1
|
Khwathisi A, Madala NE, Traore AN, Samie A. Bioprospecting of soil-borne microorganisms and chemical dereplication of their anti-microbial constituents with the aid of UPLC-QTOF-MS and molecular networking approach. PeerJ 2024; 12:e17364. [PMID: 39035159 PMCID: PMC11260408 DOI: 10.7717/peerj.17364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/18/2024] [Indexed: 07/23/2024] Open
Abstract
Due to the emergence of drug-resistant microorganisms, the search for broad-spectrum antimicrobial compounds has become extremely crucial. Natural sources like plants and soils have been explored for diverse metabolites with antimicrobial properties. This study aimed to identify microorganisms from agricultural soils exhibiting antimicrobial effects against known human pathogens, and to highlight the chemical space of the responsible compounds through the computational metabolomics-based bioprospecting approach. Herein, bacteria were extracted from soil samples and their antimicrobial potential was measured via the agar well diffusion method. Methanolic extracts from the active bacteria were analyzed using the liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) technique, and the subsequent data was further analyzed through molecular networking approach which aided in identification of potential anti-microbial compounds. Furthermore, 16S rRNA gene sequencing enabled identification of the active bacterial isolates, where isolate 1 and 2 were identified as strains of Bacillus pumilus, whilst isolate 3 was found to be Bacillus subtilis. Interestingly, isolate 3 (Bacillus subtilis) displayed wide-ranging antimicrobial activity against the tested human pathogens. Molecular networking revealed the presence of Diketopiperazine compounds such as cyclo (D-Pro-D-Leu), cyclo (L-Tyr-L-Pro), cyclo (L-Pro-D-Phe), and cyclo (L-Pro-L-Val), alongside Surfactin C, Surfactin B, Pumilacidin E, and Isarrin D in the Bacillus strains as the main anti-microbial compounds. The application of the molecular networking approach represents an innovation in the field of bio-guided bioprospection of microorganisms and has proved to be an effective and feasible towards unearthing potent antimicrobial compounds. Additionally, the (computational metabolomics-based) approach accelerates the discovery of bioactive compounds and isolation of strains which offer a promising avenue for discovering new clinical antimicrobials. Finally, soil microbial flora could serve an alternative source of anti-microbial compounds which can assist in the fight against emergence of multi-drug resistance bacterial pathogens.
Collapse
Affiliation(s)
- Adivhaho Khwathisi
- Biochemistry and Microbiology, University of Venda for Science and Technology, Thohoyandou, South Africa
| | - Ntakadzeni Edwin Madala
- Biochemistry and Microbiology, University of Venda for Science and Technology, Thohoyandou, South Africa
| | - Afsatou Ndama Traore
- Biochemistry and Microbiology, University of Venda for Science and Technology, Thohoyandou, South Africa
| | - Amidou Samie
- Biochemistry and Microbiology, University of Venda for Science and Technology, Thohoyandou, South Africa
| |
Collapse
|
2
|
Wang Z, Liu C, Shi Y, Huang M, Song Z, Simal-Gandara J, Li N, Shi J. Classification, application, multifarious activities and production improvement of lipopeptides produced by Bacillus. Crit Rev Food Sci Nutr 2024; 64:7451-7464. [PMID: 36876514 DOI: 10.1080/10408398.2023.2185588] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Lipopeptides, a class of compounds consisting of a peptide ring and a fatty acid chain, are secondary metabolites produced by Bacillus spp. As their hydrophilic and oleophilic properties, lipopeptides are widely used in food, medicine, environment and other industrial or agricultural fields. Compared with artificial synthetic surfactants, microbial lipopeptides have the advantages of low toxicity, high efficiency and versatility, resulting in urgent market demand and broad development prospect of lipopeptides. However, due to the complex metabolic network and precursor requirements of synthesis, the specific and strict synthesis pathway, and the coexistence of multiple homologous substances, the production of lipopeptides by microorganisms has the problems of high cost and low production efficiency, limiting the mass production of lipopeptides and large-scale application in industry. This review summarizes the types of Bacillus-produced lipopeptides and their biosynthetic pathways, introduces the versatility of lipopeptides, and describes the methods to improve the production of lipopeptides, including genetic engineering and optimization of fermentation conditions.
Collapse
Affiliation(s)
- Zhimin Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, PR China
| | - Yingying Shi
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Mingming Huang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Zunyang Song
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Ourense, Spain
| | - Ningyang Li
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Jingying Shi
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
3
|
Arrigoni R, Ballini A, Jirillo E, Santacroce L. Current View on Major Natural Compounds Endowed with Antibacterial and Antiviral Effects. Antibiotics (Basel) 2024; 13:603. [PMID: 39061285 PMCID: PMC11274329 DOI: 10.3390/antibiotics13070603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Nowadays, infectious diseases of bacterial and viral origins represent a serious medical problem worldwide. In fact, the development of antibiotic resistance is responsible for the emergence of bacterial strains that are refractory even to new classes of antibiotics. Furthermore, the recent COVID-19 pandemic suggests that new viruses can emerge and spread all over the world. The increase in infectious diseases depends on multiple factors, including malnutrition, massive migration of population from developing to industrialized areas, and alteration of the human microbiota. Alternative treatments to conventional antibiotics and antiviral drugs have intensively been explored. In this regard, plants and marine organisms represent an immense source of products, such as polyphenols, alkaloids, lanthipeptides, and terpenoids, which possess antibacterial and antiviral activities. Their main mechanisms of action involve modifications of bacterial cell membranes, with the formation of pores, the release of cellular content, and the inhibition of bacterial adherence to host cells, as well as of the efflux pump. Natural antivirals can interfere with viral replication and spreading, protecting the host with the enhanced production of interferon. Of note, these antivirals are not free of side effects, and their administration to humans needs more research in terms of safety. Preclinical research with natural antibacterial and antiviral compounds confirms their effects against bacteria and viruses, but there are still only a few clinical trials. Therefore, their full exploitation and more intensive clinical studies represent the next steps to be pursued in this area of medicine.
Collapse
Affiliation(s)
- Roberto Arrigoni
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), 70124 Bari, Italy
| | - Andrea Ballini
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Emilio Jirillo
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| |
Collapse
|
4
|
Chakrapani S, Panigrahi A, Palanichamy E, Thangaraj SK, Radhakrishnan N, Panigrahi P, Nagarathnam R. Evaluation of Therapeutic Efficiency of Stylicin against Vibrio parahaemolyticus Infection in Shrimp Penaeus vannamei through Comparative Proteomic Approach. Probiotics Antimicrob Proteins 2024; 16:76-92. [PMID: 36459385 DOI: 10.1007/s12602-022-10006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2022] [Indexed: 12/04/2022]
Abstract
The shrimp immune system defends and protects against infection by its naturally expressing antimicrobial peptides. Stylicin is a proline-rich anionic antimicrobial peptide (AMP) that exhibits potent antimicrobial activity. In this study, stylicin gene was isolated from Penaeus vannamei, cloned into vector pET-28a ( +), and overexpressed in Escherichia coli SHuffle T7 cells. The protein was purified and tested for its antibiofilm activity against shrimp pathogen Vibrio parahaemolyticus. It was resulted that the recombinant stylicin significantly reduced the biofilm formation of V. parahaemolyticus at a minimum inhibitory concentration (MIC) of 200 µg. Cell aggregation was observed by using scanning electron microscopy and confocal laser scanning microscopy, and it was resulted that stylicin administration significantly affects the cell structure and biofilm density of V. parahaemolyticus. In addition, real-time PCR confirmed the downregulation (p < 0.05) of genes responsible for growth and colonization. The efficacy of stylicin was tested by injecting it into shrimp challenged with V. parahaemolyticus and 7 days after infection, stylicin-treated animals recovered and survived better in both treatments (T2-100 µg stylicin, - 68.8%; T1-50 µg stylicin, 60%) than in control (7%) (p < 0.01). Comparative proteomic and mass spectrometry analysis of shrimp hemolymph resulted that the expressed proteins were involved in cell cycle, signal transduction, immune pathways, and stress-related proteins representing infection and recovery, and were significantly different in the stylicin-treated groups. The result of this study suggests that the stylicin can naturally boost immunity and can be used as a choice for treating V. parahaemolyticus infections in shrimp.
Collapse
Affiliation(s)
- Saranya Chakrapani
- Crustacean Culture Division, ICAR - Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R. A. Puram, Chennai, 600028, India
| | - Akshaya Panigrahi
- Crustacean Culture Division, ICAR - Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R. A. Puram, Chennai, 600028, India.
| | - Esakkiraj Palanichamy
- Crustacean Culture Division, ICAR - Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R. A. Puram, Chennai, 600028, India
| | - Sathish Kumar Thangaraj
- Aquatic Animal Health & Environment Division, ICAR - Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R. A. Puram, Chennai, 600028, India
| | - Naveenkumar Radhakrishnan
- Crustacean Culture Division, ICAR - Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R. A. Puram, Chennai, 600028, India
| | - Puspamitra Panigrahi
- Centre for Clean Energy and Nano Convergence (CENCON), Hindustan Institute of Technology & Science, Rajiv Gandhi Salai (OMR), Padur, Kelambakkam, Chennai, 603103, Tamil Nadu, India
| | | |
Collapse
|
5
|
Sukmarini L, Atikana A, Hertiani T. Antibiofilm activity of marine microbial natural products: potential peptide- and polyketide-derived molecules from marine microbes toward targeting biofilm-forming pathogens. J Nat Med 2024; 78:1-20. [PMID: 37930514 DOI: 10.1007/s11418-023-01754-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023]
Abstract
Controlling and treating biofilm-related infections is challenging because of the widespread presence of multidrug-resistant microbes. Biofilm, a naturally occurring matrix of microbial aggregates, has developed intricate and diverse resistance mechanisms against many currently used antibiotics. This poses a significant problem, especially for human health, including clinically chronic infectious diseases. Thus, there is an urgent need to search for and develop new and more effective antibiotics. As the marine environment is recognized as a promising reservoir of new biologically active molecules with potential pharmacological properties, marine natural products, particularly those of microbial origin, have emerged as a promising source of antibiofilm agents. Marine microbes represent an untapped source of secondary metabolites with antimicrobial activity. Furthermore, marine natural products, owing to their self-defense mechanisms and adaptation to harsh conditions, encompass a wide range of chemical compounds, including peptides and polyketides, which are primarily found in microbes. These molecules can be exploited to provide novel and unique structures for developing alternative antibiotics as effective antibiofilm agents. This review focuses on the possible antibiofilm mechanism of these marine microbial molecules against biofilm-forming pathogens. It provides an overview of biofilm development, its recalcitrant mode of action, strategies for the development of antibiofilm agents, and their assessments. The review also revisits some selected peptides and polyketides from marine microbes reported between 2016 and 2023, highlighting their moderate and considerable antibiofilm activities. Moreover, their antibiofilm mechanisms, such as adhesion modulation/inhibition targeting biofilm-forming pathogens, quorum sensing intervention and inhibition, and extracellular polymeric substance disruption, are highlighted herein.
Collapse
Affiliation(s)
- Linda Sukmarini
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), KST Soekarno, Jl. Raya Jakarta-Bogor Km. 46, Cibinong, West Java, 16911, Indonesia.
- Indonesian Biofilm Research Collaboration Center, Jl. Farmako Sekip Utara, Yogyakarta, 55281, Indonesia.
| | - Akhirta Atikana
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), KST Soekarno, Jl. Raya Jakarta-Bogor Km. 46, Cibinong, West Java, 16911, Indonesia
- Indonesian Biofilm Research Collaboration Center, Jl. Farmako Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Triana Hertiani
- Indonesian Biofilm Research Collaboration Center, Jl. Farmako Sekip Utara, Yogyakarta, 55281, Indonesia.
- Pharmaceutical Biology Department, Faculty of Pharmacy, Gadjah Mada University, Jl. Sekip Utara, Yogyakarta, 55281, Indonesia.
| |
Collapse
|
6
|
Hou Y, Bando Y, Carrasco Flores D, Hotter V, Das R, Schiweck B, Melzer T, Arndt HD, Mittag M. A cyclic lipopeptide produced by an antagonistic bacterium relies on its tail and transient receptor potential-type Ca 2+ channels to immobilize a green alga. THE NEW PHYTOLOGIST 2023; 237:1620-1635. [PMID: 36464797 DOI: 10.1111/nph.18658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The antagonistic bacterium Pseudomonas protegens secretes the cyclic lipopeptide (CLiP) orfamide A, which triggers a Ca2+ signal causing rapid deflagellation of the microalga Chlamydomonas reinhardtii. We performed chemical synthesis of orfamide A derivatives and used an aequorin reporter line to measure their Ca2+ responses. Immobilization of algae was studied using a modulator and mutants of transient receptor potential (TRP)-type channels. By investigating targeted synthetic orfamide A derivatives, we found that N-terminal amino acids of the linear part and the terminal fatty acid region are important for the specificity of the Ca2+ -signal causing deflagellation. Molecular editing indicates that at least two distinct Ca2+ -signaling pathways are triggered. One is involved in deflagellation (Thr3 change, fatty acid tail shortened by 4C), whereas the other still causes an increase in cytosolic Ca2+ in the algal cells, but does not cause substantial deflagellation (Leu1 change, fatty acid hydroxylation, fatty acid changes by 2C). Using mutants, we define four TRP-type channels that are involved in orfamide A signaling; only one (ADF1) responds additionally to low pH. These results suggest that the linear part of the CLiP plays one major role in Ca2+ signaling, and that orfamide A uses a network of algal TRP-type channels for deflagellation.
Collapse
Affiliation(s)
- Yu Hou
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Yuko Bando
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - David Carrasco Flores
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Vivien Hotter
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Ritam Das
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Bastian Schiweck
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Tommy Melzer
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Hans-Dieter Arndt
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
7
|
Deng Y, Liu Y, Li J, Wang X, He S, Yan X, Shi Y, Zhang W, Ding L. Marine natural products and their synthetic analogs as promising antibiofilm agents for antibiotics discovery and development. Eur J Med Chem 2022; 239:114513. [DOI: 10.1016/j.ejmech.2022.114513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/25/2022]
|
8
|
Esakkiraj P, Bharathi C, Ayyanna R, Jha N, Panigrahi A, Karthe P, Arul V. Functional and molecular characterization of a cold-active lipase from Psychrobacter celer PU3 with potential a*ntibiofilm property. Int J Biol Macromol 2022; 211:741-753. [PMID: 35504418 DOI: 10.1016/j.ijbiomac.2022.04.174] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/07/2022] [Accepted: 04/24/2022] [Indexed: 11/05/2022]
Abstract
The lipase gene from Psychrobacter celer PU3 was cloned into pET-28a(+) expression vector and overexpressed in E. coli BL21 (DE3) pLysS cells. The purified Psychrobacter celer lipase (PCL) was characterized as an alkaline active enzyme and has a molecular mass of around 30 kDa. The PCL was active even at a low temperature and the optimum range was observed between 10 and 40 °C temperatures. MALDI-TOF and phylogenetic analysis ensued that Psychrobacter celer PU3 lipase (PCL) was closely related to P. aureginosa lipase (PAL). MD simulation results suggests that temperature change did not affect overall structure of PCL, but it may alter temperature- dependent PCL structural changes. R1 (129-135 AA) and R2 (187-191 AA) regions could be important for temperature-dependent PCL function as they fluctuate much at 35 °C temperature. PMSF completely inhibited PCL lipase activity and it demonstrates the presence of serine residues in the active site of PCL. PCL is moderately halophilic and most of the tested organic solvents found to be inhibiting the lipase activity except the solvents ethanol and methanol. PCL activity was increased with surfactants (SDS and CTAB) and bleaching agents (hydrogen peroxide). The effect of different metal ions on PCL resulted that only mercuric chloride was found as the enhancer of the lipase activity. Antibiofilm property of PCL was evaluated against pathogenic Vibrio parahaemolyticus isolated from the diseased shrimp and MIC value was 500 U. PCL significantly altered the morphology and biofilm density of V. parahaemolyticus and the same was observed through scanning electron microscope (SEM) and confocal laser scanning microscope (CLSM) imaging. RT-PCR analysis revealed that the mRNA expression level of biofilm, colony morphology and major toxin-related (aphA, luxS, opaR, tolC, toxR) genes of V. parahaemolyticus were significantly downregulated with PCL treatment.
Collapse
Affiliation(s)
- Palanichamy Esakkiraj
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India; Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R. A. Puram, Chennai 600 028, India
| | - Christian Bharathi
- CAS in Crystallography and Biophysics, University of Madras, Chennai 600025, India
| | - Repally Ayyanna
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Natwar Jha
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Akshaya Panigrahi
- Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R. A. Puram, Chennai 600 028, India
| | - Ponnuraj Karthe
- CAS in Crystallography and Biophysics, University of Madras, Chennai 600025, India
| | - Venkatesan Arul
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India.
| |
Collapse
|
9
|
Haloalkaline Lipase from Bacillus flexus PU2 Efficiently Inhibits Biofilm Formation of Aquatic Pathogen Vibrio parahaemolyticus. Probiotics Antimicrob Proteins 2022; 14:664-674. [DOI: 10.1007/s12602-022-09908-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2022] [Indexed: 10/18/2022]
|
10
|
Novel Amiloride Derivatives That Inhibit Bacterial Motility across Multiple Strains and Stator Types. J Bacteriol 2021; 203:e0036721. [PMID: 34516280 DOI: 10.1128/jb.00367-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial flagellar motor (BFM) is a protein complex that confers motility to cells and contributes to survival and virulence. The BFM consists of stators that are ion-selective membrane protein complexes and a rotor that directly connects to a large filament, acting as a propeller. The stator complexes couple ion transit across the membrane to torque that drives rotation of the motor. The most common ion gradients that drive BFM rotation are protons (H+) and sodium ions (Na+). The sodium-powered stators, like those in the PomA/PomB stator complex of Vibrio spp., can be inhibited by sodium channel inhibitors, in particular, by phenamil, a potent and widely used inhibitor. However, relatively few new sodium motility inhibitors have been described since the discovery of phenamil. In this study, we characterized two possible motility inhibitors, HM2-16F and BB2-50F, from a small library of previously reported amiloride derivatives. We used three approaches: effect on rotation of tethered cells, effect on free-swimming bacteria, and effect on rotation of marker beads. We showed that both HM2-16F and BB2-50F stopped rotation of tethered cells driven by Na+ motors comparable to phenamil at matching concentrations and could also stop rotation of tethered cells driven by H+ motors. Bead measurements in the presence and absence of stators confirmed that the compounds did not inhibit rotation via direct association with the stator, in contrast to the established mode of action of phenamil. Overall, HM2-16F and BB2-50F stopped swimming in both Na+ and H+ stator types and in pathogenic and nonpathogenic strains. IMPORTANCE Here, we characterized two novel amiloride derivatives in the search for antimicrobial compounds that target bacterial motility. These compounds were shown to inhibit flagellar motility at 10 μM across multiple strains: from nonpathogenic Escherichia coli with flagellar rotation driven by proton or chimeric sodium-powered stators, to proton-powered pathogenic E. coli (enterohemorrhagic E. coli or uropathogenic E. coli [EHEC or UPEC, respectively]), and finally, sodium-powered Vibrio alginolyticus. Broad antimotility compounds such as these are important tools in our efforts to control virulence of pathogens in health and agricultural settings.
Collapse
|
11
|
Santos RA, Oliva-Teles A, Pousão-Ferreira P, Jerusik R, Saavedra MJ, Enes P, Serra CR. Isolation and Characterization of Fish-Gut Bacillus spp. as Source of Natural Antimicrobial Compounds to Fight Aquaculture Bacterial Diseases. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:276-293. [PMID: 33544251 DOI: 10.1007/s10126-021-10022-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Aquaculture is responsible for more than 50% of global seafood consumption. Bacterial diseases are a major constraint to this sector and associated with misuse of antibiotics, pose serious threats to public health. Fish-symbionts, co-inhabitants of fish pathogens, might be a promising source of natural antimicrobial compounds (NACs) alternative to antibiotics, limiting bacterial diseases occurrence in aquafarms. In particular, sporeforming Bacillus spp. are known for their probiotic potential and production of NACs antagonistic of bacterial pathogens and are abundant in aquaculture fish guts. Harnessing the fish-gut microbial community potential, 172 sporeforming strains producing NACs were isolated from economically important aquaculture fish species, namely European seabass, gilthead seabream, and white seabream. We demonstrated that they possess anti-growth, anti-biofilm, or anti-quorum-sensing activities, to control bacterial infections and 52% of these isolates effectively antagonized important fish pathogens, including Aeromonas hydrophila, A. salmonicida, A. bivalvium, A. veronii, Vibrio anguillarum, V. harveyi, V. parahaemolyticus, V. vulnificus, Photobacterium damselae, Tenacibaculum maritimum, Edwardsiela tarda, and Shigella sonnei. By in vitro quantification of sporeformers' capacity to suppress growth and biofilm formation of fish pathogens, and by assessing their potential to interfere with pathogens communication, we identified three promising candidates to become probiotics or source of bioactive molecules to be used in aquaculture against bacterial aquaculture diseases.
Collapse
Affiliation(s)
- Rafaela A Santos
- Departamento de Biologia, Faculdade de Ciências, Universidade Do Porto, Rua Do Campo Alegre s/n, Ed. FC4, 4169-007, Porto, Portugal.
- CIIMAR - Centro Interdisciplinar de Investigação Marinha E Ambiental, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
- CITAB - Centro de Investigação E Tecnologias Agroambientais E Biológicas, Universidade de Trás-Os-Montes E Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal.
- CECAV - Centro de Ciência Animal e Veterinária, Universidade de Trás-Os-Montes E Alto Douro, P.O. Box 1013, 5001-801, Vila Real, Portugal.
| | - Aires Oliva-Teles
- Departamento de Biologia, Faculdade de Ciências, Universidade Do Porto, Rua Do Campo Alegre s/n, Ed. FC4, 4169-007, Porto, Portugal
- CIIMAR - Centro Interdisciplinar de Investigação Marinha E Ambiental, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Pedro Pousão-Ferreira
- Instituto Português Do Mar E da Atmosfera (IPMA), Estação Piloto de Piscicultura de Olhão, Av. 5 de Outubro s/n, 8700-305, Olhão, Portugal
| | - Russell Jerusik
- Epicore Bionetworks Inc., 4 Lina Lane, NJ, 08060, Eastampton, USA
| | - Maria J Saavedra
- CIIMAR - Centro Interdisciplinar de Investigação Marinha E Ambiental, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
- CITAB - Centro de Investigação E Tecnologias Agroambientais E Biológicas, Universidade de Trás-Os-Montes E Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
- CECAV - Centro de Ciência Animal e Veterinária, Universidade de Trás-Os-Montes E Alto Douro, P.O. Box 1013, 5001-801, Vila Real, Portugal
- Departamento de Ciências Veterinárias, ECAV, Universidade de Trás-Os-Montes E Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Paula Enes
- Departamento de Biologia, Faculdade de Ciências, Universidade Do Porto, Rua Do Campo Alegre s/n, Ed. FC4, 4169-007, Porto, Portugal
- CIIMAR - Centro Interdisciplinar de Investigação Marinha E Ambiental, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Cláudia R Serra
- Departamento de Biologia, Faculdade de Ciências, Universidade Do Porto, Rua Do Campo Alegre s/n, Ed. FC4, 4169-007, Porto, Portugal.
- CIIMAR - Centro Interdisciplinar de Investigação Marinha E Ambiental, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
| |
Collapse
|
12
|
Théatre A, Hoste ACR, Rigolet A, Benneceur I, Bechet M, Ongena M, Deleu M, Jacques P. Bacillus sp.: A Remarkable Source of Bioactive Lipopeptides. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 181:123-179. [DOI: 10.1007/10_2021_182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Setiaji J, Feliatra F, Teruna HY, Lukistyowati I, Suharman I, Muchlisin ZA, Johan TI. Antibacterial activity in secondary metabolite extracts of heterotrophic bacteria against Vibrio alginolyticus, Aeromonas hydrophila, and Pseudomonas aeruginosa. F1000Res 2020; 9:1491. [PMID: 33537126 PMCID: PMC7839275 DOI: 10.12688/f1000research.26215.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Disease causing bacteria such as Vibrio alginolyticus, Aeromonas hydrophila, and Pseudomonas aeruginosa present a problem for fish farming. Treatment to remove them are generally carried out using antibiotics which have side effects on fish, the environment and humans. However, the use of antibacterial compounds derived from heterotrophic bacteria serve as a good alternative for antibiotics. Therefore, this study aimed to explore antibacterial activity in the secondary metabolite extracts of heterotrophic bacteria against Vibrio alginolyticus, Aeromonas hydrophila, and Pseudomonas aeruginosa. Methods: Heterotrophic bacteria namely Bacillus sp. JS04 MT102913.1, Bacillus toyonensis JS08 MT102920.1, Bacillus cereus JS10 MT102922.1, Bacillus sp. JS11 MT102923.1, Pseudoalteromonas sp. JS19 MT102924.1, Bacillus cereus JS22 MT102926.1, and Bacillus sp. strain JS25 MT102927.1 were used in this study. The sequences of these bacteria have been deposited and are available from NCBI GenBank. Each heterotrophic bacterium was cultured on 6L nutrient broth for 8 days, and extracts produced using ethyl acetate to obtain their secondary metabolites. These extracts were tested for their phytochemical contents using FT-IR and also tested for their inhibitory property in pathogenic bacteria by agar diffusion method. Results: Phytochemical test results showed that the seven heterotrophic bacterial isolates produced terpenoid compounds. Based on the inhibitory test, the secondary metabolite extracts from Bacillus sp strain JS04 had the highest inhibitory effect on the growth of pathogenic bacteria namely, V. alginolyticus (17.5 mm), A. hydrophila (16.8 mm), and P. aeruginosa (17.3 mm). Conclusion: It was concluded that the secondary metabolite extracts of heterotrophic bacteria inhibit the growth of V. alginolyticus, A. hydrophila, and P. aeruginosa.
Collapse
Affiliation(s)
- Jarod Setiaji
- Faculty of Fisheries and Marine Science., Universitas Riau, Pekanbaru, Riau, Indonesia
- Faculty of Agriculture, Universitas Islam Riau, Pekanbaru, Riau, Indonesia
| | - Feli Feliatra
- Faculty of Fisheries and Marine Science., Universitas Riau, Pekanbaru, Riau, Indonesia
| | - Hilwan Yuda Teruna
- Faculty of Mathematics and Natural Science, Universitas Riau, Pekanbaru, Riau, Indonesia
| | - Iesje Lukistyowati
- Faculty of Fisheries and Marine Science., Universitas Riau, Pekanbaru, Riau, Indonesia
| | - Indra Suharman
- Faculty of Fisheries and Marine Science., Universitas Riau, Pekanbaru, Riau, Indonesia
| | - Zainal Abidin Muchlisin
- Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| | | |
Collapse
|
14
|
Shan Z, Yang Y, Guan N, Xia X, Liu W. NKL-24: A novel antimicrobial peptide derived from zebrafish NK-lysin that inhibits bacterial growth and enhances resistance against Vibrio parahaemolyticus infection in Yesso scallop, Patinopecten yessoensis. FISH & SHELLFISH IMMUNOLOGY 2020; 106:431-440. [PMID: 32810530 DOI: 10.1016/j.fsi.2020.08.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/01/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
The extensive use of antibiotics in aquaculture has resulted in the prevalence of antibiotic-resistant bacteria and, consequently, new antibacterial strategies or drugs with clear modes of action are urgently needed. Antimicrobial peptides (AMPs) are currently widely considered as alternatives to antibiotics in the treatment of infections in aquatic animals. In this study, we aimed to evaluate the effects of NKL-24, a truncated peptide derived from zebrafish NK-lysin, against Yesso scallop (Patinopecten yessoensis) pathogen, Vibrio parahaemolyticus. The results showed that NKL-24 had a potent antibacterial effect against V. parahaemolyticus via a membrane active cell-killing mechanism. The in vitro study showed that sub-lethal levels of NKL-24 obviously reduced bacterial swimming ability and downregulated the transcription of the selected genes associated with V. parahaemolyticus virulence. Studies on NKL-24 biosafety in hemocytes and in Yesso scallop have shown no adverse effects from this peptide. Bacteria challenge test results demonstrated that NKL-24 significantly decreased the mortality and inhibited bacterial growth in the scallop infected with V. parahaemolyticus, while further in vivo examination revealed that NKL-24 could enhance non-specific immune parameters. Moreover, NKL-24 was capable of modulating a series of V. parahaemolyticus-responsive genes in the scallop. These results suggest the protective action of NKL-24 against V. parahaemolyticus and the potential of this peptide as a promising candidate for aquaculture applications.
Collapse
Affiliation(s)
- Zhongguo Shan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanpeng Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ning Guan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Weidong Liu
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China.
| |
Collapse
|
15
|
Structural and Functional Insights into Iturin W, a Novel Lipopeptide Produced by the Deep-Sea Bacterium Bacillus sp. Strain wsm-1. Appl Environ Microbiol 2020; 86:AEM.01597-20. [PMID: 32859591 PMCID: PMC7580537 DOI: 10.1128/aem.01597-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/20/2020] [Indexed: 12/20/2022] Open
Abstract
Plant disease caused by pathogenic fungi is one of the most devastating diseases, which affects the food safety of the whole world to a great extent. Biological control of plant diseases by microbial natural products is more desirable than traditional chemical control. In this study, we discovered a novel lipopeptide, iturin W, with promising prospects in biological control of plant diseases. Moreover, the effects of different carbon and nitrogen sources and amino acids on production of C14 iturin W and C15 iturin W would provide a reasonable basis for the optimization of the fermentation process of lipopeptides. Notably, the structure of iturin W was different from that of any previously reported lipopeptide, suggesting that deep-sea microorganisms might produce many novel natural products and have significant potential in the development of biological products in the future. In the present study, a deep-sea bacterial strain designated Bacillus sp. strain wsm-1 was screened and found to exhibit strong antifungal activity against many plant-pathogenic fungi, and corresponding antifungal agents were thereby purified and determined by tandem mass spectrometry to be two cyclic lipopeptide homologs. These homologs, which were different from any previously reported lipopeptides, were identified to possess identical amino acid sequences of β-amino fatty acid-Asn-Ser-Asn-Pro-Tyr-Asn-Gln and deduced as two novel lipopeptides designated C14 iturin W and C15 iturin W. Electron microscopy observation indicated that both iturin W homologs caused obvious morphological changes and serious disruption of plasma membrane toward fungal cells, while C15 iturin W exhibited more serious cell damages than C14 iturin W did, which was well consistent with the results of the antifungal activity assays. To improve the yield and antifungal activity of iturin W, the effects of different carbon and nitrogen sources and amino acids on production of C14 iturin W and C15 iturin W were investigated. The results indicated that supplements of most of the detected carbon and nitrogen sources could increase the yield of C14 iturin W, but inhibit the yield of C15 iturin W, while supplements of tryptone and most of the detected amino acids could increase the yield of both C14 iturin W and C15 iturin W. IMPORTANCE Plant disease caused by pathogenic fungi is one of the most devastating diseases, which affects the food safety of the whole world to a great extent. Biological control of plant diseases by microbial natural products is more desirable than traditional chemical control. In this study, we discovered a novel lipopeptide, iturin W, with promising prospects in biological control of plant diseases. Moreover, the effects of different carbon and nitrogen sources and amino acids on production of C14 iturin W and C15 iturin W would provide a reasonable basis for the optimization of the fermentation process of lipopeptides. Notably, the structure of iturin W was different from that of any previously reported lipopeptide, suggesting that deep-sea microorganisms might produce many novel natural products and have significant potential in the development of biological products in the future.
Collapse
|
16
|
Crouzet J, Arguelles-Arias A, Dhondt-Cordelier S, Cordelier S, Pršić J, Hoff G, Mazeyrat-Gourbeyre F, Baillieul F, Clément C, Ongena M, Dorey S. Biosurfactants in Plant Protection Against Diseases: Rhamnolipids and Lipopeptides Case Study. Front Bioeng Biotechnol 2020; 8:1014. [PMID: 33015005 PMCID: PMC7505919 DOI: 10.3389/fbioe.2020.01014] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/03/2020] [Indexed: 12/17/2022] Open
Abstract
Biosurfactants are amphiphilic surface-active molecules that are produced by a variety of microorganisms including fungi and bacteria. Pseudomonas, Burkholderia, and Bacillus species are known to secrete rhamnolipids and lipopeptides that are used in a wide range of industrial applications. Recently, these compounds have been studied in a context of plant-microbe interactions. This mini-review describes the direct antimicrobial activities of these compounds against plant pathogens. We also provide the current knowledge on how rhamnolipids and lipopeptides stimulate the plant immune system leading to plant resistance to phytopathogens. Given their low toxicity, high biodegradability and ecological acceptance, we discuss the possible role of these biosurfactants as alternative strategies to reduce or even replace pesticide use in agriculture.
Collapse
Affiliation(s)
- Jérôme Crouzet
- Unité RIBP EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Anthony Arguelles-Arias
- MiPI laboratory, Gembloux Agro-Bio Tech, SFR Condorcet FR CNRS 3417, University of LieÌge, Gembloux, Belgium
| | - Sandrine Dhondt-Cordelier
- Unité RIBP EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Sylvain Cordelier
- Unité RIBP EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Jelena Pršić
- MiPI laboratory, Gembloux Agro-Bio Tech, SFR Condorcet FR CNRS 3417, University of LieÌge, Gembloux, Belgium
| | - Gregory Hoff
- MiPI laboratory, Gembloux Agro-Bio Tech, SFR Condorcet FR CNRS 3417, University of LieÌge, Gembloux, Belgium
| | | | - Fabienne Baillieul
- Unité RIBP EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Christophe Clément
- Unité RIBP EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Marc Ongena
- MiPI laboratory, Gembloux Agro-Bio Tech, SFR Condorcet FR CNRS 3417, University of LieÌge, Gembloux, Belgium
| | - Stéphan Dorey
- Unité RIBP EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
17
|
Khan F, Oloketuyi SF, Kim YM. Diversity of Bacteria and Bacterial Products as Antibiofilm and Antiquorum Sensing Drugs Against Pathogenic Bacteria. Curr Drug Targets 2020; 20:1156-1179. [PMID: 31020938 DOI: 10.2174/1389450120666190423161249] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/25/2019] [Accepted: 04/12/2019] [Indexed: 12/14/2022]
Abstract
The increase in antibiotic resistance of pathogenic bacteria has led to the development of new therapeutic approaches to inhibit biofilm formation as well as interfere quorum sensing (QS) signaling systems. The QS system is a phenomenon in which pathogenic bacteria produce signaling molecules that are involved in cell to cell communication, production of virulence factors, biofilm maturation, and several other functions. In the natural environment, several non-pathogenic bacteria are present as mixed population along with pathogenic bacteria and they control the behavior of microbial community by producing secondary metabolites. Similarly, non-pathogenic bacteria also take advantages of the QS signaling molecule as a sole carbon source for their growth through catabolism with enzymes. Several enzymes are produced by bacteria which disrupt the biofilm architecture by degrading the composition of extracellular polymeric substances (EPS) such as exopolysaccharide, extracellular- DNA and protein. Thus, the interference of QS system by bacterial metabolic products and enzymatic catalysis, modification of the QS signaling molecules as well as enzymatic disruption of biofilm architecture have been considered as the alternative therapeutic approaches. This review article elaborates on the diversity of different bacterial species with respect to their metabolic products as well as enzymes and their molecular modes of action. The bacterial enzymes and metabolic products will open new and promising perspectives for the development of strategies against the pathogenic bacterial infections.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, South Korea
| | | | - Young-Mog Kim
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, South Korea.,Department of Food Science and Technology, Pukyong National University, Busan 48513, South Korea
| |
Collapse
|
18
|
Khan F, Tabassum N, Anand R, Kim YM. Motility of Vibrio spp.: regulation and controlling strategies. Appl Microbiol Biotechnol 2020; 104:8187-8208. [PMID: 32816086 DOI: 10.1007/s00253-020-10794-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 12/12/2022]
Abstract
Flagellar motility in bacteria is a highly regulated and complex cellular process that requires high energy investment for movement and host colonization. Motility plays an important role in the lifestyle of Vibrio spp. in the aquatic environment and during host colonization. Flagellar motility in vibrios is associated with several cellular processes, such as movement, colonization, adhesion, biofilm formation, and virulence. The transcription of all flagella-related genes occurs hierarchically and is regulated positively or negatively by several transcription factors and regulatory proteins. The flagellar regulatory hierarchy is well studied in Vibrio cholerae and Vibrio parahaemolyticus. Here, we compared the regulatory cascade and molecules involved in the flagellar motility of V. cholerae and V. parahaemolyticus in detail. The evolutionary relatedness of the master regulator of the polar and lateral flagella in different Vibrio species is also discussed. Although they can form symbiotic associations of some Vibrio species with humans and aquatic organisms can be harmed by several species of Vibrio as a result of surface contact, characterized by flagellar movement. Thus, targeting flagellar motility in pathogenic Vibrio species is considered a promising approach to control Vibrio infections. This approach, along with the strategies for controlling flagellar motility in different species of Vibrio using naturally derived and chemically synthesized compounds, is discussed in this review. KEY POINTS: • Vibrio species are ubiquitous and distributed across the aquatic environments. • The flagellar motility is responsible for the chemotactic movement and initial colonization to the host. • The transition from the motile into the biofilm stage is one of the crucial events in the infection. • Several signaling pathways are involved in the motility and formation of biofilm. • Attenuation of motility by naturally derived or chemically synthesized compounds could be a potential treatment for preventing Vibrio biofilm-associated infections.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Institute of Food Science, Pukyong National University, Busan, 48513, South Korea.
| | - Nazia Tabassum
- Industrial Convergence Bionix Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Raksha Anand
- Department of Life Science, School of Basic Science and Research, Sharda University, 201306, Greater Noida, U.P., India
| | - Young-Mog Kim
- Institute of Food Science, Pukyong National University, Busan, 48513, South Korea. .,Department of Food Science and Technology, Pukyong National University, Busan, 48513, South Korea.
| |
Collapse
|
19
|
Liu R, Zheng R, Liu G, Sun C. The cyclic lipopeptides suppress the motility of Vibrio alginolyticus via targeting the Na + -driven flagellar motor component MotX. Environ Microbiol 2020; 22:4424-4437. [PMID: 32608186 DOI: 10.1111/1462-2920.15144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/18/2020] [Accepted: 06/28/2020] [Indexed: 01/17/2023]
Abstract
In our previous study, we found that pumilacidin-like cyclic lipopeptides (CLPs) derived from marine bacterium Bacillus sp. strain 176 significantly suppressed the mobile capability and virulence of Vibrio alginolyticus. Here, to further disclose the mechanism of CLPs inhibiting the motility of V. alginolyticus, we first applied transcriptomic analysis to V. alginolyticus treated with or without CLPs. The transcriptomic results showed that the expression of several important components of the Na+ -driven flagellar motor closely related to bacterial motility were markedly suppressed, suggesting that the structure and function of Na+ -driven flagellar motor might be disabled by CLPs. The transcriptomic data were further analysed by the protein-protein interaction network, and the results supported that MotX, one of the essential components of Na+ -driven flagellar motor was most likely the action target of CLPs. In combination of gene knockout, electrophoretic mobility shift assay and immunoblotting techniques, CLPs were demonstrated to affect the rotation of flagella of Vibrio alginolyticus via direct interacting with the Na+ -driven flagellar motor component MotX, which eventually inhibited the bacterial motility. Interestingly, homologues of MotX were found broadly distributed and highly conserved in different pathogenic species, which extends the application range of CLPs as an antibacterial drug targeting bacterial motility in many pathogens.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
| | - Rikuan Zheng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, China.,Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Ge Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
| | - Chaomin Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Kashfi R, Kelsey C, Gang DJ, Call DR, Gang DR. Metabolomic Diversity and Identification of Antibacterial Activities of Bacteria Isolated From Marine Sediments in Hawai'i and Puerto Rico. Front Mol Biosci 2020; 7:23. [PMID: 32158766 PMCID: PMC7052060 DOI: 10.3389/fmolb.2020.00023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 02/04/2020] [Indexed: 12/21/2022] Open
Abstract
Antibiotic resistance is a growing concern worldwide and consequently metabolomic tools are being applied increasingly in efforts aimed at identifying new antimicrobial compounds. Marine bacteria-derived compounds have shown great promise in this area. A metabolomics-based study was undertaken to study the diversity of secondary metabolites from marine sediment bacteria isolated from different locations of Hawai’i and Puerto Rico. This effort included characterizing the biodiversity in the sediment samples and searching for antibacterial activity and associated compounds. Bacterial strains were isolated using several different nutrient agars and culture conditions. DNA sequencing (16s rDNA) was used for phylogenetic characterization. Antibacterial activity was assessed against antibiotic-resistant strains of Escherichia coli, Salmonella enterica, Acinetobacter baumannii, Staphylococcus aureus, and Enterococcus faecalis. Ethyl acetate extracted bacterial secondary metabolites were measured by ultra-performance liquid chromatography-mass spectrometry, processed in Progenesis QI and further analyzed by partial least squares-discriminant analysis using MetaboAnalyst 3. Among the strains (n = 143) that were isolated from these two geographical areas and tested for antibiotic activity, 19 exhibited antibacterial activity against at least one antibiotic-resistant human pathogen. One strain from Hawai’i possessed broad-spectrum activity against all five pathogens. Metabolite profiles were diverse and separated the strains into two clusters in PCA analysis that mirrored geographical origin of the isolated strains. A diversity of bacteria and potential antibacterial compounds were observed in this study. Marine environments represent an opportunity to discover a rich diversity of antibacterial compounds for which resistance mechanisms may be uncommon in human pathogens.
Collapse
Affiliation(s)
- Ruhnaz Kashfi
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States.,Department of Chemistry, Washington State University, Pullman, WA, United States
| | - Charles Kelsey
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - David Jorgen Gang
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Douglas R Call
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States
| | - David R Gang
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States.,Department of Chemistry, Washington State University, Pullman, WA, United States
| |
Collapse
|
21
|
Gong Q, Yang D, Jiang M, Zheng J, Peng B. l-aspartic acid promotes fish survival against Vibrio alginolyticus infection through nitric oxide-induced phagocytosis. FISH & SHELLFISH IMMUNOLOGY 2020; 97:359-366. [PMID: 31866447 DOI: 10.1016/j.fsi.2019.12.061] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Bacterial infection severely impairs aquaculture development throughout the world. Despite the use of antibiotics to control bacterial infection, few other options are available especially in the area of complex ecosystem and various types of fish. In search for novel approaches in controlling bacterial infection, we adopt zebrafish, Danio reiro, as infection host and the bacteria, Vibrio alginolyticus, as pathogen to explore potential metabolites that boost host's capability to eliminate bacterial infection. By comparing the metabolome of dying fish, l-aspartic acid is a metabolite of differential abundance between the dying fish and surviving fish upon Vibrio alginolyticus infection. Exogenous l-aspartic acid increases fish survival rate from 46.67% to 76.67%. We further demonstrated that l-aspartic acid drives the production of nitrogen oxide that promotes phagocytosis. Whereas the inhibition of nitrogen oxide synthase would abolish l-aspartic acid-triggered phagocytosis as well as in vivo protective ability to V. alginolyticus. The importance of nitrogen oxide production in fish survival is also consistent with the observation in the dying fish that showed increased urea production but not nitrogen oxide. Thus, our results exemplify a novel approach in promoting fish survival in an eco-friendly way.
Collapse
Affiliation(s)
- Qiyang Gong
- State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510630, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Daixiao Yang
- State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510630, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Ming Jiang
- State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510630, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Macau
| | - Bo Peng
- State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510630, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
22
|
Sowndarya J, Farisa Banu S, Madhura G, Yuvalakshmi P, Rubini D, Bandeira Junior G, Baldisserotto B, Vadivel V, Nithyanand P. Agro food by-products and essential oil constituents curtail virulence and biofilm of Vibrio harveyi. Microb Pathog 2019; 135:103633. [PMID: 31326562 DOI: 10.1016/j.micpath.2019.103633] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 02/02/2023]
Abstract
Vibrio harveyi causes severe loss to the aquaculture industry due to its virulence, which is mediated by Quorum sensing (QS) and biofilm formation. In the current study, we have explored the anti-virulent properties and biofilm disruption ability of luteolin (extracted from coconut shell) and linalool against this important aquaculture pathogen. HPLC analysis of the methanolic extract of coconut shells revealed a single major peak which matched to the standard luteolin which was further elucidated by NMR studies. Further, luteolin and linalool were screened for their ability to inhibit biofilms and various quorum sensing mediated virulence factors of V. harveyi. The Minimum Inhibitory Concentration (MIC) of the two compounds was determined and the sub-inhibitory concentrations of the compounds were able to inhibit biofilm formation. Both the compounds disrupted about 60-70% mature biofilms, which was also visually observed by light microscopy. Both linalool and luteolin exhibited a significant reduction in the production of EPS and alginate in the biofilms matrix of V. harveyi which was confirmed by Scanning Electron Microscopy (SEM). Both compounds inhibited the swarming and swimming motility, the crucial quorum sensing (QS) mediated virulence of V. harveyi. The present study shows the presence of valuable polyphenolic compound like luteolin in coconut shells that are discarded as a waste. From the present study we envisage that luteolin and linalool can serve as potent anti-virulent agents to combat QS mediated infections against aquaculture pathogens.
Collapse
Affiliation(s)
- Jothipandiyan Sowndarya
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401,Tamil Nadu, India
| | - Sanaulla Farisa Banu
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401,Tamil Nadu, India
| | - Gunasekaran Madhura
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401,Tamil Nadu, India
| | - Prabakaran Yuvalakshmi
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401,Tamil Nadu, India
| | - Durairajan Rubini
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401,Tamil Nadu, India
| | - Guerino Bandeira Junior
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Vellingiri Vadivel
- Chemical Biology Lab, School of Chemical and Biotechnology (SCBT/CARISM), SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India.
| | - Paramasivam Nithyanand
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401,Tamil Nadu, India.
| |
Collapse
|
23
|
Sun W, Wu W, Liu X, Zaleta-Pinet DA, Clark BR. Bioactive Compounds Isolated from Marine-Derived Microbes in China: 2009-2018. Mar Drugs 2019; 17:E339. [PMID: 31174259 PMCID: PMC6628246 DOI: 10.3390/md17060339] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 11/16/2022] Open
Abstract
This review outlines the research that was carried out regarding the isolation of bioactive compounds from marine-derived bacteria and fungi by China-based research groups from 2009-2018, with 897 publications being surveyed. Endophytic organisms featured heavily, with endophytes from mangroves, marine invertebrates, and marine algae making up more than 60% of the microbial strains investigated. There was also a strong focus on fungi as a source of active compounds, with 80% of publications focusing on this area. The rapid increase in the number of publications in the field is perhaps most notable, which have increased more than sevenfold over the past decade, and suggests that China-based researchers will play a major role in marine microbial natural products drug discovery in years to come.
Collapse
Affiliation(s)
- Weiwei Sun
- School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| | - Wenhui Wu
- School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| | - Xueling Liu
- School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| | - Diana A Zaleta-Pinet
- School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| | - Benjamin R Clark
- School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| |
Collapse
|
24
|
Role of Lipid Composition, Physicochemical Interactions, and Membrane Mechanics in the Molecular Actions of Microbial Cyclic Lipopeptides. J Membr Biol 2019; 252:131-157. [PMID: 31098678 DOI: 10.1007/s00232-019-00067-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/02/2019] [Indexed: 10/26/2022]
Abstract
Several experimental and theoretical studies have extensively investigated the effects of a large diversity of antimicrobial peptides (AMPs) on model lipid bilayers and living cells. Many of these peptides disturb cells by forming pores in the plasma membrane that eventually lead to the cell death. The complexity of these peptide-lipid interactions is mainly related to electrostatic, hydrophobic and topological issues of these counterparts. Diverse studies have shed some light on how AMPs act on lipid bilayers composed by different phospholipids, and how mechanical properties of membranes could affect the antimicrobial effects of such compounds. On the other hand, cyclic lipopeptides (cLPs), an important class of microbial secondary metabolites, have received comparatively less attention. Due to their amphipathic structures, cLPs exhibit interesting biological activities including interactions with biofilms, anti-bacterial, anti-fungal, antiviral, and anti-tumoral properties, which deserve more investigation. Understanding how physicochemical properties of lipid bilayers contribute and determining the antagonistic activity of these secondary metabolites over a broad spectrum of microbial pathogens could establish a framework to design and select effective strategies of biological control. This implies unravelling-at the biophysical level-the complex interactions established between cLPs and lipid bilayers. This review presents, in a systematic manner, the diversity of lipidated antibiotics produced by different microorganisms, with a critical analysis of the perturbing actions that have been reported in the literature for this specific set of membrane-active lipopeptides during their interactions with model membranes and in vivo. With an overview on the mechanical properties of lipid bilayers that can be experimentally determined, we also discuss which parameters are relevant in the understanding of those perturbation effects. Finally, we expose in brief, how this knowledge can help to design novel strategies to use these biosurfactants in the agronomic and pharmaceutical industries.
Collapse
|
25
|
Characterization of Antifungal Lipopeptide Biosurfactants Produced by Marine Bacterium Bacillus sp. CS30. Mar Drugs 2019; 17:md17040199. [PMID: 30934847 PMCID: PMC6520760 DOI: 10.3390/md17040199] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 11/23/2022] Open
Abstract
This study was initiated to screen for marine bacterial agents to biocontrol Magnaporthe grisea, a serious fungal pathogen of cereal crops. A bacterial strain, isolated from the cold seep in deep sea, exhibited strong growth inhibition against M. grisea, and the strain was identified and designated as Bacillus sp. CS30. The corresponding antifungal agents were purified by acidic precipitation, sequential methanol extraction, Sephadex LH-20 chromatography, and reversed phase high-performance liquid chromatography (RP-HPLC), and two antifungal peaks were obtained at the final purification step. After analysis by mass spectrometry (MS) and tandem MS, two purified antifungal agents were deduced to belong to the surfactin family, and designated as surfactin CS30-1 and surfactin CS30-2. Further investigation showed that although the antifungal activity of surfactin CS30-1 is higher than that of surfactin CS30-2, both of them induced the increased generation of reactive oxygen species (ROS) and caused serious damage to the cell wall and cytoplasm, thus leading to the cell death of M. grisea. Our results also show the differences of the antifungal activity and antifungal mechanism of the different surfactin homologs surfactin CS30-1 and surfactin CS30-2, and highlight them as potential promising agents to biocontrol plant diseases caused by M. grisea.
Collapse
|
26
|
Caulier S, Nannan C, Gillis A, Licciardi F, Bragard C, Mahillon J. Overview of the Antimicrobial Compounds Produced by Members of the Bacillus subtilis Group. Front Microbiol 2019; 10:302. [PMID: 30873135 PMCID: PMC6401651 DOI: 10.3389/fmicb.2019.00302] [Citation(s) in RCA: 316] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/05/2019] [Indexed: 12/19/2022] Open
Abstract
Over the last seven decades, applications using members of the Bacillus subtilis group have emerged in both food processes and crop protection industries. Their ability to form survival endospores and the plethora of antimicrobial compounds they produce has generated an increased industrial interest as food preservatives, therapeutic agents and biopesticides. In the growing context of food biopreservation and biological crop protection, this review suggests a comprehensive way to visualize the antimicrobial spectrum described within the B. subtilis group, including volatile compounds. This classification distinguishes the bioactive metabolites based on their biosynthetic pathways and chemical nature: i.e., ribosomal peptides (RPs), volatile compounds, polyketides (PKs), non-ribosomal peptides (NRPs), and hybrids between PKs and NRPs. For each clade, the chemical structure, biosynthesis and antimicrobial activity are described and exemplified. This review aims at constituting a convenient and updated classification of antimicrobial metabolites from the B. subtilis group, whose complex phylogeny is prone to further development.
Collapse
Affiliation(s)
- Simon Caulier
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium.,Laboratory of Phytopathology-Applied Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Catherine Nannan
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Annika Gillis
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Florent Licciardi
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Claude Bragard
- Laboratory of Phytopathology-Applied Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
27
|
Abstract
Covering: January to December 2017This review covers the literature published in 2017 for marine natural products (MNPs), with 740 citations (723 for the period January to December 2017) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 477 papers for 2017), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Geographic distributions of MNPs at a phylogenetic level are reported.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
28
|
Xu BH, Ye ZW, Zheng QW, Wei T, Lin JF, Guo LQ. Isolation and characterization of cyclic lipopeptides with broad-spectrum antimicrobial activity from Bacillus siamensis JFL15. 3 Biotech 2018; 8:444. [PMID: 30333946 DOI: 10.1007/s13205-018-1443-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 09/24/2018] [Indexed: 11/26/2022] Open
Abstract
In this research, the antimicrobial substance anti-JFL15 was partially purified using a simple two-step extraction process from the cell-free supernatants of Bacillus siamensis JFL15. Anti-JFL15 exhibited a strong antibacterial activity against various multidrug-resistant aquatic bacterial pathogens, including Escherichia coli, Edwardsiella tarda, Pseudomonas aeruginosa, Aeromonas hydrophila, and Vibrio. Liquid chromatography-mass spectrometry revealed that anti-JFL15 contained eight cyclic lipopeptides belonging to two families: bacillomycin F (m/z 1056.56-1084.59) and surfactin (m/z 1007.65-1049.70) analogs. PCR analysis showed the presence of genes (i.e., sfp gene, surfactin synthetase D, fengycin synthetase B, iturin synthetase A, iturin synthetase C and bacillomycin synthetase D) involved in the biosynthesis of cyclic lipopeptides. This study is the first to identify cyclic lipopeptides from B. siamensis and use them to suppress the growth of various multidrug-resistant aquatic bacterial pathogens. Results indicated that B. siamensis JFL15 is a promising biocontrol agent for the effective and environmentally friendly control of various multidrug-resistant aquatic bacterial pathogens.
Collapse
Affiliation(s)
- Ben-Hong Xu
- 1College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Zhi-Wei Ye
- 1College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Qian-Wang Zheng
- 1College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Tao Wei
- 1College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Jun-Fang Lin
- 1College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Li-Qiong Guo
- 1College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| |
Collapse
|
29
|
Zhu M, Wang M, Jiang Y, You S, Zhao G, Liu Y, Yang Q, Liu Q, Liu Z, Gong Z, Shao H. Isolation and Complete Genome Sequence of a Novel Marinobacter Phage B23. Curr Microbiol 2018; 75:1619-1625. [PMID: 30218176 DOI: 10.1007/s00284-018-1568-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 09/07/2018] [Indexed: 12/11/2022]
Abstract
We used the double-agar layer method to isolate a novel Marinobacter marina bacteriophage, B23, from the surface water sample of the Bohai sea of China. There is some work to better understand the phage. The result of transmission electron microscopy revealed that B23 belongs to the family Siphoviridae with a head of 80 nm in diameter and a tail of 230 nm. Microbiological characterization evidenced that phage B23 is stable at the temperatures from - 25 to 60 °C, and showed vigorous vitality at pH between 4.0 and 12.0. One-step growth experiment showed that it had a longer latent period and higher lysis efficiency. Furthermore, the complete genome of B23 was sequenced and analyzed, which consists of a 35132 bp DNA with a G + C content of 59.8% and 50 putative open reading frames. The genome was divided into five parts, consisting of DNA replication and regulation, phage packaging, phage structure, host lysis and hypothetical protein.
Collapse
Affiliation(s)
- Min Zhu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Min Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China. .,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China. .,Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, 266003, China.
| | - Yong Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China. .,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China. .,Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, 266003, China.
| | - Siyuan You
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Guihua Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yundan Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Qingwei Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Qian Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Zhaoyang Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Zheng Gong
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Hongbing Shao
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
30
|
Saggese A, Culurciello R, Casillo A, Corsaro MM, Ricca E, Baccigalupi L. A Marine Isolate of Bacillus pumilus Secretes a Pumilacidin Active against Staphylococcus aureus. Mar Drugs 2018; 16:md16060180. [PMID: 29882934 PMCID: PMC6025400 DOI: 10.3390/md16060180] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/09/2018] [Accepted: 05/22/2018] [Indexed: 01/27/2023] Open
Abstract
Producing antimicrobials is a common adaptive behavior shared by many microorganisms, including marine bacteria. We report that SF214, a marine-isolated strain of Bacillus pumilus, produces at least two different molecules with antibacterial activity: a molecule smaller than 3 kDa active against Staphylococcus aureus and a molecule larger than 10 kDa active against Listeria monocytogenes. We focused our attention on the anti-Staphylococcus molecule and found that it was active at a wide range of pH conditions and that its secretion was dependent on the growth phase, medium, and temperature. A mass spectrometry analysis of the size-fractionated supernatant of SF214 identified the small anti-Staphylococcus molecule as a pumilacidin, a nonribosomally synthesized biosurfactant composed of a mixture of cyclic heptapeptides linked to fatty acids of variable length. The analysis of the SF214 genome revealed the presence of a gene cluster similar to the srfA-sfp locus encoding the multimodular, nonribosomal peptide synthases found in other surfactant-producing bacilli. However, the srfA-sfp cluster of SF214 differed from that present in other surfactant-producing strains of B. pumilus by the presence of an insertion element previously found only in strains of B. safensis.
Collapse
Affiliation(s)
- Anella Saggese
- Department of Biology, Federico II University of Naples, 80126 Naples, Italy.
| | - Rosanna Culurciello
- Department of Biology, Federico II University of Naples, 80126 Naples, Italy.
| | - Angela Casillo
- Department of Chemical Sciences, Federico II University of Naples, 80126 Naples, Italy.
| | - Maria Michela Corsaro
- Department of Chemical Sciences, Federico II University of Naples, 80126 Naples, Italy.
| | - Ezio Ricca
- Department of Biology, Federico II University of Naples, 80126 Naples, Italy.
| | | |
Collapse
|
31
|
Marine Bacterial Polysaccharide EPS11 Inhibits Cancer Cell Growth via Blocking Cell Adhesion and Stimulating Anoikis. Mar Drugs 2018. [PMID: 29518055 PMCID: PMC5867629 DOI: 10.3390/md16030085] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tumor cells that acquire metastatic potential have developed resistance to anoikis, a cell death process, after detachment from their primary site to the second organ. In this study, we investigated the molecular mechanisms of a novel marine bacterial polysaccharide EPS11 which exerts its cytotoxic effects through affecting cancer cell adhesion and anoikis. Firstly, we found that EPS11 could significantly affect cell proliferation and block cell adhesion in A549 cells. We further demonstrated that the expression of several cell adhesion associated proteins is downregulated and the filiform structures of cancer cells are destroyed after EPS11 treatment. Interestingly, the destruction of filiform structures in A549 cells by EPS11 is in a dose-dependent manner, and the inhibitory tendency is very consistent with that observed in the cell adhesion assay, which confirms that filiform structures play important roles in modulating cell adhesion. Moreover, we showed that EPS11 induces apoptosis of A549 cells through stimulating βIII-tubulin associated anoikis: (i) EPS11 inhibits the expression of βIII-tubulin in both transcription and translation levels; and (ii) EPS11 treatment dramatically decreases the phosphorylation of protein kinase B (PKB or AKT), a critical downstream effector of βIII-tubulin. Importantly, EPS11 evidently inhibits the growth of A549-derived tumor xenografts in vivo. Thus, our results suggest that EPS11 may be a potential candidate for human non-small cell lung carcinoma treatment via blocking filiform structure mediated adhesion and stimulating βIII-tubulin associated anoikis.
Collapse
|