1
|
Unemo M, Sánchez-Busó L, Golparian D, Jacobsson S, Shimuta K, Lan PT, Eyre DW, Cole M, Maatouk I, Wi T, Lahra MM. The novel 2024 WHO Neisseria gonorrhoeae reference strains for global quality assurance of laboratory investigations and superseded WHO N. gonorrhoeae reference strains-phenotypic, genetic and reference genome characterization. J Antimicrob Chemother 2024; 79:1885-1899. [PMID: 38889110 PMCID: PMC11290888 DOI: 10.1093/jac/dkae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVES MDR and XDR Neisseria gonorrhoeae strains remain major public health concerns internationally, and quality-assured global gonococcal antimicrobial resistance (AMR) surveillance is imperative. The WHO global Gonococcal Antimicrobial Surveillance Programme (GASP) and WHO Enhanced GASP (EGASP), including metadata and WGS, are expanding internationally. We present the phenotypic, genetic and reference genome characteristics of the 2024 WHO gonococcal reference strains (n = 15) for quality assurance worldwide. All superseded WHO gonococcal reference strains (n = 14) were identically characterized. MATERIAL AND METHODS The 2024 WHO reference strains include 11 of the 2016 WHO reference strains, which were further characterized, and four novel strains. The superseded WHO reference strains include 11 WHO reference strains previously unpublished. All strains were characterized phenotypically and genomically (single-molecule PacBio or Oxford Nanopore and Illumina sequencing). RESULTS The 2024 WHO reference strains represent all available susceptible and resistant phenotypes and genotypes for antimicrobials currently and previously used (n = 22), or considered for future use (n = 3) in gonorrhoea treatment. The novel WHO strains include internationally spreading ceftriaxone resistance, ceftriaxone resistance due to new penA mutations, ceftriaxone plus high-level azithromycin resistance and azithromycin resistance due to mosaic MtrRCDE efflux pump. AMR, serogroup, prolyliminopeptidase, genetic AMR determinants, plasmid types, molecular epidemiological types and reference genome characteristics are presented for all strains. CONCLUSIONS The 2024 WHO gonococcal reference strains are recommended for internal and external quality assurance in laboratory examinations, especially in the WHO GASP, EGASP and other GASPs, but also in phenotypic and molecular diagnostics, AMR prediction, pharmacodynamics, epidemiology, research and as complete reference genomes in WGS analysis.
Collapse
Affiliation(s)
- Magnus Unemo
- Department of Laboratory Medicine, Faculty of Medicine and Health, WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for STIs, Microbiology, Örebro University, Örebro, Sweden
- Institute for Global Health, University College London (UCL), London, UK
| | - Leonor Sánchez-Busó
- Joint Research Unit ‘Infection and Public Health’, FISABIO-University of Valencia, Institute for Integrative Systems Biology (I2SysBio), Valencia, Spain
- CIBERESP, ISCIII, Madrid, Spain
| | - Daniel Golparian
- Department of Laboratory Medicine, Faculty of Medicine and Health, WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for STIs, Microbiology, Örebro University, Örebro, Sweden
| | - Susanne Jacobsson
- Department of Laboratory Medicine, Faculty of Medicine and Health, WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for STIs, Microbiology, Örebro University, Örebro, Sweden
| | - Ken Shimuta
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Pham Thi Lan
- Hanoi Medical University, National Hospital of Dermatology and Venereology, Hanoi, Vietnam
| | - David W Eyre
- Big Data Institute, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Ismael Maatouk
- Department of the Global HIV, Hepatitis and STI Programmes, WHO, Geneva, Switzerland
| | - Teodora Wi
- Department of the Global HIV, Hepatitis and STI Programmes, WHO, Geneva, Switzerland
| | - Monica M Lahra
- WHO Collaborating Centre for Sexually Transmitted Infections and Antimicrobial Resistance, New South Wales Health Pathology, Microbiology, Randwick, NSW, Australia
- Faculty of Medicine, The University of New South Wales, Sydney, Australia
| |
Collapse
|
2
|
Madhukar MK, Singh N, Iyer VR, Sowpati DT, Tallapaka KB, Mishra RK, Moharir SC. Antimicrobial resistance landscape in a metropolitan city context using open drain wastewater-based metagenomic analysis. ENVIRONMENTAL RESEARCH 2024; 252:118556. [PMID: 38503380 DOI: 10.1016/j.envres.2024.118556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/21/2024]
Abstract
One Health concept recognizes the inextricable interactions of diverse ecosystems and their subsequent effect on human, animal and plant health. Antimicrobial resistance (AMR) is a major One Health concern and is predicted to cause catastrophes if appropriate measures are not implemented. To understand the AMR landscape in a south Indian metropolitan city, metagenomic analysis of open drains was performed. The data suggests that in January 2022, macrolide class of antibiotics contributed the highest resistance of 40.1% in the city, followed by aminoglycoside- 24.4%, tetracycline- 11.3% and lincosamide- 6.7%. The 'mutations in the 23S rRNA gene conferring resistance to macrolide antibiotics' were the major contributor of resistance with a prevalence of 39.7%, followed by '16s rRNA with mutation conferring resistance to aminoglycoside antibiotics'- 22.2%, '16S rRNA with mutation conferring resistance to tetracycline derivatives'- 9.2%, and '23S rRNA with mutation conferring resistance to lincosamide antibiotics'- 6.7%. The most prevalent antimicrobial resistance gene (ARG) 'mutations in the 23S rRNA gene conferring resistance to macrolide antibiotics' was present in multiple pathogens including Escherichia coli, Campylobacter jejuni, Acinetobacter baumannii, Streptococcus pneumoniae, Pseudomonas aeruginosa, Neisseria gonorrhoeae, Klebsiella pneumoniae and Helicobacter pylori. Most of the geographical locations in the city showed a similar landscape for AMR. Considering human mobility and anthropogenic activities, such an AMR landscape could be common across other regions too. The data indicates that pathogens are evolving and acquiring antibiotic resistance genes to evade antibiotics of multiple major drug classes in diverse hosts. The outcomes of the study are relevant not only in understanding the resistance landscape at a broader level but are also important for identifying the resistant drug classes, the mechanisms of gaining resistance and for developing new drugs that target specific pathways. This kind of surveillance protocol can be extended to regions in other developing countries to assess and combat the problem of antimicrobial resistance.
Collapse
Affiliation(s)
| | - Nirupama Singh
- Tata Institute for Genetics and Society, Bengaluru, 560065, India
| | - V Rajesh Iyer
- Tata Institute for Genetics and Society, Bengaluru, 560065, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Divya Tej Sowpati
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Karthik Bharadwaj Tallapaka
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rakesh Kumar Mishra
- Tata Institute for Genetics and Society, Bengaluru, 560065, India; Centre for Cellular and Molecular Biology, Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Shivranjani Chandrashekhar Moharir
- Tata Institute for Genetics and Society, Bengaluru, 560065, India; Centre for Cellular and Molecular Biology, Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Frost KM, Charron-Smith SL, Cotsonas TC, Dimartino DC, Eisenhart RC, Everingham ET, Holland EC, Imtiaz K, Kornowicz CJ, Lenhard LE, Lynch LH, Moore NP, Phadke K, Reed ML, Smith SR, Ward LL, Wadsworth CB. Rolling the evolutionary dice: Neisseria commensals as proxies for elucidating the underpinnings of antibiotic resistance mechanisms and evolution in human pathogens. Microbiol Spectr 2024; 12:e0350723. [PMID: 38179941 PMCID: PMC10871548 DOI: 10.1128/spectrum.03507-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
Species within the genus Neisseria are adept at sharing adaptive allelic variation, with commensal species repeatedly transferring resistance to their pathogenic relative Neisseria gonorrhoeae. However, resistance in commensals is infrequently characterized, limiting our ability to predict novel and potentially transferable resistance mechanisms that ultimately may become important clinically. Unique evolutionary starting places of each Neisseria species will have distinct genomic backgrounds, which may ultimately control the fate of evolving populations in response to selection as epistatic and additive interactions coerce lineages along divergent evolutionary trajectories. Alternatively, similar genetic content present across species due to shared ancestry may constrain existing adaptive solutions. Thus, identifying the paths to resistance across commensals may aid in characterizing the Neisseria resistome-or the reservoir of alleles within the genus as well as its depth. Here, we use in vitro evolution of four commensal species to investigate the potential and repeatability of resistance evolution to two antimicrobials, the macrolide azithromycin and the β-lactam penicillin. After 20 days of selection, commensals evolved resistance to penicillin and azithromycin in 11/16 and 12/16 cases, respectively. Almost all cases of resistance emergence converged on mutations within ribosomal components or the mtrRCDE efflux pump for azithromycin-based selection and mtrRCDE, penA, and rpoB for penicillin selection, thus supporting constrained adaptive solutions despite divergent evolutionary starting points across the genus for these particular drugs. Though drug-selected loci were limited, we do identify novel resistance-imparting mutations. Continuing to explore paths to resistance across different experimental conditions and genomic backgrounds, which could shunt evolution down alternative evolutionary trajectories, will ultimately flesh out the full Neisseria resistome.IMPORTANCENeisseria gonorrhoeae is a global threat to public health due to its rapid acquisition of antibiotic resistance to all first-line treatments. Recent work has documented that alleles acquired from close commensal relatives have played a large role in the emergence of resistance to macrolides and beta-lactams within gonococcal populations. However, commensals have been relatively underexplored for the resistance genotypes they may harbor. This leaves a gap in our understanding of resistance that could be rapidly acquired by the gonococcus through a known highway of horizontal gene exchange. Here, we characterize resistance mechanisms that can emerge in commensal Neisseria populations via in vitro selection to multiple antimicrobials and begin to define the number of paths to resistance. This study, and other similar works, may ultimately aid both surveillance efforts and clinical diagnostic development by nominating novel and conserved resistance mechanisms that may be at risk of rapid dissemination to pathogen populations.
Collapse
Affiliation(s)
- Kelly M. Frost
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Sierra L. Charron-Smith
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Terence C. Cotsonas
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Daniel C. Dimartino
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Rachel C. Eisenhart
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Eric T. Everingham
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Elle C. Holland
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Kainat Imtiaz
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Cory J. Kornowicz
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Lydia E. Lenhard
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Liz H. Lynch
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Nadia P. Moore
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Kavya Phadke
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Makayla L. Reed
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Samantha R. Smith
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Liza L. Ward
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Crista B. Wadsworth
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| |
Collapse
|
4
|
Shim SR, Lee Y, In SM, Lee KI, Kim I, Jeong H, Shin J, Kim JY. Increased risk of hearing loss associated with macrolide use: a systematic review and meta-analysis. Sci Rep 2024; 14:183. [PMID: 38167873 PMCID: PMC10762137 DOI: 10.1038/s41598-023-50774-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024] Open
Abstract
The increased risk of hearing loss with macrolides remains controversial. We aimed to systematically review and meta-analyze data on the clinical risk of hearing loss, tinnitus, and ototoxicity following macrolide use. A systematic search was conducted across PubMed, MEDLINE, Cochrane, and Embase databases from database inception to May 2023. Medical Subject Heading (MeSH) terms and text keywords were utilized, without any language restrictions. In addition to the electronic databases, two authors manually and independently searched for relevant studies in the US and European clinical trial registries and Google Scholar. Studies that involved (1) patients who had hearing loss, tinnitus, or ototoxicity after macrolide use, (2) intervention of use of macrolides such as azithromycin, clarithromycin, erythromycin, fidaxomicin, roxithromycin, spiramycin, and/or telithromycin, (3) comparisons with specified placebos or other antibiotics, (4) outcomes measured as odds ratio (OR), relative risk (RR), hazard ratio (HR), and mean difference for ototoxicity symptoms using randomized control trial (RCT)s and observational studies (case-control, cross-section, and cohort studies) were included. Data extraction was performed independently by two extractors, and a crosscheck was performed to identify any errors. ORs along with their corresponding 95% confidence intervals (CIs) were estimated using random-effects models. The Preferred Reporting Items for Systematic Reviews and Meta-analyses reporting guidelines for RCTs and Meta-Analysis of Observational Studies in Epidemiology guidelines for observational studies were followed. We assessed the hearing loss risk after macrolide use versus controls (placebos and other antibiotics). Based on data from 13 studies including 1,142,021 patients (n = 267,546 for macrolide and n = 875,089 for controls), the overall pooled OR was 1.25 (95% CI 1.07-1.47). In subgroup analysis by study design, the ORs were 1.37 (95% CI 1.08-1.73) for RCTs and 1.33 (95% CI 1.24-1.43) for case-control studies, indicating that RCT and case-control study designs showed a statistically significant higher risk of hearing loss. The group with underlying diseases such as multiple infectious etiologies (OR, 1.16 [95% CI 0.96-1.41]) had a statistically significant lower risk than the group without (OR, 1.53 [95% CI 1.38-1.70] P = .013). The findings from this systematic review and meta-analysis suggest that macrolide antibiotics increase the risk of hearing loss and that healthcare professionals should carefully consider this factor while prescribing macrolides.
Collapse
Affiliation(s)
- Sung Ryul Shim
- Department of Biomedical Informatics, College of Medicine, Konyang University, Daejeon, Republic of Korea
- Konyang Medical data Research group-KYMERA, Konyang University Hospital, Daejeon, Republic of Korea
| | - YungJin Lee
- Konyang Medical data Research group-KYMERA, Konyang University Hospital, Daejeon, Republic of Korea
- Department of Rehabilitation Medicine, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Seung Min In
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Ki-Il Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Ikhee Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Hyoyeon Jeong
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Jieun Shin
- Department of Biomedical Informatics, College of Medicine, Konyang University, Daejeon, Republic of Korea.
- Konyang Medical data Research group-KYMERA, Konyang University Hospital, Daejeon, Republic of Korea.
| | - Jong-Yeup Kim
- Department of Biomedical Informatics, College of Medicine, Konyang University, Daejeon, Republic of Korea.
- Konyang Medical data Research group-KYMERA, Konyang University Hospital, Daejeon, Republic of Korea.
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konyang University, Daejeon, Republic of Korea.
| |
Collapse
|
5
|
Mikucki A, Kahler CM. Microevolution and Its Impact on Hypervirulence, Antimicrobial Resistance, and Vaccine Escape in Neisseria meningitidis. Microorganisms 2023; 11:3005. [PMID: 38138149 PMCID: PMC10745880 DOI: 10.3390/microorganisms11123005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Neisseria meningitidis is commensal of the human pharynx and occasionally invades the host, causing the life-threatening illness invasive meningococcal disease. The meningococcus is a highly diverse and adaptable organism thanks to natural competence, a propensity for recombination, and a highly repetitive genome. These mechanisms together result in a high level of antigenic variation to invade diverse human hosts and evade their innate and adaptive immune responses. This review explores the ways in which this diversity contributes to the evolutionary history and population structure of the meningococcus, with a particular focus on microevolution. It examines studies on meningococcal microevolution in the context of within-host evolution and persistent carriage; microevolution in the context of meningococcal outbreaks and epidemics; and the potential of microevolution to contribute to antimicrobial resistance and vaccine escape. A persistent theme is the idea that the process of microevolution contributes to the development of new hyperinvasive meningococcal variants. As such, microevolution in this species has significant potential to drive future public health threats in the form of hypervirulent, antibiotic-resistant, vaccine-escape variants. The implications of this on current vaccination strategies are explored.
Collapse
Affiliation(s)
- August Mikucki
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia;
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
| | - Charlene M. Kahler
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia;
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
6
|
Takahashi H, Morita M, Kamiya H, Fukusumi M, Yasuda M, Sunagawa M, Nakamura-Miwa H, Ohama Y, Shimuta K, Ohnishi M, Saito R, Akeda Y. Emergence of ciprofloxacin- and penicillin-resistant Neisseria meningitidis isolates in Japan between 2003 and 2020 and its genetic features. Antimicrob Agents Chemother 2023; 67:e0074423. [PMID: 37874301 PMCID: PMC10648979 DOI: 10.1128/aac.00744-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/28/2023] [Indexed: 10/25/2023] Open
Abstract
Although we previously reported that some meningococcal isolates in Japan were resistant to penicillin (PCG) and ciprofloxacin (CIP), the antibiotic susceptibilities of Neisseria meningitidis isolates obtained in Japan remained unclear. In the present study, 290 N. meningitidis isolates in Japan between 2003 and 2020 were examined for the sensitivities to eight antibiotics (azithromycin, ceftriaxone, ciprofloxacin, chloramphenicol, meropenem, minocycline, penicillin, and rifampicin). All isolates were susceptible to chloramphenicol, ceftriaxone, meropenem, minocycline, and rifampicin while two were resistant to azithromycin. Penicillin- and ciprofloxacin-resistant and -intermediate isolates (PCGR, CIPR, PCGI and CIPI, respectively) were also identified. Based on our previous findings from whole genome sequence analysis, approximately 40% of PCGI were associated with ST-11026 and cc2057 meningococci, both of which were unique to Japan. Moreover, the majority of ST-11026 meningococci were CIPR or CIPI. Sensitivities to PCG and CIP were closely associated with genetic features, which indicated that, at least for Japanese meningococcal isolates, PCGR/I or CIPI/R would be less likely to be horizontally conferred from other neisserial genomes by transferring of the genes responsible (penA and gyrA genes, respectively), but rather that ancestral N. meningitidis strains conferring PCGR/I or CIPI/R phenotypes clonally disseminated in Japan.
Collapse
Affiliation(s)
- Hideyuki Takahashi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masatomo Morita
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hajime Kamiya
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Munehisa Fukusumi
- Center for Field Epidemic Intelligence, Research and Professional Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Mitsuru Yasuda
- Department of Infection Control and Laboratory Medicine, Sapporo Medical University, Sapporo, Japan
| | - Masatomi Sunagawa
- Center for Field Epidemic Intelligence, Research and Professional Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Haruna Nakamura-Miwa
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuki Ohama
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ken Shimuta
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ryoichi Saito
- Department of Molecular Microbiology Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
7
|
Frost KM, Charron-Smith SL, Cotsonas TC, Dimartino DC, Eisenhart RC, Everingham ET, Holland EC, Imtiaz K, Kornowicz CJ, Lenhard LE, Lynch LH, Moore NP, Phadke K, Reed ML, Smith SR, Ward LL, Wadsworth CB. Rolling the evolutionary dice: Neisseria commensals as proxies for elucidating the underpinnings of antibiotic resistance mechanisms and evolution in human pathogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559611. [PMID: 37808746 PMCID: PMC10557713 DOI: 10.1101/2023.09.26.559611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Species within the genus Neisseria are especially adept at sharing adaptive allelic variation across species' boundaries, with commensal species repeatedly transferring resistance to their pathogenic relative N. gonorrhoeae. However, resistance in commensal Neisseria is infrequently characterized at both the phenotypic and genotypic levels, limiting our ability to predict novel and potentially transferable resistance mechanisms that ultimately may become important clinically. Unique evolutionary starting places of each Neisseria species will have distinct genomic backgrounds, which may ultimately control the fate of evolving populations in response to selection, as epistatic and additive interactions may coerce lineages along divergent evolutionary trajectories. However alternatively, similar genetic content present across species due to shared ancestry may constrain the adaptive solutions that exist. Thus, identifying the paths to resistance across commensals may aid in characterizing the Neisseria resistome - or the reservoir of alleles within the genus, as well as its depth. Here, we use in vitro evolution of four commensal species to investigate the potential for and repeatability of resistance evolution to two antimicrobials, the macrolide azithromycin and the β-lactam penicillin. After 20 days of selection, commensals evolved elevated minimum inhibitory concentrations (MICs) to penicillin and azithromycin in 11/16 and 12/16 cases respectively. Almost all cases of resistance emergence converged on mutations within ribosomal components or the mtrRCDE efflux pump for azithromycin-based selection, and mtrRCDE or penA for penicillin selection; thus, supporting constrained adaptive solutions despite divergent evolutionary starting points across the genus for these particular drugs. However, continuing to explore the paths to resistance across different experimental conditions and genomic backgrounds, which could shunt evolution down alternative evolutionary trajectories, will ultimately flesh out the full Neisseria resistome.
Collapse
Affiliation(s)
- Kelly M. Frost
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Sierra L. Charron-Smith
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Terence C. Cotsonas
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Daniel C. Dimartino
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Rachel C. Eisenhart
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Eric T. Everingham
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Elle C. Holland
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Kainat Imtiaz
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Cory J. Kornowicz
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Lydia E. Lenhard
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Liz H. Lynch
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Nadia P. Moore
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Kavya Phadke
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Makayla L. Reed
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Samantha R. Smith
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Liza L. Ward
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Crista B. Wadsworth
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| |
Collapse
|
8
|
Sasaki K, Takada H, Hayashi C, Ohya K, Yamaguchi Y, Takahashi Y, Igarashi M, Shibasaki M. Synthesis of novobiocin derivatives and evaluation of their antigonococcal activity and pharmacokinetics. Bioorg Med Chem 2023; 92:117381. [PMID: 37506559 DOI: 10.1016/j.bmc.2023.117381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 07/30/2023]
Abstract
Gonorrhea has become a serious problem because the number of infected people is increasing and the multi-drug resistance of the causative bacteria, Neisseria gonorrhoeae, is progressing. To develop novel drugs against resistant N. gonorrhoeae, we focused on the antibiotic novobiocin (1). This natural product has a different mechanism of action from existing drugs for gonorrhea, which may make it effective against resistant strains. Actually, it was applied to resistant N. gonorrhoeae, and moderate antibacterial activity was confirmed. Based on this result, we investigated the development of an antigonococcal drug with 1 as the lead compound. The pharmacophore is thought to be the noviose sugar moiety, especially around the 3'-position, so we derivatized this part in order to improve antibacterial activity. As a result, we found that 5 with an methylpyrrole ester structure have a very potent antibacterial activity. This derivative also showed excellent antigonococcal activity against resistant strains in vitro, however it has poor water solubility and pharmacokinetics because it is the acidic lipid-soluble compound. Therefore, we considered introduction of a basic substituent into the molecule would result in an amphoteric compound with improved water solubility, and we investigated further derivatization. As a result of synthesizing various derivatives, we found 47 containing imidazole with strong antigonococcal activity and greatly improved water solubility. This derivative has also improved metabolism and blood concentration in vivo, and is expected to be orally absorbed. Based on these results, we believe that 47 is a very promising anti-gonococcal lead compound and has great potential for further development.
Collapse
Affiliation(s)
| | - Hisashi Takada
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
| | | | - Kouhei Ohya
- KYORIN Pharmaceutical Co., Ltd. WATARASE Research Center, Tochigi, Japan
| | - Yuko Yamaguchi
- KYORIN Pharmaceutical Co., Ltd. WATARASE Research Center, Tochigi, Japan
| | | | | | | |
Collapse
|
9
|
Manabe YC. The impact of COVID-19 pandemic on technologic and process innovation in point-of-care diagnostics for sexually transmitted infections. Clin Biochem 2023; 117:75-83. [PMID: 34808115 PMCID: PMC8604101 DOI: 10.1016/j.clinbiochem.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/23/2021] [Accepted: 11/05/2021] [Indexed: 11/18/2022]
Abstract
The STI diagnostic landscape of FDA cleared tests for use at point-of-care (POC), as well as those emergency use authorized for COVID-19 are reviewed; some of these COVID-19 diagnostics may have platform potential as STI diagnostics. Finally, process innovation is described with self-collection and hub-and-spoke mail-in to reference lab models. Movement of Clinical Laboratory Improvement Amendments (CLIA)-waived POC tests to over-the-counter formats will make tests more accessible to consumers. Together with public health messaging, these measures could accelerate STI and COVID-19 syndemic diagnostic solutions.
Collapse
Affiliation(s)
- Yukari C Manabe
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Martin SL, Mortimer TD, Grad YH. Machine learning models for Neisseria gonorrhoeae antimicrobial susceptibility tests. Ann N Y Acad Sci 2023; 1520:74-88. [PMID: 36573759 PMCID: PMC9974846 DOI: 10.1111/nyas.14549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neisseria gonorrhoeae is an urgent public health threat due to the emergence of antibiotic resistance. As most isolates in the United States are susceptible to at least one antibiotic, rapid molecular antimicrobial susceptibility tests (ASTs) would offer the opportunity to tailor antibiotic therapy, thereby expanding treatment options. With genome sequence and antibiotic resistance phenotype data for nearly 20,000 clinical N. gonorrhoeae isolates now available, there is an opportunity to use statistical methods to develop sequence-based diagnostics that predict antibiotic susceptibility from genotype. N. gonorrhoeae, therefore, provides a useful example illustrating how to apply machine learning models to aid in the design of sequence-based ASTs. We present an overview of this framework, which begins with establishing the assay technology, the performance criteria, the population in which the diagnostic will be used, and the clinical goals, and extends to the choices that must be made to arrive at a set of features with the desired properties for predicting susceptibility phenotype from genotype. While we focus on the example of N. gonorrhoeae, the framework generalizes to other organisms for which large-scale genotype and antibiotic resistance data can be combined to aid in diagnostics development.
Collapse
Affiliation(s)
- Skylar L. Martin
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Tatum D. Mortimer
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Yonatan H. Grad
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Allen H, Merrick R, Ivanov Z, Pitt R, Mohammed H, Sinka K, Hughes G, Fifer H, Cole MJ. Is there an association between previous infection with Neisseria gonorrhoeae and gonococcal AMR? A cross-sectional analysis of national and sentinel surveillance data in England, 2015-2019. Sex Transm Infect 2023; 99:1-6. [PMID: 35246477 DOI: 10.1136/sextrans-2021-055298] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/06/2022] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVES Quarterly STI screening is recommended for high-risk gay, bisexual and other men who have sex with men (MSM) in the UK, but frequent antibiotic exposure could potentially increase the risk of antimicrobial resistance (AMR) developing in Neisseria gonorrhoeae. We investigated whether repeat diagnosis of gonorrhoea in those attending sexual health services (SHS) was associated with reduced antimicrobial susceptibility. METHODS Antimicrobial susceptibility data relating to the most recent gonorrhoea diagnosis for each individual included in the Gonococcal Resistance to Antimicrobials Surveillance Programme (2015-2019) were matched to their historical records in the national GUMCAD STI surveillance data set (2012-2019). The number of gonorrhoea diagnoses in the previous 3 years was calculated for each SHS attendee. Logistic regression was used to examine the associations between the number of diagnoses and reduced susceptibility to ceftriaxone (minimum inhibitory concentration (MIC) >0.03 mg/L), cefixime (MIC >0.06 mg/L) and azithromycin (MIC >0.25 mg/L) at the time of the latest diagnosis. RESULTS Of 6161 individuals included in the analysis, 3913 (63.5%) were MSM, 1220 (19.8%) were heterosexual men and 814 (13.2%) were women. Among MSM, 2476 (63.3%) had 1 past gonorrhoea diagnosis, 1295 (33.1%) had 2-4, 140 (3.6%) 5-9, and 2 (0.1%) ≥10. Most women and heterosexual men (91.7%) had one past gonorrhoea diagnosis; none had more than four. Reduced ceftriaxone and cefixime susceptibility was more common among MSM with two to four gonorrhoea diagnoses (3.8% and 5.8%, respectively) compared with those with one (2.2% and 3.9%, respectively). After adjusting for potential confounding, this association remained (adjusted OR: 1.59, 95% CI 1.07 to 2.37, p=0.02; adjusted OR: 1.54, 95% CI 1.11 to 2.14, p=0.01). No evidence was found for any other associations. CONCLUSIONS Among MSM, repeat diagnosis of gonorrhoea may be associated with reduced ceftriaxone and cefixime susceptibility. As these are last-line therapies for gonorrhoea, further research is needed to assess the impact of intensive STI screening on AMR.
Collapse
Affiliation(s)
- Hester Allen
- Blood Safety, Hepatitis, Sexually Transmitted Infections (STI) and HIV Division, UK Health Security Agency, London, UK
| | - Rachel Merrick
- Blood Safety, Hepatitis, Sexually Transmitted Infections (STI) and HIV Division, UK Health Security Agency, London, UK
| | - Zdravko Ivanov
- Antimicrobial Resistance and Healthcare Associated Infections Reference Laboratory, UK Health Security Agency, London, UK
| | - Rachel Pitt
- Antimicrobial Resistance and Healthcare Associated Infections Reference Laboratory, UK Health Security Agency, London, UK
| | - Hamish Mohammed
- Blood Safety, Hepatitis, Sexually Transmitted Infections (STI) and HIV Division, UK Health Security Agency, London, UK
| | - Katy Sinka
- Blood Safety, Hepatitis, Sexually Transmitted Infections (STI) and HIV Division, UK Health Security Agency, London, UK
| | - Gwenda Hughes
- UK Public Health Rapid Support Team, London School of Hygiene and Tropical Medicine, London, UK
| | - Helen Fifer
- Blood Safety, Hepatitis, Sexually Transmitted Infections (STI) and HIV Division, UK Health Security Agency, London, UK
| | - Michelle Jayne Cole
- Antimicrobial Resistance and Healthcare Associated Infections Reference Laboratory, UK Health Security Agency, London, UK
| |
Collapse
|
12
|
Kikiowo B, Bandara AB, Abutaleb NS, Seleem MN. Colonization efficiency of multidrug-resistant Neisseria gonorrhoeae in a female mouse model. Pathog Dis 2023; 81:ftad030. [PMID: 37852672 DOI: 10.1093/femspd/ftad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/30/2023] [Accepted: 10/17/2023] [Indexed: 10/20/2023] Open
Abstract
The rapid occurrence of gonococcal resistance to all classes of antibiotics could lead to untreatable gonorrhea. Thus, development of novel anti-Neisseria gonorrhoeae drugs is urgently needed. Neisseria gonorrhoeae FA1090 is the most used in gonococcal infection mouse models because of its natural resistance to streptomycin. Streptomycin inhibits the urogenital commensal flora that permits gonococcal colonization. However, this strain is drug-susceptible and cannot be used to investigate the efficacy of novel agents against multidrug-resistant N. gonorrhoeae. Hence, to test the in vivo efficacy of new therapeutics against N. gonorrhoeae resistant to the frontline antibiotics, azithromycin, or ceftriaxone, we constructed streptomycin-resistant mutants of N. gonorrhoeae CDC-181 (azithromycin-resistant) and WHO-X (ceftriaxone-resistant). We identified the inoculum size needed to successfully colonize mice. Both mutants, CDC-181-rpsLA128G and WHO-X-rpsLA128G, colonized the genital tract of mice for 14 days with 100% colonization observed for at least 7 days. CDC-181-rpsLA128G demonstrated better colonization of the murine genital tract compared to WHO-X-rpsLA128G. Lower inoculum of WHO-X-rpsLA128G (105 and 106 CFU) colonized mice better than higher inoculum. Overall, our results indicate that CDC-181-rpsLA128G and WHO-X-rpsLA128G can colonize the lower genital tract of mice and are suitable to be used in mouse models to investigate the efficacy of antigonococcal agents.
Collapse
Affiliation(s)
- Babatomiwa Kikiowo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 205 Duck Pond Drive, Blacksburg, VA 24061, United States
- Center for One Health Research, Virginia Polytechnic Institute and State University, 1410 Prices Fork Rd, Blacksburg, VA 24060, United States
| | - Aloka B Bandara
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 205 Duck Pond Drive, Blacksburg, VA 24061, United States
- Center for One Health Research, Virginia Polytechnic Institute and State University, 1410 Prices Fork Rd, Blacksburg, VA 24060, United States
| | - Nader S Abutaleb
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 205 Duck Pond Drive, Blacksburg, VA 24061, United States
- Center for One Health Research, Virginia Polytechnic Institute and State University, 1410 Prices Fork Rd, Blacksburg, VA 24060, United States
| | - Mohamed N Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 205 Duck Pond Drive, Blacksburg, VA 24061, United States
- Center for One Health Research, Virginia Polytechnic Institute and State University, 1410 Prices Fork Rd, Blacksburg, VA 24060, United States
| |
Collapse
|
13
|
Day M, Pitt R, Mody N, Saunders J, Rai R, Nori A, Church H, Mensforth S, Corkin H, Jones J, Naicker P, Khan WM, Thomson Glover R, Mortimer K, Hylton C, Moss E, Pasvol TJ, Richardson A, Sun S, Woodford N, Mohammed H, Sinka K, Fifer H. Detection of 10 cases of ceftriaxone-resistant Neisseria gonorrhoeae in the United Kingdom, December 2021 to June 2022. Euro Surveill 2022; 27:2200803. [PMID: 36398578 PMCID: PMC9673238 DOI: 10.2807/1560-7917.es.2022.27.46.2200803] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/16/2022] [Indexed: 08/09/2023] Open
Abstract
Between December 2021 and June 2022, 10 cases of ceftriaxone-resistant Neisseria gonorrhoeae (ST8123; n = 8) were detected in the United Kingdom, compared with nine cases during the previous 6 years. Most of these cases were associated with travel from the Asia-Pacific region; all were heterosexual people, with most in their 20s. Although all cases were successfully treated, not all partners of cases could be traced, and there is a risk of further transmission of ceftriaxone-resistant gonococcal infection within the UK.
Collapse
Affiliation(s)
- Michaela Day
- National Incident Management Team, United Kingdom Health Security Agency, London, United Kingdom
| | - Rachel Pitt
- National Incident Management Team, United Kingdom Health Security Agency, London, United Kingdom
| | - Nisha Mody
- National Incident Management Team, United Kingdom Health Security Agency, London, United Kingdom
| | - John Saunders
- National Incident Management Team, United Kingdom Health Security Agency, London, United Kingdom
| | - Rupa Rai
- National Incident Management Team, United Kingdom Health Security Agency, London, United Kingdom
| | - Achyuta Nori
- National Incident Management Team, United Kingdom Health Security Agency, London, United Kingdom
| | - Hannah Church
- National Incident Management Team, United Kingdom Health Security Agency, London, United Kingdom
| | - Sarah Mensforth
- National Incident Management Team, United Kingdom Health Security Agency, London, United Kingdom
| | - Helen Corkin
- National Incident Management Team, United Kingdom Health Security Agency, London, United Kingdom
| | - Jacqueline Jones
- Sexual Health Department Singleton Hospital, Swansea Bay University Health Board, Swansea, Wales, United Kingdom
| | - Preneshni Naicker
- Public Health Wales Microbiology Swansea, Singleton Hospital, Swansea, Wales, United Kingdom
| | - Wazirzada M Khan
- National Incident Management Team, United Kingdom Health Security Agency, London, United Kingdom
| | - Rebecca Thomson Glover
- National Incident Management Team, United Kingdom Health Security Agency, London, United Kingdom
| | - Kalani Mortimer
- National Incident Management Team, United Kingdom Health Security Agency, London, United Kingdom
| | - Chloe Hylton
- National Incident Management Team, United Kingdom Health Security Agency, London, United Kingdom
| | - Elizabeth Moss
- National Incident Management Team, United Kingdom Health Security Agency, London, United Kingdom
| | - Thomas Joshua Pasvol
- National Incident Management Team, United Kingdom Health Security Agency, London, United Kingdom
| | - Ania Richardson
- National Incident Management Team, United Kingdom Health Security Agency, London, United Kingdom
| | - Suzy Sun
- National Incident Management Team, United Kingdom Health Security Agency, London, United Kingdom
| | - Neil Woodford
- National Incident Management Team, United Kingdom Health Security Agency, London, United Kingdom
| | - Hamish Mohammed
- National Incident Management Team, United Kingdom Health Security Agency, London, United Kingdom
| | - Katy Sinka
- National Incident Management Team, United Kingdom Health Security Agency, London, United Kingdom
| | - Helen Fifer
- National Incident Management Team, United Kingdom Health Security Agency, London, United Kingdom
| |
Collapse
|
14
|
Molecular Mechanisms of Drug Resistance and Epidemiology of Multidrug-Resistant Variants of Neisseria gonorrhoeae. Int J Mol Sci 2022; 23:ijms231810499. [PMID: 36142410 PMCID: PMC9505821 DOI: 10.3390/ijms231810499] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 01/16/2023] Open
Abstract
The paper presents various issues related to the increasing drug resistance of Neisseria gonorrhoeae and the occurrence and spread of multidrug-resistant clones. One of the most important is the incidence and evolution of resistance mechanisms of N. gonorrhoeae to beta-lactam antibiotics. Chromosomal resistance to penicillins and oxyimino-cephalosporins and plasmid resistance to penicillins are discussed. Chromosomal resistance is associated with the presence of mutations in the PBP2 protein, containing mosaic variants and nonmosaic amino acid substitutions in the transpeptidase domain, and their correlation with mutations in the mtrR gene and its promoter regions (the MtrCDE membrane pump repressor) and in several other genes, which together determine reduced sensitivity or resistance to ceftriaxone and cefixime. Plasmid resistance to penicillins results from the production of beta-lactamases. There are different types of beta-lactamases as well as penicillinase plasmids. In addition to resistance to beta-lactam antibiotics, the paper covers the mechanisms and occurrence of resistance to macrolides (azithromycin), fluoroquinolones and some other antibiotics. Moreover, the most important epidemiological types of multidrug-resistant N. gonorrhoeae, prevalent in specific years and regions, are discussed. Epidemiological types are defined as sequence types, clonal complexes and genogroups obtained by various typing systems such as NG-STAR, NG-MAST and MLST. New perspectives on the treatment of N. gonorrhoeae infections are also presented, including new drugs active against multidrug-resistant strains.
Collapse
|
15
|
Wang D, Ning Q, Deng Z, Zhang M, You J. Role of environmental stresses in elevating resistance mutations in bacteria: Phenomena and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119603. [PMID: 35691443 DOI: 10.1016/j.envpol.2022.119603] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Mutations are an important origin of antibiotic resistance in bacteria. While there is increasing evidence showing promoted resistance mutations by environmental stresses, no retrospective research has yet been conducted on this phenomenon and its mechanisms. Herein, we summarized the phenomena of stress-elevated resistance mutations in bacteria, generalized the regulatory mechanisms and discussed the environmental and human health implications. It is shown that both chemical pollutants, such as antibiotics and other pharmaceuticals, biocides, metals, nanoparticles and disinfection byproducts, and non-chemical stressors, such as ultraviolet radiation, electrical stimulation and starvation, are capable of elevating resistance mutations in bacteria. Notably, resistance mutations are more likely to occur under sublethal or subinhibitory levels of these stresses, suggesting a considerable environmental concern. Further, mechanisms for stress-induced mutations are summarized in several points, namely oxidative stress, SOS response, DNA replication and repair systems, RpoS regulon and biofilm formation, all of which are readily provoked by common environmental stresses. Given bacteria in the environment are confronted with a variety of unfavorable conditions, we propose that the stress-elevated resistance mutations are a universal phenomenon in the environment and represent a nonnegligible risk factor for ecosystems and human health. The present review identifies a need for taking into account the pollutants' ability to elevate resistance mutations when assessing their environmental and human health risks and highlights the necessity of including resistance mutations as a target to prevent antibiotic resistance evolution.
Collapse
Affiliation(s)
- Dali Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Qing Ning
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | | | - Meng Zhang
- Shenzhen Dapeng New District Center for Disease Control and Prevention, Shenzhen, 518000, China
| | - Jing You
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
16
|
Nokchan N, Wongsurawat T, Jenjaroenpun P, Nitayanon P, Tribuddharat C. Whole-genome sequence analysis of high-level penicillin-resistant strains and antimicrobial susceptibility of Neisseria gonorrhoeae clinical isolates from Thailand. PLoS One 2022; 17:e0271657. [PMID: 35905043 PMCID: PMC9337635 DOI: 10.1371/journal.pone.0271657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/05/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The increasing rate of antimicrobial-resistant Neisseria gonorrhoeae poses a considerable public health threat due to the difficulty in treating gonococcal infections. This study examined antimicrobial resistance (AMR) to drugs recommended for gonorrhea treatment between 2015 and 2017, and the AMR determinants and genetic compositions of plasmids in 3 gonococcal strains with high-level penicillin resistance. METHODS We collected 117 N. gonorrhoeae isolates from patients with gonococcal infections who attended Siriraj Hospital, Bangkok, Thailand, between 2015 and 2017. Minimum inhibitory concentrations (MICs) of penicillin, tetracycline, ciprofloxacin, azithromycin, spectinomycin, cefixime, and ceftriaxone were determined by the agar dilution method. PCR amplification and sequencing of 23S rRNA and mtrR (a negative regulator of MtrCDE efflux pump) were performed. Whole genomes of 3 PPNG strains with high-level penicillin resistance (MIC ≥ 128 μg/ml) were sequenced using Illumina and Nanopore sequencing platforms. RESULTS The proportions of N. gonorrhoeae isolates with resistance were 84.6% for penicillin, 91.5% for tetracycline, and 96.6% for ciprofloxacin. All isolates were susceptible to spectinomycin, azithromycin, cefixime, and ceftriaxone. An adenine deletion within a 13 bp inverted repeat sequence in the mtrR promoter and an H105Y mutation in the mtrR coding region were found in the N. gonorrhoeae isolate with the highest azithromycin MIC value (1 μg/ml). Three high-level penicillin-resistant isolates contained nonmosaic type II penA and had mutations in penB and the mtrR coding region. All isolates with high-level penicillin resistance carried the conjugative plasmids with or without the Dutch type tetM determinant, the beta-lactamase plasmid (Rio/Toronto), and the cryptic plasmid. CONCLUSIONS The gonococcal population in Thailand showed high susceptibility to ceftriaxone and azithromycin, current dual therapy recommended for gonorrhea treatment. As elevated MIC of azithromycin has been observed in 1 strain of N. gonorrhoeae, expanded and enhanced surveillance of antimicrobial susceptibility and study of genetic resistance determinants are essential to improve treatment guidelines.
Collapse
Affiliation(s)
- Natakorn Nokchan
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thidathip Wongsurawat
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Piroon Jenjaroenpun
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Perapon Nitayanon
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanwit Tribuddharat
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
17
|
Challa A, Mahajan N, Sood S, Kapil A, Das BK, Sreenivas V, Gupta S. Azithromycin resistance and its molecular characteristics in Neisseria gonorrhoeae isolates from a tertiary care centre in North India. Indian J Med Microbiol 2022; 40:433-435. [PMID: 35750562 DOI: 10.1016/j.ijmmb.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022]
Abstract
Treatment guidelines for management of uncomplicated gonorrhoeae have been recently modified owing to alarming upsurge in azithromycin resistance. This study investigated the prevalence and genetic determinants of gonococcal azithromycin resistance in India. Four (5.7%) of 70 gonococcal isolates were resistant to azithromycin. Of 16 isolates investigated for molecular mechanisms of resistance, 13 (81.3%) and 6 (37.5%) isolates exhibited mutations in coding and promoter regions of mtrR gene, respectively. However, ermA, ermB and ermC genes or mutations in rrl gene were absent in all isolates. Azithromycin resistance is low in India posing no immediate threat to use of dual-therapy for syndromic management.
Collapse
Affiliation(s)
- Apoorva Challa
- Department of Dermatology and Venereology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Neeraj Mahajan
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Seema Sood
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Arti Kapil
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Bimal Kumar Das
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vishnubhatla Sreenivas
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Somesh Gupta
- Department of Dermatology and Venereology, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
18
|
Miura M, Shigemura K, Osawa K, Nakanishi N, Nomoto R, Onishi R, Yoshida H, Sawamura T, Fang SB, Chiang YT, Sung SY, Chen KC, Miyara T, Fujisawa M. Genetic characteristics of azithromycin-resistant Neisseria gonorrhoeae collected in Hyogo, Japan during 2015-2019. J Med Microbiol 2022; 71. [PMID: 35700110 DOI: 10.1099/jmm.0.001533] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Azithromycin (AZM) is a therapeutic drug for sexually transmitted infections and is used for Neisseria gonorrhoeae when first- and second-line drugs are not available. Recently, the susceptibility of N. gonorrhoeae against AZM has been decreasing worldwide.Hypothesis/Gap Statement. Azithromycin-resistance (AZM-R) rates among N. gonorrhoeae in Japan are increasing, and the gene mutations and epidemiological characteristics of AZM-R in N. gonorrhoeae have not been fully investigated.Aim. We determined the susceptibility to AZM and its correlation with genetic characteristics of N. gonorrhoeae.Methodology. We investigated the susceptibility to AZM and genetic characteristics of N. gonorrhoeae. Mutations in domain V of the 23S rRNA gene and mtrR were examined in 93 isolates, including 13 AZM-R isolates. Spread and clonality were examined using sequence types (STs) of multi-antigen sequence typing for N. gonorrhoeae (NG-MAST), and whole genome analysis (WGA) to identify single nucleotide polymorphisms.Results. The number of AZM-R isolates increased gradually from 2015 to 2019 in Hyogo (P=0.008). C2599T mutations in 23S rRNA significantly increased in AZM-R isolates (P<0.001). NG-MAST ST4207 and ST6762 were frequently detected in AZM-R isolates, and they had higher MICs to AZM from 6 to 24 µg/ml. The phylogenic tree-based WGA showed that all isolates with ST4207 were contained in the same clade, and isolates with ST6762 were divided into two clades, AZM-S isolates and AZM-R isolates, which were different from the cluster containing ST1407.Conclusion. Our study showed yearly increases in AZM-R rates in N. gonorrhoeae. NG-MAST ST4207 and ST6762 were not detected in our previous study in 2015 and were frequently identified in isolates with higher MICs to AZM. WGA confirmed that isolates with these STs are closely related to each other. Continued surveillance is needed to detect the emergence and confirm the spread of NG-MAST ST4207 and ST6762.
Collapse
Affiliation(s)
- Makiko Miura
- Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka Suma-ku, Kobe, 654-0142, Japan.,Department of Medical Technology, Faculty of Health Sciences, Kobe Tokiwa University, 2-6-2 Otani-cho, Nagata-ku, Kobe, 653-0838, Japan
| | - Katsumi Shigemura
- Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka Suma-ku, Kobe, 654-0142, Japan.,Department of Urology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Kayo Osawa
- Department of Medical Technology, Faculty of Health Sciences, Kobe Tokiwa University, 2-6-2 Otani-cho, Nagata-ku, Kobe, 653-0838, Japan
| | - Noriko Nakanishi
- Department of Infectious Diseases, Kobe Institute of Health, 4-6-5 Minatojima-nakamichi, Chuo-ku, Kobe, 650-0046, Japan
| | - Ryohei Nomoto
- Department of Infectious Diseases, Kobe Institute of Health, 4-6-5 Minatojima-nakamichi, Chuo-ku, Kobe, 650-0046, Japan
| | - Reo Onishi
- Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka Suma-ku, Kobe, 654-0142, Japan
| | - Hiroyuki Yoshida
- Hyogo Clinical Laboratory Corporation, 5-6-2, Aoyamanishi, Himeji, 671-2224 Japan
| | - Toru Sawamura
- Department of Medical Technology, Faculty of Health Sciences, Kobe Tokiwa University, 2-6-2 Otani-cho, Nagata-ku, Kobe, 653-0838, Japan
| | - Shiuh-Bin Fang
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, 291 Jhong Jheng Road, Jhong Ho District, New Taipei City, 23561, Taiwan, ROC.,Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, 250, Wu Hsing Street, Hsin Yi District, Taipei, 11031, Taiwan, ROC
| | - Yi-Te Chiang
- Department of Urology, Taipei Medical University Shuang Ho Hospital, 291, Zhongzheng Rd, Zhonghe District, Taipei, 23561, Taiwan, ROC
| | - Shian-Ying Sung
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing St., Taipei, 110, Taiwan, ROC
| | - Kuan-Cho Chen
- Department of Urology, Taipei Medical University Shuang Ho Hospital, 291, Zhongzheng Rd, Zhonghe District, Taipei, 23561, Taiwan, ROC
| | - Takayuki Miyara
- Department of Infection Control and Prevention, Kobe University Hospital, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Masato Fujisawa
- Department of Urology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| |
Collapse
|
19
|
Lin X, Qin X, Wu X, Liao Y, Yu Y, Xie Q, Tang S, Guo C, Pei J, Wu Z, Cai C, Wang F, Wu S, Chen H, Liu X, Li M, Cao W, Zheng H. Markedly Increasing Antibiotic Resistance and Dual Treatment of Neisseria gonorrhoeae Isolates in Guangdong, China, from 2013 to 2020. Antimicrob Agents Chemother 2022; 66:e0229421. [PMID: 35345891 PMCID: PMC9017359 DOI: 10.1128/aac.02294-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/10/2022] [Indexed: 11/20/2022] Open
Abstract
The emergence of multidrug resistance in Neisseria gonorrhoeae is concerning, especially the cooccurrence of azithromycin resistance and decreased susceptibility to extended-spectrum cephalosporin. This study aimed to confirm the antibiotic resistance trends and provide a solution for N. gonorrhoeae treatment in Guangdong, China. A total of 5,808 strains were collected for assessment of antibiotic MICs. High resistance to penicillin (53.80 to 82%), tetracycline (88.30 to 100%), ciprofloxacin (96 to 99.8%), cefixime (6.81 to 46%), and azithromycin (8.60 to 20.03%) was observed. Remarkably, spectinomycin and ceftriaxone seemed to be the effective choices, with resistance rates of 0 to 7.63% and 2.00 to 16.18%, respectively. Moreover, the rates of azithromycin resistance combined with decreased susceptibility to ceftriaxone and cefixime reached 9.28% and 8.64%, respectively. Furthermore, genotyping identified NG-STAR-ST501, NG-MAST-ST2268, and MLST-ST7363 as the sequence types among representative multidrug-resistant isolates. Evolutionary analysis showed that FC428-related clones have spread to Guangdong, China, which might be a cause of the rapid increase in extended-spectrum cephalosporin resistance currently. Among these strains, the prevalence of N. gonorrhoeae was extremely high, and single-dose ceftriaxone treatment might be a challenge in the future. To partially relieve the treatment pressure, a susceptibility test for susceptibility to azithromycin plus extended-spectrum cephalosporin dual therapy was performed. The results showed that all the representative isolates could be effectively killed with the coadministration of less than 1 mg/liter azithromycin and 0.125 mg/liter extended-spectrum cephalosporin, with a synergistic effect according to a fractional inhibitory concentration (FIC) of <0.5. In conclusion, dual therapy might be a powerful measure to treat refractory N. gonorrhoeae in the context of increasing antibiotic resistance in Guangdong, China.
Collapse
Affiliation(s)
- Xiaomian Lin
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaolin Qin
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xingzhong Wu
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yiwen Liao
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuqi Yu
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Center for STD Control, Guangzhou, Guangdong, China
| | - Qinghui Xie
- Anhui Medical University, Hefei, Anhui, China
| | - Sanmei Tang
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Center for STD Control, Guangzhou, Guangdong, China
| | - Chixing Guo
- Guangzhou Panyu Chronic Disease Prevention and Treatment Station, Guangzhou, China
| | - Junming Pei
- Shantou Dermatology Hospital, Shantou, Guangzhou, China
| | - Zhizhou Wu
- Jiangmen Dermatology Hospital, Jiangmen, Guangzhou, China
| | - Changhui Cai
- Zhongshan Second People's Hospital, Zhongshan, Guangzhou, China
| | - Feng Wang
- Shenzhen Center for Chronic Diseases Control, Shenzhen, Guangzhou, China
| | - Shanghua Wu
- Shaoguan Center for Chronic Diseases Control, Shaoguan, Guangzhou, China
| | - Heyong Chen
- Maoming Center for Chronic Diseases Control, Maoming, Guangdong, China
| | - Xiaofeng Liu
- Zhuhai Center for Chronic Diseases Control, Zhuhai, China
| | - Ming Li
- Binhai Bay Central Hospital of Dongguan City, Dongguan, China
| | - Wenling Cao
- Guangzhou Institute of Dermatology, Guangzhou, China
| | - Heping Zheng
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Raisman JC, Fiore MA, Tomin L, Adjei JKO, Aswad VX, Chu J, Domondon CJ, Donahue BA, Masciotti CA, McGrath CG, Melita J, Podbielski PA, Schreiner MR, Trumpore LJ, Wengert PC, Wrightstone EA, Hudson AO, Wadsworth CB. Evolutionary paths to macrolide resistance in a Neisseria commensal converge on ribosomal genes through short sequence duplications. PLoS One 2022; 17:e0262370. [PMID: 35025928 PMCID: PMC8758062 DOI: 10.1371/journal.pone.0262370] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/22/2021] [Indexed: 11/19/2022] Open
Abstract
Neisseria commensals are an indisputable source of resistance for their pathogenic relatives. However, the evolutionary paths commensal species take to reduced susceptibility in this genus have been relatively underexplored. Here, we leverage in vitro selection as a powerful screen to identify the genetic adaptations that produce azithromycin resistance (≥ 2 μg/mL) in the Neisseria commensal, N. elongata. Across multiple lineages (n = 7/16), we find mutations that reduce susceptibility to azithromycin converge on the locus encoding the 50S ribosomal L34 protein (rpmH) and the intergenic region proximal to the 30S ribosomal S3 protein (rpsC) through short tandem duplication events. Interestingly, one of the laboratory evolved mutations in rpmH is identical (7LKRTYQ12), and two nearly identical, to those recently reported to contribute to high-level azithromycin resistance in N. gonorrhoeae. Transformations into the ancestral N. elongata lineage confirmed the causality of both rpmH and rpsC mutations. Though most lineages inheriting duplications suffered in vitro fitness costs, one variant showed no growth defect, suggesting the possibility that it may be sustained in natural populations. Ultimately, studies like this will be critical for predicting commensal alleles that could rapidly disseminate into pathogen populations via allelic exchange across recombinogenic microbial genera.
Collapse
Affiliation(s)
- Jordan C. Raisman
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Michael A. Fiore
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Lucille Tomin
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Joseph K. O. Adjei
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Virginia X. Aswad
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Jonathan Chu
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Christina J. Domondon
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Ben A. Donahue
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Claudia A. Masciotti
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Connor G. McGrath
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Jo Melita
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Paul A. Podbielski
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Madelyn R. Schreiner
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Lauren J. Trumpore
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Peter C. Wengert
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Emalee A. Wrightstone
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - André O. Hudson
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Crista B. Wadsworth
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
- * E-mail:
| |
Collapse
|
21
|
Cassu-Corsi D, Santos FF, Cayô R, Martins WM, Nodari CS, Almeida LG, Martins RA, Carvalho da Silva RJ, Vasconcelos ATR, Pignatari AC, Gales AC. Genomic analyses of ciprofloxacin-resistant Neisseria gonorrhoeae isolates recovered from the largest South American metropolitan area. Genomics 2022; 114:110287. [DOI: 10.1016/j.ygeno.2022.110287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 11/11/2021] [Accepted: 01/31/2022] [Indexed: 11/04/2022]
|
22
|
Hsieh K, Melendez JH, Gaydos CA, Wang TH. Bridging the gap between development of point-of-care nucleic acid testing and patient care for sexually transmitted infections. LAB ON A CHIP 2022; 22:476-511. [PMID: 35048928 PMCID: PMC9035340 DOI: 10.1039/d1lc00665g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The incidence rates of sexually transmitted infections (STIs), including the four major curable STIs - chlamydia, gonorrhea, trichomoniasis and, syphilis - continue to increase globally, causing medical cost burden and morbidity especially in low and middle-income countries (LMIC). There have seen significant advances in diagnostic testing, but commercial antigen-based point-of-care tests (POCTs) are often insufficiently sensitive and specific, while near-point-of-care (POC) instruments that can perform sensitive and specific nucleic acid amplification tests (NAATs) are technically complex and expensive, especially for LMIC. Thus, there remains a critical need for NAAT-based STI POCTs that can improve diagnosis and curb the ongoing epidemic. Unfortunately, the development of such POCTs has been challenging due to the gap between researchers developing new technologies and healthcare providers using these technologies. This review aims to bridge this gap. We first present a short introduction of the four major STIs, followed by a discussion on the current landscape of commercial near-POC instruments for the detection of these STIs. We present relevant research toward addressing the gaps in developing NAAT-based STI POCT technologies and supplement this discussion with technologies for HIV and other infectious diseases, which may be adapted for STIs. Additionally, as case studies, we highlight the developmental trajectory of two different POCT technologies, including one approved by the United States Food and Drug Administration (FDA). Finally, we offer our perspectives on future development of NAAT-based STI POCT technologies.
Collapse
Affiliation(s)
- Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Johan H Melendez
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Charlotte A Gaydos
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tza-Huei Wang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
23
|
Luo H, Chen W, Mai Z, Yang J, Lin X, Zeng L, Pan Y, Xie Q, Xu Q, Li X, Liao Y, Feng Z, Ou J, Qin X, Zheng H. Development and application of Cas13a-based diagnostic assay for Neisseria gonorrhoeae detection and azithromycin resistance identification. J Antimicrob Chemother 2021; 77:656-664. [PMID: 34894246 DOI: 10.1093/jac/dkab447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/23/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Gonorrhoea, caused by Neisseria gonorrhoeae, has spread worldwide. Strains resistant to most antibiotics, including ceftriaxone and azithromycin, have emerged to an alarming level. Rapid testing for N. gonorrhoeae and its antimicrobial resistance will therefore contribute to clinical decision making for early diagnosis and rational drug use. METHODS A Cas13a-based assay (specific high-sensitivity enzymatic reporter unlocking; SHERLOCK) was developed for N. gonorrhoeae detection (porA gene) and azithromycin resistance identification (A2059G, C2611T). Assays were evaluated for sensitivity with purified dsDNA and specificity with 17 non-gonococcal strains. Performance of SHERLOCK (porA) was compared with Roche Cobas 4800 using 43 urine samples. Identification of azithromycin resistance mutations (A2059G, C2611T) was evaluated using a total of 84 clinical isolates and 18 urine samples. Lateral flow was tested for this assay as a readout tool. Moreover, we directly assayed 27 urethral swabs from patients with urethritis to evaluate their status in terms of N. gonorrhoeae infection and azithromycin resistance. RESULTS The SHERLOCK assay was successfully developed with a sensitivity of 10 copies/reaction, except 100 copies/reaction for A2059G, and no cross-reaction with other species. Comparison of the SHERLOCK assay with the Cobas 4800 revealed 100% concordance within 18 positive and 25 negative urine samples. Of the 84 isolates, 21 strains with azithromycin resistance mutations were distinguished and further verified by sequencing and MIC determination. In addition, 62.96% (17/27) strains from swab samples were detected with no mutant strains confirmed by sequencing. CONCLUSIONS The SHERLOCK assay for rapid N. gonorrhoeae detection combined with azithromycin resistance testing is a promising method for application in clinical practice.
Collapse
Affiliation(s)
- Hao Luo
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Wentao Chen
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Zhida Mai
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Jianjiang Yang
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Xiaomian Lin
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Lihong Zeng
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Yuying Pan
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Qinghui Xie
- Guangdong Dermatology Clinical College, Anhui Medical University, Hefei 230022, China
| | - Qingqing Xu
- Guangdong Dermatology Clinical College, Anhui Medical University, Hefei 230022, China
| | - Xiaoxiao Li
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Three Gorges University, Yichang 443002, China
| | - Yiwen Liao
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Zhanqin Feng
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Jiangli Ou
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Xiaolin Qin
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Heping Zheng
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| |
Collapse
|
24
|
Golparian D, Unemo M. Antimicrobial resistance prediction in Neisseria gonorrhoeae: Current status and future prospects. Expert Rev Mol Diagn 2021; 22:29-48. [PMID: 34872437 DOI: 10.1080/14737159.2022.2015329] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Several nucleic acid amplification tests (NAATs), mostly real-time PCRs, to detect antimicrobial resistance (AMR) determinants and predict AMR in Neisseria gonorrhoeae are promising, and some may be ready to apply at the point-of-care (POC), but important limitations remain with most NAATs. Next-generation sequencing (NGS) can overcome many of these limitations.Areas covered: Recent advances, with main focus on publications since 2017, in the development and use of NAATs and NGS to predict gonococcal AMR for surveillance and clinical use, and pros and cons of these tests as well as future perspectives for appropriate use of molecular AMR prediction for N. gonorrhoeae.Expert Commentary: NAATs and/or NGS for AMR prediction should supplement culture-based AMR surveillance, which will remain because it detects also AMR due to unknown AMR determinants, and translation into POC tests is imperative for the end-goal of individualized treatment, sparing ceftriaxone±azithromycin. Several challenges for direct testing of clinical, especially pharyngeal, specimens and for accurate prediction of cephalosporins and azithromycin resistance, especially using NAATs, remain. The choice of AMR prediction assay needs to carefully consider the intended use of the assay; limitations intrinsic to the AMR prediction technology, algorithms and specific to chosen methodology; specimen types analyzed; and cost-effectiveness.
Collapse
Affiliation(s)
- Daniel Golparian
- WHO Collaborating Centre for Gonorrhoea and other STIs, National Reference Laboratory for STIs, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and other STIs, National Reference Laboratory for STIs, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
25
|
Linear regression equations to predict β-lactam, macrolide, lincosamide and fluoroquinolone minimum inhibitory concentrations from molecular antimicrobial resistance determinants in Streptococcus pneumoniae. Antimicrob Agents Chemother 2021; 66:e0137021. [PMID: 34662197 PMCID: PMC8765234 DOI: 10.1128/aac.01370-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial resistance in Streptococcus pneumoniae represents a threat to public health and monitoring the dissemination of resistant strains is essential to guiding health policy. Multiple-variable linear regression modeling was used to determine the contributions of molecular antimicrobial resistance determinants to antimicrobial minimum inhibitory concentration (MIC) for penicillin, ceftriaxone, erythromycin, clarithromycin, clindamycin, levofloxacin, and trimethoprim/sulfamethoxazole. Training data sets consisting of Canadian S. pneumoniae isolated from 1995 to 2019 were used to generate multiple-variable linear regression equations for each antimicrobial. The regression equations were then applied to validation data sets of Canadian (n=439) and USA (n=607 and n=747) isolates. The MIC for β-lactam antimicrobials were fully explained by amino acid substitutions in motif regions of the penicillin binding proteins PBP1a, PPB2b, and PBP2x. Accuracy of predicted MICs within one doubling dilution to phenotypically determined MICs for penicillin was 97.4%, ceftriaxone 98.2%; erythromycin 94.8%; clarithromycin 96.6%; clindamycin 98.2%; levofloxacin 100%; and trimethoprim/sulfamethoxazole 98.8%; with an overall sensitivity of 95.8% and specificity of 98.0%. Accuracy of predicted MICs to the phenotypically determined MICs was similar to phenotype-only MIC comparison studies. The ability to acquire detailed antimicrobial resistance information directly from molecular determinants will facilitate the transition from routine phenotypic testing to whole genome sequencing analysis and can fill the surveillance gap in an era of increased reliance on nucleic acid assay diagnostics to better monitor the dynamics of S. pneumoniae.
Collapse
|
26
|
Harrison OB, Maiden MCJ. Recent advances in understanding and combatting Neisseria gonorrhoeae: a genomic perspective. Fac Rev 2021; 10:65. [PMID: 34557869 PMCID: PMC8442004 DOI: 10.12703/r/10-65] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The sexually transmitted infection (STI) gonorrhoea remains a major global public health concern. The World Health Organization (WHO) estimates that 87 million new cases in individuals who were 15 to 49 years of age occurred in 2016. The growing number of gonorrhoea cases is concerning given the rise in gonococci developing antimicrobial resistance (AMR). Therefore, a global action plan is needed to facilitate surveillance. Indeed, the WHO has made surveillance leading to the elimination of STIs (including gonorrhoea) a global health priority. The availability of whole genome sequence data offers new opportunities to combat gonorrhoea. This can be through (i) enhanced surveillance of the global prevalence of AMR, (ii) improved understanding of the population biology of the gonococcus, and (iii) opportunities to mine sequence data in the search for vaccine candidates. Here, we review the current status in Neisseria gonorrhoeae genomics. In particular, we explore how genomics continues to advance our understanding of this complex pathogen.
Collapse
Affiliation(s)
- Odile B Harrison
- Department of Zoology, University of Oxford, The Peter Medawar Building, Oxford, UK
| | - Martin CJ Maiden
- Department of Zoology, University of Oxford, The Peter Medawar Building, Oxford, UK
| |
Collapse
|
27
|
Pham CD, Pettus K, Nash EE, Liu H, St Cyr SB, Schlanger K, Papp J, Gartin J, Dorji T, Akullo K, Kersh EN. Utility of MALDI-TOF MS for differentiation of Neisseria gonorrhoeae isolates with dissimilar azithromycin susceptibility profiles. J Antimicrob Chemother 2021; 75:3202-3208. [PMID: 32737509 DOI: 10.1093/jac/dkaa303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/09/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Antibiotic-resistant gonorrhoea has been a chronic public health burden since the mid-1930s. Recent emergence of isolates resistant to the current recommended antibiotics for gonorrhoea further magnifies the threat of untreatable gonorrhoea. The lack of new, effective antibiotics highlights the need for better understanding of the population structure of Neisseria gonorrhoeae in order to provide greater insight on how to curtail the spread of antimicrobial-resistant N. gonorrhoeae. OBJECTIVES To explore a potential application of MALDI-TOF MS to differentiate N. gonorrhoeae displaying different levels of susceptibility to the antibiotic azithromycin. METHODS We conducted MALDI-TOF MS using the Bruker Biotyper on 392 N. gonorrhoeae isolates collected through the Gonococcal Isolate Surveillance Project (GISP) and/or the Strengthening the United States Response to Resistant Gonorrhea (SURRG) project. The MALDI-TOF MS spectra were visually analysed to assess the presence of distinctive peak(s). Statistical analysis was performed to assess the relationship between gonococcal isolates with the distinct protein peak and antibiotic susceptibility. RESULTS In this study, we were able to differentiate N. gonorrhoeae isolates into two distinct subpopulations using MALDI-TOF MS. Isolates were distinguished by the presence or absence of a spectral peak at 11 300 Da. Notably, these two groups exhibited different levels of susceptibility to azithromycin. CONCLUSIONS We have shown that in addition to its ability to identify N. gonorrhoeae, MALDI-TOF MS could also be used to differentiate gonococcal isolates with different levels of susceptibility to azithromycin.
Collapse
Affiliation(s)
- Cau D Pham
- Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kevin Pettus
- Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Evelyn E Nash
- Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Hsi Liu
- Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sancta B St Cyr
- Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Karen Schlanger
- Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - John Papp
- Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jarrett Gartin
- Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Tandin Dorji
- Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB, Centers for Disease Control and Prevention, Atlanta, GA, USA.,Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | | | - Ellen N Kersh
- Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|
28
|
Hadad R, Cole MJ, Ebeyan S, Jacobsson S, Tan LY, Golparian D, Erskine S, Day M, Whiley D, Unemo M. Evaluation of the SpeeDx ResistancePlus® GC and SpeeDx GC 23S 2611 (beta) molecular assays for prediction of antimicrobial resistance/susceptibility to ciprofloxacin and azithromycin in Neisseria gonorrhoeae. J Antimicrob Chemother 2021; 76:84-90. [PMID: 32929456 DOI: 10.1093/jac/dkaa381] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Accurate molecular assays for prediction of antimicrobial resistance (AMR)/susceptibility in Neisseria gonorrhoeae (Ng) can offer individualized treatment of gonorrhoea and enhanced AMR surveillance. OBJECTIVES We evaluated the new ResistancePlus® GC assay and the GC 23S 2611 (beta) assay (SpeeDx), for prediction of resistance/susceptibility to ciprofloxacin and azithromycin, respectively. METHODS Nine hundred and sixty-seven whole-genome-sequenced Ng isolates from 20 European countries, 143 Ng-positive (37 with paired Ng isolates) and 167 Ng-negative clinical Aptima Combo 2 (AC2) samples, and 143 non-gonococcal Neisseria isolates and closely related species were examined with both SpeeDx assays. RESULTS The sensitivity and specificity of the ResistancePlus® GC assay to detect Ng in AC2 samples were 98.6% and 100%, respectively. ResistancePlus® GC showed 100% sensitivity and specificity for GyrA S91 WT/S91F detection and 99.8% sensitivity and specificity in predicting phenotypic ciprofloxacin resistance. The sensitivity and specificity of the GC 23S 2611 (beta) assay for Ng detection in AC2 samples were 95.8% and 100%, respectively. GC 23S 2611 (beta) showed 100% sensitivity and 99.9% specificity for 23S rRNA C2611 WT/C2611T detection and 64.3% sensitivity and 99.9% specificity for predicting phenotypic azithromycin resistance. Cross-reactions with non-gonococcal Neisseria species were observed with both assays, but the analysis software solved most cross-reactions. CONCLUSIONS The new SpeeDx ResistancePlus® GC assay performed well in the detection of Ng and AMR determinants, especially in urogenital samples. The GC 23S 2611 (beta) assay performed relatively well, but its sensitivity, especially for predicting phenotypic azithromycin resistance, was suboptimal and further optimizations are required, including detection of additional macrolide resistance determinant(s).
Collapse
Affiliation(s)
- Ronza Hadad
- WHO Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | | | | - Susanne Jacobsson
- WHO Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Lit Yeen Tan
- SpeeDx Pty Ltd, Sydney, New South Wales, Australia
| | - Daniel Golparian
- WHO Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | | - Michaela Day
- National Infection Service, Public Health England, London, UK
| | - David Whiley
- Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | |
Collapse
|
29
|
Li Y, Xiu L, Liu J, Zhang C, Wang F, Yin Y, Peng J. A multiplex assay for characterization of antimicrobial resistance in Neisseria gonorrhoeae using multi-PCR coupled with mass spectrometry. J Antimicrob Chemother 2021; 75:2817-2825. [PMID: 32688393 DOI: 10.1093/jac/dkaa269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/19/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Complicated mechanisms and variable determinants related to drug resistance pose a major challenge to obtain comprehensive antimicrobial resistance (AMR) profiles of Neisseria gonorrhoeae. Meanwhile, cephalosporin-resistant mosaic penA alleles have been reported worldwide. Therefore, it is urgent to monitor the expansion of cephalosporin-resistant mosaic penA alleles. OBJECTIVES To develop a comprehensive high-throughput method to efficiently screen AMR determinants. METHODS We developed a method based on multiplex PCR with MALDI-TOF MS, which can simultaneously screen for 24 mutations associated with multiple antimicrobial agents in 19 gonococcal AMR loci (NG-AMR-MS). The performance of the NG-AMR-MS method was assessed by testing 454 N. gonorrhoeae isolates with known MICs of six antibiotics, eight non-gonococcal Neisseria strains, 214 clinical samples and three plasmids with a confirmed mosaic penA allele. RESULTS The results show that NG-AMR-MS had a specificity of 100% with a sensitivity as low as 10 copies per reaction (except for PorB A121D/N/G, 100 copies per reaction). For clinical samples with gonococcal load >5 copies/μL, the method can accurately identify 20 AMR mutations. In addition, the method successfully detected specific cephalosporin-resistant strains with the A311V mutation in the penA allele. CONCLUSIONS Our high-throughput method can provide comprehensive AMR profiles within a multiplex format. Furthermore, the method can be directly applied to screening for AMR among clinical samples, serving as an effective tool for overall monitoring of N. gonorrhoeae AMR and also provides a powerful means to comprehensively improve the level of monitoring.
Collapse
Affiliation(s)
- Yamei Li
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, China
| | - Leshan Xiu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingwei Liu
- Institute of Dermatology and Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, People's Republic of China.,National Center for Sexually Transmitted Diseases Control, Chinese Center for Disease Control and Prevention, Nanjing, People's Republic of China
| | - Chi Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, China
| | - Feng Wang
- Shenzhen Center for Chronic Disease Control, Shenzhen, People's Republic of China
| | - Yueping Yin
- Institute of Dermatology and Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, People's Republic of China.,National Center for Sexually Transmitted Diseases Control, Chinese Center for Disease Control and Prevention, Nanjing, People's Republic of China
| | - Junping Peng
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
30
|
Sánchez-Busó L, Yeats CA, Taylor B, Goater RJ, Underwood A, Abudahab K, Argimón S, Ma KC, Mortimer TD, Golparian D, Cole MJ, Grad YH, Martin I, Raphael BH, Shafer WM, Town K, Wi T, Harris SR, Unemo M, Aanensen DM. A community-driven resource for genomic epidemiology and antimicrobial resistance prediction of Neisseria gonorrhoeae at Pathogenwatch. Genome Med 2021; 13:61. [PMID: 33875000 PMCID: PMC8054416 DOI: 10.1186/s13073-021-00858-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/22/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Antimicrobial-resistant (AMR) Neisseria gonorrhoeae is an urgent threat to public health, as strains resistant to at least one of the two last-line antibiotics used in empiric therapy of gonorrhoea, ceftriaxone and azithromycin, have spread internationally. Whole genome sequencing (WGS) data can be used to identify new AMR clones and transmission networks and inform the development of point-of-care tests for antimicrobial susceptibility, novel antimicrobials and vaccines. Community-driven tools that provide an easy access to and analysis of genomic and epidemiological data is the way forward for public health surveillance. METHODS Here we present a public health-focussed scheme for genomic epidemiology of N. gonorrhoeae at Pathogenwatch ( https://pathogen.watch/ngonorrhoeae ). An international advisory group of experts in epidemiology, public health, genetics and genomics of N. gonorrhoeae was convened to inform on the utility of current and future analytics in the platform. We implement backwards compatibility with MLST, NG-MAST and NG-STAR typing schemes as well as an exhaustive library of genetic AMR determinants linked to a genotypic prediction of resistance to eight antibiotics. A collection of over 12,000 N. gonorrhoeae genome sequences from public archives has been quality-checked, assembled and made public together with available metadata for contextualization. RESULTS AMR prediction from genome data revealed specificity values over 99% for azithromycin, ciprofloxacin and ceftriaxone and sensitivity values around 99% for benzylpenicillin and tetracycline. A case study using the Pathogenwatch collection of N. gonorrhoeae public genomes showed the global expansion of an azithromycin-resistant lineage carrying a mosaic mtr over at least the last 10 years, emphasising the power of Pathogenwatch to explore and evaluate genomic epidemiology questions of public health concern. CONCLUSIONS The N. gonorrhoeae scheme in Pathogenwatch provides customised bioinformatic pipelines guided by expert opinion that can be adapted to public health agencies and departments with little expertise in bioinformatics and lower-resourced settings with internet connection but limited computational infrastructure. The advisory group will assess and identify ongoing public health needs in the field of gonorrhoea, particularly regarding gonococcal AMR, in order to further enhance utility with modified or new analytic methods.
Collapse
Affiliation(s)
- Leonor Sánchez-Busó
- Centre for Genomic Pathogen Surveillance, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK.
- Genomics and Health Area, Foundation for the Promotion of Health and Biomedical Research in the Valencian Community (FISABIO-Public Health), Valencia, Spain.
| | - Corin A Yeats
- Centre for Genomic Pathogen Surveillance, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
| | - Benjamin Taylor
- Centre for Genomic Pathogen Surveillance, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, UK
| | - Richard J Goater
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, UK
- European Molecular Biology Lab, Heidelberg, Baden-Wuerttemberg, Germany
| | - Anthony Underwood
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, UK
| | - Khalil Abudahab
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, UK
| | - Silvia Argimón
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, UK
| | - Kevin C Ma
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Tatum D Mortimer
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Daniel Golparian
- World Health Organization Collaborating Centre for Gonorrhoea and Other STIs, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Michelle J Cole
- National Infection Service, Public Health England, London, UK
| | - Yonatan H Grad
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Irene Martin
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Brian H Raphael
- Division of STD prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - William M Shafer
- Department of Microbiology and Immunology and Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA
- Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center, Decatur, GA, USA
| | - Katy Town
- Division of STD prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Teodora Wi
- Department of the Global HIV, Hepatitis and STI Programmes, World Health Organization, Geneva, Switzerland
| | - Simon R Harris
- Microbiotica, Biodata Innovation Centre, Cambridge, Cambridgeshire, UK
| | - Magnus Unemo
- World Health Organization Collaborating Centre for Gonorrhoea and Other STIs, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - David M Aanensen
- Centre for Genomic Pathogen Surveillance, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK.
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, UK.
| |
Collapse
|
31
|
Laumen JGE, Manoharan-Basil SS, Verhoeven E, Abdellati S, De Baetselier I, Crucitti T, Xavier BB, Chapelle S, Lammens C, Van Dijck C, Malhotra-Kumar S, Kenyon C. Molecular pathways to high-level azithromycin resistance in Neisseria gonorrhoeae. J Antimicrob Chemother 2021; 76:1752-1758. [DOI: 10.1093/jac/dkab084] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/28/2021] [Indexed: 01/02/2023] Open
Abstract
Abstract
Background
The prevalence of azithromycin resistance in Neisseria gonorrhoeae is increasing in numerous populations worldwide.
Objectives
To characterize the genetic pathways leading to high-level azithromycin resistance.
Methods
A customized morbidostat was used to subject two N. gonorrhoeae reference strains (WHO-F and WHO-X) to dynamically sustained azithromycin pressure. We tracked stepwise evolution of resistance by whole genome sequencing.
Results
Within 26 days, all cultures evolved high-level azithromycin resistance. Typically, the first step towards resistance was found in transitory mutations in genes rplD, rplV and rpmH (encoding the ribosomal proteins L4, L22 and L34 respectively), followed by mutations in the MtrCDE-encoded efflux pump and the 23S rRNA gene. Low- to high-level resistance was associated with mutations in the ribosomal proteins and MtrCDE efflux pump. However, high-level resistance was consistently associated with mutations in the 23S ribosomal RNA, mainly the well-known A2059G and C2611T mutations, but also at position A2058G.
Conclusions
This study enabled us to track previously reported mutations and identify novel mutations in ribosomal proteins (L4, L22 and L34) that may play a role in the genesis of azithromycin resistance in N. gonorrhoeae.
Collapse
Affiliation(s)
- J G E Laumen
- Institute of Tropical Medicine, Department of Clinical Sciences, STI Unit, Antwerp, Belgium
- University of Antwerp, Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Antwerp, Belgium
| | - S S Manoharan-Basil
- Institute of Tropical Medicine, Department of Clinical Sciences, STI Unit, Antwerp, Belgium
| | - E Verhoeven
- Institute of Tropical Medicine, Department of Clinical Sciences, STI Unit, Antwerp, Belgium
- Pfizer, Puurs, Belgium
| | - S Abdellati
- Institute of Tropical Medicine, Department of Clinical Sciences, Clinical Reference Laboratory, Antwerp, Belgium
| | - I De Baetselier
- Institute of Tropical Medicine, Department of Clinical Sciences, Clinical Reference Laboratory, Antwerp, Belgium
| | - T Crucitti
- Centre Pasteur du Cameroun, Yaounde, Cameroon
| | - B B Xavier
- University of Antwerp, Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Antwerp, Belgium
| | - S Chapelle
- University of Antwerp, Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Antwerp, Belgium
| | - C Lammens
- University of Antwerp, Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Antwerp, Belgium
| | - C Van Dijck
- Institute of Tropical Medicine, Department of Clinical Sciences, STI Unit, Antwerp, Belgium
- University of Antwerp, Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Antwerp, Belgium
| | - S Malhotra-Kumar
- University of Antwerp, Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Antwerp, Belgium
| | - C Kenyon
- Institute of Tropical Medicine, Department of Clinical Sciences, STI Unit, Antwerp, Belgium
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
32
|
de Block T, Laumen JGE, Van Dijck C, Abdellati S, De Baetselier I, Manoharan-Basil SS, Van den Bossche D, Kenyon C. WGS of Commensal Neisseria Reveals Acquisition of a New Ribosomal Protection Protein (MsrD) as a Possible Explanation for High Level Azithromycin Resistance in Belgium. Pathogens 2021; 10:384. [PMID: 33806962 PMCID: PMC8005064 DOI: 10.3390/pathogens10030384] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 12/22/2022] Open
Abstract
In this study, we characterized all oropharyngeal and anorectal isolates of Neisseria spp. in a cohort of men who have sex with men. This resulted in a panel of pathogenic Neisseria (N. gonorrhoeae [n = 5] and N. meningitidis [n = 5]) and nonpathogenic Neisseria (N. subflava [n = 11], N. mucosa [n = 3] and N. oralis [n = 2]). A high proportion of strains in this panel were resistant to azithromycin (18/26) and ceftriaxone (3/26). Whole genome sequencing (WGS) of these strains identified numerous mutations that are known to confer reduced susceptibility to azithromycin and ceftriaxone in N. gonorrhoeae. The presence or absence of these known mutations did not explain the high level resistance to azithromycin (>256 mg/L) in the nonpathogenic isolates (8/16). After screening for antimicrobial resistance (AMR) genes, we found a ribosomal protection protein, Msr(D), in these highly azithromycin resistant nonpathogenic strains. The complete integration site originated from Streptococcus pneumoniae and is associated with high level resistance to azithromycin in many other bacterial species. This novel AMR resistance mechanism to azithromycin in nonpathogenic Neisseria could be a public health concern if it were to be transmitted to pathogenic Neisseria. This study demonstrates the utility of WGS-based surveillance of nonpathogenic Neisseria.
Collapse
Affiliation(s)
- Tessa de Block
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (T.d.B.); (J.G.E.L.); (C.V.D.); (S.A.); (I.D.B.); (S.S.M.-B.); (D.V.d.B.)
| | - Jolein Gyonne Elise Laumen
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (T.d.B.); (J.G.E.L.); (C.V.D.); (S.A.); (I.D.B.); (S.S.M.-B.); (D.V.d.B.)
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, 2000 Antwerp, Belgium
| | - Christophe Van Dijck
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (T.d.B.); (J.G.E.L.); (C.V.D.); (S.A.); (I.D.B.); (S.S.M.-B.); (D.V.d.B.)
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, 2000 Antwerp, Belgium
| | - Said Abdellati
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (T.d.B.); (J.G.E.L.); (C.V.D.); (S.A.); (I.D.B.); (S.S.M.-B.); (D.V.d.B.)
| | - Irith De Baetselier
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (T.d.B.); (J.G.E.L.); (C.V.D.); (S.A.); (I.D.B.); (S.S.M.-B.); (D.V.d.B.)
| | - Sheeba Santhini Manoharan-Basil
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (T.d.B.); (J.G.E.L.); (C.V.D.); (S.A.); (I.D.B.); (S.S.M.-B.); (D.V.d.B.)
| | - Dorien Van den Bossche
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (T.d.B.); (J.G.E.L.); (C.V.D.); (S.A.); (I.D.B.); (S.S.M.-B.); (D.V.d.B.)
| | - Chris Kenyon
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (T.d.B.); (J.G.E.L.); (C.V.D.); (S.A.); (I.D.B.); (S.S.M.-B.); (D.V.d.B.)
- Department of Medicine, University of Cape Town, Cape Town 7701, South Africa
| |
Collapse
|
33
|
Aitolo GL, Adeyemi OS, Afolabi BL, Owolabi AO. Neisseria gonorrhoeae Antimicrobial Resistance: Past to Present to Future. Curr Microbiol 2021; 78:867-878. [PMID: 33528603 DOI: 10.1007/s00284-021-02353-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 01/10/2021] [Indexed: 11/27/2022]
Abstract
Neisseria gonorrhoeae (gonococcus) is a Gram-negative bacterium that causes gonorrhoea-a sexually transmitted disease. This gonococcus has progressively developed resistance to most of the available antimicrobials. Only a few countries around the world have been able to run extensive surveillance programmes on gonococcal infection and antimicrobial resistance, raising a global concern. Thus, this review focuses on the mechanisms of resistance to recommended antimicrobials in the past and present time. The approaches by the scientific community in the development of novel technologies such as whole-genome sequencing to predict antimicrobial resistance, track gonococcal transmission, as well as, introduce new therapeutics like Solithromycin, Zoliflodacin, and Gepotidacin were also discussed.
Collapse
Affiliation(s)
- Georgina L Aitolo
- Department of Microbiology, Landmark University, Omu-Aran, Kwara State, Nigeria.
| | - Oluyomi S Adeyemi
- Professor of Biochemistry Medicinal Biochemistry, Infectious Diseases, Nanomedicine & Toxicology Laboratory, Department of Biochemistry, Landmark University, Omu-Aran, Kwara State, Nigeria
| | | | | |
Collapse
|
34
|
Lei Z, Karim A. The challenges and applications of nanotechnology against bacterial resistance. J Vet Pharmacol Ther 2020; 44:281-297. [PMID: 33277732 DOI: 10.1111/jvp.12936] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/30/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
Bacterial resistance to the antibiotics develops rapidly and is increasingly serious health concern in the world. It is an insoluble topic due to the multiple resistant mechanisms. The overexpression of relative activities of the efflux pump has proven to be a frequent and important source of bacterial resistance. Efflux transporters in the membrane from the resistant bacteria could play a key role to inhibit the intracellular drug intake and impede the drug activities. However, nanoparticles (NPs), one of the most frequently used encapsulation materials, could increase the intracellular accumulation of the drug and inhibit the transporter activity effectively. The rational and successful application of nanotechnology is a key factor in overcoming bacterial resistance. Furthermore, nanoparticles such as metallic, carbon nanotubes and so on, may prevent the development of drug resistance and be associated with antibiotic agents, inhibiting biofilm formation or increasing the access into the target cell and exterminating the bacteria eventually. In the current study, the mechanisms of bacterial resistance are discussed and summarized. Additionally, the opportunities and challenges in the use of nanoparticles against bacterial resistance are also illuminated. At the same time, the use of nanoparticles to combat multidrug-resistant bacteria is also investigated by coupling natural antimicrobials or other alternatives. In short, we have provided a new perspective for the application of nanoparticles against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Zhiqun Lei
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Aman Karim
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| |
Collapse
|
35
|
Xiu L, Li Y, Wang F, Zhang C, Li Y, Zeng Y, Yin Y, Peng J. Multiplex High-Resolution Melting Assay for Simultaneous Identification of Molecular Markers Associated with Extended-Spectrum Cephalosporins and Azithromycin Resistance in Neisseria gonorrhoeae. J Mol Diagn 2020; 22:1344-1355. [DOI: 10.1016/j.jmoldx.2020.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/16/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
|
36
|
Dong Y, Yang Y, Wang Y, Martin I, Demczuk W, Gu W. Shanghai Neisseria gonorrhoeae Isolates Exhibit Resistance to Extended-Spectrum Cephalosporins and Clonal Distribution. Front Microbiol 2020; 11:580399. [PMID: 33123111 PMCID: PMC7573285 DOI: 10.3389/fmicb.2020.580399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
The emergence of Neisseria gonorrhoeae strains with resistance (R) to extended-spectrum cephalosporins (ESCsR) represents a public health threat of untreatable gonococcal infections. This study was designed to determine the prevalence and molecular mechanisms of ESCR of Shanghai N. gonorrhoeae isolates. A total of 366 N. gonorrhoeae isolates were collected in 2017 in Shanghai. Susceptibility to ceftriaxone (CRO), cefixime (CFM), azithromycin (AZM), ciprofloxacin (CIP), spectinomycin, penicillin, and tetracycline was determined using the agar dilution method. A subset of 124 isolates was subjected to phylogenetic analysis for nine antimicrobial resistance-associated genes, i.e., penA, porB, ponA, mtrR, 23S rRNA, gyrA, parC, 16S rRNA, and rpsE. Approximately 20.0% of the isolates exhibited CFMR [minimum inhibitory concentration (MIC) >0.125 mg/L], and 5.5% were CROR (MIC > 0.125 mg/L). In total, 72.7% of ESCR isolates were clonal and associated with mosaic penA 10 and 60 alleles. Non-mosaic penA 18 allele and substitutions of PenA A501T, G542S, and PorB1b G213S/Y were observed in non-clonal ESCR. Approximately 6.8% of the isolates showed AZM MIC above the epidemiological cutoff (ECOFF, 1 mg/L), were associated with 23S rRNA A2059G mutation, and did not exhibit clonal distribution. Almost all isolates were CIPR (resistance to ciprofloxacin) and associated with GyrA-91/92 and ParC-85/86/87/88/89/91 alterations. Isolates with ParC S88P substitution were clustered into the ESCR clade. The Shanghai isolates exhibited a high level of ESCR and distinct resistant patterns.
Collapse
Affiliation(s)
- Yuan Dong
- Shanghai Skin Disease Hospital, Shanghai, China.,Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Yang Yang
- Shanghai Skin Disease Hospital, Shanghai, China
| | - Ying Wang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Irene Martin
- Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, MB, Canada
| | - Walter Demczuk
- Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, MB, Canada
| | - Weiming Gu
- Shanghai Skin Disease Hospital, Shanghai, China
| |
Collapse
|
37
|
Ma KC, Mortimer TD, Duckett MA, Hicks AL, Wheeler NE, Sánchez-Busó L, Grad YH. Increased power from conditional bacterial genome-wide association identifies macrolide resistance mutations in Neisseria gonorrhoeae. Nat Commun 2020; 11:5374. [PMID: 33097713 PMCID: PMC7584619 DOI: 10.1038/s41467-020-19250-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/02/2020] [Indexed: 12/21/2022] Open
Abstract
The emergence of resistance to azithromycin complicates treatment of Neisseria gonorrhoeae, the etiologic agent of gonorrhea. Substantial azithromycin resistance remains unexplained after accounting for known resistance mutations. Bacterial genome-wide association studies (GWAS) can identify novel resistance genes but must control for genetic confounders while maintaining power. Here, we show that compared to single-locus GWAS, conducting GWAS conditioned on known resistance mutations reduces the number of false positives and identifies a G70D mutation in the RplD 50S ribosomal protein L4 as significantly associated with increased azithromycin resistance (p-value = 1.08 × 10-11). We experimentally confirm our GWAS results and demonstrate that RplD G70D and other macrolide binding site mutations are prevalent (present in 5.42% of 4850 isolates) and widespread (identified in 21/65 countries across two decades). Overall, our findings demonstrate the utility of conditional associations for improving the performance of microbial GWAS and advance our understanding of the genetic basis of macrolide resistance.
Collapse
Affiliation(s)
- Kevin C Ma
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tatum D Mortimer
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marissa A Duckett
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Allison L Hicks
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Nicole E Wheeler
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Leonor Sánchez-Busó
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Yonatan H Grad
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Division of Infectious Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
38
|
Exploration of the Neisseria Resistome Reveals Resistance Mechanisms in Commensals That May Be Acquired by N. gonorrhoeae through Horizontal Gene Transfer. Antibiotics (Basel) 2020; 9:antibiotics9100656. [PMID: 33007823 PMCID: PMC7650674 DOI: 10.3390/antibiotics9100656] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 11/20/2022] Open
Abstract
Nonpathogenic Neisseria transfer mutations encoding antibiotic resistance to their pathogenic relative Neisseria gonorrhoeae. However, the resistance genotypes and subsequent phenotypes of nonpathogens within the genus have been described infrequently. Here, we characterize the minimum inhibitory concentrations (MICs) of a panel of Neisseria (n = 26)—including several commensal species—to a suite of diverse antibiotics. We furthermore use whole genome sequencing and the Comprehensive Antibiotic Resistance Database Resistance Gene Identifier (RGI) platform to predict putative resistance-encoding mutations. Resistant isolates to all tested antimicrobials including penicillin (n = 5/26), ceftriaxone (n = 2/26), cefixime (n = 3/26), tetracycline (n = 10/26), azithromycin (n = 11/26), and ciprofloxacin (n = 4/26) were found. In total, 63 distinct mutations were predicted by RGI to be involved in resistance. The presence of several mutations had clear associations with increased MIC such as DNA gyrase subunit A (gyrA) (S91F) and ciprofloxacin, tetracycline resistance protein (tetM) and 30S ribosomal protein S10 (rpsJ) (V57M) and tetracycline, and TEM-type β-lactamases and penicillin. However, mutations with strong associations to macrolide and cephalosporin resistance were not conclusive. This work serves as an initial exploration into the resistance-encoding mutations harbored by nonpathogenic Neisseria, which will ultimately aid in prospective surveillance for novel resistance mechanisms that may be rapidly acquired by N. gonorrhoeae.
Collapse
|
39
|
Kivata MW, Mbuchi M, Eyase F, Bulimo WD, Kyanya CK, Oundo V, Mbinda WM, Sang W, Andagalu B, Soge OO, McClelland RS, Distelhorst J. Plasmid mediated penicillin and tetracycline resistance among Neisseria gonorrhoeae isolates from Kenya. BMC Infect Dis 2020; 20:703. [PMID: 32977759 PMCID: PMC7517623 DOI: 10.1186/s12879-020-05398-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 09/06/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Treatment of gonorrhea is complicated by the development of antimicrobial resistance in Neisseria gonorrhoeae (GC) to the antibiotics recommended for treatment. Knowledge on types of plasmids and the antibiotic resistance genes they harbor is useful in monitoring the emergence and spread of bacterial antibiotic resistance. In Kenya, studies on gonococcal antimicrobial resistance are few and data on plasmid mediated drug resistance is limited. The present study characterizes plasmid mediated resistance in N. gonorrhoeae isolates recovered from Kenya between 2013 and 2018. METHODS DNA was extracted from 36 sub-cultured GC isolates exhibiting varying drug resistance profiles. Whole genome sequencing was done on Illumina MiSeq platform and reads assembled de-novo using CLC Genomics Workbench. Genome annotation was performed using Rapid Annotation Subsystem Technology. Comparisons in identified antimicrobial resistance determinants were done using Bioedit sequence alignment editor. RESULTS Twenty-four (66.7%) isolates had both β-lactamase (TEM) and TetM encoding plasmids. 8.3% of the isolates lacked both TEM and TetM plasmids and had intermediate to susceptible penicillin and tetracycline MICs. Twenty-six (72%) isolates harbored TEM encoding plasmids. 25 of the TEM plasmids were of African type while one was an Asian type. Of the 36 isolates, 31 (86.1%) had TetM encoding plasmids, 30 of which harbored American TetM, whereas 1 carried a Dutch TetM. All analyzed isolates had non-mosaic penA alleles. All the isolates expressing TetM were tetracycline resistant (MIC> 1 mg/L) and had increased doxycycline MICs (up to 96 mg/L). All the isolates had S10 ribosomal protein V57M amino acid substitution associated with tetracycline resistance. No relation was observed between PenB and MtrR alterations and penicillin and tetracycline MICs. CONCLUSION High-level gonococcal penicillin and tetracycline resistance in the sampled Kenyan regions was found to be mediated by plasmid borne blaTEM and tetM genes. While the African TEM plasmid, TEM1 and American TetM are the dominant genotypes, Asian TEM plasmid, a new TEM239 and Dutch TetM have emerged in the regions.
Collapse
Affiliation(s)
- Mary Wandia Kivata
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P. O Box 62,000-00200, Thika, Kenya
- Department of Biological and Physical Science, Karatina University (KarU), P. O Box 1957-10101, Karatina, Kenya
| | - Margaret Mbuchi
- U.S. Army Medical Research Directorate-Africa, P. O Box 606, Village Market, Nairobi, 00621 Kenya
- Kenya Medical Research Institute (KEMRI), P. O Box 54840-00200, Nairobi, Kenya
| | - Fredrick Eyase
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P. O Box 62,000-00200, Thika, Kenya
- U.S. Army Medical Research Directorate-Africa, P. O Box 606, Village Market, Nairobi, 00621 Kenya
| | - Wallace Dimbuson Bulimo
- U.S. Army Medical Research Directorate-Africa, P. O Box 606, Village Market, Nairobi, 00621 Kenya
- School of Medicine, Department of Biochemistry, University of Nairobi, P. O Box 30197, GPO, Nairobi, 00100 Kenya
| | - Cecilia Katunge Kyanya
- U.S. Army Medical Research Directorate-Africa, P. O Box 606, Village Market, Nairobi, 00621 Kenya
| | - Valerie Oundo
- U.S. Army Medical Research Directorate-Africa, P. O Box 606, Village Market, Nairobi, 00621 Kenya
| | - Wilton Mwema Mbinda
- Department of Chemistry and Biochemistry, Pwani University, P. O Box 195-80108, Mombasa, Kenya
| | - Willy Sang
- U.S. Army Medical Research Directorate-Africa, P. O Box 606, Village Market, Nairobi, 00621 Kenya
- Kenya Medical Research Institute (KEMRI), P. O Box 54840-00200, Nairobi, Kenya
| | - Ben Andagalu
- U.S. Army Medical Research Directorate-Africa, P. O Box 606, Village Market, Nairobi, 00621 Kenya
| | - Olusegun O. Soge
- Departments of Global Health and Medicine, University of Washington, 325 9th Avenue, Box 359931, Seattle, WA 98104 USA
| | - Raymond Scott McClelland
- Departments of Medicine, Epidemiology, and Global Health, University of Washington, 325 9th Avenue, Box 359931, Seattle, WA 98104 USA
| | - John Distelhorst
- U.S. Army Medical Research Directorate-Africa, P. O Box 606, Village Market, Nairobi, 00621 Kenya
| |
Collapse
|
40
|
Hicks AL, Kissler SM, Mortimer TD, Ma KC, Taiaroa G, Ashcroft M, Williamson DA, Lipsitch M, Grad YH. Targeted surveillance strategies for efficient detection of novel antibiotic resistance variants. eLife 2020; 9:e56367. [PMID: 32602459 PMCID: PMC7326491 DOI: 10.7554/elife.56367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/17/2020] [Indexed: 12/14/2022] Open
Abstract
Genotype-based diagnostics for antibiotic resistance represent a promising alternative to empiric therapy, reducing inappropriate antibiotic use. However, because such assays infer resistance based on known genetic markers, their utility will wane with the emergence of novel resistance. Maintenance of these diagnostics will therefore require surveillance to ensure early detection of novel resistance variants, but efficient strategies to do so remain undefined. We evaluate the efficiency of targeted sampling approaches informed by patient and pathogen characteristics in detecting antibiotic resistance and diagnostic escape variants in Neisseria gonorrhoeae, a pathogen associated with a high burden of disease and antibiotic resistance and the development of genotype-based diagnostics. We show that patient characteristic-informed sampling is not a reliable strategy for efficient variant detection. In contrast, sampling informed by pathogen characteristics, such as genomic diversity and genomic background, is significantly more efficient than random sampling in identifying genetic variants associated with resistance and diagnostic escape.
Collapse
Affiliation(s)
- Allison L Hicks
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public HealthBostonUnited States
| | - Stephen M Kissler
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public HealthBostonUnited States
| | - Tatum D Mortimer
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public HealthBostonUnited States
| | - Kevin C Ma
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public HealthBostonUnited States
| | - George Taiaroa
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | - Melinda Ashcroft
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | - Deborah A Williamson
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | - Marc Lipsitch
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public HealthBostonUnited States
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public HealthBostonUnited States
| | - Yonatan H Grad
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public HealthBostonUnited States
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
41
|
Equations To Predict Antimicrobial MICs in Neisseria gonorrhoeae Using Molecular Antimicrobial Resistance Determinants. Antimicrob Agents Chemother 2020; 64:AAC.02005-19. [PMID: 31871081 DOI: 10.1128/aac.02005-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/18/2019] [Indexed: 01/22/2023] Open
Abstract
The emergence of Neisseria gonorrhoeae strains that are resistant to azithromycin and extended-spectrum cephalosporins represents a public health threat, that of untreatable gonorrhea infections. Multivariate regression modeling was used to determine the contributions of molecular antimicrobial resistance determinants to the overall antimicrobial MICs for ceftriaxone, cefixime, azithromycin, tetracycline, ciprofloxacin, and penicillin. A training data set consisting of 1,280 N. gonorrhoeae strains was used to generate regression equations which were then applied to validation data sets of Canadian (n = 1,095) and international (n = 431) strains. The predicted MICs for extended-spectrum cephalosporins (ceftriaxone and cefixime) were fully explained by 5 amino acid substitutions in PenA, A311V, A501P/T/V, N513Y, A517G, and G543S; the presence of a disrupted mtrR promoter; and the PorB G120 and PonA L421P mutations. The correlation of predicted MICs within one doubling dilution to phenotypically determined MICs of the Canadian validation data set was 95.0% for ceftriaxone, 95.6% for cefixime, 91.4% for azithromycin, 98.2% for tetracycline, 90.4% for ciprofloxacin, and 92.3% for penicillin, with an overall sensitivity of 99.9% and specificity of 97.1%. The correlations of predicted MIC values to the phenotypically determined MICs were similar to those from phenotype MIC-only comparison studies. The ability to acquire detailed antimicrobial resistance information directly from molecular data will facilitate the transition to whole-genome sequencing analysis from phenotypic testing and can fill the surveillance gap in an era of increased reliance on nucleic acid assay testing (NAAT) diagnostics to better monitor the dynamics of N. gonorrhoeae.
Collapse
|
42
|
Parmar NR, Perera SR, Wang J, Levett PN, Minion J, Dillon JAR. Characterization of antimicrobial resistance genes from Neisseria gonorrhoeae positive remnant Aptima urine specimens. Future Microbiol 2020; 14:1559-1571. [PMID: 31992068 DOI: 10.2217/fmb-2019-0161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Aim: To ascertain the antimicrobial resistance and strain types (STs) of Neisseria gonorrhoeae from 50 remnant Aptima urine specimens using molecular methods. Methods: Mutations predictive of resistance to six antibiotics were identified in eight genes. STs were determined using NG-MAST and NG-STAR. Results: All eight antimicrobial resistance genes could be characterized in 36 specimens. A total of 17 specimens were predicted to be susceptible to all antibiotics, including ceftriaxone. Decreased susceptibility to cefixime and ciprofloxacin resistance was predicted in 11 specimens (PBP2 type 34.001). Overall, 38/50 specimens were predicted to be ciprofloxacin susceptible; three were azithromycin resistant. Nineteen NG-MAST and 21 NG-STAR STs were noted. Conclusion: Molecular analysis of remnant Aptima specimens enabled the prediction of emerging gonococcal cefixime and azithromycin resistance which would otherwise have been undetected.
Collapse
Affiliation(s)
- Nidhi R Parmar
- Department of Biochemistry, Microbiology, & Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.,Vaccine & Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada
| | - Sumudu R Perera
- Department of Biochemistry, Microbiology, & Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.,Vaccine & Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada
| | - Jin Wang
- Vaccine & Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada
| | - Paul N Levett
- Roy Romanow Provincial Laboratory, 5 Research Drive, Regina, SK, S4S 0A4, Canada
| | - Jessica Minion
- Roy Romanow Provincial Laboratory, 5 Research Drive, Regina, SK, S4S 0A4, Canada
| | - Jo-Anne R Dillon
- Department of Biochemistry, Microbiology, & Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.,Vaccine & Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada
| |
Collapse
|
43
|
Yan J, Xue J, Chen Y, Chen S, Wang Q, Zhang C, Wu S, Lv H, Yu Y, van der Veen S. Increasing prevalence of Neisseria gonorrhoeae with decreased susceptibility to ceftriaxone and resistance to azithromycin in Hangzhou, China (2015-17). J Antimicrob Chemother 2020; 74:29-37. [PMID: 30329062 DOI: 10.1093/jac/dky412] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/13/2018] [Indexed: 12/31/2022] Open
Abstract
Objectives Development of resistance in Neisseria gonorrhoeae to ceftriaxone monotherapy or ceftriaxone plus azithromycin dual therapy is a global public health concern. The aim of this study was to analyse the trend in antimicrobial resistance in Hangzhou, China, over the period 2015-17. Methods In total, 379 clinical isolates were collected from seven hospitals and antimicrobial susceptibility was determined using the agar dilution method. Isolates showing resistance to ceftriaxone, azithromycin or cefixime were analysed for the presence of resistance determinants. STs were determined with the N. gonorrhoeae multiantigen sequence typing (NG-MAST) method and phylogenetic analysis and strain clustering was determined using porB and tbpB sequences. Results Ceftriaxone resistance, decreased susceptibility to ceftriaxone and azithromycin resistance were observed in 3%, 17% and 21% of the isolates, respectively. This resulted in 5% of the isolates showing both decreased susceptibility to ceftriaxone and azithromycin resistance. Importantly, resistance levels to ceftriaxone and azithromycin increased over the study period, resulting in 5% ceftriaxone resistance, 27% decreased susceptibility to ceftriaxone and 35% azithromycin resistance in 2017 and 11% of the isolates showing both decreased susceptibility to ceftriaxone and azithromycin resistance. Phylogenetic and cluster analysis showed the emergence and expansion in 2017 of a clonally related cluster containing strains with high abundance of decreased susceptibility to ceftriaxone and/or cefixime, which was related to the presence of the mosaic penA allele X. Co-resistance to azithromycin was also observed in this cluster. Conclusions Our findings have major implications for the future reliability of ceftriaxone monotherapy and ceftriaxone plus azithromycin dual therapy in China.
Collapse
Affiliation(s)
- Jing Yan
- Department of Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Juan Xue
- Department of Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shi Chen
- Clinical Laboratory Department, Hangzhou Third Hospital, Hangzhou, China
| | - Qiang Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Chuanling Zhang
- Clinical Laboratory, Zhejiang Xiaoshan Hospital, Hangzhou, China
| | - Shenghai Wu
- Department of Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huoyang Lv
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Stijn van der Veen
- Department of Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
44
|
|
45
|
Zheng Z, Liu L, Shen X, Yu J, Chen L, Zhan L, Chen H, Lin C, Jiang Y, Xia H, Wang L, Yu F. Antimicrobial Resistance And Molecular Characteristics Among Neisseria gonorrhoeae Clinical Isolates In A Chinese Tertiary Hospital. Infect Drug Resist 2019; 12:3301-3309. [PMID: 31695449 PMCID: PMC6815782 DOI: 10.2147/idr.s221109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/25/2019] [Indexed: 01/15/2023] Open
Abstract
Purpose The resistance of N. gonorrhoeae to antimicrobial agents has been increasing year by year due to the overuse of antibiotics. The primary aims of the present study were to investigate the molecular characteristics of the clinical isolates of Neisseria gonorrhoeae and the resistance to azithromycin in a Chinese tertiary hospital. Methods From January 2014 to May 2017, a total of 55 clinical isolates of N. gonorrhoeae were collected. Genes associated with azithromycin resistance (AZM-R), including mutations in 23S rRNA alleles, the mtrR promoter and coding regions, and rplD and rplV were evaluated by PCR and DNA sequencing. All clinical isolates were subjected to N. gonorrhoeae multiantigen sequence typing (NG-MAST), while the AZM-R isolates were further characterized by multilocus sequence typing (MLST). Results The AZM-R rate in this study was 23.64% (13/55), and a single (A)-nucleotide deletion mutation in the mtrR promoter region, a G45D mutation in the mtrR coding region, a point mutation in rplD, and an A2047G mutation in 23S rRNA alleles were detected in 13, 4, 3 and 4 isolates, respectively; no mutations were found in rplV. There was no significant difference in the mtrR coding region mutation rate between the azithromycin-sensitive and AZM-R groups (P > 0.05); however, there was a significant difference in the mutation rate of the mtrR promoter region (P < 0.05). Among the 55 isolates studied, 43 distinct NG-MAST were determined, while the AZM-R isolates were allocated into 10 distinct MLST/NG-MAST combinations. All three isolates with high-level AZM-R belonged to the sequence types (STs) NG-MAST ST1866 and MLST ST10899. Conclusion N. gonorrhoeae clinical isolates from Wenzhou, eastern China, showed considerable genetic diversity. Measures should be implemented to monitor the spread of the NG-MAST ST1866 and MLST ST10899 N. gonorrhoeae clones, which exhibit high-level AZM-R in eastern China.
Collapse
Affiliation(s)
- Zhou Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Li Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xiaofei Shen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Jingyi Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Lijiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Lingling Zhan
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Han Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Chunchan Lin
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Ye Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Hong Xia
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Liangxing Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Fangyou Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.,Department of Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200443, People's Republic of China
| |
Collapse
|
46
|
Emergence and Spread of Neisseria gonorrhoeae Strains with High-Level Resistance to Azithromycin in Taiwan from 2001 to 2018. Antimicrob Agents Chemother 2019; 63:AAC.00773-19. [PMID: 31235631 DOI: 10.1128/aac.00773-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/17/2019] [Indexed: 01/17/2023] Open
Abstract
A total of 598 Neisseria gonorrhoeae isolates obtained from patients in Taiwan from 2001 to 2018 were evaluated. The MICs of ceftriaxone (CRO) and azithromycin (AZM) against the isolates were determined by the agar dilution method. N. gonorrhoeae isolates with AZM MICs of ≥1 μg/ml were identified and characterized by the presence of AZM resistance determinants. For high-level AZM-resistant (AZM-HLR) isolates (MIC ≥ 256 μg/ml), genotyping was performed using multilocus sequence typing (MLST) and N. gonorrhoeae multiantigen sequence typing (NG-MAST). Among the N. gonorrhoeae isolates studied, 8.7% (52/598) exhibited AZM MICs of ≥1 μg/ml. Thirteen of the 52 isolates contained A2059G (23S rRNA NG-STAR type 1) or C2611T (23S rRNA NG-STAR type 2) mutations. The prevalence of the A2059G mutation was higher in AZM-HLR isolates (P < 0.001). The -35A deletion in the promoter region of the mtrR gene did not differ between AZM-HLR isolates (100%, 10/10) and the isolates with AZM MICs of 1 μg/ml to 64 μg/ml (95.2%, 40/42) (P = 1.000). The presence of mutations in the mtrR coding region was significantly different between these two groups at 90% (9/10) and 26.2% (11/42), respectively (P < 0.001). The AZM-HLR isolates, all carrying four mutated A2059G alleles, a -35A deletion, and G45D, were classified as MLST 12039/10899 and NG-MAST 1866/16497. In conclusion, Taiwan is among the countries reporting gonococci with high-level resistance to AZM so that a single dose of 1 g ceftriaxone intramuscularly as the first choice for management of N. gonorrhoeae infection should be evaluated.
Collapse
|
47
|
Martins RA, Cassu-Corsi D, Nodari CS, Cayô R, Natsumeda L, Streling AP, Doi AM, da Silva RJC, Bocalon RAL, Gales AC, Pignatari ACC. Temporal evolution of antimicrobial resistance among Neisseria gonorrhoeae clinical isolates in the most populated South American Metropolitan Region. Mem Inst Oswaldo Cruz 2019; 114:e190079. [PMID: 31411309 PMCID: PMC6690644 DOI: 10.1590/0074-02760190079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/17/2019] [Indexed: 11/21/2022] Open
Abstract
A total of 124 Neisseria gonorrhoeae isolates recovered during a
12-year period (2003-2015) from outpatients assisted at Centro de Referência e
Treinamento DST/AIDS-CRT of São Paulo city, Brazil, were analysed. The following
resistance rates were observed: penicillin-59.6%, ciprofloxacin-15.3%, and
azithromycin-6.7%. Although reduced susceptibility to these drugs was observed
since 2003, no ceftriaxone-resistant isolates were detected. Ciprofloxacin- and
azithromycin non-susceptible isolates were grouped in 11 clusters. Mutations
were detected in GyrA and ParC of isolates 124 and 260, and a C2611T
substitution on 23S rRNA alleles was also observed in isolate 260. Both isolates
belonged to ST1901/ST6210 (MSLT/NG-MAST schemes).
Collapse
Affiliation(s)
- Rafael Affini Martins
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina, Laboratório ALERTA, São Paulo, SP, Brasil
| | - Dandara Cassu-Corsi
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina, Laboratório ALERTA, São Paulo, SP, Brasil
| | - Carolina Silva Nodari
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina, Laboratório ALERTA, São Paulo, SP, Brasil
| | - Rodrigo Cayô
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina, Laboratório ALERTA, São Paulo, SP, Brasil.,Universidade Federal de São Paulo, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Departamento de Ciências Biológicas, Laboratório de Bacteriologia e Imunologia, Diadema, SP, Brasil
| | - Larissa Natsumeda
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina, Laboratório ALERTA, São Paulo, SP, Brasil
| | - Ana Paula Streling
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina, Laboratório ALERTA, São Paulo, SP, Brasil
| | - André Mario Doi
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina, Laboratório Especial de Microbiologia Clínica, São Paulo, SP, Brasil
| | | | | | - Ana Cristina Gales
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina, Laboratório ALERTA, São Paulo, SP, Brasil.,Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina, Laboratório Especial de Microbiologia Clínica, São Paulo, SP, Brasil
| | - Antonio Carlos Campos Pignatari
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina, Laboratório ALERTA, São Paulo, SP, Brasil.,Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina, Laboratório Especial de Microbiologia Clínica, São Paulo, SP, Brasil
| |
Collapse
|
48
|
Impact of Species Diversity on the Design of RNA-Based Diagnostics for Antibiotic Resistance in Neisseria gonorrhoeae. Antimicrob Agents Chemother 2019; 63:AAC.00549-19. [PMID: 31138575 DOI: 10.1128/aac.00549-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/23/2019] [Indexed: 12/17/2022] Open
Abstract
Quantitative assessment of antibiotic-responsive RNA transcripts holds promise for a rapid point-of-care (POC) diagnostic tool for antimicrobial susceptibility testing. These assays aim to distinguish susceptible and resistant isolates by transcriptional differences upon drug exposure. However, an often-overlooked dimension of designing these tests is that the genetic diversity within a species may yield differential transcriptional regulation independent of resistance phenotype. Here, we use a phylogenetically diverse panel of Neisseria gonorrhoeae and transcriptome profiling coupled with reverse transcription-quantitative PCR to test this hypothesis, to identify azithromycin responsive transcripts and evaluate their potential diagnostic value, and to evaluate previously reported diagnostic markers for ciprofloxacin resistance (porB and rpmB). Transcriptome profiling confirmed evidence of genetic distance and population structure impacting transcriptional response to azithromycin. Taking this into account, we found azithromycin-responsive transcripts overrepresented in susceptible strains compared to resistant strains and selected four candidate diagnostic transcripts (rpsO, rplN, omp3, and NGO1079) that were the most significantly differentially regulated between phenotypes across drug exposure. RNA signatures for these markers categorically predicted resistance in 19/20 cases, with the one incorrect categorical assignment for an isolate at the threshold of reduced susceptibility. Finally, we found that porB and rpmB expression were not uniformly diagnostic of ciprofloxacin resistance in a panel of isolates with unbiased phylogenetic sampling. Overall, our results suggest that RNA signatures as a diagnostic tool are promising for future POC diagnostics; however, development and testing should consider representative genetic diversity of the target pathogen.
Collapse
|
49
|
Emergence of Neisseria gonorrhoeae Strains Harboring a Novel Combination of Azithromycin-Attenuating Mutations. Antimicrob Agents Chemother 2019; 63:AAC.02313-18. [PMID: 30917979 DOI: 10.1128/aac.02313-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/03/2019] [Indexed: 12/30/2022] Open
Abstract
The nimbleness of Neisseria gonorrhoeae to evade the effect of antibiotics has perpetuated the fight against antibiotic-resistant gonorrhea for more than 80 years. The ability to develop resistance to antibiotics is attributable to its indiscriminate nature in accepting and integrating exogenous DNA into its genome. Here, we provide data demonstrating a novel combination of the 23S rRNA A2059G mutation with a mosaic-multiple transferable resistance (mosaic-mtr) locus haplotype in 14 N. gonorrhoeae isolates with high-level azithromycin MICs (≥256 μg/ml), a combination that may confer more fitness than in previously identified isolates with high-level azithromycin resistance. To our knowledge, this is the first description of N. gonorrhoeae strains harboring this novel combination of resistance determinants. These strains were isolated at two independent jurisdictions participating in the Gonococcal Isolate Surveillance Project (GISP) and in the Strengthening the U.S. Response to Resistant Gonorrhea (SURRG) project. The data suggest that the genome of N. gonorrhoeae continues to shuffle its genetic material. These findings further illuminate the genomic plasticity of N. gonorrhoeae, which allows this pathogen to develop mutations to escape the inhibitory effects of antibiotics.
Collapse
|
50
|
A Comparison of Real-Time Polymerase Chain Reaction Assays for the Detection of Antimicrobial Resistance Markers and Sequence Typing From Clinical Nucleic Acid Amplification Test Samples and Matched Neisseria gonorrhoeae Culture. Sex Transm Dis 2019; 45:92-95. [PMID: 29329177 DOI: 10.1097/olq.0000000000000707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Real-time polymerase chain reaction (PCR) assays to detect antimicrobial resistance-associated mutations were tested on Neisseria gonorrhoeae-positive clinical samples with matched isolates. Of the nucleic acid amplification tests/cultures, 87.7% (64/73), 98.6% (72/73), and 98.4% (62/63) predicted cephalosporin, ciprofloxacin, and azithromycin susceptibilities, respectively. N. gonorrhoeae multiantigen sequence type was correctly predicted for 98.7% (79/80), and 13 of 58 N. gonorrhoeae-negative specimens showed false-positive results.
Collapse
|