1
|
Vincent AT, Bergeron RP, Piché LC, Prado D, Saucier L. Genomic Characterization of a Tetracycline-Resistant Strain of Brochothrix thermosphacta Highlights Plasmids Partially Shared between Various Strains. Genes (Basel) 2023; 14:1731. [PMID: 37761871 PMCID: PMC10531132 DOI: 10.3390/genes14091731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
The Gram-positive bacterium Brochothrix thermosphacta is a spoilage agent commonly found on meat products. While the tet(L) gene, which confers resistance to tetracycline, has been identified in certain strains of B. thermosphacta, only a limited number of studies have investigated this gene and its potential presence on mobile DNA elements. This study aims to analyze the tetracycline-resistant strain B. thermosphacta BT469 at the genomic level to gain insight into the molecular determinants responsible for this resistance. Three plasmids have been identified in the strain: pBT469-1, which contains a tetR gene; pBT469-2, which harbours the tet(L) gene responsible for tetracycline resistance; and pBT469-3, which carries genes encoding for a thioredoxin and a phospholipase A2. Homology searches among sequences in public databases have revealed that the plasmid pBT469-2 is currently unique to the BT469 strain. However, the pBT469-1 plasmid is also found in three other strains of B. thermosphacta. Notably, sequences similar to pBT469-1 and pBT469-2 were also found in other bacterial genera, suggesting that these plasmids may be part of a diverse family present in several bacterial genera. Interestingly, sequences of various strains of B. thermosphacta show a high level of similarity with pBT469-3, suggesting that variants of this plasmid could be frequently found in this bacterium.
Collapse
Affiliation(s)
- Antony T. Vincent
- Département des Sciences Animales, Faculté des Sciences de L’agriculture et de L’alimentation, Université Laval, Quebec City, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City, QC G1V 0A6, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Faculté des Sciences de L’agriculture et de L’alimentation, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Romain P. Bergeron
- Département des Sciences Animales, Faculté des Sciences de L’agriculture et de L’alimentation, Université Laval, Quebec City, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City, QC G1V 0A6, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Faculté des Sciences de L’agriculture et de L’alimentation, Université Laval, Quebec City, QC G1V 0A6, Canada
- Site de Bourg-end-Bresse, IUT Lyon 1 Site de Bourg-en-Bresse, 01000 Bourg-en-Bresse, France
| | - Laurie C. Piché
- Département des Sciences Animales, Faculté des Sciences de L’agriculture et de L’alimentation, Université Laval, Quebec City, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City, QC G1V 0A6, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Faculté des Sciences de L’agriculture et de L’alimentation, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - David Prado
- Département des Sciences Animales, Faculté des Sciences de L’agriculture et de L’alimentation, Université Laval, Quebec City, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City, QC G1V 0A6, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Faculté des Sciences de L’agriculture et de L’alimentation, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Linda Saucier
- Département des Sciences Animales, Faculté des Sciences de L’agriculture et de L’alimentation, Université Laval, Quebec City, QC G1V 0A6, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Faculté des Sciences de L’agriculture et de L’alimentation, Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
2
|
Nøhr-Meldgaard K, Struve C, Ingmer H, Agersø Y. Intrinsic tet(L) sub-class in Bacillus velezensis and Bacillus amyloliquefaciens is associated with a reduced susceptibility toward tetracycline. Front Microbiol 2022; 13:966016. [PMID: 35992677 PMCID: PMC9387203 DOI: 10.3389/fmicb.2022.966016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Annotations of non-pathogenic bacterial genomes commonly reveal putative antibiotic resistance genes and the potential risks associated with such genes is challenging to assess. We have examined a putative tetracycline tet(L) gene (conferring low level tetracycline resistance), present in the majority of all publicly available genomes of the industrially important operational group Bacillus amyloliquefaciens including the species B. amyloliquefaciens, Bacillus siamensis and Bacillus velezensis. The aim was to examine the risk of transfer of the putative tet(L) in operational group B. amyloliquefaciens through phylogenetic and genomic position analysis. These analyses furthermore included tet(L) genes encoded by transferable plasmids and other Gram-positive and -negative bacteria, including Bacillus subtilis. Through phylogenetic analysis, we could group chromosomally and plasmid-encoded tet(L) genes into four phylogenetic clades. The chromosomally encoded putative tet(L) from operational group B. amyloliquefaciens formed a separate phylogenetic clade; was positioned in the same genomic region in the three species; was not flanked by mobile genetic elements and was not found in any other bacterial species suggesting that the gene has been present in a common ancestor before species differentiation and is intrinsic. Therefore the gene is not considered a safety concern, and the risk of transfer to and expression of resistance in other non-related species is considered negligible. We suggest a subgrouping of the tet(L) class into four groups (tet(L)1.1, tet(L)1.2 and tet(L)2.1, tet(L)2.2), corresponding with the phylogenetic grouping and tet(L) from operational group B. amyloliquefaciens referred to as tet(L)2.2. Phylogenetic analysis is a useful tool to correctly differentiate between intrinsic and acquired antibiotic resistance genes.
Collapse
Affiliation(s)
- Katrine Nøhr-Meldgaard
- Chr. Hansen A/S, Hørsholm, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yvonne Agersø
- Chr. Hansen A/S, Hørsholm, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Yvonne Agersø,
| |
Collapse
|
3
|
Novel Tet(L) Efflux Pump Variants Conferring Resistance to Tigecycline and Eravacycline in Staphylococcus Spp. Microbiol Spectr 2021; 9:e0131021. [PMID: 34878306 PMCID: PMC8653819 DOI: 10.1128/spectrum.01310-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Tigecycline is regarded as one of the few important last-resort antibiotics to treat complicated skin and intra-abdominal infections. Members of the genus Staphylococcus are zoonotic pathogens and pose a serious threat to public health. Tigecycline resistance in this species appears to be a rare phenomenon, and the mechanisms underlying tigecycline resistance have not been fully elucidated. Here, we report two novel variants of the tet(L) gene in Staphylococcus spp. from swine in China, designed as tet(L)F58L and tet(L)A117V. The tet(L)F58L was located within a 18,720 bp chromosomal multidrug resistance gene cluster flanked by two copies of IS257 in Staphylococcus cohnii 11-B-312, while the tet(L)A117V was located on a 6,292 bp plasmid in S. haemolyticus 11-B-93, which could be transferred to S. aureus by electrotransformation. Cloning of each of the two tet(L) variants into S. aureus RN4220 showed 16- or 8-fold increases in the minimal inhibition concentrations (MICs), which can fully confer the resistance to tigecycline (MICs from 0.125 to 2 mg/liter) and eravacycline (MICs from 0.125 to 1 or 2 mg/liter), but no increase in the MICs of omadacycline, compared with the MICs of the recipient strain S. aureus RN4220. In the in vivo murine sepsis and in the murine pneumonia models, an increase in CFU of S. aureus 29213_pT93 carrying the tet(L)A117V was seen despite tigecycline treatment. This observation suggests that the tet(L)A117V and its associated gene product compromise the efficacy of tigecycline treatment in vivo and may lead to clinical treatment failure. Our finding, that novel Tet(L) efflux pump variants which confer tigecycline and eravacycline resistance have been identified in Staphylococcus spp., requires urgent attention. IMPORTANCE Tigecycline and eravacycline are both important last-resort broad spectrum antimicrobial agents. The presence of novel Tet(L) efflux pump variants conferring the resistance to tigecycline and eravacycline in Staphylococcus spp. and its potential transmission to S. aureus will compromise the efficacy of tigecycline and eravacycline treatment for S. aureus associated infection in vivo and may lead to clinical treatment failure.
Collapse
|
4
|
Zhu Y, Wang C, Schwarz S, Liu W, Yang Q, Luan T, Wang L, Liu S, Zhang W. Identification of a novel tetracycline resistance gene, tet(63), located on a multiresistance plasmid from Staphylococcus aureus. J Antimicrob Chemother 2021; 76:576-581. [PMID: 33247717 DOI: 10.1093/jac/dkaa485] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/26/2020] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES To identify and characterize a novel tetracycline resistance gene on a multiresistance plasmid from Staphylococcus aureus SA01 of chicken origin. METHODS MICs were determined by broth microdilution according to CLSI recommendations. The whole genome sequence of S. aureus SA01 was determined via Illumina HiSeq and Oxford Nanopore platforms followed by a hybrid assembly. The new tet gene was cloned and expressed in S. aureus. The functionality of the corresponding protein as an efflux pump was tested by efflux pump inhibition assays. RESULTS A novel tetracycline resistance gene, tet(63), was identified on a plasmid in S. aureus SA01. The cloned tet(63) gene was functionally expressed in S. aureus and shown to confer resistance to tetracycline and doxycycline, and a slightly elevated MIC of minocycline. The tet(63) gene encodes a 459 amino acid efflux protein of the major facilitator superfamily that consists of 14 predicted transmembrane helices. The results of efflux pump inhibitor assays confirmed the function of Tet(63) as an efflux protein. The deduced amino acid sequence of the Tet(63) protein exhibited 73.0% identity to the tetracycline efflux protein Tet(K). The plasmid pSA01-tet, on which tet(63) was located, had a size of 25664 bp and also carried the resistance genes aadD, aacA-aphD and erm(C). CONCLUSIONS A novel tetracycline resistance gene, tet(63), was identified in S. aureus. Its location on a multiresistance plasmid might support the co-selection of tet(63) under the selective pressure imposed by the use of macrolides, lincosamides and aminoglycosides.
Collapse
Affiliation(s)
- Yao Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Changzhen Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Wenyu Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Qin Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Tian Luan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Lingli Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Wanjiang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
5
|
Frickmann H, Hahn A, Berlec S, Ulrich J, Jansson M, Schwarz NG, Warnke P, Podbielski A. On the Etiological Relevance of Escherichia coli and Staphylococcus aureus in Superficial and Deep Infections - A Hypothesis-Forming, Retrospective Assessment. Eur J Microbiol Immunol (Bp) 2019; 9:124-130. [PMID: 31934364 PMCID: PMC6945993 DOI: 10.1556/1886.2019.00021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 09/08/2019] [Indexed: 02/07/2023] Open
Abstract
Introduction Escherichia coli and Staphylococcus aureus are important causes of severe diseases like blood stream infections. This study comparatively assessed potential differences in their impact on disease severity in local and systemic infections. Methods Over a 5-year interval, patients in whom either E. coli or S. aureus was detected in superficial or primary sterile compartments were assessed for the primary endpoint death during hospital stay and the secondary endpoints duration of hospital stay and infectious disease as the main diagnosis. Results Significance was achieved for the impacts as follows: Superficial infection with S. aureus was associated with an odds ratio of 0.27 regarding the risk of death and of 1.42 regarding infectious disease as main diagnosis. Superficial infection with E. coli was associated with a reduced duration of hospital stay by –2.46 days and a reduced odds ratio of infectious diseases as main diagnosis of 0.04. The hospital stay of patients with E. coli was increased due to third-generation cephalosporin and ciprofloxacin resistance, and in the case of patients with S. aureus due to tetracycline and fusidic acid resistance. Conclusions Reduced disease severity of superficial infections due to both E. coli and S. aureus and resistance-driven prolonged stays in hospital were confirmed, while other outcome parameters were comparable.
Collapse
Affiliation(s)
- Hagen Frickmann
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, Hamburg, Germany.,Institute for Medical Microbiology, Virology, and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Andreas Hahn
- Institute for Medical Microbiology, Virology, and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Stefan Berlec
- Institute for Medical Microbiology, Virology, and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Johannes Ulrich
- Institute for Medical Microbiology, Virology, and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Moritz Jansson
- Institute for Medical Microbiology, Virology, and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Norbert Georg Schwarz
- Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine Hamburg, Hamburg, Germany
| | - Philipp Warnke
- Institute for Medical Microbiology, Virology, and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Andreas Podbielski
- Institute for Medical Microbiology, Virology, and Hygiene, University Medicine Rostock, Rostock, Germany
| |
Collapse
|
6
|
Abstract
Members of the highly heterogeneous family Pasteurellaceae cause a wide variety of diseases in humans and animals. Antimicrobial agents are the most powerful tools to control such infections. However, the acquisition of resistance genes, as well as the development of resistance-mediating mutations, significantly reduces the efficacy of the antimicrobial agents. This article gives a brief description of the role of selected members of the family Pasteurellaceae in animal infections and of the most recent data on the susceptibility status of such members. Moreover, a review of the current knowledge of the genetic basis of resistance to antimicrobial agents is included, with particular reference to resistance to tetracyclines, β-lactam antibiotics, aminoglycosides/aminocyclitols, folate pathway inhibitors, macrolides, lincosamides, phenicols, and quinolones. This article focusses on the genera of veterinary importance for which sufficient data on antimicrobial susceptibility and the detection of resistance genes are currently available (Pasteurella, Mannheimia, Actinobacillus, Haemophilus, and Histophilus). Additionally, the role of plasmids, transposons, and integrative and conjugative elements in the spread of the resistance genes within and beyond the aforementioned genera is highlighted to provide insight into horizontal dissemination, coselection, and persistence of antimicrobial resistance genes. The article discusses the acquisition of diverse resistance genes by the selected Pasteurellaceae members from other Gram-negative or maybe even Gram-positive bacteria. Although the susceptibility status of these members still looks rather favorable, monitoring of their antimicrobial susceptibility is required for early detection of changes in the susceptibility status and the newly acquired/developed resistance mechanisms.
Collapse
|
7
|
Antimicrobial Susceptibility Testing and Tentative Epidemiological Cutoff Values for Five Bacillus Species Relevant for Use as Animal Feed Additives or for Plant Protection. Appl Environ Microbiol 2018; 84:AEM.01108-18. [PMID: 30030233 DOI: 10.1128/aem.01108-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/12/2018] [Indexed: 01/01/2023] Open
Abstract
Bacillus megaterium (n = 29), Bacillus velezensis (n = 26), Bacillus amyloliquefaciens (n = 6), Bacillus paralicheniformis (n = 28), and Bacillus licheniformis (n = 35) strains from different sources, origins, and time periods were tested for the MICs for nine antimicrobial agents by the CLSI-recommended method (Mueller-Hinton broth, 35°C, for 18 to 20 h), as well as with a modified CLSI method (Iso-Sensitest [IST] broth, 37°C [35°C for B. megaterium], 24 h). This allows a proposal of species-specific epidemiological cutoff values (ECOFFs) for the interpretation of antimicrobial resistance in these species. MICs determined by the modified CLSI method were 2- to 16-fold higher than with the CLSI-recommended method for several antimicrobials. The MIC distributions differed between species for five of the nine antimicrobials. Consequently, use of the modified CLSI method and interpretation of resistance by use of species-specific ECOFFs is recommended. The genome sequences of all strains were determined and used for screening for resistance genes against the ResFinder database and for multilocus sequence typing. A putative chloramphenicol acetyltransferase (cat) gene was found in one B. megaterium strain with an elevated chloramphenicol MIC compared to the other B. megaterium strains. In B. velezensis and B. amyloliquefaciens, a putative tetracycline efflux gene, tet(L), was found in all strains (n = 27) with reduced tetracycline susceptibility but was absent in susceptible strains. All B. paralicheniformis and 23% of B. licheniformis strains had elevated MICs for erythromycin and harbored ermD The presence of these resistance genes follows taxonomy suggesting they may be intrinsic rather than horizontally acquired. Reduced susceptibility to chloramphenicol, streptomycin, and clindamycin could not be explained in all species.IMPORTANCE When commercializing bacterial strains, like Bacillus spp., for feed applications or plant bioprotection, it is required that the strains are free of acquired antimicrobial resistance genes that could potentially spread to pathogenic bacteria, thereby adding to the pool of resistance genes that may cause treatment failures in humans or animals. Conversely, if antimicrobial resistance is intrinsic to a bacterial species, the risk of spreading horizontally to other bacteria is considered very low. Reliable susceptibility test methods and interpretation criteria at the species level are needed to accurately assess antimicrobial resistance levels. In the present study, tentative ECOFFs for five Bacillus species were determined, and the results showed that the variation in MICs followed the respective species. Moreover, putative resistance genes, which were detected by whole-genome sequencing and suggested to be intrinsic rather that acquired, could explain the resistance phenotypes in most cases.
Collapse
|
8
|
Abstract
ABSTRACT
Antimicrobial resistance among staphylococci of animal origin is based on a wide variety of resistance genes. These genes mediate resistance to many classes of antimicrobial agents approved for use in animals, such as penicillins, cephalosporins, tetracyclines, macrolides, lincosamides, phenicols, aminoglycosides, aminocyclitols, pleuromutilins, and diaminopyrimidines. In addition, numerous mutations have been identified that confer resistance to specific antimicrobial agents, such as ansamycins and fluoroquinolones. The gene products of some of these resistance genes confer resistance to only specific members of a class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents, including agents approved solely for human use. The resistance genes code for all three major resistance mechanisms: enzymatic inactivation, active efflux, and protection/modification/replacement of the cellular target sites of the antimicrobial agents. Mobile genetic elements, in particular plasmids and transposons, play a major role as carriers of antimicrobial resistance genes in animal staphylococci. They facilitate not only the exchange of resistance genes among members of the same and/or different staphylococcal species, but also between staphylococci and other Gram-positive bacteria. The observation that plasmids of staphylococci often harbor more than one resistance gene points toward coselection and persistence of resistance genes even without direct selective pressure by a specific antimicrobial agent. This chapter provides an overview of the resistance genes and resistance-mediating mutations known to occur in staphylococci of animal origin.
Collapse
|
9
|
He T, Shen Y, Schwarz S, Cai J, Lv Y, Li J, Feßler AT, Zhang R, Wu C, Shen J, Wang Y. Genetic environment of the transferable oxazolidinone/phenicol resistance gene optrA in Enterococcus faecalis isolates of human and animal origin. J Antimicrob Chemother 2016; 71:1466-73. [PMID: 26903276 DOI: 10.1093/jac/dkw016] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 01/11/2016] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Aim of this study was to analyse 17 non-related Enterococcus faecalis isolates of human and animal origin for the genetic environment of the novel oxazolidinone/phenicol resistance gene optrA. METHODS WGS and de novo assembly were conducted to analyse the flanking sequences of the optrA gene in the 17 E. faecalis isolates. When optrA was located on a plasmid, conjugation assays were performed to check whether the plasmids are conjugative and to confirm the resistance phenotype associated with these plasmids. RESULTS All nine optrA-carrying plasmids were conjugated into E. faecalis JH2-2 and the transconjugants exhibited the optrA-associated phenotype. In these plasmids, an IS1216E element was detected either upstream and/or downstream of the optrA gene. In eight plasmids, the phenicol exporter gene fexA was found upstream of optrA and in six plasmids, a novel erm(A)-related gene for macrolide-lincosamide-streptogramin B resistance was detected downstream of optrA. When located in the chromosomal DNA, the optrA gene was found downstream of the transcriptional regulator gene araC in four isolates, or downstream of the fexA gene in another four isolates. Integration of the optrA region into a Tn558-Tn554 hybrid, located in the chromosomal radC gene, was seen in two isolates. CONCLUSIONS The findings of the present study extend the current knowledge about the genetic environment of optrA and suggest that IS1216E elements play an important role in the dissemination of optrA among different types of enterococcal plasmids. The mechanism underlying the integration of optrA into the chromosomal DNA requires further investigation.
Collapse
Affiliation(s)
- Tao He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China Institute of Food Safety & Detection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yingbo Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Stefan Schwarz
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany
| | - Jiachang Cai
- Clinical Microbiology Laboratory, The Second Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou, China
| | - Yuan Lv
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Jun Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany
| | - Andrea T Feßler
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany
| | - Rong Zhang
- Clinical Microbiology Laboratory, The Second Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou, China
| | - Congming Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jianzhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Abstract
In staphylococci and other Firmicutes, resistance to numerous classes of antimicrobial agents, which are commonly used in human and veterinary medicine, is mediated by genes that are associated with mobile genetic elements. The gene products of some of these antimicrobial resistance genes confer resistance to only specific members of a certain class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents. The resistance mechanisms specified by the resistance genes fall into any of three major categories: active efflux, enzymatic inactivation, and modification/replacement/protection of the target sites of the antimicrobial agents. Among the mobile genetic elements that carry such resistance genes, plasmids play an important role as carriers of primarily plasmid-borne resistance genes, but also as vectors for nonconjugative and conjugative transposons that harbor resistance genes. Plasmids can be exchanged by horizontal gene transfer between members of the same species but also between bacteria belonging to different species and genera. Plasmids are highly flexible elements, and various mechanisms exist by which plasmids can recombine, form cointegrates, or become integrated in part or in toto into the chromosomal DNA or into other plasmids. As such, plasmids play a key role in the dissemination of antimicrobial resistance genes within the gene pool to which staphylococci and other Firmicutes have access. This chapter is intended to provide an overview of the current knowledge of plasmid-mediated antimicrobial resistance in staphylococci and other Firmicutes.
Collapse
|
11
|
Discovery of Novel MLSB Resistance Methylase Genes and Their Associated Genetic Elements in Staphylococci. CURRENT CLINICAL MICROBIOLOGY REPORTS 2016. [DOI: 10.1007/s40588-016-0030-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Fiedler S, Bender JK, Klare I, Halbedel S, Grohmann E, Szewzyk U, Werner G. Tigecycline resistance in clinical isolates of Enterococcus faecium is mediated by an upregulation of plasmid-encoded tetracycline determinants tet(L) and tet(M). J Antimicrob Chemother 2015; 71:871-81. [PMID: 26682961 DOI: 10.1093/jac/dkv420] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/05/2015] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Tigecycline represents one of the last-line therapeutics to combat multidrug-resistant bacterial pathogens, including VRE and MRSA. The German National Reference Centre for Staphylococci and Enterococci has received 73 tigecycline-resistant Enterococcus faecium and Enterococcus faecalis isolates in recent years. The precise mechanism of how enterococci become resistant to tigecycline remains undetermined. This study documents an analysis of the role of efflux pumps in tigecycline resistance in clinical isolates of Enterococcus spp. METHODS Various tigecycline MICs were found for the different isolates analysed. Tigecycline-resistant strains were analysed with respect to genome and transcriptome differences by means of WGS and RT-qPCR. Genes of interest were cloned and expressed in Listeria monocytogenes for verification of their functionality. RESULTS Detailed comparative whole-genome analyses of three isogenic strains, showing different levels of tigecycline resistance, revealed the major facilitator superfamily (MFS) efflux pump TetL and the ribosomal protection protein TetM as possible drug resistance proteins. Subsequent RT-qPCR confirmed up-regulation of the respective genes. A correlation of gene copy number and level of MIC was inferred from further qPCR analyses. Expression of both tet(L) and tet(M) in L. monocytogenes unequivocally demonstrated the potential to increase tigecycline MICs upon acquisition of either locus. CONCLUSIONS Our results indicate that increased expression of two tetracycline resistance determinants, a tet(L)-encoded MFS pump and a tet(M)-encoded ribosomal protection protein, is capable of conferring tigecycline resistance in enterococcal clinical isolates.
Collapse
Affiliation(s)
- S Fiedler
- Division of Nosocomial Pathogens and Antibiotic Resistances, National Reference Centre for Staphylococci and Enterococci, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Wernigerode, Germany
| | - J K Bender
- Division of Nosocomial Pathogens and Antibiotic Resistances, National Reference Centre for Staphylococci and Enterococci, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Wernigerode, Germany
| | - I Klare
- Division of Nosocomial Pathogens and Antibiotic Resistances, National Reference Centre for Staphylococci and Enterococci, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Wernigerode, Germany
| | - S Halbedel
- Division of Enteropathogenic Bacteria and Legionella, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Wernigerode, Germany
| | - E Grohmann
- Department of Life Sciences and Technology, Beuth University of Applied Sciences, Berlin, Germany Division of Infectious Diseases, University Medical Centre Freiburg, Freiburg, Germany
| | - U Szewzyk
- Environmental Microbiology, Technical University Berlin, Berlin, Germany
| | - G Werner
- Division of Nosocomial Pathogens and Antibiotic Resistances, National Reference Centre for Staphylococci and Enterococci, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Wernigerode, Germany
| |
Collapse
|
13
|
Miller WR, Munita JM, Arias CA. Mechanisms of antibiotic resistance in enterococci. Expert Rev Anti Infect Ther 2015; 12:1221-36. [PMID: 25199988 DOI: 10.1586/14787210.2014.956092] [Citation(s) in RCA: 383] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Multidrug-resistant (MDR) enterococci are important nosocomial pathogens and a growing clinical challenge. These organisms have developed resistance to virtually all antimicrobials currently used in clinical practice using a diverse number of genetic strategies. Due to this ability to recruit antibiotic resistance determinants, MDR enterococci display a wide repertoire of antibiotic resistance mechanisms including modification of drug targets, inactivation of therapeutic agents, overexpression of efflux pumps and a sophisticated cell envelope adaptive response that promotes survival in the human host and the nosocomial environment. MDR enterococci are well adapted to survive in the gastrointestinal tract and can become the dominant flora under antibiotic pressure, predisposing the severely ill and immunocompromised patient to invasive infections. A thorough understanding of the mechanisms underlying antibiotic resistance in enterococci is the first step for devising strategies to control the spread of these organisms and potentially establish novel therapeutic approaches.
Collapse
Affiliation(s)
- William R Miller
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical School, 6431 Fannin St. Rm. MSB 2.112, Houston, TX 77030, USA
| | | | | |
Collapse
|
14
|
Wendlandt S, Feßler AT, Monecke S, Ehricht R, Schwarz S, Kadlec K. The diversity of antimicrobial resistance genes among staphylococci of animal origin. Int J Med Microbiol 2013; 303:338-49. [DOI: 10.1016/j.ijmm.2013.02.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
15
|
Wendlandt S, Li B, Ma Z, Schwarz S. Complete sequence of the multi-resistance plasmid pV7037 from a porcine methicillin-resistant Staphylococcus aureus. Vet Microbiol 2013; 166:650-4. [PMID: 23953027 DOI: 10.1016/j.vetmic.2013.07.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/18/2013] [Accepted: 07/20/2013] [Indexed: 10/26/2022]
Abstract
The aim of this study was to determine the complete sequence of the multi-resistance plasmid pV7037 to gain insight into the structure and organization of this plasmid. Of the four XbaI clones of pV7037, one clone of 17,577 bp has already been sequenced and shown to carry a multi-resistance gene cluster. The remaining three clones of approximately 12.5, 6.5 and 4.5 kb were sequenced, the entire plasmid sequence correctly assembled and investigated for reading frames. In addition, two reading frames one coding for an ABC transporter and the other coding for an rRNA methylase were cloned and expressed in a S. aureus host to see whether they confer antimicrobial resistance properties. Plasmid pV7037 proved to be 40,971 bp in size. Besides the previously determined resistance gene cluster, it carried a functionally active tet(L) gene for tetracycline resistance, a complete cadDX operon for cadmium resistance and also a variant of the β-lactamase transposon Tn552. Two single bp deletions, which resulted in frame shifts, functionally deleted the genes for the BlaZ β-lactamase and the signal transducer protein BlaR1 in this Tn552 variant of pV7037. Plasmid pV7037 seems to be composed of various parts previously known from plasmids and transposons of staphylococci and other Gram-positive bacteria. However, there are also parts of the plasmid which do not show any homology to so far known sequences deposited in the databases. The novel ABC transporter and rRNA methylase genes identified on pV7037 do not seem to play a role in antimicrobial resistance. The co-location of numerous antimicrobial resistance genes bears the risk of co-transfer and co-selection of resistance genes, but also persistence of resistance genes even if no direct selective pressure by the use of the respective antimicrobial agents is applied.
Collapse
Affiliation(s)
- Sarah Wendlandt
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany
| | | | | | | |
Collapse
|
16
|
Kadlec K, Feßler A, Hauschild T, Schwarz S. Novel and uncommon antimicrobial resistance genes in livestock-associated methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect 2012; 18:745-55. [DOI: 10.1111/j.1469-0691.2012.03842.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Biochemistry of bacterial multidrug efflux pumps. Int J Mol Sci 2012; 13:4484-4495. [PMID: 22605991 PMCID: PMC3344227 DOI: 10.3390/ijms13044484] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 03/09/2012] [Accepted: 03/15/2012] [Indexed: 11/17/2022] Open
Abstract
Bacterial pathogens that are multi-drug resistant compromise the effectiveness of treatment when they are the causative agents of infectious disease. These multi-drug resistance mechanisms allow bacteria to survive in the presence of clinically useful antimicrobial agents, thus reducing the efficacy of chemotherapy towards infectious disease. Importantly, active multi-drug efflux is a major mechanism for bacterial pathogen drug resistance. Therefore, because of their overwhelming presence in bacterial pathogens, these active multi-drug efflux mechanisms remain a major area of intense study, so that ultimately measures may be discovered to inhibit these active multi-drug efflux pumps.
Collapse
|
18
|
Schwarz S, Feßler AT, Hauschild T, Kehrenberg C, Kadlec K. Plasmid-mediated resistance to protein biosynthesis inhibitors in staphylococci. Ann N Y Acad Sci 2011; 1241:82-103. [DOI: 10.1111/j.1749-6632.2011.06275.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Persistent, toxin-antitoxin system-independent, tetracycline resistance-encoding plasmid from a dairy Enterococcus faecium isolate. Appl Environ Microbiol 2011; 77:7096-103. [PMID: 21784909 DOI: 10.1128/aem.05168-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A tetracycline-resistant (Tet(r)) dairy Enterococcus faecium isolate designated M7M2 was found to carry both tet(M) and tet(L) genes on a 19.6-kb plasmid. After consecutive transfer in the absence of tetracycline, the resistance-encoding plasmid persisted in 99% of the progenies. DNA sequence analysis revealed that the 19.6-kb plasmid contained 28 open reading frames (ORFs), including a tet(M)-tet(L)-mob gene cluster, as well as a 10.6-kb backbone highly homologous (99.9%) to the reported plasmid pRE25, but without an identified toxin-antitoxin (TA) plasmid stabilization system. The derived backbone plasmid without the Tet(r) determinants exhibited a 100% retention rate in the presence of acridine orange, suggesting the presence of a TA-independent plasmid stabilization mechanism, with its impact on the persistence of a broad spectrum of resistance-encoding traits still to be elucidated. The tet(M)-tet(L) gene cluster from M7M2 was functional and transmissible and led to acquired resistance in Enterococcus faecalis OG1RF by electroporation and in Streptococcus mutans UA159 by natural transformation. Southern hybridization showed that both the tet(M) and tet(L) genes were integrated into the chromosome of S. mutans UA159, while the whole plasmid was transferred to and retained in E. faecalis OG1RF. Quantitative real-time reverse transcription-PCR (RT-PCR) indicated tetracycline-induced transcription of both the tet(M) and tet(L) genes of pM7M2. The results indicated that multiple mechanisms might have contributed to the persistence of antibiotic resistance-encoding genes and that the plasmids pM7M2, pIP816, and pRE25 are likely correlated evolutionarily.
Collapse
|
20
|
Hassan KA, Skurray RA, Brown MH. Active Export Proteins Mediating Drug Resistance in Staphylococci. J Mol Microbiol Biotechnol 2007; 12:180-96. [PMID: 17587867 DOI: 10.1159/000099640] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Drug resistance mediated by integral membrane transporters is an important mode of cellular resistance to cytotoxic agents across all classes of living organisms. Gram-positive bacteria, such as staphylococcal species, are not encapsulated by a selective outer membrane permeability barrier. Therefore, these organisms often employ integral membrane drug transport systems to maintain cellular concentrations of antimicrobials at subtoxic levels. Staphylococcal species, including the opportunistic human pathogen Staphylococcus aureus, encode a multitude of drug exporters, encompassing transporters from each of the five currently recognized families of bacterial drug resistance transporters. A number of these transporters are chromosomally encoded and allow the host cell to realize clinically significant levels of drug resistance after minor mutations to regulatory regions. Others are plasmid-encoded and can be easily passed between staphylococcal strains and species, or acquired from other Gram-positive genera. In combination, staphylococcal drug transporters potentiate resistance to a vast array of antimicrobial compounds, including macrolide, quinolone, tetracycline and streptogramin antibiotics, as well as a broad range of biocides, such as quaternary ammonium compounds, biguanidines and diamidines. An understanding of the genetic and molecular properties of drug transporters will lead to effective treatments of staphylococcal infections. Here we provide a detailed review of the active drug transporters of the staphylococci.
Collapse
Affiliation(s)
- Karl A Hassan
- School of Biological Sciences, University of Sydney, Sydney, Australia
| | | | | |
Collapse
|
21
|
Paramithiotis S, Melissari I, Drosinos EH. In vitro assessment of properties associated with the survival through the gastro-intestinal tract of staphylococci isolated from traditional sausage fermentation. Food Microbiol 2006; 23:663-71. [PMID: 16943066 DOI: 10.1016/j.fm.2005.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 11/08/2005] [Accepted: 11/17/2005] [Indexed: 11/24/2022]
Abstract
Thirteen Staphylococcus sp. strains, previously isolated from spontaneous sausage fermentation, were in vitro examined for properties associated with their ability to survive through the gastro-intestinal tract. None of the strains were able to survive exposure to pH 1 or pH 2, while for most of them, a population reduction, ranging from 77.3% to 99.0% and a surviving population from 1.7 x 10(8) to 9.0 x 10(6) was observed after exposure to pH 3. None of the strains exhibited bile salt hydrolase activity or production of antimicrobial compounds, while all of them were resistant to pancreatin. Only S. cohnii cohnii LQC 5112 was found to be alpha-haemolytic, seven other strains were beta-haemolytic and the rest gamma-haemolytic. All strains were sensitive to erythromycin, ampicillin (but S. intermedius LQC 5023) and chloramphenicol while most of them were sensitive to tetracycline. On the other hand, most of the strains were resistant to novobiocin. Furthermore, their aptitude, not only to withstand, but to proliferate in the presence of bile salts, as well, even at an acidic environment and their ability to adhere to stainless-steel plates, indicate the need for an in vivo study.
Collapse
Affiliation(s)
- Spiros Paramithiotis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Technology, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece.
| | | | | |
Collapse
|
22
|
Lodato PB, Rogers EJ, Lovett PS. A variation of the translation attenuation model can explain the inducible regulation of the pBC16 tetracycline resistance gene in Bacillus subtilis. J Bacteriol 2006; 188:4749-58. [PMID: 16788184 PMCID: PMC1482984 DOI: 10.1128/jb.01937-05] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the tet resistance gene from plasmid pBC16 is induced by the antibiotic tetracycline, and induction is independent of the native promoter for the gene. The nucleotide sequence at the 5' end of the tet mRNA (the leader region) is predicted to assume a complex secondary structure that sequesters the ribosome binding site for the tet gene. A spontaneous, constitutively expressed tet gene variant contains a mutation predicted to provide the tet gene with a nonsequestered ribosome binding site. Lastly, comparable levels of tet mRNA can be demonstrated in tetracycline-induced and uninduced cells. These results are consistent with the idea that the pBC16 tet gene is regulated by translation attenuation, a model originally proposed to explain the inducible regulation of the cat and erm genes in gram-positive bacteria. As with inducible cat and erm genes, the pBC16 tet gene is preceded by a translated leader open reading frame consisting of a consensus ribosome binding site and an ATG initiation codon, followed by 19 sense codons and a stop codon. Mutations that block translation of cat and erm leaders prevent gene expression. In contrast, we show that mutations that block translation of the tet leader result in constitutive expression. We provide evidence that translation of the tet leader peptide coding region blocks tet expression by preventing the formation of a secondary-structure complex that would, in the absence of leader translation, expose the tet ribosome binding site. Tetracycline is proposed to induce tet by blocking or slowing leader translation. The results indicate that tet regulation is a variation of the translation attenuation model.
Collapse
Affiliation(s)
- Patricia B Lodato
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | | | | |
Collapse
|
23
|
Bertrand S, Huys G, Yde M, D'Haene K, Tardy F, Vrints M, Swings J, Collard JM. Detection and characterization of tet(M) in tetracycline-resistant Listeria strains from human and food-processing origins in Belgium and France. J Med Microbiol 2006; 54:1151-1156. [PMID: 16278428 DOI: 10.1099/jmm.0.46142-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the present study, three Listeria monocytogenes strains and one Listeria innocua strain out of a collection of 241 Listeria isolates from human and food-processing sources were found to display resistance to tetracycline (TC) due to the presence of the tet(M) gene. Through sequence analysis, it was shown that tet(M) genes in two of the isolates belong to sequence homology group (SHG) II, a group comprising chromosomally encoded tet(M) genes previously found in Staphylococcus aureus and in lactobacilli. The tet(M) genes of the two other L. monocytogenes strains were associated with a member of the Tn916-Tn1545 family of conjugative transposons and were closely related to SHG III, which harbours enterococcal tet(M) genes associated with Tn916. One of these transposon-containing strains was able to transfer the tet(M) gene to Enterococcus faecalis recipient strain JH2-2. Collectively, these sequence and conjugation data indicate that the acquisition of tet(M) by Listeria strains may be triggered by successive transfers between other Gram-positive organisms.
Collapse
Affiliation(s)
- Sophie Bertrand
- Bacteriology Division, Scientific Institute of Public Health, 14 Wytsman street, B-1050 Brussels, Belgium 2,4Laboratory of Microbiology, Faculty of Sciences2 and BCCMTM/LMG Bacteria Collection4, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium 3AFSSA, 31 Av. Tony Garnier, 69364 Lyon cedex 07, France
| | - Geert Huys
- Bacteriology Division, Scientific Institute of Public Health, 14 Wytsman street, B-1050 Brussels, Belgium 2,4Laboratory of Microbiology, Faculty of Sciences2 and BCCMTM/LMG Bacteria Collection4, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium 3AFSSA, 31 Av. Tony Garnier, 69364 Lyon cedex 07, France
| | - Marc Yde
- Bacteriology Division, Scientific Institute of Public Health, 14 Wytsman street, B-1050 Brussels, Belgium 2,4Laboratory of Microbiology, Faculty of Sciences2 and BCCMTM/LMG Bacteria Collection4, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium 3AFSSA, 31 Av. Tony Garnier, 69364 Lyon cedex 07, France
| | - Klaas D'Haene
- Bacteriology Division, Scientific Institute of Public Health, 14 Wytsman street, B-1050 Brussels, Belgium 2,4Laboratory of Microbiology, Faculty of Sciences2 and BCCMTM/LMG Bacteria Collection4, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium 3AFSSA, 31 Av. Tony Garnier, 69364 Lyon cedex 07, France
| | - Florence Tardy
- Bacteriology Division, Scientific Institute of Public Health, 14 Wytsman street, B-1050 Brussels, Belgium 2,4Laboratory of Microbiology, Faculty of Sciences2 and BCCMTM/LMG Bacteria Collection4, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium 3AFSSA, 31 Av. Tony Garnier, 69364 Lyon cedex 07, France
| | - Martine Vrints
- Bacteriology Division, Scientific Institute of Public Health, 14 Wytsman street, B-1050 Brussels, Belgium 2,4Laboratory of Microbiology, Faculty of Sciences2 and BCCMTM/LMG Bacteria Collection4, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium 3AFSSA, 31 Av. Tony Garnier, 69364 Lyon cedex 07, France
| | - Jean Swings
- Bacteriology Division, Scientific Institute of Public Health, 14 Wytsman street, B-1050 Brussels, Belgium 2,4Laboratory of Microbiology, Faculty of Sciences2 and BCCMTM/LMG Bacteria Collection4, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium 3AFSSA, 31 Av. Tony Garnier, 69364 Lyon cedex 07, France
| | - Jean-Marc Collard
- Bacteriology Division, Scientific Institute of Public Health, 14 Wytsman street, B-1050 Brussels, Belgium 2,4Laboratory of Microbiology, Faculty of Sciences2 and BCCMTM/LMG Bacteria Collection4, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium 3AFSSA, 31 Av. Tony Garnier, 69364 Lyon cedex 07, France
| |
Collapse
|
24
|
Li Y, Dannelly HK. Inactivation of the putative tetracycline resistance gene HP1165 in Helicobacter pylori led to loss of inducible tetracycline resistance. Arch Microbiol 2006; 185:255-62. [PMID: 16482431 DOI: 10.1007/s00203-006-0093-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 01/17/2006] [Accepted: 01/17/2006] [Indexed: 12/11/2022]
Abstract
Tetracycline has been used with other antibiotics in treatment of Helicobacter pylori infection. However, tetracycline resistance has developed in H. pylori clinical isolates, rendering treatment failure. Mutations in 16S rRNA genes have been reported to mediate tetracycline resistance in some isolates. The diversity of tetracycline resistance cases suggests multiple genes are involved. HP1165, a putative tetracycline resistance gene in H. pylori 26695, displays 49.8% identity to the tetracycline efflux gene tetA (P) from Clostridium perfringens. To determine the function of the HP1165 gene in H. pylori, the tetracycline resistance phenotype was investigated, transcription of HP1165 was examined by RT-PCR, and a DeltaHP1165 mutant was generated by insertion of the pBCalpha3 plasmid. The results showed that strains harboring HP1165 were induced to intermediate level resistance in the laboratory (minimum inhibitory concentration=4-6 microg/ml). No mutation was found at or near the tetracycline binding sites of the 16S rRNA gene. The gene was transcribed both in the induced tetracycline resistant and wild type strains, indicating translational or posttranslational control of gene function. Mutation of HP1165 gene resulted in increased tetracycline susceptibility and loss of inducible tetracycline resistance, suggesting that the HP1165 gene is involved in the inducible tetracycline resistance in H. pylori.
Collapse
Affiliation(s)
- Yuhuan Li
- Department of Life Sciences, Indiana State University, 6th and Chestnut Streets, Terre Haute, IN 47809, USA
| | | |
Collapse
|
25
|
Michael GB, Cardoso M, Schwarz S. Identification of an aadA2 Gene Cassette from Salmonella enterica subsp. enterica Serovar Derby. ACTA ACUST UNITED AC 2005; 52:456-9. [PMID: 16364021 DOI: 10.1111/j.1439-0450.2005.00893.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During a study on Salmonella enterica subsp. enterica serovar Derby from slaughter-age pigs in Brazil, two epidemiologically unrelated multi-resistant S. Derby isolates were found to carry a class 1 integron with a single gene cassette. Sequence analysis confirmed that this gene cassette harboured an aadA2 gene. The aadA2 gene codes for an aminoglycoside adenyltransferase, which mediates resistance to the aminoglycoside streptomycin and the aminocyclitol spectinomycin. Although aadA2 gene cassettes are widely distributed among Salmonella, database searches identified an AadA2 protein indistinguishable from that of S. Derby only in single isolates of S. enterica subsp. enterica Enteritidis from France and S. enterica subsp. enterica Typhimurium from Japan. Structural analysis of the 59-base element revealed at least one base pair difference between the 59-base element of the aadA2 cassette from S. Derby and any of the 59-base elements deposited in the databases.
Collapse
Affiliation(s)
- G B Michael
- Institut für Tierzucht, Bundesforschungsanstalt für Landwirtschaft (FAL), Höltystrasse 10, 31535 Neustadt-Mariensee, Germany
| | | | | |
Collapse
|
26
|
Lawrence LE, Barrett JF. Efflux pumps in bacteria: overview, clinical relevance, and potential pharmaceutical target. Expert Opin Investig Drugs 2005; 7:199-217. [PMID: 15991952 DOI: 10.1517/13543784.7.2.199] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Trends in microbial resistance suggest a dramatic increase in the frequency of reports of multi-drug efflux pumps in bacteria and fungi. Although it is difficult to determine whether this increase is due to the increased attention given to this resistance mechanism, or an increase in frequency, efflux pumps are becoming an important consideration in resistance emergence. These efflux pumps comprise at least four different classes in Gram-positive and Gram-negative bacteria, as well as in Streptomyces and fungi. As more efflux pumps are characterised and studied, both biochemically and structurally, the opportunity for intervention may arise.
Collapse
Affiliation(s)
- L E Lawrence
- Bristol-Myers Squibb Pharmaceutical Research Institute, Wallingford, CT 06492, USA
| | | |
Collapse
|
27
|
Kehrenberg C, Catry B, Haesebrouck F, de Kruif A, Schwarz S. tet(L)-mediated tetracycline resistance in bovine Mannheimia and Pasteurella isolates. J Antimicrob Chemother 2005; 56:403-6. [PMID: 15972309 DOI: 10.1093/jac/dki210] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Tetracycline-resistant Mannheimia and Pasteurella isolates, which were negative for the tetracycline resistance genes (tet) commonly detected among these bacteria, were investigated for other tet genes present and their location. METHODS Mannheimia and Pasteurella isolates were investigated for their MICs of tetracycline and their plasmid content. Identification of tet genes was achieved by PCR. Plasmids mediating tetracycline resistance were identified by transformation and hybridization experiments. Plasmid pCCK3259 from Mannheimia haemolytica was sequenced completely and analysed for its structure and organization. RESULTS All tetracycline-resistant isolates carried the gene tet(L) either on plasmids or on the chromosome. Two M. haemolytica isolates and one Mannheimia glucosida isolate harboured a common 5.3 kb tet(L) plasmid, designated pCCK3259. This plasmid was similar to the tet(B)-carrying tetracycline resistance plasmid pHS-Tet from Haemophilus parasuis and the streptomycin/spectinomycin resistance plasmid pCCK647 from Pasteurella multocida in the parts coding for mobilization functions. The tet(L) gene was closely related to that of the Geobacillus stearothermophilus plasmid pTB19. However, the translational attenuator responsible for the tetracycline-inducible expression of tet(L) was missing in plasmid pCCK3259. A recombination site was identified downstream of tet(L), which might explain the integration of the tet(L) gene region into a basic pCCK3259 replicon. CONCLUSION A tet(L) gene was shown for the first time to be responsible for tetracycline resistance in Mannheimia and Pasteurella isolates. This report demonstrates a lateral transfer of a tetracycline efflux gene in Gram-negative bovine respiratory tract pathogens, probably originating from Gram-positive bacteria.
Collapse
Affiliation(s)
- Corinna Kehrenberg
- Institut für Tierzucht, Bundesforschungsanstalt für Landwirtschaft (FAL), Höltystr. 10, 31535 Neustadt-Mariensee, Germany
| | | | | | | | | |
Collapse
|
28
|
Martel A, Devriese LA, Cauwerts K, De Gussem K, Decostere A, Haesebrouck F. Susceptibility ofClostridium perfringensstrains from broiler chickens to antibiotics and anticoccidials. Avian Pathol 2004; 33:3-7. [PMID: 14681061 DOI: 10.1080/0307945031000163291] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Clostridium perfringens strains isolated in 2002 from the intestines of broiler chickens from 31 different farms located in Belgium were tested for susceptibility to 12 antibiotics used for therapy, growth promotion or prevention of coccidiosis. All strains were uniformly sensitive to the ionophore antibiotics monensin, lasalocid, salinomycin, maduramycin and narasin. All were sensitive to avilamycin, tylosin and amoxicillin, while flavomycin (bambermycin) showed low or no activity. Chlortetracycline and oxytetracycline were active at very low concentrations, but low-level acquired resistance was detected in 66% of the strains investigated. Fifty percent of these strains carried the tetP(B) resistance gene, while the tet(Q) gene was detected in only one strain. One strain with high-level resistance against tetracyclines carried the tet(M) gene. Sixty-three percent of the strains showed low-level resistance to lincomycin. The lnu(A) and lnu(B) genes were each only found in one strain. Compared with a similar investigation carried out in 1980, an increase was seen in resistance percentages with lincomycin (63% against 49%) and a slight decrease with tetracycline (66% against 74%).
Collapse
Affiliation(s)
- A Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 2001; 65:232-60 ; second page, table of contents. [PMID: 11381101 PMCID: PMC99026 DOI: 10.1128/mmbr.65.2.232-260.2001] [Citation(s) in RCA: 2513] [Impact Index Per Article: 109.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tetracyclines were discovered in the 1940s and exhibited activity against a wide range of microorganisms including gram-positive and gram-negative bacteria, chlamydiae, mycoplasmas, rickettsiae, and protozoan parasites. They are inexpensive antibiotics, which have been used extensively in the prophlylaxis and therapy of human and animal infections and also at subtherapeutic levels in animal feed as growth promoters. The first tetracycline-resistant bacterium, Shigella dysenteriae, was isolated in 1953. Tetracycline resistance now occurs in an increasing number of pathogenic, opportunistic, and commensal bacteria. The presence of tetracycline-resistant pathogens limits the use of these agents in treatment of disease. Tetracycline resistance is often due to the acquisition of new genes, which code for energy-dependent efflux of tetracyclines or for a protein that protects bacterial ribosomes from the action of tetracyclines. Many of these genes are associated with mobile plasmids or transposons and can be distinguished from each other using molecular methods including DNA-DNA hybridization with oligonucleotide probes and DNA sequencing. A limited number of bacteria acquire resistance by mutations, which alter the permeability of the outer membrane porins and/or lipopolysaccharides in the outer membrane, change the regulation of innate efflux systems, or alter the 16S rRNA. New tetracycline derivatives are being examined, although their role in treatment is not clear. Changing the use of tetracyclines in human and animal health as well as in food production is needed if we are to continue to use this class of broad-spectrum antimicrobials through the present century.
Collapse
Affiliation(s)
- I Chopra
- Antimicrobial Research Centre and Division of Microbiology, School of Biochemistry & Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | |
Collapse
|
31
|
Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 2001. [PMID: 11381101 DOI: 10.1016/s0022-3093(98)00783-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
Tetracyclines were discovered in the 1940s and exhibited activity against a wide range of microorganisms including gram-positive and gram-negative bacteria, chlamydiae, mycoplasmas, rickettsiae, and protozoan parasites. They are inexpensive antibiotics, which have been used extensively in the prophlylaxis and therapy of human and animal infections and also at subtherapeutic levels in animal feed as growth promoters. The first tetracycline-resistant bacterium, Shigella dysenteriae, was isolated in 1953. Tetracycline resistance now occurs in an increasing number of pathogenic, opportunistic, and commensal bacteria. The presence of tetracycline-resistant pathogens limits the use of these agents in treatment of disease. Tetracycline resistance is often due to the acquisition of new genes, which code for energy-dependent efflux of tetracyclines or for a protein that protects bacterial ribosomes from the action of tetracyclines. Many of these genes are associated with mobile plasmids or transposons and can be distinguished from each other using molecular methods including DNA-DNA hybridization with oligonucleotide probes and DNA sequencing. A limited number of bacteria acquire resistance by mutations, which alter the permeability of the outer membrane porins and/or lipopolysaccharides in the outer membrane, change the regulation of innate efflux systems, or alter the 16S rRNA. New tetracycline derivatives are being examined, although their role in treatment is not clear. Changing the use of tetracyclines in human and animal health as well as in food production is needed if we are to continue to use this class of broad-spectrum antimicrobials through the present century.
Collapse
Affiliation(s)
- I Chopra
- Antimicrobial Research Centre and Division of Microbiology, School of Biochemistry & Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | |
Collapse
|
32
|
Schwarz S, Roberts MC, Werckenthin C, Pang Y, Lange C. Tetracycline resistance in Staphylococcus spp. from domestic animals. Vet Microbiol 1998; 63:217-27. [PMID: 9851000 DOI: 10.1016/s0378-1135(98)00234-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
A total of 838 staphylococcal isolates representing 19 different species were obtained from cattle, cats, dogs, ducks, guinea pigs, horses, mink, pigeons, pigs, rabbits, and turkeys. From these 228 (27.2%) isolates were shown to be resistant to tetracycline and to carry one or two of the tetracycline resistance (tet) genes tet (K), tet (L), tet (M), or tet (O) with seven different distribution patterns. Additional resistances to one or more antibiotics were observed in 153 (67.1%) of the tetracycline resistant isolates. The tet (M) gene was found in 94.3% of the resistant S. intermedius isolates while the tet (K) gene predominated in most of the other staphylococcal species irrespective of the host animal. The tet (K) and tet (L) genes were located on plasmids while the tet (M) and tet (O) genes appeared to be associated with the chromosome.
Collapse
Affiliation(s)
- S Schwarz
- Institut für Tierzucht und Tierverhalten der Bundesforschungsanstalt für Landwirtschaft Braunschweig-Völkenrode (FAL), Celle, Germany.
| | | | | | | | | |
Collapse
|
33
|
Somkuti GA, Solaiman DK, Steinberg DH. Molecular characterization of the erythromycin resistance plasmid pPV142 from Staphylococcus simulans. FEMS Microbiol Lett 1998; 165:281-8. [PMID: 9742700 DOI: 10.1111/j.1574-6968.1998.tb13158.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The 2.5-kb erythromycin resistance (EmR) plasmid pPV142 of Staphylococcus simulans 13044 was isolated and characterized. Sequence analysis identified ORF1 and ORF2 encoding a 158-residue replication protein (Rep142) and a 244-residue erythromycin resistance protein (Erm, rRNA adenine N-6-methyltransferase), respectively. Structural analysis and Southern hybridization showed that the rep and ermM genes in pPV142 shared homology with the EmR plasmid pPV141 (2.4 kb) of S. chromogenes 3688 and other EmR plasmids known to exist in staphylococci and bacilli. Based on the presence of a 61-bp repeat upstream of the ermM gene, pPV142 is apparently a unique member of the pSN2 family of EmR plasmid able to express erythromycin resistance constitutively.
Collapse
Affiliation(s)
- G A Somkuti
- U.S. Department of Agriculture, ARS, Eastern Regional Research Center, Wyndmoor, PA 19038, USA.
| | | | | |
Collapse
|
34
|
Perreten V, Giampà N, Schuler-Schmid U, Teuber M. Antibiotic resistance genes in coagulase-negative staphylococci isolated from food. Syst Appl Microbiol 1998; 21:113-20. [PMID: 9741115 DOI: 10.1016/s0723-2020(98)80014-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Coagulase-negative staphylococci were isolated from different raw milk cheeses and raw meat products and screened for their antibiotic resistances. They were identified as Staphylococcus xylosus, S. lentus, S. caprae, S. epidemidis and S. haemolyticus. The most frequent resistances found were those to chloramphenicol, tetracycline, erythromycin and lincomycin. They have been characterized on the molecular level. The chloramphenicol resistance genes were localized in several S. xylosus and S. caprae on plasmids with sizes ranging from 3.8-kb to 4.3-kb and were identified as chloramphenicol acetyltransferase (cat). All the tetracycline resistant strains were identified as S. xylosus and harboured a 4.4-kb plasmid carrying the tetracycline efflux resistance gene (tetK). The two erythromycin/lincomycin resistant S. caprae and S. epidermidis strains did not hybridize with the MLSB resistance genes ermAM, ermA, ermB and ermC. Three erythromycin resistant Staphylococcus sp. strains harboured an erythromycin efflux resistance gene (msr) localized twice on a 18-kb plasmid and once on the chromosome. A S. haemolyticus strain showing resistance to both lincomycin and clindamycin harboured a linA gene-carrying 2.2-kb plasmid. Further resistances to gentamicin, penicillin and kanamycin were less frequently observed and yet not characterized on a molecular level.
Collapse
Affiliation(s)
- V Perreten
- Department of Food Science, Swiss Federal Institute Technology, Zurich, Switzerland
| | | | | | | |
Collapse
|
35
|
Fujihira E, Kimura T, Yamaguchi A. Roles of acidic residues in the hydrophilic loop regions of metal-tetracycline/H+ antiporter Tet(K) of Staphylococcus aureus. FEBS Lett 1997; 419:211-4. [PMID: 9428636 DOI: 10.1016/s0014-5793(97)01457-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Three transmembrane glutamic acid residues play essential roles in the metal-tetracycline/H+ antiporter Tet(K) of Staphylococcus aureus [Fujihira et al., FEBS Lett. 391 (1996) 243-246]. In the putative hydrophilic loop region of the Tet(K) and Tet(L) proteins, six acidic residues are conserved. Asp74, Asp200, Asp318 and Glu381 are located on the putative cytoplasmic side, and Asp39 and Glu345 on the putative periplasmic side. These residues were replaced by a neutral amino acid residue or a charge-conserved one. In contrast to the transmembrane glutamic acid residues, the replacement of the two glutamic acid residues (Glu345 and Glu381) did not affect the tetracycline resistance level. Out of the other four aspartic acid residues, the only essential residue is Asp318, any replacement of which resulted in complete loss of the tetracycline resistance and transport activity. Asp318 is located in cytoplasmic loop 10-11 in the putative 14-transmembrane-segment topology of Tet(K). In the case of the tetracycline exporters of Gram-negative bacteria, the only essential acidic residue in the cytoplasmic loop region is located in loop 2-3 [Yamaguchi et al., Biochemistry 31 (1992) 8344-8348]. It may be a general role for tetracycline efflux proteins that three transmembrane and one cytoplasmic acidic residues are mandatory for the tetracycline transport function.
Collapse
Affiliation(s)
- E Fujihira
- Department of Cell Membrane Biology, Institute of Scientific and Industrial Research, Osaka University, Japan
| | | | | |
Collapse
|
36
|
Okstad OA, Grønstad A, Lindbäck T, Kolstø AB. Insertional inactivation of a Tet(K)/Tet(L) like transporter does not eliminate tetracycline resistance in Bacillus cereus. FEMS Microbiol Lett 1997; 154:181-6. [PMID: 9311114 DOI: 10.1111/j.1574-6968.1997.tb12641.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bacillus cereus ATCC 10987 and ATCC 14579 can be induced to high levels of resistance to tetracycline. The chromosomal B. cereus gene bctl encodes a transmembrane protein with homology to Gram-positive tetracycline efflux proteins and relation to other members of the major facilitator superfamily of transport proteins. A mutant strain containing an insertionally inactivated bctl gene did not show impaired tetracycline resistance. No additional altered phenotype was observed in the mutant. Accumulation studies suggested that the resistance mechanism involves a reduced sensitivity to intracellular tetracycline.
Collapse
Affiliation(s)
- O A Okstad
- Biotechnology Centre of Oslo, University of Oslo, Blindern, Norway
| | | | | | | |
Collapse
|
37
|
Somkuti GA, Solaiman DK, Steinberg DH. Molecular properties of the erythromycin resistance plasmid pPV141 from Staphylococcus chromogenes. Plasmid 1997; 37:119-27. [PMID: 9169203 DOI: 10.1006/plas.1997.1278] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The 2.3-kb erythromycin resistance (EmR) plasmid pPV141 of Staphylococcus chromogenes 3688 was isolated and characterized. Nucleotide sequence analysis identified ORF1 and ORF2 separated by a 445-bp spacing, encoding a 158-residue replication protein (Rep141) and a 244-residue erythromycin resistance protein (Erm, rRNA adenine N-6-methyltransferase), respectively. Structural analysis and Southern hybridization showed that the rep and ermM genes in pPV141 shared homology with other known EmR plasmids. Based on sequence analysis, pPV141 was classified as a unique member of the pSN2 family of EmR plasmids.
Collapse
Affiliation(s)
- G A Somkuti
- U.S. Department of Agriculture, Eastern Regional Research Center, Wyndmoor, Pennsylvania 19038, USA
| | | | | |
Collapse
|
38
|
Roberts MC. Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol Rev 1996; 19:1-24. [PMID: 8916553 DOI: 10.1111/j.1574-6976.1996.tb00251.x] [Citation(s) in RCA: 354] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Tetracycline-resistant bacteria were first isolated in 1953 from Shigella dysenteriae, a bacterium which causes bacterial dysentery. Since then tetracycline-resistant bacterial have been found in increasing numbers of species and genera. This has resulted in reduced effectiveness of tetracycline therapy over time. Tetracycline resistance is normally due to the acquisition of new genes often associated with either a mobile plasmid or a transposon. These tetracycline resistance determinants are distinguishable both genetically and biochemically. Resistance is primarily due to either energy-dependent efflux of tetracycline or protection of the ribosomes from the action of tetracycline. Gram-negative tetracycline efflux proteins are linked to repressor proteins which in the absence of tetracycline block transcription of the repressor and structural efflux genes. In contrast, expression of the Gram-positive tetracycline efflux genes and some of the ribosomal protection genes appears to be regulated by attenuation of mRNA transcription. Specific tetracycline resistance genes have been identified in 32 Gram-negative and 22 Gram-positive genera. Tetracycline-resistant bacteria are found in pathogens, opportunistic and normal flora species. Tetracycline-resistant bacteria can be isolated from man, animals, food, and the environment. The nonpathogens in each of these ecosystems may play an important role as reservoirs for the antibiotic resistance genes. It is clear that if we are to reverse the trend toward increasingly antibiotic-resistant pathogenic bacteria we will need to change how antibiotics are used in both human and animal health and food production.
Collapse
Affiliation(s)
- M C Roberts
- Department of Pathobiology, School of Public Health and Community Medicine, University of Washington, Seattle 98195-7238, USA.
| |
Collapse
|
39
|
Fujihira E, Kimura T, Shiina Y, Yamaguchi A. Transmembrane glutamic acid residues play essential roles in the metal-tetracycline/H+ antiporter of Staphylococcus aureus. FEBS Lett 1996; 391:243-6. [PMID: 8764982 DOI: 10.1016/0014-5793(96)00743-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Three transmembrane aspartyl residues play essential roles in the transposon Tn10-encoded metal-tetracycline/H+ antiporter (Tet(B)) [Yamaguchi, A. et al. (1992) J. Biol. Chem. 267, 7490-7498]. The tetK gene-encoding tetracycline resistance protein (Tet(K)) of Staphylococcus aureus mediates metal-tetracycline/H+ antiport similarly to Tet(B); however, it has no transmembrane aspartyl residue. On the other hand, Tet(K) has three glutamyl residues, Glu-30, Glu-152 and Glu-397, in the putative transmembrane regions. In the present work, tet(K) gene was expressed in Escherichia coli and the transport activity was measured in everted membrane vesicles. When these glutamyl residues were replaced with Gln, the tetracycline transport activity was almost completely lost, indicating the important roles of these residues in Tet(K). In the case of Glu-397, even the charge-conserved mutation to Asp caused complete loss of the activity. On the other hand, the mutation of Glu-30 and Glu-152 to Asp resulted in significant retention of transport activity. These results are similar to those on the mutation of the three transmembrane aspartyl residues in Tet(B), indicating that the transmembrane glutamyl residues in Tet(K) play roles similar to those of the transmembrane aspartyl residues in Tet(B).
Collapse
Affiliation(s)
- E Fujihira
- Department of Cell Membrane Biology, Osaka University, Japan
| | | | | | | |
Collapse
|
40
|
Parish JH, Bentley J. Relationships between bacterial drug resistance pumps and other transport proteins. J Mol Evol 1996; 42:281-93. [PMID: 8919880 DOI: 10.1007/bf02198855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have used three reference sequences representative of bacterial drug resistance pumps and sugar transport proteins to collect the 91 most closely related sequences from a composite, nonredundant protein sequence database. Having eliminated certain very close relatives, the remainder were subjected to analysis and alignment by using two different similarity matrices: one of these was a matrix based on structural conservation of amino acid residues in proteins of known conformation and the other was based on the more familiar mutational matrix. Unrooted similarity trees for these proteins were constructed for each matrix and compared. A systematic analysis of the differences between these trees was undertaken and the sequences were analyzed for the presence or absence of certain sequence motifs. The results show that the clades created by the two methods are broadly comparable but that there are some clusters of sequences that are significantly different. Further analysis confirmed that (1) the sequences collected by this objective method are all known or putative 12-helix (in some cases reported as 14-helix) transmembrane proteins, (2) there is evidence for few cases of an origin based on gene duplication, (3) the bacterial drug resistance pumps are distributed in more than one clade and cannot be regarded as a definitive subset of these proteins, and that (4) the diversity is such that there is no evidence of a single ancestral protein. The possible extension of the methods to other cases of divergent protein sequences is discussed.
Collapse
Affiliation(s)
- J H Parish
- Department of Biochemistry and Molecular Biology, University of Leeds, United Kingdom
| | | |
Collapse
|
41
|
Chapter 22 Bacterial Na+/H+ antiporters — Molecular biology, biochemistry and physiology. HANDBOOK OF BIOLOGICAL PHYSICS 1996. [DOI: 10.1016/s1383-8121(96)80063-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Bodén Wästfelt MK, Flock JI. Incidence of the highly conserved fib gene and expression of the fibrinogen-binding (Fib) protein among clinical isolates of Staphylococcus aureus. J Clin Microbiol 1995; 33:2347-52. [PMID: 7494026 PMCID: PMC228410 DOI: 10.1128/jcm.33.9.2347-2352.1995] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have recently described a 19-kDa fibrinogen-binding protein, termed Fib, which is secreted into the extracellular medium by Staphylococcus aureus. In this study, the presence of the Fib protein and the fib gene among clinical isolates of S. aureus and among other staphylococcal species known to interact with fibrinogen was investigated. This task was pursued at the DNA, mRNA, and protein levels. It was found that the fib gene was unique to S. aureus and highly conserved at the nucleotide level. The Fib protein was produced by all S. aureus strains investigated but was not detected in all bovine mastitis strains, because of proteolytic degradation by simultaneously produced staphylococcal proteases. It was concluded that the fib gene was unique to S. aureus and that it could be used in the identification of S. aureus.
Collapse
|
43
|
Cheng J, Guffanti AA, Krulwich TA. The chromosomal tetracycline resistance locus of Bacillus subtilis encodes a Na+/H+ antiporter that is physiologically important at elevated pH. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)46994-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
44
|
Abstract
Resistance to tetracycline is generally due either to energy-dependent efflux of tetracycline or to protection of the bacterial ribosomes from the action of tetracycline. The genes that encode this resistance are normally acquired via transferable plasmids and/or transposons. Tet determinants have been found in a wide range of Gram-positive and Gram-negative bacteria and have reduced the effectiveness of therapy with tetracycline.
Collapse
Affiliation(s)
- M C Roberts
- Dept of Pathobiology, School of Public Health and Community Medicine, University of Washington, Seattle 98195
| |
Collapse
|
45
|
Olsvik B, Olsen I, Tenover FC. The tet(Q) gene in bacteria isolated from patients with refractory periodontal disease. ORAL MICROBIOLOGY AND IMMUNOLOGY 1994; 9:251-5. [PMID: 7478767 DOI: 10.1111/j.1399-302x.1994.tb00067.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Twenty-two tetracycline-resistant (tetr) anaerobic and facultative anaerobic bacteria isolated from periodontal pockets of 12 patients with refractory periodontitis were examined for the presence of the Tet Q determinant by DNA-DNA hybridization. Dot blots of bacterial DNA were tested with an intragenic digoxigenin-labelled tet(Q) probe consisting of a 1.45 kb EcoRI/PvuII fragment from plasmid pNFD13-2. Southern blots of chromosomal DNA digested with the restriction enzyme EcoRI were also examined. The tet(Q) probe hybridized with DNA from 8 of the 22 tetr strains, including 2 Prevotella intermedia strains and one strain each of Prevotella nigrescens, Prevotella loescheii, Prevotella veroralis and Prevotella melaninogenica. The tetr strains of Mitsuokella dentalis and Capnocytophaga ochracea also hybridized with the probe. The lack of discernible plasmid DNA in all the probe-positive isolates suggests that these tetracycline-resistance genes were chromosomally encoded. The probe hybridized with a different size fragment in all the isolates. This study extends the number of species that carry the tet(Q) gene to include several outside the genera Prevotella and Bacteroides.
Collapse
|
46
|
Schwarz S. Emerging chloramphenicol resistance in Staphylococcus lentus from mink following chloramphenicol treatment: characterisation of the resistance genes. Vet Microbiol 1994; 41:51-61. [PMID: 7801525 DOI: 10.1016/0378-1135(94)90135-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A total of 26 staphylococcal strains isolated from mink with urinary tract infections as well as from the environment of the mink were examined for antibiotic resistance and prevalence of plasmids mediating resistance to the antibiotics applied for prophylactic or therapeutic purposes. Chloramphenicol resistance (Cmr) which occurred in fourteen of the eighteen Staphylococcus lentus strains, but in none of the Staphylococcus intermedius and Staphylococcus xylosus strains, was shown to be mediated by small plasmids of 3.6 to 4.6 kb. On the basis of restriction endonuclease mapping and hybridization experiments, four different types of Cmr plasmids, designated pSCS14-17, could be distinguished. All these plasmids conferred Cmr by encoding the Cm-inactivating enzyme chloramphenicol acetyltransferase (CAT). In all four types of Cmr plasmids from S. lentus, the expression of the cat gene was inducible with Cm, as demonstrated by enzymatic assay and polyacrylamide gel electrophoresis.
Collapse
Affiliation(s)
- S Schwarz
- Institut für Kleintierforschung der Bundesforschungsanstalt für Landwirtschaft (FAL), Celle, Germany
| |
Collapse
|
47
|
Schwarz S, Noble WC. Tetracycline resistance genes in staphylococci from the skin of pigs. THE JOURNAL OF APPLIED BACTERIOLOGY 1994; 76:320-6. [PMID: 8200858 DOI: 10.1111/j.1365-2672.1994.tb01635.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Forty-seven tetracycline-resistant staphylococci from the skin of pigs were examined for genes mediating this resistance. Seventeen isolates were also resistant to minocycline and all hybridized with the tet(M) gene; 23 carried the tet(K) gene and 10 the tet(L) gene. Three carried more than one gene and two did not hybridize with any of the three probes tested. Maps were constructed for two plasmids carrying the tet(K) gene, all were very similar in size (4.35-4.7 kb) and structure and closely resembled the plasmid pT181. Four plasmids which bore the tet(L) gene differed in size, ranging from 4.3 to 11.5 kb, and were dissimilar in structure except for the portion bearing the gene.
Collapse
Affiliation(s)
- S Schwarz
- Institut für Kleintierforschung der Bundesforschungsanstalt für Landwirtschaft (FAL), Celle, Germany
| | | |
Collapse
|
48
|
|
49
|
Guay GG, Rothstein DM. Expression of the tetK gene from Staphylococcus aureus in Escherichia coli: comparison of substrate specificities of TetA(B), TetA(C), and TetK efflux proteins. Antimicrob Agents Chemother 1993; 37:191-8. [PMID: 8452348 PMCID: PMC187637 DOI: 10.1128/aac.37.2.191] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The tetK gene, which encodes a tetracycline efflux pump from Staphylococcus aureus, was expressed in Escherichia coli by using an inducible, low-level expression system. The tetK gene, as well as the tetA(B) gene from the transposon Tn10 and the tetA(C) gene from plasmid pBR322, was subjected to the regulatory control of the lac repressor, and resistance to tetracycline was measured as a function of the isopropyl-beta-D-thiogalactopyranoside concentration. The maximum resistance of the E. coli strain containing the tetK construct was comparable to the maximum resistance of the strain containing the tetA(C) construct but was less than the resistance of the strain containing the tetA(B) construct. Overexpression of the tetK, tetA(B), or tetA(C) genes was toxic. When expression was regulated so that resistance to tetracycline was comparable, then the TetA(B) and TetA(C) proteins conferred very similar levels of resistance to a variety of tetracycline derivatives. In contrast, the TetK protein was less capable of conferring resistance to the tetracycline derivatives minocycline, 6-deoxy-6-demethyltetracycline, and doxycycline. The implications for the recognition of various tetracycline substituents by the TetK protein are discussed.
Collapse
Affiliation(s)
- G G Guay
- Department of Microbial Genetics, Lederle Laboratories, Pearl River, New York 10965
| | | |
Collapse
|
50
|
Abstract
A small 4.35 kb plasmid, designated pSTS4, was isolated from a multiresistant Staphylococcus haemolyticus culture. It conferred resistance to tetracycline as shown by protoplast transformation. pSTS4 was further characterized by restriction endonuclease analyses and a preliminary restriction map constructed. It shared some structural similarities with previously described small TcR plasmids from other staphylococcal species of human and animal origin. pSTS4 encoded two proteins of approximately 37 kDa and 52 kDa as revealed by combined in vitro transcription/translation assays.
Collapse
Affiliation(s)
- S Schwarz
- Institut für Bakteriologie und Immunologie, Justus-Liebig-Universität, Giessen, Germany
| |
Collapse
|