1
|
Zhang SG, Wan YQ, Zhang WH. Discovery of Dehydroabietylamine Derivatives as Antibacterial and Antifungal Agents. JOURNAL OF NATURAL PRODUCTS 2024; 87:924-934. [PMID: 38513270 DOI: 10.1021/acs.jnatprod.3c01213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
A diverse array of biologically active derivatives was derived by modifying the chemically active sites of dehydroabietylamine. Herein, we describe the synthesis of a new series of C-19-arylated dehydroabietylamine derivatives using a palladium-catalyzed C(sp3)-H activation reaction. Five analogues (3b, 3d, 3h, 3n, and 4a) exhibited antibacterial activity against Escherichia coli. Compound 4a exhibited strong inhibitory activity against DNA Topo II and Topo IV. Molecular docking modeling indicated that it can bind effectively to the target through interactions with amino acid residues. The synthesized compounds were tested in vitro for their antifungal activity against six common phytopathogenic fungi. The mechanism of action of compound 4c against Rhizoctorzia solani was investigated, revealing that it disrupts the morphology of the mycelium and enhances cell membrane permeability.
Collapse
Affiliation(s)
- Shu-Guang Zhang
- Jiangsu Key Laboratory of Pesticide, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yu-Qiang Wan
- Jiangsu Key Laboratory of Pesticide, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Wei-Hua Zhang
- Jiangsu Key Laboratory of Pesticide, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| |
Collapse
|
2
|
Bonvin E, Personne H, Paschoud T, Reusser J, Gan BH, Luscher A, Köhler T, van Delden C, Reymond JL. Antimicrobial Peptide-Peptoid Hybrids with and without Membrane Disruption. ACS Infect Dis 2023; 9:2593-2606. [PMID: 38062792 PMCID: PMC10714400 DOI: 10.1021/acsinfecdis.3c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023]
Abstract
Among synthetic analogues of antimicrobial peptides (AMPs) under investigation to address antimicrobial resistance, peptoids (N-alkylated oligoglycines) have been reported to act both by membrane disruption and on intracellular targets. Here we gradually introduced peptoid units into the membrane-disruptive undecapeptide KKLLKLLKLLL to test a possible transition toward intracellular targeting. We found that selected hybrids containing up to five peptoid units retained the parent AMP's α-helical folding, membrane disruption, and antimicrobial effects against Gram-negative bacteria including multidrug-resistant (MDR) strains of Pseudomonas aeruginosa and Klebsiella pneumoniae while showing reduced hemolysis and cell toxicities. Furthermore, some hybrids containing as few as three peptoid units as well as the full peptoid lost folding, membrane disruption, hemolysis, and cytotoxicity but displayed strong antibacterial activity under dilute medium conditions typical for proline-rich antimicrobial peptides (PrAMPs), pointing to intracellular targeting. These findings parallel previous reports that partially helical amphiphilic peptoids are privileged oligomers for antibiotic development.
Collapse
Affiliation(s)
- Etienne Bonvin
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Hippolyte Personne
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Thierry Paschoud
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Jérémie Reusser
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Bee-Ha Gan
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Alexandre Luscher
- Department
of Microbiology and Molecular Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Service of
Infectious Diseases, University Hospital
of Geneva, CH-1211 Geneva, Switzerland
| | - Thilo Köhler
- Department
of Microbiology and Molecular Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Service of
Infectious Diseases, University Hospital
of Geneva, CH-1211 Geneva, Switzerland
| | - Christian van Delden
- Department
of Microbiology and Molecular Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Service of
Infectious Diseases, University Hospital
of Geneva, CH-1211 Geneva, Switzerland
| | - Jean-Louis Reymond
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| |
Collapse
|
3
|
Qi P, Wang N, Zhang T, Feng Y, Zhou X, Zeng D, Meng J, Liu L, Jin L, Yang S. Anti-Virulence Strategy of Novel Dehydroabietic Acid Derivatives: Design, Synthesis, and Antibacterial Evaluation. Int J Mol Sci 2023; 24:2897. [PMID: 36769220 PMCID: PMC9917773 DOI: 10.3390/ijms24032897] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Anti-virulence strategies are attractive and interesting strategies for controlling bacterial diseases because virulence factors are fundamental to the infection process of numerous serious phytopathogenics. To extend the novel anti-virulence agents, a series of dehydroabietic acid (DAA) derivatives decorated with amino alcohol unit were semi-synthesized based on structural modification of the renewable natural DAA and evaluated for their antibacterial activity against Xanthomonas oryzae pv. oryzae (Xoo), Xanthomonas axonopodis pv. citri (Xac), and Pseudomonas syringae pv. actinidiae (Psa). Compound 2b showed the most promising antibacterial activity against Xoo with an EC50 of 2.7 μg mL-1. Furthermore, compound 2b demonstrated remarkable control effectiveness against bacterial leaf blight (BLB) in rice, with values of 48.6% and 61.4% for curative and protective activities. In addition, antibacterial behavior suggested that compound 2b could suppress various virulence factors, including EPS, biofilm, swimming motility, and flagella. Therefore, the current study provided promising lead compounds for novel bactericides discovery by inhibiting bacterial virulence factors.
Collapse
Affiliation(s)
| | | | | | | | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | | | | | | | | | | |
Collapse
|
4
|
Akhter S, Concepcion O, Fernández de la Torre A, Ali A, Rauf Raza A, Eman R, Khalid M, Fayyaz ur Rehman M, Safwan Akram M, Ali HM. Synthesis, Spectroscopic Characterization, DFT and Molecular Dynamics of Quinoline-based Peptoids. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
5
|
Pratt EJ, Mancera-Andrade EI, Bicker KL. Synthesis and Characterization of Derivatives of the Antifungal Peptoid RMG8-8. ACS OMEGA 2022; 7:36663-36671. [PMID: 36278036 PMCID: PMC9583092 DOI: 10.1021/acsomega.2c04778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Cryptococcal meningitis, caused by the fungal pathogen Cryptococcus neoformans, is a devastating disease with a mortality rate of over 80%. Due to the increasing prevalence of resistance to antifungals and the high mammalian toxicity of current treatments, the development of new antifungal therapies is vital. In an effort to improve the biological properties of a previously discovered antifungal peptoid, termed RMG8-8, an iterative structure-activity relationship study was conducted. This three-round study sought to optimize the structure of RMG8-8 by focusing on three main structural components: the lipophilic tail, aliphatic side chains, and aromatic side chains. In addition to antifungal testing against C. neoformans, cytotoxicity testing was also performed on all derivatives against human liver cells, and select promising compounds were tested for hemolytic activity against human red blood cells. A number of derivatives containing unique aliphatic or aromatic side chains had antifungal activity similar to RMG8-8 (MIC = 1.56 μg/mL), but all of these compounds were more toxic than RMG8-8. While no derivative was improved across all biological tests, modest improvements were made to the hemolytic activity with compound 9, containing isobutyl side chains in positions 2 and 5, compared to RMG8-8 (HC10 = 130 and 75 μg/mL, respectively). While this study did not yield a dramatically optimized RMG8-8 derivative, this result was not totally unexpected given the remarkable selectivity of this compound from discovery. Nonetheless, this study is an important step in the development of RMG8-8 as a viable antifungal therapeutic.
Collapse
|
6
|
Recent advances in development of poly (dimethylaminoethyl methacrylate) antimicrobial polymers. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Herlan CN, Feser D, Schepers U, Bräse S. Bio-instructive materials on-demand - combinatorial chemistry of peptoids, foldamers, and beyond. Chem Commun (Camb) 2021; 57:11131-11152. [PMID: 34611672 DOI: 10.1039/d1cc04237h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Combinatorial chemistry allows for the rapid synthesis of large compound libraries for high throughput screenings in biology, medicinal chemistry, or materials science. Especially compounds from a highly modular design are interesting for the proper investigation of structure-to-activity relationships. Permutations of building blocks result in many similar but unique compounds. The influence of certain structural features on the entire structure can then be monitored and serve as a starting point for the rational design of potent molecules for various applications. Peptoids, a highly diverse class of bioinspired oligomers, suit perfectly for combinatorial chemistry. Their straightforward synthesis on a solid support using repetitive reaction steps ensures easy handling and high throughput. Applying this modular approach, peptoids are readily accessible, and their interchangeable side-chains allow for various structures. Thus, peptoids can easily be tuned in their solubility, their spatial structure, and, consequently, their applicability in various fields of research. Since their discovery, peptoids have been applied as antimicrobial agents, artificial membranes, molecular transporters, and much more. Studying their three-dimensional structure, various foldamers with fascinating, unique properties were discovered. This non-comprehensive review will state the most interesting discoveries made over the past years and arouse curiosity about what may come.
Collapse
Affiliation(s)
- Claudine Nicole Herlan
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Dominik Feser
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Ute Schepers
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 6, 76131 Karlsruhe, Germany
| | - Stefan Bräse
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. .,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
8
|
Xie J, Zhou M, Qian Y, Cong Z, Chen S, Zhang W, Jiang W, Dai C, Shao N, Ji Z, Zou J, Xiao X, Liu L, Chen M, Li J, Liu R. Addressing MRSA infection and antibacterial resistance with peptoid polymers. Nat Commun 2021; 12:5898. [PMID: 34625571 PMCID: PMC8501045 DOI: 10.1038/s41467-021-26221-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 09/17/2021] [Indexed: 01/21/2023] Open
Abstract
Methicillin-Resistant Staphylococcus aureus (MRSA) induced infection calls for antibacterial agents that are not prone to antimicrobial resistance. We prepare protease-resistant peptoid polymers with variable C-terminal functional groups using a ring-opening polymerization of N-substituted N-carboxyanhydrides (NNCA), which can provide peptoid polymers easily from the one-pot synthesis. We study the optimal polymer that displays effective activity against MRSA planktonic and persister cells, effective eradication of highly antibiotic-resistant MRSA biofilms, and potent anti-infectious performance in vivo using the wound infection model, the mouse keratitis model, and the mouse peritonitis model. Peptoid polymers show insusceptibility to antimicrobial resistance, which is a prominent merit of these antimicrobial agents. The low cost, convenient synthesis and structure diversity of peptoid polymers, the superior antimicrobial performance and therapeutic potential in treating MRSA infection altogether imply great potential of peptoid polymers as promising antibacterial agents in treating MRSA infection and alleviating antibiotic resistance. Antibiotic resistance is a major issue in medicine and new antimicrobials for treating resistant infection are needed. Here, the authors report on antibacterial peptoid polymers, prepared via NNCA ring-opening polymerization, demonstrating antibacterial function against MRSA in vitro and in in vivo infection models.
Collapse
Affiliation(s)
- Jiayang Xie
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Min Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Yuxin Qian
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Zihao Cong
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Sheng Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Wenjing Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Weinan Jiang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Chengzhi Dai
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Ning Shao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Zhemin Ji
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Jingcheng Zou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Ximian Xiao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Longqiang Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Minzhang Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Jin Li
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 200237, Shanghai, China. .,Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China.
| |
Collapse
|
9
|
Makhlynets OV, Caputo GA. Characteristics and therapeutic applications of antimicrobial peptides. BIOPHYSICS REVIEWS 2021; 2:011301. [PMID: 38505398 PMCID: PMC10903410 DOI: 10.1063/5.0035731] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022]
Abstract
The demand for novel antimicrobial compounds is rapidly growing due to the phenomenon of antibiotic resistance in bacteria. In response, numerous alternative approaches are being taken including use of polymers, metals, combinatorial approaches, and antimicrobial peptides (AMPs). AMPs are a naturally occurring part of the immune system of all higher organisms and display remarkable broad-spectrum activity and high selectivity for bacterial cells over host cells. However, despite good activity and safety profiles, AMPs have struggled to find success in the clinic. In this review, we outline the fundamental properties of AMPs that make them effective antimicrobials and extend this into three main approaches being used to help AMPs become viable clinical options. These three approaches are the incorporation of non-natural amino acids into the AMP sequence to impart better pharmacological properties, the incorporation of AMPs in hydrogels, and the chemical modification of surfaces with AMPs for device applications. These approaches are being developed to enhance the biocompatibility, stability, and/or bioavailability of AMPs as clinical options.
Collapse
Affiliation(s)
- Olga V. Makhlynets
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, USA
| | | |
Collapse
|
10
|
Green RM, Bicker KL. Evaluation of peptoid mimics of short, lipophilic peptide antimicrobials. Int J Antimicrob Agents 2020; 56:106048. [PMID: 32540430 DOI: 10.1016/j.ijantimicag.2020.106048] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/04/2020] [Accepted: 06/06/2020] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Antimicrobial peptides are proving to be promising lead compounds for therapeutics. The major disadvantage of antimicrobial peptides is their proteolytic instability in the body, with half-lives averaging less than an hour. Peptoids, or N-substituted glycines, have emerged as a promising field of peptidomimetics by retaining the beneficial properties of antimicrobial peptides while improving their stability. METHODS This study evaluated peptoid derivatives of ultra-short lipophilic antimicrobial peptides, comparing their potency side-by-side with the most prevalent multidrug-resistant bacteria (ESKAPE) and yeast pathogens (Candida albicans and Cryptococcus neoformans). RESULTS Both peptide and peptoid counterparts were most effective against Gram-positive bacteria with minimum inhibitory concentration (MIC) values as low as 1.6 and 6.3 µg/mL, respectively. In general, peptides retained better antimicrobial activity than their peptoid counterparts; however, certain peptoids proved to be more effective than peptides against Gram-negative bacteria. For example, peptoid MG10 displayed an MIC of 6.3 µg/mL against Pseudomonas aeruginosa compared with the peptide counterpart with an MIC of 100 µg/mL. All tested compounds were more potent against Cryptococcus neoformans compared with Candida albicans. Cytotoxicity analysis indicated that peptoids were generally slightly less toxic than their peptide counterparts. Additionally, trypsin rapidly degraded one of the evaluated peptides, while having no effect on comparable peptoids, demonstrating the proteolytic stability of peptoids. CONCLUSION These results indicate that direct conversion of lipopeptides to lipopeptoids can result in compounds with comparable antimicrobial activity, favorable mammalian cell toxicity, and excellent proteolytic stability.
Collapse
Affiliation(s)
- R Madison Green
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, USA
| | - Kevin L Bicker
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, USA.
| |
Collapse
|
11
|
Synthesis, Characterization and Bioassay of Novel Substituted 1-(3-(1,3-Thiazol-2-yl)phenyl)-5-oxopyrrolidines. Molecules 2020; 25:molecules25102433. [PMID: 32456041 PMCID: PMC7288019 DOI: 10.3390/molecules25102433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/27/2022] Open
Abstract
Thiazole derivatives attract the attention of scientists both in the field of organic synthesis and bioactivity research due to their high biological activity. In the present study, thiazole ring was obtained by the interaction of 1-(4-(bromoacetyl)phenyl)-5-oxopyrrolidine-3-carboxylic acid with thiocarbamide or benzenecarbothioamide, as well as tioureido acid. A series of substituted 1-(3-(1,3-thiazol-2-yl)phenyl)-5-oxopyrrolidines with pyrrolidinone, thiazole, pyrrole, 1,2,4-triazole, oxadiazole and benzimidazole heterocyclic fragments were synthesized and their antibacterial properties were evaluated against Gram-positive strains of Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes and Gram-negative Pseudomonas aeruginosa, Escherichia coli and Salmonella enterica enteritidis. The vast majority of compounds exhibited between twofold and 16-fold increased antibacterial effect against the test-cultures when compared with Oxytetracycline.
Collapse
|
12
|
Li J, Liu C. Synthesis, antitumor and DNA cleavage activities of a novel class of dehydroabietylamine derivatives. Heliyon 2020; 6:e03390. [PMID: 32099921 PMCID: PMC7031308 DOI: 10.1016/j.heliyon.2020.e03390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/22/2019] [Accepted: 02/05/2020] [Indexed: 11/06/2022] Open
Abstract
Previous studies have reported higher biological activity of dehydrorosinamine derivatives. In order to further synthesize novel compounds with higher biological activity, a series of novel compounds containing benzo-azepine structures were synthesized from dehydroabietylamine in good yields in this study. The structures of synthesized compounds were identified by infra red (IR), 1H-NMR, 13C-NMR, and mass spectra (MS) analysis. The antitumor activities of the target compounds against L02 and HepG2 cells were studied. Furthermore, the dehydroabietylamine derivatives were studied on plasmid DNA cleavage activities. The results showed that the synthesized target compound exhibit antitumor and DNA cleavage activities against plasmid DNA (Escherichia coli). Our results further demonstrate the relationship between the chemical structure and biological function of the synthesized compounds.
Collapse
Affiliation(s)
- Jincai Li
- Department of Pharmacy, Bozhou Vocational and Technical College, Bozhou 236800, PR China
| | - Chaoxiang Liu
- Department of Pharmacy, Bozhou Vocational and Technical College, Bozhou 236800, PR China.,College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| |
Collapse
|
13
|
Synthesis and antibacterial activity of 3-substituted 1-(2-methyl-5-nitrophenyl)-5-oxopyrrolidine derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03916-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Spicer SK, Subramani A, Aguila AL, Green RM, McClelland EE, Bicker KL. Toward a clinical antifungal peptoid: Investigations into the therapeutic potential of AEC5. Biopolymers 2019; 110:e23276. [PMID: 30938841 PMCID: PMC6660985 DOI: 10.1002/bip.23276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 01/08/2023]
Abstract
Cryptococcus neoformans is a fungal pathogen that causes cryptococcal meningitis in immunocompromised individuals. Existing antifungal treatment plans have high mammalian toxicity and increasing drug resistance, demonstrating the dire need for new, nontoxic therapeutics. Antimicrobial peptoids are one alternative to combat this issue. Our lab has recently identified a tripeptoid, AEC5, with promising efficacy and selectivity against C. neoformans. Here, we report studies into the broad-spectrum efficacy, killing kinetics, mechanism of action, in vivo half-life, and subchronic toxicity of this compound. Most notably, these studies have demonstrated that AEC5 rapidly reduces fungal burden, killing all viable fungi within 3 hours. Additionally, AEC5 has an in vivo half-life of 20+ hours and no observable in vivo toxicity following 28 days of daily injections. This research represents an important step in the characterization of AEC5 as a practical treatment option against C. neoformans infections.
Collapse
Affiliation(s)
- Sabrina K. Spicer
- Middle Tennessee State University, Department of Chemistry, 1301 E. Main St., Murfreesboro, TN 37132
| | - Aarthi Subramani
- Middle Tennessee State University, Department of Biology, 1301 E. Main St., Murfreesboro, TN 37132
| | - Angelica L. Aguila
- Middle Tennessee State University, Department of Chemistry, 1301 E. Main St., Murfreesboro, TN 37132
| | - R. Madison Green
- Middle Tennessee State University, Department of Chemistry, 1301 E. Main St., Murfreesboro, TN 37132
| | - Erin E. McClelland
- Middle Tennessee State University, Department of Biology, 1301 E. Main St., Murfreesboro, TN 37132
| | - Kevin L. Bicker
- Middle Tennessee State University, Department of Chemistry, 1301 E. Main St., Murfreesboro, TN 37132
| |
Collapse
|
15
|
Hansen AM, Skovbakke SL, Christensen SB, Perez-Gassol I, Franzyk H. Studies on acid stability and solid-phase block synthesis of peptide-peptoid hybrids: ligands for formyl peptide receptors. Amino Acids 2018; 51:205-218. [PMID: 30267164 DOI: 10.1007/s00726-018-2656-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/17/2018] [Indexed: 12/14/2022]
Abstract
α-Peptoids as well as peptide/α-peptoid hybrids and peptide/β-peptoid hybrids constitute major classes of proteolytically stable peptidomimetics that have been extensively investigated as mimetics of biologically active peptides. Representatives of lipidated peptide/β-peptoid hybrids have been identified as promising immunomodulatory lead compounds, and hence access to these via protocols suitable for gram-scale synthesis is warranted to enable animal in vivo studies. Recent observations indicated that several byproducts appear in crude mixtures of relatively short benzyl-based peptide/β-peptoid oligomers, and that these were most predominant when the β-peptoid units displayed an α-chiral benzyl side chain. This prompted an investigation of their stability under acidic conditions. Simultaneous deprotection and cleavage of peptidomimetics containing either α-chiral α- or β-peptoid residues required treatment with strong acid only for a short time to minimize the formation of partially debenzylated byproducts. The initial work on peptide/β-peptoid oligomers with an alternating design established that it was beneficial to form the amide bond between the carboxyl group of the α-amino acid and the congested amino functionality of the β-peptoid residue in solution. To further simplify oligomer assembly on solid phase, we now present a protocol for purification-free solid-phase synthesis of tetrameric building blocks. Next, syntheses of peptidomimetic ligands via manual solid-phase methodologies involving tetrameric building blocks were found to give more readily purified products as compared to those obtained with dimeric building blocks. Moreover, the tetrameric building blocks could be utilized in automated synthesis with microwave-assisted heating, albeit the purity of the crude products was not increased.
Collapse
Affiliation(s)
- Anna Mette Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100, Copenhagen, Denmark
| | - Sarah Line Skovbakke
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Rolighedsvej 25b, 1958, Frederiksberg, Denmark
| | - Simon Bendt Christensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100, Copenhagen, Denmark
| | - Iris Perez-Gassol
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100, Copenhagen, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100, Copenhagen, Denmark.
| |
Collapse
|
16
|
Hoff EA, Artim CM, Brown JS, Alabi CA. Sensitivity of Antibacterial Activity to Backbone Sequence in Constitutionally Isomeric OligoTEAs. Macromol Biosci 2018; 18:e1800241. [PMID: 30238615 DOI: 10.1002/mabi.201800241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/03/2018] [Indexed: 01/28/2023]
Abstract
Antimicrobial peptides are promising alternatives to traditional antibiotics but their translational potential is limited due to rapid degradation by serum proteases. Recently, a number of peptidomimetics with backbones resistant to proteolysis have been synthesized and their antimicrobial potential evaluated as a function of their hydrophobic to cationic ratio. However, these mimetics also have a fixed backbone thus making it difficult to isolate the effect of backbone hydrophobic composition and sequence. In this work, advantage is taken of the oligothioetheramide (oligoTEA) synthetic strategy that allows for precise control over backbone and pendant group placement to systematically study the effect of backbone hydrophobic sequence while keeping pendant group constant. Biophysical data acquired with a set of constitutional oligoTEA isomers show that backbone hydrophobic sequence, that is, local hydrophobicity, affects the mode of oligoTEA interaction with lipid bilayers. This differential interaction among the constitutionally isomeric oligoTEAs is manifested in their antibacterial activities and points to the possibility of using backbone hydrophobic sequence to tune antibacterial potency and selectivity.
Collapse
Affiliation(s)
- Emily A Hoff
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY, 14853, USA
| | - Christine M Artim
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY, 14853, USA
| | - Joseph S Brown
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY, 14853, USA
| | - Christopher A Alabi
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY, 14853, USA
| |
Collapse
|
17
|
Artim CM, Phan NN, Alabi CA. Effect of Composition on Antibacterial Activity of Sequence-Defined Cationic Oligothioetheramides. ACS Infect Dis 2018; 4:1257-1263. [PMID: 29750860 DOI: 10.1021/acsinfecdis.8b00079] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In response to the urgent need for new antibiotic development strategies, antimicrobial peptides and their synthetic mimetics are being investigated as promising alternatives to traditional antibiotics. To facilitate their development into clinically viable candidates, we need to understand what molecular features and physicochemical properties are needed to induce cell death. Within the context of sequence-defined oligothioetheramides (oligoTEAs), we explore the impact of the cationic pendant group and backbone hydrophobicity on the potency and selectivity of antibacterial oligoTEAs. Through antibacterial, cytotoxicity, membrane destabilization, and membrane depolarization assays, we find a strong dependency on the nature of the cationic group and improved selectivity toward bacteria by tuning backbone hydrophobicity. In particular, compounds with the guanidinium headgroup are more potent than those with amines. Finally, we identify a promising oligoTEA, PDT-4G, with enhanced activity in vitro (minimum inhibitory concentration (MIC) ∼ 0.78 μM) and moderate activity in a mouse thigh infection model of methicillin-resistant Staphylococcus aureus. The studies outlined in this work provide insights into the effect of macromolecular physicochemical properties on antibacterial potency. This knowledge base will be vital for researchers engaged in the ongoing development of clinically viable antibacterial agents.
Collapse
Affiliation(s)
- Christine M. Artim
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
| | - Ngoc N. Phan
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
| | - Christopher A. Alabi
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
| |
Collapse
|
18
|
Andreev K, Martynowycz MW, Huang ML, Kuzmenko I, Bu W, Kirshenbaum K, Gidalevitz D. Hydrophobic interactions modulate antimicrobial peptoid selectivity towards anionic lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1414-1423. [PMID: 29621496 DOI: 10.1016/j.bbamem.2018.03.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/15/2018] [Accepted: 03/26/2018] [Indexed: 12/21/2022]
Abstract
Hydrophobic interactions govern specificity for natural antimicrobial peptides. No such relationship has been established for synthetic peptoids that mimic antimicrobial peptides. Peptoid macrocycles synthesized with five different aromatic groups are investigated by minimum inhibitory and hemolytic concentration assays, epifluorescence microscopy, atomic force microscopy, and X-ray reflectivity. Peptoid hydrophobicity is determined using high performance liquid chromatography. Disruption of bacterial but not eukaryotic lipid membranes is demonstrated on the solid supported lipid bilayers and Langmuir monolayers. X-ray reflectivity studies demonstrate that intercalation of peptoids with zwitterionic or negatively charged lipid membranes is found to be regulated by hydrophobicity. Critical levels of peptoid selectivity are demonstrated and found to be modulated by their hydrophobic groups. It is suggested that peptoids may follow different optimization schemes as compared to their natural analogues.
Collapse
Affiliation(s)
- Konstantin Andreev
- Department of Physics, Center for Molecular Study of Condensed Soft Matter (μCoSM), Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, 3440 South Dearborn Street, Chicago, IL 60616, United States
| | - Michael W Martynowycz
- Department of Physics, Center for Molecular Study of Condensed Soft Matter (μCoSM), Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, 3440 South Dearborn Street, Chicago, IL 60616, United States; Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, United States
| | - Mia L Huang
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, United States
| | - Ivan Kuzmenko
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, United States
| | - Wei Bu
- The Center for Advanced Radiation Sources (CARS), University of Chicago, Chicago, IL 60637, United States
| | - Kent Kirshenbaum
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, United States
| | - David Gidalevitz
- Department of Physics, Center for Molecular Study of Condensed Soft Matter (μCoSM), Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, 3440 South Dearborn Street, Chicago, IL 60616, United States.
| |
Collapse
|
19
|
Karathanasi G, Bojer MS, Baldry M, Johannessen BA, Wolff S, Greco I, Kilstrup M, Hansen PR, Ingmer H. Linear peptidomimetics as potent antagonists of Staphylococcus aureus agr quorum sensing. Sci Rep 2018; 8:3562. [PMID: 29476092 PMCID: PMC5824847 DOI: 10.1038/s41598-018-21951-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/14/2018] [Indexed: 01/27/2023] Open
Abstract
Staphylococcus aureus is an important pathogen causing infections in humans and animals. Increasing problems with antimicrobial resistance has prompted the development of alternative treatment strategies, including antivirulence approaches targeting virulence regulation such as the agr quorum sensing system. agr is naturally induced by cyclic auto-inducing peptides (AIPs) binding to the AgrC receptor and cyclic peptide inhibitors have been identified competing with AIP binding to AgrC. Here, we disclose that small, linear peptidomimetics can act as specific and potent inhibitors of the S. aureus agr system via intercepting AIP-AgrC signal interaction at low micromolar concentrations. The corresponding linear peptide did not have this ability. This is the first report of a linear peptide-like molecule that interferes with agr activation by competitive binding to AgrC. Prospectively, these peptidomimetics may be valuable starting scaffolds for the development of new inhibitors of staphylococcal quorum sensing and virulence gene expression.
Collapse
Affiliation(s)
- Georgia Karathanasi
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg, Denmark
| | - Martin Saxtorph Bojer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg, Denmark
| | - Mara Baldry
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg, Denmark
| | - Bárdur Andréson Johannessen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg, Denmark
| | - Sanne Wolff
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg, Denmark
| | - Ines Greco
- Department of Drug Design and Farmacology, Faculty of Health and Medical Sciences University of Copenhagen, Universitetsparken 2, 2100, København, Denmark
| | - Mogens Kilstrup
- Department of Biotechnology and Biomedicine, Metabolic Signaling and Regulation, Technical University of Denmark, Matematiktorvet, 2800, Lyngby, Denmark
| | - Paul Robert Hansen
- Department of Drug Design and Farmacology, Faculty of Health and Medical Sciences University of Copenhagen, Universitetsparken 2, 2100, København, Denmark
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg, Denmark.
| |
Collapse
|
20
|
Synthesis of novel 1,2- and 2-substituted benzimidazoles with high antibacterial and antioxidant activity. MONATSHEFTE FUR CHEMIE 2018. [DOI: 10.1007/s00706-017-2066-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Schneider AC, Fritz D, Vasquez JK, Vollrath SBL, Blackwell HE, Brasë S. Microwave-Facilitated SPOT-Synthesis of Antibacterial Dipeptoids. ACS COMBINATORIAL SCIENCE 2017; 19:715-737. [PMID: 29035557 PMCID: PMC5931720 DOI: 10.1021/acscombsci.7b00096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With microwave irradiation, the submonomer synthesis of dipeptoids on functionalized cellulose can be accelerated with good yields and purity. Optimization provided a library of 96 dipeptoids. From these, 29 compounds were found with an antibacterial activity against MRSA at a concentration of 25 μM. Large nonpolar residues, such as undecylamine and dehydroabiethylamine, are the key components engendering the observed antibacterial activity of these peptoids.
Collapse
Affiliation(s)
- Anne C. Schneider
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Daniel Fritz
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Joseph K. Vasquez
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Sidonie B. L. Vollrath
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Helen E. Blackwell
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Stefan Brasë
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
22
|
Molchanova N, Hansen PR, Franzyk H. Advances in Development of Antimicrobial Peptidomimetics as Potential Drugs. Molecules 2017; 22:E1430. [PMID: 28850098 PMCID: PMC6151827 DOI: 10.3390/molecules22091430] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 01/19/2023] Open
Abstract
The rapid emergence of multidrug-resistant pathogens has evolved into a global health problem as current treatment options are failing for infections caused by pan-resistant bacteria. Hence, novel antibiotics are in high demand, and for this reason antimicrobial peptides (AMPs) have attracted considerable interest, since they often show broad-spectrum activity, fast killing and high cell selectivity. However, the therapeutic potential of natural AMPs is limited by their short plasma half-life. Antimicrobial peptidomimetics mimic the structure and biological activity of AMPs, but display extended stability in the presence of biological matrices. In the present review, focus is on the developments reported in the last decade with respect to their design, synthesis, antimicrobial activity, cytotoxic side effects as well as their potential applications as anti-infective agents. Specifically, only peptidomimetics with a modular structure of residues connected via amide linkages will be discussed. These comprise the classes of α-peptoids (N-alkylated glycine oligomers), β-peptoids (N-alkylated β-alanine oligomers), β³-peptides, α/β³-peptides, α-peptide/β-peptoid hybrids, α/γ N-acylated N-aminoethylpeptides (AApeptides), and oligoacyllysines (OAKs). Such peptidomimetics are of particular interest due to their potent antimicrobial activity, versatile design, and convenient optimization via assembly by standard solid-phase procedures.
Collapse
Affiliation(s)
- Natalia Molchanova
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark.
| | - Paul R Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark.
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
23
|
Antunes S, Corre JP, Mikaty G, Douat C, Goossens PL, Guichard G. Effect of replacing main-chain ureas with thiourea and guanidinium surrogates on the bactericidal activity of membrane active oligourea foldamers. Bioorg Med Chem 2017; 25:4245-4252. [PMID: 28687228 DOI: 10.1016/j.bmc.2017.04.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/22/2017] [Accepted: 04/28/2017] [Indexed: 12/11/2022]
Abstract
Membrane-active foldamers have recently emerged as potential mimics of antimicrobial peptides (AMPs). Amphiphilic cationic helical N,N'-linked oligoureas are one such class of AMP mimics with activities in vitro against a broad range of bacteria including Bacillus anthracis, a Gram-positive sporulating bacillus and causing agent of anthrax. Here we have used site-selective chemical modifications of the oligourea backbone to gain additional insight into the relationship between structure and function and modulate anthracidal activity. A series of analogues in which urea linkages at selected positions are replaced by thiourea and guanidium surrogates have been prepared on solid support and tested against different bacterial forms of B. anthracis (germinated spores and encapsulated bacilli). Urea→thiourea and urea→guanidinium replacements close to the negative end of the helix dipole led to analogues with increased potency and selectivity for B. anthracis versus mammalian cells.
Collapse
Affiliation(s)
- Stéphanie Antunes
- Univ. Bordeaux, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac, France; CNRS, CBMN, UMR 5248, F-33600 Pessac, France
| | - Jean-Philippe Corre
- HistoPathologie et Modèles Animaux/Pathogénie des Toxi-Infections Bactériennes, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris, France
| | - Guillain Mikaty
- HistoPathologie et Modèles Animaux/Pathogénie des Toxi-Infections Bactériennes, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris, France
| | - Céline Douat
- Univ. Bordeaux, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac, France; CNRS, CBMN, UMR 5248, F-33600 Pessac, France
| | - Pierre L Goossens
- HistoPathologie et Modèles Animaux/Pathogénie des Toxi-Infections Bactériennes, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris, France.
| | - Gilles Guichard
- Univ. Bordeaux, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac, France; CNRS, CBMN, UMR 5248, F-33600 Pessac, France.
| |
Collapse
|
24
|
Peptoids successfully inhibit the growth of gram negative E. coli causing substantial membrane damage. Sci Rep 2017; 7:42332. [PMID: 28195195 PMCID: PMC5307948 DOI: 10.1038/srep42332] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 01/10/2017] [Indexed: 02/05/2023] Open
Abstract
Peptoids are an alternative approach to antimicrobial peptides that offer higher stability towards enzymatic degradation. It is essential when developing new types of peptoids, that mimic the function of antimicrobial peptides, to understand their mechanism of action. Few studies on the specific mechanism of action of antimicrobial peptoids have been described in the literature, despite the plethora of studies on the mode of action of antimicrobial peptides. Here, we investigate the mechanism of action of two short cationic peptoids, rich in lysine and tryptophan side chain functionalities. We demonstrate that both peptoids are able to cause loss of viability in E. coli susceptible cells at their MIC (16–32 μg/ml) concentrations. Dye leakage assays demonstrate slow and low membrane permeabilization for peptoid 1, that is still higher for lipid compositions mimicking bacterial membranes than lipid compositions containing Cholesterol. At concentrations of 4 × MIC (64–128 μg/ml), pore formation, leakage of cytoplasmic content and filamentation were the most commonly observed morphological changes seen by SEM in E. coli treated with both peptoids. Flow cytometry data supports the increase of cell size as observed in the quantification analysis from the SEM images and suggests overall decrease of DNA per cell mass over time.
Collapse
|
25
|
Design and Synthesis of a Novel N-(1H-tetrazol-5-yl)methyl Cyclic Peptoid Using Nosyl-protected N-(1-trityl-1H-tetrazol-5-yl)methyl Substituted Glycine. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9581-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
26
|
Ganesh SD, Saha N, Zandraa O, Zuckermann RN, Sáha P. Peptoids and polypeptoids: biomimetic and bioinspired materials for biomedical applications. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-016-1902-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Andreev K, Martynowycz MW, Ivankin A, Huang ML, Kuzmenko I, Meron M, Lin B, Kirshenbaum K, Gidalevitz D. Cyclization Improves Membrane Permeation by Antimicrobial Peptoids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:12905-12913. [PMID: 27793068 PMCID: PMC9647730 DOI: 10.1021/acs.langmuir.6b03477] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The peptidomimetic approach has emerged as a powerful tool for overcoming the inherent limitations of natural antimicrobial peptides, where the therapeutic potential can be improved by increasing the selectivity and bioavailability. Restraining the conformational flexibility of a molecule may reduce the entropy loss upon its binding to the membrane. Experimental findings demonstrate that the cyclization of linear antimicrobial peptoids increases their bactericidal activity against Staphylococcus aureus while maintaining high hemolytic concentrations. Surface X-ray scattering shows that macrocyclic peptoids intercalate into Langmuir monolayers of anionic lipids with greater efficacy than for their linear analogues. It is suggested that cyclization may increase peptoid activity by allowing the macrocycle to better penetrate the bacterial cell membrane.
Collapse
Affiliation(s)
- Konstantin Andreev
- Department of Physics, Center for Molecular Study of Condensed Soft Matter (μCoSM), Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, 3440 South Dearborn Street, Chicago, Illinois 60616, United States
| | - Michael W. Martynowycz
- Department of Physics, Center for Molecular Study of Condensed Soft Matter (μCoSM), Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, 3440 South Dearborn Street, Chicago, Illinois 60616, United States
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Andrey Ivankin
- Department of Physics, Center for Molecular Study of Condensed Soft Matter (μCoSM), Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, 3440 South Dearborn Street, Chicago, Illinois 60616, United States
| | - Mia L. Huang
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Ivan Kuzmenko
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Mati Meron
- The Center for Advanced Radiation Sources (CARS), University of Chicago, Chicago, Illinois 60637, United States
| | - Binhua Lin
- The Center for Advanced Radiation Sources (CARS), University of Chicago, Chicago, Illinois 60637, United States
| | - Kent Kirshenbaum
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - David Gidalevitz
- Department of Physics, Center for Molecular Study of Condensed Soft Matter (μCoSM), Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, 3440 South Dearborn Street, Chicago, Illinois 60616, United States
- Corresponding Author: Fax: (+1) 312-567-8856.
| |
Collapse
|
28
|
Helfenstein A, Vahermo M, Nawrot DA, Demirci F, İşcan G, Krogerus S, Yli-Kauhaluoma J, Moreira VM, Tammela P. Antibacterial profiling of abietane-type diterpenoids. Bioorg Med Chem 2016; 25:132-137. [PMID: 27793449 DOI: 10.1016/j.bmc.2016.10.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/14/2016] [Accepted: 10/15/2016] [Indexed: 11/29/2022]
Abstract
Abietic and dehydroabietic acid are interesting diterpenes with a highly diverse repertoire of associated bioactivities. They have, among others, shown antibacterial and antifungal activity, potentially valuable in the struggle against the increasing antimicrobial resistance and imminent antibiotic shortage. In this paper, we describe the synthesis of a set of 9 abietic and dehydroabietic acid derivatives containing amino acid side chains and their in vitro antimicrobial profiling against a panel of human pathogenic microbial strains. Furthermore, their in vitro cytotoxicity against mammalian cells was evaluated. The experimental results showed that the most promising compound was 10 [methyl N-(abiet-8,11,13-trien-18-yl)-d-serinate], with an MIC90 of 60μg/mL against Staphylococcus aureus ATCC 25923, and 8μg/mL against methicillin-resistant S. aureus, Staphylococcus epidermidis and Streptococcus mitis. The IC50 value for compound 10 against Balb/c 3T3 cells was 45μg/mL.
Collapse
Affiliation(s)
- Andreas Helfenstein
- Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Viikinkaari 5 E (PO Box 56), FI-00014 University of Helsinki, Helsinki, Finland
| | - Mikko Vahermo
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, Viikinkaari 5 E (PO Box 56), FI-00014 University of Helsinki, Helsinki, Finland
| | - Dorota A Nawrot
- Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Viikinkaari 5 E (PO Box 56), FI-00014 University of Helsinki, Helsinki, Finland
| | - Fatih Demirci
- Pharmacognosy Department, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Gökalp İşcan
- Pharmacognosy Department, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Sara Krogerus
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, Viikinkaari 5 E (PO Box 56), FI-00014 University of Helsinki, Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, Viikinkaari 5 E (PO Box 56), FI-00014 University of Helsinki, Helsinki, Finland
| | - Vânia M Moreira
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, Viikinkaari 5 E (PO Box 56), FI-00014 University of Helsinki, Helsinki, Finland.
| | - Päivi Tammela
- Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Viikinkaari 5 E (PO Box 56), FI-00014 University of Helsinki, Helsinki, Finland.
| |
Collapse
|
29
|
Czyzewski AM, Jenssen H, Fjell CD, Waldbrook M, Chongsiriwatana NP, Yuen E, Hancock REW, Barron AE. In Vivo, In Vitro, and In Silico Characterization of Peptoids as Antimicrobial Agents. PLoS One 2016; 11:e0135961. [PMID: 26849681 PMCID: PMC4744035 DOI: 10.1371/journal.pone.0135961] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 01/14/2016] [Indexed: 02/07/2023] Open
Abstract
Bacterial resistance to conventional antibiotics is a global threat that has spurred the development of antimicrobial peptides (AMPs) and their mimetics as novel anti-infective agents. While the bioavailability of AMPs is often reduced due to protease activity, the non-natural structure of AMP mimetics renders them robust to proteolytic degradation, thus offering a distinct advantage for their clinical application. We explore the therapeutic potential of N-substituted glycines, or peptoids, as AMP mimics using a multi-faceted approach that includes in silico, in vitro, and in vivo techniques. We report a new QSAR model that we developed based on 27 diverse peptoid sequences, which accurately correlates antimicrobial peptoid structure with antimicrobial activity. We have identified a number of peptoids that have potent, broad-spectrum in vitro activity against multi-drug resistant bacterial strains. Lastly, using a murine model of invasive S. aureus infection, we demonstrate that one of the best candidate peptoids at 4 mg/kg significantly reduces with a two-log order the bacterial counts compared with saline-treated controls. Taken together, our results demonstrate the promising therapeutic potential of peptoids as antimicrobial agents.
Collapse
Affiliation(s)
- Ann M. Czyzewski
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, E136, Evanston, IL, 60208, United States of America
| | - Håvard Jenssen
- Centre for Microbial Diseases and Immunity Research, #232–2259 Lower Mall Research Station, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Dept. of Science, Systems & Models, Roskilde University, Universitetsvej 1, DK-4000, Roskilde, Denmark
| | - Christopher D. Fjell
- Centre for Microbial Diseases and Immunity Research, #232–2259 Lower Mall Research Station, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Matt Waldbrook
- Centre for Microbial Diseases and Immunity Research, #232–2259 Lower Mall Research Station, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Nathaniel P. Chongsiriwatana
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, E136, Evanston, IL, 60208, United States of America
| | - Eddie Yuen
- Centre for Microbial Diseases and Immunity Research, #232–2259 Lower Mall Research Station, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research, #232–2259 Lower Mall Research Station, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- * E-mail: (AEB); (REWH)
| | - Annelise E. Barron
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, E136, Evanston, IL, 60208, United States of America
- * E-mail: (AEB); (REWH)
| |
Collapse
|
30
|
Tumosienė I, Jonuškienė I, Kantminienė K, Šiugždaitė J, Mickevičius V, Beresnevičius ZJ. Synthesis and biological activity of 1,3,4-oxa(thia)diazole, 1,2,4-triazole-5-(thio)one and S-substituted derivatives of 3-((2-carboxyethyl)phenylamino)propanoic acid. RESEARCH ON CHEMICAL INTERMEDIATES 2015. [DOI: 10.1007/s11164-015-2290-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
31
|
Mándity IM, Fülöp F. An overview of peptide and peptoid foldamers in medicinal chemistry. Expert Opin Drug Discov 2015; 10:1163-77. [PMID: 26289578 DOI: 10.1517/17460441.2015.1076790] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Foldamers are artificial self-organizing systems with various critical properties: i) a stable and designable secondary structure; ii) a larger molecular surface as compared with ordinary organic drug molecules; iii) appropriate control of the orientation of the side-chain functional groups; iv) resistance against proteolytic degradation, which leads to potentially increased oral bioavailability and a longer serum half-life relative to ordinary α-peptides; and v) the lower conformational freedom may result in increased receptor binding in comparison with the natural analogs. AREAS COVERED This article covers the general properties and types of foldamers. This includes highlighted examples of medicinal chemical applications, including antibacterial and cargo molecules, anti-Alzheimer compounds and protein-protein interaction modifiers. EXPERT OPINION Various new foldamers have been created with a range of structures and biological applications. Membrane-acting antibacterial foldamers have been introduced. A general property of these structures is their amphiphilic nature. The amphiphilicity can be stationary or induced by the membrane binding. Cell-penetrating foldamers have been described which serve as cargo molecules, and foldamers have been used as autophagy inducers. Anti-Alzheimer compounds too have been created and the greatest breakthrough was attained via the modification of protein-protein interactions. This can serve as the chemical and pharmaceutical basis for the relevance of foldamers in the future.
Collapse
Affiliation(s)
| | - Ferenc Fülöp
- a University of Szeged Institute of Pharmaceutical Chemistry , H-6720 Szeged, Eötvös u. 6, Hungary +36 62 545 768 ; +36 62 545 564 ; +36 62 545 705 ; ;
| |
Collapse
|
32
|
Yang X, Qin X, Wang Q, Huang Y. Synthesis and antitumor activities of piperazine- and cyclen-conjugated dehydroabietylamine derivatives. HETEROCYCL COMMUN 2015. [DOI: 10.1515/hc-2015-0025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractA series of piperazine- and cyclen-conjugated dehydroabietylamine derivatives were synthesized and characterized by 1H NMR, 13C NMR, and HRMS. The in vitro antitumor activities of conjugates 10–13 against MCF-7 and HepG-2 tumor cell lines were evaluated using CCK-8 assay. The results show that the synthesized compounds cause a dose-dependent inhibition of cell proliferation and display different antitumor activities with the IC50 values ranging from 23.56 to 78.92 μm. Moreover, the antitumor activity of conjugate 10 against the MCF-7 cell line is superior to that of the positive control 5-fluorouracil. In addition, flow cytometric assay revealed that the representative conjugate 10 could induce apoptosis in MCF-7 tumor cells in a dose-dependent manner.
Collapse
Affiliation(s)
- Xinbin Yang
- 1Rongchang Campus, Southwest University, Chongqing 402460, P. R. China
| | - Xiaolin Qin
- 1Rongchang Campus, Southwest University, Chongqing 402460, P. R. China
| | - Qin Wang
- 1Rongchang Campus, Southwest University, Chongqing 402460, P. R. China
| | - Yu Huang
- 2Pharmacy College, Ningxia Medical University, Yinchuan 750004, P. R. China
| |
Collapse
|
33
|
Sadashiva MP, Gowda R, Wu X, Inamdar GS, Kuzu OF, Rangappa KS, Robertson GP, Gowda DC. A non-cytotoxic N-dehydroabietylamine derivative with potent antimalarial activity. Exp Parasitol 2015; 155:68-73. [PMID: 25982031 DOI: 10.1016/j.exppara.2015.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 05/04/2015] [Accepted: 05/11/2015] [Indexed: 12/30/2022]
Abstract
Malaria caused by the Plasmodium parasites continues to be an enormous global health problem owing to wide spread drug resistance of parasites to many of the available antimalarial drugs. Therefore, development of new classes of antimalarial agents is essential to effectively treat malaria. In this study, the efficacy of naturally occurring diterpenoids, dehydroabietylamine and abietic acid, and their synthetic derivatives was assessed for antimalarial activity. Dehydroabietylamine and its N-trifluoroacetyl, N-tribromoacetyl, N-benzoyl, and N-benzyl derivatives showed excellent activity against P. falciparum parasites with IC50 values of 0.36 to 2.6 µM. Interestingly, N-dehydroabietylbenzamide showed potent antimalarial activity (IC50 0.36), and negligible cytotoxicity (IC50 >100 µM) to mammalian cells; thus, this compound can be an important antimalarial drug. In contrast, abietic acid was only marginally effective, exhibiting an IC50 value of ~82 µM. Several carboxylic group-derivatives of abietic acid were moderately active with IC50 values of ~8.2 to ~13.3 µM. These results suggest that a detailed understanding of the structure-activity relationship of abietane diterpenoids might provide strategies to exploit this class of compounds for malaria treatment.
Collapse
Affiliation(s)
- Maralinganadoddi P Sadashiva
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA; Department of Chemistry, University of Mysore, Manasagangothri, Mysore, 570 006, India.
| | - Raghavendra Gowda
- Department of Pharmacology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Xianzhu Wu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Gajanan S Inamdar
- Department of Pharmacology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Omer F Kuzu
- Department of Pharmacology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | | - Gavin P Robertson
- Department of Pharmacology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - D Channe Gowda
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| |
Collapse
|
34
|
Smith PT, Huang ML, Kirshenbaum K. Osmoprotective polymer additives attenuate the membrane pore-forming activity of antimicrobial peptoids. Biopolymers 2015; 103:227-36. [DOI: 10.1002/bip.22588] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/21/2014] [Accepted: 11/11/2014] [Indexed: 12/30/2022]
Affiliation(s)
- Peter T. Smith
- Department of Chemistry; New York University; New York New York 10003
| | - Mia L. Huang
- Department of Chemistry; New York University; New York New York 10003
| | - Kent Kirshenbaum
- Department of Chemistry; New York University; New York New York 10003
| |
Collapse
|
35
|
Huang XC, Jin L, Wang M, Liang D, Chen ZF, Zhang Y, Pan YM, Wang HS. Design, synthesis and in vitro evaluation of novel dehydroabietic acid derivatives containing a dipeptide moiety as potential anticancer agents. Eur J Med Chem 2015; 89:370-85. [DOI: 10.1016/j.ejmech.2014.10.060] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 11/25/2022]
|
36
|
Ong ZY, Wiradharma N, Yang YY. Strategies employed in the design and optimization of synthetic antimicrobial peptide amphiphiles with enhanced therapeutic potentials. Adv Drug Deliv Rev 2014; 78:28-45. [PMID: 25453271 DOI: 10.1016/j.addr.2014.10.013] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 12/30/2022]
Abstract
Antimicrobial peptides (AMPs) which predominantly act via membrane active mechanisms have emerged as an exciting class of antimicrobial agents with tremendous potential to overcome the global epidemic of antibiotics-resistant infections. The first generation of AMPs derived from natural sources as diverse as plants, insects and humans has provided a wealth of compositional and structural information to design novel synthetic AMPs with enhanced antimicrobial potencies and selectivities, reduced cost of production due to shorter sequences and improved stabilities under physiological conditions. In this review, we will first discuss the common strategies employed in the design and optimization of synthetic AMPs, followed by highlighting the various approaches utilized to enhance the therapeutic potentials of designed AMPs under physiological conditions. Lastly, future perspectives on the development of improved AMPs for therapeutic applications will be presented.
Collapse
|
37
|
González MA. Synthetic derivatives of aromatic abietane diterpenoids and their biological activities. Eur J Med Chem 2014; 87:834-42. [PMID: 25440884 DOI: 10.1016/j.ejmech.2014.10.023] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/06/2014] [Accepted: 10/09/2014] [Indexed: 11/28/2022]
Abstract
Naturally occurring aromatic abietane diterpenoids (dehydroabietanes) exhibit a wide range of biological activities. A number of synthetic studies aimed at modifying the abietane skeleton in order to obtain new potential chemotherapeutic agents have been reported. In this study, the biological activities of synthetic derivatives of aromatic abietane diterpenoids are reviewed.
Collapse
Affiliation(s)
- Miguel A González
- Departamento de Química Orgánica, Universidad de Valencia, E-46100 Burjassot, Valencia, Spain.
| |
Collapse
|
38
|
Anusevičius K, Mickevičius V, Belyakov S, Šiugždaitė J, Kantminienė K. Unexpected transformation of ethyl 1-(4-chlorophenyl)-2-methyl-4-oxo-1,4,5,6-tetrahydropyridine-3-carboxylate and antibacterial activity of the products. MONATSHEFTE FUR CHEMIE 2014. [DOI: 10.1007/s00706-014-1247-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Mei L, Lu Z, Zhang X, Li C, Jia Y. Polymer-Ag nanocomposites with enhanced antimicrobial activity against bacterial infection. ACS APPLIED MATERIALS & INTERFACES 2014; 6:15813-21. [PMID: 25170799 DOI: 10.1021/am502886m] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Herein, a nontoxic nanocomposite is synthesized by reduction of silver nitrate in the presence of a cationic polymer displaying strong antimicrobial activity against bacterial infection. These nanocomposites with a large concentration of positive charge promote their adsorption to bacterial membranes through electrostatic interaction. Moreover, the synthesized nanocomposites with polyvalent and synergistic antimicrobial effects can effectively kill both Gram-positive and Gram-negative bacteria without the emergence of bacterial resistance. Morphological changes obtained by transmission electron microscope observation show that these nanocomposites can cause leakage and chaos of intracellular contents. Analysis of the antimicrobial mechanism confirms that the lethal action of nanocomposites against the bacteria started with disruption of the bacterial membrane, subsequent cellular internalization of the nanoparticles, and inhibition of intracellular enzymatic activity. This novel antimicrobial material with good cytocompatibility promotes healing of infected wounds in diabetic rats, and has a promising future in the treatment of other infectious diseases.
Collapse
Affiliation(s)
- Lin Mei
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, Nankai University , Tianjin 300071, China
| | | | | | | | | |
Collapse
|
40
|
Choi H, Chakraborty S, Liu R, Gellman SH, Weisshaar JC. Medium effects on minimum inhibitory concentrations of nylon-3 polymers against E. coli. PLoS One 2014; 9:e104500. [PMID: 25153714 PMCID: PMC4143223 DOI: 10.1371/journal.pone.0104500] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/13/2014] [Indexed: 12/11/2022] Open
Abstract
Minimum inhibitory concentrations (MICs) against E. coli were measured for three nylon-3 polymers using Luria-Bertani broth (LB), brain-heart infusion broth (BHI), and a chemically defined complete medium (EZRDM). The polymers differ in the ratio of hydrophobic to cationic subunits. The cationic homopolymer is inert against E. coli in BHI and LB, but becomes highly potent in EZRDM. A mixed hydrophobic/cationic polymer with a hydrophobic t-butylbenzoyl group at its N-terminus is effective in BHI, but becomes more effective in EZRDM. Supplementation of EZRDM with the tryptic digest of casein (often found in LB) recapitulates the LB and BHI behavior. Additional evidence suggests that polyanionic peptides present in LB and BHI may form electrostatic complexes with cationic polymers, decreasing activity by diminishing binding to the anionic lipopolysaccharide layer of E. coli. In contrast, two natural antimicrobial peptides show no medium effects. Thus, the use of a chemically defined medium helps to reveal factors that influence antimicrobial potency of cationic polymers and functional differences between these polymers and evolved antimicrobial peptides.
Collapse
Affiliation(s)
- Heejun Choi
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Saswata Chakraborty
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Runhui Liu
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Molecular Biophysics Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (SHG); (JCW)
| | - James C. Weisshaar
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Molecular Biophysics Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (SHG); (JCW)
| |
Collapse
|
41
|
Andreev K, Bianchi C, Laursen JS, Citterio L, Hein-Kristensen L, Gram L, Kuzmenko I, Olsen CA, Gidalevitz D. Guanidino groups greatly enhance the action of antimicrobial peptidomimetics against bacterial cytoplasmic membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2492-2502. [PMID: 24878450 DOI: 10.1016/j.bbamem.2014.05.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 05/11/2014] [Accepted: 05/19/2014] [Indexed: 11/18/2022]
Abstract
Antimicrobial peptides or their synthetic mimics are a promising class of potential new antibiotics. Herein we assess the effect of the type of cationic side chain (i.e., guanidino vs. amino groups) on the membrane perturbing mechanism of antimicrobial α-peptide-β-peptoid chimeras. Langmuir monolayers composed of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylglycerol (DPPG) were used to model cytoplasmic membranes of both Gram-positive and Gram-negative bacteria, while lipopolysaccharide Kdo2-lipid A monolayers were mimicking the outer membrane of Gram-negative species. We report the results of the measurements using an array of techniques, including high-resolution synchrotron surface X-ray scattering, epifluorescence microscopy, and in vitro antimicrobial activity to study the molecular mechanisms of peptidomimetic interaction with bacterial membranes. We found guanidino group-containing chimeras to exhibit greater disruptive activity on DPPG monolayers than the amino group-containing analogues. However, this effect was not observed for lipopolysaccharide monolayers where the difference was negligible. Furthermore, the addition of the nitrobenzoxadiazole fluorophore did not reduce the insertion activity of these antimicrobials into both model membrane systems examined, which may be useful for future cellular localization studies.
Collapse
Affiliation(s)
- Konstantin Andreev
- Center for Molecular Study of Condensed Soft Matter (μCoSM), Pritzker Institute of Biomedical Science and Engineering and Department of Physics, Illinois Institute of Technology, 3440 S. Dearborn St., Chicago, IL 60616 (USA)
| | - Christopher Bianchi
- Center for Molecular Study of Condensed Soft Matter (μCoSM), Pritzker Institute of Biomedical Science and Engineering and Department of Physics, Illinois Institute of Technology, 3440 S. Dearborn St., Chicago, IL 60616 (USA)
| | - Jonas S Laursen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby (Denmark)
| | - Linda Citterio
- Department of Systems Biology, Technical University of Denmark, Matematiktorvet 301, DK-2800 Kgs. Lyngby (Denmark)
| | - Line Hein-Kristensen
- , National Food Institute, Technical University of Denmark, Søltofts Plads 221, DK-2800, Kgs Lyngby (Denmark)
| | - Lone Gram
- Department of Systems Biology, Technical University of Denmark, Matematiktorvet 301, DK-2800 Kgs. Lyngby (Denmark)
| | - Ivan Kuzmenko
- Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, IL 60439 (USA)
| | - Christian A Olsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby (Denmark)
| | - David Gidalevitz
- Center for Molecular Study of Condensed Soft Matter (μCoSM), Pritzker Institute of Biomedical Science and Engineering and Department of Physics, Illinois Institute of Technology, 3440 S. Dearborn St., Chicago, IL 60616 (USA)
| |
Collapse
|
42
|
Mickevičius V, Voskienė A, Jonuškienė I, Kolosej R, Šiugždaitė J, Venskutonis PR, Kazernavičiūtė R, Brazienė Z, Jakienė E. Synthesis and biological activity of 3-[phenyl(1,3-thiazol-2-yl)-amino]propanoic acids and their derivatives. Molecules 2013; 18:15000-18. [PMID: 24317527 PMCID: PMC6269796 DOI: 10.3390/molecules181215000] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/03/2013] [Accepted: 12/03/2013] [Indexed: 11/16/2022] Open
Abstract
New N,N-disubstituted β-amino acids and their derivatives with thiazole, aromatic, and heterocyclic substituents were synthesized from N-phenyl-N-thiocarbamoyl-β-alanine by the Hantzsch method; derivatives with hydrazone fragments were also obtained. Some of the synthesized compounds exhibited discrete antimicrobial activity, and 3-[(4-oxo-4,5-dihydro-1,3-thiazol-2-yl)(phenyl)amino]propanoic acid was found to promote rapeseed growth and to increase seed yield and oil content.
Collapse
Affiliation(s)
- Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; E-Mails: (A.V.); (I.J.); (R.K.)
| | - Aušra Voskienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; E-Mails: (A.V.); (I.J.); (R.K.)
| | - Ilona Jonuškienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; E-Mails: (A.V.); (I.J.); (R.K.)
| | - Ramūnė Kolosej
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; E-Mails: (A.V.); (I.J.); (R.K.)
| | - Jūratė Šiugždaitė
- Lithuanian University of Health Sciences, Veterinary Academy, Tilžės 18, LT-47181 Kaunas, Lithuania; E-Mail:
| | - Petras Rimantas Venskutonis
- Department of Food Technology, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; E-Mails: (P.R.V.); (R.K.)
| | - Rita Kazernavičiūtė
- Department of Food Technology, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; E-Mails: (P.R.V.); (R.K.)
| | - Zita Brazienė
- Lithuanian Research Centre for Agriculture and Forestry, Rumokai Experimental Station, Klausučiai, 70462 Vilkaviškis Distr., Lithuania; E-Mail:
| | - Elena Jakienė
- Institute of Agricultural and Food Sciences, Aleksandras Stulginskis University, Studentų g. 11, LT-53361 Akademija, Kaunor., Lithuania; E-Mail:
| |
Collapse
|
43
|
Salehi P, Ayyari M, Bararjanian M, Ebrahimi SN, Aliahmadi A. Synthesis, antibacterial and antioxidant activity of novel 2,3-dihydroquinazolin-4(1H)-one derivatives of dehydroabietylamine diterpene. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2013. [DOI: 10.1007/s13738-013-0330-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Huang XZ, Rao XP, Cui YJ. N, N-Dimethyldehydroabietylammonium chloride ethanol monosolvate. Acta Crystallogr Sect E Struct Rep Online 2013; 69:o959. [PMID: 23795117 PMCID: PMC3685098 DOI: 10.1107/s1600536813013846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 05/20/2013] [Indexed: 11/10/2022]
|
45
|
Li J, Song J, Shang SB, Rao XP, Gao YQ. Syntheses and antibacterial activity of Schiff bases from 16-isopropyl-5, 9-dimethyltetracyclo [10.2.2.01, 10.04, 9] hexadec-15-ene-5, 14-dicarboxylic acid. Nat Prod Res 2013; 27:702-10. [DOI: 10.1080/14786419.2012.691490] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
46
|
Abstract
Peptoids (N-substituted glycines) are mimics of α-peptides in which the side chains are attached to the backbone N (α) -amide nitrogen instead of the C (α) -atom. Peptoids hold promise as therapeutics since they often retain the biological activity of the parent peptide and are stable to proteases. In recent years, peptoids have attracted attention as new potential antibiotics against multiresistant bacteria. Here we describe the submonomer solid-phase synthesis of an antimicrobial peptoid, H-Nmbn-Nlys-Nlys-Nnap-Nbut-Nmbn-Nlys-NH2.
Collapse
Affiliation(s)
- Paul R Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
47
|
Paramesha M, Ramesh CK, Krishna V, Ravi Kumar YS, Parvathi KMM. Hepatoprotective and in vitro antioxidant effect of Carthamus tinctorious L, var Annigeri-2-, an oil-yielding crop, against CCl(4) -induced liver injury in rats. Pharmacogn Mag 2012; 7:289-97. [PMID: 22262931 PMCID: PMC3261062 DOI: 10.4103/0973-1296.90406] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 07/29/2010] [Accepted: 11/30/2011] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND The present investigation evaluates the hepatoprotective and in vitro antioxidant effect of methanolic extract and its isolated constituent, dehydroabietylamine, in Carthamus tinctorious L, var Annigeri-2-, an oil yielding crop. MATERIALS AND METHODS The hepatoprotective effects were estimated for the parameters viz, total bilirubin, total protein, serum alanine amino transaminase (ALT) and serum aspartate aminotransferase (AST) and alkaline phosphatase (ALP) and along with the pathological findings of hepatotoxicity. The in vitro antioxidant activity was evaluated by using free radical scavenging assays: DPPH, nitric oxide radical scavenging, hydroxyl radical, reducing power, ferrous ion chelating ability and total antioxidant capacity. RESULTS Both the methanolic extract (at 150 and 300 mg/kg bw) and dehydroabietylamine (at 50 mg/kg bw) showed significant liver protection against CCl(4) -induced liver damage that was comparable with the standard drug, silymarin (100 mg/kg bw), in reducing the elevated serum enzyme markers. The liver sections of the animals treated with dehydroabietylamine elicit a significant liver protection compared with the methanolic extract against CCl(4) -induced liver damage. Further, both the methanolic extract and dehydroabietylamine exhibited a considerable and dose-dependent scavenging activity of DPPH, nitric oxide and hydroxyl radical. Similarly, in the reducing power assay, the results were very persuasive. In addition, the Fe(2+) chelating activity and the total antioxidant assay established the antioxidant property of the methanolic extract and its isolated constituent. Among the two experimental samples, dehydroabietylamine proved to be more effective for the said parameters. CONCLUSION The potent antioxidant and its correlative hepatoprotective activity of the methanolic extract and isolated constituent dehydroabietylamine is therefore attributed to its antioxidant and free radical scavenging activities.
Collapse
Affiliation(s)
- Mahadevappa Paramesha
- Department of P.G. Studies and Research in Biotechnology, Sahyadri Science College (Autonomous), Kuvempu University, Shivamogga, Karnataka, India
| | | | | | | | | |
Collapse
|
48
|
N-Benzoyl-12-nitrodehydroabietylamine-7-one, a novel dehydroabietylamine derivative, induces apoptosis and inhibits proliferation in HepG2 cells. Chem Biol Interact 2012; 199:63-73. [DOI: 10.1016/j.cbi.2012.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/02/2012] [Accepted: 06/04/2012] [Indexed: 11/22/2022]
|
49
|
Seo J, Ren G, Liu H, Miao Z, Park M, Wang Y, Miller TM, Barron AE, Cheng Z. In vivo biodistribution and small animal PET of (64)Cu-labeled antimicrobial peptoids. Bioconjug Chem 2012; 23:1069-79. [PMID: 22486390 PMCID: PMC3410980 DOI: 10.1021/bc300091d] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Peptoids are a rapidly developing class of biomimetic polymers based on oligo-N-substituted glycine backbones, designed to mimic peptides and proteins. Inspired by natural antimicrobial peptides, a group of cationic amphipathic peptoids has been successfully discovered with potent, broad-spectrum activity against pathogenic bacteria; however, there are limited studies to address the in vivo pharmacokinetics of the peptoids. Herein, (64)Cu-labeled DOTA conjugates of three different peptoids and two control peptides were synthesized and assayed in vivo by both biodistribution studies and small animal positron emission tomography (PET). The study was designed in a way to assess how structural differences of the peptidomimetics affect in vivo pharmacokinetics. As amphipathic molecules, major uptake of the peptoids occurred in the liver. Increased kidney uptake was observed by deleting one hydrophobic residue in the peptoid, and (64)Cu-3 achieved the highest kidney uptake of all the conjugates tested in this study. In comparison to peptides, our data indicated that peptoids had general in vivo properties of higher tissue accumulation, slower elimination, and higher in vivo stability. Different administration routes (intravenous, intraperitoneal, and oral) were investigated with peptoids. When administered orally, the peptoids showed poor bioavailability, reminiscent of that of peptide. However, remarkably longer passage through the gastrointestinal (GI) tract without rapid digestion was observed for peptoids. These unique in vivo properties of peptoids were rationalized by efficient cellular membrane permeability and protease resistance of peptoids. The results observed in the biodistribution studies could be confirmed by PET imaging, which provides a reliable way to evaluate in vivo pharmacokinetic properties of peptoids noninvasively and in real time. The pharmacokinetic data presented here can provide insight for further development of the antimicrobial peptoids as pharmaceuticals.
Collapse
Affiliation(s)
- Jiwon Seo
- School of General Studies, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Gang Ren
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University, California, 94305-5344, USA
| | - Hongguang Liu
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University, California, 94305-5344, USA
| | - Zheng Miao
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University, California, 94305-5344, USA
| | - Minyoung Park
- Department of Chemical and Systems Biology, Stanford University, California, 94305-5440, USA
| | - Yihong Wang
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University, California, 94305-5344, USA
| | - Tyler M. Miller
- Department of Bioengineering, Stanford University, California, 94305-5440, USA
| | - Annelise E. Barron
- Department of Bioengineering, Stanford University, California, 94305-5440, USA
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University, California, 94305-5344, USA
| |
Collapse
|
50
|
Ayfer B, Dizman B, Elasri MO, Mathias LJ, Avci D. Synthesis and antibacterial activities of new quaternary ammonium monomers. Des Monomers Polym 2012. [DOI: 10.1163/1568555054937935] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|