1
|
Wang J, Shaheen SM, Swertz AC, Liu C, Anderson CWN, Fendorf S, Wang SL, Feng X, Rinklebe J. First Insight into the Mobilization and Sequestration of Arsenic in a Karstic Soil during Redox Changes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17850-17861. [PMID: 39319747 DOI: 10.1021/acs.est.4c02989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Karst terrains provide drinking water for about 25% of the people on our planet, particularly in the southwest of China. Pollutants such as arsenic (As) in the soil can infiltrate groundwater through sinkholes and bedrock fractures in karst terrains. Despite this, the underlying mechanisms responsible for As release from karst soils under redox changes remain largely unexplored. Here, we used multiple synchrotron-based spectroscopic analyses to explore As mobilization and sequestration in As-polluted karstic soil under biogeochemical conditions that mimic field-validated redox conditions. We observed that As in the soil exists primarily as As(V), which is mainly associated with Fe(oxyhydr)oxides. The concentration of the dissolved As was high (294 μM) and As(III) was dominant (∼95%) at low Eh (≤-100 mV), indicating the high risk of As leaching under reducing conditions. This As mobilization was attributed to the fact that the dissolution of ferrihydrite and calcite promoted the release and reduction of associated As(V). The concentration of the dissolved As was low (17.0 μM) and As(V) was dominant (∼68%) at high Eh (≥+100 mV), which might be due to the oxidation and/or sequestration of As(III) by the recrystallized ferric phase. Our results showed that the combined effects of the reductive release of As(V) from both ferric and nonferric phases, along with the recrystallization of the ferric phase, govern the redox-induced mobilization and potential leaching of As in soils within karst environments.
Collapse
Affiliation(s)
- Jianxu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550082 Guiyang, P.R. China
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Ann-Christin Swertz
- Faculty of Mechanical Engineering and Safety Engineering, Department of Safety Technology and Environmental Protection, University of Wuppertal, Rainer-Gruenter-Straße, 42119 Wuppertal, Germany
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550082 Guiyang, P.R. China
| | - Christopher W N Anderson
- Environmental Sciences, School of Agriculture and Environment, Massey University, 4442 Palmerston North, New Zealand
| | - Scott Fendorf
- Department of Earth System Science, Stanford University, Stanford, California 94305, United States
| | - Shan-Li Wang
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan ROC
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550082 Guiyang, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| |
Collapse
|
2
|
Liang W, Luo T, Xue L, Kong S, Zou Y, Zheng Q, Zhou F. Evaluating the impact of microorganisms in the iron plaque and rhizosphere soils of Spartina alterniflora and Suaeda salsa on the migration of arsenic in a coastal tidal flat wetland in China. MARINE POLLUTION BULLETIN 2024; 207:116824. [PMID: 39128233 DOI: 10.1016/j.marpolbul.2024.116824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 07/12/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024]
Abstract
The microorganism in rhizosphere systems has the potential to regulate the migration of arsenic (As) in coastal tidal flat wetlands. This study investigates the microbial community in the iron plaque and rhizosphere soils of Spartina alterniflora (S. alterniflora) and Suaeda salsa (S. salsa), as two common coastal tidal flat wetland plants in China, and determines the impact of the As and Fe redox bacteria on As mobility using field sampling and 16S rDNA high-throughput sequencing. The results indicated that As bound to crystalline Fe in the Fe plaque of S. salsa in high tidal flat. In the Fe plaque, there was a decrease in the presence of Fe redox bacteria, while the presence of As redox bacteria increased. Thus, the formation of Fe plaque proved advantageous in promoting the growth of As redox bacteria, thereby aiding in the mobility of As from rhizosphere soils to the Fe plaque. As content in the Fe plaque and rhizosphere soils of S. alterniflora was found to be higher than that of S. salsa. In the Fe plaque, As/Fe-reducing bacteria in S. alterniflora, and As/Fe-oxidizing bacteria in S. salsa significantly affected the distribution of As in rhizosphere systems. S. alterniflora has the potential to be utilized for wetland remediation purposes.
Collapse
Affiliation(s)
- Weihao Liang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Ecology and Pollution Control of Coastal Wetlands, Yancheng 224051, China
| | - Ting Luo
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Ecology and Pollution Control of Coastal Wetlands, Yancheng 224051, China.
| | - Lili Xue
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Ecology and Pollution Control of Coastal Wetlands, Yancheng 224051, China
| | - Shen Kong
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Ecology and Pollution Control of Coastal Wetlands, Yancheng 224051, China
| | - Yang Zou
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Ecology and Pollution Control of Coastal Wetlands, Yancheng 224051, China
| | - Qining Zheng
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Ecology and Pollution Control of Coastal Wetlands, Yancheng 224051, China
| | - Feng Zhou
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Ecology and Pollution Control of Coastal Wetlands, Yancheng 224051, China
| |
Collapse
|
3
|
Zhang E, Wu S, Liu J, Li H, Liu X, Lu Y, Ge C, Zhou D. Activated carbon as a strong DOM adsorbent mitigates antimony and arsenic release in flooded mining-impacted soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134663. [PMID: 38788575 DOI: 10.1016/j.jhazmat.2024.134663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/03/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
In Southern China, the co-occurrence of arsenic (As) and antimony (Sb) contamination in soils around Sb mines presents an environmental challenge. During the flooding period of mining-impacted soils, anaerobic reduction of iron (Fe) oxides enhances the mobilization and bioavailability of Sb and As, further elevating the risk of Sb and As entering the food chain. To address this problem, activated carbon (AC) and biochar (BC) were applied to remediate flooded mining-impacted soils. Our results explored that AC can significantly decrease mobilization by 9-97 % for Sb and 9-67 % for As through inhibiting Fe(III) mineral reduction and dissolution in flooded soils. In contrast, there was no significant effect of BC. This was attributed to the strong adsorption of soil dissolved organic matter (DOM) by AC compared to BC, while DOM as electron shuttle is crucial for microbial Fe(III) reduction. Consequently, the DOM sequestration by AC effectively mitigates Sb and As leaching in contaminated mining soils.
Collapse
Affiliation(s)
- Enze Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Song Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China.
| | - Jinsong Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Hongbo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Xiantang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Yilin Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Chenghao Ge
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China.
| |
Collapse
|
4
|
Valero A, Petrash DA, Kuchenbuch A, Korth B. Enriching electroactive microorganisms from ferruginous lake waters - Mind the sulfate reducers! Bioelectrochemistry 2024; 157:108661. [PMID: 38340618 DOI: 10.1016/j.bioelechem.2024.108661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
Electroactive microorganisms are pivotal players in mineral transformation within redox interfaces characterized by pronounced oxygen and dissolved metal gradients. Yet, their systematic cultivation from such environments remains elusive. Here, we conducted an anodic enrichment using anoxic ferruginous waters from a post-mining lake as inoculum. Weak electrogenicity (j = ∼5 µA cm-2) depended on electroactive planktonic cells rather than anodic biofilms, with a preference for formate as electron donor. Addition of yeast extract decreased the lag phase but did not increase current densities. The enriched bacterial community varied depending on the substrate composition but mainly comprised of sulfate- and nitrate-reducing bacteria (e.g., Desulfatomaculum spp. and Stenotrophomonas spp.). A secondary enrichment strategy resulted in different bacterial communities composed of iron-reducing (e.g., Klebsiella spp.) and fermentative bacteria (e.g., Paeniclostridium spp.). Secondary electron microscopy and energy-dispersive X-ray spectroscopy results indicate the precipitation of sulfur- and iron-rich organomineral aggregates at the anode surface, presumably impeding current production. Our findings indicate that (i) anoxic waters containing geogenically derived metals can be used to enrich weak electricigens, and (ii) it is necessary to specifically inhibit sulfate reducers. Otherwise, sulfate reducers tend to dominate over EAM during cultivation, which can lead to anode passivation due to biomineralization.
Collapse
Affiliation(s)
- Astolfo Valero
- Institute of Soil Biology and Biogeochemistry, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic; Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Daniel A Petrash
- Institute of Soil Biology and Biogeochemistry, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic; Department of Environmental Geochemistry and Biogeochemistry, Czech Geological Survey, Prague, Czech Republic
| | - Anne Kuchenbuch
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Benjamin Korth
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany.
| |
Collapse
|
5
|
Zou L, Jiang O, Zhang S, Duan G, Gustave W, An X, Tang X. Effects of citric acid on arsenic transformation and microbial communities in different paddy soils. ENVIRONMENTAL RESEARCH 2024; 249:118421. [PMID: 38325790 DOI: 10.1016/j.envres.2024.118421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/11/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Root exudate is a major source of soil organic matter and can significantly affect arsenic (As) migration and transformation in paddy soils. Citric acid is the main component of rice root exudate, however, the impacts and rules of citric acid on As bioavailability and rhizobacteria in different soils remains unclear. This study investigated the effects of citric acid on As transformation and microbial community in ten different paddy soils by flooded soil culture experiments. The results showed that citric acid addition increased total As and arsenate (As(V)) in the soil porewater by up to 41-fold and 65-fold, respectively, after 2-h incubation. As(V) was the main As species in soil porewater within 10 days with the addition of citric acid. Non-specifically sorbed As of soils, total Fe and total As were the main environmental factors affecting the soil microbial communities. High-throughput sequencing analysis demonstrated that citric acid addition significantly altered the soil microbial community structure, shifting the Proteobacteria-related reducing bacteria to Firmicutes-related reducing bacteria in different paddy soils. The relative abundance of Firmicutes was promoted by 174-196%. Clostridium-related bacteria belonging to Firmicutes became the dominant genera, which is believed to regulate As release through the reductive dissolution of iron oxides or the direct reduction of As(V) to arsenite (As(III)). However, citric acid addition significantly decreased the relative abundance of Geobacter and Anaeromyxobacter, which are also typical active As(V)- and ferric-reducing bacteria. Real-time quantitative polymerase chain reaction (qPCR) also revealed that the addition of citric acid significantly decreased the relative abundances of Geobacter in the different soils by 8-28 times while the relative abundances of Clostridium increased by 2-5 times. These results provide significant insight on As transformation in different types of rice rhizospheric soils and guidance for the application of rice varieties with low citric acid exuding to restrict As accumulation.
Collapse
Affiliation(s)
- Lina Zou
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou 311251, China; MOE Key Lab of Environmental Remediation and Ecosystem Health, and Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Ouyuan Jiang
- MOE Key Lab of Environmental Remediation and Ecosystem Health, and Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Shu Zhang
- CSCEC 8th Division Environmental Technology Co., Ltd, Shanghai 200131, China.
| | - Guilan Duan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Williamson Gustave
- School of Chemistry, Environmental & Life Sciences, University of the Bahamas, New Providence, Nassau, Bahamas.
| | - Xia An
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou 311251, China.
| | - Xianjin Tang
- MOE Key Lab of Environmental Remediation and Ecosystem Health, and Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Han R, Wang Z, Wang S, Sun G, Xiao Z, Hao Y, Nriagu J, Teng HH, Li G. A combined strategy to mitigate the accumulation of arsenic and cadmium in rice (Oryza sativa L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165226. [PMID: 37392888 DOI: 10.1016/j.scitotenv.2023.165226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/12/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
Arsenic and cadmium in rice grain are of growing concern in the global food supply chain. Paradoxically, the two elements have contrasting behaviors in soils, making it difficult to develop a strategy that can concurrently reduce their uptake and accumulation by rice plant. This study examined the combined impacts of watering (irrigation) schemes, different fertilizers and microbial populations on the bioaccumulation of arsenic and cadmium by rice as well as on rice grain yield. Compared to drain-flood and flood-drain treatments, continuously flooded condition significantly reduced the accumulation of cadmium in rice plant but the level of arsenic in rice grain remained above 0.2 mg/kg, which exceeded the China national food safety standard. Application of different fertilizers under continuously flooded condition showed that compared to inorganic fertilizer and biochar, manure addition effectively reduced the accumulation of arsenic over three to four times in rice grain and both elements were below the food safety standard (0.2 mg/kg) while significantly increasing the rice yield. Soil Eh was the critical factor in the bioavailability of cadmium, while the behavior of arsenic in rhizosphere was associated with the iron cycle. The results of the multi-parametric experiments can be used as a roadmap for low-cost and in-situ approach for producing safe rice without compromising the yield.
Collapse
Affiliation(s)
- Ruixia Han
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Zhe Wang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Shuqing Wang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Guoxin Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zufei Xiao
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Yilong Hao
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Jerome Nriagu
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 109 Observatory Street, Ann Arbor, MI 48109-2029, USA
| | - H Henry Teng
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| |
Collapse
|
7
|
Rios-Valenciana EE, Moreno-Perlin T, Briones-Gallardo R, Sierra-Alvarez R, Celis LB. The key role of biogenic arsenic sulfides in the removal of soluble arsenic and propagation of arsenic mineralizing communities. ENVIRONMENTAL RESEARCH 2023; 220:115124. [PMID: 36563982 DOI: 10.1016/j.envres.2022.115124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/04/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Biogeochemical processes govern the transport and availability of arsenic in sediments. However, little is known about the transition from indigenous communities to cultivable consortia when exposed to high arsenic concentrations. Such cultivable communities could be exploited for arsenic bioremediation of waste streams and polluted sites. Thus, it is crucial to understand the dynamics and selective pressures that shape the communities during the development of customized bacterial consortia. First, from the arsenic partitioning of two sediments with high arsenic concentrations, we found that up to 55% of arsenic was bioavailable because it was associated with the soluble, carbonate, and ionically exchangeable fractions. Next, we prepared sediment enrichment cultures under arsenate- and sulfate-reducing conditions to precipitate arsenic sulfide biominerals and analyze the communities. The produced biominerals were used as the inoculum to develop bacterial consortia via successive transfers. Tracking of the 16S rRNA gene in the fresh sediments, sediment enrichments, biogenic minerals, and bacterial consortia revealed differences in the bacterial communities. Removing the sediment caused a substantial decrease in diversity and shifts toward the dominance of the Firmicutes phylum to the detriment of Proteobacteria. In agreement with the 16S rRNA gene results, the sequencing of the arrA gene confirmed the presence of phylotypes closely related to Desulfosporosinus sp. Y5 (100% similarity), highlighting the pivotal role of this genus in the removal of soluble arsenic. Here, we demonstrated for the first time that besides being important as arsenic sinks, the biogenic arsenic sulfide minerals are reservoirs of arsenic resistant/respiring bacteria and can be used to culture them.
Collapse
Affiliation(s)
- Erika E Rios-Valenciana
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a La Presa San José 2055, Lomas 4a. Sección, 78216, San Luis Potosí, SLP, Mexico
| | - Tonatiuh Moreno-Perlin
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma Del Estado de Morelos, Avenida Universidad 1001, Chamilpa, 62210, Cuernavaca, Mor, Mexico
| | - Roberto Briones-Gallardo
- Facultad de Ingeniería-Instituto de Metalurgia, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, Lomas 2a. Sección, 78216, San Luis Potosí, SLP, Mexico
| | - Reyes Sierra-Alvarez
- Department of Chemical and Environmental Engineering, The University of Arizona, P.O. Box 210011, Tucson, AZ, 85721, USA
| | - Lourdes B Celis
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a La Presa San José 2055, Lomas 4a. Sección, 78216, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
8
|
Yan M, Zhu C, Li B, Su S, Li H. Manure application facilitated electrokinetic remediation of antibiotic-arsenic co-contaminated paddy soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129897. [PMID: 36084469 DOI: 10.1016/j.jhazmat.2022.129897] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/04/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
The co-existence of antibiotics and heavy metals in soil with manure application poses high risk to both environment and human health, and thus effective remediation methods are in urgent need. This study investigated the synergistic effects of electrokinetic remediation (EKR) on antibiotic resistance and arsenic (As) in co-contaminated paddy soils. EKR treatments in soil amended with pig manure (EKR-PD) showed better remediation efficiency compared with that without pig manure. In detail, the content of available As and the abundance of antibiotic-resistant bacteria (ARB) decreased by 25.2 %-41.4 % and 9.5 %-21.1 % after 7-d remediation, respectively, due to a relatively higher current density for EKR-PD. The role of the electric field contributed to 33.9 % of antibiotic degradation. Antibiotic resistance genes (ARGs) with ribosomal-protection and enzymatic-deactivation types were easier to remove, with the removal ratio of 37.8 %-41.6 % in EKR-PD. Brevundimonas was the most significantly different species during remediation. Bacillus and Clostridium_ sensu_stricto_1 were potential host bacteria of ARGs in the electric field. Membrane transport might be an effective strategy for microorganisms to respond to the stress of both electric field and co-contaminated environments. This study supports the potential role of EKR in the co-contamination of heavy metals and antibiotic resistance under manure application.
Collapse
Affiliation(s)
- Mengmeng Yan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Changxiong Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Binxu Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Shiming Su
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Hongna Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
9
|
Sun H, Gao P, Dong J, Zhao Q, Xue P, Geng L, Zhao J, Liu W. Rhizosphere bacteria regulated arsenic bioavailability and accumulation in the soil-Chinese cabbage system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114420. [PMID: 36521270 DOI: 10.1016/j.ecoenv.2022.114420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
The accumulation of arsenic (As) in Chinese cabbage (Brassica rapa ssp. pekinensis) has recently been a source of concern for a potential risk to human health. It is unknown whether natural variations of As accumulation in different genotypes of Chinese cabbage are related to rhizobacterial characteristics. Experiments were conducted to investigate the mechanisms of rhizobacteria involving in As fates in a soil-Chinese cabbage system using various genotypes using high-throughput sequencing and quantitative PCR. There were significant differences in As accumulation in cabbage leaves between 32 genotypes, and genotypes of low-As-accumulation (LSA) and high-As-accumulation (HSA) were identified. The As concentrations in the shoots of LSA were 23.25 %, 24.19 %, 15.05 %, and 70.69 % lower than those of HSA in seedling stage (SS), rosette stage (RS), heading stage (HS), and mature stage (MS), respectively. Meanwhile, the relative abundances of phyla Patescibacteria (in RS), Acidobacteria and Rokubacteria (in HS) in the rhizosphere of LSA were 60.18 %, 28.19 %, and 45.38 % less than those of HSA, respectively. Additionally, both shoot-As and As translocation factor had significantly positive or negative correlations with the relative abundances of Rokubacteria or Actinobacteria. In LSA rhizosphere, the relative abundances of genera Flavobacterium (in SS), Ellin6055 and Sphingomonas (in HS) were 128.12 %, 83.69 % and 79.50 % higher than those of HSA, respectively. This demonstrated that rhizobacteria contribute to the accumulation and translocation of As in HSA and LSA. Furthermore, the gene copies of aioA and arsM in LSA rhizosphere were 25.54 % and 16.13 % higher than those of HSA, respectively, whereas the gene copies of arsC in LSA rhizosphere were 26.36 % less than those of HSA in MS, indicating that rhizobacteria are involved in As biotransformation in the soil. These results provide a comprehensive understanding of the relationship between characteristics of rhizobacterial communities and As variations in Chinese cabbage genotypes.
Collapse
Affiliation(s)
- Hongxin Sun
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, Hebei, China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding 071000, Hebei, China
| | - Peipei Gao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, Hebei, China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding 071000, Hebei, China
| | - Junwen Dong
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, Hebei, China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding 071000, Hebei, China
| | - Quanli Zhao
- The Teaching and Experimental Station, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Peiying Xue
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, Hebei, China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding 071000, Hebei, China.
| | - Liping Geng
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, Hebei, China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding 071000, Hebei, China
| | - Jianjun Zhao
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Centre of Vegetable Industry in Hebei, College of Horticulture, Baoding 071000, Hebei, China
| | - Wenju Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, Hebei, China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding 071000, Hebei, China.
| |
Collapse
|
10
|
Jiku MAS, Zeng X, Li L, Li L, Zhang Y, Huo L, Shan H, Zhang Y, Wu C, Su S. Soil ridge cultivation maintains grain As and Cd at low levels and inhibits As methylation by changing arsM-harboring bacterial communities in paddy soils. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128325. [PMID: 35101761 DOI: 10.1016/j.jhazmat.2022.128325] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/30/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
The simultaneous mitigation of toxic arsenic (As) and cadmium (Cd) in rice grain remains a global challenge. The over-accumulation of husk dimethylarsinic acid (DMAs) induces the rice straight-head disease, which threatens rice production worldwide. In this study, we investigated various soil ridge height treatments with Eh ranging from - 225-87 mV and pH ranging from 6.3 to 4.1. Soil ridge cultivation can maintain grain As and Cd at low levels for slightly co-contaminated paddy soils, especially when the ridge height is 11 cm (Eh of 43 mV and pH of 4.6), where grain inorganic As decreased-at maximum-by 48% and DMAs by 55%. Grain Cd (0.14 mg kg-1) increased but was still below the limit (0.2 mg kg-1) in China, and the cost of ridging is acceptable. There were definite correlations among porewater As, Cd, Fe, S, and Mn contents across various Eh and pH values. Soil ridge cultivation significantly (P < 0.05) diminished the copy number of As-reducing (harboring arsC and arrA), As-methylating (harboring arsM), and sulfate-reducing (harboring dsrA) bacteria. Moreover, soil ridge cultivation shifted the arsM-harboring microbiota. In response to ridge height increase, the abundance of the bacterial biomarker phylum Euryachaeota declined and the families Halorubrum and Planctomyces were gradually replaced by Sandaracinus in paddy soil.
Collapse
Affiliation(s)
- Md Abu Sayem Jiku
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, PR China
| | - Xibai Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, PR China.
| | - Lingyi Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, PR China
| | - Lijuan Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, PR China
| | - Yue Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, PR China
| | - Lijuan Huo
- School of Environmental Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi 030024, PR China
| | - Hong Shan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, PR China
| | - Yang Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, PR China
| | - Cuixia Wu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, PR China
| | - Shiming Su
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, PR China.
| |
Collapse
|
11
|
Ge C, Huang D, Wang D, Zhang E, Li M, Zhu F, Zhu C, Chen N, Wu S, Zhou D. Biotic Process Dominated the Uptake and Transformation of Ag + by Shewanella oneidensis MR-1. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2366-2377. [PMID: 35107264 DOI: 10.1021/acs.est.1c06369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Silver ions (Ag+) directly emitted from industrial sources or released from manufactured Ag nanoparticles (AgNPs) in biosolid-amended soils have raised concern about the risk to ecosystems. However, our knowledge of Ag+ toxicity, internalization, and transformation mechanisms to bacteria is still insufficient. Here, we combine the advanced technologies of hyperspectral imaging (HSI) and single-particle inductively coupled plasma mass spectrometry to visualize the potential formed AgNPs inside the bacteria and evaluate the contributions of biological and non-biological processes in the uptake and transformation of Ag+ by Shewanella oneidensis MR-1. The results showed a dose-dependent toxicity of Ag+ to S. oneidensis MR-1 in the ferrihydrite bioreduction process, which was primarily induced by the actively internalized Ag. Moreover, both HSI and cross-section high-resolution transmission electron microscopy results confirmed that Ag inside the bacteria existed in the form of particulate. The Ag mass distribution in and around live and inactivated cells demonstrated that the uptake and transformation of Ag+ by S. oneidensis MR-1 were mainly via biological process. The bioaccumulation of Ag+ may be lethal to bacteria. A better understanding of the uptake and transformation of Ag+ in bacteria is central to predict and monitor the key factors that control Ag partitioning dynamics at the biointerface, which is critical to develop practical risk assessment and mitigation strategies.
Collapse
Affiliation(s)
- Chenghao Ge
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P.R. China
| | - Danyu Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P.R. China
| | - Dixiang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P.R. China
| | - Enze Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P.R. China
| | - Min Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P.R. China
| | - Fengxiao Zhu
- School of Environment, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Changyin Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P.R. China
| | - Ning Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P.R. China
| | - Song Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P.R. China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
12
|
Liu L, Yang YP, Duan GL, Wang J, Tang XJ, Zhu YG. The chemical-microbial release and transformation of arsenic induced by citric acid in paddy soil. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126731. [PMID: 34339987 DOI: 10.1016/j.jhazmat.2021.126731] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/28/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Citric acid (CA) is the major exudate of rice roots, yet the effects of CA on arsenic (As) transformation and microbial community in flooded paddy soil have not been clearly elucidated. In this study, microcosms were established by amending CA to As contaminated paddy soils, mimicking the rhizosphere environment. Results showed that 0.5% CA addition significantly enhanced As mobilization after one-hour incubation, increased total As in porewater by about 20-fold. CA addition induced arsenate release into porewater, and subsequently formed ternary complex of As, iron and organic matters, inhibiting further As transformation (including arsenate reduction and arsenite methylation). Furthermore, the results of linear discriminant analysis (LDA) effect size (LEfSe) and network analysis revealed that CA addition significantly enriched bacteria associated with arsenic and iron reductions, such as Clostridium (up to 35-fold) and Desulfitobacterium (up to 4-fold). Our results suggest that CA exhibits robust ability to mobilize As through both chemical and microbial processes, increasing the risk of As accumulation by rice. This study sheds light on our understanding of As mobilization and transformation in rhizosphere soil, potentially providing effective strategies to restrict As accumulation in food crops by screening or cultivating varieties with low CA exuding.
Collapse
Affiliation(s)
- Lin Liu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China
| | - Yu-Ping Yang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, PR China
| | - Gui-Lan Duan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China.
| | - Xian-Jin Tang
- Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou 310058, PR China
| | - Yong-Guan Zhu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| |
Collapse
|
13
|
Shen Y, Yu H, Lin J, Guo T, Dai Z, Tang C, Xu J. Influence of tetracycline on arsenic mobilization and biotransformation in flooded soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118416. [PMID: 34737124 DOI: 10.1016/j.envpol.2021.118416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
This study examined the effect of tetracycline addition on arsenic (As) mobilization and biotransformation in two contrasting soils (upland soil and paddy soil) under flooded conditions. The soils with added tetracycline (0-50 mg kg-1) were incubated for 30 days, and soil properties and microbial functional genes over time were quantified. Tetracycline significantly promoted As reduction and As release into porewater in both soils. The enhancement had resulted from an increase in the concentration of dissolved organic carbon and a decrease in soil redox potential. Tetracycline also increased the abundances of As-reducing genes (arsC and arrA) and the relative abundances of As-reducing bacteria Streptomyces, Bacillus, Burkholderia, Clostridium and Rhodococcus, all of which have been found resistant to tetracycline. These genera play a key part in stimulating As reduction in the presence of tetracycline. The study indicated the significance of tetracycline in the biochemical behavior of As in flooded soils and provided new insights into the potential effects of tetracycline on the quality and safety of agricultural products in the future.
Collapse
Affiliation(s)
- Yue Shen
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Haodan Yu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jiahui Lin
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Ting Guo
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zhongmin Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Caixian Tang
- Department of Animal, Plant & Soil Sciences, Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
| |
Collapse
|
14
|
Wang Y, Wei D, Li P, Jiang Z, Liu H, Qing C, Wang H. Diversity and arsenic-metabolizing gene clusters of indigenous arsenate-reducing bacteria in high arsenic groundwater of the Hetao Plain, Inner Mongolia. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1680-1688. [PMID: 33196984 DOI: 10.1007/s10646-020-02305-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Dissimilatory arsenate reduction from arsenic (As)-bearing minerals into highly mobile arsenite is one of the key mechanisms of As release into groundwater. To detect the microbial diversity and As-metabolizing gene clusters of indigenous arsenate-reducing bacteria in high As groundwater in the Hetao Plain of Inner Mongolia, China, three anaerobic arsenate-reducing bacteria were isolated and arrA and arsC gene-based clone libraries of four in situ groundwater samples were constructed. The strains IMARCUG-11(G-11), IMARCUG-C1(G-C1) and IMARCUG-12(G-12) were phylogenetically belonged to genera Paraclostridium, Citrobacter and Klebsiella, respectively. They could reduce >99% of 1 mM arsenate under anoxic conditions with lactate as a carbon source in 60 h, 72 h and 84 h, respectively. As far as we know, this was the first report of arsenate reduction by genus Paraclostridium. Compared with strain G-11 (arsC) and G-C1 (arsRBC), strain G-12 contained two incomplete ars operons (operon1: arsABC, operon2: arsBC), indicating that these strains might present different strategies to resist As toxicity. Phylogenetic analysis illuminating by the arrA genes showed that in situ arsenate-reducing bacterial communities were diverse and mainly composed of Desulfobacterales (53%, dominated by Geobacter), Betaproteobacteria (12%), and unidentified groups (35%). Based on the arsC gene analysis, the indigenous arsenate-reducing bacterial communities were mainly affiliated with Omnitrophica (88%) and Deltaproteobacteria (11%, dominated by Geobacter and Syntrophobacterales). Results of this study expanded our understanding of indigenous arsenic-reducing bacteria in high As groundwater aquifers.
Collapse
Affiliation(s)
- Yanhong Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
| | - Dazhun Wei
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
| | - Ping Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China.
| | - Zhou Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China
| | - Han Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
| | - Chun Qing
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
| | - Helin Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
| |
Collapse
|
15
|
Liu H, Li P, Wang H, Qing C, Tan T, Shi B, Zhang G, Jiang Z, Wang Y, Hasan SZ. Arsenic mobilization affected by extracellular polymeric substances (EPS) of the dissimilatory iron reducing bacteria isolated from high arsenic groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139501. [PMID: 32498015 DOI: 10.1016/j.scitotenv.2020.139501] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
The factors that control arsenic (As) mobilization by dissimilatory iron reduction (DIR) are complicated. The association between As mobilization and extracellular polymeric substance (EPS) of dissimilatory iron reducing bacteria (DIRB) remained unclear. In this study, three DIRB were isolated from high arsenic groundwater to understand the effects of EPS on As mobilization. In the laboratory settings, strain Klebsiella oxytoca IR-ZA released As into aqueous phase from As-bearing ferrihydrite, while strain Shewanella putrefaciens IAR-S1 and S. xiamenensis IR-S2 re-sequestrated As by forming secondary minerals during ferrihydrite reduction. Characterization of EPS contents with Fourier Transform Infrared Spectroscopy and high-performance liquid chromatography suggested that mannan and succinic acid were the main different EPS contents of the DIRB. The biomineralization processes were tightly regulated by EPS compositions. Mannan secreted by IAR-S1 and IR-S2 promoted while succinic acid secreted by IR-ZA suppressed the biomineralization and As immobilization. Energy-dispersive X-ray Spectroscopy mapping indicated that As in the secondary minerals was wrapped with EPS. X-ray diffraction and room temperature Mössbauer spectroscopy showed these secondary minerals were vivianite and magnetite, respectively. The amount of As mobilized into aqueous phase was strongly affected by available anions (H2PO4- and HCO3-). Our results indicated that the EPS of DIRB significantly influenced As mobilization.
Collapse
Affiliation(s)
- Han Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Ping Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China.
| | - Helin Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Chun Qing
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Tian Tan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Bo Shi
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Guanglong Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Zhou Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Yanhong Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Shah Zaib Hasan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
16
|
Yang YP, Tang XJ, Zhang HM, Cheng WD, Duan GL, Zhu YG. The characterization of arsenic biotransformation microbes in paddy soil after straw biochar and straw amendments. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122200. [PMID: 32044634 DOI: 10.1016/j.jhazmat.2020.122200] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/10/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Straw biochar and straw application to paddy soil dramatically altered arsenic (As) biogeochemical cycling in soil-rice system, but it remains unknown how As biotransformation microbes (ABMs) contribute to these processes. In this study, rice pot experiments combining terminal restriction fragment length polymorphism (T-RFLP) analysis and clone library were performed to characterize ABMs. Through linear discriminant analysis (LDA) effect size (LEfSe) and correlation analysis, results revealed that arrA-harbouring iron-reducing bacteria (e.g., Geobacter and Shewanella) and arsC-harbouring Gammaproteobacteria (e.g., fermentative hydrogen-producing and lignin-degrading microorganisms) potentially mediated arsenate [As(V)] reduction under biochar and straw amendments, respectively. Methanogens and sulfate-reducing bacteria (SRB) carrying arsM gene might regulate methylated As concentration in soil-rice system. Network analysis demonstrated that the association among ABMs in rhizosphere was significantly stronger than that in bulk soil. Arsenite [As(III)] methylators carrying arsM gene exhibited much stronger co-occurrence pattern with arsC-harbouring As(V) reducers than with arrA-harbouring As(V) reducers. This study would broaden our insights for the dramatic variation of As biogeochemical cycling in soil-rice system after straw biochar and straw amendments through the activities of ABMs, which could contribute to the safe rice production and high rice yield in As-contaminated fields.
Collapse
Affiliation(s)
- Yu-Ping Yang
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian-Jin Tang
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Hong-Mei Zhang
- Jiaxing Academy of Agricultural Sciences, Xiuzhou District, Jiaxing 314016, China
| | - Wang-Da Cheng
- Jiaxing Academy of Agricultural Sciences, Xiuzhou District, Jiaxing 314016, China
| | - Gui-Lan Duan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yong-Guan Zhu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
17
|
Xiu W, Lloyd J, Guo H, Dai W, Nixon S, Bassil NM, Ren C, Zhang C, Ke T, Polya D. Linking microbial community composition to hydrogeochemistry in the western Hetao Basin: Potential importance of ammonium as an electron donor during arsenic mobilization. ENVIRONMENT INTERNATIONAL 2020; 136:105489. [PMID: 31991235 DOI: 10.1016/j.envint.2020.105489] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/06/2020] [Accepted: 01/12/2020] [Indexed: 05/25/2023]
Abstract
Various functional groups of microorganisms and related biogeochemical processes are likely to control arsenic (As) mobilization in groundwater systems. However, spatially-dependent correlations between microbial community composition and geochemical zonation along groundwater flow paths are not fully understood, especially with respect to arsenic mobility. The western Hetao Basin was selected as the study area to address this limitation, where groundwater flows from a proximal fan (geochemical-group I: low As, oxidizing), through a transition area (geochemical-group II: moderate As, moderately-reducing) and then to a flat plain (geochemical-group III: high As, reducing). High-throughput Illumina 16S rRNA gene sequencing showed that the microbial community structure in the proximal fan included bacteria affiliated with organic carbon degradation and nitrate-reduction or even nitrate-dependant Fe(II)-oxidation, mainly resulting in As immobilization. In contrast, for the flat plain, high As groundwater contained Fe(III)- and As(V)-reducing bacteria, consistent with current models on As mobilization driven via reductive dissolution of Fe(III)/As(V) mineral assemblages. However, Spearman correlations between hydrogeochemical data and microbial community compositions indicated that ammonium as a possible electron donor induced reduction of Fe oxide minerals, suggesting a wider range of metabolic pathways (including ammonium oxidation coupled with Fe(III) reduction) driving As mobilization in high As groundwater systems.
Collapse
Affiliation(s)
- Wei Xiu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China; Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Jonathan Lloyd
- Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, the University of Manchester, Manchester, United Kingdom
| | - Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Wei Dai
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Sophie Nixon
- Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, the University of Manchester, Manchester, United Kingdom
| | - Naji M Bassil
- Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, the University of Manchester, Manchester, United Kingdom
| | - Cui Ren
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Chaoran Zhang
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Tiantian Ke
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - David Polya
- Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, the University of Manchester, Manchester, United Kingdom
| |
Collapse
|
18
|
Gupta A, Sar P. Characterization and application of an anaerobic, iron and sulfate reducing bacterial culture in enhanced bioremediation of acid mine drainage impacted soil. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:464-482. [PMID: 31971065 DOI: 10.1080/10934529.2019.1709362] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Development of an appropriate bioremediation strategy for acid mine drainage (AMD) impacted environment is imperative for sustainable mining but remained critically challenged due to the paucity of knowledge on desired microbiological factors and their nutrient requirements. The present study was conducted to utilize the potential of an anaerobic, acid-tolerant, Fe3+ and SO42- reducing microbial consortium for in situ remediation of highly acidic (pH 3.21), SO42- rich (6285 mg/L) mine drainage impacted soil (AIS). A microbial consortium enriched from AMD system and composed of Clostridiales and Bacillales members was characterized and tested for in situ application through microcosms. A combination of bioaugmentation (enriched consortium) and biostimulation (cellulose) allowed 97% reduction in dissolved sulfate and rise in pH up to 7.5. 16S rRNA gene-based amplicon sequencing confirmed that although the bioaugmented community could survive in AIS, availability of carbon source was necessary for superior iron- and sulfate- reduction. Quantitative PCR of dsrB gene confirmed the role of carbon source in boosting the SO42- reduction activities of sulfate reducers. This study demonstrated that native AIS harbored limited catabolic activities required for the remediation but addition of catabolically active microbial populations along with necessary carbon and energy source facilitate the bioremediation of AIS.
Collapse
Affiliation(s)
- Abhishek Gupta
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Pinaki Sar
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
19
|
Rios-Valenciana EE, Briones-Gallardo R, Chazaro-Ruiz LF, Lopez-Lozano NE, Sierra-Alvarez R, Celis LB. Dissolution and final fate of arsenic associated with gypsum, calcite, and ferrihydrite: Influence of microbial reduction of As(V), sulfate, and Fe(III). CHEMOSPHERE 2020; 239:124823. [PMID: 31726520 DOI: 10.1016/j.chemosphere.2019.124823] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/03/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Several studies have demonstrated that gypsum (CaSO4·2H2O) and calcite (CaCO3) can be important hosts of arsenic in contaminated hydrogeological systems. However, the extent to which microbial reducing processes contribute to the dissolution and transformation of carbonate and sulfate minerals and, thereby, to arsenic mobilization is poorly understood. These processes are likely to have a strong impact on arsenic mobility in iron-poor environments and in reducing aquifers where iron oxyhydroxides become unstable. Anoxic batch bioassays with arsenate (As(V)) coprecipitated with calcite, gypsum, or ferrihydrite (Fe(OH)3) were conducted in the presence of sulfate or molybdate to examine the impact of bioprocesses (i.e. As(V), sulfate, and Fe(III)-reduction) on arsenic dissolution, speciation, and eventual remineralization. Microbial reduction of As(V)-bearing calcite caused an important dissolution of arsenite, As(III), which remained in solution up to the end of the experiment (30 days). The reduction of As(V) from gypsum-As(V) also led to the release of As(III), which was subsequently remineralized, possibly as arsenic sulfides. The presence of sulfate triggered arsenic dissolution in the bioassays with ferrihydrite-As(V). This study showed that although gypsum and calcite have a lower capacity to bind arsenic, compared to iron oxides, they can play a critical role in the biogeochemical cycle of arsenic in natural calcareous and gypsiferous systems depleted of iron since they can be a source of electron acceptors for reducing bioprocesses.
Collapse
Affiliation(s)
- Erika E Rios-Valenciana
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Lomas 4a. Sección, 78216, San Luis Potosí, SLP, Mexico
| | - Roberto Briones-Gallardo
- Instituto de Metalurgia, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, Lomas 2a. Sección, 78216, San Luis Potosí, SLP, Mexico
| | - Luis F Chazaro-Ruiz
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Lomas 4a. Sección, 78216, San Luis Potosí, SLP, Mexico
| | - Nguyen E Lopez-Lozano
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Lomas 4a. Sección, 78216, San Luis Potosí, SLP, Mexico
| | - Reyes Sierra-Alvarez
- Department of Chemical and Environmental Engineering, The University of Arizona, P.O. Box 210011, Tucson, AZ, 85721, USA
| | - Lourdes B Celis
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Lomas 4a. Sección, 78216, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
20
|
Han YS, Park JH, Kim SJ, Jeong HY, Ahn JS. Redox transformation of soil minerals and arsenic in arsenic-contaminated soil under cycling redox conditions. JOURNAL OF HAZARDOUS MATERIALS 2019; 378:120745. [PMID: 31203129 DOI: 10.1016/j.jhazmat.2019.120745] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 04/16/2019] [Accepted: 06/06/2019] [Indexed: 06/09/2023]
Abstract
Changes in the saturation degree of aquifers control the geochemical reactions of redox-sensitive elements such as iron (Fe), sulfur (S), and arsenic (As). In this study, the effects of redox conditions and the presence of Fe and S on the behavior of As in a soil environment were investigated by observation in a batch experimental system. Arsenic was stable on Fe(III) solid surface in an oxidizing environment but was easily released into the aqueous phase following the reductive dissolution of Fe during an anoxic period. The alternating redox cycles led to a change in the concentrations of Fe, S, and As in both the aqueous and solid phases. The composition of Fe minerals changed to a less crystalline phase while that of solid phase As changed to a more reduced phase in both the As-contaminated natural soil and FeS-amended soil batch systems. This tendency was more prominent in the batch containing higher amounts of total Fe and S. These results show that a redox cycle can increase the possibility of As contamination of groundwater during dissolution and reprecipitation of Fe minerals and simultaneous microbial reduction of S and/or As species.
Collapse
Affiliation(s)
- Young-Soo Han
- Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources, 124 Gwahak-ro, Yuseong-gu, Daejeon 34132, Republic of Korea
| | - Ji-Hyun Park
- Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources, 124 Gwahak-ro, Yuseong-gu, Daejeon 34132, Republic of Korea; Department of Environmental Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk 28644, Republic of Korea
| | - So-Jeong Kim
- Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources, 124 Gwahak-ro, Yuseong-gu, Daejeon 34132, Republic of Korea
| | - Hoon Y Jeong
- Department of Geological Sciences, Pusan National University, Busan 46241, Republic of Korea.
| | - Joo Sung Ahn
- Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources, 124 Gwahak-ro, Yuseong-gu, Daejeon 34132, Republic of Korea.
| |
Collapse
|
21
|
Arsenic mobilization in a high arsenic groundwater revealed by metagenomic and Geochip analyses. Sci Rep 2019; 9:12972. [PMID: 31506464 PMCID: PMC6736849 DOI: 10.1038/s41598-019-49365-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/23/2019] [Indexed: 11/08/2022] Open
Abstract
Microbial metabolisms of arsenic, iron, sulfur, nitrogen and organic matter play important roles in arsenic mobilization in aquifer. In this study, microbial community composition and functional potentials in a high arsenic groundwater were investigated using integrated techniques of RNA- and DNA-based 16S rRNA gene sequencing, metagenomic sequencing and functional gene arrays. 16S rRNA gene sequencing showed the sample was dominated by members of Proteobacteria (62.3-75.2%), such as genera of Simplicispira (5.7-6.7%), Pseudomonas (3.3-5.7%), Ferribacterium (1.6-4.4%), Solimonas (1.8-3.2%), Geobacter (0.8-2.2%) and Sediminibacterium (0.6-2.4%). Functional potential analyses indicated that organics degradation, assimilatory sulfate reduction, As-resistant pathway, iron reduction, ammonification, nitrogen fixation, denitrification and dissimilatory nitrate reduction to ammonia were prevalent. The composition and function of microbial community and reconstructed genome bins suggest that high level of arsenite in the groundwater may be attributed to arsenate release from iron oxides reductive dissolution by the iron-reducing bacteria, and subsequent arsenate reduction by ammonia-producing bacteria featuring ars operon. This study highlights the relationship between biogeochemical cycling of arsenic and nitrogen in groundwater, which potentially occur in other aquifers with high levels of ammonia and arsenic.
Collapse
|
22
|
Rathod J, Jean JS, Jiang WT, Huang IH, Liu BH, Lee YC. Micro-colonization of arsenic-resistant Staphylococcus sp. As-3 on arsenopyrite (FeAsS) drives arsenic mobilization under anoxic sub-surface mimicking conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:527-539. [PMID: 30884274 DOI: 10.1016/j.scitotenv.2019.03.084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
We investigated the subsurface biomatrix of the most abundant As-mineral, arsenopyrite (FeAsS), and meticulously studied a potential biogenic arsenic mobilization phenomenon. An arsenic-resistant [up to 7.5 mM As(III) and 200 mM As(V)] and arsenate-reducing bacterial strain (Staphylococcus sp. As-3) was isolated from a sediment core sample taken from the Budai borehole, on the southwestern coast of Taiwan. Isolate As-3 could reduce 5 mM As(V) to 3.04 mM in 96 h, generating 1.6 mM As(III) under anoxic conditions. Isolate As-3, which adsorbed As(V) up to 19.02 mg g-1 (cdw) and As(III) up to 0.46 mg g-1 (cdw), demonstrated effective As-bioaccumulating ability, as corroborated by a TEM-EDS analysis. Under anaerobic batch conditions, isolate As-3 micro-colonies could grow on as well as interact with arsenopyrite (FeAsS), mobilizing arsenic into soluble phase as As(III) and As(V). Using synchrotron radiation-based FTIR micro-spectroscopy, various functional group signatures and critical chemical bonds enabling a direct interaction with arsenopyrite were underpinned, such as a potential P-OFe bond involved in facilitating bacteria-mineral interaction. Using atomic force microscopy, we analyzed the scattered bacterial cell arrangement and structure and measured various biomechanical properties of micro-colonized Staphylococcus sp. As-3 cells on arsenopyrite. We suggest that the release of organic acids from As-3 drives soluble arsenic release in the aqueous phase under anoxic conditions through oxidative dissolution. Furthermore, arsC-encoding putative cytoplasmic arsenic reductase sequencing and transcript characterization indicated that arsC plays a possible role in the reduction of moderately soluble As(V) to highly soluble toxic As(III) under anoxic conditions. Thus, we suggest that firmicutes such as Staphylococcus sp. As-3 may play an important role in microbially-mediated arsenic mobilization, leading to arsenic release in the sub-surface niche.
Collapse
Affiliation(s)
- Jagat Rathod
- Department of Earth Sciences, National Cheng Kung University, 1, University Road, Tainan 70101, Taiwan
| | - Jiin-Shuh Jean
- Department of Earth Sciences, National Cheng Kung University, 1, University Road, Tainan 70101, Taiwan; Graduate Institute of Applied Geology, National Central University, Chung-Li District, Taoyuan City 32001, Taiwan.
| | - Wei-Teh Jiang
- Department of Earth Sciences, National Cheng Kung University, 1, University Road, Tainan 70101, Taiwan
| | - I-Hsiu Huang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Infectious Disease and Signalling Research, National Cheng Kung University, Tainan, Taiwan
| | - Bernard Haochih Liu
- Department of Materials Science and Engineering, National Cheng Kung University, Taiwan
| | - Yao-Chang Lee
- National Synchrotron Radiation Research Center, Life Science Group, Hsinchu 30076, Taiwan; Department of Optics and Photonics, National Central University, Chung-Li District, Taoyuan City 32001, Taiwan
| |
Collapse
|
23
|
Larson CA, Mirza B, Rodrigues JLM, Passy SI. Iron limitation effects on nitrogen-fixing organisms with possible implications for cyanobacterial blooms. FEMS Microbiol Ecol 2019; 94:4939469. [PMID: 29566225 DOI: 10.1093/femsec/fiy046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/15/2018] [Indexed: 11/14/2022] Open
Abstract
Cyanobacteria-dominated harmful algal blooms are increasing in occurrence. Many of the taxa contributing to these blooms are capable of fixing atmospheric nitrogen and should be favored under conditions of low nitrogen availability. Yet, synthesizing nitrogenase, the enzyme responsible for nitrogen fixation, is energetically expensive and requires substantial concentrations of iron. Phosphorus addition to nitrogen poor streams should promote nitrogen fixation, but experimental results so far have been inconclusive, suggesting that other factors may be involved in controlling this process. With iron potentially limited in many streams, we examined the influence of phosphorus-iron colimitation on the community structure of nitrogen-fixing organisms. In stream microcosms, using microscopic and molecular sequence data, we observed: (i) the greatest abundance of heterocyst forming nitrogen-fixing cyanobacteria in low nitrogen treatments with high phosphorus and iron and (ii) greater abundance of non-photosynthetic nitrogen-fixing bacteria in treatments with nitrogen compared to those without it. We also found that comparisons between molecular results and those obtained from microscopic identification provided complementary information about cyanobacterial communities. Our investigation indicates the potential for phosphorus-iron colimitation of stream nitrogen-fixing organisms.
Collapse
Affiliation(s)
- Chad A Larson
- Environmental Assessment Program, Washington State Department of Ecology, 300 Desmond Drive SE, Lacey, WA 98503, USA
| | - Babur Mirza
- Department of Biology, Missouri State University, 901 S. National Ave., Springfield, MO 65897, USA
| | - Jorge L Mazza Rodrigues
- Department of Land, Air and Water Resources, University of California, Davis, One Shields Avenue, Davis, CA 95616-8627, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sophia I Passy
- Department of Biology, University of Texas at Arlington, 501 S. Nedderman Drive, Arlington, TX 76019, USA
| |
Collapse
|
24
|
Mukhtar S, Mirza BS, Mehnaz S, Mirza MS, Mclean J, Malik KA. Impact of soil salinity on the microbial structure of halophyte rhizosphere microbiome. World J Microbiol Biotechnol 2018; 34:136. [PMID: 30128756 DOI: 10.1007/s11274-018-2509-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 07/27/2018] [Indexed: 02/01/2023]
Abstract
The rhizosphere microbiome plays a significant role in the life of plants in promoting plant survival under adverse conditions. However, limited information is available about microbial diversity in saline environments. In the current study, we compared the composition of the rhizosphere microbiomes of the halophytes Urochloa, Kochia, Salsola, and Atriplex living in moderate and high salinity environments (Khewra salt mines; Pakistan) with that of the non-halophyte Triticum. Soil microbiomes analysis using pyrosequencing of 16S rRNA gene indicated that Actinobacteria were dominant in saline soil samples whereas Proteobacteria predominated in non-saline soil samples. Firmicutes, Acidobacteria, Bacteriodetes and Thaumarchaeota were predominant phyla in saline and non-saline soils, whereas Cyanobacteria, Verrucomicrobia, Gemmatimonadetes and the unclassified WPS-2 were less abundant. Sequences from Euryarchaeota, Ignavibacteriae, and Nanohaloarchaeota were identified only from the rhizosphere of halophytes. Dominant halophilic bacteria and archaea identified in this study included Agrococcus, Armatimonadetes gp4, Halalkalicoccus, Haloferula and Halobacterium. Our analysis showed that increases in soil salinity correlated with significant differences in the alpha and beta diversity of the microbial communities across saline and non-saline soil samples. Having a complete inventory of the soil bacteria from different saline environments in Pakistan will help in the discovery of potential inoculants for crops growing on salt-affected land.
Collapse
Affiliation(s)
- Salma Mukhtar
- Department of Biological Sciences, Forman Christian College (A Chartered University), Ferozepur Road, Lahore, 54600, Pakistan
| | - Babur Saeed Mirza
- Department of Biology, Missouri State University, 901 S, National Ave, Springfield, MO, USA
| | - Samina Mehnaz
- Department of Biological Sciences, Forman Christian College (A Chartered University), Ferozepur Road, Lahore, 54600, Pakistan
| | - Muhammad Sajjad Mirza
- Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, Faisalabad, Pakistan
| | - Joan Mclean
- Utah Water Research Laboratory, Department of Civil and Environmental Engineering, Utah State University, Logan, UT, 84322-8200, USA
| | - Kauser Abdulla Malik
- Department of Biological Sciences, Forman Christian College (A Chartered University), Ferozepur Road, Lahore, 54600, Pakistan.
| |
Collapse
|
25
|
Mukhtar S, Mehnaz S, Mirza MS, Mirza BS, Malik KA. Diversity of Bacillus-like bacterial community in the rhizospheric and non-rhizospheric soil of halophytes (Salsola stocksii and Atriplex amnicola), and characterization of osmoregulatory genes in halophilic Bacilli. Can J Microbiol 2018; 64:567-579. [DOI: 10.1139/cjm-2017-0544] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Salinity is one of the major abiotic stresses; a total of 3% of the world’s land mass is affected by salinity. Approximately 6.3 million hectares of land in Pakistan is affected by salinity to varying degrees, and most of the areas are arid to semiarid with low annual precipitation. The aim of the present study is to identify and characterize Bacillus and Bacillus-derived bacterial genera from the rhizospheric and non-rhizospheric soil samples from the Khewra Salt Mine, Pakistan, by using culture-independent and -dependent methods. Seven Bacillus-like bacterial genera, Bacillus, Halobacillus, Virgibacillus, Brevibacillus, Paenibacillus, Tumebacillus, and Lysinibacillus, were detected by using pyrosequencing analysis, whereas only four genera, Bacillus, Halobacillus, Oceanobacillus, and Virgibacillus, were identified by culture-dependent methods. Most of the Bacillus-like isolates identified in this study were moderately halophilic, alkaliphilic, and mesophilic bacteria and were considered a good source of hydrolytic enzymes because of their ability to degrade proteins, carbohydrates, and lipids. Eight Bacillus-like strains from the genera Bacillus, Halobacillus, Oceanobacillus, and Virgibacillus showed positive results for the presence of ectABC gene cluster (ectoine), six strains could synthesize betaine from choline, and six strains tested positive for the synthesis of proline from either glutamate or ornithine by using proline dehydrogenase enzyme.
Collapse
Affiliation(s)
- Salma Mukhtar
- Department of Biological Sciences, Forman Christian College (A Chartered University), Ferozepur Road, Lahore 54600, Pakistan
- Molecular, Cell & Developmental Biology, UCLA, 621 Charles Young Drive South, Los Angeles, CA 90095-1606, USA
| | - Samina Mehnaz
- Department of Biological Sciences, Forman Christian College (A Chartered University), Ferozepur Road, Lahore 54600, Pakistan
| | - Muhammad Sajjad Mirza
- Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, Faisalabad, Pakistan
| | - Babur Saeed Mirza
- Missouri State University, 901 S. National Avenue, Springfield, MO 65897, USA
| | - Kauser Abdulla Malik
- Department of Biological Sciences, Forman Christian College (A Chartered University), Ferozepur Road, Lahore 54600, Pakistan
| |
Collapse
|
26
|
Sathe SS, Mahanta C, Mishra P. Simultaneous influence of indigenous microorganism along with abiotic factors controlling arsenic mobilization in Brahmaputra floodplain, India. JOURNAL OF CONTAMINANT HYDROLOGY 2018; 213:1-14. [PMID: 29598853 DOI: 10.1016/j.jconhyd.2018.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/13/2018] [Accepted: 03/02/2018] [Indexed: 06/08/2023]
Abstract
In the dynamic cycling of oxic and anoxic aqueous alluvial aquifer environments, varying Arsenic (As) concentrations are controlled by both abiotic and biotic factors. Studies have shown a significant form of toxic As (III) being released through the reductive dissolution of iron-oxy/hydroxide minerals and microbial reduction mechanisms, which leads to a serious health concern. The present study was performed in order to assess the abiotic and biotic factors influencing As release into the alluvial aquifer groundwater in Brahmaputra floodplain, India. The groundwater chemistry, characterization of the sediments, isolation, identification and characterization of prominent As releasing indigenous bacterium were conducted. The measured solid and liquid phases of total As concentration were ranged between 0.02 and 17.2 mg kg-1 and 8 to 353 μg L-1, respectively. The morphology and mineralogy showed the presence of detrital and authigenic mineral assemblages whereas primary and secondary As bearing Realgar and Claudetite minerals were identified, respectively. Furthermore, significant non-labile As fraction was found associated with the amorphous oxides of Fe, Mn and Al. The observed groundwater chemistry and sediment color, deduced a sub-oxic reducing aquifer conditions in As-contaminated regions. In addition, 16S rDNA sequencing results of the isolated bacterium showed the prominent Pseudomonas aeruginosa responsible for the mobilization of As, reducing condition, biomineralization and causing grey color to the sediments at the shallower and deeper aquifers in the study area. These findings suggest that microbial metabolic activities are equally responsible in iron-oxy/hydroxide reductive dissolution, controlling As mobilization in dynamic fluvial flood plains.
Collapse
Affiliation(s)
- Sandip S Sathe
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Chandan Mahanta
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Pushpanjali Mishra
- Department of Computer Science and Engineering, Sri Ramswaroop Memorial College of Engineering and Management, Lucknow 227105, Uttar Pradesh, India
| |
Collapse
|
27
|
Yang YP, Zhang HM, Yuan HY, Duan GL, Jin DC, Zhao FJ, Zhu YG. Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:598-608. [PMID: 29433100 DOI: 10.1016/j.envpol.2018.01.099] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 06/08/2023]
Abstract
Arsenic (As) contamination is a global problem. Straw incorporation is widely performed in As contaminated paddy fields. To understand how straw and straw biochar incorporation affect As transformation and translocation in the soil-microbe-rice system, a pot experiment was carried out with different dosages of rice straw and straw biochar application. Results showed that both straw biochar and straw application significantly increased As mobility. Straw biochar mobilized As mainly through increasing soil pH and DOM content. Straw incorporation mainly through enhancing As release from iron (Fe) minerals and arsenate (As(V)) reduction to arsenite (As(III)). Straw biochar didn't significantly affect As methylation, while straw incorporation significantly enhanced As methylation, elevated dimethylarsenate (DMA) concentration in soil porewater and increased As volatilization. Straw biochar didn't significantly change total As accumulation in rice grains, but decreased As(III) accumulation by silicon (Si) inhibition. Straw incorporation significantly increased DMA, but decreased As(III) concentration in rice grains. After biochar application, dissolved As was significantly positively correlated with the abundance of Bacillus, indicating that Bacillus might be involved in As release, and As(III) concentration in polished grains was negatively correlated with Si concentration. The significant positive correlation between dissolved As with Fe and the abundance of iron-reducing bacteria suggested the coupling of As and Fe reduction mediated by iron-reducing bacteria. The significant positive correlation between DMA in rice grains and the abundance of methanogenic bacteria indicated that methanogenic bacteria could be involved in As methylation after straw application. The results of this study would advance the understanding how rice straw incorporation affects As fate in soil-microbe-rice system, and provide some guidance to straw incorporation in As contaminated paddy soil. This study also revealed a wealth of microorganisms in the soil environment that dominate As mobility and transformation after straw incorporation.
Collapse
Affiliation(s)
- Yu-Ping Yang
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Hong-Mei Zhang
- Jiaxing Academy of Agricultural Sciences, Xiuzhou District, Jiaxing 314016, People's Republic of China
| | - Hai-Yan Yuan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Gui-Lan Duan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| | - De-Cai Jin
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yong-Guan Zhu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| |
Collapse
|
28
|
Deng Y, Zheng T, Wang Y, Liu L, Jiang H, Ma T. Effect of microbially mediated iron mineral transformation on temporal variation of arsenic in the Pleistocene aquifers of the central Yangtze River basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:1247-1258. [PMID: 29734603 DOI: 10.1016/j.scitotenv.2017.11.166] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/02/2017] [Accepted: 11/15/2017] [Indexed: 06/08/2023]
Abstract
Significant seasonal variation of groundwater arsenic (As) concentrations in shallow aquifers of the Jianghan Plain, central Yangtze River Basin has been reported recently, but the underlying mechanisms remain not well understood. To elaborate biogeochemical processes responsible for the observed As concentration variation, 42-day incubation experiments were done using sediment samples collected respectively from the depth of 26, 36 and 60m of the As-affected aquifer which were labeled respectively as JH26, JH36, JH60. Where JH denotes Jianghan Plain, and the number indicates the depth of the sediment sample. The results indicated that As could be mobilized from the sediments of 26m and 36m depth under the stimulation of exogenous organic carbon, with the maximum As release amount of 1.60 and 1.03mgkg-1, respectively, while the sediments at 60m depth did not show As mobilization. The microbially mediated reductive dissolution of amorphous iron oxides and reduction of As(V) to As(III) could account for the observed As mobilization. The 16S rRNA high-throughput sequencing results indicated that the variation of microbial community correlated with the released As concentration (R=0.7, P<0.05) and the iron-reducing bacteria, including Pseudomonas, Clostridium and Geobacter, were the main drivers for the As mobilization from the sediments at 26m and 36m depth. The increase of arsC gene abundance (up to 1.4×105 copies g-1) during As release suggested that As reduction was mediated by the resistant reduction mechanism. By contrast, in the 60m sediments where the Fe and As release was absent, the iron-reducing bacteria accounted for a very minor proportion and sulfate-reducing bacteria were predominant in the microbial community. In addition, after 30days of incubation, the released As in the 26m sediments was immobilized via co-precipitation with or adsorption onto the Fe-sulfide mineral newly-formed by the bacterial sulfate reduction. These results are consistent with the results of our previous field monitoring, indicating that the bacterial sulfate reduction could lead to the temporal decrease in groundwater As concentrations. This study provides insights into the mechanism for As mobilization and seasonal As concentration variation in the Pleistocene aquifers from alluvial plains.
Collapse
Affiliation(s)
- Yamin Deng
- Geological Survey, China University of Geosciences, Wuhan, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China.
| | - Tianliang Zheng
- Geological Survey, China University of Geosciences, Wuhan, China
| | - Yanxin Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China; School of Environmental Studies, China University of Geosciences, Wuhan, China.
| | - Lun Liu
- Geological Survey, China University of Geosciences, Wuhan, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Teng Ma
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China; School of Environmental Studies, China University of Geosciences, Wuhan, China
| |
Collapse
|
29
|
Hakim S, Mirza BS, Zaheer A, Mclean JE, Imran A, Yasmin S, Sajjad Mirza M. Retrieved 16S rRNA and nifH sequences reveal co-dominance of Bradyrhizobium and Ensifer (Sinorhizobium) strains in field-collected root nodules of the promiscuous host Vigna radiata (L.) R. Wilczek. Appl Microbiol Biotechnol 2017; 102:485-497. [PMID: 29110071 DOI: 10.1007/s00253-017-8609-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 11/27/2022]
Abstract
In the present study, the relative distribution of endophytic rhizobia in field-collected root nodules of the promiscuous host mung bean was investigated by sequencing of 16S ribosomal RNA (rRNA) and nifH genes, amplified directly from the nodule DNA. Co-dominance of the genera Bradyrhizobium and Ensifer was indicated by 32.05 and 35.84% of the total retrieved 16S rRNA sequences, respectively, and the sequences of genera Mesorhizobium and Rhizobium comprised only 0.06 and 2.06% of the recovered sequences, respectively. Sequences amplified from rhizosphere soil DNA indicated that only a minor fraction originated from Bradyrhizobium and Ensifer strains, comprising about 0.46 and 0.67% of the total retrieved sequences, respectively. 16S rRNA gene sequencing has also identified the presence of several non-rhizobial endophytes from phyla Proteobacteria, Actinobacteria, Bacteroides, and Firmicutes. The nifH sequences obtained from nodules also confirmed the co-dominance of Bradyrhizobium (39.21%) and Ensifer (59.23%) strains. The nifH sequences of the genus Rhizobium were absent, and those of genus Mesorhizobium comprised only a minor fraction of the sequences recovered from the nodules and rhizosphere soil samples. Two bacterial isolates, identified by 16S rRNA gene sequence analysis as Bradyrhizobium strain Vr51 and Ensifer strain Vr38, successfully nodulated the original host (mung bean) plants. Co-dominance of Bradyrhizobium and Ensifer strains in the nodules of mung bean indicates the potential role of the host plant in selecting specific endophytic rhizobial populations. Furthermore, successful nodulation of mung bean by the isolates showed that strains of both the genera Bradyrhizobium and Ensifer can be used for production of inoculum.
Collapse
Affiliation(s)
- Sughra Hakim
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Faisalabad, Pakistan.,Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Babur S Mirza
- Biology Department, Missouri State University, Springfield, MO, 65897, USA
| | - Ahmad Zaheer
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Faisalabad, Pakistan.,Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Joan E Mclean
- Utah Water Research Laboratory, Utah State University, Logan, UT, USA
| | - Asma Imran
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Faisalabad, Pakistan.,Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Sumera Yasmin
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Faisalabad, Pakistan.,Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - M Sajjad Mirza
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Faisalabad, Pakistan. .,Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan.
| |
Collapse
|
30
|
Isolation, identification and characterization of arsenic transforming exogenous endophytic Citrobacter sp. RPT from roots of Pteris vittata. 3 Biotech 2017; 7:264. [PMID: 28794920 DOI: 10.1007/s13205-017-0901-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 07/19/2017] [Indexed: 10/19/2022] Open
Abstract
The aim of the present study was to assess the arsenic (As) transformation potential of endophytic bacteria isolated from roots of Pteris vittata plant. The endophytic bacterium was tested for minimal inhibitory concentration (MIC) against As. The endophytic strain RPT exhibited the highest resistance to As(V) (400 mg/l). Phylogenetic analysis of the 16S rRNA sequence suggested that strain RPT was a member of genus Citrobacter. The As transformation assay revealed As(III) oxidation and As(V) reduction potential of Citrobacter sp. RPT. The As resistance mechanism was further confirmed by amplification of arsC and aoxB genes. The growth kinetics of strain RPT was altered slightly in the presence of different concentration (100-400 mg/l) of As stress. Temperature and pH influenced the As removal rate. The maximum As removal was observed at pH 7.0 (74%) and 37 °C (70.9%). The results suggest that strain RPT can survive under the As stress and has been identified as a potential candidate for application in bioremediation of As in contaminated environments.
Collapse
|
31
|
Dehalococcoides and general bacterial ecology of differentially trichloroethene dechlorinating flow-through columns. Appl Microbiol Biotechnol 2017; 101:4799-4813. [PMID: 28213734 DOI: 10.1007/s00253-017-8180-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/03/2017] [Indexed: 10/20/2022]
Abstract
The diversity of Dehalococcoides mccartyi (Dhc) and/or other organohalide respiring or associated microorganisms in parallel, partial, or complete trichloroethene (TCE) dehalogenating systems has not been well described. The composition of Dhc populations and the associated bacterial community that developed over 7.5 years in the top layer (0-10 cm) of eight TCE-fed columns were examined using pyrosequencing. Columns biostimulated with one of three carbon sources, along with non-stimulated controls, developed into complete (ethene production, whey amended), partial (cis-dichloroethene (DCE) and VC, an emulsified oil with nonionic surfactant), limited (<5 % cis-DCE and 95 % TCE, an emulsified oil), and non- (controls) TCE dehalogenating systems. Bioaugmentation of one column of each treatment with Bachman Road enrichment culture did not change Dhc populations nor the eventual degree of TCE dehalogenation. Pyrosequencing revealed high diversity among Dhc strains. There were 13 OTUs that were represented by more than 1000 sequences each. Cornell group-related populations dominated in complete TCE dehalogenating columns, while Pinellas group related Dhc dominated in all other treatments. General microbial communities varied with biostimulation, and three distinct microbial communities were established: one each for whey, oils, and control treatments. Bacterial genera, including Dehalobacter, Desulfitobacterium, Sulfurospirillum, Desulfuromonas, and Geobacter, all capable of partial TCE dehalogenation, were abundant in the limited and partial TCE dehalogenating systems. Dhc strain diversity was wider than previously reported and their composition within the community varied significantly depending on the nature of the carbon source applied and/or changes in the Dhc associated partners that fostered different biogeochemical conditions across the columns.
Collapse
|
32
|
Mirza BS, Sorensen DL, Dupont RR, McLean JE. New Arsenate Reductase Gene (arrA) PCR Primers for Diversity Assessment and Quantification in Environmental Samples. Appl Environ Microbiol 2017; 83:e02725-16. [PMID: 27913413 PMCID: PMC5288830 DOI: 10.1128/aem.02725-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/28/2016] [Indexed: 11/20/2022] Open
Abstract
The extent of arsenic contamination in drinking water and its potential threat to human health have resulted in considerable research interest in the microbial species responsible for arsenic reduction. The arsenate reductase gene (arrA), an important component of the microbial arsenate reduction system, has been widely used as a biomarker to study arsenate-reducing microorganisms. A new primer pair was designed and evaluated for quantitative PCR (qPCR) and high-throughput sequencing of the arrA gene, because currently available PCR primers are not suitable for these applications. The primers were evaluated in silico and empirically tested for amplification of arrA genes in clones and for amplification and high-throughput sequencing of arrA genes from soil and groundwater samples. In silico, this primer pair matched (≥90% DNA identity) 86% of arrA gene sequences from GenBank. Empirical evaluation showed successful amplification of arrA gene clones of diverse phylogenetic groups, as well as amplification and high-throughput sequencing of independent soil and groundwater samples without preenrichment, suggesting that these primers are highly specific and can amplify a broad diversity of arrA genes. The arrA gene diversity from soil and groundwater samples from the Cache Valley Basin (CVB) in Utah was greater than anticipated. We observed a significant correlation between arrA gene abundance, quantified through qPCR, and reduced arsenic (AsIII) concentrations in the groundwater samples. Furthermore, we demonstrated that these primers can be useful for studying the diversity of arsenate-reducing microbial communities and the ways in which their relative abundance in groundwater may be associated with different groundwater quality parameters. IMPORTANCE Arsenic is a major drinking water contaminant that threatens the health of millions of people worldwide. The extent of arsenic contamination and its potential threat to human health have resulted in considerable interest in the study of microbial species responsible for the reduction of arsenic, i.e., the conversion of AsV to AsIII In this study, we developed a new primer pair to evaluate the diversity and abundance of arsenate-reducing microorganisms in soil and groundwater samples from the CVB in Utah. We observed significant arrA gene diversity in the CVB soil and groundwater samples, and arrA gene abundance was significantly correlated with the reduced arsenic (AsIII) concentrations in the groundwater samples. We think that these primers are useful for studying the ecology of arsenate-reducing microorganisms in different environments.
Collapse
Affiliation(s)
- Babur S Mirza
- Utah Water Research Laboratory, Utah State University, Logan, Utah, USA
| | - Darwin L Sorensen
- Utah Water Research Laboratory, Utah State University, Logan, Utah, USA
| | - R Ryan Dupont
- Utah Water Research Laboratory, Utah State University, Logan, Utah, USA
- Department of Civil and Environmental Engineering, Utah State University, Logan, Utah, USA
| | - Joan E McLean
- Utah Water Research Laboratory, Utah State University, Logan, Utah, USA
- Department of Civil and Environmental Engineering, Utah State University, Logan, Utah, USA
| |
Collapse
|
33
|
Chen X, Zeng XC, Wang J, Deng Y, Ma T, Mu Y, Yang Y, Li H, Wang Y. Microbial communities involved in arsenic mobilization and release from the deep sediments into groundwater in Jianghan plain, Central China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 579:989-999. [PMID: 27916305 DOI: 10.1016/j.scitotenv.2016.11.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/04/2016] [Accepted: 11/04/2016] [Indexed: 06/06/2023]
Abstract
It was shown that groundwater in Jianghan Plain was severely contaminated by arsenic; however, little is known about the mechanism by which the mineral arsenic was mobilized and released into groundwater from the high-arsenic sediments in this area. Here, we collected sediment samples from the depths of 5-230m in Jianghan Plain. Although all of the samples contain high contents of total arsenic, the soluble arsenic was only detectable in few of the shallow sediments, but was readily detectable in all of the deep sediments at the depths of 190-230m. Analysis of the genes of arsenate-respiring reductases indicated that they were not present in all of the shallow sediments from the depths of 5-185m, but were detectable in all of the deep sediments from the depths of 190-230m; all of the identified reductase genes are new or new-type, and they display unique diversity. Microcosm assay indicated that the microbial communities from the deep sediments were able to reduce As(V) into As(III) using lactate, formate, pyruvate or acetate as an electron donor under anaerobic condition. Arsenic release assay demonstrated that these microbial communalities efficiently catalyzed the mobilization and release of the mineral arsenic into aqueous phase. We also isolated a novel cultivable dissimilatory As(V)-respiring bacterium Aeromonas sp. JH155 from the sediments. It is able to completely reduce 2.0mM As(V) into As(III) in 72h, and efficiently promote the reduction and release of the mineral arsenic into aqueous phase. Analysis of the 16S rRNA genes indicated that the deep sediments contain diversities of microbial communities, which were shaped by the environmental factors, such as As, SO42-, NO3-, Fe and pH value. These data suggest that the microorganisms in the deep sediments in Jianghan Plain played key roles in the mobilization and release of insoluble arsenic into the groundwater.
Collapse
Affiliation(s)
- Xiaoming Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), People's, Republic of China; Department of Biological Science and Technology, School of Environmental Studies, China University of Geosciences (Wuhan), People's, Republic of China; Laboratory of Basin Hydrology and Wetland Eco-restoration, China University of Geosciences (Wuhan), People's, Republic of China
| | - Xian-Chun Zeng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), People's, Republic of China; Department of Biological Science and Technology, School of Environmental Studies, China University of Geosciences (Wuhan), People's, Republic of China; Laboratory of Basin Hydrology and Wetland Eco-restoration, China University of Geosciences (Wuhan), People's, Republic of China.
| | - Jianing Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), People's, Republic of China; Department of Biological Science and Technology, School of Environmental Studies, China University of Geosciences (Wuhan), People's, Republic of China; Laboratory of Basin Hydrology and Wetland Eco-restoration, China University of Geosciences (Wuhan), People's, Republic of China
| | - Yamin Deng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), People's, Republic of China; Laboratory of Basin Hydrology and Wetland Eco-restoration, China University of Geosciences (Wuhan), People's, Republic of China
| | - Teng Ma
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), People's, Republic of China; Laboratory of Basin Hydrology and Wetland Eco-restoration, China University of Geosciences (Wuhan), People's, Republic of China.
| | - Yao Mu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), People's, Republic of China; Department of Biological Science and Technology, School of Environmental Studies, China University of Geosciences (Wuhan), People's, Republic of China; Laboratory of Basin Hydrology and Wetland Eco-restoration, China University of Geosciences (Wuhan), People's, Republic of China
| | - Ye Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), People's, Republic of China; Department of Biological Science and Technology, School of Environmental Studies, China University of Geosciences (Wuhan), People's, Republic of China; Laboratory of Basin Hydrology and Wetland Eco-restoration, China University of Geosciences (Wuhan), People's, Republic of China
| | - Hao Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), People's, Republic of China; Department of Biological Science and Technology, School of Environmental Studies, China University of Geosciences (Wuhan), People's, Republic of China; Laboratory of Basin Hydrology and Wetland Eco-restoration, China University of Geosciences (Wuhan), People's, Republic of China
| | - Yanxin Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), People's, Republic of China; Laboratory of Basin Hydrology and Wetland Eco-restoration, China University of Geosciences (Wuhan), People's, Republic of China
| |
Collapse
|
34
|
Cai X, Zhang Z, Yin N, Du H, Li Z, Cui Y. Comparison of arsenate reduction and release by three As(V)-reducing bacteria isolated from arsenic-contaminated soil of Inner Mongolia, China. CHEMOSPHERE 2016; 161:200-207. [PMID: 27427777 DOI: 10.1016/j.chemosphere.2016.06.102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/13/2016] [Accepted: 06/27/2016] [Indexed: 06/06/2023]
Abstract
Arsenic (As) contamination has become a worldwide environmental problem: arsenite (As(Ⅲ)) especially has posed a major threat to human health. Here, we report the first three isolates of anaerobic As(Ⅴ)-reducing bacterial strains (strains JQ, DJ-3 and DJ-4) from a soil sample containing 48.7% of total As in the form of As(III) collected in Chifeng, Inner Mongolia, China. Strains JQ, DJ-3 and DJ-4 were phylogenetically closely related to Bacillus, Desulfitobacterium and Exiguobacterium, respectively. Among these strains, JQ and DJ-3 have the arsC gene, DJ-4 possesses the arrA gene. The three strains could all resist and reduce high concentrations of As(Ⅴ) under anoxic conditions. The order of resistance to As(Ⅴ) was DJ-3 > JQ > DJ-4. Strain DJ-3 not only possesses the strongest resistance to As(Ⅴ) but could also reduce 53% of the As(Ⅴ) to As(III) in the treatment of 60 mM As(Ⅴ) in 5 d. All three strains could release As from goethite; strain DJ-4 has the highest ability to promote the release of As (90.5%) from goethite. These results suggested that strains JQ, DJ-3 and DJ-4 may play an important role in the mobilization and transformation of As in soil.
Collapse
Affiliation(s)
- Xiaolin Cai
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, People's Republic of China; Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.
| | - Zhennan Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, People's Republic of China; Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.
| | - Naiyi Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, People's Republic of China; Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.
| | - Huili Du
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, People's Republic of China; Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.
| | - Zejiao Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, People's Republic of China; Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.
| | - Yanshan Cui
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, People's Republic of China; Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.
| |
Collapse
|
35
|
Chen Z, Wang Y, Xia D, Jiang X, Fu D, Shen L, Wang H, Li QB. Enhanced bioreduction of iron and arsenic in sediment by biochar amendment influencing microbial community composition and dissolved organic matter content and composition. JOURNAL OF HAZARDOUS MATERIALS 2016; 311:20-29. [PMID: 26954472 DOI: 10.1016/j.jhazmat.2016.02.069] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/20/2016] [Accepted: 02/28/2016] [Indexed: 06/05/2023]
Abstract
Biochar derived from the pyrolysis at 500 °C with fresh biogas slurry and residue, was conducted to investigate its potential role in mediating the speciation and mobilization of As(V) and Fe(III) from arsenic-contaminated tailing mine sediment, with consideration of the changes in microbial populations and dissolved organic matter (DOM). The reduction of As(V) (10-13%) and Fe(III) (12-17%) were partly in response to biochar abiotically causing desorption and reduction effect, but were predominantly (87-90% and 83-88% for As(V) and Fe(III)) attributed to biochar stimulating biological reduction. The level of As(III) released from sediment upon biochar amendment (656.35±89.25 μg L(-1)) was significantly higher than the level released without biochar amendment (98.06±19.38 μg L(-1)) after 49 days incubation. Although a low level of Fe(II) (0.81±0.07 mg L(-1)) was determined in the solution when amending with biochar, most of released Fe(II) (166.25±40.25 mg L(-1)) was formed as biochar-Fe(II)minerals composite. More importantly, biochar stimulated the DOM bioavailability in association with bacterial activities mediating As(V) and Fe(III) reduction. High-throughput sequencing results indicated biochar application shifted the soil microbial community and increased the relative abundance of As(V)-/Fe(III)-reducing bacteria, mostly Geobacter, Anaeromyxobacter, Desulfosporosinus and Pedobacter. The discovery of biochar-bacteria-DOM consortium may broaden new understanding into speciation and mobilization of metals, which arouses attention to exploit feasible bioremediation for metal-contaminated sediment.
Collapse
Affiliation(s)
- Zheng Chen
- Environmental Science Research Center, College of the Environment & Ecology, Xiamen University, Xiamen, PR China; Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, PR China
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, PR China.
| | - Dong Xia
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, PR China
| | - Xiuli Jiang
- Environmental Science Research Center, College of the Environment & Ecology, Xiamen University, Xiamen, PR China
| | - Dun Fu
- Environmental Science Research Center, College of the Environment & Ecology, Xiamen University, Xiamen, PR China
| | - Liang Shen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, PR China
| | - Haitao Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, PR China
| | - Qing Biao Li
- Environmental Science Research Center, College of the Environment & Ecology, Xiamen University, Xiamen, PR China; Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, PR China; College of Chemistry and Life Science, Quanzhou Normal University, Quanzhou, PR China.
| |
Collapse
|
36
|
Das S, Liu CC, Jean JS, Lee CC, Yang HJ. Effects of microbially induced transformations and shift in bacterial community on arsenic mobility in arsenic-rich deep aquifer sediments. JOURNAL OF HAZARDOUS MATERIALS 2016; 310:11-19. [PMID: 26897570 DOI: 10.1016/j.jhazmat.2016.02.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 01/12/2016] [Accepted: 02/06/2016] [Indexed: 06/05/2023]
Abstract
Elevated concentration of arsenic (As) prevailed in deep aquifers of Chianan Plain, Taiwan. Arsenic release in relation to microbially induced transformations and shift in bacterial communities in deep aquifer sediments of Budai, southwestern Taiwan were investigated using microcosm experiments and substrate amendments over 90 days of anaerobic incubation. The results revealed that As reduction was independent of Fe reduction and a modest rate of sedimentary As release into aqueous phase occurred at the expense of the native organic carbon. Addition of lactate resulted in a parallel increase in As(III) (3.7-fold), Fe(II) (6.2-fold) and Mn (3.5 fold) in aqueous phase compared to un-amended slurries and the enrichment of sequences related to mostly Bacillus, Flavisolibacter, and Geobacter spp, suggesting the important role of these bacteria in As enrichment through reductive dissolution of As-bearing Fe and Mn minerals. The increase in phosphate-extractable As in solid phase with concomitant rise in As in aqueous phase over the course of incubation further attested to the importance of reductive dissolution in promoting As release. Furthermore, the increase in arrA gene abundance with addition of labile carbon suggests that dissimilatory As reduction also may contribute to As enrichment in the water of the deep aquifer of Budai.
Collapse
Affiliation(s)
- Suvendu Das
- Department of Earth Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chia-Chuan Liu
- Department of Earth Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jiin-Shuh Jean
- Department of Earth Sciences, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Chuan-Chun Lee
- Molecular Diagnosis Laboratory, Department of Pathology, College of Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Huai-Jen Yang
- Department of Earth Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
37
|
Zaheer A, Mirza BS, Mclean JE, Yasmin S, Shah TM, Malik KA, Mirza MS. Association of plant growth-promoting Serratia spp. with the root nodules of chickpea. Res Microbiol 2016; 167:510-20. [PMID: 27117242 DOI: 10.1016/j.resmic.2016.04.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/28/2016] [Accepted: 04/05/2016] [Indexed: 11/17/2022]
Abstract
Serratia species-affiliated DNA sequences have recently been discovered in the root nodules of two chickpea cultivars; however, little is known about their potential influence on chickpea plant growth. All Serratia-affiliated sequences (1136) could be grouped into two clusters at 98% DNA similarity. The major cluster, represented by 96% of sequences, was closely associated with Serratia marcescens sequences from GenBank. In the current study, we isolated two Serratia strains, 5D and RTL100, from root nodules of a field-grown Desi cultivar from Faisalabad and Thal areas, respectively. In vitro, strain 5D showed significantly higher phosphate (P) solubilization and lactic acid production than RTL100, whereas a comparable concentration of phytohormone was produced by both isolates. The application of Serratia strain 5D as an inoculum resulted in 25.55% and 30.85% increases in the grain yield of crops grown on fertile soil in irrigated areas and nutrient-deficient soil in rainfed areas, respectively, compared to the non-inoculated control. Results of plant inoculations indicated that Serratia sp. 5D and RTL100 can serve as effective microbial inoculants, particularly in nutrient-deficient soils in rainfed areas, where chickpea is the only major crop grown during the entire year.
Collapse
Affiliation(s)
- Ahmad Zaheer
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Babur S Mirza
- Utah Water Research Laboratory, Utah State University, Logan, UT, USA
| | - Joan E Mclean
- Utah Water Research Laboratory, Utah State University, Logan, UT, USA
| | - Sumera Yasmin
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Tariq Mahmud Shah
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan; Nuclear Institute for Agriculture and Biology (NIAB), P.O. Box. 128, Faisalabad, Pakistan
| | - Kauser A Malik
- Department of Biological Sciences, Forman Christian College University, Lahore 54600, Pakistan
| | - M Sajjad Mirza
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan.
| |
Collapse
|
38
|
Dong DT, Yamamura S, Amachi S. Impact of Arsenite on the Bacterial Community Structure and Diversity in Soil. Microbes Environ 2016; 31:41-8. [PMID: 26903368 PMCID: PMC4791115 DOI: 10.1264/jsme2.me15093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The impact of arsenite (As[III]) on the bacterial community structure and diversity in soil was determined by incubating soil slurries with 50, 500, and 5,000 μM As(III). As(III) was oxidized to arsenate (As[V]), and the microbial contribution to As(III) oxidation was 70–100%. PCR-denaturing gradient gel electrophoresis revealed that soil bacterial diversity decreased in the presence of As(III). Bacteria closely related to the family Bacillaceae were predominant in slurry spiked with 5,000 μM As(III). The population size of culturable As(III)-resistant bacteria was 37-fold higher in this slurry than in unspiked slurry (p < 0.01), indicating that high levels of As(III) stimulate the emergence of As(III)-resistant bacteria. As(III)-resistant bacteria isolated from slurry spiked with 5,000 μM As(III) were mainly affiliated with the genus Bacillus; however, no strains showed As(III)-oxidizing capacity. An As(III)-oxidizing bacterial community analysis based on As(III) oxidase gene (aioA) sequences demonstrated that diversity was the lowest in slurry spiked with 5,000 μM As(III). The deduced AioA sequences affiliated with Alphaproteobacteria accounted for 91–93% of all sequences in this slurry, among which those closely related to Bosea spp. were predominant (48–86%). These results suggest that exposure to high levels of As(III) has a significant impact on the composition and diversity of the soil bacterial community, including the As(III)-oxidizing bacterial community. Certain As(III)-oxidizing bacteria with strong As(III) resistance may be enriched under high As(III) levels, while more sensitive As(III) oxidizers are eliminated under these conditions.
Collapse
|
39
|
Ying SC, Damashek J, Fendorf S, Francis CA. Indigenous arsenic(V)-reducing microbial communities in redox-fluctuating near-surface sediments of the Mekong Delta. GEOBIOLOGY 2015; 13:581-587. [PMID: 26466963 DOI: 10.1111/gbi.12152] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/10/2015] [Indexed: 06/05/2023]
Abstract
Arsenic (As) cycling within soils and sediments of the Mekong Delta of Cambodia is affected by drastic redox fluctuations caused by seasonal monsoons. Extensive flooding during monsoon seasons creates anoxic soil conditions that favor anaerobic microbial processes, including arsenate [As(V)] respiration-a process contributing to the mobilization of As. Repeated oxidation and reduction in near-surface sediments, which contain 10-40 mg kg(-1) As, lead to the eventual downward movement of As to the underlying aquifer. Amplification of a highly conserved functional gene encoding dissimilatory As(V) reductase, arrA, can be used as a molecular marker to detect the genetic potential for As(V) respiration in environmental samples. However, few studies have successfully amplified arrA from sediments without prior enrichment, which can drastically shift community structure. In the present study, we examine the distribution and diversity of arrA genes amplified from multiple sites within the Cambodian Mekong Delta as a function of near-surface depth (10, 50, 100, 200, and 400 cm), where sediments undergo seasonal redox fluctuations. We report successful amplification of 302 arrA gene sequences (72 OTUs) from near-surface Cambodian soils (without prior enrichment or stimulation with carbon amendments), where a large majority (>70%) formed a well-supported clade that is phylogenetically distinct from previously reported sequences from Cambodia and other South and Southeast Asian sediments, with highest sequence similarity to known Geobacter species capable of As(V) respiration, further supporting the potentially important role of Geobacter sp. in arsenic mobilization in these regions.
Collapse
Affiliation(s)
- S C Ying
- Department of Environmental Sciences, University of California-Riverside, Riverside, CA, USA
| | - J Damashek
- Earth System Science Department, Stanford University, Stanford, CA, USA
| | - S Fendorf
- Earth System Science Department, Stanford University, Stanford, CA, USA
| | - C A Francis
- Earth System Science Department, Stanford University, Stanford, CA, USA
| |
Collapse
|
40
|
Guo H, Liu Z, Ding S, Hao C, Xiu W, Hou W. Arsenate reduction and mobilization in the presence of indigenous aerobic bacteria obtained from high arsenic aquifers of the Hetao basin, Inner Mongolia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 203:50-59. [PMID: 25863882 DOI: 10.1016/j.envpol.2015.03.034] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 03/19/2015] [Accepted: 03/23/2015] [Indexed: 06/04/2023]
Abstract
Intact aquifer sediments were collected to obtain As-resistant bacteria from the Hetao basin. Two strains of aerobic As-resistant bacteria (Pseudomonas sp. M17-1 and Bacillus sp. M17-15) were isolated from the aquifer sediments. Those strains exhibited high resistances to both As(III) and As(V). Results showed that both strains had arr and ars genes, and led to reduction of dissolved As(V), goethite-adsorbed As(V), scorodite As(V) and sediment As(V), in the presence of organic carbon as the carbon source. After reduction of solid As(V), As release was observed from the solids to solutions. Strain M17-15 had a higher ability than strain M17-1 in reducing As(V) and promoting the release of As. These results suggested that the strains would mediate As(V) reduction to As(III), and thereafter release As(III), due to the higher mobility of As(III) in most aquifer systems. The processes would play an important role in genesis of high As groundwater.
Collapse
Affiliation(s)
- Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Zeyun Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; Shanxi Conservancy Technical Institute, Yuncheng 044004, PR China
| | - Susu Ding
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Chunbo Hao
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Wei Xiu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Weiguo Hou
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China
| |
Collapse
|
41
|
Osborne TH, McArthur JM, Sikdar PK, Santini JM. Isolation of an arsenate-respiring bacterium from a redox front in an arsenic-polluted aquifer in West Bengal, Bengal Basin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:4193-4199. [PMID: 25734617 DOI: 10.1021/es504707x] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Natural pollution of groundwater by arsenic adversely affects the health of tens of millions of people worldwide, with the deltaic aquifers of SE Asia being particularly polluted. The pollution is caused primarily by, or as a side reaction of, the microbial reduction of sedimentary Fe(III)-oxyhydroxides, but the organism(s) responsible for As release have not been isolated. Here we report the first isolation of a dissimilatory arsenate reducer from sediments of the Bengal Basin in West Bengal. The bacterium, here designated WB3, respires soluble arsenate and couples its reduction to the oxidation of acetate; WB3 is therefore implicated in the process of arsenic pollution of groundwater, which is largely by arsenite. The bacterium WB3 is also capable of reducing dissolved Fe(III) citrate, solid Fe(III)-oxyhydroxide, and elemental sulfur, using acetate as the electron donor. It is a member of the Desulfuromonas genus and possesses a dissimilatory arsenate reductase that was identified using degenerate polymerase chain reaction primers. The sediment from which WB3 was isolated was brown, Pleistocene sand at a depth of 35.2 m below ground level (mbgl). This level was some 3 cm below the boundary between the brown sands and overlying reduced, gray, Holocene aquifer sands. The color boundary is interpreted to be a reduction front that releases As for resorption downflow, yielding a high load of labile As sorbed to the sediment at a depth of 35.8 mbgl and concentrations of As in groundwater that reach >1000 μg/L.
Collapse
Affiliation(s)
- Thomas H Osborne
- †Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - John M McArthur
- ‡Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Pradip K Sikdar
- §Indian Institute of Social Welfare and Business Management, College Square West, Kolkata, 700 073, India
| | - Joanne M Santini
- †Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| |
Collapse
|
42
|
Hassan Z, Sultana M, van Breukelen BM, Khan SI, Röling WFM. Diverse arsenic- and iron-cycling microbial communities in arsenic-contaminated aquifers used for drinking water in Bangladesh. FEMS Microbiol Ecol 2015; 91:fiv026. [PMID: 25778510 DOI: 10.1093/femsec/fiv026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2015] [Indexed: 11/14/2022] Open
Abstract
Subsurface removal of arsenic by injection with oxygenated groundwater has been proposed as a viable technology for obtaining 'safe' drinking water in Bangladesh. While the oxidation of ferrous iron to solid ferric iron minerals, to which arsenic adsorbs, is assumed to be driven by abiotic reactions, metal-cycling microorganisms may potentially affect arsenic removal. A cultivation-independent survey covering 24 drinking water wells in several geographical regions in Bangladesh was conducted to obtain information on microbial community structure and diversity in general, and on specific functional groups capable of the oxidation or reduction of arsenic or iron. Each functional group, targeted by either group-specific 16S rRNA or functional gene amplification, occurred in at least 79% of investigated samples. Putative arsenate reducers and iron-oxidizing Gallionellaceae were present at low diversity, while more variation in potentially arsenite-oxidizing microorganisms and iron-reducing Desulfuromonadales was revealed within and between samples. Relations between community composition on the one hand and hydrochemistry on the other hand were in general not evident, apart from an impact of salinity on iron-cycling microorganisms. Our data suggest widespread potential for a positive contribution of arsenite and iron oxidizers to arsenic removal upon injection with oxygenated water, but also indicate a potential risk for arsenic re-mobilization by anaerobic arsenate and iron reducers once injection is halted.
Collapse
Affiliation(s)
- Zahid Hassan
- Department of Molecular Cell Physiology, Faculty of Earth and Life Sciences, VU University Amsterdam, 1081 HV Amsterdam, the Netherlands Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Munawar Sultana
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Boris M van Breukelen
- Critical Zone Hydrology Group, Department of Earth Sciences, Faculty of Earth and Life Sciences, VU University Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Sirajul I Khan
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Wilfred F M Röling
- Department of Molecular Cell Physiology, Faculty of Earth and Life Sciences, VU University Amsterdam, 1081 HV Amsterdam, the Netherlands
| |
Collapse
|