and genomics have unlocked new possibilities for novel drug concepts and compound screening technologies that were previously inaccessible. In this perspective, we discuss current models used in drug-discovery cascades targeting trypanosomatids (from in vitro to in vivo approaches), their use and limitations in a biological context, as well as different examples of recently discovered lead compounds.
Collapse
Affiliation(s)
- Arijit Bhattacharya
- Department of Microbiology, Adamas University, Kolkata, West Bengal 700 126, India;
| | - Audrey Corbeil
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | | | - Christopher Fernandez-Prada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
- Correspondence: ; Tel.: +1-450-773-8521 (ext. 32802)
| |
Collapse
|
41
|
Novel 2D and 3D Assays to Determine the Activity of Anti-Leishmanial Drugs. Microorganisms 2020; 8:microorganisms8060831. [PMID: 32492796 PMCID: PMC7356592 DOI: 10.3390/microorganisms8060831] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022] Open
Abstract
The discovery of novel anti-leishmanial compounds remains essential as current treatments have known limitations and there are insufficient novel compounds in development. We have investigated three complex and physiologically relevant in vitro assays, including: (i) a media perfusion based cell culture model, (ii) two 3D cell culture models, and (iii) iPSC derived macrophages in place of primary macrophages or cell lines, to determine whether they offer improved approaches to anti-leishmanial drug discovery and development. Using a Leishmania major amastigote-macrophage assay the activities of standard drugs were investigated to show the effect of changing parameters in these assays. We determined that drug activity was reduced by media perfusion (EC50 values for amphotericin B shifted from 54 (51–57) nM in the static system to 70 (61–75) nM under media perfusion; EC50 values for miltefosine shifted from 12 (11–15) µM in the static system to 30 (26–34) µM under media perfusion) (mean and 95% confidence intervals), with corresponding reduced drug accumulation by macrophages. In the 3D cell culture model there was a significant difference in the EC50 values of amphotericin B but not miltefosine (EC50 values for amphotericin B were 34.9 (31.4–38.6) nM in the 2D and 52.3 (46.6–58.7) nM in 3D; EC50 values for miltefosine were 5.0 (4.9–5.2) µM in 2D and 5.9 (5.5–6.2) µM in 3D (mean and 95% confidence intervals). Finally, in experiments using iPSC derived macrophages infected with Leishmania, reported here for the first time, we observed a higher level of intracellular infection in iPSC derived macrophages compared to the other macrophage types for four different species of Leishmania studied. For L. major with an initial infection ratio of 0.5 parasites per host cell the percentage infection level of the macrophages after 72 h was 11.3% ± 1.5%, 46.0% ± 1.4%, 66.4% ± 3.5% and 75.1% ± 2.4% (average ± SD) for the four cells types, THP1 a human monocytic cell line, mouse bone marrow macrophages (MBMMs), human bone marrow macrophages (HBMMs) and iPSC derived macrophages respectively. Despite the higher infection levels, drug activity in iPSC derived macrophages was similar to that in other macrophage types, for example, amphotericin B EC50 values were 35.9 (33.4–38.5), 33.5 (31.5–36.5), 33.6 (30.5—not calculated (NC)) and 46.4 (45.8–47.2) nM in iPSC, MBMMs, HBMMs and THP1 cells respectively (mean and 95% confidence intervals). We conclude that increasing the complexity of cellular assays does impact upon anti-leishmanial drug activities but not sufficiently to replace the current model used in HTS/HCS assays in drug discovery programmes. The impact of media perfusion on drug activities and the use of iPSC macrophages do, however, deserve further investigation.
Collapse
|
42
|
Alcântara LM, Ferreira TCS, Fontana V, Chatelain E, Moraes CB, Freitas-Junior LH. A Multi-Species Phenotypic Screening Assay for Leishmaniasis Drug Discovery Shows That Active Compounds Display a High Degree of Species-Specificity. Molecules 2020; 25:E2551. [PMID: 32486239 PMCID: PMC7321149 DOI: 10.3390/molecules25112551] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/23/2020] [Accepted: 05/24/2020] [Indexed: 12/05/2022] Open
Abstract
High genetic and phenotypic variability between Leishmania species and strains within species make the development of broad-spectrum antileishmanial drugs challenging. Thus, screening panels consisting of several diverse Leishmania species can be useful in enabling compound prioritization based on their spectrum of activity. In this study, a robust and reproducible high content assay was developed, and 1280 small molecules were simultaneously screened against clinically relevant cutaneous and visceral species: L. amazonensis, L. braziliensis, and L. donovani. The assay is based on THP-1 macrophages infected with stationary phase promastigotes and posterior evaluation of both compound antileishmanial activity and host cell toxicity. The profile of compound activity was species-specific, and out of 51 active compounds, only 14 presented broad-spectrum activity against the three species, with activities ranging from 52% to 100%. Notably, the compounds CB1954, Clomipramine, Maprotiline, Protriptyline, and ML-9 presented pan-leishmanial activity, with efficacy greater than 70%. The results highlight the reduced number of compound classes with pan-leishmanial activity that might be available from diversity libraries, emphasizing the need to screen active compounds against a panel of species and strains. The assay reported here can be adapted to virtually any Leishmania species without the need for genetic modification of parasites, providing the basis for the discovery of broad spectrum anti-leishmanial agents.
Collapse
Affiliation(s)
- Laura M. Alcântara
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP 13083-970, Brazil; (L.M.A.); (T.C.S.F.); (V.F.)
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP 05508-900, Brazil
| | - Thalita C. S. Ferreira
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP 13083-970, Brazil; (L.M.A.); (T.C.S.F.); (V.F.)
- Instituto Butantan, São Paulo, SP 05503-900, Brazil
| | - Vanessa Fontana
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP 13083-970, Brazil; (L.M.A.); (T.C.S.F.); (V.F.)
| | - Eric Chatelain
- Drugs for Neglected Diseases Initiative, 1211 Geneva, Switzerland;
| | - Carolina B. Moraes
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP 13083-970, Brazil; (L.M.A.); (T.C.S.F.); (V.F.)
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP 05508-900, Brazil
| | - Lucio H. Freitas-Junior
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP 13083-970, Brazil; (L.M.A.); (T.C.S.F.); (V.F.)
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP 05508-900, Brazil
- Instituto Butantan, São Paulo, SP 05503-900, Brazil
| |
Collapse
|
43
|
Baek KH, Piel L, Rosazza T, Prina E, Späth GF, No JH. Infectivity and Drug Susceptibility Profiling of Different Leishmania-Host Cell Combinations. Pathogens 2020; 9:pathogens9050393. [PMID: 32443883 PMCID: PMC7281264 DOI: 10.3390/pathogens9050393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 11/16/2022] Open
Abstract
Protozoan parasites of the genus Leishmania are the causative agents of leishmaniasis, a spectrum of a disease that threatens public health worldwide. Although next-generation therapeutics are urgently needed, the early stage of the drug discovery process is hampered by very low hit rates from intracellular Leishmania phenotypic high-throughput screenings. Designing and applying a physiologically relevant in vitro assay is therefore in high demand. In this study, we characterized the infectivity, morphology, and drug susceptibility of different Leishmania and host cell infection combinations. Primary bone marrow-derived macrophage (BMDM) and differentiated human acute monocytic leukemia (THP-1) cells were infected with amastigote or promastigote forms of Leishmania amazonensis and Leishmania donovani. Regardless of host cell types, amastigotes were generally well phagocytosed and showed high infectivity, whereas promastigotes, especially those of L. donovani, had predominantly remained in the extracellular space. In the drug susceptibility test, miltefosine and sodium stibogluconate (SSG) showed varying ranges of activity with 14 and >10-fold differences in susceptibility, depending on the host-parasite pairs, indicating the importance of assay conditions for evaluating antileishmanial activity. Overall, our results suggest that combinations of Leishmania species, infection forms, and host cells must be carefully optimized to evaluate the activity of potential therapeutic compounds against Leishmania.
Collapse
Affiliation(s)
- Kyung-Hwa Baek
- Leishmania Research Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do 13488, Korea;
| | - Laura Piel
- Institut Pasteur, Unité de Parasitologie Moléculaire et Signalisation, 75015 Paris, France; (L.P.); (T.R.); (E.P.); (G.F.S.)
| | - Thibault Rosazza
- Institut Pasteur, Unité de Parasitologie Moléculaire et Signalisation, 75015 Paris, France; (L.P.); (T.R.); (E.P.); (G.F.S.)
| | - Eric Prina
- Institut Pasteur, Unité de Parasitologie Moléculaire et Signalisation, 75015 Paris, France; (L.P.); (T.R.); (E.P.); (G.F.S.)
| | - Gerald F. Späth
- Institut Pasteur, Unité de Parasitologie Moléculaire et Signalisation, 75015 Paris, France; (L.P.); (T.R.); (E.P.); (G.F.S.)
| | - Joo Hwan No
- Leishmania Research Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do 13488, Korea;
- Correspondence: ; Tel.: +82-31-8018-8210
| |
Collapse
|
44
|
Wall RJ, Carvalho S, Milne R, Bueren-Calabuig JA, Moniz S, Cantizani-Perez J, MacLean L, Kessler A, Cotillo I, Sastry L, Manthri S, Patterson S, Zuccotto F, Thompson S, Martin J, Marco M, Miles TJ, De Rycker M, Thomas MG, Fairlamb AH, Gilbert IH, Wyllie S. The Q i Site of Cytochrome b is a Promiscuous Drug Target in Trypanosoma cruzi and Leishmania donovani. ACS Infect Dis 2020; 6:515-528. [PMID: 31967783 PMCID: PMC7076694 DOI: 10.1021/acsinfecdis.9b00426] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Indexed: 01/29/2023]
Abstract
Available treatments for Chagas' disease and visceral leishmaniasis are inadequate, and there is a pressing need for new therapeutics. Drug discovery efforts for both diseases principally rely upon phenotypic screening. However, the optimization of phenotypically active compounds is hindered by a lack of information regarding their molecular target(s). To combat this issue we initiate target deconvolution studies at an early stage. Here, we describe comprehensive genetic and biochemical studies to determine the targets of three unrelated phenotypically active compounds. All three structurally diverse compounds target the Qi active-site of cytochrome b, part of the cytochrome bc1 complex of the electron transport chain. Our studies go on to identify the Qi site as a promiscuous drug target in Leishmania donovani and Trypanosoma cruzi with a propensity to rapidly mutate. Strategies to rapidly identify compounds acting via this mechanism are discussed to ensure that drug discovery portfolios are not overwhelmed with inhibitors of a single target.
Collapse
Affiliation(s)
- Richard J. Wall
- Division of Biological
Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives
Research, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Sandra Carvalho
- Division of Biological
Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives
Research, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Rachel Milne
- Division of Biological
Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives
Research, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Juan A. Bueren-Calabuig
- Drug Discovery Unit,
Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Sonia Moniz
- Division of Biological
Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives
Research, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | | | - Lorna MacLean
- Drug Discovery Unit,
Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Albane Kessler
- Global Health R&D, GlaxoSmithKline, Tres Cantos 28760, Spain
| | - Ignacio Cotillo
- Global Health R&D, GlaxoSmithKline, Tres Cantos 28760, Spain
| | - Lalitha Sastry
- Drug Discovery Unit,
Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Sujatha Manthri
- Drug Discovery Unit,
Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Stephen Patterson
- Division of Biological
Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives
Research, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Fabio Zuccotto
- Drug Discovery Unit,
Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Stephen Thompson
- Drug Discovery Unit,
Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Julio Martin
- Global Health R&D, GlaxoSmithKline, Tres Cantos 28760, Spain
| | - Maria Marco
- Global Health R&D, GlaxoSmithKline, Tres Cantos 28760, Spain
| | | | - Manu De Rycker
- Drug Discovery Unit,
Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Michael G. Thomas
- Drug Discovery Unit,
Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Alan H. Fairlamb
- Division of Biological
Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives
Research, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Ian H. Gilbert
- Drug Discovery Unit,
Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Susan Wyllie
- Division of Biological
Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives
Research, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| |
Collapse
|
45
|
Nag OK, Jeong JE, Le VS, Oh E, Woo HY, Delehanty JB. Anionic Conjugated Polyelectrolytes for FRET-based Imaging of Cellular Membrane Potential. Photochem Photobiol 2020; 96:834-844. [PMID: 32083762 DOI: 10.1111/php.13233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022]
Abstract
We report a Förster resonance energy transfer (FRET)-based imaging ensemble for the visualization of membrane potential in living cells. A water-soluble poly(fluorene-cophenylene) conjugated polyelectrolyte (FsPFc10) serves as a FRET donor to a voltage-sensitive dye acceptor (FluoVolt™ ). We observe FRET between FsPFc10 and FluoVolt™ , where the enhancement in FRET-sensitized emission from FluoVolt™ is measured at various donor/acceptor ratios. At a donor/acceptor ratio of 1, the excitation of FluoVolt™ in a FRET configuration results in a three-fold enhancement in its fluorescence emission (compared to when it is excited directly). FsPFc10 efficiently labels the plasma membrane of HEK 293T/17 cells and remains resident with minimal cellular internalization for ~ 1.5 h. The successful plasma membrane-associated colabeling of the cells with the FsPFc10-FluoVolt™ donor-acceptor pair is confirmed by dual-channel confocal imaging. Importantly, cells labeled with FsPFc10 show excellent cellular viability with no adverse effect on cell membrane depolarization. During depolarization of membrane potential, HEK 293T/17 cells labeled with the donor-acceptor FRET pair exhibit a greater fluorescence response in FluoVolt™ emission relative to when FluoVolt™ is used as the sole imaging probe. These results demonstrate the conjugated polyelectrolyte to be a new class of membrane labeling fluorophore for use in voltage sensing schemes.
Collapse
Affiliation(s)
- Okhil K Nag
- Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC
| | - Ji-Eun Jeong
- Department of Chemistry, Korea University, Seoul, Korea
| | - Van Sang Le
- Department of Chemistry, Korea University, Seoul, Korea
| | - Eunkeu Oh
- Naval Research Laboratory, Optical Sciences Division, Washington, DC
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, Korea
| | - James B Delehanty
- Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC
| |
Collapse
|
46
|
da Silva Santos AC, Moura DMN, Dos Santos TAR, de Melo Neto OP, Pereira VRA. Assessment of Leishmania cell lines expressing high levels of beta-galactosidase as alternative tools for the evaluation of anti-leishmanial drug activity. J Microbiol Methods 2019; 166:105732. [PMID: 31629910 DOI: 10.1016/j.mimet.2019.105732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/23/2019] [Accepted: 09/28/2019] [Indexed: 11/28/2022]
Abstract
Leishmaniasis, caused by protozoa belonging to the genus Leishmania, is an important public health problem found in >90 countries and with still limited options for treatment. Development of new anti-leishmanial drugs is an urgent need and the identification of new active compounds is a limiting factor that can be accelerated through large scale drug screening. This requires multiple steps and can be expensive and time consuming. Here, we propose an alternative approach for the colorimetric assessment of anti-Leishmania drug activity that can be easily scaled up. L. amazonensis and L. infantum cell lines were generated having the β-galactosidase (β-gal) gene integrated into their chromosomal 18S rRNA (ssu) locus. Both cell lines expressed high levels of β-gal and had their growth easily monitored and quantified colorimetrically. These two cell lines were then evaluated as tools to assess drug susceptibility and their use was validated through in vitro assays with Amphotericin B, which is routinely used against leishmaniasis. β-gal expression was also confirmed through flow-cytometry, another method of phenotypic detection. With these recombinant parasites, an alternative in vitro model of drug screening against cutaneous and visceral leishmaniasis is now available.
Collapse
Affiliation(s)
| | - Danielle M N Moura
- Departamento de Imunologia, Instituto Aggeu Magalhães- FIOCRUZ, Recife, Pernambuco, Brazil
| | - Thiago A R Dos Santos
- Departamento de Imunologia, Instituto Aggeu Magalhães- FIOCRUZ, Recife, Pernambuco, Brazil
| | - Osvaldo P de Melo Neto
- Departamento de Microbiologia, Instituto Aggeu Magalhães- FIOCRUZ, Recife, Pernambuco, Brazil
| | - Valéria R A Pereira
- Departamento de Imunologia, Instituto Aggeu Magalhães- FIOCRUZ, Recife, Pernambuco, Brazil
| |
Collapse
|
47
|
Need for sustainable approaches in antileishmanial drug discovery. Parasitol Res 2019; 118:2743-2752. [DOI: 10.1007/s00436-019-06443-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/23/2019] [Indexed: 12/16/2022]
|
48
|
Route map for the discovery and pre-clinical development of new drugs and treatments for cutaneous leishmaniasis. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2019; 11:106-117. [PMID: 31320296 PMCID: PMC6904839 DOI: 10.1016/j.ijpddr.2019.06.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 12/11/2022]
Abstract
Although there have been significant advances in the treatment of visceral leishmaniasis (VL) and several novel compounds are currently in pre-clinical and clinical development for this manifestation of leishmaniasis, there have been limited advances in drug research and development (R & D) for cutaneous leishmaniasis (CL). Here we review the need for new treatments for CL, describe in vitro and in vivo assays, models and approaches taken over the past decade to establish a pathway for the discovery, and pre-clinical development of new drugs for CL. These recent advances include novel mouse models of infection using bioluminescent Leishmania, the introduction of PK/PD approaches to skin infection, and defined pre-clinical candidate profiles.
Collapse
|
49
|
Miranda-Sapla MM, Tomiotto-Pellissier F, Assolini JP, Carloto ACM, Bortoleti BTDS, Gonçalves MD, Tavares ER, Rodrigues JHDS, Simão ANC, Yamauchi LM, Nakamura CV, Verri WA, Costa IN, Conchon-Costa I, Pavanelli WR. trans-Chalcone modulates Leishmania amazonensis infection in vitro by Nrf2 overexpression affecting iron availability. Eur J Pharmacol 2019; 853:275-288. [DOI: 10.1016/j.ejphar.2019.03.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 12/20/2022]
|
50
|
Roquero I, Cantizani J, Cotillo I, Manzano MP, Kessler A, Martín JJ, McNamara CW. Novel chemical starting points for drug discovery in leishmaniasis and Chagas disease. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2019; 10:58-68. [PMID: 31158574 PMCID: PMC6545338 DOI: 10.1016/j.ijpddr.2019.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 11/25/2022]
Abstract
Visceral leishmaniasis (VL) and Chagas disease (CD) are caused by kinetoplastid parasites that affect millions of people worldwide and impart a heavy burden against human health. Due to the partial efficacy and toxicity-related limitations of the existing treatments, there is an urgent need to develop novel therapies with superior efficacy and safety profiles to successfully treat these diseases. Herein we report the application of whole-cell phenotypic assays to screen a set of 150,000 compounds against Leishmania donovani, a causative agent of VL, and Trypanosoma cruzi, the causative agent of CD, with the objective of finding new starting points to develop novel drugs to effectively treat and control these diseases. The screening campaign, conducted with the purpose of global open access, identified twelve novel chemotypes with low to sub-micromolar activity against T. cruzi and/or L. donovani. We disclose these hit structures and associated activity with the goal to contribute to the drug discovery community by providing unique chemical tools to probe kinetoplastid biology and as hit-to-lead candidates for drug discovery. An open source drug discovery screen between The Tres Cantos Open Lab Foundation and Calibr at Scripps Research. High-throughput phenotypic screen of a 150,000-compound library against T. cruzi and L. donovani. Identification and characterization of 12 novel chemical series. 7 of those 12 chemical series are active against both T. cruzi and L. donovani. These chemical series may be valuable tools to identify new drug targets.
Collapse
Affiliation(s)
- Irene Roquero
- Diseases of the Developing World (DDW), Tres Cantos Medicines Development Campus, GSK, Tres Cantos, Spain
| | - Juan Cantizani
- Diseases of the Developing World (DDW), Tres Cantos Medicines Development Campus, GSK, Tres Cantos, Spain
| | - Ignacio Cotillo
- Diseases of the Developing World (DDW), Tres Cantos Medicines Development Campus, GSK, Tres Cantos, Spain
| | - M Pilar Manzano
- Diseases of the Developing World (DDW), Tres Cantos Medicines Development Campus, GSK, Tres Cantos, Spain
| | - Albane Kessler
- Diseases of the Developing World (DDW), Tres Cantos Medicines Development Campus, GSK, Tres Cantos, Spain
| | - J Julio Martín
- Diseases of the Developing World (DDW), Tres Cantos Medicines Development Campus, GSK, Tres Cantos, Spain.
| | | |
Collapse
|