1
|
Johnson TM, Rivera CG, Lee G, Zeuli JD. Pharmacology of emerging drugs for the treatment of multi-drug resistant tuberculosis. J Clin Tuberc Other Mycobact Dis 2024; 37:100470. [PMID: 39188351 PMCID: PMC11345926 DOI: 10.1016/j.jctube.2024.100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
Mycobacterium tuberculosis (TB) remains the leading cause of infection-related mortality worldwide. Drug resistance, need for multiple antimycobacterial agents, prolonged treatment courses, and medication-related side effects are complicating factors to TB cure. The introduction of treatment regimens containing the novel agents bedaquiline, pretomanid, and linezolid, with or without moxifloxacin (BPaL-M or BPaL, respectively) have substantially reduced TB-related morbidity and mortality and are associated with favorable rates of treatment completion and cure. This review summarizes key information on the pharmacology and treatment principles for moxifloxacin, bedaquiline, delamanid, pretomanid, linezolid, and tedizolid in the treatment of multi-drug resistant TB, with recommendations provided to address and attenuate common adverse effects during treatment.
Collapse
Affiliation(s)
| | | | - Grace Lee
- Department of Pharmacy, Mayo Clinic, Rochester, MN, USA
| | - John D. Zeuli
- Department of Pharmacy, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
2
|
Ahmad Khosravi N, Sirous M, Khosravi A, Saki M. A Narrative Review of Bedaquiline and Delamanid: New Arsenals Against Multidrug-Resistant and Extensively Drug-Resistant Mycobacterium tuberculosis. J Clin Lab Anal 2024; 38:e25091. [PMID: 39431709 PMCID: PMC11492330 DOI: 10.1002/jcla.25091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/12/2024] [Accepted: 07/30/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND The treatment of multidrug-resistant (MDR-) and extensively drug-resistant tuberculosis (XDR-TB) is a formidable challenge. Treatment of MDR- and XDR-TB using bedaquiline (BDQ) and delamanid (DLM), two newly introduced medications, is steadily increasing. This narrative review aimed to present a concise overview of the existing information regarding BDQ and DLM, and elucidate their antimicrobial characteristics, resistance mechanisms, synergism with other drugs, and side effects. METHODS To collect the required information about the antimicrobial properties, a search for scientific evidence from the Scopus, PubMed, and Embase databases was performed, and all recently published articles up to May 2024 were considered. RESULTS BDQ had potent antimicrobial effects on various types of nontuberculous mycobacteria (NTM), including rapid-growing and slow-growing species, and MDR/XDR Mycobacterium tuberculosis. The mechanisms of BDQ resistance in M. tuberculosis primarily involve mutations in three genes: atpE, mmpR (Rv0678) and pepQ. BDQ may have synergistic effects when combined with DLM, pyrazinamide, and pretomanid/linezolid. BDQ has a low incidence of side effects. The use of BDQ may prolong the QTc interval. Similarly, DLM showed potent antimicrobial effects on NTM and MDR/XDR M. tuberculosis. The main resistance mechanisms to DLM are induced by mutations in fbiA, fbiB, fbiC, fgd1, and ddn genes. The DLM had synergistic effects with BDQ and moxifloxacin. The DLM also has few side effects in some patients including QTc prolongation. CONCLUSION BDQ and DLM are suitable antibiotics with few side effects for the treatment of MDR/XDR-TB. These antibiotics have synergistic effects when combined with other antituberculosis drugs.
Collapse
Affiliation(s)
- Nazanin Ahmad Khosravi
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Microbiology, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Mehrandokht Sirous
- Department of Microbiology and Parasitology, Faculty of MedicineBushehr University of Medical SciencesBushehrIran
| | - Azar Dokht Khosravi
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Microbiology, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Morteza Saki
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Microbiology, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| |
Collapse
|
3
|
Graciaa DS, Schechter MC, Fetalvero KB, Cranmer LM, Kempker RR, Castro KG. Updated considerations in the diagnosis and management of tuberculosis infection and disease: integrating the latest evidence-based strategies. Expert Rev Anti Infect Ther 2023; 21:595-616. [PMID: 37128947 PMCID: PMC10227769 DOI: 10.1080/14787210.2023.2207820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
INTRODUCTION Tuberculosis (TB) is a leading infectious cause of global morbidity and mortality, affecting nearly a quarter of the human population and accounting for over 10 million deaths each year. Over the past several decades, TB incidence and mortality have gradually declined, but 2021 marked a threatening reversal of this trend highlighting the importance of accurate diagnosis and effective treatment of all forms of TB. AREAS COVERED This review summarizes advances in TB diagnostics, addresses the treatment of people with TB infection and TB disease including recent evidence for treatment regimens for drug-susceptible and drug-resistant TB, and draws attention to special considerations in children and during pregnancy. EXPERT OPINION Improvements in diagnosis and management of TB have expanded the available options for TB control. Molecular testing has enhanced the detection of TB disease, but better diagnostics are still needed, particularly for certain populations such as children. Novel treatment regimens have shortened treatment and improved outcomes for people with TB. However, important questions remain regarding the optimal management of TB. Work must continue to ensure the potential of the latest developments is realized for all people affected by TB.
Collapse
Affiliation(s)
- Daniel S. Graciaa
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Marcos Coutinho Schechter
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Krystle B. Fetalvero
- Angelo King Medical Research Center-De La Salle Medical and Health Science Institute, Cavite, Philippines
- Department of Family and Community Medicine, Calamba Medical Center, Laguna, Philippines
| | - Lisa Marie Cranmer
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Russell R. Kempker
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kenneth G. Castro
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Liu Y, Moodley M, Pasipanodya JG, Gumbo T. Determining the Delamanid Pharmacokinetics/Pharmacodynamics Susceptibility Breakpoint Using Monte Carlo Experiments. Antimicrob Agents Chemother 2023; 67:e0140122. [PMID: 36877034 PMCID: PMC10112185 DOI: 10.1128/aac.01401-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/29/2023] [Indexed: 03/07/2023] Open
Abstract
Antimicrobial susceptibility testing, based on clinical breakpoints that incorporate pharmacokinetics/pharmacodynamics (PK/PD) and clinical outcomes, is becoming a new standard in guiding individual patient therapy as well as for drug resistance surveillance. However, for most antituberculosis drugs, breakpoints are instead defined by the epidemiological cutoff values of the MIC of phenotypically wild-type strains irrespective of PK/PD or dose. In this study, we determined the PK/PD breakpoint for delamanid by estimating the probability of target attainment for the approved dose administered at 100 mg twice daily using Monte Carlo experiments. We used the PK/PD targets (0- to 24-h area under the concentration-time curve to MIC) identified in a murine chronic tuberculosis model, hollow fiber system model of tuberculosis, early bactericidal activity studies of patients with drug-susceptible tuberculosis, and population pharmacokinetics in patients with tuberculosis. At the MIC of 0.016 mg/L, determined using Middlebrook 7H11 agar, the probability of target attainment was 100% in the 10,000 simulated subjects. The probability of target attainment fell to 25%, 40%, and 68% for PK/PD targets derived from the mouse model, the hollow fiber system model of tuberculosis, and patients, respectively, at the MIC of 0.031 mg/L. This indicates that an MIC of 0.016 mg/L is the delamanid PK/PD breakpoint for delamanid at 100 mg twice daily. Our study demonstrated that it is feasible to use PK/PD approaches to define a breakpoint for an antituberculosis drug.
Collapse
Affiliation(s)
- Yongge Liu
- Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, Maryland, USA
| | | | - Jotam G. Pasipanodya
- Quantitative Preclinical & Clinical Sciences Department, Praedicare Inc., Dallas, Texas, USA
| | - Tawanda Gumbo
- Quantitative Preclinical & Clinical Sciences Department, Praedicare Inc., Dallas, Texas, USA
| |
Collapse
|
5
|
Putra ON, Yulistiani Y, Soedarsono S, Subay S. Favorable outcome of individual regimens containing bedaquiline and delamanid in drug-resistant tuberculosis: A systematic review. Int J Mycobacteriol 2023; 12:1-9. [PMID: 36926755 DOI: 10.4103/ijmy.ijmy_217_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Background Drug-resistant tuberculosis (DR-TB) is a public health concern that is difficult to treat, requiring long and complex treatment with highly effective drugs. Bedaquiline and/or delamanid have already shown promising outcomes in patients with DR-TB, increasing the rate of culture conversion and lowering TB-related mortality. Methods We comprehensively searched and evaluated the effectiveness of individual regimens containing bedaquiline and delamanid on culture conversion and treatment success. We assessed for quality either observational or experimental studies. Results We identified 14 studies that met the inclusion criteria using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses flowchart with 12 observational and 2 experimental studies. Of 1691 DR-TB patients enrolled in the included studies, 1407 of them concomitantly received regimens containing bedaquiline and delamanid. Overall multidrug resistant (MDR), preextensively drug resistant (XDR), and XDR-TB were seen in 21.4%, 44.1%, and 34.5%, respectively. Of 14 studies, 8 of them reported favorable outcomes including sputum culture conversion and cure rate at the end of treatment, meanwhile 6 studies only reported sputum culture conversion. Sputum culture conversion at the end of the 6th month was 63.6%-94.7% for observational studies, and 87.6%-95.0% for experimental studies. The favorable outcome at the end of treatment was 67.5%-91.4%. With high pre-XDR and XDR cases among DR-TB patients with limited treatment options, regimens containing bedaquiline and delamanid provide successful treatment. Conclusion In DR-TB patients receiving regimens containing bedaquiline and delamanid, favorable outcomes were high including sputum conversion and cure rate.
Collapse
Affiliation(s)
- Oki Nugraha Putra
- Doctoral Program of Pharmacy, Faculty of Pharmacy, Airlangga University; Study Program of Pharmacy, Faculty of Medicine, Hang Tuah University, Surabaya, Indonesia
| | - Yulistiani Yulistiani
- Doctoral Program of Pharmacy, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Soedarsono Soedarsono
- Study Program of Pharmacy, Faculty of Medicine, Hang Tuah University; Department of Pulmonology and Respiratory Medicine, Dr. Soetomo Hospital, Surabaya, Indonesia
| | - Susi Subay
- Department of Pulmonology and Respiratory Medicine, Dr. Soetomo Hospital, Surabaya, Indonesia
| |
Collapse
|
6
|
Bossù G, Autore G, Bernardi L, Buonsenso D, Migliori GB, Esposito S. Treatment options for children with multi-drug resistant tuberculosis. Expert Rev Clin Pharmacol 2023; 16:5-15. [PMID: 36378271 DOI: 10.1080/17512433.2023.2148653] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION According to the latest report from the World Health Organization (WHO), approximately 10.0 million people fell ill with tuberculosis (TB) in 2020, 12% of which were children aged under 15 years. There is very few experience on treatment of multi-drug resistant (MDR)-TB in pediatrics. AREAS COVERED The aim of this review is to analyze and summarize therapeutic options available for children experiencing MDR-TB. We also focused on management of MDR-TB prophylaxis. EXPERT OPINION The therapeutic management of children with MDR-TB or MDR-TB contacts is complicated by a lack of knowledge, and the fact that many potentially useful drugs are not registered for pediatric use and there are no formulations suitable for children in the first years of life. Furthermore, most of the available drugs are burdened by major adverse events that need to be taken into account, particularly in the case of prolonged therapy. A close follow-up with a standardized timeline and a comprehensive assessment of clinical, laboratory, microbiologic and radiologic data is extremely important in these patients. Due to the complexity of their management, pediatric patients with confirmed or suspected MDR-TB should always be referred to a specialized center.
Collapse
Affiliation(s)
- Gianluca Bossù
- Pediatric Clinic, Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giovanni Autore
- Pediatric Clinic, Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Luca Bernardi
- Pediatric Clinic, Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Danilo Buonsenso
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giovanni Battista Migliori
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri - IRCCS, Tradate, Italia
| | - Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
7
|
Shultis MW, Mulholland CV, Berney M. Are all antibiotic persisters created equal? Front Cell Infect Microbiol 2022; 12:933458. [PMID: 36061872 PMCID: PMC9428696 DOI: 10.3389/fcimb.2022.933458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
Antibiotic persisters are a sub-population of bacteria able to survive in the presence of bactericidal antibiotic despite the lack of heritable drug resistance mechanisms. This phenomenon exists across many bacterial species and is observed for many different antibiotics. Though these bacteria are often described as “multidrug persisters” very few experiments have been carried out to determine the homogeneity of a persister population to different drugs. Further, there is much debate in the field as to the origins of a persister cell. Is it formed spontaneously? Does it form in response to stress? These questions are particularly pressing in the field of Mycobacterium tuberculosis, where persisters may play a crucial role in the required length of treatment and the development of multidrug resistant organisms. Here we aim to interpret the known mechanisms of antibiotic persistence and how they may relate to improving treatments for M. tuberculosis, exposing the gaps in knowledge that prevent us from answering the question: Are all antibiotic persisters created equal?
Collapse
|
8
|
Nikitushkin V, Shleeva M, Loginov D, Dyčka F. F, Sterba J, Kaprelyants A. Shotgun proteomic profiling of dormant, ‘non-culturable’ Mycobacterium tuberculosis. PLoS One 2022; 17:e0269847. [PMID: 35944020 PMCID: PMC9362914 DOI: 10.1371/journal.pone.0269847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 05/27/2022] [Indexed: 11/19/2022] Open
Abstract
Dormant cells of Mycobacterium tuberculosis, in addition to low metabolic activity and a high level of drug resistance, are characterized by ‘non-culturability’–a specific reversible state of the inability of the cells to grow on solid media. The biochemical characterization of this physiological state of the pathogen is only superficial, pending clarification of the metabolic processes that may exist in such cells. In this study, applying LC-MS proteomic profiling, we report the analysis of proteins accumulated in dormant, ‘non-culturable’ M. tuberculosis cells in an in vitro model of self-acidification of mycobacteria in the post-stationary phase, simulating the in vivo persistence conditions—the raw data are available via ProteomeXchange with identifier PXD028849. This approach revealed the preservation of 1379 proteins in cells after 5 months of storage in dormancy; among them, 468 proteins were statistically different from those in the actively growing cells and bore a positive fold change (FC). Differential analysis revealed the proteins of the pH-dependent regulatory system PhoP and allowed the reconstruction of the reactions of central carbon/glycerol metabolism, as well as revealing the salvaged pathways of mycothiol and UMP biosynthesis, establishing the cohort of survival enzymes of dormancy. The annotated pathways mirror the adaptation of the mycobacterial metabolic machinery to life within lipid-rich macrophages: especially the involvement of the methyl citrate and glyoxylate pathways. Thus, the current in vitro model of M. tuberculosis self-acidification reflects the biochemical adaptation of these bacteria to persistence in vivo. Comparative analysis with published proteins displaying antigenic properties makes it possible to distinguish immunoreactive proteins among the proteins bearing a positive FC in dormancy, which may include specific antigens of latent tuberculosis. Additionally, the biotransformatory enzymes (oxidoreductases and hydrolases) capable of prodrug activation and stored up in the dormant state were annotated. These findings may potentially lead to the discovery of immunodiagnostic tests for early latent tuberculosis and trigger the discovery of efficient drugs/prodrugs with potency against non-replicating, dormant populations of mycobacteria.
Collapse
Affiliation(s)
- Vadim Nikitushkin
- A.N. Bach Institute of Biochemistry, Federal Research Centre ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences, Moscow, Russia
- * E-mail: (VN); (FDF)
| | - Margarita Shleeva
- A.N. Bach Institute of Biochemistry, Federal Research Centre ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences, Moscow, Russia
| | - Dmitry Loginov
- Faculty of Science, University of South Bohemia, Branišovská, Czech Republic
- BioCeV—Institute of Microbiology of the CAS, Vestec, Czech Republic
- Orekhovich Institute of Biomedical Chemistry, Moscow, Russia
| | - Filip Dyčka F.
- Faculty of Science, University of South Bohemia, Branišovská, Czech Republic
- * E-mail: (VN); (FDF)
| | - Jan Sterba
- Faculty of Science, University of South Bohemia, Branišovská, Czech Republic
| | - Arseny Kaprelyants
- A.N. Bach Institute of Biochemistry, Federal Research Centre ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
9
|
Espinosa-Pereiro J, Sánchez-Montalvá A, Aznar ML, Espiau M. MDR Tuberculosis Treatment. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:188. [PMID: 35208510 PMCID: PMC8878254 DOI: 10.3390/medicina58020188] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 11/17/2022]
Abstract
Multidrug-resistant (MDR) tuberculosis (TB), resistant to isoniazid and rifampicin, continues to be one of the most important threats to controlling the TB epidemic. Over the last few years, there have been promising pharmacological advances in the paradigm of MDR TB treatment: new and repurposed drugs have shown excellent bactericidal and sterilizing activity against Mycobacterium tuberculosis and several all-oral short regimens to treat MDR TB have shown promising results. The purpose of this comprehensive review is to summarize the most important drugs currently used to treat MDR TB, the recommended regimens to treat MDR TB, and we also summarize new insights into the treatment of patients with MDR TB.
Collapse
Affiliation(s)
- Juan Espinosa-Pereiro
- Infectious Diseases Department, Vall d’Hebron University Hospital, PROSICS Barcelona, Universitat Autònoma de Barcelona, 08135 Barcelona, Spain; (J.E.-P.); (A.S.-M.)
- Mycobacteria Infection Study Group from Spanish Society of Infectious Diseases and Clinical Microbiology, 28003 Madrid, Spain
| | - Adrian Sánchez-Montalvá
- Infectious Diseases Department, Vall d’Hebron University Hospital, PROSICS Barcelona, Universitat Autònoma de Barcelona, 08135 Barcelona, Spain; (J.E.-P.); (A.S.-M.)
- Mycobacteria Infection Study Group from Spanish Society of Infectious Diseases and Clinical Microbiology, 28003 Madrid, Spain
| | - Maria Luisa Aznar
- Infectious Diseases Department, Vall d’Hebron University Hospital, PROSICS Barcelona, Universitat Autònoma de Barcelona, 08135 Barcelona, Spain; (J.E.-P.); (A.S.-M.)
- Mycobacteria Infection Study Group from Spanish Society of Infectious Diseases and Clinical Microbiology, 28003 Madrid, Spain
| | - Maria Espiau
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, 08135 Barcelona, Spain;
| |
Collapse
|
10
|
Urbaniec J, Xu Y, Hu Y, Hingley-Wilson S, McFadden J. Phenotypic heterogeneity in persisters: a novel 'hunker' theory of persistence. FEMS Microbiol Rev 2022; 46:fuab042. [PMID: 34355746 PMCID: PMC8767447 DOI: 10.1093/femsre/fuab042] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022] Open
Abstract
Persistence has been linked to treatment failure since its discovery over 70 years ago and understanding formation, nature and survival of this key antibiotic refractory subpopulation is crucial to enhancing treatment success and combatting the threat of antimicrobial resistance (AMR). The term 'persistence' is often used interchangeably with other terms such as tolerance or dormancy. In this review we focus on 'antibiotic persistence' which we broadly define as a feature of a subpopulation of bacterial cells that possesses the non-heritable character of surviving exposure to one or more antibiotics; and persisters as cells that possess this characteristic. We discuss novel molecular mechanisms involved in persister cell formation, as well as environmental factors which can contribute to increased antibiotic persistence in vivo, highlighting recent developments advanced by single-cell studies. We also aim to provide a comprehensive model of persistence, the 'hunker' theory which is grounded in intrinsic heterogeneity of bacterial populations and a myriad of 'hunkering down' mechanisms which can contribute to antibiotic survival of the persister subpopulation. Finally, we discuss antibiotic persistence as a 'stepping-stone' to AMR and stress the urgent need to develop effective anti-persister treatment regimes to treat this highly clinically relevant bacterial sub-population.
Collapse
Affiliation(s)
- J Urbaniec
- Department of Microbial Sciences and University of Surrey, Guildford, Surrey, GU27XH, UK
| | - Ye Xu
- Department of Microbial Sciences and University of Surrey, Guildford, Surrey, GU27XH, UK
| | - Y Hu
- Farnborough Sensonic limited, Farnborough road, GU14 7NA, UK
| | - S Hingley-Wilson
- Department of Microbial Sciences and University of Surrey, Guildford, Surrey, GU27XH, UK
| | - J McFadden
- Department of Microbial Sciences and University of Surrey, Guildford, Surrey, GU27XH, UK
- Quantum biology doctoral training centre, University of Surrey, Guildford, Surrey, GU27XH, UK
| |
Collapse
|
11
|
Abstract
Given the low treatment success rates of drug-resistant tuberculosis (TB), novel TB drugs are urgently needed. The landscape of TB treatment has changed considerably over the last decade with the approval of three new compounds: bedaquiline, delamanid and pretomanid. Of these, delamanid and pretomanid belong to the same class of drugs, the nitroimidazoles. In order to close the knowledge gap on how delamanid and pretomanid compare with each other, we summarize the main findings from preclinical research on these two compounds. We discuss the compound identification, mechanism of action, drug resistance, in vitro activity, in vivo pharmacokinetic profiles, and preclinical in vivo activity and efficacy. Although delamanid and pretomanid share many similarities, several differences could be identified. One finding of particular interest is that certain Mycobacterium tuberculosis isolates have been described that are resistant to either delamanid or pretomanid, but with preserved susceptibility to the other compound. This might imply that delamanid and pretomanid could replace one another in certain regimens. Regarding bactericidal activity, based on in vitro and preclinical in vivo activity, delamanid has lower MICs and higher mycobacterial load reductions at lower drug concentrations and doses compared with pretomanid. However, when comparing in vivo preclinical bactericidal activity at dose levels equivalent to currently approved clinical doses based on drug exposure, this difference in activity between the two compounds fades. However, it is important to interpret these comparative results with caution knowing the variability inherent in preclinical in vitro and in vivo models.
Collapse
Affiliation(s)
- Saskia E. Mudde
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
- Corresponding author. E-mail:
| | | | - Anne Lenaerts
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Hannelore I. Bax
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Section of Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jurriaan E. M. De Steenwinkel
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
12
|
Egorova A, Salina EG, Makarov V. Targeting Non-Replicating Mycobacterium tuberculosis and Latent Infection: Alternatives and Perspectives (Mini-Review). Int J Mol Sci 2021; 22:ijms222413317. [PMID: 34948114 PMCID: PMC8707483 DOI: 10.3390/ijms222413317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 01/02/2023] Open
Abstract
Latent tuberculosis infection (LTBI) represents a major challenge to curing TB disease. Current guidelines for LTBI management include only three older drugs and their combinations-isoniazid and rifamycins (rifampicin and rifapentine). These available control strategies have little impact on latent TB elimination, and new specific therapeutics are urgently needed. In the present mini-review, we highlight some of the alternatives that may potentially be included in LTBI treatment recommendations and a list of early-stage prospective small molecules that act on drug targets specific for Mycobacterium tuberculosis latency.
Collapse
Affiliation(s)
- Anna Egorova
- The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences (Research Center of Biotechnology RAS), 119071 Moscow, Russia; (A.E.); (E.G.S.)
| | - Elena G. Salina
- The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences (Research Center of Biotechnology RAS), 119071 Moscow, Russia; (A.E.); (E.G.S.)
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Vadim Makarov
- The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences (Research Center of Biotechnology RAS), 119071 Moscow, Russia; (A.E.); (E.G.S.)
- Correspondence:
| |
Collapse
|
13
|
Black TA, Buchwald UK. The pipeline of new molecules and regimens against drug-resistant tuberculosis. J Clin Tuberc Other Mycobact Dis 2021; 25:100285. [PMID: 34816020 PMCID: PMC8593651 DOI: 10.1016/j.jctube.2021.100285] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The clinical development and regulatory approval of bedaquiline, delamanid and pretomanid over the last decade brought about significant progress in the management of drug-resistant tuberculosis, providing all-oral regimens with favorable safety profiles. The Nix-TB and ZeNix trials of a bedaquiline - pretomanid - linezolid regimen demonstrated for the first time that certain forms of drug-resistant tuberculosis can be cured in the majority of patients within 6 months. Ongoing Phase 3 studies containing these drugs may further advance optimized regimen compositions. Investigational drugs in clinical development that target clinically validated mechanisms, such as second generation oxazolidinones (sutezolid, delpazolid, TBI-223) and diarylquinolines (TBAJ-876 and TBAJ-587) promise improved potency and/or safety compared to the first-in-class drugs. Compounds with novel targets involved in diverse bacterial functions such as cell wall synthesis (DrpE1, MmpL3), electron transport, DNA synthesis (GyrB), cholesterol metabolism and transcriptional regulation of ethionamide bioactivation pathways have advanced to early clinical studies with the potential to enhance antibacterial activity when added to new or established anti-TB drug regimens. Clinical validation of preclinical in vitro and animal model predictions of new anti-TB regimens may further improve the translational value of these models to identify optimal anti-TB therapies.
Collapse
Affiliation(s)
- Todd A. Black
- Global Alliance for TB Drug Development, 40 Wall Street, 24th Floor, New York, NY 10005, USA
| | - Ulrike K. Buchwald
- Global Alliance for TB Drug Development, 40 Wall Street, 24th Floor, New York, NY 10005, USA
| |
Collapse
|
14
|
Khoshnood S, Taki E, Sadeghifard N, Kaviar VH, Haddadi MH, Farshadzadeh Z, Kouhsari E, Goudarzi M, Heidary M. Mechanism of Action, Resistance, Synergism, and Clinical Implications of Delamanid Against Multidrug-Resistant Mycobacterium tuberculosis. Front Microbiol 2021; 12:717045. [PMID: 34690963 PMCID: PMC8529252 DOI: 10.3389/fmicb.2021.717045] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/02/2021] [Indexed: 11/21/2022] Open
Abstract
Multidrug-resistant (MDR) isolates of Mycobacterium tuberculosis (MTB) remain a primary global threat to the end of tuberculosis (TB) era. Delamanid (DLM) is a nitro-dihydro-imidazooxazole derivative utilized to treat MDR-TB. DLM has distinct mechanism of action, inhibiting methoxy- and keto-mycolic acid (MA) synthesis through the F420 coenzyme mycobacteria system and generating nitrous oxide. While DLM resistance among MTB strains is uncommon, there are increasing reports in Asia and Europe, and such resistance will prolong the treatment courses of patients infected with MDR-TB. In this review, we address the antimycobacterial properties of DLM, report the global prevalence of DLM resistance, discuss the synergism of DLM with other anti-TB drugs, and evaluate the documented clinical trials to provide new insights into the clinical use of this antibiotic.
Collapse
Affiliation(s)
- Saeed Khoshnood
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Elahe Taki
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nourkhoda Sadeghifard
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Vahab Hassan Kaviar
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | | | - Zahra Farshadzadeh
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ebrahim Kouhsari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
15
|
Treatment of Multidrug-Resistant and Extensively Drug-Resistant Tuberculosis in Children: The Role of Bedaquiline and Delamanid. Microorganisms 2021; 9:microorganisms9051074. [PMID: 34067732 PMCID: PMC8156326 DOI: 10.3390/microorganisms9051074] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 12/19/2022] Open
Abstract
Multidrug-resistant (MDR) tuberculosis (TB) has been emerging at an alarming rate over the last few years. It has been estimated that about 3% of all pediatric TB is MDR, meaning about 30,000 cases each year. Although most children with MDR-TB can be successfully treated, up to five years ago effective treatment was associated with a high incidence of severe adverse effects and patients with extensively drug-resistant (XDR) TB had limited treatment options and no standard regimen. The main objective of this manuscript is to discuss our present knowledge of the management of MDR- and XDR-TB in children, focusing on the characteristics and available evidence on the use of two promising new drugs: bedaquiline and delamanid. PubMed was used to search for all of the studies published up to November 2020 using key words such as "bedaquiline" and "delamanid" and "children" and "multidrug-resistant tuberculosis" and "extensively drug-resistant tuberculosis". The search was limited to articles published in English and providing evidence-based data. Although data on pediatric population are limited and more studies are needed to confirm the efficacy and safety of bedaquiline and delamanid, their use in children with MDR-TB/XDR-TB appears to have good tolerability and efficacy. However, more evidence on these new anti-TB drugs is needed to better guide their use in children in order to design effective shorter regimens and reduce adverse effects, drug interactions, and therapeutic failure.
Collapse
|
16
|
Thomas C, Gwenin CD. The Role of Nitroreductases in Resistance to Nitroimidazoles. BIOLOGY 2021; 10:388. [PMID: 34062712 PMCID: PMC8147198 DOI: 10.3390/biology10050388] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 01/14/2023]
Abstract
Antimicrobial resistance is a major challenge facing modern medicine, with an estimated 700,000 people dying annually and a global cost in excess of $100 trillion. This has led to an increased need to develop new, effective treatments. This review focuses on nitroimidazoles, which have seen a resurgence in interest due to their broad spectrum of activity against anaerobic Gram-negative and Gram-positive bacteria. The role of nitroreductases is to activate the antimicrobial by reducing the nitro group. A decrease in the activity of nitroreductases is associated with resistance. This review will discuss the resistance mechanisms of different disease organisms, including Mycobacterium tuberculosis, Helicobacter pylori and Staphylococcus aureus, and how these impact the effectiveness of specific nitroimidazoles. Perspectives in the field of nitroimidazole drug development are also summarised.
Collapse
Affiliation(s)
- Carol Thomas
- School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK;
| | - Christopher D. Gwenin
- Department of Chemistry, Xi’an Jiaotong-Liverpool University, 111 Ren’ai Road, Suzhou Industrial Park, Suzhou 215123, China
| |
Collapse
|
17
|
Yang HJ, Wang D, Wen X, Weiner DM, Via LE. One Size Fits All? Not in In Vivo Modeling of Tuberculosis Chemotherapeutics. Front Cell Infect Microbiol 2021; 11:613149. [PMID: 33796474 PMCID: PMC8008060 DOI: 10.3389/fcimb.2021.613149] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Tuberculosis (TB) remains a global health problem despite almost universal efforts to provide patients with highly effective chemotherapy, in part, because many infected individuals are not diagnosed and treated, others do not complete treatment, and a small proportion harbor Mycobacterium tuberculosis (Mtb) strains that have become resistant to drugs in the standard regimen. Development and approval of new drugs for TB have accelerated in the last 10 years, but more drugs are needed due to both Mtb's development of resistance and the desire to shorten therapy to 4 months or less. The drug development process needs predictive animal models that recapitulate the complex pathology and bacterial burden distribution of human disease. The human host response to pulmonary infection with Mtb is granulomatous inflammation usually resulting in contained lesions and limited bacterial replication. In those who develop progressive or active disease, regions of necrosis and cavitation can develop leading to lasting lung damage and possible death. This review describes the major vertebrate animal models used in evaluating compound activity against Mtb and the disease presentation that develops. Each of the models, including the zebrafish, various mice, guinea pigs, rabbits, and non-human primates provides data on number of Mtb bacteria and pathology resolution. The models where individual lesions can be dissected from the tissue or sampled can also provide data on lesion-specific bacterial loads and lesion-specific drug concentrations. With the inclusion of medical imaging, a compound's effect on resolution of pathology within individual lesions and animals can also be determined over time. Incorporation of measurement of drug exposure and drug distribution within animals and their tissues is important for choosing the best compounds to push toward the clinic and to the development of better regimens. We review the practical aspects of each model and the advantages and limitations of each in order to promote choosing a rational combination of them for a compound's development.
Collapse
Affiliation(s)
- Hee-Jeong Yang
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Decheng Wang
- Medical College, China Three Gorges University, Yichang, China.,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Xin Wen
- Medical College, China Three Gorges University, Yichang, China.,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Danielle M Weiner
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States.,Tuberculosis Imaging Program, DIR, NIAID, NIH, Bethesda, MD, United States
| | - Laura E Via
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States.,Tuberculosis Imaging Program, DIR, NIAID, NIH, Bethesda, MD, United States.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
18
|
Monakhova N, Korduláková J, Vocat A, Egorova A, Lepioshkin A, Salina EG, Nosek J, Repková E, Zemanová J, Jurdáková H, Górová R, Roh J, Degiacomi G, Sammartino JC, Pasca MR, Cole ST, Mikušová K, Makarov V. Design and Synthesis of Pyrano[3,2- b]indolones Showing Antimycobacterial Activity. ACS Infect Dis 2021; 7:88-100. [PMID: 33352041 DOI: 10.1021/acsinfecdis.0c00622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Latent Mycobacterium tuberculosis infection presents one of the largest challenges for tuberculosis control and novel antimycobacterial drug development. A series of pyrano[3,2-b]indolone-based compounds was designed and synthesized via an original eight-step scheme. The synthesized compounds were evaluated for their in vitro activity against M. tuberculosis strains H37Rv and streptomycin-starved 18b (SS18b), representing models for replicating and nonreplicating mycobacteria, respectively. Compound 10a exhibited good activity with MIC99 values of 0.3 and 0.4 μg/mL against H37Rv and SS18b, respectively, as well as low toxicity, acceptable intracellular activity, and satisfactory metabolic stability and was selected as the lead compound for further studies. An analysis of 10a-resistant M. bovis mutants disclosed a cross-resistance with pretomanid and altered relative amounts of different forms of cofactor F420 in these strains. Complementation experiments showed that F420-dependent glucose-6-phosphate dehydrogenase and the synthesis of mature F420 were important for 10a activity. Overall these studies revealed 10a to be a prodrug that is activated by an unknown F420-dependent enzyme in mycobacteria.
Collapse
Affiliation(s)
- Natalia Monakhova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russian Federation
| | | | - Anthony Vocat
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Anna Egorova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russian Federation
| | - Alexander Lepioshkin
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russian Federation
| | - Elena G. Salina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russian Federation
| | | | | | | | | | | | - Jaroslav Roh
- Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové 50005, Czech Republic
| | - Giulia Degiacomi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia 27100, Italy
| | - José Camilla Sammartino
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia 27100, Italy
| | - Maria Rosalia Pasca
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia 27100, Italy
| | - Stewart T. Cole
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | | | - Vadim Makarov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russian Federation
| |
Collapse
|
19
|
Cumulative Fraction of Response for Once- and Twice-Daily Delamanid in Patients with Pulmonary Multidrug-Resistant Tuberculosis. Antimicrob Agents Chemother 2020; 65:AAC.01207-20. [PMID: 33106263 PMCID: PMC7927872 DOI: 10.1128/aac.01207-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/13/2020] [Indexed: 01/03/2023] Open
Abstract
Pharmacokinetic (PK) and pharmacodynamic (PD) analyses were conducted to determine the cumulative fraction of response (CFR) for 100 mg twice-daily (BID) and 200 mg once-daily (QD) delamanid in patients with multidrug-resistant tuberculosis (MDR-TB), using a pharmacodynamic target (PDT) that achieves 80% of maximum efficacy. First, in the mouse model of chronic TB, the PK/PD index for delamanid efficacy was determined to be area under the drug concentration-time curve over 24 h divided by MIC (AUC0–24/MIC), with a PDT of 252. Pharmacokinetic (PK) and pharmacodynamic (PD) analyses were conducted to determine the cumulative fraction of response (CFR) for 100 mg twice-daily (BID) and 200 mg once-daily (QD) delamanid in patients with multidrug-resistant tuberculosis (MDR-TB), using a pharmacodynamic target (PDT) that achieves 80% of maximum efficacy. First, in the mouse model of chronic TB, the PK/PD index for delamanid efficacy was determined to be area under the drug concentration-time curve over 24 h divided by MIC (AUC0–24/MIC), with a PDT of 252. Second, in the hollow-fiber system model of tuberculosis, plasma-equivalent PDTs were identified as an AUC0–24/MIC of 195 in log-phase bacteria and 201 in pH 5.8 cultures. Third, delamanid plasma AUC0–24/MIC and sputum bacterial decline data from two early bactericidal activity trials identified a clinical PDT of AUC0–24/MIC of 171. Finally, the CFRs for the currently approved 100-mg BID dose were determined to be above 95% in two MDR-TB clinical trials. The CFR for the 200-mg QD dose, evaluated in a trial in which delamanid was administered as 100 mg BID for 8 weeks plus 200 mg QD for 18 weeks, was 89.3% based on the mouse PDT and >90% on the other PDTs. QTcF (QTc interval corrected for heart rate by Fridericia’s formula) prolongation was approximately 50% lower for the 200 mg QD dose than the 100 mg BID dose. In conclusion, while CFRs of 100 mg BID and 200 mg QD delamanid were close to or above 90% in patients with MDR-TB, more-convenient once-daily dosing of delamanid is feasible and likely to have less effect on QTcF prolongation.
Collapse
|
20
|
Abstract
Many bacterial pathogens can permanently colonize their host and establish either chronic or recurrent infections that the immune system and antimicrobial therapies fail to eradicate. Antibiotic persisters (persister cells) are believed to be among the factors that make these infections challenging. Persisters are subpopulations of bacteria which survive treatment with bactericidal antibiotics in otherwise antibiotic-sensitive cultures and were extensively studied in a hope to discover the mechanisms that cause treatment failures in chronically infected patients; however, most of these studies were conducted in the test tube. Research into antibiotic persistence has uncovered large intrapopulation heterogeneity of bacterial growth and regrowth but has not identified essential, dedicated molecular mechanisms of antibiotic persistence. Diverse factors and stresses that inhibit bacterial growth reduce killing of the bulk population and may also increase the persister subpopulation, implying that an array of mechanisms are present. Hopefully, further studies under conditions that simulate the key aspects of persistent infections will lead to identifying target mechanisms for effective therapeutic solutions.
Collapse
|
21
|
Guglielmetti L, Chiesi S, Eimer J, Dominguez J, Masini T, Varaine F, Veziris N, Ader F, Robert J. Bedaquiline and delamanid for drug-resistant tuberculosis: a clinician's perspective. Future Microbiol 2020; 15:779-799. [PMID: 32700565 DOI: 10.2217/fmb-2019-0309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Drug-resistant tuberculosis (TB) represents a substantial threat to the global efforts to control this disease. After decades of stagnation, the treatment of drug-resistant TB is undergoing major changes: two drugs with a new mechanism of action, bedaquiline and delamanid, have been approved by stringent regulatory authorities and are recommended by the WHO. This narrative review summarizes the evidence, originating from both observational studies and clinical trials, which is available to support the use of these drugs, with a focus on special populations. Areas of uncertainty, including the use of the two drugs together or for prolonged duration, are discussed. Ongoing clinical trials are aiming to optimize the use of bedaquiline and delamanid to shorten the treatment of drug-resistant TB.
Collapse
Affiliation(s)
- Lorenzo Guglielmetti
- APHP, Groupe Hospitalier Universitaire Sorbonne Université, Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, F-75013 Paris, France.,Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, équipe 2, F-75013, Paris, France.,Médecins Sans Frontières, France
| | - Sheila Chiesi
- Department of Infectious Diseases, 'GB Rossi' Hospital, Verona, Italy.,University of Verona, Verona, Italy
| | - Johannes Eimer
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Jose Dominguez
- Research Institute Germans Trias i Pujol, CIBER Respiratory Diseases, Universitat Autònoma de Barcelona, Badalona, Spain
| | | | | | - Nicolas Veziris
- Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, équipe 2, F-75013, Paris, France.,APHP, Département de Bactériologie, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA), Hôpitaux Universitaires de l'Est Parisien, F-75012, Paris, France
| | - Florence Ader
- Département des Maladies infectieuses et tropicales, Hospices Civils de Lyon, F-69004, Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Inserm 1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007 Lyon, France
| | - Jérôme Robert
- APHP, Groupe Hospitalier Universitaire Sorbonne Université, Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, F-75013 Paris, France.,Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, équipe 2, F-75013, Paris, France
| |
Collapse
|
22
|
Adduct Formation of Delamanid with NAD in Mycobacteria. Antimicrob Agents Chemother 2020; 64:AAC.01755-19. [PMID: 32152081 DOI: 10.1128/aac.01755-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 02/06/2020] [Indexed: 12/19/2022] Open
Abstract
Delamanid (DLM), a nitro-dihydroimidazooxazole derivative currently approved for pulmonary multidrug-resistant tuberculosis (TB) therapy, is a prodrug activated by mycobacterial 7,8-didemethyl-8-hydroxy 5-deazaflavin electron transfer coenzyme (F420)-dependent nitroreductase (Ddn). Despite inhibiting the biosynthesis of a subclass of mycolic acids, the active DLM metabolite remained unknown. Comparative liquid chromatography-mass spectrometry (LC-MS) analysis of DLM metabolites revealed covalent binding of reduced DLM with a nicotinamide ring of NAD derivatives (oxidized form) in DLM-treated Mycobacterium tuberculosis var. Bacille de Calmette et Guérin. Isoniazid-resistant mutations in the type II NADH dehydrogenase gene (ndh) showed a higher intracellular NADH/NAD ratio and cross-resistance to DLM, which were restored by complementation of the mutants with wild-type ndh Our data demonstrated for the first time the adduct formation of reduced DLM with NAD in mycobacterial cells and its importance in the action of DLM.
Collapse
|
23
|
Gupta A, Swindells S, Kim S, Hughes MD, Naini L, Wu X, Dawson R, Mave V, Sanchez J, Mendoza A, Gonzales P, Kumarasamy N, Comins K, Conradie F, Shenje J, Fontain SN, Garcia-Prats A, Asmelash A, Nedsuwan S, Mohapi L, Lalloo UG, Ferreira ACG, Mugah C, Harrington M, Jones L, Cox SR, Smith B, Shah NS, Hesseling AC, Churchyard G. Feasibility of Identifying Household Contacts of Rifampin-and Multidrug-resistant Tuberculosis Cases at High Risk of Progression to Tuberculosis Disease. Clin Infect Dis 2020; 70:425-435. [PMID: 30942853 PMCID: PMC7188224 DOI: 10.1093/cid/ciz235] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 03/26/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND We assessed multidrug-resistant tuberculosis (MDR-TB) cases and their household contacts (HHCs) to inform the development of an interventional clinical trial. METHODS We conducted a cross-sectional study of adult MDR-TB cases and their HHCs in 8 countries with high TB burdens. HHCs underwent symptom screenings, chest radiographies, sputum TB bacteriologies, TB infection (TBI) testing (tuberculin skin test [TST] and interferon gamma release assay [IGRA]), and human immunodeficiency virus (HIV) testing. RESULTS From October 2015 to April 2016, 1016 HHCs from 284 MDR-TB cases were enrolled. At diagnosis, 69% of MDR-TB cases were positive for acid-fast bacilli sputum smears and 43% had cavitary disease; at study entry, 35% remained smear positive after a median MDR-TB treatment duration of 8.8 weeks. There were 9 HHCs that were diagnosed with TB prior to entry and excluded. Of the remaining 1007 HHCs, 41% were male and the median age was 25 years. There were 121 (12%) HHCs that had new cases of TB identified: 17 (2%) were confirmed, 33 (3%) probable, and 71 (7%) possible TB cases. The TBI prevalence (defined as either TST or IGRA positivity) was 72% and varied by age, test used, and country. Of 1007 HHCs, 775 (77%) were considered high-risk per these mutually exclusive groups: 102 (10%) were aged <5 years; 63 (6%) were aged ≥5 and were infected with HIV; and 610 (61%) were aged ≥5 years, were negative for HIV or had an unknown HIV status, and were TBI positive. Only 21 (2%) HHCs were on preventive therapy. CONCLUSIONS The majority of HHCs in these high-burden countries were at high risk of TB disease and infection, yet few were receiving routine preventive therapy. Trials of novel, preventive therapies are urgently needed to inform treatment policy and practice.
Collapse
Affiliation(s)
- Amita Gupta
- Johns Hopkins University, Department of Medicine, Baltimore, Maryland
- Byramjee Jeejeebhoy Government Medical College, Johns Hopkins University Clinical Research Site, Pune, India
| | | | - Soyeon Kim
- Frontier Science & Technology Research Foundation, Amherst, New York
| | - Michael D Hughes
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Linda Naini
- Social & Scientific Systems, Silver Spring, Maryland
| | - Xingye Wu
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Rodney Dawson
- University of Cape Town Lung Institute and Department of Medicine, University of Cape Town, South Africa
| | - Vidya Mave
- Johns Hopkins University, Department of Medicine, Baltimore, Maryland
- Byramjee Jeejeebhoy Government Medical College, Johns Hopkins University Clinical Research Site, Pune, India
| | - Jorge Sanchez
- Asociación Civil Impacta Salud y Educación, Lima, Peru
| | - Alberto Mendoza
- TASK Applied Science Clinical Research Site, Bellville, South Africa
| | | | | | - Kyla Comins
- TASK Applied Science Clinical Research Site, Bellville
| | - Francesca Conradie
- University of the Witwatersrand Helen Joseph Hospital, Johannesburg, South Africa
| | - Justin Shenje
- South African Tuberculosis Vaccine Initiative, Cape Town, South Africa
| | - Sandy Nerette Fontain
- GHESKIO Centers Institute of Infectious Diseases and Reproductive Health, Port-au-Prince, Haiti
| | - Anthony Garcia-Prats
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Cape Town, South Africa
| | | | | | - Lerato Mohapi
- Soweto Clinical Research Site, University of the Witwatersrand, Johannesburg, South Africa
| | - Umesh G Lalloo
- Durban International Clinical Research Site, Durban University of Technology, South Africa
| | | | | | | | - Lynne Jones
- Frontier Science & Technology Research Foundation, Amherst, New York
| | - Samyra R Cox
- Johns Hopkins University, Department of Medicine, Baltimore, Maryland
| | - Betsy Smith
- National Institutes of Health, Bethesda, Maryland
| | - N Sarita Shah
- US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Anneke C Hesseling
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Cape Town, South Africa
| | - Gavin Churchyard
- Aurum Institute, Parktown, South Africa
- University of Witwatersrand, School of Public Health
- Advancing Care and Treatment, South African Medical Research Council, Johannesburg, South Africa
| |
Collapse
|
24
|
Abstract
Tuberculosis (TB) has now surpassed HIV as the leading infectious cause of death, and treatment success rates are declining. Multidrug-resistant TB, extensively drug-resistant TB, and even totally drug-resistant TB threaten to further destabilize disease control efforts. The second wave in TB drug development, which includes the diarylquinoline, bedaquiline, and the nitroimidazoles delamanid and pretomanid, may offer options for simpler, shorter, and potentially all-oral regimens to treat drug-resistant TB. The "third wave" of TB drug development includes numerous promising compounds, including less toxic versions of older drug classes and candidates with novel mechanisms of action.
Collapse
Affiliation(s)
- Elisa H Ignatius
- Department of Medicine, Johns Hopkins University School of Medicine, 1830 Building Room 450B, 1830 East Monument Street, Baltimore, MD 21287, USA
| | - Kelly E Dooley
- Department of Medicine, Center for Tuberculosis Research, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Osler 527, Baltimore, MD, USA.
| |
Collapse
|
25
|
Tucker EW, Pieterse L, Zimmerman MD, Udwadia ZF, Peloquin CA, Gler MT, Ganatra S, Tornheim JA, Chawla P, Caoili JC, Ritchie B, Jain SK, Dartois V, Dooley KE. Delamanid Central Nervous System Pharmacokinetics in Tuberculous Meningitis in Rabbits and Humans. Antimicrob Agents Chemother 2019; 63:e00913-19. [PMID: 31383662 PMCID: PMC6761520 DOI: 10.1128/aac.00913-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/28/2019] [Indexed: 12/17/2022] Open
Abstract
Central nervous system tuberculosis (TB) is devastating and affects vulnerable populations. Multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculous meningitis (TBM) specifically are nearly uniformly fatal, with little information being available to guide the treatment of these patients. Delamanid (DLM), a nitro-dihydro-imidazooxazole, is a new, well-tolerated anti-TB drug with a low MIC (1 to 12 ng/ml) against Mycobacterium tuberculosis It is used for the treatment of pulmonary MDR-TB, but pharmacokinetic (PK) data for DLM in the central nervous system (CNS) of patients with TBM are not available. In the present study, we measured DLM concentrations in the brain and cerebrospinal fluid (CSF) of six rabbits with and without experimentally induced TBM receiving single-dose DLM. We report the steady-state CSF concentrations from three patients receiving DLM as part of multidrug treatment who underwent therapeutic drug monitoring. Drug was quantified using liquid chromatography-tandem mass spectrometry. In rabbits and humans, mean concentrations in CSF (in rabbits, 1.26 ng/ml at 9 h and 0.47 ng/ml at 24 h; in humans, 48 ng/ml at 4 h) were significantly lower than those in plasma (in rabbits, 124 ng/ml at 9 h and 14.5 ng/ml at 24 h; in humans, 726 ng/ml at 4 h), but the estimated free CSF/plasma ratios were generally >1. In rabbits, DLM concentrations in the brain were 5-fold higher than those in plasma (means, 518 ng/ml at 9 h and 74.0 ng/ml at 24 h). All patients with XDR-TBM receiving DLM experienced clinical improvement and survival. Collectively, these results suggest that DLM achieves adequate concentrations in brain tissue. Despite relatively low total CSF drug levels, free drug may be sufficient and DLM may have a role in treating TBM. More studies are needed to develop a fuller understanding of its distribution over time with treatment and clinical effectiveness.
Collapse
Affiliation(s)
- Elizabeth W Tucker
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Johns Hopkins All Children's Hospital, St. Petersburg, Florida, USA
| | - Lisa Pieterse
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Matthew D Zimmerman
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Zarir F Udwadia
- P.D. National Hospital and Medical Research Centre, Mumbai, India
| | - Charles A Peloquin
- University of Florida College of Pharmacy, Gainesville, Florida, USA
- Emerging Pathogens Institute, Gainesville, Florida, USA
| | | | - Shashank Ganatra
- P.D. National Hospital and Medical Research Centre, Mumbai, India
| | | | - Prerna Chawla
- P.D. National Hospital and Medical Research Centre, Mumbai, India
| | | | - Brittaney Ritchie
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sanjay K Jain
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Véronique Dartois
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Kelly E Dooley
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
26
|
Osterman AL, Rodionova I, Li X, Sergienko E, Ma CT, Catanzaro A, Pettigrove ME, Reed RW, Gupta R, Rohde KH, Korotkov KV, Sorci L. Novel Antimycobacterial Compounds Suppress NAD Biogenesis by Targeting a Unique Pocket of NaMN Adenylyltransferase. ACS Chem Biol 2019; 14:949-958. [PMID: 30969758 DOI: 10.1021/acschembio.9b00124] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Conventional treatments to combat the tuberculosis (TB) epidemic are falling short, thus encouraging the search for novel antitubercular drugs acting on unexplored molecular targets. Several whole-cell phenotypic screenings have delivered bioactive compounds with potent antitubercular activity. However, their cellular target and mechanism of action remain largely unknown. Further evaluation of these compounds may include their screening in search for known antitubercular drug targets hits. Here, a collection of nearly 1400 mycobactericidal compounds was screened against Mycobacterium tuberculosis NaMN adenylyltransferase ( MtNadD), a key enzyme in the biogenesis of NAD cofactor that was recently validated as a new drug target for dormant and active tuberculosis. We found three chemotypes that efficiently inhibit MtNadD in the low micromolar range in vitro. SAR and cheminformatics studies of commercially available analogues point to a series of benzimidazolium derivatives, here named N2, with bactericidal activity on different mycobacteria, including M. abscessus, multidrug-resistant M. tuberculosis, and dormant M. smegmatis. The on-target activity was supported by the increased resistance of an M. smegmatis strain overexpressing the target and by a rapid decline in NAD(H) levels. A cocrystal structure of MtNadD with N2-8 inhibitor reveals that the binding of the inhibitor induced the formation of a new quaternary structure, a dimer-of-dimers where two copies of the inhibitor occupy symmetrical positions in the dimer interface, thus paving the way for the development of a new generation of selective MtNadD bioactive inhibitors. All these results strongly suggest that pharmacological inhibition of MtNadD is an effective strategy to combat dormant and resistant Mtb strains.
Collapse
Affiliation(s)
- Andrei L. Osterman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Irina Rodionova
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Xiaoqing Li
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Eduard Sergienko
- NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Chen-Ting Ma
- NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Antonino Catanzaro
- Department of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Mark E. Pettigrove
- Department of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Robert W. Reed
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky 40508, United States
| | - Rashmi Gupta
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827, United States
| | - Kyle H. Rohde
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827, United States
| | - Konstantin V. Korotkov
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky 40508, United States
| | - Leonardo Sorci
- Department of Materials, Environmental Sciences and Urban Planning, Division of Bioinformatics and Biochemistry, Polytechnic University of Marche, Ancona 60131, Italy
| |
Collapse
|
27
|
Genetics and roadblocks of drug resistant tuberculosis. INFECTION GENETICS AND EVOLUTION 2018; 72:113-130. [PMID: 30261266 DOI: 10.1016/j.meegid.2018.09.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/20/2018] [Accepted: 09/22/2018] [Indexed: 11/22/2022]
Abstract
Considering the extensive evolutionary history of Mycobacterium tuberculosis, anti-Tuberculosis (TB) drug therapy exerts a recent selective pressure. However, in a microorganism devoid of horizontal gene transfer and with a strictly clonal populational structure such as M. tuberculosis the usual, but not sole, path to overcome drug susceptibility is through de novo mutations on a relatively strict set of genes. The possible allelic diversity that can be associated with drug resistance through several mechanisms such as target alteration or target overexpression, will dictate how these genes can become associated with drug resistance. The success demonstrated by this pathogenic microbe in this latter process and its ability to spread is currently one of the major obstacles to an effective TB elimination. This article reviews the action mechanism of the more important anti-TB drugs, including bedaquiline and delamanid, along with new findings on specific resistance mechanisms. With the development, validation and endorsement of new in vitro molecular tests for drug resistance, knowledge on these resistance mechanisms and microevolutionary dynamics leading to the emergence and fixation of drug resistance mutations within the host is highly important. Additionally, the fitness toll imposed by resistance development is also herein discussed together with known compensatory mechanisms. By elucidating the possible mechanisms that enable one strain to reacquire the original fitness levels, it will be theoretically possible to make more informed decisions and develop novel strategies that can force M. tuberculosis microevolutionary trajectory down through a path of decreasing fitness levels.
Collapse
|
28
|
Liu Y, Matsumoto M, Ishida H, Ohguro K, Yoshitake M, Gupta R, Geiter L, Hafkin J. Delamanid: From discovery to its use for pulmonary multidrug-resistant tuberculosis (MDR-TB). Tuberculosis (Edinb) 2018; 111:20-30. [DOI: 10.1016/j.tube.2018.04.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/09/2018] [Accepted: 04/30/2018] [Indexed: 10/17/2022]
|
29
|
Dhiman R, Singh R. Recent advances for identification of new scaffolds and drug targets for Mycobacterium tuberculosis. IUBMB Life 2018; 70:905-916. [PMID: 29761628 DOI: 10.1002/iub.1863] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/07/2018] [Indexed: 02/06/2023]
Abstract
Tuberculosis (TB) is a leading cause of mortality and morbidity with an estimated 1.7 billion people latently infected with the pathogen worldwide. Clinically, TB infection presents itself as an asymptomatic infection, which gradually manifests to life threatening disease. The emergence of various drug resistant strains of Mycobacterium tuberculosis and lengthy duration of chemotherapy are major challenges in the field of TB drug development. Hence, there is an urgent need to develop scaffolds that possess a novel mechanism of action, can shorten the duration of therapy, and are active against both drug resistant and susceptible strains. In this review, we will discuss recent progress made in the field of TB drug development with emphasis on screening methods and drug targets from M. tuberculosis. The current review provides insights into mechanism of action of new scaffolds that are being evaluated in various stages of clinical trials. © 2018 IUBMB Life, 70(9):905-916, 2018.
Collapse
Affiliation(s)
- Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, Haryana, India
| |
Collapse
|
30
|
Fujiwara M, Kawasaki M, Hariguchi N, Liu Y, Matsumoto M. Mechanisms of resistance to delamanid, a drug for Mycobacterium tuberculosis. Tuberculosis (Edinb) 2017. [PMID: 29523322 DOI: 10.1016/j.tube.2017.12.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Delamanid, a bicyclic nitroimidazooxazole, is effective against M. tuberculosis. Previous studies have shown that resistance to a bicyclic nitroimidazooxazine, PA-824, is caused by mutations in an F420-dependent bio-activation pathway. We investigated whether the same mechanisms are responsible for resistance to delamanid. Spontaneous resistance frequencies were determined using M. bovis BCG Tokyo (BCG) and M. tuberculosis H37Rv. F420 high-performance liquid chromatography (HPLC) elution patterns of homogenates of delamanid-resistant BCG colonies and two previously identified delamanid-resistant M. tuberculosis clinical isolates were examined, followed by sequencing of genes in the F420-dependent bio-activation pathway. Spontaneous resistance frequencies to delamanid were similar to those of isoniazid and PA-824. Four distinct F420 HPLC elution patterns were observed, corresponding to colonies with mutations on fgd1, fbiA, fbiB, and fbiC with no change in the ddn mutants from the wildtype. Complementation with the wildtype sequence of the mutated gene restored susceptibility. The two delamanid-resistant clinical isolates had ddn mutations and the wildtype F420 HPLC elution pattern. In conclusion, delamanid-resistant bacilli have mutations in one of the 5 genes in the F420-dependent bio-activation pathway with distinct F420 HPLC elution patterns. Both genetic and phenotypic changes may be considered in the development of a rapid susceptibility test for delamanid.
Collapse
Affiliation(s)
- Mamoru Fujiwara
- Department of Medical Innovations, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan.
| | | | - Norimitsu Hariguchi
- Department of Medical Innovations, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan.
| | - Yongge Liu
- Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, MD, USA.
| | - Makoto Matsumoto
- Pharmaceutical Business Division, Otsuka Pharmaceutical Co., Ltd., San Francisco, CA, USA.
| |
Collapse
|
31
|
Bhat ZS, Rather MA, Maqbool M, Lah HU, Yousuf SK, Ahmad Z. Cell wall: A versatile fountain of drug targets in Mycobacterium tuberculosis. Biomed Pharmacother 2017; 95:1520-1534. [PMID: 28946393 DOI: 10.1016/j.biopha.2017.09.036] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/07/2017] [Accepted: 09/10/2017] [Indexed: 12/18/2022] Open
Abstract
Tuberculosis is the leading infectious disease responsible for an estimated one and a half million human deaths each year around the globe. HIV-TB coinfection and rapid increase in the emergence of drug resistant forms of TB is a dangerous scenario. This underlines the urgent need for new drugs with novel mechanism of action. A plethora of literature exist that highlight the importance of enzymes involved in the biosynthesis of mycobacterial cell wall responsible for its survival, growth, permeability, virulence and resistance to antibiotics. Therefore, assembly of cell wall components is an attractive target for the development of chemotherapeutics against Mycobacterium tuberculosis. The aim of this review is to highlight novel sets of enzyme inhibitors that disrupt its cell wall biosynthetic pathway. These include the currently approved first and second line drugs, candidates in clinical trials and current structure activity guided endeavors of scientific community to identify new potent inhibitors with least cytotoxicity and better efficacy against emergence of drug resistance till date.
Collapse
Affiliation(s)
- Zubair Shanib Bhat
- Clinical Microbiology and PK/PD Division, Indian Institute of Integrative Medicine (IIIM), Campus, Sanat Nagar, Srinagar, Jammu & Kashmir 190005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Indian Institute of Integrative Medicine (IIIM), Campus, Sanat Nagar, Srinagar, Jammu & Kashmir 190005, India.
| | - Muzafar Ahmad Rather
- Clinical Microbiology and PK/PD Division, Indian Institute of Integrative Medicine (IIIM), Campus, Sanat Nagar, Srinagar, Jammu & Kashmir 190005, India; Department of Biochemistry, University of Kashmir, Srinagar, Jammu & Kashmir 190006, India
| | - Mubashir Maqbool
- Clinical Microbiology and PK/PD Division, Indian Institute of Integrative Medicine (IIIM), Campus, Sanat Nagar, Srinagar, Jammu & Kashmir 190005, India; Department of Zoology, University of Kashmir, Srinagar, Jammu & Kashmir 190006, India
| | - Hafiz Ul Lah
- Medicinal Chemistry Division, Indian Institute of Integrative Medicine (IIIM), Campus, Sanat Nagar, Srinagar, Jammu & Kashmir 190005, India
| | - Syed Khalid Yousuf
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Indian Institute of Integrative Medicine (IIIM), Campus, Sanat Nagar, Srinagar, Jammu & Kashmir 190005, India; Medicinal Chemistry Division, Indian Institute of Integrative Medicine (IIIM), Campus, Sanat Nagar, Srinagar, Jammu & Kashmir 190005, India
| | - Zahoor Ahmad
- Clinical Microbiology and PK/PD Division, Indian Institute of Integrative Medicine (IIIM), Campus, Sanat Nagar, Srinagar, Jammu & Kashmir 190005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Indian Institute of Integrative Medicine (IIIM), Campus, Sanat Nagar, Srinagar, Jammu & Kashmir 190005, India.
| |
Collapse
|
32
|
Gupta VK, Kumar MM, Singh D, Bisht D, Sharma S. Drug targets in dormant Mycobacterium tuberculosis: can the conquest against tuberculosis become a reality? Infect Dis (Lond) 2017; 50:81-94. [DOI: 10.1080/23744235.2017.1377346] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Vivek Kumar Gupta
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Agra, India
| | - M. Madhan Kumar
- Department of Immunology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Agra, India
| | - Dharmendra Singh
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Agra, India
| | - Deepa Bisht
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Agra, India
| | - Shweta Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Agra, India
| |
Collapse
|