1
|
Chen A, Stadulis SE, deLeuze K, Gibney PA. Evaluating cellular roles and phenotypes associated with trehalose degradation genes in Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2024; 14:jkae215. [PMID: 39250759 PMCID: PMC11540316 DOI: 10.1093/g3journal/jkae215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024]
Abstract
In the yeast Saccharomyces cerevisiae, 2 types of trehalase activities have been described. Neutral trehalases (Nth1 and Nth2) are considered to be the main proteins that catalyze intracellular trehalose mobilization. In addition to Nth1 and Nth2, studies have shown that acid trehalase Ath1 is required for extracellular trehalose degradation. Although both neutral and acid-type trehalases have been predominantly investigated in laboratory strains of S. cerevisiae, we sought to examine the phenotypic consequences of disrupting these genes in wild strains. In this study, we constructed mutants of the trehalose degradation pathway (NTH1, NTH2, and ATH1) in 5 diverse S. cerevisiae strains to examine whether published lab strain phenotypes are also exhibited by wild strains. For each mutant, we assessed a number of phenotypes for comparison to trehalose biosynthesis mutants, including trehalose production, glycogen production, cell size, acute thermotolerance, high-temperature growth, sporulation efficiency, and growth on a variety of carbon sources in rich and minimal medium. We found that all trehalase mutants including single deletion nth1Δ, nth2Δ, and ath1Δ, as well as double deletion nth1nth2Δ, accumulated higher intracellular trehalose levels compared to their isogenic wild-type cells. Also, nth1Δ and nth1Δnth2Δ mutants exhibited mild thermal sensitivity, suggesting a potential minor role for trehalose mobilization when cells recover from stress. In addition, we evaluated phenotypes more directly relevant to trehalose degradation, including both extracellular and intracellular trehalose utilization. We discovered that intracellular trehalose hydrolysis is critical for typical spore germination progression, highlighting a role for trehalose in cell cycle regulation, likely as a storage carbohydrate providing glycolytic fuel. Additionally, our work provides further evidence suggesting Ath1 is indispensable for extracellular trehalose utilization as a carbon source, even in the presence of AGT1.
Collapse
Affiliation(s)
- Anqi Chen
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Sara E Stadulis
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Kayla deLeuze
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Patrick A Gibney
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
2
|
Xie D, Zheng J, Sun Y, Li X, Ren S. Effect of Ca 2+ signal on the activity of key enzymes of carbon metabolism and related gene expression in yeast under high sugar fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39166733 DOI: 10.1002/jsfa.13826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Saccharomyces cerevisiae is a fungus widely used in the food industry and biofuel industry, whereas it is usually exposed to high sugar stress during the fermentation process. Ca2+ is a key second messenger of the cell, it can regulate cell metabolism. The present study investigated the effect of the Ca2+ signal on the activity of key enzymes of carbon metabolism and related gene expression in yeast under high sugar fermentation. RESULTS The expression of genes encoding hexokinase was up-regulated in the high sugar environment, the activity of hexokinase was increased, glucose transmembrane transport capacity was enhanced, the ability of glucose to enter into glycolytic metabolism was increased, and the expression of genes related to pentose phosphate metabolism, glycerol metabolism and trehalose metabolism was up-regulated in the high glucose with Ca2+ group. CONCLUSION Ca2+ signal regulates the cellular metabolism of glycerol and trehalose and optimizes the allocation of carbon flow by regulating the key enzymes and related gene expression to enhance the resistance of yeast to high sugar stress. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dongdong Xie
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Jiaxin Zheng
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Yingqi Sun
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Xing Li
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Shuncheng Ren
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
3
|
Maicas S, Sánchez-Fresneda R, Solano F, Argüelles JC. The Enigma of NTH2 Gene in Yeasts. Microorganisms 2024; 12:1232. [PMID: 38930613 PMCID: PMC11206128 DOI: 10.3390/microorganisms12061232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
The enzymatic hydrolysis of the non-reducing disaccharide trehalose in yeasts is carried out by trehalase, a highly specific α-glucosidase. Two types of such trehalase activity are present in yeasts, and are referred to as neutral and acid enzymes. They are encoded by distinct genes (NTH1 and ATH1, respectively) and exhibit strong differences in their biochemical and physiological properties as well as different subcellular location and regulatory mechanisms. Whereas a single gene ATH1 codes for acid trehalase, the genome of some yeasts appears to predict the existence of a second redundant neutral trehalase, encoded by the NTH2 gene, a paralog of NTH1. In S. cerevisiae the corresponding two proteins share 77% amino acid identity, leading to the suggestion that NTH2 codes for a functional trehalase activity. However, Nth2p lacks any measurable neutral trehalase activity and disruption of NTH2 gene has no effect on this activity compared to a parental strain. Likewise, single nth1Δ and double nth1Δ/nth2Δ null mutants display no detectable neutral activity. Furthermore, disruption of NTH2 does not cause any apparent phenotype apart from a slight involvement in thermotolerance. To date, no evidence of a duplicated NTH gene has been recorded in other archetypical yeasts, like C. albicans or C. parapsilosis, and a possible regulatory mechanism of Nth2p remains unknown. Therefore, although genomic analysis points to the existence, in some yeasts, of two distinct genes encoding trehalase activities, the large body of biochemical and physiological evidence gathered from NTH2 gene does not support this proposal. Indeed, much more experimental evidence would be necessary to firmly validate this hypothesis.
Collapse
Affiliation(s)
- Sergi Maicas
- Departament de Microbiologia i Ecologia, Facultat de Ciències Biològiques, Universitat de València, 46100 Burjassot, Spain
| | - Ruth Sánchez-Fresneda
- Área de Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain;
| | - Francisco Solano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Medicina Campus de Ciencias de la Salud, Universidad de Murcia, 30120 Murcia, Spain;
| | - Juan-Carlos Argüelles
- Área de Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain;
| |
Collapse
|
4
|
Guo Z, Li M, Guo Z, Zhu R, Xin Y, Gu Z, Zhang L. Trehalose metabolism targeting as a novel strategy to modulate acid tolerance of yeasts and its application in food industry. Food Microbiol 2023; 114:104300. [PMID: 37290876 DOI: 10.1016/j.fm.2023.104300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 06/10/2023]
Abstract
Some spoilage yeasts are able to develop resistance to commonly used weak-acid preservatives. We studied the trehalose metabolism and its regulation in Saccharomyces cerevisiae in response to propionic acid stress. We show interruption of trehalose synthetic pathway caused the mutant hypersensitive to the acid stress, while its overexpression conferred acid-tolerance to yeast. Interestingly, this acid-tolerance phenotype was largely independent of trehalose but relied on the trehalose synthetic pathway. We demonstrate trehalose metabolism played a vital role in regulation of glycolysis flux and Pi/ATP homeostasis in yeast during acid-adaptation, and the PKA and TOR signaling pathways were involved in regulating trehalose synthesis at transcriptional level. This work confirmed the regulatory function of trehalose metabolism and improved our understanding of molecular mechanism of acid-adaptation of yeast. By exemplifying trehalose metabolism interruption limited the growth of S. cerevisiae exposed to weak acids, and trehalose pathway overexpression conferring acid-resistance to Yarrowia lipolytica enhanced citric acid production, this work provides new insights into the development of efficient preservation strategies and robust organic acid producers.
Collapse
Affiliation(s)
- Zhongpeng Guo
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China.
| | - Moying Li
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zitao Guo
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Rui Zhu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Yu Xin
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenghua Gu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Liang Zhang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China.
| |
Collapse
|
5
|
Nijland JG, Zhang X, Driessen AJM. D-xylose accelerated death of pentose metabolizing Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:67. [PMID: 37069654 PMCID: PMC10111712 DOI: 10.1186/s13068-023-02320-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/10/2023] [Indexed: 04/19/2023]
Abstract
Rapid and effective consumption of D-xylose by Saccharomyces cerevisiae is essential for cost-efficient cellulosic bioethanol production. Hence, heterologous D-xylose metabolic pathways have been introduced into S. cerevisiae. An effective solution is based on a xylose isomerase in combination with the overexpression of the xylulose kinase (Xks1) and all genes of the non-oxidative branch of the pentose phosphate pathway. Although this strain is capable of consuming D-xylose, growth inhibition occurs at higher D-xylose concentrations, even abolishing growth completely at 8% D-xylose. The decreased growth rates are accompanied by significantly decreased ATP levels. A key ATP-utilizing step in D-xylose metabolism is the phosphorylation of D-xylulose by Xks1. Replacement of the constitutive promoter of XKS1 by the galactose tunable promoter Pgal10 allowed the controlled expression of this gene over a broad range. By decreasing the expression levels of XKS1, growth at high D-xylose concentrations could be restored concomitantly with increased ATP levels and high rates of xylose metabolism. These data show that in fermentations with high D-xylose concentrations, too high levels of Xks1 cause a major drain on the cellular ATP levels thereby reducing the growth rate, ultimately causing substrate accelerated death. Hence, expression levels of XKS1 in S. cerevisiae needs to be tailored for the specific growth conditions and robust D-xylose metabolism.
Collapse
Affiliation(s)
- Jeroen G Nijland
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| | - Xiaohuan Zhang
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| | - Arnold J M Driessen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology, Nijenborgh 7, 9747AG, Groningen, The Netherlands.
| |
Collapse
|
6
|
Chen BC, Lin HY. Deletion of NTH1 and HSP12 increases the freeze–thaw resistance of baker’s yeast in bread dough. Microb Cell Fact 2022; 21:149. [PMID: 35879798 PMCID: PMC9310457 DOI: 10.1186/s12934-022-01876-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/07/2022] [Indexed: 11/15/2022] Open
Abstract
Background The intracellular molecule trehalose in Saccharomyces cerevisiae may have a major protective function under extreme environmental conditions. NTH1 is one gene which expresses trehalase to degrade trehalose. Small heat shock protein 12 (HSP12 expressed) plays a role in protecting membranes and enhancing freezing stress tolerance. Results An optimized S. cerevisiae CRISPR-Cpf1 genome-editing system was constructed. Multiplex genome editing using a single crRNA array was shown to be functional. NTH1 or/and HSP12 knockout in S. cerevisiae enhanced the freezing stress tolerance and improved the leavening ability after freezing and thawing. Conclusions Deleting NTH1 in the combination with deleting HSP12 would strengthen the freezing tolerance and protect the cell viability from high rates of death in longer-term freezing. It provides valuable insights for breeding novel S. cerevisiae strains for the baking industry through a more precise, speedy, and economic genome-editing system.
Collapse
|
7
|
Wang W, Dweck HKM, Talross GJS, Zaidi A, Gendron JM, Carlson JR. Sugar sensation and mechanosensation in the egg-laying preference shift of Drosophila suzukii. eLife 2022; 11:e81703. [PMID: 36398882 PMCID: PMC9674340 DOI: 10.7554/elife.81703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
The agricultural pest Drosophila suzukii differs from most other Drosophila species in that it lays eggs in ripe, rather than overripe, fruit. Previously, we showed that changes in bitter taste sensation accompanied this adaptation (Dweck et al., 2021). Here, we show that D. suzukii has also undergone a variety of changes in sweet taste sensation. D. suzukii has a weaker preference than Drosophila melanogaster for laying eggs on substrates containing all three primary fruit sugars: sucrose, fructose, and glucose. Major subsets of D. suzukii taste sensilla have lost electrophysiological responses to sugars. Expression of several key sugar receptor genes is reduced in the taste organs of D. suzukii. By contrast, certain mechanosensory channel genes, including no mechanoreceptor potential C, are expressed at higher levels in the taste organs of D. suzukii, which has a higher preference for stiff substrates. Finally, we find that D. suzukii responds differently from D. melanogaster to combinations of sweet and mechanosensory cues. Thus, the two species differ in sweet sensation, mechanosensation, and their integration, which are all likely to contribute to the differences in their egg-laying preferences in nature.
Collapse
Affiliation(s)
- Wanyue Wang
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
| | - Hany KM Dweck
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
| | - Gaëlle JS Talross
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
| | - Ali Zaidi
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
| | - Joshua M Gendron
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
| |
Collapse
|
8
|
Wang L, Qi A, Liu J, Shen Y, Wang J. Comparative metabolic analysis of the adaptive Candida tropicalis to furfural stress response. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Foster B, Tyrawa C, Ozsahin E, Lubberts M, Krogerus K, Preiss R, van der Merwe G. Kveik Brewing Yeasts Demonstrate Wide Flexibility in Beer Fermentation Temperature Tolerance and Exhibit Enhanced Trehalose Accumulation. Front Microbiol 2022; 13:747546. [PMID: 35369501 PMCID: PMC8966892 DOI: 10.3389/fmicb.2022.747546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/11/2022] [Indexed: 11/25/2022] Open
Abstract
Traditional Norwegian Farmhouse ale yeasts, also known as kveik, have captured the attention of the brewing community in recent years. Kveik were recently reported as fast fermenting thermo- and ethanol tolerant yeasts with the capacity to produce a variety of interesting flavor metabolites. They are a genetically distinct group of domesticated beer yeasts of admixed origin with one parent from the “Beer 1” clade and the other unknown. While kveik are known to ferment wort efficiently at warmer temperatures, their range of fermentation temperatures and corresponding fermentation efficiencies, remain uncharacterized. In addition, the characteristics responsible for their increased thermotolerance remain largely unknown. Here we demonstrate variation in kveik strains at a wide range of fermentation temperatures and show not all kveik strains are equal in fermentation performance and stress tolerance. Furthermore, we uncovered an increased capacity of kveik strains to accumulate intracellular trehalose, which likely contributes to their increased thermo- and ethanol tolerances. Taken together our results present a clearer picture of the future opportunities presented by Norwegian kveik yeasts and offer further insight into their applications in brewing.
Collapse
Affiliation(s)
- Barret Foster
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Caroline Tyrawa
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Emine Ozsahin
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Mark Lubberts
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | | | | | - George van der Merwe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
10
|
NTH2 1271_1272delTA Gene Disruption Results in Salt Tolerance in Saccharomyces cerevisiae. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8040166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Trehalose is a common energy reservoir, and its accumulation results in osmotic protection. This sugar can accumulate through its synthesis or slow degradation of the reservoir by trehalase enzymes. Saccharomyces cerevisiae contains two neutral trehalases, NTH1 and NTH2, responsible for 75% and 25% of the enzymatic metabolism. We were interested in the loss-of-function of both enzymes with CRISPR/Cas9. The later NTH2 was of great importance since it is responsible for minor metabolic degradation of this sugar. It was believed that losing its functionality results in limited osmotic protection. We constructed an osmotolerant superior yeast capable of growing in 0.85 M NaCl after independent nth2 1271_1272delTA mutation by CRISPR/Cas9 technology, compared with nth1 893_894insT and wild type. We suggest that this yeast model could give clues to breeding commercial yeast resulting in non-GMO salinity-tolerant strains.
Collapse
|
11
|
Minden S, Aniolek M, Sarkizi Shams Hajian C, Teleki A, Zerrer T, Delvigne F, van Gulik W, Deshmukh A, Noorman H, Takors R. Monitoring Intracellular Metabolite Dynamics in Saccharomyces cerevisiae during Industrially Relevant Famine Stimuli. Metabolites 2022; 12:metabo12030263. [PMID: 35323706 PMCID: PMC8953226 DOI: 10.3390/metabo12030263] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
Carbon limitation is a common feeding strategy in bioprocesses to enable an efficient microbiological conversion of a substrate to a product. However, industrial settings inherently promote mixing insufficiencies, creating zones of famine conditions. Cells frequently traveling through such regions repeatedly experience substrate shortages and respond individually but often with a deteriorated production performance. A priori knowledge of the expected strain performance would enable targeted strain, process, and bioreactor engineering for minimizing performance loss. Today, computational fluid dynamics (CFD) coupled to data-driven kinetic models are a promising route for the in silico investigation of the impact of the dynamic environment in the large-scale bioreactor on microbial performance. However, profound wet-lab datasets are needed to cover relevant perturbations on realistic time scales. As a pioneering study, we quantified intracellular metabolome dynamics of Saccharomyces cerevisiae following an industrially relevant famine perturbation. Stimulus-response experiments were operated as chemostats with an intermittent feed and high-frequency sampling. Our results reveal that even mild glucose gradients in the range of 100 µmol·L−1 impose significant perturbations in adapted and non-adapted yeast cells, altering energy and redox homeostasis. Apparently, yeast sacrifices catabolic reduction charges for the sake of anabolic persistence under acute carbon starvation conditions. After repeated exposure to famine conditions, adapted cells show 2.7% increased maintenance demands.
Collapse
Affiliation(s)
- Steven Minden
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany; (S.M.); (M.A.); (C.S.S.H.); (A.T.); (T.Z.)
| | - Maria Aniolek
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany; (S.M.); (M.A.); (C.S.S.H.); (A.T.); (T.Z.)
| | - Christopher Sarkizi Shams Hajian
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany; (S.M.); (M.A.); (C.S.S.H.); (A.T.); (T.Z.)
| | - Attila Teleki
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany; (S.M.); (M.A.); (C.S.S.H.); (A.T.); (T.Z.)
| | - Tobias Zerrer
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany; (S.M.); (M.A.); (C.S.S.H.); (A.T.); (T.Z.)
| | - Frank Delvigne
- Microbial Processes and Interactions (MiPI), TERRA Research and Teaching Centre, Gembloux Agro Bio Tech, University of Liege, 5030 Gembloux, Belgium;
| | - Walter van Gulik
- Department of Biotechnology, Delft University of Technology, van der Maasweg 6, 2629 HZ Delft, The Netherlands;
| | - Amit Deshmukh
- Royal DSM, 2613 AX Delft, The Netherlands; (A.D.); (H.N.)
| | - Henk Noorman
- Royal DSM, 2613 AX Delft, The Netherlands; (A.D.); (H.N.)
- Department of Biotechnology, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany; (S.M.); (M.A.); (C.S.S.H.); (A.T.); (T.Z.)
- Correspondence:
| |
Collapse
|
12
|
De Clercq V, Roelants SLKW, Castelein MG, De Maeseneire SL, Soetaert WK. Elucidation of the Natural Function of Sophorolipids Produced by Starmerella bombicola. J Fungi (Basel) 2021; 7:jof7110917. [PMID: 34829208 PMCID: PMC8621470 DOI: 10.3390/jof7110917] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/21/2022] Open
Abstract
The yeast Starmerella bombicola distinguishes itself from other yeasts by its potential of producing copious amounts of the secondary metabolites sophorolipids (SLs): these are glycolipid biosurfactants composed out of a(n) (acetylated) sophorose moiety and a lipid tail. Although SLs are the subject of numerous research papers and have been commercialized, e.g., in eco-friendly cleaning solutions, the natural function of SLs still remains elusive. This research article investigates several hypotheses for why S. bombicola invests that much energy in the production of SLs, and we conclude that the main natural function of SLs in S. bombicola is niche protection: (1) the extracellular storage of an energy-rich, yet metabolically less accessible carbon source that can be utilized by S. bombicola upon conditions of starvation with (2) antimicrobial properties. In this way, S. bombicola creates a dual advantage in competition with other microorganisms. Additionally, SLs can expedite growth on rapeseed oil, composed of triacylglycerols which are hydrophobic substrates present in the yeasts’ environment, for a non-SL producing strain (Δcyp52M1). It was also found that—at least under lab conditions—SLs do not provide protection against high osmotic pressure prevalent in sugar-rich environments such as honey or nectar present in the natural habitat of S. bombicola.
Collapse
|
13
|
From bumblebee to bioeconomy: Recent developments and perspectives for sophorolipid biosynthesis. Biotechnol Adv 2021; 54:107788. [PMID: 34166752 DOI: 10.1016/j.biotechadv.2021.107788] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022]
Abstract
Sophorolipids are biobased compounds produced by the genera Starmerella and Pseudohyphozyma that gain exponential interest from academic and industrial stakeholders due to their mild and environmental friendly characteristics. Currently, industrially relevant sophorolipid volumetric productivities are reached up to 3.7 g∙L-1∙h-1 and sophorolipids are used in the personal care and cleaning industry at small scale. Moreover, applications in crop protection, food, biohydrometallurgy and medical fields are being extensively researched. The research and development of sophorolipids is at a crucial stage. Therefore, this work presents an overview of the state-of-the-art on sophorolipid research and their applications, while providing a critical assessment of scientific techniques and standardisation in reporting. In this review, the genuine sophorolipid producing organisms and the natural role of sophorolipids are discussed. Subsequently, an evaluation is made of innovations in production processes and the relevance of in-situ product recovery for process performance is discussed. Furthermore, a critical assessment of application research and its future perspectives are portrayed with a focus on the self-assembly of sophorolipid molecules. Following, genetic engineering strategies that affect the sophorolipid physiochemical properties are summarised. Finally, the impact of sophorolipids on the bioeconomy are uncovered, along with relevant future perspectives.
Collapse
|
14
|
Dong C, Fan Q, Li X, Huang Y, Han J, Fang X, Huan M, Ye X, Li Z, Cui Z. Expression and characterization of a novel trehalase from Microvirga sp. strain MC18. Protein Expr Purif 2021; 182:105846. [PMID: 33592252 DOI: 10.1016/j.pep.2021.105846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/30/2020] [Accepted: 02/09/2021] [Indexed: 10/22/2022]
Abstract
Trehalase catalyzes the hydrolysis of trehalose into two glucose molecules and is present in nearly all tissues in various forms. In this study, a putative bacterial trehalase gene, encoding a glycoside hydrolase family 15 (GH15) protein was identified in Microvirga sp. strain MC18 and heterologously expressed in E. coli. The specific activity of the purified recombinant trehalase MtreH was 24 U/mg, with Km and Vmax values of 23.45 mg/mL and 184.23 μmol/mg/min, respectively. The enzyme exhibited optimal activity at 40 °C and pH 7.0, whereby Ca2+ had a considerable positive effects on the catalytic activity and thermostability. The optimized enzymatic reaction conditions for the bioconversion of trehalose using rMtreH were determined as 40 °C, pH 7.0, 10 h and 1% trehalose concentration. The characterization of this bacterial trehalase improves our understanding of the metabolism and biological role of trehalose in prokaryotic organism.
Collapse
Affiliation(s)
- Chaonan Dong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Qiwen Fan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xu Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Jian Han
- College of Agriculture, Xinjiang Agricultural University, XinJiang, 830052, China
| | - Xiaodong Fang
- Guangzhou Hanyun Pharmaceutical Technology Co. Ltd. Guangzhou, 510000, China
| | - Minghui Huan
- Microbial Research Institute of Liaoning Province, Chaoyang, 122000, China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
15
|
Nijland JG, Shin HY, Dore E, Rudinatha D, de Waal PP, Driessen AJM. D-glucose overflow metabolism in an evolutionary engineered high-performance D-xylose consuming Saccharomyces cerevisiae strain. FEMS Yeast Res 2020; 21:6000216. [PMID: 33232441 PMCID: PMC7811511 DOI: 10.1093/femsyr/foaa062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 11/20/2020] [Indexed: 11/26/2022] Open
Abstract
Co-consumption of D-xylose and D-glucose by Saccharomyces cerevisiae is essential for cost-efficient cellulosic bioethanol production. There is a need for improved sugar conversion rates to minimize fermentation times. Previously, we have employed evolutionary engineering to enhance D-xylose transport and metabolism in the presence of D-glucose in a xylose-fermenting S. cerevisiae strain devoid of hexokinases. Re-introduction of Hxk2 in the high performance xylose-consuming strains restored D-glucose utilization during D-xylose/D-glucose co-metabolism, but at rates lower than the non-evolved strain. In the absence of D-xylose, D-glucose consumption was similar to the parental strain. The evolved strains accumulated trehalose-6-phosphate during sugar co-metabolism, and showed an increased expression of trehalose pathway genes. Upon the deletion of TSL1, trehalose-6-phosphate levels were decreased and D-glucose consumption and growth on mixed sugars was improved. The data suggest that D-glucose/D-xylose co-consumption in high-performance D-xylose consuming strains causes the glycolytic flux to saturate. Excess D-glucose is phosphorylated enters the trehalose pathway resulting in glucose recycling and energy dissipation, accumulation of trehalose-6-phosphate which inhibits the hexokinase activity, and release of trehalose into the medium.
Collapse
Affiliation(s)
- Jeroen G Nijland
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Zernike Institute for Advanced Materials and Kluyver Centre for Genomics of Industrial Fermentation, Groningen, The Netherlands
| | - Hyun Yong Shin
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Zernike Institute for Advanced Materials and Kluyver Centre for Genomics of Industrial Fermentation, Groningen, The Netherlands
| | - Eleonora Dore
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Zernike Institute for Advanced Materials and Kluyver Centre for Genomics of Industrial Fermentation, Groningen, The Netherlands
| | - Donny Rudinatha
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Zernike Institute for Advanced Materials and Kluyver Centre for Genomics of Industrial Fermentation, Groningen, The Netherlands
| | - Paul P de Waal
- DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX, Delft, The Netherlands
| | - Arnold J M Driessen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Zernike Institute for Advanced Materials and Kluyver Centre for Genomics of Industrial Fermentation, Groningen, The Netherlands
| |
Collapse
|
16
|
Bilskey SR, Olendorff SA, Chmielewska K, Tucker KR. A Comparative Analysis of Methods for Quantitation of Sugars during the Corn-to-Ethanol Fermentation Process. SLAS Technol 2020; 25:494-504. [PMID: 32111129 DOI: 10.1177/2472630320908253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The quantitation of sugars, including glucose, the primary fermentable sugar; maltose (DP2); and maltotriose (DP3), is a standard procedure during the corn-to-ethanol fermentation process. The quantitation of glucose by the Megazyme Assay utilizing glucose oxidase and peroxidase enzymes (GOPOD) and UV-Vis detection, high-performance liquid chromatography with refractive index detection (HPLC-RID), and liquid chromatography mass spectrometry (LC-MS) with electrospray ionization (ESI) and selected ion monitoring (SIM) was studied. Three biological flask fermentation replicates were analyzed every 12 h beginning at 14 h of fermentation (T14) until near completion of fermentation (T62).The method comparison results for glucose quantitation showed that the LC-MS SIM analysis had the lowest limit of quantitation (LOQ) at 2 ppm and the widest dynamic range of 2.7 orders of magnitude. The HPLC-RID analysis had a linear dynamic range (LDR) of 1.5 orders of magnitude with an LOQ of 1500 ppm. The Megazyme GOPOD analysis had an LDR of 0.9 orders of magnitude with an LOQ of 120 ppm.The HPLC-RID method was ideal for glucose quantitation when it was present in high concentrations. In contrast, maltose and maltotriose components were found to be present in lower concentrations, such that simultaneous quantitation of the three analytes is difficult during fermentation. The LC-MS method was the only method able to quantify the concentration of glucose successfully and simultaneously with DP2 and DP3 in all the fermentation broth samples collected from T14 through T62 during the corn-to-ethanol fermentation process.
Collapse
Affiliation(s)
- Sarah R Bilskey
- Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - Samantha A Olendorff
- Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - Karolina Chmielewska
- Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - Kevin R Tucker
- Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| |
Collapse
|
17
|
Sakaguchi M. Diverse and common features of trehalases and their contributions to microbial trehalose metabolism. Appl Microbiol Biotechnol 2020; 104:1837-1847. [PMID: 31925485 DOI: 10.1007/s00253-019-10339-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/13/2019] [Accepted: 12/27/2019] [Indexed: 12/20/2022]
Abstract
Trehalose is a stable disaccharide that consists of two glucose units linked primarily by an α,α-(1 → 1)-linkage, and it has been found in a wide variety of organisms. In these organisms, trehalose functions not only as a source of carbon energy but also as a protector against various stress conditions. In addition, this disaccharide is attractive for use in a wide range of applications due to its bioactivities. In trehalose metabolism, direct trehalose-hydrolyzing enzymes are known as trehalases, which have been reported for bacteria, archaea, and eukaryotes, and are classified into glycoside hydrolase 37 (GH37), GH65, and GH15 families according to the Carbohydrate-Active enZyme (CAZy) database. The catalytic domains (CDs) of these enzymes commonly share (α/α)6-barrel structures and have two amino acid residues, Asp and/or Glu, that function as catalytic residues in an inverting mechanism. In this review, I focus on diverse and common features of trehalases within different GH families and their contributions to microbial trehalose metabolism.
Collapse
Affiliation(s)
- Masayoshi Sakaguchi
- Department of Chemistry and Life Science, Kogakuin University, 2,665-1 Nakano-cho, Hachioji, Tokyo, 192-0015, Japan.
| |
Collapse
|
18
|
Garg N, Saroy K. Interactive effects of polyamines and arbuscular mycorrhiza in modulating plant biomass, N 2 fixation, ureide, and trehalose metabolism in Cajanus cajan (L.) Millsp. genotypes under nickel stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3043-3064. [PMID: 31838702 DOI: 10.1007/s11356-019-07300-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/04/2019] [Indexed: 05/27/2023]
Abstract
Nickel (Ni) is an essential micronutrient but considered toxic for plant growth when present in excess in the soil. Polyamines (PAs) and arbuscular mycorrhiza (AM) play key roles in alleviating metal toxicity in plants. Present study compared the roles of AM and PAs in improving rhizobial symbiosis, ureide, and trehalose (Tre) metabolism under Ni stress in Cajanus cajan (pigeon pea) genotypes (Pusa 2001, AL 201). The results documented significant negative impacts of Ni on plant biomass, especially roots, more in AL 201 than Pusa 2001. Symbiotic efficiency with Rhizobium and AM declined under Ni stress, resulting in reduced AM colonization, N2 fixation, and ureide biosynthesis. This decline was proportionate to increased Ni uptake in roots and nodules. Put-reduced Ni uptake improved plant growth and functional efficiency of nodules and ureides synthesis, with higher positive effects than other PAs. However, AM inoculations were most effective in enhancing nodulation, nitrogen fixing potential, and Tre synthesis under Ni toxicity. Combined applications of AM with respective PAs, especially +Put+AM, were highly beneficial in alleviating Ni-induced nodule senescence by arresting leghemoglobin degradation and improving functional efficiency of nodules by boosting Tre metabolism, especially in Pusa 2001. The study suggested use of Put along with AM as a promising approach in imparting Ni tolerance to pigeon pea plants.
Collapse
Affiliation(s)
- Neera Garg
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| | - Kiran Saroy
- Department of Botany, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
19
|
Gonçalves LM, Trevisol ETV, de Azevedo Abrahim Vieira B, De Mesquita JF. Trehalose synthesis inhibitor: A molecular in silico drug design. J Cell Biochem 2019; 121:1114-1125. [PMID: 31478225 DOI: 10.1002/jcb.29347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 08/13/2019] [Indexed: 11/11/2022]
Abstract
Infectious diseases are serious public health problems, affecting a large portion of the world's population. A molecule that plays a key role in pathogenic organisms is trehalose and recently has been an interest in the metabolism of this molecule for drug development. The trehalose-6-phosphate synthase (TPS1) is an enzyme responsible for the biosynthesis of trehalose-6-phosphate (T6P) in the TPS1/TPS2 pathway, which results in the formation of trehalose. Studies carried out by our group demonstrated the inhibitory capacity of T6P in the TPS1 enzyme from Saccharomyces cerevisiae, preventing the synthesis of trehalose. By in silico techniques, we compiled sequences and experimentally determined structures of TPS1. Sequence alignments and molecular modeling were performed. The generated structures were submitted in validation of algorithms, aligned structurally and analyzed evolutionarily. Molecular docking methodology was applied to analyze the interaction between T6P and TPS1 and ADMET properties of T6P were analyzed. The results demonstrated the models created presented sequence and structural similarities with experimentally determined structures. With the molecular docking, a cavity in the protein surface was identified and the molecule T6P was interacting with the residues TYR-40, ALA-41, MET-42, and PHE-372, indicating the possible uncompetitive inhibition mechanism provided by this ligand, which can be useful in directing the molecular design of inhibitors. In ADMET analyses, T6P had acceptable risk values compared with other compounds from World Drug Index. Therefore, these results may present a promising strategy to explore to develop a broad-spectrum antibiotic of this specific target with selectivity, potency, and reduced side effects, leading to a new way to treat infectious diseases like tuberculosis and candidiasis.
Collapse
Affiliation(s)
- Lucas Machado Gonçalves
- Bioinformatics and Computational Biology Group, Federal University of Rio de Janeiro - UNIRIO, RJ, Brazil
| | | | | | - Joelma Freire De Mesquita
- Bioinformatics and Computational Biology Group, Federal University of Rio de Janeiro - UNIRIO, RJ, Brazil
| |
Collapse
|
20
|
Sun X, Zhang J, Fan ZH, Xiao P, Liu SN, Li RP, Zhu WB, Huang L. MAL62 Overexpression Enhances Freezing Tolerance of Baker's Yeast in Lean Dough by Enhancing Tps1 Activity and Maltose Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8986-8993. [PMID: 31347835 DOI: 10.1021/acs.jafc.9b03790] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Trehalose plays a crucial role in response to freezing stress in baker's yeast. MAL62, a gene involved in the adenosine diphosphoglucose-dependent trehalose synthesis pathway, can increase trehalose content. However, the difference between MAL62-related trehalose synthesis and traditional uridine diphosphoglucose-dependent trehalose synthesis is not well-understood. MAL62 overexpression showed less effect in enhancing intracellular trehalose compared to TPS1 overexpression. However, MAL62 overexpression elicited trehalose synthesis before fermentation with enhanced maltose metabolism and had a similar effect on cell viability after freezing. Furthermore, MAL62 and TPS1 overexpression in the NTH1 deletion background further strengthened freezing tolerance and improved leavening ability. Our results suggest that the enhancement in freezing tolerance by MAL62 overexpression may involve multiple pathways rather than simply enhancing trehalose synthesis. The results reveal valuable insights into the relationship between maltose metabolism and freezing tolerance and may help to develop better yeast strains for enhancing fermentation characteristics of frozen dough.
Collapse
Affiliation(s)
- Xi Sun
- Tianjin Engineering Research Center of Agricultural Products Processing , Tianjin 300384 , People's Republic of China
| | - Jun Zhang
- Tianjin Engineering Research Center of Agricultural Products Processing , Tianjin 300384 , People's Republic of China
| | - Zhi-Hua Fan
- Tianjin Engineering Research Center of Agricultural Products Processing , Tianjin 300384 , People's Republic of China
| | - Ping Xiao
- Tianjin Engineering Research Center of Agricultural Products Processing , Tianjin 300384 , People's Republic of China
| | - Shan-Na Liu
- Tianjin Engineering Research Center of Agricultural Products Processing , Tianjin 300384 , People's Republic of China
| | - Rui-Peng Li
- Tianjin Engineering Research Center of Agricultural Products Processing , Tianjin 300384 , People's Republic of China
| | | | | |
Collapse
|
21
|
Varahan S, Walvekar A, Sinha V, Krishna S, Laxman S. Metabolic constraints drive self-organization of specialized cell groups. eLife 2019; 8:e46735. [PMID: 31241462 PMCID: PMC6658198 DOI: 10.7554/elife.46735] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/19/2019] [Indexed: 12/30/2022] Open
Abstract
How phenotypically distinct states in isogenic cell populations appear and stably co-exist remains unresolved. We find that within a mature, clonal yeast colony developing in low glucose, cells arrange into metabolically disparate cell groups. Using this system, we model and experimentally identify metabolic constraints sufficient to drive such self-assembly. Beginning in a uniformly gluconeogenic state, cells exhibiting a contrary, high pentose phosphate pathway activity state, spontaneously appear and proliferate, in a spatially constrained manner. Gluconeogenic cells in the colony produce and provide a resource, which we identify as trehalose. Above threshold concentrations of external trehalose, cells switch to the new metabolic state and proliferate. A self-organized system establishes, where cells in this new state are sustained by trehalose consumption, which thereby restrains other cells in the trehalose producing, gluconeogenic state. Our work suggests simple physico-chemical principles that determine how isogenic cells spontaneously self-organize into structured assemblies in complimentary, specialized states.
Collapse
Affiliation(s)
- Sriram Varahan
- InStem - Institute for Stem Cell Science and Regenerative MedicineBangaloreIndia
| | - Adhish Walvekar
- InStem - Institute for Stem Cell Science and Regenerative MedicineBangaloreIndia
| | - Vaibhhav Sinha
- Simons Centre for the Study of Living MachinesNational Centre for Biological Sciences-Tata Institute of Fundamental ResearchBangaloreIndia
- Manipal Academy of Higher EducationManipalIndia
| | - Sandeep Krishna
- Simons Centre for the Study of Living MachinesNational Centre for Biological Sciences-Tata Institute of Fundamental ResearchBangaloreIndia
| | - Sunil Laxman
- InStem - Institute for Stem Cell Science and Regenerative MedicineBangaloreIndia
| |
Collapse
|
22
|
Yuasa M, Okamura T, Kimura M, Honda S, Shin Y, Kawakita M, Oyama F, Sakaguchi M. Two trehalose-hydrolyzing enzymes from Crenarchaeon Sulfolobus acidocaldarius exhibit distinct activities and affinities toward trehalose. Appl Microbiol Biotechnol 2018; 102:4445-4455. [PMID: 29574614 DOI: 10.1007/s00253-018-8915-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/01/2018] [Accepted: 03/03/2018] [Indexed: 01/08/2023]
Abstract
Two archaeal trehalase-like genes, Saci1250 and Saci1816, belonging to glycoside hydrolase family 15 (GH15) from the acidophilic Crenarchaeon Sulfolobus acidocaldarius were expressed in Escherichia coli. The gene products showed trehalose-hydrolyzing activities, and the names SaTreH1 and SaTreH2 were assigned to Saci1816 and Saci1250 gene products, respectively. These newly identified enzymes functioned within a narrow range of acidic pH values at elevated temperatures, which is similar to the behavior of Euryarchaeota Thermoplasma trehalases. SaTreH1 displayed high KM and kcat values, whereas SaTreH2 had lower KM and kcat values despite a high degree of identity in their primary structures. A mutation analysis indicated that two glutamic acid residues in SaTreH1, E374 and E574, may be involved in trehalase catalysis because SaTreH1 E374Q and E574Q showed greatly reduced trehalose-hydrolyzing activities. Additional mutations substituting G573 and H575 residues with serine and glutamic acid residues, respectively, to mimic the TVN1315 sequence resulted in a decrease in trehalase activity and thermal stability. Taken together, the results indicated that Crenarchaea trehalases adopt active site structures that are similar to Euryarchaeota enzymes but have distinct molecular features. The identification of these trehalases could extend our understanding of the relationships between the structure and function of GH15 trehalases as well as other family enzymes and will provide insights into archaeal trehalose metabolism.
Collapse
Affiliation(s)
- Mitsuhiro Yuasa
- Department of Chemistry and Life Science, Kogakuin University, 2,665-1 Nakano-cho, Hachioji, Tokyo, 192-0015, Japan
| | - Takeshi Okamura
- Department of Chemistry and Life Science, Kogakuin University, 2,665-1 Nakano-cho, Hachioji, Tokyo, 192-0015, Japan
| | - Masahiro Kimura
- Department of Chemistry and Life Science, Kogakuin University, 2,665-1 Nakano-cho, Hachioji, Tokyo, 192-0015, Japan
| | - Shotaro Honda
- Department of Chemistry and Life Science, Kogakuin University, 2,665-1 Nakano-cho, Hachioji, Tokyo, 192-0015, Japan
| | - Yongchol Shin
- Department of Chemistry and Life Science, Kogakuin University, 2,665-1 Nakano-cho, Hachioji, Tokyo, 192-0015, Japan
| | - Masao Kawakita
- Department of Chemistry and Life Science, Kogakuin University, 2,665-1 Nakano-cho, Hachioji, Tokyo, 192-0015, Japan.,Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kami-kitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Fumitaka Oyama
- Department of Chemistry and Life Science, Kogakuin University, 2,665-1 Nakano-cho, Hachioji, Tokyo, 192-0015, Japan
| | - Masayoshi Sakaguchi
- Department of Chemistry and Life Science, Kogakuin University, 2,665-1 Nakano-cho, Hachioji, Tokyo, 192-0015, Japan.
| |
Collapse
|
23
|
Suarez-Mendez CA, Ras C, Wahl SA. Metabolic adjustment upon repetitive substrate perturbations using dynamic 13C-tracing in yeast. Microb Cell Fact 2017; 16:161. [PMID: 28946905 PMCID: PMC5613340 DOI: 10.1186/s12934-017-0778-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/18/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Natural and industrial environments are dynamic with respect to substrate availability and other conditions like temperature and pH. Especially, metabolism is strongly affected by changes in the extracellular space. Here we study the dynamic flux of central carbon metabolism and storage carbohydrate metabolism under dynamic feast/famine conditions in Saccharomyces cerevisiae. RESULTS The metabolic flux reacts fast and sensitive to cyclic perturbations in substrate availability. Compared to well-documented stimulus-response experiments using substrate pulses, different metabolic responses are observed. Especially, cells experiencing cyclic perturbations do not show a drop in ATP with the addition of glucose, but an immediate increase in energy charge. Although a high glycolytic flux of up to 5.4 mmol g DW-1 h-1 is observed, no overflow metabolites are detected. From famine to feast the glucose uptake rate increased from 170 to 4788 μmol g DW-1 h-1 in 24 s. Intracellularly, even more drastic changes were observed. Especially, the T6P synthesis rate increased more than 100-fold upon glucose addition. This response indicates that the storage metabolism is very sensitive to changes in glycolytic flux and counterbalances these rapid changes by diverting flux into large pools to prevent substrate accelerated death and potentially refill the central metabolism when substrates become scarce. Using 13C-tracer we found a dilution in the labeling of extracellular glucose, G6P, T6P and other metabolites, indicating an influx of unlabeled carbon. It is shown that glycogen and trehalose degradation via different routes could explain these observations. Based on the 13C labeling in average 15% of the carbon inflow is recycled via trehalose and glycogen. This average fraction is comparable to the steady-state turnover, but changes significantly during the cycle, indicating the relevance for dynamic regulation of the metabolic flux. CONCLUSIONS Comparable to electric energy grids, metabolism seems to use storage units to buffer peaks and keep reserves to maintain a robust function. During the applied fast feast/famine conditions about 15% of the metabolized carbon were recycled in storage metabolism. Additionally, the resources were distributed different to steady-state conditions. Most remarkably is a fivefold increased flux towards PPP that generated a reversed flux of transaldolase and the F6P-producing transketolase reactions. Combined with slight changes in the biomass composition, the yield decrease of 5% can be explained.
Collapse
Affiliation(s)
- C. A. Suarez-Mendez
- Department of Biotechnology, Delft University of Technology, Van der Maasweg, 92629 HZ Delft, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600 GA Delft, The Netherlands
- Present Address: Department of Processes and Energy, Universidad Nacional de Colombia, Carrera 80 No. 65-223, Medellin, Colombia
| | - C. Ras
- Department of Biotechnology, Delft University of Technology, Van der Maasweg, 92629 HZ Delft, The Netherlands
| | - S. A. Wahl
- Department of Biotechnology, Delft University of Technology, Van der Maasweg, 92629 HZ Delft, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600 GA Delft, The Netherlands
| |
Collapse
|
24
|
Vanaporn M, Sarkar-Tyson M, Kovacs-Simon A, Ireland PM, Pumirat P, Korbsrisate S, Titball RW, Butt A. Trehalase plays a role in macrophage colonization and virulence of Burkholderia pseudomallei in insect and mammalian hosts. Virulence 2017; 8:30-40. [PMID: 27367830 PMCID: PMC5963195 DOI: 10.1080/21505594.2016.1199316] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/01/2016] [Accepted: 06/03/2016] [Indexed: 10/21/2022] Open
Abstract
Trehalose is a disaccharide formed from two glucose molecules. This sugar molecule can be isolated from a range of organisms including bacteria, fungi, plants and invertebrates. Trehalose has a variety of functions including a role as an energy storage molecule, a structural component of glycolipids and plays a role in the virulence of some microorganisms. There are many metabolic pathways that control the biosynthesis and degradation of trehalose in different organisms. The enzyme trehalase forms part of a pathway that converts trehalose into glucose. In this study we set out to investigate whether trehalase plays a role in both stress adaptation and virulence of Burkholderia pseudomallei. We show that a trehalase deletion mutant (treA) had increased tolerance to thermal stress and produced less biofilm than the wild type B. pseudomallei K96243 strain. We also show that the ΔtreA mutant has reduced ability to survive in macrophages and that it is attenuated in both Galleria mellonella (wax moth larvae) and a mouse infection model. This is the first report that trehalase is important for bacterial virulence.
Collapse
Affiliation(s)
- Muthita Vanaporn
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Andrea Kovacs-Simon
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Philip M. Ireland
- CBR Division, Defense Science and Technology Laboratory, Salisbury, UK
| | - Pornpan Pumirat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Richard W. Titball
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Aaron Butt
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
25
|
Suarez-Mendez C, Hanemaaijer M, ten Pierick A, Wolters J, Heijnen J, Wahl S. Interaction of storage carbohydrates and other cyclic fluxes with central metabolism: A quantitative approach by non-stationary 13C metabolic flux analysis. Metab Eng Commun 2016; 3:52-63. [PMID: 29468113 PMCID: PMC5779734 DOI: 10.1016/j.meteno.2016.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/30/2015] [Accepted: 01/19/2016] [Indexed: 12/11/2022] Open
Abstract
13C labeling experiments in aerobic glucose limited cultures of Saccharomyces cerevisiae at four different growth rates (0.054; 0.101, 0.207, 0.307 h-1) are used for calculating fluxes that include intracellular cycles (e.g., storage carbohydrate cycles, exchange fluxes with amino acids), which are rearranged depending on the growth rate. At low growth rates the impact of the storage carbohydrate recycle is relatively more significant than at high growth rates due to a higher concentration of these materials in the cell (up to 560-fold) and higher fluxes relative to the glucose uptake rate (up to 16%). Experimental observations suggest that glucose can be exported to the extracellular space, and that its source is related to storage carbohydrates, most likely via the export and subsequent extracellular breakdown of trehalose. This hypothesis is strongly supported by 13C-labeling experimental data, measured extracellular trehalose, and the corresponding flux estimations.
Collapse
Key Words
- 2PG, 2-phosphoglycerate
- 3PG, 3-phosphoglycerate
- 6PG, 6-phospho gluconate
- ACO, aconitate hydratase
- AK, adenylate kinase
- ALA, alanine
- ASP, aspartate
- Amino acids
- CoA, coenzyme-A
- DHAP, dihydroxy acetone phosphate
- DO, dissolved oxygen
- E4P, erythrose-4-phosphate
- ENO, phosphopyruvate hydratase
- F6P, fructose-6-phosphate
- FBA, fructose-bisphosphate aldolase
- FBP, fructose-1,6-bis-phosphate
- FMH, fumarate hydratase
- FUM, fumarate
- Flux estimation
- G1P, glucose-1-phosphate
- G6P, glucose-6-phosphate
- G6PDH, glucose-6-phosphate dehydrogenase
- GAP, glyceraldehyde-3-phosphate
- GAPDH&PGK, glyceraldehyde-3-phosphate dehydrogenase+phosphoglycerate kinase
- GLN, glutamine
- GLU, glutamate
- GLY, glycine
- GPM, phosphoglycerate mutase
- Glycogen
- IDMS, Isotope dilution mass spectrometry
- Iso-Cit, isocitrate
- LEU, leucine
- LYS, lysine
- MAL, malate
- METH, methionine
- Non-stationary 13C labeling
- OAA, oxaloacetate
- OUR, Oxygen uptake rate
- PEP, phospho-enol-pyruvate
- PFK, 6-phosphofructokinase
- PGI, glucose-6-phosphate isomerase
- PGM, phosphoglucomutase
- PMI, mannose-6-phosphate isomerase
- PPP, pentose phosphate pathway
- PRO, proline
- PYK, pyruvate kinase
- PYR, pyruvate
- RPE, ribulose-phosphate 3-epimerase
- RPI, ribose-5-phosphate isomerase
- Rib5P, ribose-5-phosphate
- Ribu5P, ribulose-5-phosphate
- S7P, sedoheptulose-7-phosphate
- SER, serine
- SUC, succinate
- T6P, trehalose-6-phosphate
- TCA, tricarboxylic acid cycle.
- TPP, trehalose- phosphatase
- TPS, alpha,alpha-trehalose-phosphate synthase
- Trehalose
- UDP, uridine-5-diphosphate
- UDPG, UDP-glucose
- UTP, uridine-5-triphosphate
- X5P, xylulose-5-phosphate
- α-KG, oxoglutarate
Collapse
Affiliation(s)
- C.A. Suarez-Mendez
- Department of Biotechnology, Delft University of Technology, Julianalaan 67 – 2628 BC Delft, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600 GA Delft, The Netherlands
| | - M. Hanemaaijer
- Department of Biotechnology, Delft University of Technology, Julianalaan 67 – 2628 BC Delft, The Netherlands
| | - Angela ten Pierick
- Department of Biotechnology, Delft University of Technology, Julianalaan 67 – 2628 BC Delft, The Netherlands
| | - J.C. Wolters
- Department of Analytical Biochemistry, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - J.J. Heijnen
- Department of Biotechnology, Delft University of Technology, Julianalaan 67 – 2628 BC Delft, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600 GA Delft, The Netherlands
| | - S.A. Wahl
- Department of Biotechnology, Delft University of Technology, Julianalaan 67 – 2628 BC Delft, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600 GA Delft, The Netherlands
| |
Collapse
|
26
|
Vos T, Hakkaart XDV, de Hulster EAF, van Maris AJA, Pronk JT, Daran-Lapujade P. Maintenance-energy requirements and robustness of Saccharomyces cerevisiae at aerobic near-zero specific growth rates. Microb Cell Fact 2016; 15:111. [PMID: 27317316 PMCID: PMC4912818 DOI: 10.1186/s12934-016-0501-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/31/2016] [Indexed: 11/24/2022] Open
Abstract
Background Saccharomyces cerevisiae is an established microbial platform for production of native and non-native compounds. When product pathways compete with growth for precursors and energy, uncoupling of growth and product formation could increase product yields and decrease formation of biomass as a by-product. Studying non-growing, metabolically active yeast cultures is a first step towards developing S. cerevisiae as a robust, non-growing cell factory. Microbial physiology at near-zero growth rates can be studied in retentostats, which are continuous-cultivation systems with full biomass retention. Hitherto, retentostat studies on S. cerevisiae have focused on anaerobic conditions, which bear limited relevance for aerobic industrial processes. The present study uses aerobic, glucose-limited retentostats to explore the physiology of non-dividing, respiring S. cerevisiae cultures, with a focus on industrially relevant features. Results Retentostat feeding regimes for smooth transition from exponential growth in glucose-limited chemostat cultures to near-zero growth rates were obtained by model-aided experimental design. During 20 days of retentostats cultivation, the specific growth rate gradually decreased from 0.025 h−1 to below 0.001 h−1, while culture viability remained above 80 %. The maintenance requirement for ATP (mATP) was estimated at 0.63 ± 0.04 mmol ATP (g biomass)−1 h−1, which is ca. 35 % lower than previously estimated for anaerobic retentostats. Concomitant with decreasing growth rate in aerobic retentostats, transcriptional down-regulation of genes involved in biosynthesis and up-regulation of stress-responsive genes resembled transcriptional regulation patterns observed for anaerobic retentostats. The heat-shock tolerance in aerobic retentostats far exceeded previously reported levels in stationary-phase batch cultures. While in situ metabolic fluxes in retentostats were intentionally low due to extreme caloric restriction, off-line measurements revealed that cultures retained a high metabolic capacity. Conclusions This study provides the most accurate estimation yet of the maintenance-energy coefficient in aerobic cultures of S. cerevisiae, which is a key parameter for modelling of industrial aerobic, glucose-limited fed-batch processes. The observed extreme heat-shock tolerance and high metabolic capacity at near-zero growth rates demonstrate the intrinsic potential of S. cerevisiae as a robust, non-dividing microbial cell factory for energy-intensive products. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0501-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tim Vos
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Xavier D V Hakkaart
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Erik A F de Hulster
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Antonius J A van Maris
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Pascale Daran-Lapujade
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
27
|
Improving freeze-tolerance of baker’s yeast through seamless gene deletion of NTH1 and PUT1. ACTA ACUST UNITED AC 2016; 43:817-28. [DOI: 10.1007/s10295-016-1753-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 02/16/2016] [Indexed: 10/22/2022]
Abstract
Abstract
Baker’s yeast strains with freeze-tolerance are highly desirable to maintain high leavening ability after freezing. Enhanced intracellular concentration of trehalose and proline in yeast is linked with freeze-tolerance. In this study, we constructed baker’s yeast with enhanced freeze-tolerance by simultaneous deletion of the neutral trehalase-encoded gene NTH1 and the proline oxidase-encoded gene PUT1. We first used the two-step integration-based seamless gene deletion method to separately delete NTH1 and PUT1 in haploid yeast. Subsequently, through two rounds of hybridization and sporulation-based allelic exchange and colony PCR-mediated tetrad analysis, we obtained strains with restored URA3 and deletion of NTH1 and/or PUT1. The resulting strain showed higher cell survival and dough-leavening ability after freezing compared to the wild-type strain due to enhanced accumulation of trehalose and/or proline. Moreover, mutant with simultaneous deletion of NTH1 and PUT1 exhibits the highest relative dough-leavening ability after freezing compared to mutants with single-gene deletion perhaps due to elevated levels of both trehalose and proline. These results verified that it is applicable to construct frozen dough baker’s yeast using the method proposed in this paper.
Collapse
|
28
|
Yi C, Wang F, Dong S, Li H. Changes of trehalose content and expression of relative genes during the bioethanol fermentation by Saccharomyces cerevisiae. Can J Microbiol 2016; 62:827-835. [PMID: 27510429 DOI: 10.1139/cjm-2015-0832] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Traditionally, trehalose is considered as a protectant to improve the ethanol tolerance of Saccharomyces cerevisiae. In this study, to clarify the changes and roles of trehalose during the bioethanol fermentation, trehalose content and expression of related genes at lag, exponential, and stationary phases (i.e., 2, 8, and 16 h of batch fermentation process) were determined. Although yeast cells at exponential and stationary phase had higher trehalose content than cells at lag phase (P < 0.01), there was no significant difference in trehalose content between exponential and stationary phases (P > 0.05). Moreover, expression of the trehalose degradation-related genes NTH1 and NTH2 decreased at exponential phase in comparison with that at lag phase; compared with cells at lag phase, cells at stationary phase had higher expression of TPS1, ATH1, NTH1, and NTH2 but lower expression of TPS2. During the lag-exponential phase transition, downregulation of NTH1 and NTH2 promoted accumulation of trehalose, and to some extent, trehalose might confer ethanol tolerance to S. cerevisiae before stationary phase. During the exponential-stationary phase transition, upregulation of TPS1 contributed to accumulation of trehalose, and Tps1 protein might be indispensable in yeast cells to withstand ethanol stress at the stationary phase. Moreover, trehalose would be degraded to supply carbon source at stationary phase.
Collapse
Affiliation(s)
- Chenfeng Yi
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, P.R. China.,Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, P.R. China
| | - Fenglian Wang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, P.R. China.,Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, P.R. China
| | - Shijun Dong
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, P.R. China.,Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, P.R. China
| | - Hao Li
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, P.R. China.,Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, P.R. China
| |
Collapse
|
29
|
Klukovich R, Courchesne WE. Functions of Saccharomyces cerevisiae Ecm27p, a putative Na+/Ca2+ exchanger, in calcium homeostasis, carbohydrate storage and cell cycle reentry from the quiescent phase. Microbiol Res 2016; 186-187:81-9. [DOI: 10.1016/j.micres.2016.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/25/2016] [Accepted: 03/31/2016] [Indexed: 01/13/2023]
|
30
|
Accurate Measurement of the in vivo Ammonium Concentration in Saccharomyces cerevisiae. Metabolites 2016; 6:metabo6020012. [PMID: 27120628 PMCID: PMC4931543 DOI: 10.3390/metabo6020012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/13/2016] [Accepted: 04/20/2016] [Indexed: 11/16/2022] Open
Abstract
Ammonium (NH4+) is the most common N-source for yeast fermentations, and N-limitation is frequently applied to reduce growth and increase product yields. While there is significant molecular knowledge on NH4+ transport and assimilation, there have been few attempts to measure the in vivo concentration of this metabolite. In this article, we present a sensitive and accurate analytical method to quantify the in vivo intracellular ammonium concentration in Saccharomycescerevisiae based on standard rapid sampling and metabolomics techniques. The method validation experiments required the development of a proper sample processing protocol to minimize ammonium production/consumption during biomass extraction by assessing the impact of amino acid degradation—an element that is often overlooked. The resulting cold chloroform metabolite extraction method, together with quantification using ultra high performance liquid chromatography-isotope dilution mass spectrometry (UHPLC-IDMS), was not only more sensitive than most of the existing methods but also more accurate than methods that use electrodes, enzymatic reactions, or boiling water or boiling ethanol biomass extraction because it minimized ammonium consumption/production during sampling processing and interference from other metabolites in the quantification of intracellular ammonium. Finally, our validation experiments showed that other metabolites such as pyruvate or 2-oxoglutarate (αKG) need to be extracted with cold chloroform to avoid measurements being biased by the degradation of other metabolites (e.g., amino acids).
Collapse
|
31
|
Petitjean M, Teste MA, François JM, Parrou JL. Yeast Tolerance to Various Stresses Relies on the Trehalose-6P Synthase (Tps1) Protein, Not on Trehalose. J Biol Chem 2015; 290:16177-90. [PMID: 25934390 DOI: 10.1074/jbc.m115.653899] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Indexed: 11/06/2022] Open
Abstract
Trehalose is a stable disaccharide commonly found in nature, from bacteria to fungi and plants. For the model yeast Saccharomyces cerevisiae, claims that trehalose is a stress protectant were based indirectly either on correlation between accumulation of trehalose and high resistance to various stresses or on stress hypersensitivity of mutants deleted for TPS1, which encodes the first enzyme in trehalose biosynthetic pathway. Our goal was to investigate more directly which one, between trehalose and/or the Tps1 protein, may serve yeast cells to withstand exposure to stress. By employing an original strategy that combined the use of mutant strains expressing catalytically inactive variants of Tps1, with MAL(+) yeast strains able to accumulate trehalose from an exogenous supply, we bring for the first time unbiased proof that trehalose does not protect yeast cells from dying and that the stress-protecting role of trehalose in this eukaryotic model was largely overestimated. Conversely, we identified the Tps1 protein as a key player for yeast survival in response to temperature, oxidative, and desiccation stress. We also showed by robust RT-quantitative PCR and genetic interaction analysis that the role of Tps1 in thermotolerance is not dependent upon Hsf1-dependent transcription activity. Finally, our results revealed that the Tps1 protein is essential to maintain ATP levels during heat shock. Altogether, these findings supported the idea that Tps1 is endowed with a regulatory function in energy homeostasis, which is essential to withstand adverse conditions and maintain cellular integrity.
Collapse
Affiliation(s)
- Marjorie Petitjean
- From the Université de Toulouse; INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France and INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés and CNRS, UMR5504, F-31400 Toulouse, France
| | - Marie-Ange Teste
- From the Université de Toulouse; INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France and INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés and CNRS, UMR5504, F-31400 Toulouse, France
| | - Jean M François
- From the Université de Toulouse; INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France and INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés and CNRS, UMR5504, F-31400 Toulouse, France
| | - Jean-Luc Parrou
- From the Université de Toulouse; INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France and INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés and CNRS, UMR5504, F-31400 Toulouse, France
| |
Collapse
|
32
|
Eleutherio E, Panek A, De Mesquita JF, Trevisol E, Magalhães R. Revisiting yeast trehalose metabolism. Curr Genet 2014; 61:263-74. [DOI: 10.1007/s00294-014-0450-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/21/2014] [Accepted: 08/26/2014] [Indexed: 12/16/2022]
|
33
|
Tan H, Dong J, Wang G, Xu H, Zhang C, Xiao D. Enhanced freeze tolerance of baker’s yeast by overexpressed trehalose-6-phosphate synthase gene (TPS1) and deleted trehalase genes in frozen dough. ACTA ACUST UNITED AC 2014; 41:1275-85. [DOI: 10.1007/s10295-014-1467-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/22/2014] [Indexed: 11/30/2022]
Abstract
Abstract
Several recombinant strains with overexpressed trehalose-6-phosphate synthase gene (TPS1) and/or deleted trehalase genes were obtained to elucidate the relationships between TPS1, trehalase genes, content of intracellular trehalose and freeze tolerance of baker’s yeast, as well as improve the fermentation properties of lean dough after freezing. In this study, strain TL301TPS1 overexpressing TPS1 showed 62.92 % higher trehalose-6-phosphate synthase (Tps1) activity and enhanced the content of intracellular trehalose than the parental strain. Deleting ATH1 exerted a significant effect on trehalase activities and the degradation amount of intracellular trehalose during the first 30 min of prefermentation. This finding indicates that acid trehalase (Ath1) plays a role in intracellular trehalose degradation. NTH2 encodes a functional neutral trehalase (Nth2) that was significantly involved in intracellular trehalose degradation in the absence of the NTH1 and/or ATH1 gene. The survival ratio, freeze-tolerance ratio and relative fermentation ability of strain TL301TPS1 were approximately twice as high as those of the parental strain (BY6-9α). The increase in freeze tolerance of strain TL301TPS1 was accompanied by relatively low trehalase activity, high Tps1 activity and high residual content of intracellular trehalose. Our results suggest that overexpressing TPS1 and deleting trehalase genes are sufficient to improve the freeze tolerance of baker’s yeast in frozen dough. The present study provides guidance for the commercial baking industry as well as the research on the intracellular trehalose mobilization and freeze tolerance of baker’s yeast.
Collapse
Affiliation(s)
- Haigang Tan
- grid.413109.e 0000000097356249 Tianjin Industrial Microbiology Key Laboratory College of Biotechnology, Tianjin University of Science and Technology 300457 Tianjin People’s Republic of China
- grid.419897.a 000000040369313X Key Laboratory of Industrial Fermentation Microbiology Ministry of Education Tianjin People’s Republic of China
- grid.412608.9 0000000095266338 College of Food Science and Engineering Qingdao Agricultural University 266109 Qingdao People’s Republic of China
| | - Jian Dong
- grid.413109.e 0000000097356249 Tianjin Industrial Microbiology Key Laboratory College of Biotechnology, Tianjin University of Science and Technology 300457 Tianjin People’s Republic of China
- grid.419897.a 000000040369313X Key Laboratory of Industrial Fermentation Microbiology Ministry of Education Tianjin People’s Republic of China
| | - Guanglu Wang
- grid.413109.e 0000000097356249 Tianjin Industrial Microbiology Key Laboratory College of Biotechnology, Tianjin University of Science and Technology 300457 Tianjin People’s Republic of China
- grid.419897.a 000000040369313X Key Laboratory of Industrial Fermentation Microbiology Ministry of Education Tianjin People’s Republic of China
| | - Haiyan Xu
- grid.413109.e 0000000097356249 Tianjin Industrial Microbiology Key Laboratory College of Biotechnology, Tianjin University of Science and Technology 300457 Tianjin People’s Republic of China
- grid.419897.a 000000040369313X Key Laboratory of Industrial Fermentation Microbiology Ministry of Education Tianjin People’s Republic of China
| | - Cuiying Zhang
- grid.413109.e 0000000097356249 Tianjin Industrial Microbiology Key Laboratory College of Biotechnology, Tianjin University of Science and Technology 300457 Tianjin People’s Republic of China
- grid.419897.a 000000040369313X Key Laboratory of Industrial Fermentation Microbiology Ministry of Education Tianjin People’s Republic of China
| | - Dongguang Xiao
- grid.413109.e 0000000097356249 Tianjin Industrial Microbiology Key Laboratory College of Biotechnology, Tianjin University of Science and Technology 300457 Tianjin People’s Republic of China
- grid.419897.a 000000040369313X Key Laboratory of Industrial Fermentation Microbiology Ministry of Education Tianjin People’s Republic of China
| |
Collapse
|
34
|
Yoshiyama Y, Tanaka K, Yoshiyama K, Hibi M, Ogawa J, Shima J. Trehalose accumulation enhances tolerance of Saccharomyces cerevisiae to acetic acid. J Biosci Bioeng 2014; 119:172-5. [PMID: 25060731 DOI: 10.1016/j.jbiosc.2014.06.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 06/25/2014] [Accepted: 06/27/2014] [Indexed: 01/06/2023]
Abstract
Trehalose confers protection against various environmental stresses on yeast cells. In this study, trehalase gene deletion mutants that accumulate trehalose at high levels showed significant stress tolerance to acetic acid. The enhancement of trehalose accumulation can thus be considered a target in the breeding of acetic acid-tolerant yeast strains.
Collapse
Affiliation(s)
- Yoko Yoshiyama
- Research Division of Microbial Sciences, Kyoto University, Kitashirakawa Oiwake-Cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Koichi Tanaka
- Research Division of Microbial Sciences, Kyoto University, Kitashirakawa Oiwake-Cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kohei Yoshiyama
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Makoto Hibi
- Industrial Microbiology, Kyoto University, Kitashirakawa Oiwake-Cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-Cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Jun Shima
- Research Division of Microbial Sciences, Kyoto University, Kitashirakawa Oiwake-Cho, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
35
|
Developmental cell fate and virulence are linked to trehalose homeostasis in Cryptococcus neoformans. EUKARYOTIC CELL 2014; 13:1158-68. [PMID: 25001408 DOI: 10.1128/ec.00152-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Among pathogenic environmental fungi, spores are thought to be infectious particles that germinate in the host to cause disease. The meningoencephalitis-causing yeast Cryptococcus neoformans is found ubiquitously in the environment and sporulates in response to nutrient limitation. While the yeast form has been studied extensively, relatively little is known about spore biogenesis, and spore germination has never been evaluated at the molecular level. Using genome transcript analysis of spores and molecular genetic approaches, we discovered that trehalose homeostasis plays a key role in regulating sporulation of C. neoformans, is required for full spore viability, and influences virulence. Specifically, we found that genes involved in trehalose metabolism, including a previously uncharacterized secreted trehalase (NTH2), are highly overrepresented in dormant spores. Deletion of the two predicted trehalases in the C. neoformans genome, NTH1 and NTH2, resulted in severe defects in spore production, a decrease in spore germination, and an increase in the production of alternative developmental structures. This shift in cell types suggests that trehalose levels modulate cell fate decisions during sexual development. We also discovered that deletion of the NTH2 trehalase results in hypervirulence in a murine model of infection. Taken together, these data show that the metabolic adaptations that allow this fungus to proliferate ubiquitously in the environment play unexpected roles in virulence in the mammalian host and highlight the complex interplay among the processes of metabolism, development, and pathogenesis.
Collapse
|
36
|
Kopecka M, Kosek D, Kukacka Z, Rezabkova L, Man P, Novak P, Obsil T, Obsilova V. Role of the EF-hand-like motif in the 14-3-3 protein-mediated activation of yeast neutral trehalase Nth1. J Biol Chem 2014; 289:13948-61. [PMID: 24713696 PMCID: PMC4022866 DOI: 10.1074/jbc.m113.544551] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/20/2014] [Indexed: 01/18/2023] Open
Abstract
Trehalases hydrolyze the non-reducing disaccharide trehalose amassed by cells as a universal protectant and storage carbohydrate. Recently, it has been shown that the activity of neutral trehalase Nth1 from Saccharomyces cerevisiae is mediated by the 14-3-3 protein binding that modulates the structure of both the catalytic domain and the region containing the EF-hand-like motif, whose role in the activation of Nth1 is unclear. In this work, the structure of the Nth1·14-3-3 complex and the importance of the EF-hand-like motif were investigated using site-directed mutagenesis, hydrogen/deuterium exchange coupled to mass spectrometry, chemical cross-linking, and small angle x-ray scattering. The low resolution structural views of Nth1 alone and the Nth1·14-3-3 complex show that the 14-3-3 protein binding induces a significant structural rearrangement of the whole Nth1 molecule. The EF-hand-like motif-containing region forms a separate domain that interacts with both the 14-3-3 protein and the catalytic trehalase domain. The structural integrity of the EF-hand like motif is essential for the 14-3-3 protein-mediated activation of Nth1, and calcium binding, although not required for the activation, facilitates this process by affecting its structure. Our data suggest that the EF-hand like motif-containing domain functions as the intermediary through which the 14-3-3 protein modulates the function of the catalytic domain of Nth1.
Collapse
Affiliation(s)
- Miroslava Kopecka
- From the Institute of Physiology and the Second Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague, Czech Republic, and
| | - Dalibor Kosek
- From the Institute of Physiology and the Departments of Physical and Macromolecular Chemistry and
| | - Zdenek Kukacka
- the Institute of Microbiology, Academy of Sciences of the Czech Republic v.v.i., Videnska 1083, 14220 Prague, Czech Republic, Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12843 Prague, Czech Republic
| | - Lenka Rezabkova
- From the Institute of Physiology and the Departments of Physical and Macromolecular Chemistry and
| | - Petr Man
- the Institute of Microbiology, Academy of Sciences of the Czech Republic v.v.i., Videnska 1083, 14220 Prague, Czech Republic, Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12843 Prague, Czech Republic
| | - Petr Novak
- the Institute of Microbiology, Academy of Sciences of the Czech Republic v.v.i., Videnska 1083, 14220 Prague, Czech Republic, Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12843 Prague, Czech Republic
| | - Tomas Obsil
- From the Institute of Physiology and the Departments of Physical and Macromolecular Chemistry and
| | | |
Collapse
|
37
|
Svanström Å, van Leeuwen MR, Dijksterhuis J, Melin P. Trehalose synthesis in Aspergillus niger: characterization of six homologous genes, all with conserved orthologs in related species. BMC Microbiol 2014; 14:90. [PMID: 24725382 PMCID: PMC3991884 DOI: 10.1186/1471-2180-14-90] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/08/2014] [Indexed: 11/12/2022] Open
Abstract
Background The disaccharide trehalose is a major component of fungal spores and is released upon germination. Moreover, the sugar is well known for is protective functions, e.g. against thermal stress and dehydration. The properties and synthesis of trehalose have been well investigated in the bakers’ yeast Saccharomyces cerevisiae. In filamentous fungi, such knowledge is limited, although several gene products have been identified. Results Using Aspergillus niger as a model fungus, the aim of this study was to provide an overview of all genes involved in trehalose synthesis. This fungus has three potential trehalose-6-phosphate synthase encoding genes, tpsA-C, and three putative trehalose phosphate phosphatase encoding genes, tppA-C, of which two have not previously been identified. Expression of all six genes was confirmed using real-time PCR, and conserved orthologs could be identified in related Aspergilli. Using a two-hybrid approach, there is a strong indication that four of the proteins physically interact, as has previously been shown in S. cerevisiae. When creating null mutants of all the six genes, three of them, ΔtpsA, ΔtppA and ΔtppB, had lower internal trehalose contents. The only mutant with a pronounced morphological difference was ΔtppA, in which sporulation was severely reduced with abnormal conidiophores. This was also the only mutant with accumulated levels of trehalose-6-phosphate, indicating that the encoded protein is the main phosphatase under normal conditions. Besides ΔtppA, the most studied deletion mutant in this work was ΔtppB. This gene encodes a protein conserved in filamentous Ascomycota. The ΔtppB mutant displayed a low, but not depleted, internal trehalose content, and conidia were more susceptible to thermal stress. Conclusion A. niger contains at least 6 genes putatively involved in trehalose synthesis. Gene expressions related to germination have been quantified and deletion mutants characterized: Mutants lacking tpsA, tppA or tppB have reduced internal trehalose contents. Furthermore, tppA, under normal conditions, encodes the functional trehalose-6-phosphate-phosphatase.
Collapse
Affiliation(s)
| | | | | | - Petter Melin
- Uppsala BioCenter, Department of Microbiology, Swedish University of Agricultural Sciences, P,O, Box 7025, SE-750 07 Uppsala, Sweden.
| |
Collapse
|
38
|
Wang PM, Zheng DQ, Chi XQ, Li O, Qian CD, Liu TZ, Zhang XY, Du FG, Sun PY, Qu AM, Wu XC. Relationship of trehalose accumulation with ethanol fermentation in industrial Saccharomyces cerevisiae yeast strains. BIORESOURCE TECHNOLOGY 2013; 152:371-376. [PMID: 24316480 DOI: 10.1016/j.biortech.2013.11.033] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 11/11/2013] [Accepted: 11/13/2013] [Indexed: 06/02/2023]
Abstract
The protective effect and the mechanisms of trehalose accumulation in industrial Saccharomyces cerevisiae strains were investigated during ethanol fermentation. The engineered strains with more intercellular trehalose achieved significantly higher fermentation rates and ethanol yields than their wild strain ZS during very high gravity (VHG) fermentation, while their performances were not different during regular fermentation. The VHG fermentation performances of these strains were consistent with their growth capacity under osmotic stress and ethanol stress, the key stress factors during VHG fermentation. These results suggest that trehalose accumulation is more important for VHG fermentation of industrial yeast strains than regular one. The differences in membrane integrity and antioxidative capacity of these strains indicated the possible mechanisms of trehalose as a protectant under VHG condition. Therefore, trehalose metabolic engineering may be a useful strategy for improving the VHG fermentation performance of industrial yeast strains.
Collapse
Affiliation(s)
- Pin-Mei Wang
- Ocean College, Zhejiang University, Hangzhou 310058, Zhejiang Province, China; Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Dao-Qiong Zheng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Xiao-Qin Chi
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen University Affiliated Zhongshan Hospital, Xiamen 361004, Fujian Province, China
| | - Ou Li
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Chao-Dong Qian
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Tian-Zhe Liu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Xiao-Yang Zhang
- State Key Laboratory of Motor Vehicle Biofuel Technology, Nanyang 473000, Henan Province, China
| | - Feng-Guang Du
- State Key Laboratory of Motor Vehicle Biofuel Technology, Nanyang 473000, Henan Province, China
| | - Pei-Yong Sun
- State Key Laboratory of Motor Vehicle Biofuel Technology, Nanyang 473000, Henan Province, China
| | - Ai-Min Qu
- State Key Laboratory of Motor Vehicle Biofuel Technology, Nanyang 473000, Henan Province, China
| | - Xue-Chang Wu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China.
| |
Collapse
|
39
|
Barraza A, Sánchez F. Trehalases: a neglected carbon metabolism regulator? PLANT SIGNALING & BEHAVIOR 2013; 8:e24778. [PMID: 23656873 PMCID: PMC3909059 DOI: 10.4161/psb.24778] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/22/2013] [Accepted: 04/23/2013] [Indexed: 05/31/2023]
Abstract
Trehalases are enzymes that carry out the degradation of the non-reducing disaccharide trehalose. Trehalase phylogeny unveiled three major branches comprising those from bacteria; plant and animals; and those from fungal origin. Comparative analysis between several deduced trehalase structures and the crystallographic structure of bacterial trehalase indicated that these enzyme's structures are highly conserved in spite of the marked differences found at the sequence level. These results suggest a bacterial origin for the trehalases in contrast to an eukaryotic origin, as previously proposed. Trehalases structural analysis showed that they contain six discrete motifs which are characteristic of each phylogenetic group, suggesting a positive evolutionary selection pressure for the structural conservation. Interestingly, trehalases are involved in multiple regulatory functions: In the response against pathogens (plant-pathogen interactions); the regulation of bacterial viability in symbiotic interactions (legume-Rhizobium); carbon partitioning in plants; regulating chitin biosynthesis, as well as energy supply in the hemolymph for flight, in insects. In summary, trehalases seem to have a prokaryotic origin and play an active role in carbon metabolism and other diverse regulatory effects on cell physiology.
Collapse
Affiliation(s)
- Aarón Barraza
- Departamento de Biología Molecular de Plantas; Instituto de Biotecnología/Universidad Nacional Autónoma de México; Cuernavaca, Morelos, México
| | - Federico Sánchez
- Departamento de Biología Molecular de Plantas; Instituto de Biotecnología/Universidad Nacional Autónoma de México; Cuernavaca, Morelos, México
| |
Collapse
|
40
|
Impact of temperature stress and validamycin A on compatible solutes and fumonisin production in F. verticillioides: role of trehalose-6-phosphate synthase. Fungal Genet Biol 2013; 57:1-10. [PMID: 23751979 DOI: 10.1016/j.fgb.2013.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 05/31/2013] [Accepted: 06/02/2013] [Indexed: 12/21/2022]
Abstract
Fusarium verticillioides is a pathogen of maize that causes root, stalk and ear rot and produces fumonisins, toxic secondary metabolites associated with disease in livestock and humans. Environmental stresses such as heat and drought influence disease severity and toxin production, but the effects of abiotic stress on compatible solute production by F. verticillioides have not been fully characterized. We found that decreasing the growth temperature leads to a long-term reduction in polyol levels, whereas increasing the temperature leads to a transient increase in polyols. The effects of temperature shifts on trehalose levels are opposite the effects on polyols and more dramatic. Treatment with validamycin A, a trehalose analog with antifungal activity, leads to a rapid reduction in trehalose levels, despite its known role as a trehalase inhibitor. Mutant strains lacking TPS1, which encodes a putative trehalose-6-phosphate synthase, have altered growth characteristics, do not produce detectable amounts of trehalose under any condition tested, and accumulate glycogen at levels significantly higher than wild-type F. verticillioides. TPS1 mutants also produce significantly less fumonisin than wild type and are also less pathogenic than wild type on maize. These data link trehalose biosynthesis, secondary metabolism, and disease, and suggest that trehalose metabolic pathways may be a viable target for the control of Fusarium diseases and fumonisin contamination of maize.
Collapse
|
41
|
Role of individual phosphorylation sites for the 14-3-3-protein-dependent activation of yeast neutral trehalase Nth1. Biochem J 2012; 443:663-70. [DOI: 10.1042/bj20111615] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Trehalases are important highly conserved enzymes found in a wide variety of organisms and are responsible for the hydrolysis of trehalose that serves as a carbon and energy source as well as a universal stress protectant. Emerging evidence indicates that the enzymatic activity of the neutral trehalase Nth1 in yeast is enhanced by 14-3-3 protein binding in a phosphorylation-dependent manner through an unknown mechanism. In the present study, we investigated in detail the interaction between Saccharomyces cerevisiae Nth1 and 14-3-3 protein isoforms Bmh1 and Bmh2. We determined four residues that are phosphorylated by PKA (protein kinase A) in vitro within the disordered N-terminal segment of Nth1. Sedimentation analysis and enzyme kinetics measurements show that both yeast 14-3-3 isoforms form a stable complex with phosphorylated Nth1 and significantly enhance its enzymatic activity. The 14-3-3-dependent activation of Nth1 is significantly more potent compared with Ca2+-dependent activation. Limited proteolysis confirmed that the 14-3-3 proteins interact with the N-terminal segment of Nth1 where all phosphorylation sites are located. Site-directed mutagenesis in conjunction with the enzyme activity measurements in vitro and the activation studies of mutant forms in vivo suggest that Ser60 and Ser83 are sites primarily responsible for PKA-dependent and 14-3-3-mediated activation of Nth1.
Collapse
|
42
|
|
43
|
A novel strategy to construct yeast Saccharomyces cerevisiae strains for very high gravity fermentation. PLoS One 2012; 7:e31235. [PMID: 22363590 PMCID: PMC3281935 DOI: 10.1371/journal.pone.0031235] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Accepted: 01/04/2012] [Indexed: 12/01/2022] Open
Abstract
Very high gravity (VHG) fermentation is aimed to considerably increase both the fermentation rate and the ethanol concentration, thereby reducing capital costs and the risk of bacterial contamination. This process results in critical issues, such as adverse stress factors (ie., osmotic pressure and ethanol inhibition) and high concentrations of metabolic byproducts which are difficult to overcome by a single breeding method. In the present paper, a novel strategy that combines metabolic engineering and genome shuffling to circumvent these limitations and improve the bioethanol production performance of Saccharomyces cerevisiae strains under VHG conditions was developed. First, in strain Z5, which performed better than other widely used industrial strains, the gene GPD2 encoding glycerol 3-phosphate dehydrogenase was deleted, resulting in a mutant (Z5ΔGPD2) with a lower glycerol yield and poor ethanol productivity. Second, strain Z5ΔGPD2 was subjected to three rounds of genome shuffling to improve its VHG fermentation performance, and the best performing strain SZ3-1 was obtained. Results showed that strain SZ3-1 not only produced less glycerol, but also increased the ethanol yield by up to 8% compared with the parent strain Z5. Further analysis suggested that the improved ethanol yield in strain SZ3-1 was mainly contributed by the enhanced ethanol tolerance of the strain. The differences in ethanol tolerance between strains Z5 and SZ3-1 were closely associated with the cell membrane fatty acid compositions and intracellular trehalose concentrations. Finally, genome rearrangements in the optimized strain were confirmed by karyotype analysis. Hence, a combination of genome shuffling and metabolic engineering is an efficient approach for the rapid improvement of yeast strains for desirable industrial phenotypes.
Collapse
|
44
|
Genetics and Regulation of Glycogen and Trehalose Metabolism in Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/978-3-642-21467-7_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
45
|
Extreme calorie restriction and energy source starvation in Saccharomyces cerevisiae represent distinct physiological states. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:2133-44. [PMID: 21803078 DOI: 10.1016/j.bbamcr.2011.07.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 07/07/2011] [Accepted: 07/15/2011] [Indexed: 01/28/2023]
Abstract
Cultivation methods used to investigate microbial calorie restriction often result in carbon and energy starvation. This study aims to dissect cellular responses to calorie restriction and starvation in Saccharomyces cerevisiae by using retentostat cultivation. In retentostats, cells are continuously supplied with a small, constant carbon and energy supply, sufficient for maintenance of cellular viability and integrity but insufficient for growth. When glucose-limited retentostats cultivated under extreme calorie restriction were subjected to glucose starvation, calorie-restricted and glucose-starved cells were found to share characteristics such as increased heat-shock tolerance and expression of quiescence-related genes. However, they also displayed strikingly different features. While calorie-restricted yeast cultures remained metabolically active and viable for prolonged periods of time, glucose starvation resulted in rapid consumption of reserve carbohydrates, population heterogeneity due to appearance of senescent cells and, ultimately, loss of viability. Moreover, during starvation, calculated rates of ATP synthesis from reserve carbohydrates were 2-3 orders of magnitude lower than steady-state ATP-turnover rates calculated under extreme calorie restriction in retentostats. Stringent reduction of ATP turnover during glucose starvation was accompanied by a strong down-regulation of genes involved in protein synthesis. These results demonstrate that extreme calorie restriction and carbon starvation represent different physiological states in S. cerevisiae.
Collapse
|
46
|
The effect of trehalose on the fermentation performance of aged cells of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2011; 90:697-704. [DOI: 10.1007/s00253-010-3053-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 11/19/2010] [Accepted: 11/28/2010] [Indexed: 10/18/2022]
|
47
|
Fernandez O, Béthencourt L, Quero A, Sangwan RS, Clément C. Trehalose and plant stress responses: friend or foe? TRENDS IN PLANT SCIENCE 2010; 15:409-17. [PMID: 20494608 DOI: 10.1016/j.tplants.2010.04.004] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 04/06/2010] [Accepted: 04/22/2010] [Indexed: 05/18/2023]
Abstract
The disaccharide trehalose is involved in stress response in many organisms. However, in plants, its precise role remains unclear, although some data indicate that trehalose has a protective role during abiotic stresses. By contrast, some trehalose metabolism mutants exhibit growth aberrations, revealing potential negative effects on plant physiology. Contradictory effects also appear under biotic stress conditions. Specifically, trehalose is essential for the infectivity of several pathogens but at the same time elicits plant defense. Here, we argue that trehalose should not be regarded only as a protective sugar but rather like a double-faced molecule and that further investigation is required to elucidate its exact role in stress tolerance in plants.
Collapse
Affiliation(s)
- Olivier Fernandez
- Université de Reims Champagne Ardenne, Unité de Recherche Vignes et Vins de Champagne - Stress et Environnement (EA 2069), UFR Sciences Exactes et Naturelles, BP 1039, 51687 Reims Cedex 2, France
| | | | | | | | | |
Collapse
|
48
|
He S, Bystricky K, Leon S, François JM, Parrou JL. The Saccharomyces cerevisiae vacuolar acid trehalase is targeted at the cell surface for its physiological function. FEBS J 2009; 276:5432-46. [PMID: 19703229 DOI: 10.1111/j.1742-4658.2009.07227.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previous studies in the yeast Saccharomyces cerevisiae have proposed a vacuolar localization for Ath1, which is difficult to reconcile with its ability to hydrolyze exogenous trehalose. We used fluorescent microscopy to show that the red fluorescent protein mCherry fused to the C-terminus of Ath1, although mostly localized in the vacuole, was also targeted to the cell surface. Also, hybrid Ath1 truncates fused at their C-terminus with the yeast internal invertase revealed that a 131 amino acid N-terminal fragment of Ath1was sufficient to target the fusion protein to the cell surface, enabling growth of the suc2Delta mutant on sucrose. The unique transmembrane domain appeared to be indispensable for the production of a functional Ath1, and its removal abrogated invertase secretion and growth on sucrose. Finally, the physiological significance of the cell-surface localization of Ath1 was established by showing that fusion of the signal peptide of invertase to N-terminal truncated Ath1 allowed the ath1Delta mutant to grow on trehalose, whereas the signal sequence of the vacuolar-targeted Pep4 constrained Ath1 in the vacuole and prevented growth of this mutant on trehalose. Use of trafficking mutants that impaired Ath1 delivery to the vacuole abrogated neither its activity nor its growth on exogenous trehalose.
Collapse
Affiliation(s)
- Susu He
- University of Toulouse, INSA, UPS, INP & INRA, France
| | | | | | | | | |
Collapse
|
49
|
Mahmud SA, Hirasawa T, Shimizu H. Differential importance of trehalose accumulation in Saccharomyces cerevisiae in response to various environmental stresses. J Biosci Bioeng 2009; 109:262-6. [PMID: 20159575 DOI: 10.1016/j.jbiosc.2009.08.500] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 08/26/2009] [Accepted: 08/26/2009] [Indexed: 10/20/2022]
Abstract
Trehalose is believed to play an important role in stress tolerance in the yeast Saccharomyces cerevisiae. In this research, the responses to various environmental stresses, such as high ethanol concentration, heat, oxidative, and freezing stresses, were investigated in a strain with deletion of the NTH1, NTH2, and ATH1 genes encoding trehalases that are involved in trehalose degradation and the triple deletion strains overexpressing TPS1 or TPS2, both of which encode trehalose biosynthesis enzymes in S. cerevisiae. The contents of trehalose constitutively accumulated in the TPS1- and TPS2-overexpressing triple deletion strains were higher than that in the original triple deletion strain. High trehalose accumulation and growth activity were observed in the TPS2-overexpressing triple deletion strain after ethanol stress induction. The same was also observed in the triple deletion and the TPS1- and TPS2-overexpressing triple deletion strains after heat stress induction. In case of freezing stress, all the recombinant strains with high constitutive trehalose content showed high tolerance. However, in case of oxidative stress, trehalose accumulation could not make the yeast cells tolerant. Our results indicated that high trehalose accumulation can make yeast cells resistant to multiple stresses, but the importance of this accumulation before or after stress induction is varied depending on the type of stress.
Collapse
Affiliation(s)
- Siraje Arif Mahmud
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
50
|
Garre E, Matallana E. The three trehalases Nth1p, Nth2p and Ath1p participate in the mobilization of intracellular trehalose required for recovery from saline stress in Saccharomyces cerevisiae. MICROBIOLOGY-SGM 2009; 155:3092-3099. [PMID: 19520725 DOI: 10.1099/mic.0.024992-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Trehalose accumulation is a common response to several stresses in the yeast Saccharomyces cerevisiae. This metabolite protects proteins and membrane lipids from structural damage and helps cells to maintain integrity. Based on genetic studies, degradation of trehalose has been proposed as a required mechanism for growth recovery after stress, and the neutral trehalase Nth1p as the unique degradative activity involved. Here we constructed a collection of mutants for several trehalose metabolism and transport genes and analysed their growth and trehalose mobilization profiles during experiments of saline stress recovery. The behaviour of the triple Deltanth1Deltanth2Deltaath1 and quadruple Deltanth1Deltanth2Deltaath1Deltaagt1 mutant strains in these experiments demonstrates the participation of the three known yeast trehalases Nth1p, Nth2p and Ath1p in the mobilization of intracellular trehalose during growth recovery after saline stress, rules out the participation of the Agt1p H(+)-disaccharide symporter, and allows us to propose the existence of additional new mechanisms for trehalose mobilization after saline stress.
Collapse
Affiliation(s)
- Elena Garre
- Departamento de Bioquímica y Biología Molecular, Universitat de València, and Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Valencia, Spain
| | - Emilia Matallana
- Departamento de Bioquímica y Biología Molecular, Universitat de València, and Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Valencia, Spain
| |
Collapse
|