1
|
Kirkby M, Sabri AHB, Holmes A, Moss GPJ, Scurr D. PAMAM dendrimers as mediators of dermal and transdermal drug delivery: a review. J Pharm Pharmacol 2024; 76:1284-1300. [PMID: 39045860 DOI: 10.1093/jpp/rgae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/03/2024] [Indexed: 07/25/2024]
Abstract
OBJECTIVES Poly(amidoamine) dendrimers have been widely investigated as potential nanomaterials that can enhance the skin permeation of topically applied drugs. This article reviews the studies that have used dendrimers as penetration enhancers and examines the mechanisms by which enhancement is claimed. KEY FINDINGS A wide range of studies have demonstrated that, in certain circumstances and for certain drugs, the incorporation of dendrimers into a topically applied formulation can significantly increase the amount of drug passing into and through the skin. In some cases, dendrimers offered little or no enhancement of skin permeation, suggesting that the drug-dendrimer interaction and the selection of a specific dendrimer were central to ensuring optimal enhancement of skin permeation. Significant interactions between dendrimers and other formulation components were also reported in some cases. SUMMARY Dendrimers offer substantial potential for enhancing drug delivery into and across the skin, putatively by mechanisms that include occlusion and changes to surface tension. However, most of these studies are conducted in vitro and limited progress has been made beyond such laboratory studies, some of which are conducted using membranes of limited relevance to humans, such as rodent skin. Thus, the outcomes and claims of such studies should be treated with caution.
Collapse
Affiliation(s)
- Melissa Kirkby
- The School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Akmal Hidayat Bin Sabri
- The School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Amy Holmes
- The School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Gary P J Moss
- The School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - David Scurr
- The School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
2
|
Sztandera K, Rodríguez-García JL, Ceña V. In Vivo Applications of Dendrimers: A Step toward the Future of Nanoparticle-Mediated Therapeutics. Pharmaceutics 2024; 16:439. [PMID: 38675101 PMCID: PMC11053723 DOI: 10.3390/pharmaceutics16040439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Over the last few years, the development of nanotechnology has allowed for the synthesis of many different nanostructures with controlled sizes, shapes, and chemical properties, with dendrimers being the best-characterized of them. In this review, we present a succinct view of the structure and the synthetic procedures used for dendrimer synthesis, as well as the cellular uptake mechanisms used by these nanoparticles to gain access to the cell. In addition, the manuscript reviews the reported in vivo applications of dendrimers as drug carriers for drugs used in the treatment of cancer, neurodegenerative diseases, infections, and ocular diseases. The dendrimer-based formulations that have reached different phases of clinical trials, including safety and pharmacokinetic studies, or as delivery agents for therapeutic compounds are also presented. The continuous development of nanotechnology which makes it possible to produce increasingly sophisticated and complex dendrimers indicates that this fascinating family of nanoparticles has a wide potential in the pharmaceutical industry, especially for applications in drug delivery systems, and that the number of dendrimer-based compounds entering clinical trials will markedly increase during the coming years.
Collapse
Affiliation(s)
- Krzysztof Sztandera
- Unidad Asociada Neurodeath, Instituto de Nanociencia Molecular, Universidad de Castilla-La Mancha, 02006 Albacete, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Valentín Ceña
- Unidad Asociada Neurodeath, Instituto de Nanociencia Molecular, Universidad de Castilla-La Mancha, 02006 Albacete, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
3
|
Iraninasab S, Homaei A, Mosaddegh E, Torkzadeh-Mahani M. Polyamidoamine Dendrimers Functionalized with ZnO-Chitosan Nanoparticles as an Efficient Surface for L-asparaginase Immobilization. Appl Biochem Biotechnol 2024; 196:971-991. [PMID: 37285001 DOI: 10.1007/s12010-023-04590-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 06/08/2023]
Abstract
In this study, the third-generation polyamidoamine dendrimer was functionalized with a 5-amino-1H-tetrazole heterocycle to load the synthesis enzyme and its surface groups. Then, chitosan was attached to the dendrimer by a suitable linker, and finally, zinc oxide nanoparticles were inserted into dendrimer cavities to increase loading. FTIR, FESEM, TEM, and DLS analysis showed that this new dendrimer has specific branches, and ZnO nanoparticles were spread between the branches and connected with the branches and chitosan biopolymer. Also proved the presence of stabilized L-asparaginase enzyme and ZnO nanoparticles in the designed system. Furthermore, the extent of L-asparaginase enzyme loading and release was investigated in the laboratory with a dialysis bag. Examining the toxicity of the new third-generation polyamidoamine (PAMAM) dendrimeric nanocarrier based on chitosan-zinc oxide biopolymer (PAMAM-G3@ZnO-Cs nanocarrier) on the Jurkat cell line (human acute lymphoblastic leukemia) at pH 7.4 showed that this nanocarrier effectively encapsulates the drug L-asparaginase and slowly releases it and also preventing the growth of cancer cells. The activity of the loaded enzyme in the nanocarrier and the free enzyme was calculated. During the investigations, it was found that the enzyme attached to the nanocarrier is more stable than the free enzyme at optimal pH and temperature and at high temperatures, acidic and basic pHs. Vmax and Km values were lower for loaded enzymes. The synthesized PAMAM-G3@ZnO-Cs nanocarrier can be a promising candidate in the pharmaceutical industry and medical science for cancer treatment due to its biocompatibility, non-toxicity, stability, and slow release of L-asparaginase.
Collapse
Affiliation(s)
- Sudabeh Iraninasab
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran.
| | - Elaheh Mosaddegh
- Department of New Materials, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, PO Box 76315-117, Kerman, Iran
| | - Masoud Torkzadeh-Mahani
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
4
|
Bernstein DI, Sawtell NM, Bravo FJ, Dixon DA, Gege C, Kleymann G. Intermittent therapy with helicase-primase inhibitor IM-250 efficiently controls recurrent herpes disease and reduces reactivation of latent HSV. Antiviral Res 2023; 219:105733. [PMID: 37858763 DOI: 10.1016/j.antiviral.2023.105733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023]
Abstract
Herpes is a contagious life-long infection with persistently high incidence and prevalence, causing significant disease worldwide. Current therapies have efficacy against active HSV infections but no impact on the latent viral reservoir in neurons. Thus, despite treatment, disease recurs from latency and the infectious potential remains unaffected within patients. Here, efficacy of the helicase-primase inhibitor (HPI) IM-250 against chronic neuronal HSV infections utilizing two classic herpes in vivo latency/reactivation animal models (intravaginal guinea pig HSV-2 infection model and ocular mouse HSV-1 infection model) is presented. Intermittent therapy of infected animals with 4-7 cycles of IM-250 during latency silences subsequent recurrences analyzed up to 6 months. In contrast to common experience, our studies show that the latent reservoir is indeed accessible to antiviral therapy altering the latent viral reservoir such that reactivation frequency can be reduced significantly by prior IM-250 treatment. We provide evidence that antiviral treatment during HSV latency can reduce future reactivation from the latent reservoir, supporting a conceptual shift in the antiviral field, and reframing what is achievable with respect to therapy of latent neuronal HSV infections.
Collapse
Affiliation(s)
- David I Bernstein
- Cincinnati Children's Hospital Medical Center (CCHMC), University of Cincinnati, OH, USA
| | - Nancy M Sawtell
- Cincinnati Children's Hospital Medical Center (CCHMC), University of Cincinnati, OH, USA
| | - Fernando J Bravo
- Cincinnati Children's Hospital Medical Center (CCHMC), University of Cincinnati, OH, USA
| | - David A Dixon
- Cincinnati Children's Hospital Medical Center (CCHMC), University of Cincinnati, OH, USA
| | - Christian Gege
- Innovative Molecules GmbH, Lipowsky Str. 10, 81373, Munich, Bavaria, Germany
| | - Gerald Kleymann
- Innovative Molecules GmbH, Lipowsky Str. 10, 81373, Munich, Bavaria, Germany.
| |
Collapse
|
5
|
Žigrayová D, Mikušová V, Mikuš P. Advances in Antiviral Delivery Systems and Chitosan-Based Polymeric and Nanoparticulate Antivirals and Antiviral Carriers. Viruses 2023; 15:647. [PMID: 36992356 PMCID: PMC10054433 DOI: 10.3390/v15030647] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Current antiviral therapy research is focused on developing dosage forms that enable highly effective drug delivery, providing a selective effect in the organism, lower risk of adverse effects, a lower dose of active pharmaceutical ingredients, and minimal toxicity. In this article, antiviral drugs and the mechanisms of their action are summarized at the beginning as a prerequisite background to develop relevant drug delivery/carrier systems for them, classified and briefly discussed subsequently. Many of the recent studies aim at different types of synthetic, semisynthetic, and natural polymers serving as a favorable matrix for the antiviral drug carrier. Besides a wider view of different antiviral delivery systems, this review focuses on advances in antiviral drug delivery systems based on chitosan (CS) and derivatized CS carriers. CS and its derivatives are evaluated concerning methods of their preparation, their basic characteristics and properties, approaches to the incorporation of an antiviral drug in the CS polymer as well as CS nanoparticulate systems, and their recent biomedical applications in the context of actual antiviral therapy. The degree of development (i.e., research study, in vitro/ex vivo/in vivo preclinical testing), as well as benefits and limitations of CS polymer and CS nanoparticulate drug delivery systems, are reported for particular viral diseases and corresponding antivirotics.
Collapse
Affiliation(s)
- Dominika Žigrayová
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Veronika Mikušová
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Peter Mikuš
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| |
Collapse
|
6
|
Stanfield BA, Bravo FJ, Dixon DA, Chouljenko VN, Kousoulas KG, Bernstein DI. Cross protective efficacy of the Non-Neurotropic live attenuated herpes simplex virus type 1 vaccine VC-2 is enhanced by intradermal vaccination and deletion of glycoprotein G. Vaccine 2022; 40:6093-6099. [PMID: 36114130 DOI: 10.1016/j.vaccine.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/05/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022]
Abstract
Herpes simplex virus type 1 and 2 (HSV-1 and HSV-2 respectively) cause life-long latent infections resulting in recurrent orofacial and genital blisters or sores. Ensued disease can be painful and may lead to significant mental anguish of infected individuals. Currently, there are no FDA-approved vaccines for either prophylactic or therapeutic use, and recent clinical trials of subunit vaccines failed to achieve endpoints goals. Development of a safe live-attenuated herpes simplex vaccine may provide the antigenic breadth to ultimately protect individuals from acquiring HSV disease. We have previously shown that prophylactic use of the non-neurotropic live attenuated HSV-1 vaccine, VC-2, provides potent and durable protection from genital HSV-2 disease in the guinea pig model. Here, we investigated the effects of intradermal administration as well as the deletion of the viral glycoprotein G (gG) on the efficacy of prophylactic vaccination. Vaccination with either VC-2, VC-2 gG null, or gD2 MPL/Alum offered robust protection from acute disease regardless of route of vaccination. However, both the VC-2 gG-null and the ID vaccination route were more effective compared to the parent VC2 administered by the IM route. Specifically, the VC-2 gG-null administered ID, reduced HSV-2 vaginal replication on day 2 and day 4 as well as mean recurrent lesion scores more effectively than VC2 administered IM. Most importantly, only VC-2 gG null IM and VC-2 ID significantly reduced the frequency of recurrent shedding, the most likely source for virus transmission. Similarly, while all vaccinated groups demonstrated a significant reduction in the number of animals testing PCR-positive for HSV-2 in their dorsal root ganglia following challenge only VC2 ID vaccinated animals demonstrated a significant reduction in DRG viral load. All vaccinations induced neutralizing antibodies to HSV-2 MS when compared to unvaccinated guinea pigs. Therefore, further investigation of VC-2 gG null delivered ID is warranted.
Collapse
Affiliation(s)
- Brent A Stanfield
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Fernando J Bravo
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - David A Dixon
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Vladimir N Chouljenko
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Konstantin G Kousoulas
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - David I Bernstein
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
7
|
Chen X, Wang R, Hu H, Zhao X, Yin Z, Zou Y, Li L, Jia R, Zhang Y, Song X. Antiviral effect of an extract from Kaempferia galanga L. rhizome in mice infected with pseudorabies virus. J Virol Methods 2022; 307:114573. [PMID: 35779703 DOI: 10.1016/j.jviromet.2022.114573] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 10/17/2022]
Abstract
Pseudorabies virus (PrV) is one of the most important herpesviruses which can cause severe diseases in many mammals and some avian species. In recent years, repeated outbreaks of pseudorabies worldwide indicated an urgent need for new control measures. The results described in this study demonstrated that an extract prepared from the rhizome of Kaempferia galanga L (Kge), which consisted of flavonoids (2.82%), saccharides (61.37%), phenols (1.22%) and saponins (3.10%), possessed a potent anti-PrV activity. In PK-15 cells, Kge treatment inhibited PrV-induced cell death by more than 90% at a dose of 200 μg/mL. The 50% inhibitory concentration (IC50) was 55.85 μg/mL. In the PrV-infected mice treated with Kge, the survival rate was up to 60% at day 6 post-infection, while the infected mice without Kge treatment all died. The virus titers in the brains of the Kge-treated infected mice were significantly reduced. Kge treatment also alleviated the severity of the PrV-induced lesions in the heart, liver, spleen, lung and kidney. Kge exhibited immune-regulating activity through the regulation of cytokines (IFN-α, IFN-β, IL-4, IL-6 and TNF-α) in the serum of PrV-infected mice, suggesting that one possible mechanism of anti-PrV activity was through the regulation of immune function. These results suggested that Kge could be a promising drug candidate for treating PrV infections.
Collapse
Affiliation(s)
- Xu Chen
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Rui Wang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Huaiyue Hu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xufan Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yingying Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
8
|
Nanomedicines for the topical treatment of vulvovaginal infections: Addressing the challenges of antimicrobial resistance. Adv Drug Deliv Rev 2021; 178:113855. [PMID: 34214638 DOI: 10.1016/j.addr.2021.113855] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/24/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022]
Abstract
Recent years have, surprisingly, witnessed an increase in incidence of sexually transmitted infections (STIs). At the same time, antimicrobial therapy came under the threat of ever rising antimicrobial resistance (AMR), resulting in STIs with extremely limited therapy options. In this review, we addressed the challenges of treating vaginal infections in an era of AMR. We focused on published work regarding nanomedicine destined for localized treatment of vaginal infections. Localized therapy offers numerous advantages such as assuring high drug concentration at the infection site, limiting systemic drug exposure that can lead to faster development of AMR reduction in the systemic side effects and potentially safe therapy in pregnancy. We provided a state-of-the-art overview of nanoformulations proposed to topically treat STIs, emphasizing the challenges and advantages of each type of nanocarriers, as well as issues of potential toxicity.
Collapse
|
9
|
Bizzarri BM, Fanelli A, Botta L, Zippilli C, Cesarini S, Saladino R. Dendrimeric Structures in the Synthesis of Fine Chemicals. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5318. [PMID: 34576547 PMCID: PMC8471025 DOI: 10.3390/ma14185318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/30/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022]
Abstract
Dendrimers are highly branched structures with a defined shape, dimension, and molecular weight. They consist of three major components: the central core, branches, and terminal groups. In recent years, dendrimers have received great attention in medicinal chemistry, diagnostic field, science of materials, electrochemistry, and catalysis. In addition, they are largely applied for the functionalization of biocompatible semiconductors, in gene transfection processes, as well as in the preparation of nano-devices, including heterogeneous catalysts. Here, we describe recent advances in the design and application of dendrimers in catalytic organic and inorganic processes, sustainable and low environmental impact, photosensitive materials, nano-delivery systems, and antiviral agents' dendrimers.
Collapse
Affiliation(s)
- Bruno Mattia Bizzarri
- Biological and Ecological Sciences Department (DEB), University of Tuscia, 01100 Viterbo, Italy; (A.F.); (L.B.); (C.Z.); (S.C.)
| | | | | | | | | | - Raffaele Saladino
- Biological and Ecological Sciences Department (DEB), University of Tuscia, 01100 Viterbo, Italy; (A.F.); (L.B.); (C.Z.); (S.C.)
| |
Collapse
|
10
|
Carse S, Bergant M, Schäfer G. Advances in Targeting HPV Infection as Potential Alternative Prophylactic Means. Int J Mol Sci 2021; 22:2201. [PMID: 33672181 PMCID: PMC7926419 DOI: 10.3390/ijms22042201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 01/22/2023] Open
Abstract
Infection by oncogenic human papillomavirus (HPV) is the primary cause of cervical cancer and other anogenital cancers. The majority of cervical cancer cases occur in low- and middle- income countries (LMIC). Concurrent infection with Human Immunodeficiency Virus (HIV) further increases the risk of HPV infection and exacerbates disease onset and progression. Highly effective prophylactic vaccines do exist to combat HPV infection with the most common oncogenic types, but the accessibility to these in LMIC is severely limited due to cost, difficulties in accessing the target population, cultural issues, and maintenance of a cold chain. Alternative preventive measures against HPV infection that are more accessible and affordable are therefore also needed to control cervical cancer risk. There are several efforts in identifying such alternative prophylactics which target key molecules involved in early HPV infection events. This review summarizes the current knowledge of the initial steps in HPV infection, from host cell-surface engagement to cellular trafficking of the viral genome before arrival in the nucleus. The key molecules that can be potentially targeted are highlighted, and a discussion on their applicability as alternative preventive means against HPV infection, with a focus on LMIC, is presented.
Collapse
Affiliation(s)
- Sinead Carse
- International Centre for Genetic Engineering and Biotechnology (ICGEB) Cape Town, Observatory 7925, South Africa;
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
| | - Martina Bergant
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia;
| | - Georgia Schäfer
- International Centre for Genetic Engineering and Biotechnology (ICGEB) Cape Town, Observatory 7925, South Africa;
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
| |
Collapse
|
11
|
Bernstein DI, Cardin RD, Smith GA, Pickard GE, Sollars PJ, Dixon DA, Pasula R, Bravo FJ. The R2 non-neuroinvasive HSV-1 vaccine affords protection from genital HSV-2 infections in a guinea pig model. NPJ Vaccines 2020; 5:104. [PMID: 33298966 PMCID: PMC7648054 DOI: 10.1038/s41541-020-00254-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 10/06/2020] [Indexed: 02/01/2023] Open
Abstract
Herpes simplex virus (HSV) infections are common and can cause severe illness but no vaccine is currently available. The recent failure of subunit HSV vaccines has highlighted the need for vaccines that present a diverse array of antigens, including the development of next-generation live-attenuated vaccines. However, most attenuated HSV strains propagate poorly, limiting their ability to elicit protective immune responses. A live-attenuated vaccine that replicates in non-neural tissue but is ablated for transmission into the nervous system may elicit protective immune responses without evoking neurologic complications or establishing life-long infections. Initial studies of R2, a live-attenuated vaccine that is engineered to be unable to invade the nervous system, used the guinea pig genital HSV model to evaluate the ability of R2 to replicate at the site of inoculation, cause disease and infect neural tissues. R2 was then evaluated as a vaccine using three routes of inoculation: intramuscular (IM), intradermal (ID) and intravaginal (IVag) and compared to IM administered gD2+MPL/Alum vaccine in the same model. R2 replicated in the genital tract but did not produce acute or recurrent disease and did not infect the neural tissue. The R2 vaccine-induced neutralizing antibody and decreased the severity of acute and recurrent HSV-2 disease as well as recurrent shedding. The ID route was the most effective. ID administered R2 was more effective than gD2+MPL/Alum at inducing neutralizing antibody, suppressing acute disease, and acute vaginal virus replication. R2 was especially more effective at reducing recurrent virus shedding, the most common source of HSV transmission. The live-attenuated prophylactic HSV vaccine, R2, was effective in the guinea pig model of genital HSV-2 especially when administered by the ID route. The use of live-attenuated HSV vaccines that robustly replicate in mucosal tissues but are ablated for neuroinvasion offers a promising approach for HSV vaccines.
Collapse
Affiliation(s)
- David I Bernstein
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA.
| | - Rhonda D Cardin
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Gregory A Smith
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Gary E Pickard
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, USA
| | - Patricia J Sollars
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, USA
| | - David A Dixon
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Rajamouli Pasula
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Fernando J Bravo
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
12
|
Kandeel M, Al‐Taher A, Park BK, Kwon H, Al‐Nazawi M. A pilot study of the antiviral activity of anionic and cationic polyamidoamine dendrimers against the Middle East respiratory syndrome coronavirus. J Med Virol 2020; 92:1665-1670. [PMID: 32330296 PMCID: PMC7264540 DOI: 10.1002/jmv.25928] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022]
Abstract
The Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging virus that causes infection with a potentially fatal outcome. Dendrimers are highly branched molecules that can be added to antiviral preparations to improve their delivery, as well as their intrinsic antiviral activity. Studies on identifying anti-MERS-CoV agents are few. Three types of polyanionic dendrimers comprising the terminal groups sodium carboxylate (generations 1.5, 2.5, 3.5, and 4.5), hydroxyl (generations 2, 3, 4, and 5), and succinamic acid (generations 2, 3, 4, and 5) and polycationic dendrimers containing primary amine (generations 2, 3, 4, and 5) were used to assess their antiviral activity with the MERS-CoV plaque inhibition assay. The hydroxyl polyanionic set showed a 17.36% to 29.75% decrease in MERS-CoV plaque formation. The most potent inhibition of MERS-CoV plaque formation was seen by G(1.5)-16COONa (40.5% inhibition), followed by G(5)-128SA (39.77% inhibition). In contrast, the cationic dendrimers were cytotoxic to Vero cells. Polyanionic dendrimers can be added to antiviral preparations to improve the delivery of antivirals, as well as the intrinsic antiviral activity.
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary MedicineKing Faisal UniversityAl‐AhsaSaudi Arabia
- Department of Pharmacology, Faculty of Veterinary MedicineKafrelsheikh UniversityKafrelsheikhEgypt
| | - Abdulla Al‐Taher
- Department of Biomedical Sciences, College of Veterinary MedicineKing Faisal UniversityAl‐AhsaSaudi Arabia
| | - Byoung Kwon Park
- Department of MicrobiologyHallym University College of MedicineChuncheonSouth Korea
| | - Hyung‐Joo Kwon
- Department of MicrobiologyHallym University College of MedicineChuncheonSouth Korea
| | - Mohammed Al‐Nazawi
- Department of Biomedical Sciences, College of Veterinary MedicineKing Faisal UniversityAl‐AhsaSaudi Arabia
| |
Collapse
|
13
|
Gurunathan S, Qasim M, Choi Y, Do JT, Park C, Hong K, Kim JH, Song H. Antiviral Potential of Nanoparticles-Can Nanoparticles Fight Against Coronaviruses? NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1645. [PMID: 32825737 PMCID: PMC7557932 DOI: 10.3390/nano10091645] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/08/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
Abstract
Infectious diseases account for more than 20% of global mortality and viruses are responsible for about one-third of these deaths. Highly infectious viral diseases such as severe acute respiratory (SARS), Middle East respiratory syndrome (MERS) and coronavirus disease (COVID-19) are emerging more frequently and their worldwide spread poses a serious threat to human health and the global economy. The current COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of 27 July 2020, SARS-CoV-2 has infected over 16 million people and led to the death of more than 652,434 individuals as on 27 July 2020 while also causing significant economic losses. To date, there are no vaccines or specific antiviral drugs to prevent or treat COVID-19. Hence, it is necessary to accelerate the development of antiviral drugs and vaccines to help mitigate this pandemic. Non-Conventional antiviral agents must also be considered and exploited. In this regard, nanoparticles can be used as antiviral agents for the treatment of various viral infections. The use of nanoparticles provides an interesting opportunity for the development of novel antiviral therapies with a low probability of developing drug resistance compared to conventional chemical-based antiviral therapies. In this review, we first discuss viral mechanisms of entry into host cells and then we detail the major and important types of nanomaterials that could be used as antiviral agents. These nanomaterials include silver, gold, quantum dots, organic nanoparticles, liposomes, dendrimers and polymers. Further, we consider antiviral mechanisms, the effects of nanoparticles on coronaviruses and therapeutic approaches of nanoparticles. Finally, we provide our perspective on the future of nanoparticles in the fight against viral infections.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (S.G.); (Y.C.); (J.T.D.); (C.P.); (K.H.); (J.-H.K.)
| | - Muhammad Qasim
- Center of Bioengineering and Nanomedicine, Department of Food Science, University of Otago, Dunedin 9054, New Zealand;
| | - Youngsok Choi
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (S.G.); (Y.C.); (J.T.D.); (C.P.); (K.H.); (J.-H.K.)
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (S.G.); (Y.C.); (J.T.D.); (C.P.); (K.H.); (J.-H.K.)
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (S.G.); (Y.C.); (J.T.D.); (C.P.); (K.H.); (J.-H.K.)
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (S.G.); (Y.C.); (J.T.D.); (C.P.); (K.H.); (J.-H.K.)
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (S.G.); (Y.C.); (J.T.D.); (C.P.); (K.H.); (J.-H.K.)
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (S.G.); (Y.C.); (J.T.D.); (C.P.); (K.H.); (J.-H.K.)
| |
Collapse
|
14
|
Mikhtaniuk SE, Bezrodnyi VV, Shavykin OV, Neelov IM, Sheveleva NN, Penkova AV, Markelov DA. Comparison of Structure and Local Dynamics of Two Peptide Dendrimers with the Same Backbone but with Different Side Groups in Their Spacers. Polymers (Basel) 2020; 12:E1657. [PMID: 32722466 PMCID: PMC7464546 DOI: 10.3390/polym12081657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 01/13/2023] Open
Abstract
In this paper, we perform computer simulation of two lysine-based dendrimers with Lys-2Lys and Lys-2Gly repeating units. These dendrimers were recently studied experimentally by NMR (Sci. Reports, 2018, 8, 8916) and tested as carriers for gene delivery (Bioorg. Chem., 2020, 95, 103504). Simulation was performed by molecular dynamics method in a wide range of temperatures. We have shown that the Lys-2Lys dendrimer has a larger size but smaller fluctuations as well as lower internal density in comparison with the Lys-2Gly dendrimer. The Lys-2Lys dendrimer has larger charge but counterions form more ion pairs with its NH 3 + groups and reduce the bare charge and zeta potential of the first dendrimer more strongly. It was demonstrated that these differences between dendrimers are due to the lower flexibility and the larger charge (+2) of each 2Lys spacers in comparison with 2Gly ones. The terminal CH 2 groups in both dendrimers move faster than the inner CH 2 groups. The calculated temperature dependencies of the spin-lattice relaxation times of these groups for both dendrimers are in a good agreement with the experimental results obtained by NMR.
Collapse
Affiliation(s)
- Sofia E. Mikhtaniuk
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia; (S.E.M.); (V.V.B.); (O.V.S.); (I.M.N.)
| | - Valeriy V. Bezrodnyi
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia; (S.E.M.); (V.V.B.); (O.V.S.); (I.M.N.)
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (N.N.S.); (A.V.P.)
| | - Oleg V. Shavykin
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia; (S.E.M.); (V.V.B.); (O.V.S.); (I.M.N.)
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (N.N.S.); (A.V.P.)
| | - Igor M. Neelov
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia; (S.E.M.); (V.V.B.); (O.V.S.); (I.M.N.)
| | - Nadezhda N. Sheveleva
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (N.N.S.); (A.V.P.)
| | - Anastasia V. Penkova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (N.N.S.); (A.V.P.)
| | - Denis A. Markelov
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (N.N.S.); (A.V.P.)
| |
Collapse
|
15
|
Gorzkiewicz M, Konopka M, Janaszewska A, Tarasenko II, Sheveleva NN, Gajek A, Neelov IM, Klajnert-Maculewicz B. Application of new lysine-based peptide dendrimers D3K2 and D3G2 for gene delivery: Specific cytotoxicity to cancer cells and transfection in vitro. Bioorg Chem 2019; 95:103504. [PMID: 31864904 DOI: 10.1016/j.bioorg.2019.103504] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/12/2019] [Accepted: 12/09/2019] [Indexed: 12/31/2022]
Abstract
In order to enhance intracellular uptake and accumulation of therapeutic nucleic acids for improved gene therapy methods, numerous delivery vectors have been elaborated. Based on their origin, gene carriers are generally classified as viral or non-viral vectors. Due to their significantly reduced immunogenicity and highly optimized methods of synthesis, nanoparticles (especially those imitating natural biomolecules) constitute a promising alternative for virus-based delivery devices. Thus, we set out to develop innovative peptide dendrimers for clinical application as transfection agents and gene carriers. In the present work we describe the synthesis of two novel lysine-based dendritic macromolecules (D3K2 and D3G2) and their initial characterization for cytotoxicity/genotoxicity and transfection potential in two human cell line models: cervix adenocarcinoma (HeLa) and microvascular endothelial (HMEC-1). This approach allowed us to identify more cationic D3K2 as potent delivery agent, being able to increase intracellular accumulation of large nucleic acid molecules such as plasmids. Moreover, the dendrimers exhibited specific cytotoxicity towards cancer cell line without showing significant toxic effects on normal cells. These observations are promising prognosis for future clinical application of this type of nanoparticles.
Collapse
Affiliation(s)
- Michal Gorzkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Malgorzata Konopka
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Anna Janaszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Irina I Tarasenko
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi Prospect 31, V.O., St. Petersburg 199004, Russia
| | - Nadezhda N Sheveleva
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia; Laboratory of Physics, Lappeenranta University of Technology, Box 20, 53851 Lappeenranta, Finland
| | - Arkadiusz Gajek
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Igor M Neelov
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, St. Petersburg 197101, Russia
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; Leibniz-Institut für Polymerforschung Dresden e.V., 6 Hohe St., 01069 Dresden, Germany.
| |
Collapse
|
16
|
Gheybi H, Sattari S, Soleimani K, Adeli M. Graphene-dendritic polymer hybrids: synthesis, properties, and applications. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01817-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
17
|
Pedziwiatr-Werbicka E, Milowska K, Dzmitruk V, Ionov M, Shcharbin D, Bryszewska M. Dendrimers and hyperbranched structures for biomedical applications. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Sapra R, Verma RP, Maurya GP, Dhawan S, Babu J, Haridas V. Designer Peptide and Protein Dendrimers: A Cross-Sectional Analysis. Chem Rev 2019; 119:11391-11441. [PMID: 31556597 DOI: 10.1021/acs.chemrev.9b00153] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dendrimers have attracted immense interest in science and technology due to their unique chemical structure that offers a myriad of opportunities for researchers. Dendritic design allows us to present peptides in a branched three-dimensional fashion that eventually leads to a globular shape, thus mimicking globular proteins. Peptide dendrimers, unlike other classes of dendrimers, have immense applications in biomedical research due to their biological origin. The diversity of potential building blocks and innumerable possibilities for design, along with the fact that the area is relatively underexplored, make peptide dendrimers sought-after candidates for various applications. This review summarizes the stepwise evolution of peptidic dendrimers along with their multifaceted applications in various fields. Further, the introduction of biomacromolecules such as proteins to a dendritic scaffold, resulting in complex macromolecules with discrete molecular weights, is an altogether new addition to the area of organic chemistry. The synthesis of highly complex and fully folded biomacromolecules on a dendritic scaffold requires expertise in synthetic organic chemistry and biology. Presently, there are only a handful of examples of protein dendrimers; we believe that these limited examples will fuel further research in this area.
Collapse
Affiliation(s)
- Rachit Sapra
- Department of Chemistry , Indian Institute of Technology Delhi , Hauz Khas , New Delhi 110016 , India
| | - Ram P Verma
- Department of Chemistry , Indian Institute of Technology Delhi , Hauz Khas , New Delhi 110016 , India
| | - Govind P Maurya
- Department of Chemistry , Indian Institute of Technology Delhi , Hauz Khas , New Delhi 110016 , India
| | - Sameer Dhawan
- Department of Chemistry , Indian Institute of Technology Delhi , Hauz Khas , New Delhi 110016 , India
| | - Jisha Babu
- Department of Chemistry , Indian Institute of Technology Delhi , Hauz Khas , New Delhi 110016 , India
| | - V Haridas
- Department of Chemistry , Indian Institute of Technology Delhi , Hauz Khas , New Delhi 110016 , India
| |
Collapse
|
19
|
Intranasal nanoemulsion-adjuvanted HSV-2 subunit vaccine is effective as a prophylactic and therapeutic vaccine using the guinea pig model of genital herpes. Vaccine 2019; 37:6470-6477. [PMID: 31515143 DOI: 10.1016/j.vaccine.2019.08.077] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/16/2019] [Accepted: 08/29/2019] [Indexed: 11/20/2022]
Abstract
Genital herpes is a sexually transmitted disease representing a major global health concern. Currently, there is no approved vaccine and existing antiviral therapies exhibit limited efficacy. Herein, we describe an intranasal (IN) vaccine comprised of HSV-2 surface glycoproteins gD2 and gB2 formulated in a nanoemulsion adjuvant (NE01-gD2/gB2). Using the HSV-2 genital herpes guinea pig model, we demonstrate that IN NE01-gD2/gB2 induces higher levels of neutralizing antibody compared to a monovalent IN NE01-gD2 vaccine, but less than an intramuscular (IM) Alum/MPL-gD2 vaccine. Following intravaginal (IVag) challenge with HSV-2, the group immunized with IN NE01-gD2/gB2 exhibited significantly reduced acute and recurrent disease scores compared to placebo recipients. Significantly, latent virus was only detected in the dorsal root ganglia of 1 of 12 IN NE01-gD2/gB2-vaccinated animals compared to 11 of 12 placebo recipient. In the therapeutic model, IN NE01-gD2/gB2 immunized guinea pigs exhibited a significant reduction in the recurrent lesions scores (64%, p < 0.01), number of animal days with disease (64%, p < 0.01), number of animals with viral shedding (50%, p < 0.04) and reduction in virus positive vaginal swabs (56%, p < 0.04), These data suggests that the treatment may be effective in treating chronic disease and minimizing virus transmission. These results warrant advancing the development of IN NE01-gD2/gB2 as both a prophylactic and therapeutic vaccine against HSV-2.
Collapse
|
20
|
Abstract
Drug delivery systems are molecular platforms in which an active compound is packed into or loaded on a biocompatible nanoparticle. Such a solution improves the activity of the applied drug or decreases its side effects. Dendrimers are promising molecular platforms for drug delivery due to their unique properties. These macromolecules are known for their defined size, shape, and molecular weight, as well as their monodispersity, the presence of the void space, tailorable structure, internalization by cells, selectivity toward cells and intracellular components, protection of guest molecules, and controllable release of the cargo. Dendrimers were tested as carriers of various molecules and, simultaneously, their toxicity was examined using different cell lines. It was discovered that, in general, dendrimer cytotoxicity depended on the generation, the number of surface groups, and the nature of terminal moieties (anionic, neutral, or cationic). Higher cytotoxicity occurred for higher-generation dendrimers and for dendrimers with positive charges on the surface. In order to decrease the cytotoxicity of dendrimers, scientists started to introduce different chemical modifications on the periphery of the nanomolecule. Dendrimers grafted with polyethylene glycol (PEG), acetyl groups, carbohydrates, and other moieties did not affect cell viability, or did so only slightly, while still maintaining other advantageous properties. Dendrimers clearly have great potential for wide utilization as drug and gene carriers. Moreover, some dendrimers have biological properties per se, being anti-fungal, anti-bacterial, or toxic to cancer cells without affecting normal cells. Therefore, intrinsic cytotoxicity is a comprehensive problem and should be considered individually depending on the potential destination of the nanoparticle.
Collapse
|
21
|
Aliev G, Ashraf GM, Tarasov VV, Chubarev VN, Leszek J, Gasiorowski K, Makhmutovа A, Baeesa SS, Avila-Rodriguez M, Ustyugov AA, Bachurin SO. Alzheimer's Disease - Future Therapy Based on Dendrimers. Curr Neuropharmacol 2019; 17:288-294. [PMID: 30227819 PMCID: PMC6425077 DOI: 10.2174/1570159x16666180918164623] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/03/2018] [Accepted: 09/17/2018] [Indexed: 11/22/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by the loss of neurons. It is the most common cause of dementia in the elderly population accompanied by pathological degeneration of neurofibrillary tangles. Senile plaques are formed with beta-amyloid, hyperphosphoryled tau protein, apo-lipoprotein E and presenilin associated with protease activity [amyloid beta (Aβ), gamma-secretase (γS)]. The molecular mechanisms of neurodegeneration include apoptosis, oxidative stress (free radical generation), inflammation, immune activa-tion, and others. The lack of effective treatments for AD stems mainly from the incomplete understanding the causes of AD. Currently, there are several hypotheses explaining the early mechanisms of AD pathogenesis. Recent years witnessed an un-precedented research growth in the area of nanotechnology, which uses atomic, molecular and macromolecular methods to create products in microscale (nanoscale) dimensions. In this article, we have discussed the role of nanotechnology in the de-velopment and improvement of techniques for early diagnosis and effective treatment of AD. Since AD pathology is practi-cally irreversible, applications of disease-modifying treatments could be successful only if early diagnosis of AD is available. This review highlights various possibilities for the early diagnosis and therapy of AD and investigates potential adaptation of nanoparticles-dendrimers as a class of well-defined branched polymers that are chemically synthesized with a well-defined shape, size and nanoscopic physicochemical properties reminiscent of the proteins for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Gjumrakch Aliev
- GALLY International Biomedical Research Consulting LLC., 7733 Louis Pasteur Drive, #330, San Antonio, TX, 78229, United States.,School of Health Science and Healthcare Administration, University of Atlanta, E. Johns Crossing, #175, Johns Creek, GA, 30097, United States.,Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Moscow Region, Chernogolovka, 142432, Russian Federation.,Sechenov University, 119991, Moscow, Russian Federation
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | | | - Jerzy Leszek
- Department of Psychiatry, Wroclaw Medical University, 50-367 Wrocław, Poland
| | - Kazimierz Gasiorowski
- Department of Basic Medical Sciences, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Alfiya Makhmutovа
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Moscow Region, Chernogolovka, 142432, Russian Federation
| | - Saleh Salem Baeesa
- Division of Neurosurgery, College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marco Avila-Rodriguez
- Departamento de Ciencias Clínicas, Facultad de Ciencias de la Salud, Universidad del Tolima, Colombia
| | - Aleksey A Ustyugov
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Moscow Region, Chernogolovka, 142432, Russian Federation
| | - Sergey O Bachurin
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Moscow Region, Chernogolovka, 142432, Russian Federation
| |
Collapse
|
22
|
Bernstein DI, Pullum DA, Cardin RD, Bravo FJ, Dixon DA, Kousoulas KG. The HSV-1 live attenuated VC2 vaccine provides protection against HSV-2 genital infection in the guinea pig model of genital herpes. Vaccine 2019; 37:61-68. [DOI: 10.1016/j.vaccine.2018.11.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022]
|
23
|
|
24
|
Monroe M, Flexner C, Cui H. Harnessing nanostructured systems for improved treatment and prevention of HIV disease. Bioeng Transl Med 2018; 3:102-123. [PMID: 30065966 PMCID: PMC6063869 DOI: 10.1002/btm2.10096] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022] Open
Abstract
Combination antiretroviral therapy effectively controls human immunodeficiency virus (HIV) viral replication, delaying the progression to acquired immune deficiency syndrome and improving and extending quality of life of patients. However, the inability of antiretroviral therapeutics to target latent virus and their poor penetration of viral reserve tissues result in the need for continued treatment for the life of the patient. Side effects from long-term antiretroviral use and the development of drug resistance due to patient noncompliance are also continuing problems. Nanostructured systems of antiretroviral therapeutics have the potential to improve targeted delivery to viral reservoirs, reduce drug toxicity, and increase dosing intervals, thereby improving treatment outcomes and enhancing patient adherence. Despite these advantages, very few nanostructured antiretroviral delivery systems have made it to clinical trials due to challenges in preclinical and clinical development. In this context, we review the current challenges in HIV disease management, and the recent progress in leveraging the unique performance of nanostructured systems in therapeutic delivery for improved treatment and prevention of this incurable human disease.
Collapse
Affiliation(s)
- Maya Monroe
- Dept. of Chemical and Biomolecular Engineering The Johns Hopkins University, 3400 N Charles Street Baltimore MD 21218.,Institute for NanoBioTechnology The Johns Hopkins University, 3400 N Charles Street Baltimore MD 21218
| | - Charles Flexner
- Div. of Clinical Pharmacology and Infectious Diseases Johns Hopkins University School of Medicine and Bloomberg School of Public Health Baltimore MD 21205
| | - Honggang Cui
- Dept. of Chemical and Biomolecular Engineering The Johns Hopkins University, 3400 N Charles Street Baltimore MD 21218.,Institute for NanoBioTechnology The Johns Hopkins University, 3400 N Charles Street Baltimore MD 21218.,Dept. of Oncology, Sidney Kimmel Comprehensive Cancer Center The Johns Hopkins University School of Medicine Baltimore MD 21205.,Center for Nanomedicine The Wilmer Eye Institute, The Johns Hopkins University School of Medicine Baltimore MD 21231
| |
Collapse
|
25
|
Chen G, Wang Y, Xie R, Gong S. A review on core-shell structured unimolecular nanoparticles for biomedical applications. Adv Drug Deliv Rev 2018; 130:58-72. [PMID: 30009887 PMCID: PMC6149214 DOI: 10.1016/j.addr.2018.07.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/23/2018] [Accepted: 07/09/2018] [Indexed: 12/12/2022]
Abstract
Polymeric unimolecular nanoparticles (NPs) exhibiting a core-shell structure and formed by a single multi-arm molecule containing only covalent bonds have attracted increasing attention for numerous biomedical applications. This unique single-molecular architecture provides the unimolecular NP with superior stability both in vitro and in vivo, a high drug loading capacity, as well as versatile surface chemistry, thereby making it a desirable nanoplatform for therapeutic and diagnostic applications. In this review, we surveyed the architecture of various types of polymeric unimolecular NPs, including water-dispersible unimolecular micelles and water-soluble unimolecular NPs used for the delivery of hydrophobic and hydrophilic agents, respectively, as well as their diverse biomedical applications. Future opportunities and challenges of unimolecular NPs were also briefly discussed.
Collapse
Affiliation(s)
- Guojun Chen
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery and Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Yuyuan Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery and Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Ruosen Xie
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery and Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Shaoqin Gong
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery and Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53715, USA.
| |
Collapse
|
26
|
Kim Y, Park EJ, Na DH. Recent progress in dendrimer-based nanomedicine development. Arch Pharm Res 2018; 41:571-582. [PMID: 29450862 DOI: 10.1007/s12272-018-1008-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 02/06/2018] [Indexed: 12/11/2022]
Abstract
Dendrimers offer well-defined nanoarchitectures with spherical shape, high degree of molecular uniformity, and multiple surface functionalities. Such unique structural properties of dendrimers have created many applications for drug and gene delivery, nanomedicine, diagnostics, and biomedical engineering. Dendrimers are not only capable of delivering drugs or diagnostic agents to desired sites by encapsulating or conjugating them to the periphery, but also have therapeutic efficacy in their own. When compared to traditional polymers for drug delivery, dendrimers have distinct advantages, such as high drug-loading capacity at the surface terminal for conjugation or interior space for encapsulation, size control with well-defined numbers of peripheries, and multivalency for conjugation to drugs, targeting moieties, molecular sensors, and biopolymers. This review focuses on recent applications of dendrimers for the development of dendrimer-based nanomedicines for cancer, inflammation, and viral infection. Although dendrimer-based nanomedicines still face some challenges including scale-up production and well-characterization, several dendrimer-based drug candidates are expected to enter clinical development phase in the near future.
Collapse
Affiliation(s)
- Yejin Kim
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Eun Ji Park
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Dong Hee Na
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
27
|
Stenström P, Hjorth E, Zhang Y, Andrén OCJ, Guette-Marquet S, Schultzberg M, Malkoch M. Synthesis and in Vitro Evaluation of Monodisperse Amino-Functional Polyester Dendrimers with Rapid Degradability and Antibacterial Properties. Biomacromolecules 2017; 18:4323-4330. [PMID: 29131611 DOI: 10.1021/acs.biomac.7b01364] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amine functional polymers, especially cationically charged, are interesting biomacromolecules for several reasons, including easy cell membrane entrance, their ability to escape endosomes through the proton sponge effect, spontaneous complexation and delivery of drugs and siRNA, and simple functionalization in aqueous solutions. Dendrimers, a subclass of precision polymers, are monodisperse and exhibit a large and exact number of peripheral end groups in relation to their size and have shown promise in drug delivery, biomedical imaging and as antiviral agents. In this work, hydroxyl functional dendrimers of generation 1 to 5 based on 2,2-bis(methylol)propionic acid (bis-MPA) were modified to bear 6 to 96 peripheral amino groups through esterification reactions with beta-alanine. All dendrimers were isolated in high yields and with remarkable monodispersity. This was successfully accomplished utilizing the present advantages of fluoride-promoted esterification (FPE) with imidazole-activated monomers. Straightforward postfunctionalization was conducted on a second generation amino-functional dendrimer with tetraethylene glycol through NHS-amidation and carbonyl diimidazole (CDI) activation to full conversion with short reaction times. Fast biodegradation of the dendrimers through loss of peripheral beta-alanine groups was observed and generational- and dose-dependent cytotoxicity was evaluated with a set of cell lines. An increase in neurotoxicity compared to hydroxyl-functional dendrimers was shown in neuronal cells, however, the dendrimers were slightly less neurotoxic than commercially available poly(amidoamine) dendrimers (PAMAMs). Additionally, their effect on bacteria was evaluated and the second generation dendrimer was found unique inhibiting the growth of Escherichia coli at physiological conditions while being nontoxic toward human cells. Finally, these results cement a robust and sustainable synthetic route to amino-functional polyester dendrimers with interesting chemical and biological properties.
Collapse
Affiliation(s)
- Patrik Stenström
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology , Teknikringen 56-68, 100 44, Stockholm, Sweden
| | - Erik Hjorth
- Department of Neurobiology, Care Sciences and Society, Section of Neurodegeneration, Center for Alzheimer Research, Karolinska Institutet , Blickagången 6, SE-141 57 Huddinge, Sweden
| | - Yuning Zhang
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology , Teknikringen 56-68, 100 44, Stockholm, Sweden
| | - Oliver C J Andrén
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology , Teknikringen 56-68, 100 44, Stockholm, Sweden
| | - Simon Guette-Marquet
- Department of Neurobiology, Care Sciences and Society, Section of Neurodegeneration, Center for Alzheimer Research, Karolinska Institutet , Blickagången 6, SE-141 57 Huddinge, Sweden
| | - Marianne Schultzberg
- Department of Neurobiology, Care Sciences and Society, Section of Neurodegeneration, Center for Alzheimer Research, Karolinska Institutet , Blickagången 6, SE-141 57 Huddinge, Sweden
| | - Michael Malkoch
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology , Teknikringen 56-68, 100 44, Stockholm, Sweden
| |
Collapse
|
28
|
Elkin I, Banquy X, Barrett CJ, Hildgen P. Non-covalent formulation of active principles with dendrimers: Current state-of-the-art and prospects for further development. J Control Release 2017; 264:288-305. [DOI: 10.1016/j.jconrel.2017.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/28/2017] [Accepted: 09/01/2017] [Indexed: 12/18/2022]
|
29
|
Asandei A, Ciuca A, Apetrei A, Schiopu I, Mereuta L, Seo CH, Park Y, Luchian T. Nanoscale Investigation of Generation 1 PAMAM Dendrimers Interaction with a Protein Nanopore. Sci Rep 2017; 7:6167. [PMID: 28733599 PMCID: PMC5522495 DOI: 10.1038/s41598-017-06435-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/13/2017] [Indexed: 12/20/2022] Open
Abstract
Herein, we describe at uni-molecular level the interactions between poly(amidoamine) (PAMAM) dendrimers of generation 1 and the α-hemolysin protein nanopore, at acidic and neutral pH, and ionic strengths of 0.5 M and 1 M KCl, via single-molecule electrical recordings. The results indicate that kinetics of dendrimer-α-hemolysin reversible interactions is faster at neutral as compared to acidic pH, and we propose as a putative explanation the fine interplay among conformational and rigidity changes on the dendrimer structure, and the ionization state of the dendrimer and the α-hemolysin. From the analysis of the dendrimer's residence time inside the nanopore, we posit that the pH- and salt-dependent, long-range electrostatic interactions experienced by the dendrimer inside the ion-selective α-hemolysin, induce a non-Stokesian diffusive behavior of the analyte inside the nanopore. We also show that the ability of dendrimer molecules to adapt their structure to nanoscopic spaces, and control the flow of matter through the α-hemolysin nanopore, depends non-trivially on the pH- and salt-induced conformational changes of the dendrimer.
Collapse
Affiliation(s)
- Alina Asandei
- Interdisciplinary Research Department, Alexandru I. Cuza University, Iasi, Romania
| | - Andrei Ciuca
- Department of Physics, Alexandru I. Cuza University, Iasi, Romania
| | - Aurelia Apetrei
- Department of Physics, Alexandru I. Cuza University, Iasi, Romania
| | - Irina Schiopu
- Interdisciplinary Research Department, Alexandru I. Cuza University, Iasi, Romania
| | - Loredana Mereuta
- Department of Physics, Alexandru I. Cuza University, Iasi, Romania
| | - Chang Ho Seo
- Department of Bioinformatics, Kongju National University, Kongju, South Korea
| | - Yoonkyung Park
- Department of Department of Biomedical Science and Research Center for Proteinaceous Materials (RCPM), Chosun University, Gwangju, Korea.
| | - Tudor Luchian
- Department of Physics, Alexandru I. Cuza University, Iasi, Romania.
| |
Collapse
|
30
|
Sepúlveda-Crespo D, Ceña-Díez R, Jiménez JL, Ángeles Muñoz-Fernández M. Mechanistic Studies of Viral Entry: An Overview of Dendrimer-Based Microbicides As Entry Inhibitors Against Both HIV and HSV-2 Overlapped Infections. Med Res Rev 2016; 37:149-179. [PMID: 27518199 DOI: 10.1002/med.21405] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 06/16/2016] [Accepted: 07/06/2016] [Indexed: 12/12/2022]
Abstract
This review provides an overview of the development of different dendrimers, mainly polyanionic, against human immunodeficiency virus (HIV) and genital herpes (HSV-2) as topical microbicides targeting the viral entry process. Vaginal topical microbicides to prevent sexually transmitted infections such as HIV and HSV-2 are urgently needed. To inhibit HIV/HSV-2 entry processes, new preventive targets have been established to maximize the current therapies against wild-type and drug-resistant viruses. The entry of HIV/HSV-2 into target cells is a multistep process that triggers a cascade of molecular interactions between viral envelope proteins and cell surface receptors. Polyanionic dendrimers are highly branched nanocompounds with potent activity against HIV/HSV-2. Inhibitors of each entry step have been identified with regard to generations and surface groups, and possible roles for these agents in anti-HIV/HSV-2 therapies have also been discussed. Four potential binding sites for impeding HIV infection (HSPG, DC-SIGN, GSL, and CD4/gp120 inhibitors) and HSV-2 infection (HS, gB, gD, and gH/gL inhibitors) exist according to their mechanisms of action and structures. This review clarifies that inhibition of HIV/HSV-2 entry continues to be a promising target for drug development because nanotechnology can transform the field of HIV/HSV-2 prevention by improving the efficacy of the currently available antiviral treatments.
Collapse
Affiliation(s)
- Daniel Sepúlveda-Crespo
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV-HGM BioBank, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Rafael Ceña-Díez
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV-HGM BioBank, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - José Luis Jiménez
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV-HGM BioBank, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.,Plataforma de Laboratorio, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Ma Ángeles Muñoz-Fernández
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV-HGM BioBank, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
31
|
Alexandre KB, Mufhandu HT, London GM, Chakauya E, Khati M. Progress and Perspectives on HIV-1 microbicide development. Virology 2016; 497:69-80. [PMID: 27429040 DOI: 10.1016/j.virol.2016.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 12/12/2022]
Abstract
The majority of HIV-1 infections occur via sexual intercourse. Women are the most affected by the epidemic, particularly in developing countries, due to their socio-economic dependence on men and the fact that they are often victims of gender based sexual violence. Despite significant efforts that resulted in the reduction of infection rates in some countries, there is still need for effective prevention methods against the virus. One of these methods for preventing sexual transmission in women is the use of microbicides. In this review we provide a summary of the progress made toward the discovery of affordable and effective HIV-1 microbicides and suggest future directions. We show that there is a wide range of compounds that have been proposed as potential microbicides. Although most of them have so far failed to show protection in humans, there are many promising ones currently in pre-clinical studies and in clinical trials.
Collapse
Affiliation(s)
- Kabamba B Alexandre
- Council for Scientific and Industrial Research, Pioneering Health Sciences Laboratory, Biosciences Unit, Pretoria, Gauteng, South Africa.
| | - Hazel T Mufhandu
- Council for Scientific and Industrial Research, Pioneering Health Sciences Laboratory, Biosciences Unit, Pretoria, Gauteng, South Africa
| | - Grace M London
- Department of Health Free State District Health Services and Health Programs, South Africa
| | - E Chakauya
- Council for Scientific and Industrial Research, Pioneering Health Sciences Laboratory, Biosciences Unit, Pretoria, Gauteng, South Africa
| | - M Khati
- Council for Scientific and Industrial Research, Pioneering Health Sciences Laboratory, Biosciences Unit, Pretoria, Gauteng, South Africa; University of Cape Town and Groote Schuur Hospital, Department of Medicine, Cape Town, South Africa
| |
Collapse
|
32
|
Ceña-Diez R, Vacas-Córdoba E, García-Broncano P, de la Mata FJ, Gómez R, Maly M, Muñoz-Fernández MÁ. Prevention of vaginal and rectal herpes simplex virus type 2 transmission in mice: mechanism of antiviral action. Int J Nanomedicine 2016; 11:2147-62. [PMID: 27274240 PMCID: PMC4876947 DOI: 10.2147/ijn.s95301] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Topical microbicides to stop sexually transmitted diseases, such as herpes simplex virus type 2 (HSV-2), are urgently needed. The emerging field of nanotechnology offers novel suitable tools for addressing this challenge. Our objective was to study, in vitro and in vivo, antiherpetic effect and antiviral mechanisms of several polyanionic carbosilane dendrimers with anti-HIV-1 activity to establish new potential microbicide candidates against sexually transmitted diseases. Plaque reduction assay on Vero cells proved that G2-S16, G1-S4, and G3-S16 are the dendrimers with the highest inhibitory response against HSV-2 infection. We also demonstrated that our dendrimers inhibit viral infection at the first steps of HSV-2 lifecycle: binding/entry-mediated events. G1-S4 and G3-S16 bind directly on the HSV-2, inactivating it, whereas G2-S16 adheres to host cell-surface proteins. Molecular modeling showed that G1-S4 binds better at binding sites on gB surface than G2-S16. Significantly better binding properties of G1-S4 than G2-S16 were found in an important position for affecting transition of gB trimer from G1-S4 prefusion to final postfusion state and in several positions where G1-S4 could interfere with gB/gH-gL interaction. We demonstrated that these polyanionic carbosilan dendrimers have a synergistic activity with acyclovir and tenofovir against HSV-2, in vitro. Topical vaginal or rectal administration of G1-S4 or G2-S16 prevents HSV-2 transmission in BALB/c mice in values close to 100%. This research represents the first demonstration that transmission of HSV-2 can be blocked by vaginal/rectal application of G1-S4 or G2-S16, providing a step forward to prevent HSV-2 transmission in humans.
Collapse
Affiliation(s)
- Rafael Ceña-Diez
- Molecular Immunobiology Laboratory, General Universitary Hospital Gregorio Marañon, Health Research Institute Gregorio Marañon, Spanish HIV HGM BioBank, Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Enrique Vacas-Córdoba
- Molecular Immunobiology Laboratory, General Universitary Hospital Gregorio Marañon, Health Research Institute Gregorio Marañon, Spanish HIV HGM BioBank, Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Pilar García-Broncano
- Molecular Immunobiology Laboratory, General Universitary Hospital Gregorio Marañon, Health Research Institute Gregorio Marañon, Spanish HIV HGM BioBank, Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Viral and Immune Infection Unit Center, Institute of Health Carlos III, Majadahonda Campus, Molecular Immunobiology Laboratory, General Universitary Hospital Gregorio Marañon, Madrid, Spain
| | - F J de la Mata
- Organic and Inorganic Chemistry Department, Alcala University, University Campus Alcala de Heneras, Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Rafael Gómez
- Organic and Inorganic Chemistry Department, Alcala University, University Campus Alcala de Heneras, Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Marek Maly
- Faculty of Science, J.E. Purkinje University, Ústí nad Labem, Czech Republic
| | - M Ángeles Muñoz-Fernández
- Molecular Immunobiology Laboratory, General Universitary Hospital Gregorio Marañon, Health Research Institute Gregorio Marañon, Spanish HIV HGM BioBank, Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
33
|
Vacas-Córdoba E, Maly M, De la Mata FJ, Gómez R, Pion M, Muñoz-Fernández MÁ. Antiviral mechanism of polyanionic carbosilane dendrimers against HIV-1. Int J Nanomedicine 2016; 11:1281-94. [PMID: 27103798 PMCID: PMC4827595 DOI: 10.2147/ijn.s96352] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Nanotechnology-derived platforms, such as dendrimers, are very attractive in several biological applications. In the case of human immunodeficiency virus (HIV) infection, polyanionic carbosilane dendrimers have shown great potential as antiviral agents in the development of novel microbicides to prevent the sexual transmission of HIV-1. In this work, we studied the mechanism of two sulfated and naphthylsulfonated functionalized carbosilane dendrimers, G3-S16 and G2-NF16. They are able to inhibit viral infection at fusion and thus at the entry step. Both compounds impede the binding of viral particles to target cell surface and membrane fusion through the blockage of gp120–CD4 interaction. In addition, and for the first time, we demonstrate that dendrimers can inhibit cell-to-cell HIV transmission and difficult infectious synapse formation. Thus, carbosilane dendrimers’ mode of action is a multifactorial process targeting several proteins from viral envelope and from host cells that could block HIV infection at different stages during the first step of infection.
Collapse
Affiliation(s)
- Enrique Vacas-Córdoba
- Molecular Immunobiology Laboratory, General Universitary Hospital Gregorio Marañon, Madrid, Spain; Health Research Institute Gregorio Marañon, Madrid, Spain; Spanish HIV HGM BioBanK, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Marek Maly
- Faculty of Science, Jan Evangelista Purkyně University, Ústí nad Labem, Czech Republic; Laboratory of Applied Mathematics and Physics (LaMFI), University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland
| | - Francisco J De la Mata
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Dendrimers for Biomedical Applications Group (BioInDen), University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Rafael Gómez
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Dendrimers for Biomedical Applications Group (BioInDen), University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Marjorie Pion
- Molecular Immunobiology Laboratory, General Universitary Hospital Gregorio Marañon, Madrid, Spain; Health Research Institute Gregorio Marañon, Madrid, Spain; Spanish HIV HGM BioBanK, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - M Ángeles Muñoz-Fernández
- Molecular Immunobiology Laboratory, General Universitary Hospital Gregorio Marañon, Madrid, Spain; Health Research Institute Gregorio Marañon, Madrid, Spain; Spanish HIV HGM BioBanK, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
34
|
Bernstein DI, Bravo FJ, Pullum DA, Shen H, Wang M, Rahman A, Glazer RI, Cardin RD. Efficacy of N-methanocarbathymidine against genital herpes simplex virus type 2 shedding and infection in guinea pigs. Antivir Chem Chemother 2016; 24:19-27. [PMID: 26149263 DOI: 10.1177/2040206614566581] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Current approved nucleoside therapies for genital herpes simplex virus (HSV) infections are effective but improved therapies are needed for treatment of both acute and recurrent diseases. METHODS The effects of N-methanocarbathymidine were evaluated and compared to acyclovir using guinea pig models of acute and recurrent infection. For acute disease following intravaginal inoculation of 10(6 )pfu HSV-2 (MS strain), animals were treated intraperitoneally beginning 24 h post-infection, and the effects on disease severity, vaginal virus replication, subsequent recurrences, and latent virus loads were evaluated. For evaluation of recurrent infection, animals were treated for 21 days beginning 14 days after infection and disease recurrence and recurrent shedding were evaluated. RESULTS Treatment of the acute disease with N-methanocarbathymidine significantly reduced the severity of acute disease and decreased acute vaginal virus shedding more effectively than acyclovir. Significantly, none of the animals developed visible disease in the high-dose N-methanocarbathymidine group and this was the only group in which the number of days with recurrent virus shedding was reduced. Treatment of recurrent disease was equivalent to acyclovir when acyclovir was continuously supplied in the drinking water. CONCLUSION N-methanocarbathymidine was effective as therapy for acute and recurrent genital HSV-2 disease in the guinea pig models.
Collapse
Affiliation(s)
- David I Bernstein
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Fernando J Bravo
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Derek A Pullum
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Hui Shen
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Mei Wang
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | | | | | - Rhonda D Cardin
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
35
|
Peptidomimetic Star Polymers for Targeting Biological Ion Channels. PLoS One 2016; 11:e0152169. [PMID: 27007701 PMCID: PMC4805292 DOI: 10.1371/journal.pone.0152169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/09/2016] [Indexed: 11/19/2022] Open
Abstract
Four end-functionalized star polymers that could attenuate the flow of ionic currents across biological ion channels were first de novo designed computationally, then synthesized and tested experimentally on mammalian K+ channels. The 4-arm ethylene glycol conjugate star polymers with lysine or a tripeptide attached to the end of each arm were specifically designed to mimic the action of scorpion toxins on K+ channels. Molecular dynamics simulations showed that the lysine side chain of the polymers physically occludes the pore of Kv1.3, a target for immuno-suppression therapy. Two of the compounds tested were potent inhibitors of Kv1.3. The dissociation constants of these two compounds were computed to be 0.1 μM and 0.7 μM, respectively, within 3-fold to the values derived from subsequent experiments. These results demonstrate the power of computational methods in molecular design and the potential of star polymers as a new infinitely modifiable platform for ion channel drug discovery.
Collapse
|
36
|
Donalisio M, Quaranta P, Chiuppesi F, Pistello M, Cagno V, Cavalli R, Volante M, Bugatti A, Rusnati M, Ranucci E, Ferruti P, Lembo D. The AGMA1 poly(amidoamine) inhibits the infectivity of herpes simplex virus in cell lines, in human cervicovaginal histocultures, and in vaginally infected mice. Biomaterials 2016; 85:40-53. [PMID: 26854390 DOI: 10.1016/j.biomaterials.2016.01.055] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/15/2016] [Accepted: 01/26/2016] [Indexed: 11/28/2022]
Abstract
The development of topical microbicides is a valid approach to protect the genital mucosa from sexually transmitted infections that cannot be contained with effective vaccination, like HSV and HIV infections. A suitable target of microbicides is the interaction between viral proteins and cell surface heparan sulfate proteoglycans (HSPGs). AGMA1 is a prevailingly cationic agmatine-containing polyamidoamine polymer previously shown to inhibit HSPGs dependent viruses, including HSV-1, HSV-2, and HPV-16. The aim of this study was to elucidate the mechanism of action of AGMA1 against HSV infection and assess its antiviral efficacy and biocompatibility in preclinical models. The results show AGMA1 to be a non-toxic inhibitor of HSV infectivity in cell cultures and human cervicovaginal histocultures. Moreover, it significantly reduced the burden of infection of HSV-2 genital infection in mice. The investigation of the mechanism of action revealed that AGMA1 reduces cells susceptibility to virus infection by binding to cell surface HSPGs thereby preventing HSV attachment. This study indicates that AGMA1 is a promising candidate for the development of a topical microbicide to prevent sexually transmitted HSV infections.
Collapse
Affiliation(s)
- Manuela Donalisio
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, 10043 Orbassano, Torino, Italy
| | - Paola Quaranta
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, 56126 Pisa, Italy; ARPA Foundation, 56126 Pisa, Italy
| | - Flavia Chiuppesi
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, 56126 Pisa, Italy
| | - Mauro Pistello
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, 56126 Pisa, Italy
| | - Valeria Cagno
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, 10043 Orbassano, Torino, Italy
| | - Roberta Cavalli
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
| | - Marco Volante
- Dipartimento di Oncologia, Università di Torino, 10043 Orbassano, Torino Italy
| | - Antonella Bugatti
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, 25123 Brescia, Italy
| | - Marco Rusnati
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, 25123 Brescia, Italy
| | - Elisabetta Ranucci
- Dipartimento di Chimica Organica e Industriale, Università degli Studi di Milano, 20133 Milano, Italy
| | - Paolo Ferruti
- Dipartimento di Chimica Organica e Industriale, Università degli Studi di Milano, 20133 Milano, Italy
| | - David Lembo
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, 10043 Orbassano, Torino, Italy.
| |
Collapse
|
37
|
Ceña-Díez R, Sepúlveda-Crespo D, Maly M, Muñoz-Fernández MA. Dendrimeric based microbicides against sexual transmitted infections associated to heparan sulfate. RSC Adv 2016. [DOI: 10.1039/c6ra06969j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cell surface heparan sulfate (HS) represents a common link that many sexually transmitted infections (STIs) require for infection.
Collapse
Affiliation(s)
- Rafael Ceña-Díez
- Laboratorio InmunoBiología Molecular
- Hospital General Universitario Gregorio Marañón
- 28007 Madrid
- Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM)
| | - Daniel Sepúlveda-Crespo
- Laboratorio InmunoBiología Molecular
- Hospital General Universitario Gregorio Marañón
- 28007 Madrid
- Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM)
| | - Marek Maly
- Department of Innovative Technologies
- University of Applied Science of Southern Switzerland
- Switzerland
- Faculty of Science
- J. E. Purkinje University
| | - Mª Angeles Muñoz-Fernández
- Laboratorio InmunoBiología Molecular
- Hospital General Universitario Gregorio Marañón
- 28007 Madrid
- Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM)
| |
Collapse
|
38
|
Fuentes-Paniagua E, Serramía MJ, Sánchez-Nieves J, Álvarez S, Muñoz-Fernández MÁ, Gómez R, de la Mata FJ. Fluorescein labelled cationic carbosilane dendritic systems for biological studies. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.07.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
39
|
Lu D, Hossain MD, Jia Z, Monteiro MJ. One-Pot Orthogonal Copper-Catalyzed Synthesis and Self-Assembly of l-Lysine-Decorated Polymeric Dendrimers. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00195] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Derong Lu
- Australian Institute for
Bioengineering and Nanotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| | - Md. D. Hossain
- Australian Institute for
Bioengineering and Nanotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| | - Zhongfan Jia
- Australian Institute for
Bioengineering and Nanotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| | - Michael J. Monteiro
- Australian Institute for
Bioengineering and Nanotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
40
|
Wu LP, Ficker M, Christensen JB, Trohopoulos PN, Moghimi SM. Dendrimers in Medicine: Therapeutic Concepts and Pharmaceutical Challenges. Bioconjug Chem 2015; 26:1198-211. [PMID: 25654320 DOI: 10.1021/acs.bioconjchem.5b00031] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dendrimers are three-dimensional macromolecular structures originating from a central core molecule and surrounded by successive addition of branching layers (generation). These structures exhibit a high degree of molecular uniformity, narrow molecular weight distribution, tunable size and shape characteristics, as well as multivalency. Collectively, these physicochemical characteristics together with advancements in design of biodegradable backbones have conferred many applications to dendrimers in formulation science and nanopharmaceutical developments. These have included the use of dendrimers as pro-drugs and vehicles for solubilization, encapsulation, complexation, delivery, and site-specific targeting of small-molecule drugs, biopharmaceuticals, and contrast agents. We briefly review these advances, paying particular attention to attributes that make dendrimers versatile for drug formulation as well as challenging issues surrounding the future development of dendrimer-based medicines.
Collapse
Affiliation(s)
- Lin-Ping Wu
- †Centre for Pharmaceutical Nanotechnology and Nanotoxicology, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Mario Ficker
- ‡Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Jørn B Christensen
- ‡Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | | | - Seyed Moein Moghimi
- †Centre for Pharmaceutical Nanotechnology and Nanotoxicology, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.,∥NanoScience Centre, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
41
|
Vonnemann J, Liese S, Kuehne C, Ludwig K, Dernedde J, Böttcher C, Netz RR, Haag R. Size Dependence of Steric Shielding and Multivalency Effects for Globular Binding Inhibitors. J Am Chem Soc 2015; 137:2572-9. [DOI: 10.1021/ja5114084] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | | | - Christian Kuehne
- Institute
of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Jens Dernedde
- Institute
of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
42
|
Thakur S, Kesharwani P, Tekade RK, Jain NK. Impact of pegylation on biopharmaceutical properties of dendrimers. POLYMER 2015. [DOI: 10.1016/j.polymer.2014.12.051] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
Meyhoff U, Riber U, Boas U. Convergent synthesis of degradable dendrons based on l-malic acid. NEW J CHEM 2015. [DOI: 10.1039/c4nj01156b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dendron synthesis using malic acid derivatives in a stepwise manner leads to the preparation of polyfunctional dendrons, degradable by hydrolysis.
Collapse
Affiliation(s)
- Ulrich Meyhoff
- Department of Chemistry
- University of Copenhagen
- DK-2100 Copenhagen
- Denmark
| | - Ulla Riber
- Section of Immunology and Vaccinology
- National Veterinary Institute
- Technical University of Denmark (DTU)
- DK 1870 Frederiksberg C
- Denmark
| | - Ulrik Boas
- Section of Immunology and Vaccinology
- National Veterinary Institute
- Technical University of Denmark (DTU)
- DK 1870 Frederiksberg C
- Denmark
| |
Collapse
|
44
|
Liu X, Hao W, Lok CN, Wang YC, Zhang R, Wong KKY. Dendrimer encapsulation enhances anti-inflammatory efficacy of silver nanoparticles. J Pediatr Surg 2014; 49:1846-51. [PMID: 25487498 DOI: 10.1016/j.jpedsurg.2014.09.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 09/06/2014] [Indexed: 01/27/2023]
Abstract
BACKGROUND Our previous studies revealed that silver nanoparticles (AgNPs) promoted wound healing in part through their anti-inflammatory actions. As recent reports also suggested anti-inflammatory effects of dendrimers, we therefore undertook this study using dendrimer as the delivery system for AgNP to explore any potential synergistic anti-inflammatory efficacy. METHODS Lipopolysaccharide (LPS) was added to cultured RAW264.7 and J774.1 cells to mimic in vitro inflammation condition, followed by the addition of either silver dendrimer nanocomposite (Ag-DNC), AgNPs, or dendrimer. The levels of inflammatory markers TNF-alpha and interleukin-6 were assessed using ELISA assay. Furthermore, in vivo effects such of Ag-DNC, AgNPs, or dendrimer were studied in a burn wound model in mice. RESULTS Our results confirmed that both naked dendrimer and AgNPs had anti-inflammatory properties. In in vitro study, Ag-DNC was shown to have the best anti-inflammatory efficacy than AgNPs or dendrimer alone. In-vivo experiments also indicated that animals in the Ag-DNC group had the fastest healing time with the least inflammation. CONCLUSION Our study would suggest that dendrimer could provide additional anti-inflammatory benefits and might be an excellent delivery system for silver nanoparticles for future clinical application.
Collapse
Affiliation(s)
- Xuelai Liu
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wei Hao
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chun-Nam Lok
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Yue Chun Wang
- Department of Physiology, Medical College, Ji Nan University, Guangzhou, China
| | - RuiZhong Zhang
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kenneth K Y Wong
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
45
|
Madaan K, Kumar S, Poonia N, Lather V, Pandita D. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2014; 6:139-50. [PMID: 25035633 PMCID: PMC4097927 DOI: 10.4103/0975-7406.130965] [Citation(s) in RCA: 331] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 09/29/2013] [Accepted: 11/14/2013] [Indexed: 11/16/2022] Open
Abstract
Dendrimers are the emerging polymeric architectures that are known for their defined structures, versatility in drug delivery and high functionality whose properties resemble with biomolecules. These nanostructured macromolecules have shown their potential abilities in entrapping and/or conjugating the high molecular weight hydrophilic/hydrophobic entities by host-guest interactions and covalent bonding (prodrug approach) respectively. Moreover, high ratio of surface groups to molecular volume has made them a promising synthetic vector for gene delivery. Owing to these properties dendrimers have fascinated the researchers in the development of new drug carriers and they have been implicated in many therapeutic and biomedical applications. Despite of their extensive applications, their use in biological systems is limited due to toxicity issues associated with them. Considering this, the present review has focused on the different strategies of their synthesis, drug delivery and targeting, gene delivery and other biomedical applications, interactions involved in formation of drug-dendrimer complex along with characterization techniques employed for their evaluation, toxicity problems and associated approaches to alleviate their inherent toxicity.
Collapse
Affiliation(s)
- Kanika Madaan
- Department of Pharmaceutics, J. C. D. M. College of Pharmacy, Sirsa, Haryana, India
| | - Sandeep Kumar
- Department of Pharmaceutics, J. C. D. M. College of Pharmacy, Sirsa, Haryana, India
| | - Neelam Poonia
- Department of Pharmaceutics, J. C. D. M. College of Pharmacy, Sirsa, Haryana, India
| | - Viney Lather
- Department of Pharmaceutical Chemistry, J. C. D. M. College of Pharmacy, Sirsa, Haryana, India
| | - Deepti Pandita
- Department of Pharmaceutics, J. C. D. M. College of Pharmacy, Sirsa, Haryana, India
| |
Collapse
|
46
|
Jiang Y, Zhang D, Zhang Y, Deng Z, Zhang L. The adsorption-desorption transition of double-stranded DNA interacting with an oppositely charged dendrimer induced by multivalent anions. J Chem Phys 2014; 140:204912. [DOI: 10.1063/1.4878508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
47
|
Martinelli J, Thangavel K, Tei L, Botta M. Dendrimeric β-Cyclodextrin/GdIIIChelate Supramolecular Host-Guest Adducts as High-Relaxivity MRI Probes. Chemistry 2014; 20:10944-52. [DOI: 10.1002/chem.201402418] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Indexed: 11/11/2022]
|
48
|
How to study dendrimers and dendriplexes III. Biodistribution, pharmacokinetics and toxicity in vivo. J Control Release 2014; 181:40-52. [DOI: 10.1016/j.jconrel.2014.02.021] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 02/21/2014] [Accepted: 02/22/2014] [Indexed: 12/15/2022]
|
49
|
Cyrus T, Winter PM, Caruthers SD, Wickline SA, Lanza GM. Magnetic resonance nanoparticles for cardiovascular molecular imaging and therapy. Expert Rev Cardiovasc Ther 2014; 3:705-15. [PMID: 16076280 DOI: 10.1586/14779072.3.4.705] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Molecular vascular imaging represents a novel tool that promises to change the current medical paradigm of 'see and treat' to a 'detect and prevent' strategy. Nanoparticle agents, such as superparamagnetic nanoparticles and perfluorocarbon nanoparticle emulsions, have been developed for noninvasive imaging, particularly for magnetic resonance imaging. Designed to target specific epitopes in tissues, these agents are beginning to enter clinical trials for cardiovascular applications. The delivery of local therapy with these nanoparticles, using mechanisms such as contact-facilitated drug delivery, is in the advanced stages of preclinical research. Ultimately, combined diagnostic and therapeutic nanoparticle formulations may allow patients to be characterized noninvasively and segmented to receive custom-tailored therapy. This review focuses on recent developments of nanoparticle technologies with an emphasis on cardiovascular applications of magnetic resonance imaging.
Collapse
Affiliation(s)
- Tillmann Cyrus
- Washington University School of Medicine, Barnes-Jewish Hospital, 660 South Euclid Ave., Box 8086, Saint Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
50
|
Kalhapure RS, Kathiravan MK, Akamanchi KG, Govender T. Dendrimers - from organic synthesis to pharmaceutical applications: an update. Pharm Dev Technol 2013; 20:22-40. [PMID: 24299011 DOI: 10.3109/10837450.2013.862264] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Dendrimers are a relatively new class of monodisperse polymers, which have tree-like spherical structures with well-defined sizes and shapes. Their unique structure has a significant impact on their physical and chemical properties. Research on dendrimers is of significant interest to scientists from all areas and their utility in various scientific fields, including pharmaceuticals, is expanding. The present review is comprehensive and covers different aspects of dendrimers viz. (1) synthesis, (2) properties and (3) pharmaceutical applications. The emphasis is on their applications as well as the current ongoing research status for drug targeting.
Collapse
Affiliation(s)
- Rahul S Kalhapure
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal , Durban , South Africa and
| | | | | | | |
Collapse
|