1
|
Pawlos M, Szajnar K, Znamirowska-Piotrowska A. Probiotic Milk and Oat Beverages with Increased Protein Content: Survival of Probiotic Bacteria Under Simulated In Vitro Digestion Conditions. Nutrients 2024; 16:3673. [PMID: 39519506 PMCID: PMC11547824 DOI: 10.3390/nu16213673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The increasing prevalence of plant-based dietary preferences, driven by lactose intolerance, allergies, and adherence to vegan diets, has necessitated the exploration of alternative food matrices for probiotic delivery. OBJECTIVES This study aimed to evaluate the effects of whey protein isolate, pea protein isolate, and soy protein isolate on the viability of L. casei and L. johnsonii during simulated in vitro gastrointestinal digestion. Furthermore, the study investigated the impact of two distinct matrices-cow's milk and an oat-based beverage-on the survival of these probiotic strains. Fermented products were prepared using cow's milk and an oat-based beverage as matrices, with simulated digestion performed following a seven-day storage period at 5 °C. The in vitro digestion model encompassed oral, gastric, and small intestinal phases, with probiotic viability assessed using the plate-deep method at each stage. METHODS Before digestion, L. casei exhibited higher populations than L. johnsonii in both matrices. Including 3% soy and pea protein, isolates promoted the growth of L. casei in both fermented milk and oat beverages. However, a marked reduction in probiotic viability was observed during the gastric phase, with L. casei counts decreasing by 6.4-7.8 log cfu g-1 in fermented milk and 3.1-4 log cfu g-1 in oat beverages, while L. johnsonii demonstrated similar reductions. CONCLUSION These findings underscore the protective role of dairy components on probiotic viability, while the oat-based matrix exhibited a reduced capacity for sustaining probiotic populations throughout digestion. Future research should focus on optimizing plant-based matrices to enhance probiotic stability during gastrointestinal transit.
Collapse
Affiliation(s)
- Małgorzata Pawlos
- Department of Dairy Technology, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, Cwiklinskiej 2D, 35-601 Rzeszow, Poland; (K.S.); (A.Z.-P.)
| | | | | |
Collapse
|
2
|
Kato K, Serata M, Nakamura M, Ando M, Suzuki T, Okumura T. Cell wall polysaccharide enhances Lacticaseibacillus paracasei strain Shirota growth in milk and contributes to acid and bile tolerance. Int J Food Microbiol 2024; 422:110811. [PMID: 39018886 DOI: 10.1016/j.ijfoodmicro.2024.110811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/03/2024] [Accepted: 06/23/2024] [Indexed: 07/19/2024]
Abstract
LCPS-1, a cell wall polysaccharide (CWPS), is bound to the cell wall of the probiotic Lacticaseibacillus paracasei (formerly known as Lactobacillus casei) strain Shirota (LcS). Generally, the role of CWPS in the viability and survivability of bacteria is yet to be fully understood. This study aimed to elucidate the role of LCPS-1 in the viability and survivability of LcS. A mutant strain completely lacking LCPS-1 was constructed and evaluated for growth in bovine and soy milk and susceptibility to acid and bile. The growth of the mutant in bovine and soy milk temporarily stalled after the late logarithmic phase while wild-type LcS continued growing, resulting in a significantly lower number of viable cells for the mutant strain (p < 0.01). Significantly higher cell death relative to that of the wild-type strain was observed for the mutant strain following acid treatment at pH 3.0 (p < 0.01), with 60 and 92 % survival, respectively. The absence of LCPS-1 also reduced the survival rate of LcS cells from 3.3 to 0.8 % following 0.2 % bile treatment. The survival rate of the mutant after consecutive treatment with acid and bile was 19 %, while 73 % of the wild-type LcS survived. These results indicate that LCPS-1 leads to higher LcS growth in milk and improves tolerance to acid and bile. This study reveals the contribution of probiotic bacterial CWPS to acidic and gastrointestinal stress tolerance. Based on these findings, characterizing and modifying CWPS in probiotic strains could enhance manufacturing yields and improve gastrointestinal stress tolerance after consumption by hosts, ultimately advancing the development of more effective probiotics.
Collapse
Affiliation(s)
- Kosuke Kato
- Yakult Central Institute, 5-11 Izumi Kunitachi-shi, Tokyo 186-8650, Japan.
| | - Masaki Serata
- Yakult Central Institute, 5-11 Izumi Kunitachi-shi, Tokyo 186-8650, Japan
| | - Madoka Nakamura
- Yakult Central Institute, 5-11 Izumi Kunitachi-shi, Tokyo 186-8650, Japan
| | - Minoru Ando
- Yakult Central Institute, 5-11 Izumi Kunitachi-shi, Tokyo 186-8650, Japan
| | - Tomo Suzuki
- Yakult Central Institute, 5-11 Izumi Kunitachi-shi, Tokyo 186-8650, Japan
| | - Takekazu Okumura
- Yakult Central Institute, 5-11 Izumi Kunitachi-shi, Tokyo 186-8650, Japan
| |
Collapse
|
3
|
Zhu F, Hu S, Mei L. Production and quality evaluation of a novel γ-aminobutyric acid-enriched yogurt. Front Nutr 2024; 11:1404743. [PMID: 38784135 PMCID: PMC11112111 DOI: 10.3389/fnut.2024.1404743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Objective γ-aminobutyric acid (GABA) is a neurotransmitter inhibitor that has beneficial effects on various health conditions such as hypertension, cognitive dysfunction, and anxiety. In this study, we investigated a novel yogurt naturally enriched with GABA using a Levilactobacillus brevis strain isolated in our laboratory; the specific optimum yogurt production conditions for this strain were determined. Methods We isolated an L. brevis strain and used it to produce yogurt naturally enriched with GABA. We explored the optimal conditions to enhance GABA yield, including fermentation temperature, inoculation amount, L-monosodium glutamate (L-MSG) concentration, fermentation time, and sucrose content. We also performed mixed fermentation with Streptococcus thermophilus and evaluated the quality of the yogurt. Results Following optimization (43°C, 8% inoculation amount, 1.5 g/L L-MSG, and 8% sucrose for 40 h of fermentation), the GABA yield of the yogurt increased by 2.2 times, reaching 75.3 mg/100 g. Mixed fermentation with S. thermophilus demonstrated favorable results, achieving a GABA yield akin to that found in some commercially available functional foods. Moreover, the viable microbe count in the GABA-enriched yogurt exceeded 1 × 108 cfu/mL, which is higher than that of commercial standards. The yogurt also exhibited a suitable water-holding capacity, viscosity, 3-week storage time, and favorable sensory test results. Conclusion This study highlights the potential of naturally enriched GABA yogurt as a competitive commercial yogurt with beneficial health effects.
Collapse
Affiliation(s)
- Fei Zhu
- Department of Food Science, Zhejiang Pharmaceutical University, Ningbo, China
| | - Sheng Hu
- Country School of Biological and Chemical Engineering, NingboTech University, Ningbo, China
| | - Lehe Mei
- Jinhua Advanced Research Institute, Jinhua, China
- College of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Mukherjee A, Breselge S, Dimidi E, Marco ML, Cotter PD. Fermented foods and gastrointestinal health: underlying mechanisms. Nat Rev Gastroenterol Hepatol 2024; 21:248-266. [PMID: 38081933 DOI: 10.1038/s41575-023-00869-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 12/20/2023]
Abstract
Although fermentation probably originally developed as a means of preserving food substrates, many fermented foods (FFs), and components therein, are thought to have a beneficial effect on various aspects of human health, and gastrointestinal health in particular. It is important that any such perceived benefits are underpinned by rigorous scientific research to understand the associated mechanisms of action. Here, we review in vitro, ex vivo and in vivo studies that have provided insights into the ways in which the specific food components, including FF microorganisms and a variety of bioactives, can contribute to health-promoting activities. More specifically, we draw on representative examples of FFs to discuss the mechanisms through which functional components are produced or enriched during fermentation (such as bioactive peptides and exopolysaccharides), potentially toxic or harmful compounds (such as phytic acid, mycotoxins and lactose) are removed from the food substrate, and how the introduction of fermentation-associated live or dead microorganisms, or components thereof, to the gut can convey health benefits. These studies, combined with a deeper understanding of the microbial composition of a wider variety of modern and traditional FFs, can facilitate the future optimization of FFs, and associated microorganisms, to retain and maximize beneficial effects in the gut.
Collapse
Affiliation(s)
| | - Samuel Breselge
- Teagasc Food Research Centre, Moorepark, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Eirini Dimidi
- Department of Nutritional Sciences, King's College London, London, UK
| | - Maria L Marco
- Department of Food Science & Technology, University of California, Davis, CA, USA
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Cork, Ireland.
- APC Microbiome Ireland, Cork, Ireland.
- VistaMilk, Cork, Ireland.
| |
Collapse
|
5
|
Cook CM, Makino H, Kato K, Blonquist T, Derrig L, Shibata H. The probiotic Lacticaseibacillus paracasei strain Shirota (LcS) in a fermented milk beverage survives the gastrointestinal tract of generally healthy U.S. Adults. Int J Food Sci Nutr 2023; 74:645-653. [PMID: 37584253 DOI: 10.1080/09637486.2023.2246693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/17/2023]
Abstract
The probiotic strain Lacticaseibacillus paracasei (previously Lactobacillus casei) strain Shirota (LcS) has demonstrated its survivability in the gastrointestinal tract across populations in different countries. The objective of this study was to validate this survivability in the United States, where evidence is lacking. Faecal samples were collected from 26 healthy individuals (age: 32.0 ± 5.9 years) at baseline, after 7 and 14 days of daily consumption of 80 mL fermented milk containing 108 colony forming units (CFU) LcS/mL, and after a subsequent 14-days of no product consumption. Live LcS counts significantly (p < 0.001) increased after 7 and 14 days of product consumption (6.37 ± 1.18 and 5.24 ± 1.81 log10 CFU/g faeces, respectively) and returned to baseline in 87% of participants. These results indicate LcS survives passage through the gastrointestinal tract of generally healthy U.S. adults, providing support for its uniquely accumulated evidence of universal survival capacity in the gastrointestinal tract.
Collapse
|
6
|
Zaccaria E, Klaassen T, Alleleyn AME, Boekhorst J, Smokvina T, Kleerebezem M, Troost FJ. Endogenous small intestinal microbiome determinants of transient colonisation efficiency by bacteria from fermented dairy products: a randomised controlled trial. MICROBIOME 2023; 11:43. [PMID: 36879297 PMCID: PMC9990280 DOI: 10.1186/s40168-023-01491-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The effects of fermented food consumption on the small intestine microbiome and its role on host homeostasis are largely uncharacterised as our knowledge on intestinal microbiota relies mainly on faecal samples analysis. We investigated changes in small intestinal microbial composition and functionality, short chain fatty acid (SCFA) profiles, and on gastro-intestinal (GI) permeability in ileostomy subjects upon the consumption of fermented milk products. RESULTS We report the results from a randomised, cross-over, explorative study where 16 ileostomy subjects underwent 3, 2-week intervention periods. In each period, they consumed either milk fermented by Lacticaseibacillus rhamnosus CNCM I-3690, or milk fermented by Streptococcus thermophilus CNCM I-1630 and Lactobacillus delbrueckii subsp. bulgaricus CNCM I-1519, or a chemically acidified milk (placebo) daily. We performed metataxonomic, metatranscriptomic analysis, and SCFA profiling of ileostomy effluents as well as a sugar permeability test to investigate the microbiome impact of these interventions and their potential effect on mucosal barrier function. Consumption of the intervention products impacted the overall small intestinal microbiome composition and functionality, mainly due to the introduction of the product-derived bacteria that reach in several samples 50% of the total microbial community. The interventions did not affect the SCFA levels in ileostoma effluent, or gastro-intestinal permeability and the effects on the endogenous microbial community were negligible. The impact on microbiome composition was highly personalised, and we identified the poorly characterised bacterial family, Peptostreptococcaceae, to be positively associated with a low abundance of the ingested bacteria. Activity profiling of the microbiota revealed that carbon- versus amino acid-derived energy metabolism of the endogenous microbiome could be responsible for the individual-specific intervention effects on the small intestine microbiome composition and function, reflected also on urine microbial metabolites generated through proteolytic fermentation. CONCLUSIONS The ingested bacteria are the main drivers of the intervention effect on the small intestinal microbiota composition. Their transient abundance level is highly personalised and influenced by the energy metabolism of the ecosystem that is reflected by its microbial composition ( http://www. CLINICALTRIALS gov , ID NCT NCT02920294). Video Abstract.
Collapse
Affiliation(s)
- Edoardo Zaccaria
- Host Microbe Interactomics Group, Wageningen University & Research, De Elst 1, 6708WD, Wageningen, The Netherlands
- Food Innovation and Health, Center for Healthy Eating and Food Innovation, Maastricht University, Venlo, 5911AA, The Netherlands
| | - Tim Klaassen
- Food Innovation and Health, Center for Healthy Eating and Food Innovation, Maastricht University, Venlo, 5911AA, The Netherlands
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, P.O. Box 5800, 6202AZ, Maastricht, The Netherlands
| | - Annick M E Alleleyn
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, P.O. Box 5800, 6202AZ, Maastricht, The Netherlands
| | - Jos Boekhorst
- Host Microbe Interactomics Group, Wageningen University & Research, De Elst 1, 6708WD, Wageningen, The Netherlands
| | - Tamara Smokvina
- Danone Nutricia Research, Av. De la Vauve, 91767, Palaiseau, France
| | - Michiel Kleerebezem
- Host Microbe Interactomics Group, Wageningen University & Research, De Elst 1, 6708WD, Wageningen, The Netherlands.
| | - Freddy J Troost
- Food Innovation and Health, Center for Healthy Eating and Food Innovation, Maastricht University, Venlo, 5911AA, The Netherlands
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, P.O. Box 5800, 6202AZ, Maastricht, The Netherlands
| |
Collapse
|
7
|
Kairey L, Leech B, El-Assaad F, Bugarcic A, Dawson D, Lauche R. The effects of kefir consumption on human health: a systematic review of randomized controlled trials. Nutr Rev 2023; 81:267-286. [PMID: 35913411 DOI: 10.1093/nutrit/nuac054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
CONTEXT Kefir, a traditional, fermented-milk beverage, has increasingly been promoted for various health benefits. The evidence from systematic reviews, however, is limited. OBJECTIVE Evidence from randomized controlled trials testing oral consumption of fermented-milk kefir on any outcome of human health or disease. DATA SOURCES A systematic search of 4 electronic databases (PubMed, Scopus, Allied and Complementary Medicine Database, and Cochrane Trials) from inception to July 31, 2021, was conducted. DATA EXTRACTION Data extraction and risk-of-bias assessments were conducted by 2 reviewers independently. DATA ANALYSIS A total of 18 publications reporting the results of 16 studies were included. Per the narrative analysis, fermented-milk kefir may have potential as a complementary therapy in reducing oral Streptococcus mutans, thereby reducing dental caries risk, and in Helicobacter pylori eradication therapy. Kefir may further aid treatment of adult dyslipidemia and hypertension, although evidence was very limited. Safety was only assessed in 5 of the 18 included publications, and 12 of the studies had an overall high risk for bias. CONCLUSION Kefir is a dairy product with a unique microbiological profile that appears to be a safe for generally healthy populations to consume. However, efficacy and safety data from high-quality human trials are essential before any recommendations may be made for conditions of the oral and gastric microbiota and metabolic health. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42020211494.
Collapse
Affiliation(s)
- Lana Kairey
- are with the National Centre for Naturopathic Medicine, Southern Cross University, Lismore, New South Wales, Australia
| | - Bradley Leech
- are with the National Centre for Naturopathic Medicine, Southern Cross University, Lismore, New South Wales, Australia
| | - Fatima El-Assaad
- is with the University of New South Wales (UNSW) Microbiome Research Centre, St George and Sutherland Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Andrea Bugarcic
- are with the National Centre for Naturopathic Medicine, Southern Cross University, Lismore, New South Wales, Australia
| | - Drew Dawson
- is with the Central Queensland University, Wayville, South Australia, Australia
| | - Romy Lauche
- are with the National Centre for Naturopathic Medicine, Southern Cross University, Lismore, New South Wales, Australia
| |
Collapse
|
8
|
Zaccaria E, Klaassen T, Alleleyn AM, Boekhorst J, Chervaux C, Smokvina T, Troost FJ, Kleerebezem M. L. rhamnosus CNCM I-3690 survival, adaptation, and small bowel microbiome impact in human. Gut Microbes 2023; 15:2244720. [PMID: 37589280 PMCID: PMC10438856 DOI: 10.1080/19490976.2023.2244720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/05/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023] Open
Abstract
Fermented foods and beverages are a significant source of dietary bacteria that enter the gastrointestinal (GI) tract. However, little is known about how these microbes survive and adapt to the small intestinal environment. Colony-forming units (CFU) enumeration and viability qPCR of Lacticaseibacillus rhamnosus CNCM I-3690 in the ileal effluent of 10 ileostomy subjects during 12-h post consumption of a dairy product fermented with this strain demonstrated the high level of survival of this strain during human small intestine passage. Metatranscriptome analyses revealed the in situ transcriptome of L. rhamnosus in the small intestine, which was contrasted with transcriptome data obtained from in vitro cultivation. These comparative analyses revealed substantial metabolic adaptations of L. rhamnosus during small intestine transit, including adjustments of carbohydrate metabolism, surface-protein expression, and translation machinery. The prominent presence of L. rhamnosus in the effluent samples did not elicit an appreciable effect on the composition of the endogenous small intestine microbiome, but significantly altered the ecosystem's overall activity profile, particularly of pathways associated with carbohydrate metabolism. Strikingly, two of the previously recognized gut-brain metabolic modules expressed in situ by L. rhamnosus (inositol degradation and glutamate synthesis II) are among the most dominantly enriched activities in the ecosystem's activity profile. This study establishes the survival capacity of L. rhamnosus in the human small intestine and highlights its functional adjustment in situ, which we postulate to play a role in the probiotic effects associated with this strain.
Collapse
Affiliation(s)
- Edoardo Zaccaria
- Host Microbe Interactomics Group, Wageningen University & Research, Wageningen, The Netherlands
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Tim Klaassen
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
- Food Innovation and Health, Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Venlo, The Netherlands
| | - Annick M.E. Alleleyn
- Food Innovation and Health, Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Venlo, The Netherlands
| | - Jos Boekhorst
- Host Microbe Interactomics Group, Wageningen University & Research, Wageningen, The Netherlands
| | | | - Tamara Smokvina
- Danone Nutricia Research, Centre Daniel Carasso, Palaiseau, France
| | - Freddy J. Troost
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Michiel Kleerebezem
- Host Microbe Interactomics Group, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
9
|
Relationship between gut microbiota and colorectal cancer: Probiotics as a potential strategy for prevention. Food Res Int 2022; 156:111327. [DOI: 10.1016/j.foodres.2022.111327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/15/2022]
|
10
|
Fiore G, Di Profio E, Sculati M, Verduci E, Zuccotti GV. Health effects of yogurt consumption during paediatric age: a narrative review. Int J Food Sci Nutr 2022; 73:738-759. [PMID: 35450518 DOI: 10.1080/09637486.2022.2065467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Yogurt is a fermented milk product characterised by a peculiar nutritional composition with live and viable cultures of bacteria. Few studies have analysed the benefits of yogurt consumption on health outcomes during paediatric age. Recent epidemiological studies evaluating the nutritional impact of yogurt have demonstrated its significant contribution to nutrients intakes among children. Thus, consuming yogurt is a strategy to achieve recommended nutrient intake and healthier dietary choices, with potential impact on obesity and cardiometabolic outcome in children. Yogurt's effects on paediatric infectious diseases, gastrointestinal diseases and atopic-related disorders are ascribed to the specific probiotic strain administered. Interestingly, the benefits of yogurt consumption are most likely due to effects mediated through the gut microbiota and the enhancement of innate and adaptive immune responses. Therefore, supplementing standard yogurt cultures with probiotic strains could be useful to promote health at different paediatric ages, although more evidence is needed regarding the strain-related effects and their interplay within the paediatric immune system.
Collapse
Affiliation(s)
- Giulia Fiore
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy.,Department of Health, Animal Science and Food Safety, University of Milan, Milan, Italy
| | - Elisabetta Di Profio
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy.,Department of Health, Animal Science and Food Safety, University of Milan, Milan, Italy
| | - Michele Sculati
- Department of Public Health, Experimental and Forensic Medicine, Master Course in Dietetics and Clinical Nutrition, University of Pavia, Pavia, Italy.,Italian Danone Institute Foundation, Milan, Italy
| | - Elvira Verduci
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy.,Department of Health Sciences, University of Milan, Milan, Italy
| | - Gian Vincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy.,Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
11
|
Le Roy CI, Kurilshikov A, Leeming ER, Visconti A, Bowyer RCE, Menni C, Fachi M, Koutnikova H, Veiga P, Zhernakova A, Derrien M, Spector TD. Yoghurt consumption is associated with changes in the composition of the human gut microbiome and metabolome. BMC Microbiol 2022; 22:39. [PMID: 35114943 PMCID: PMC8812230 DOI: 10.1186/s12866-021-02364-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 10/18/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Yoghurt contains live bacteria that could contribute via modulation of the gut microbiota to its reported beneficial effects such as reduced body weight gain and lower incidence of type 2 diabetes. To date, the association between yoghurt consumption and the composition of the gut microbiota is underexplored. Here we used clinical variables, metabolomics, 16S rRNA and shotgun metagenomic sequencing data collected on over 1000 predominantly female UK twins to define the link between the gut microbiota and yoghurt-associated health benefits. RESULTS According to food frequency questionnaires (FFQ), 73% of subjects consumed yoghurt. Consumers presented a healthier diet pattern (healthy eating index: beta = 2.17 ± 0.34; P = 2.72x10-10) and improved metabolic health characterised by reduced visceral fat (beta = -28.18 ± 11.71 g; P = 0.01). According to 16S rRNA gene analyses and whole shotgun metagenomic sequencing approach consistent taxonomic variations were observed with yoghurt consumption. More specifically, we identified higher abundance of species used as yoghurt starters Streptococcus thermophilus (beta = 0.41 ± 0.051; P = 6.14x10-12) and sometimes added Bifidobacterium animalis subsp. lactis (beta = 0.30 ± 0.052; P = 1.49x10-8) in the gut of yoghurt consumers. Replication in 1103 volunteers from the LifeLines-DEEP cohort confirmed the increase of S. thermophilus among yoghurt consumers. Using food records collected the day prior to faecal sampling we showed than an increase in these two yoghurt bacteria could be transient. Metabolomics analysis revealed that B. animalis subsp. lactis was associated with 13 faecal metabolites including a 3-hydroxyoctanoic acid, known to be involved in the regulation of gut inflammation. CONCLUSIONS Yoghurt consumption is associated with reduced visceral fat mass and changes in gut microbiome including transient increase of yoghurt-contained species (i.e. S. thermophilus and B. lactis).
Collapse
Affiliation(s)
- Caroline Ivanne Le Roy
- Department of Twin Research & Genetic Epidemiology, King’s College London, London, SE1 7EH UK
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Emily R. Leeming
- Department of Twin Research & Genetic Epidemiology, King’s College London, London, SE1 7EH UK
| | - Alessia Visconti
- Department of Twin Research & Genetic Epidemiology, King’s College London, London, SE1 7EH UK
| | - Ruth C. E. Bowyer
- Department of Twin Research & Genetic Epidemiology, King’s College London, London, SE1 7EH UK
| | - Cristina Menni
- Department of Twin Research & Genetic Epidemiology, King’s College London, London, SE1 7EH UK
| | - Mario Fachi
- Department of Twin Research & Genetic Epidemiology, King’s College London, London, SE1 7EH UK
| | | | | | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Tim D. Spector
- Department of Twin Research & Genetic Epidemiology, King’s College London, London, SE1 7EH UK
| |
Collapse
|
12
|
Mariam SH. A sampling survey of enterococci within pasteurized, fermented dairy products and their virulence and antibiotic resistance properties. PLoS One 2021; 16:e0254390. [PMID: 34264984 PMCID: PMC8282027 DOI: 10.1371/journal.pone.0254390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/28/2021] [Indexed: 01/17/2023] Open
Abstract
Globally, fermented foods (FFs), which may be traditional or industrially-produced, are major sources of nutrition. In the traditional practice, the fermentation process is driven by communities of virtually uncharacterized microflora indigenous to the food substrate. Some of these flora can have virulent or antibiotic resistance properties, posing risk to consumers. Others, such as Enterococcus faecalis and Enterococcus faecium, may also be found in such foods. Enterococci that harbor antibiotic resistance or virulence factors can cycle among animals, food, humans and the environment, thereby transferring these harmful properties at the gene level to harmless commensals in the food matrix, animals and humans. In this work, several microbial isolates obtained from different FF sources were analyzed for their identity and virulence and/or antibiotic resistance properties. For identification aiming at enterococci, isolates that were Gram-positive and catalase- and oxidase-negative were subjected to multiple tests including for growth in broth containing 6.5% NaCl, growth and hydrolytic activity on medium containing bile-esculin, hemolytic activity on blood agar, and growth at 45°C and survival after incubation at 60°C for 30 min. Furthermore, the isolates were tested for susceptibility/resistance to a select group of antibiotics. Finally, the isolates were molecularly-characterized with respect to species identity and presence of virulence-encoding genes by amplification of target genes. Most sources contained enterococci, in addition to most of them also containing Gram-negative flora. Most of these also harbored virulence factors. Several isolates were also antibiotic-resistant. These results strongly suggest attention should be given to better control presence of such potentially pathogenic species.
Collapse
Affiliation(s)
- Solomon H. Mariam
- Aklilu Lemma Institute of Pathobiology, Armauer Hansen Research Institute, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
13
|
Abstract
Consumption of yogurt and other fermented products is associated with
improved health outcomes. Although dairy consumption is included in most
dietary guidelines, there have been few specific recommendations for yogurt
and cultured dairy products. A qualitative systematic review was conducted
to determine the effect of consumption of fermented milk products on
gastrointestinal and cardiovascular health, cancer risk, weight management,
diabetes and metabolic health, and bone density using PRISMA guidelines.
English language papers in PubMed were searched, with no date restrictions.
In total, 1057 abstracts were screened, of which 602 were excluded owing to
lack of appropriate controls, potential biases, and experimental design
issues. The remaining 455 papers were independently reviewed by both authors
and 108 studies were included in the final review. The authors met regularly
to concur, through consensus, on relevance, methods, findings, quality, and
conclusions. The included studies were published between 1979 and 2017. From
the 108 included studies, 76 reported a favorable outcome of fermented milks
on health and 67 of these were considered to be positive or neutral quality
according to the Academy of Nutrition and Dietetics’ Quality
Criteria Checklist. Of the 32 remaining studies, the study outcomes were
either not significant (28) or unfavorable (4), and most studies (18) were
of neutral quality. A causal relationship exists between lactose digestion
and tolerance and yogurt consumption, and consistent associations exist
between fermented milk consumption and reduced risk of breast and colorectal
cancer and type 2 diabetes, improved weight maintenance, and improved
cardiovascular, bone, and gastrointestinal health. Further, an association
exists between prostate cancer occurrence and dairy product consumption in
general, with no difference between fermented and unfermented products. This
article argues that yogurt and other fermented milk products provide
favorable health outcomes beyond the milk from which these products are made
and that consumption of these products should be encouraged as part of
national dietary guidelines. Systematic review
registration: PROSPERO registration no.
CRD42017068953.
Collapse
Affiliation(s)
- Dennis A Savaiano
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana, USA
| | - Robert W Hutkins
- Department of Food Science and Technology, 258 Food Innovation Center, University of Nebraska, Lincoln, Nebraska, USA
| |
Collapse
|
14
|
Development of coffee kombucha containing Lactobacillus rhamnosus and Lactobacillus casei: Gastrointestinal simulations and DNA microbial analysis. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110980] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Marco ML, Sanders ME, Gänzle M, Arrieta MC, Cotter PD, De Vuyst L, Hill C, Holzapfel W, Lebeer S, Merenstein D, Reid G, Wolfe BE, Hutkins R. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods. Nat Rev Gastroenterol Hepatol 2021; 18:196-208. [PMID: 33398112 PMCID: PMC7925329 DOI: 10.1038/s41575-020-00390-5] [Citation(s) in RCA: 255] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2020] [Indexed: 02/07/2023]
Abstract
An expert panel was convened in September 2019 by The International Scientific Association for Probiotics and Prebiotics (ISAPP) to develop a definition for fermented foods and to describe their role in the human diet. Although these foods have been consumed for thousands of years, they are receiving increased attention among biologists, nutritionists, technologists, clinicians and consumers. Despite this interest, inconsistencies related to the use of the term 'fermented' led the panel to define fermented foods and beverages as "foods made through desired microbial growth and enzymatic conversions of food components". This definition, encompassing the many varieties of fermented foods, is intended to clarify what is (and is not) a fermented food. The distinction between fermented foods and probiotics is further clarified. The panel also addressed the current state of knowledge on the safety, risks and health benefits, including an assessment of the nutritional attributes and a mechanistic rationale for how fermented foods could improve gastrointestinal and general health. The latest advancements in our understanding of the microbial ecology and systems biology of these foods were discussed. Finally, the panel reviewed how fermented foods are regulated and discussed efforts to include them as a separate category in national dietary guidelines.
Collapse
Affiliation(s)
- Maria L Marco
- Department of Food Science and Technology, University of California-Davis, Davis, CA, USA
| | - Mary Ellen Sanders
- International Scientific Association for Probiotics and Prebiotics, Centennial, CO, USA
| | - Michael Gänzle
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Canada
| | - Marie Claire Arrieta
- Department of Physiology and Pharmacology, International Microbiome Center, University of Calgary, Calgary, Canada
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- VistaMilk, Cork, Ireland
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Colin Hill
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland
| | - Wilhelm Holzapfel
- Advanced Green Energy and Environment Institute, Handong Global University, Pohang, Gyeongbuk, South Korea
| | - Sarah Lebeer
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Dan Merenstein
- Department of Family Medicine, Georgetown University, Washington, DC, USA
| | - Gregor Reid
- Lawson Health Research Institute, and Departments of Microbiology & Immunology and Surgery, University of Western Ontario, London, Ontario, Canada
| | | | - Robert Hutkins
- Department of Food Science and Technology, University of Nebraska - Lincoln, Lincoln, NE, USA.
| |
Collapse
|
16
|
Manzoor M, Sharma V, Singh D, Sohal JS, Aseri GK, Khare N, Vij S, Saroop J, Sharma D. Functional Pediococcus acidilactici BC1 for the revitalization of ethnic black carrot kanji of indian subcontinent. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Effects of a Fermented Dairy Drink Containing Lacticaseibacillus paracasei subsp. paracasei CNCM I-1518 ( Lactobacillus casei CNCM I-1518) and the Standard Yogurt Cultures on the Incidence, Duration, and Severity of Common Infectious Diseases: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2020; 12:nu12113443. [PMID: 33182682 PMCID: PMC7698120 DOI: 10.3390/nu12113443] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
There is considerable interest in the role of probiotics in immune function. The objective of this systematic review and meta-analysis was to assess the effects of the consumption of a fermented dairy drink containing Lacticaseibacillus paracasei subsp. paracasei CNCM I-1518 (the previous taxonomic nomenclature was Lactobacillus casei CNCM I-1518, prior to the nomenclature change in April 2020) and the standard yogurt cultures (hereinafter referred to collectively as “FDD”) on common infectious diseases (CIDs) in generally healthy children and adults. Nine literature databases were searched, and nine randomized controlled trials from eight publications were eligible for inclusion. Combined effect sizes were determined for three metrics of CID incidence, two metrics of CID duration, and one metric of CID severity. Compared to the control, the consumption of the FDD resulted in (1) a significant reduction in the odds of experiencing ≥1 CID (odds ratio (OR) (with a 95% confidence interval (CI)): 0.81 (0.66, 0.98); p = 0.029); (2) a significant reduction in mean CIDs per subject (−0.09 (−0.15, −0.04); p = 0.001); and (3) a trend towards reduced risk in cumulative CIDs (relative risk (RR): 0.91 (0.82, 1.01); p = 0.082). The consumption of the FDD had no significant effect on CID duration or severity. Based on the studies conducted thus far, these results suggest that the FDD may reduce CID incidence in the general population.
Collapse
|
18
|
Takada T, Chinda D, Mikami T, Shimizu K, Oana K, Hayamizu S, Miyazawa K, Arai T, Katto M, Nagara Y, Makino H, Kushiro A, Oishi K, Fukuda S. Dynamic analysis of human small intestinal microbiota after an ingestion of fermented milk by small-intestinal fluid perfusion using an endoscopic retrograde bowel insertion technique. Gut Microbes 2020; 11:1662-1676. [PMID: 32552401 PMCID: PMC7524281 DOI: 10.1080/19490976.2020.1766942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Probiotic products have been shown to have beneficial effects on human hosts, but what happens in the gastrointestinal tract after its ingestion remains unclear. Our aim was to investigate the changes within the small intestines after a single intake of a fermented milk product containing a probiotic. We have periodically collected the small-intestinal fluids from the terminal ileum of seven healthy subjects for up to 7 h after ingestion by small-intestinal fluid perfusion using an endoscopic retrograde bowel insertion technique. The bacterial composition of the terminal ileum clearly revealed that the ingested probiotics (Lactobacillus casei strain Shirota: LcS and Bifidobacterium breve strain Yakult: BbrY) occupied the ileal microbiota for several hours, temporarily representing over 90% of the ileal microbiota in several subjects. Cultivation of ileal fluids showed that under a dramatic pH changes before reaching the terminal ileum, a certain number of the ingested bacteria survived (8.2 ± 6.4% of LcS, 7.8 ± 11.0% of BbrY). This means that more than 1 billion LcS and BbrY cells reached the terminal ileum with their colony-forming ability intact. These results indicate that there is adequate opportunity for the ingested probiotics to continuously stimulate the host cells in the small intestines. Our data suggest that probiotic fermented milk intake affects intestinal microbes and the host, explaining part of the process from the intake of probiotics to the exertion of their beneficial effects on the host.
Collapse
Affiliation(s)
- Toshihiko Takada
- Laboratory of Applied Microbiology, Microbiological Research Department, Yakult Central Institute, Tokyo, Japan,CONTACT Toshihiko Takada Laboratory of Applied Microbiology, Microbiological Research Department, Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo, 186-8650, Japan
| | - Daisuke Chinda
- Laboratory of Gastroenterology and Hematology, Graduate School of Medicine, Hirosaki University, Aomori, Japan
| | - Tatsuya Mikami
- Laboratory of Gastroenterology and Hematology, Graduate School of Medicine, Hirosaki University, Aomori, Japan
| | - Kensuke Shimizu
- Laboratory of Applied Microbiology, Microbiological Research Department, Yakult Central Institute, Tokyo, Japan
| | - Kosuke Oana
- Laboratory of Applied Microbiology, Microbiological Research Department, Yakult Central Institute, Tokyo, Japan
| | - Shiro Hayamizu
- Laboratory of Gastroenterology and Hematology, Graduate School of Medicine, Hirosaki University, Aomori, Japan
| | - Kuniaki Miyazawa
- Laboratory of Gastroenterology and Hematology, Graduate School of Medicine, Hirosaki University, Aomori, Japan
| | - Tetsu Arai
- Laboratory of Gastroenterology and Hematology, Graduate School of Medicine, Hirosaki University, Aomori, Japan
| | - Miyuki Katto
- Laboratory of Applied Microbiology, Microbiological Research Department, Yakult Central Institute, Tokyo, Japan
| | - Yusuke Nagara
- Laboratory of Applied Microbiology, Microbiological Research Department, Yakult Central Institute, Tokyo, Japan
| | - Hiroshi Makino
- Laboratory of Applied Microbiology, Microbiological Research Department, Yakult Central Institute, Tokyo, Japan
| | - Akira Kushiro
- Laboratory of Applied Microbiology, Microbiological Research Department, Yakult Central Institute, Tokyo, Japan
| | - Kenji Oishi
- Laboratory of Applied Microbiology, Microbiological Research Department, Yakult Central Institute, Tokyo, Japan
| | - Shinsaku Fukuda
- Laboratory of Gastroenterology and Hematology, Graduate School of Medicine, Hirosaki University, Aomori, Japan
| |
Collapse
|
19
|
Safety and functional enrichment of gut microbiome in healthy subjects consuming a multi-strain fermented milk product: a randomised controlled trial. Sci Rep 2020; 10:15974. [PMID: 32994487 PMCID: PMC7524715 DOI: 10.1038/s41598-020-72161-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 08/24/2020] [Indexed: 02/08/2023] Open
Abstract
Many clinical studies have evaluated the effect of probiotics, but only a few have assessed their dose effects on gut microbiota and host. We conducted a randomized, double-blind, controlled intervention clinical trial to assess the safety (primary endpoint) of and gut microbiota response (secondary endpoint) to the daily ingestion for 4 weeks of two doses (1 or 3 bottles/day) of a fermented milk product (Test) in 96 healthy adults. The Test product is a multi-strain fermented milk product, combining yogurt strains and probiotic candidate strains Lactobacillus paracasei subsp. paracasei CNCM I-1518 and CNCM I-3689 and Lactobacillus rhamnosus CNCM I-3690. We assessed the safety of the Test product on the following parameters: adverse events, vital signs, hematological and metabolic profile, hepatic, kidney or thyroid function, inflammatory markers, bowel habits and digestive symptoms. We explored the longitudinal gut microbiota response to product consumption and dose, by 16S rRNA gene sequencing and functional contribution by shotgun metagenomics. Safety results did not show any significant difference between the Test and Control products whatever the parameters assessed, at the two doses ingested daily over a 4-week-period. Probiotic candidate strains were detected only during consumption period, and at a significantly higher level for the three strains in subjects who consumed 3 products bottles/day. The global structure of the gut microbiota as assessed by alpha and beta-diversity, was not altered by consumption of the product for four weeks. A zero-inflated beta regression model with random effects (ZIBR) identified a few bacterial genera with differential responses to test product consumption dose compared to control. Shotgun metagenomics analysis revealed a functional contribution to the gut microbiome of probiotic candidates.
Collapse
|
20
|
Hori T, Matsuda K, Oishi K. Probiotics: A Dietary Factor to Modulate the Gut Microbiome, Host Immune System, and Gut-Brain Interaction. Microorganisms 2020; 8:microorganisms8091401. [PMID: 32933067 PMCID: PMC7563712 DOI: 10.3390/microorganisms8091401] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/26/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
Various benefits of probiotics to the host have been shown in numerous human clinical trials. These organisms have been proposed to act by improving the balance of the gut microbiota and enhancing the production of short-chain fatty acids, as well as by interacting with host cells in the gastrointestinal tract, including immune cells, nerve cells, and endocrine cells. Although the stimulation of host cells by probiotics and subsequent signaling have been explained by in vitro experiments and animal studies, there has been some skepticism as to whether probiotics can actually interact with host cells in the human gastrointestinal tract, where miscellaneous indigenous bacteria coexist. Most recently, it has been shown that the ileal microbiota in humans after consumption of a fermented milk is occupied by probiotics for several hours, indicating that there is adequate opportunity for the ingested strain to stimulate the host cells continuously over a period of time. As the dynamics of ingested probiotics in the human gastrointestinal tract become clearer, further progress in this research area is expected to elucidate their behavior within the tract, as well as the mechanism of their physiological effects on the host.
Collapse
|
21
|
Gutierrez-Merino J, Isla B, Combes T, Martinez-Estrada F, Maluquer De Motes C. Beneficial bacteria activate type-I interferon production via the intracellular cytosolic sensors STING and MAVS. Gut Microbes 2020; 11:771-788. [PMID: 31941397 PMCID: PMC7524384 DOI: 10.1080/19490976.2019.1707015] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023] Open
Abstract
Type-I interferon (IFN-I) cytokines are produced by immune cells in response to microbial infections, cancer and autoimmune diseases, and subsequently, trigger cytoprotective and antiviral responses through the activation of IFN-I stimulated genes (ISGs). The ability of intestinal microbiota to modulate innate immune responses is well known, but the mechanisms underlying such responses remain elusive. Here we report that the intracellular sensors stimulator of IFN genes (STING) and mitochondrial antiviral signaling (MAVS) are essential for the production of IFN-I in response to lactic acid bacteria (LAB), common gut commensal bacteria with beneficial properties. Using human macrophage cells we show that LAB strains that potently activate the inflammatory transcription factor NF-κB are poor inducers of IFN-I and conversely, those triggering significant amounts of IFN-I fail to activate NF-κB. This IFN-I response is also observed in human primary macrophages, which modulate CD64 and CD40 upon challenge with IFN-I-inducing LAB. Mechanistically, IFN-I inducers interact more intimately with phagocytes as compared to NF-κB-inducers, and fail to activate IFN-I in the presence of phagocytosis inhibitors. These bacteria are then sensed intracellularly by the cytoplasmic sensors STING and, to a lesser extent, MAVS. Accordingly, macrophages deficient for STING showed dramatically reduced phosphorylation of TANK-binding kinase (TBK)-1 and IFN-I activation, which resulted in lower expression of ISGs. Our findings demonstrate a major role for intracellular sensing and STING in the production of IFN-I by beneficial bacteria and the existence of bacteria-specific immune signatures, which can be exploited to promote cytoprotective responses and prevent overreactive NF-κB-dependent inflammation in the gut.
Collapse
Affiliation(s)
| | - Beatriz Isla
- School of Biosciences and Medicine, University of Surrey, GU2 7XH Guildford, UK
| | - Theo Combes
- School of Biosciences and Medicine, University of Surrey, GU2 7XH Guildford, UK
| | | | | |
Collapse
|
22
|
Eor JY, Tan PL, Son YJ, Lee CS, Kim SH. Milk products fermented by
Lactobacillus
strains modulate the gut–bone axis in an ovariectomised murine model. INT J DAIRY TECHNOL 2020. [DOI: 10.1111/1471-0307.12708] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ju Young Eor
- College of Life Sciences and Biotechnology Korea University Seoul 02841 South Korea
- Institute of Life Science and Natural Resources Korea University Seoul136‐713South Korea
| | - Pei Lei Tan
- College of Life Sciences and Biotechnology Korea University Seoul 02841 South Korea
| | - Yoon Ji Son
- College of Life Sciences and Biotechnology Korea University Seoul 02841 South Korea
- Institute of Life Science and Natural Resources Korea University Seoul136‐713South Korea
| | - Chul Sang Lee
- College of Life Sciences and Biotechnology Korea University Seoul 02841 South Korea
| | - Sae Hun Kim
- College of Life Sciences and Biotechnology Korea University Seoul 02841 South Korea
- Institute of Life Science and Natural Resources Korea University Seoul136‐713South Korea
| |
Collapse
|
23
|
Fehlbaum S, Chassard C, Schwab C, Voolaid M, Fourmestraux C, Derrien M, Lacroix C. In vitro Study of Lactobacillus paracasei CNCM I-1518 in Healthy and Clostridioides difficile Colonized Elderly Gut Microbiota. Front Nutr 2019; 6:184. [PMID: 31921877 PMCID: PMC6914822 DOI: 10.3389/fnut.2019.00184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/22/2019] [Indexed: 12/16/2022] Open
Abstract
Consumption of probiotic bacteria can result in a transient colonization of the human gut and thereby in potential interactions with the commensal microbiota. In this study, we used novel PolyFermS continuous fermentation models to investigate interactions of the candidate probiotic strain Lactobacillus paracasei CNCM I-1518 (L. paracasei) with colonic microbiota from healthy elderly subjects using 16S rRNA gene amplicon sequencing and metatranscriptomics, or with microbiota in vitro-colonized with Clostridioides difficile (C. difficile NCTC 13307 and C. difficile DSM 1296)—an enteropathogen prevalent in the elderly population. Small changes in microbiota composition were detected upon daily addition of L. paracasei, including increased abundances of closely related genera Lactobacillus and Enterococcus, and of the butyrate producer Faecalibacterium. Microbiota gene expression was also modulated by L. paracasei with distinct response of the Faecalibacterium transcriptome and an increase in carbohydrate utilization. However, no inhibitory effect of L. paracasei was observed on C. difficile colonization in the intestinal models under the tested conditions. Our data suggest that, in the in vitro experimental conditions tested and independent of the host, L. paracasei has modulatory effects on both the composition and function of elderly gut microbiota without affecting C. difficile growth and toxin production.
Collapse
Affiliation(s)
- Sophie Fehlbaum
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Christophe Chassard
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Clarissa Schwab
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Maarja Voolaid
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | | | | | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Cieplak T, Wiese M, Nielsen S, Van de Wiele T, van den Berg F, Nielsen DS. The Smallest Intestine (TSI)-a low volume in vitro model of the small intestine with increased throughput. FEMS Microbiol Lett 2019; 365:5104379. [PMID: 30247563 DOI: 10.1093/femsle/fny231] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/18/2018] [Indexed: 01/03/2023] Open
Abstract
There is a growing interest in understanding the fate and behaviour of probiotic microorganisms and bioactive compounds during passage of the human gastrointestinal tract (GIT). Here, we report the development of a small volume in vitro model called The smallest Intestine (TSI) with increased throughput focusing on simulating passage through the stomach and small intestine (SI). The basic TSI module consists of five reactors, with a working volume of 12 ml each. During the simulated passage through the SI, bile is absorbed and pH is adjusted to physiologically relevant values for duodenum, jejunum and ileum. A consortium of seven representative bacterial members of the ileum microbiota is included in the ileal stage of the model. The behaviour of three putative probiotic Lactobacillus strains during in vitro simulated upper GIT passage was tested in the model and results were compared to previous studies describing probiotic survival. It was found, that probiotic persistence is strongly related to whether food was ingested, but also to presence of the ileal microbiota, which significantly impacted probiotic survival. In conclusion, TSI allows testing a substantial number of samples, at low cost and short time, and is thus suitable as an in vitro screening platform.
Collapse
Affiliation(s)
- T Cieplak
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - M Wiese
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - S Nielsen
- Department of Plant and Environmental Sciences, Precision Engineering Workshop, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - T Van de Wiele
- CMET Center for Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - F van den Berg
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - D S Nielsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| |
Collapse
|
25
|
Toward an accessible and robust in vitro approach to evaluate bacterial viability in the upper gastro-intestinal tract: A Gastro-Intestinal Digestive Simulator (GIDS) combined with alternative methods to plating. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
26
|
Rettedal EA, Altermann E, Roy NC, Dalziel JE. The Effects of Unfermented and Fermented Cow and Sheep Milk on the Gut Microbiota. Front Microbiol 2019; 10:458. [PMID: 30930871 PMCID: PMC6423907 DOI: 10.3389/fmicb.2019.00458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/20/2019] [Indexed: 12/30/2022] Open
Abstract
A variety of fermented foods have been linked to improved human health, but their impacts on the gut microbiome have not been well characterized. Dairy products are one of the most popular fermented foods and are commonly consumed worldwide. One area we currently lack data on is how the process of fermentation changes the gut microbiota upon digestion. What is even less well characterized are the possible differences between cow and other mammals' milks. Our aim was to compare the impact of unfermented skim milk and fermented skim milk products (milk/yogurt) originating from two species (cow/sheep) on the gut microbiome using a rat model. Male Sprague-Dawley rats were fed a dairy-free diet supplemented with one of four treatment dairy drinks (cow milk, cow yogurt, sheep milk, sheep yogurt) for 2 weeks. The viable starter culture bacteria in the yogurts were depleted in this study to reduce their potential influence on gut bacterial communities. At the end of the study, cecal samples were collected and the bacterial community profiles determined via 16S rRNA high-throughput sequencing. Fermentation status drove the composition of the bacterial communities to a greater extent than their animal origin. While overall community alpha diversity did not change among treatment groups, the abundance of a number of taxa differed. The cow milk supplemented treatment group was distinct, with a higher intragroup variability and a distinctive taxonomic composition. Collinsella aerofaciens was of particularly high abundance (9%) for this group. Taxa such as Firmicutes and Lactobacillus were found in higher abundance in communities of rats fed with milk, while Proteobacteria, Bacteroidetes, and Parabacteroides were higher in yogurt fed rats. Collinsella was also found to be of higher abundance in both milk (vs. yogurt) and cows (vs. sheep). This research provides new insight into the effects of unfermented vs. fermented milk (yogurt) and animal origin on gut microbial composition in a healthy host. A number of differences in taxonomic abundance between treatment groups were observed. Most were associated with the effects of fermentation, but others the origin species, or in the case of cow milk, unique to the treatment group. Future studies focusing on understanding microbial metabolism and interactions, should help unravel what drives these differences.
Collapse
Affiliation(s)
- Elizabeth A. Rettedal
- Food Nutrition & Health Team, AgResearch (Grasslands Research Centre), Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Eric Altermann
- Food Nutrition & Health Team, AgResearch (Grasslands Research Centre), Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Nicole C. Roy
- Food Nutrition & Health Team, AgResearch (Grasslands Research Centre), Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
- The High-Value Nutrition National Science Challenge, Palmerston North, New Zealand
| | - Julie E. Dalziel
- Food Nutrition & Health Team, AgResearch (Grasslands Research Centre), Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
27
|
Radicioni M, Koirala R, Fiore W, Leuratti C, Guglielmetti S, Arioli S. Survival of L. casei DG ® (Lactobacillus paracasei CNCMI1572) in the gastrointestinal tract of a healthy paediatric population. Eur J Nutr 2018; 58:3161-3170. [PMID: 30498868 PMCID: PMC6842349 DOI: 10.1007/s00394-018-1860-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/14/2018] [Indexed: 01/17/2023]
Abstract
Purpose Ability to survive the digestive process is a major factor in determining the effectiveness of a probiotic. In this study, the ability of the probiotic L. casei DG® (Lactobacillus paracasei CNCMI1572) to survive gastrointestinal transit in healthy children was investigated for the first time. Methods Twenty children aged 3–12 years received L. casei DG® as drinkable solution of 1 × 109 colony forming units (CFU), once daily for 7 consecutive days. Recovery in faecal samples was evaluated at baseline and at different time-points during and after administration. Defecation frequency, faeces consistency, digestive function and product safety were also assessed. Results Nineteen (95%) of the 20 enrolled children presented viable L. casei DG® cells in their faeces at least once during the study, with a maximum count (mean 4.3 log10 CFU/g ± 2.3) reached between day 4 and 6 from the beginning of consumption. Notably, for 11 (57.9%) of the 19 children with viable cells, L. casei DG® survived in faecal samples up to 3 days after treatment end. Defecation frequency, faeces consistency and digestive function did not change considerably during or after study treatment. Safety of the study product was very good. Conclusions This study showed for the first time that L. casei DG® survives the gastrointestinal transit when ingested by children with a paediatric probiotic drinkable solution containing 1 × 109 CFU, and persists in the gut up to 3 days after the end of product intake, demonstrating resistance to gastric juices, hydrolytic enzymes and bile acids. Electronic supplementary material The online version of this article (10.1007/s00394-018-1860-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Milko Radicioni
- CROSS Research S.A., via F.A. Giorgioli 14, 6864, Arzo, Switzerland.
| | - Ranjan Koirala
- Department of Food, Environmental and Nutritional Science (DeFENS), University of Milan, Milan, Italy
| | - Walter Fiore
- SOFAR SpA, 20060, Milan, Trezzano Rosa, Italy.,Department of Food, Environmental and Nutritional Science (DeFENS), University of Milan, Milan, Italy
| | - Chiara Leuratti
- CROSS Research S.A., via F.A. Giorgioli 14, 6864, Arzo, Switzerland
| | - Simone Guglielmetti
- Department of Food, Environmental and Nutritional Science (DeFENS), University of Milan, Milan, Italy
| | - Stefania Arioli
- Department of Food, Environmental and Nutritional Science (DeFENS), University of Milan, Milan, Italy.
| |
Collapse
|
28
|
Reddy YS, Srivalliputturu SB, Bharatraj DK. The effect of lead (Pb) exposure and iron (Fe) deficiency on intestinal lactobacilli, E. coli and yeast: A study in experimental rats. J Occup Health 2018; 60:475-484. [PMID: 30210097 PMCID: PMC6281633 DOI: 10.1539/joh.2017-0267-oa] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 07/11/2018] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE The current study investigated the additive effect of oral lead (Pb) exposure and dietary iron (Fe) deficiency on intestinal lactobacilli, E. coli, and yeast in SD rats. METHODS Weanling rats were fed on control diet (CD) or iron deficient diet (ID) for 4 weeks, followed by oral Pb exposure for another 4 weeks. Lead exposure was withdrawn for 2 weeks, and then resumed after 2 weeks. Blood samples were collected to determine haemoglobin (Hb), serum iron, blood Pb and δ-Aminolevulenic acid dehydratase (ALAD) activity. Fecal samples were collected to enumerate the lactobacilli, E. coli and yeast population on selective agar media and determine Pb levels. RESULTS Hb and serum Fe levels decreased significantly in iron deficient rats. Pb exposed rats had a significant increase in blood Pb levels and decreased ALAD activity. The lactobacilli population was significantly decreased (p<0.05) in ID rats compared to the CD group. Further, a significant decrease in the lactobacilli population was observed in Pb exposed rats irrespective of the dietary regimen. Upon withdrawal of Pb exposure, lactobacilli increased significantly in both the CD+Pb and ID+Pb groups, whereas re-exposure to Pb decreased lactobacilli population. The E. coli and yeast populations were inconsistent among both the ID and Pb exposed rats compared to controls. Fecal Pb levels increased significantly in Pb exposed rats irrespective of diet. CONCLUSION An additive effect of dietary Fe deficiency and oral Pb exposure resulted in greater reductions in the intestinal lactobacilli population compared to either treatment alone. In addition, transient withdrawal of Pb exposure led to improved lactobacilli population irrespective of Fe status.
Collapse
|
29
|
Kok CR, Hutkins R. Yogurt and other fermented foods as sources of health-promoting bacteria. Nutr Rev 2018; 76:4-15. [DOI: 10.1093/nutrit/nuy056] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Car Reen Kok
- Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska, USA
| | - Robert Hutkins
- Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska, USA
| |
Collapse
|
30
|
Nakkarach A, Withayagiat U. Comparison of synbiotic beverages produced from riceberry malt extract using selected free and encapsulated probiotic lactic acid bacteria. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.anres.2018.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
McCabe LR, Parameswaran N. Advances in Probiotic Regulation of Bone and Mineral Metabolism. Calcif Tissue Int 2018; 102:480-488. [PMID: 29453726 PMCID: PMC5849527 DOI: 10.1007/s00223-018-0403-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 02/08/2018] [Indexed: 12/19/2022]
Abstract
Probiotics have been consumed by humans for thousands of years because they are beneficial for long-term storage of foods and promote the health of their host. Ingested probiotics reside in the gastrointestinal tract where they have many effects including modifying the microbiota composition, intestinal barrier function, and the immune system which result in systemic benefits to the host, including bone health. Probiotics benefit bone growth, density, and structure under conditions of dysbiosis, intestinal permeability, and inflammation (recognized mediators of bone loss and osteoporosis). It is likely that multiple mechanisms are involved in mediating probiotic signals from the gut to the bone. Studies indicate a role for the microbiota (composition and activity), intestinal barrier function, and immune cells in the signaling process. These mechanisms are not mutually exclusive, but rather, may synergize to provide benefits to the skeletal system of the host and serve as a starting point for investigation. Given that probiotics hold great promise for supporting bone health and are generally regarded as safe, future studies identifying mechanisms are warranted.
Collapse
Affiliation(s)
- Laura R McCabe
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
- Department of Radiology, Michigan State University, East Lansing, MI, USA.
- Biomedical Imaging Research Center, Michigan State University, East Lansing, MI, USA.
| | | |
Collapse
|
32
|
van Pijkeren JP, Barrangou R. Genome Editing of Food-Grade Lactobacilli To Develop Therapeutic Probiotics. Microbiol Spectr 2017; 5:10.1128/microbiolspec.BAD-0013-2016. [PMID: 28959937 PMCID: PMC5958611 DOI: 10.1128/microbiolspec.bad-0013-2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Indexed: 12/21/2022] Open
Abstract
Lactic acid bacteria have been used historically for food manufacturing mainly to ensure preservation via fermentation. More recently, lactic acid bacteria have been exploited to promote human health, and many strains serve as industrial workhorses. Recent advances in microbiology and molecular biology have contributed to understanding the genetic basis of many of their functional attributes. These include dissection of biochemical processes that drive food fermentation, and identification and characterization of health-promoting features that positively impact the composition and roles of microbiomes in human health. Recently, the advent of clustered regularly interspaced short palindromic repeat (CRISPR)-based technologies has revolutionized our ability to manipulate genomes, and we are on the cusp of a broad-scale genome editing revolution. Here, we discuss recent advances in genetic alteration of food-grade bacteria, with a focus on CRISPR-associated enzyme genome editing, single-stranded DNA recombineering, and the modification of bacteriophages. These tools open new avenues for the genesis of next-generation biotherapeutic agents with improved genotypes and enhanced health-promoting functional features.
Collapse
Affiliation(s)
| | - Rodolphe Barrangou
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
33
|
Prodeus A, Niborski V, Schrezenmeir J, Gorelov A, Shcherbina A, Rumyantsev A. Fermented Milk Consumption and Common Infections in Children Attending Day-Care Centers: A Randomized Trial. J Pediatr Gastroenterol Nutr 2016; 63:534-543. [PMID: 27168455 PMCID: PMC5084641 DOI: 10.1097/mpg.0000000000001248] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 04/14/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVES This multicenter, double-blind, randomized, placebo-controlled clinical trial investigated the effect of a fermented milk product containing the Lactobacillus casei National Collection of Microorganisms and Cell Cultures (CNCM) I-1518 strain on respiratory and gastrointestinal common infectious diseases (CIDs) in children attending day-care centers in Russia. METHODS Children ages 3 to 6 years received 100 g of a fermented milk product (n = 300) or a control product (n = 299) twice daily for 3 months, followed by a 1-month observation period. The primary outcome was the incidence of CIDs during the product consumption period. RESULTS There was no significant difference in the incidence of CIDs between the groups (N = 98 with fermented milk product vs N = 93 with control product). The overall number of CIDs (and no severe cases at all) in both study groups and in all 12 centers, however, was unexpectedly low resulting in underpowering of the study. No differences were found between the groups in the duration or severity of disease, duration of sick leave from day-care centers, parental missed working days, or in quality-of-life dimensions on the PedsQL questionnaire (P > 0.05).There was, however, a significantly lower incidence of the most frequently observed CID, rhinopharyngitis, in children consuming the fermented milk product compared with those consuming the control product (N = 81 vs N = 100, relative risk 0.82, 95% confidence interval 0.69-0.96, P = 0.017) when considering the entire study period. CONCLUSIONS Although no other significant differences were shown between the fermented milk and control product groups in this study, lower incidence of rhinopharyngitis may indicate a beneficial effect of this fermented milk product.
Collapse
Affiliation(s)
- Andrey Prodeus
- Children's Clinical Hospital No. 9 named after G.N. Speransky of Moscow Healthcare Department, Moscow, Russia
| | - Violeta Niborski
- Danone Nutricia Research, Centre de Recherche Daniel Carasso, Palaiseau, France
| | | | - Alexander Gorelov
- Federal Budget Institution of Science “Central Research Institute of Epidemiology” of The Federal Service on Customers’ Rights Protection and Human Well-being Surveillance
| | - Anna Shcherbina
- Federal Government Budget Institution “Federal Scientific Clinical Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev” of the Ministry of Health of Russian Federation, Moscow, Russia
| | - Alexander Rumyantsev
- Federal Government Budget Institution “Federal Scientific Clinical Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev” of the Ministry of Health of Russian Federation, Moscow, Russia
| |
Collapse
|
34
|
Screening and characterization of potential probiotic and starter bacteria for plant fermentations. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.03.046] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Anti-infective activities of lactobacillus strains in the human intestinal microbiota: from probiotics to gastrointestinal anti-infectious biotherapeutic agents. Clin Microbiol Rev 2016; 27:167-99. [PMID: 24696432 DOI: 10.1128/cmr.00080-13] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A vast and diverse array of microbial species displaying great phylogenic, genomic, and metabolic diversity have colonized the gastrointestinal tract. Resident microbes play a beneficial role by regulating the intestinal immune system, stimulating the maturation of host tissues, and playing a variety of roles in nutrition and in host resistance to gastric and enteric bacterial pathogens. The mechanisms by which the resident microbial species combat gastrointestinal pathogens are complex and include competitive metabolic interactions and the production of antimicrobial molecules. The human intestinal microbiota is a source from which Lactobacillus probiotic strains have often been isolated. Only six probiotic Lactobacillus strains isolated from human intestinal microbiota, i.e., L. rhamnosus GG, L. casei Shirota YIT9029, L. casei DN-114 001, L. johnsonii NCC 533, L. acidophilus LB, and L. reuteri DSM 17938, have been well characterized with regard to their potential antimicrobial effects against the major gastric and enteric bacterial pathogens and rotavirus. In this review, we describe the current knowledge concerning the experimental antibacterial activities, including antibiotic-like and cell-regulating activities, and therapeutic effects demonstrated in well-conducted, placebo-controlled, randomized clinical trials of these probiotic Lactobacillus strains. What is known about the antimicrobial activities supported by the molecules secreted by such probiotic Lactobacillus strains suggests that they constitute a promising new source for the development of innovative anti-infectious agents that act luminally and intracellularly in the gastrointestinal tract.
Collapse
|
36
|
Wang R, Chen S, Jin J, Ren F, Li Y, Qiao Z, Wang Y, Zhao L. Survival of Lactobacillus casei strain Shirota in the intestines of healthy Chinese adults. Microbiol Immunol 2016; 59:268-76. [PMID: 25707300 DOI: 10.1111/1348-0421.12249] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/29/2014] [Accepted: 02/10/2015] [Indexed: 12/11/2022]
Abstract
Lactobacillus casei strain Shirota (LcS) is a widely used probiotic strain with health benefits. In this study, the survival of LcS in the intestines of healthy Chinese adults was assessed and the effects of LcS on stool consistency, stool SCFAs and intestinal microbiota evaluated. Subjects consumed 100 mL per day of a probiotic beverage containing 1.0 × 10(8) CFU/mL of LcS for 14 days. LcS were enumerated using a culture method and the colony identity confirmed by ELISA. Fourteen days after ingestion, the amount of LcS recovered from fecal samples was between 6.86 ± 0.80 and 7.17 ± 0.57 Log10 CFU/g of feces (mean ± SD). The intestinal microbiotas were analyzed by denaturing gradient gel electrophoresis. Principal component analysis showed that consuming LcS significantly changed fecal microbiota profiles. According to redundancy analysis, the amounts of 25 bacterial strains were significantly correlated with LcS intake (P < 0.05), 11 of them positively and fourteen negatively. Concentrations of acetic acid and propionic acid in feces were significantly lower during the ingestion period than during the baseline period (P < 0.05). These results confirm that LcS can survive passage through the gastrointestinal tract of Chinese people; however, they were found to have little ability to persist once their consumption had ceased. Furthermore, consumption of probiotic beverages containing LcS can modulate the composition of the intestinal microbiota on a long-term basis, resulting in decreased concentrations of SCFAs in the gut.
Collapse
Affiliation(s)
- Ran Wang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083
| | - Shanbin Chen
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083
| | - Junhua Jin
- College of Food Science and Engineering, Beijing University of Agriculture, Beijing, 102206
| | - Fazheng Ren
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083
| | - Yang Li
- Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing, 100083, China
| | - Zhenxing Qiao
- Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing, 100083, China
| | - Yue Wang
- Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing, 100083, China
| | - Liang Zhao
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083
| |
Collapse
|
37
|
Effect of supplementation of fermented milk drink containing probiotic Lactobacillus casei Shirota on the concentrations of aflatoxin biomarkers among employees of Universiti Putra Malaysia: a randomised, double-blind, cross-over, placebo-controlled study. Br J Nutr 2015; 115:39-54. [PMID: 26490018 DOI: 10.1017/s0007114515004109] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Human exposure to aflatoxin is through the diet, and probiotics are able to bind aflatoxin and prevent its absorption in the small intestine. This study aimed to determine the effectiveness of a fermented milk drink containing Lactobacillus casei Shirota (LcS) (probiotic drink) to prevent aflatoxin absorption and reduce serum aflatoxin B1-lysine adduct (AFB1-lys) and urinary aflatoxin M1 concentrations. The present study was a randomised, double-blind, cross-over, placebo-controlled study with two 4-week intervention phases. In all, seventy-one subjects recruited from the screening stage were divided into two groups--the Yellow group and the Blue group. In the 1st phase, one group received probiotic drinks twice a day and the other group received placebo drinks. Blood and urine samples were collected at baseline, 2nd and 4th week of the intervention. After a 2-week wash-out period, the treatments were switched between the groups, and blood and urine samples were collected at the 6th, 8th and 10th week (2nd phase) of the intervention. No significant differences in aflatoxin biomarker concentrations were observed during the intervention. A within-group analysis was further carried out. Aflatoxin biomarker concentrations were not significantly different in the Yellow group. Nevertheless, ANOVA for repeated measurements indicated that AFB1-lys concentrations were significantly different (P=0·035) with the probiotic intervention in the Blue group. The 2nd week AFB1-lys concentrations (5·14 (SD 2·15) pg/mg albumin (ALB)) were significantly reduced (P=0·048) compared with the baseline (6·24 (SD 3·42) pg/mg ALB). Besides, the 4th week AFB1-lys concentrations were significantly lower (P<0·05) with probiotic supplementation than with the placebo. Based on these findings, a longer intervention study is warranted to investigate the effects of continuous LcS consumption to prevent dietary aflatoxin exposure.
Collapse
|
38
|
Derrien M, van Hylckama Vlieg JE. Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends Microbiol 2015; 23:354-66. [DOI: 10.1016/j.tim.2015.03.002] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/28/2015] [Accepted: 03/03/2015] [Indexed: 02/07/2023]
|
39
|
Fredua-Agyeman M, Gaisford S. Comparative survival of commercial probiotic formulations: tests in biorelevant gastric fluids and real-time measurements using microcalorimetry. Benef Microbes 2015; 6:141-51. [DOI: 10.3920/bm2014.0051] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The large number of probiotic products now available makes the decision about which product to choose difficult both for the consumer and for the specialist providing dietary/nutritional advice. Data on the viability of the bacteria in these products, in an in vivo situation, are therefore important. This study was designed to explore the comparative health and survival of probiotic species in various commercial formulations, using more realistic test systems. This might allow further understanding of factors that must be controlled to optimise the delivery of live healthy bacteria to the lower gut. A total of eight commercially available probiotic preparations were selected for enumeration tests and in vitro gastric tolerance tests. Tolerance assays were conducted in porcine gastric fluid (PGF) fed and fasted state (pH 3.4±0.04), simulated gastric fluid (SGF, pH adjusted to 1.2 and 3.4) and fasted state simulated gastric fluid (FaSSGF, pH adjusted to 1.6 and 3.4). Isothermal microcalorimetry was also used to measure real-time growth of probiotics after exposure to simulated gastric fluid. Results from the enumeration tests indicated that recovery of viable organisms per dose is the same as or better than the stated label claims for liquid-based formulations, but lower than the stated claim for freeze-dried products. Results from the in vitro tolerance tests overall suggest that the PGF provided a harsher environment than the simulated systems at similar pH. In general, liquid-based products tested tended to give superior results in terms of survival compared with the freeze-dried products tested. Results from tests in the fed state in PGF suggested that food greatly affects viability. Microcalorimetric data showed that for some products probiotic species were able to grow following exposure to gastric fluid, suggesting that viable bacteria reach the gut in vivo.
Collapse
Affiliation(s)
- M. Fredua-Agyeman
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - S. Gaisford
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| |
Collapse
|
40
|
Collins JW, Chervaux C, Raymond B, Derrien M, Brazeilles R, Kosta A, Chambaud I, Crepin VF, Frankel G. Fermented dairy products modulate Citrobacter rodentium-induced colonic hyperplasia. J Infect Dis 2014; 210:1029-41. [PMID: 24706936 PMCID: PMC4157696 DOI: 10.1093/infdis/jiu205] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We evaluated the protective effects of fermented dairy products (FDPs) in an infection model, using the mouse pathogen Citrobacter rodentium (CR). Treatment of mice with FDP formulas A, B, and C or a control product did not affect CR colonization, organ specificity, or attaching and effacing lesion formation. Fermented dairy product A (FDP-A), but neither the supernatant from FDP-A nor β-irradiated (IR) FDP-A, caused a significant reduction in colonic crypt hyperplasia and CR-associated pathology. Profiling the gut microbiota revealed that IR-FDP-A promoted higher levels of phylotypes belonging to Alcaligenaceae and a decrease in Lachnospiraceae (Ruminococcus) during CR infection. Conversely, FDP-A prevented a decrease in Ruminococcus and increased Turicibacteraceae (Turicibacter). Importantly, loss of Ruminococcus and Turicibacter has been associated with susceptibility to dextran sodium sulfate-induced colitis. Our results demonstrate that viable bacteria in FDP-A reduced CR-induced colonic crypt hyperplasia and prevented the loss of key bacterial genera that may contribute to disease pathology.
Collapse
Affiliation(s)
- James W Collins
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, United Kingdom
| | | | - Benoit Raymond
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, United Kingdom
| | - Muriel Derrien
- Danone Nutricia Research, Centre Daniel Carasso, Palaiseau
| | | | - Artemis Kosta
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, United Kingdom
| | | | - Valerie F Crepin
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, United Kingdom
| | - Gad Frankel
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, United Kingdom
| |
Collapse
|
41
|
Screening of indigenous oxalate degrading lactic acid bacteria from human faeces and South Indian fermented foods: assessment of probiotic potential. ScientificWorldJournal 2014; 2014:648059. [PMID: 24723820 PMCID: PMC3956639 DOI: 10.1155/2014/648059] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/27/2013] [Indexed: 01/06/2023] Open
Abstract
Lactic acid bacteria (LAB) have the potential to degrade intestinal oxalate and this is increasingly being studied as a promising probiotic solution to manage kidney stone disease. In this study, oxalate degrading LAB were isolated from human faeces and south Indian fermented foods, subsequently assessed for potential probiotic property in vitro and in vivo. Based on preliminary characteristics, 251 out of 673 bacterial isolates were identified as LAB. A total of 17 strains were found to degrade oxalate significantly between 40.38% and 62.90% and were subjected to acid and bile tolerance test. Among them, nine strains exhibited considerable tolerance up to pH 3.0 and at 0.3% bile. These were identified as Lactobacillus fermentum and Lactobacillus salivarius using 16S rDNA sequencing. Three strains, Lactobacillus fermentum TY5, Lactobacillus fermentum AB1, and Lactobacillus salivarius AB11, exhibited good adhesion to HT-29 cells and strong antimicrobial activity. They also conferred resistance to kanamycin, rifampicin, and ampicillin, but were sensitive to chloramphenicol and erythromycin. The faecal recovery rate of these strains was observed as 15.16% (TY5), 6.71% (AB1), and 9.3% (AB11) which indicates the colonization ability. In conclusion, three efficient oxalate degrading LAB were identified and their safety assessments suggest that they may serve as good probiotic candidates for preventing hyperoxaluria.
Collapse
|
42
|
Nowak A, Śliżewska K. β-Glucuronidase and β-glucosidase activity and human fecal water genotoxicity in the presence of probiotic lactobacilli and the heterocyclic aromatic amine IQ in vitro. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:66-73. [PMID: 24309132 DOI: 10.1016/j.etap.2013.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 10/20/2013] [Accepted: 10/24/2013] [Indexed: 06/02/2023]
Abstract
The aim of the study was to assess the genotoxicity of fecal water (FW) and the activity of fecal enzymes (β-glucuronidase and β-glucosidase) after incubation with 2-amino-3-methyl-3H-imidazo[4,5-f]quinoline (IQ) and probiotic lactobacilli: Lb. casei 0900, Lb. casei 0908, and Lb. paracasei 0919. Our results show that the carcinogen IQ greatly increased FW genotoxicity (up to 16.92 ± 3.03 U/mg) and the activity of fecal enzymes (up to even 1.4 ± 0.16 U/mg) in 15 individuals (children, adults and elderly). After incubation with IQ, the activity of β-glucuronidase was reduced by Lactobacillus bacteria by 76.0% (Lb. paracasei 0908) in the FW of children, and by 82.0% (Lb. paracasei 0919) in the elderly; while that of β-glucosidase was reduced by 55.0% in children (Lb. casei 0908) and 90.0% (Lb. paracasei 0919) in elderly subjects. Lactobacilli decreased the genotoxicity of FW after incubation with IQ to the greatest extent in adults (by 64.5%). Probiotic lactobacilli, in the presence of IQ, efficiently inhibits activity of fecal enzymes to the level of control. Genotoxicity inhibition depends on the person's age, its individual microbiota and diet.
Collapse
Affiliation(s)
- Adriana Nowak
- Institute of Fermentation Technology and Microbiology, Department of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Katarzyna Śliżewska
- Institute of Fermentation Technology and Microbiology, Department of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland
| |
Collapse
|
43
|
Sari EK, Bakir B, Aydin BD, Sozmen M. The effects of kefir, koumiss, yogurt and commercial probiotic formulations on PPARα and PPAR-β/δ expressions in mouse kidney. Biotech Histochem 2013; 89:287-95. [DOI: 10.3109/10520295.2013.844274] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
44
|
Bertazzoni E, Donelli G, Midtvedt T, Nicoli J, Sanz Y. Probiotics and clinical effects: is the number what counts? J Chemother 2013; 25:193-212. [DOI: 10.1179/1973947813y.0000000078] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
In vitro and in vivo survival and colonic adhesion of Pediococcus acidilactici MTCC5101 in human gut. BIOMED RESEARCH INTERNATIONAL 2013; 2013:583850. [PMID: 24175293 PMCID: PMC3794518 DOI: 10.1155/2013/583850] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/13/2013] [Accepted: 08/14/2013] [Indexed: 11/23/2022]
Abstract
The present study aims to investigate the probiotic nature of Pediococcus acidilactici MTCC5101 by an in vitro assay of bacterial adherence to intestinal epithelial cells of human gastrointestinal (GI) tract using Caco-2 cell line. Further to assess the in vivo survival in the GI tract, oral feeding was carried out with the help of 10 healthy volunteers. The effect on wellness was assessed by studying blood biochemical parameters of the volunteers. The survival of the bacteria was assessed using PCR-based detection of P. acidilactici MTCC5101 in fecal samples. The probiotic nature of P. acidilactici MTCC 5101 was strengthened by its adherence to the intestinal epithelial Caco-2 cell line in the in vitro SEM observations. Oral feeding study for assessing the survival of bacteria in GI tract of volunteers showed the strain to be established in the GI tract which survived for about 2 weeks after feeding.
Collapse
|
46
|
Kim SW, Suda W, Kim S, Oshima K, Fukuda S, Ohno H, Morita H, Hattori M. Robustness of gut microbiota of healthy adults in response to probiotic intervention revealed by high-throughput pyrosequencing. DNA Res 2013; 20:241-53. [PMID: 23571675 PMCID: PMC3686430 DOI: 10.1093/dnares/dst006] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/16/2013] [Indexed: 12/22/2022] Open
Abstract
Probiotics are live microorganisms that potentially confer beneficial outcomes to host by modulating gut microbiota in the intestine. The aim of this study was to comprehensively investigate effects of probiotics on human intestinal microbiota using 454 pyrosequencing of bacterial 16S ribosomal RNA genes with an improved quantitative accuracy for evaluation of the bacterial composition. We obtained 158 faecal samples from 18 healthy adult Japanese who were subjected to intervention with 6 commercially available probiotics containing either Bifidobacterium or Lactobacillus strains. We then analysed and compared bacterial composition of the faecal samples collected before, during, and after probiotic intervention by Operational taxonomic units (OTUs) and UniFrac distances. The results showed no significant changes in the overall structure of gut microbiota in the samples with and without probiotic administration regardless of groups and types of the probiotics used. We noticed that 32 OTUs (2.7% of all analysed OTUs) assigned to the indigenous species showed a significant increase or decrease of ≥10-fold or a quantity difference in >150 reads on probiotic administration. Such OTUs were found to be individual specific and tend to be unevenly distributed in the subjects. These data, thus, suggest robustness of the gut microbiota composition in healthy adults on probiotic administration.
Collapse
Affiliation(s)
- Seok-Won Kim
- Center for Omics and Bioinformatics, The Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8561, Japan
| | - Wataru Suda
- Center for Omics and Bioinformatics, The Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8561, Japan
| | - Sangwan Kim
- Center for Omics and Bioinformatics, The Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8561, Japan
| | - Kenshiro Oshima
- Center for Omics and Bioinformatics, The Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8561, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Mizukami 246-2, Kakuganji, Tsuruoka City, Yamagata 997-0052, Japan
- Laboratory for Epithelial Immunobiology, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama 230-0045, Japan
| | - Hiroshi Ohno
- Laboratory for Epithelial Immunobiology, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama 230-0045, Japan
| | - Hidetoshi Morita
- School of Veterinary Medicine, Azabu University, Fuchinobe 1-17-71, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Masahira Hattori
- Center for Omics and Bioinformatics, The Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
47
|
Donkor ON, Ravikumar M, Proudfoot O, Day SL, Apostolopoulos V, Paukovics G, Vasiljevic T, Nutt SL, Gill H. Cytokine profile and induction of T helper type 17 and regulatory T cells by human peripheral mononuclear cells after microbial exposure. Clin Exp Immunol 2012; 167:282-95. [PMID: 22236005 DOI: 10.1111/j.1365-2249.2011.04496.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The immunomodulatory effects of probiotics were assessed following exposure of normal peripheral blood mononuclear cells (PBMC), cord blood cells and the spleen-derived monocyte/macrophage cell line CRL-9850 to Lactobacillus acidophilus LAVRI-A1, Lb. rhamnosus GG, exopolysaccharides (EPS)-producing Streptococcus thermophilus St1275, Bifidobacteriun longum BL536, B. lactis B94 and Escherichia coli TG1 strains. The production of a panel of pro- and anti-inflammatory cytokines by PBMC following bacterial stimulation was measured, using live, heat-killed or mock gastrointestinal tract (GIT)-exposed bacteria, and results show that (i) all bacterial strains investigated induced significant secretion of pro- and anti-inflammatory cytokines from PBMC-derived monocytes/macrophages; and (ii) cytokine levels increased relative to the expansion of bacterial cell numbers over time for cells exposed to live cultures. Bifidobacteria and S. thermophilus stimulated significant concentrations of transforming growth factor (TGF)-β, an interleukin necessary for the differentiation of regulatory T cells (T(reg) )/T helper type 17 (Th17) cells and, as such, the study further examined the induction of Th17 and T(reg) cells after PBMC exposure to selected bacteria for 96 h. Data show a significant increase in the numbers of both cell types in the exposed populations, measured by cell surface marker expression and by cytokine production. Probiotics have been shown to induce cytokines from a range of immune cells following ingestion of these organisms. These studies suggest that probiotics' interaction with immune-competent cells produces a cytokine milieu, exerting immunomodulatory effects on local effector cells, as well as potently inducing differentiation of Th17 and T(reg) cells.
Collapse
Affiliation(s)
- O N Donkor
- School of Biomedical and Health Sciences, Victoria University, Werribee Campus, Werribee, Vic, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hamon E, Horvatovich P, Bisch M, Bringel F, Marchioni E, Aoudé-Werner D, Ennahar S. Investigation of Biomarkers of Bile Tolerance in Lactobacillus casei Using Comparative Proteomics. J Proteome Res 2011; 11:109-18. [DOI: 10.1021/pr200828t] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Erwann Hamon
- Equipe de Chimie Analytique des Molécules Bio-Actives, IPHC-DSA, Université de Strasbourg, CNRS, 67400, Illkirch-Graffenstaden, France
- Aérial, Parc d’Innovation, 67400 Illkirch-Graffenstaden, France
| | - Peter Horvatovich
- Department of Analytical Biochemistry, Centre for Pharmacy, University of Groningen, 9700 AD Groningen, The Netherlands
| | - Magali Bisch
- Equipe de Chimie Analytique des Molécules Bio-Actives, IPHC-DSA, Université de Strasbourg, CNRS, 67400, Illkirch-Graffenstaden, France
| | - Françoise Bringel
- Laboratoire de Génétique Moléculaire, Génomique, Microbiologie, Université de Strasbourg, CNRS, 67083 Strasbourg, France
| | - Eric Marchioni
- Equipe de Chimie Analytique des Molécules Bio-Actives, IPHC-DSA, Université de Strasbourg, CNRS, 67400, Illkirch-Graffenstaden, France
| | | | - Saïd Ennahar
- Equipe de Chimie Analytique des Molécules Bio-Actives, IPHC-DSA, Université de Strasbourg, CNRS, 67400, Illkirch-Graffenstaden, France
| |
Collapse
|
49
|
Lo Curto A, Pitino I, Mandalari G, Dainty JR, Faulks RM, John Wickham MS. Survival of probiotic lactobacilli in the upper gastrointestinal tract using an in vitro gastric model of digestion. Food Microbiol 2011; 28:1359-66. [DOI: 10.1016/j.fm.2011.06.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 05/19/2011] [Accepted: 06/01/2011] [Indexed: 11/28/2022]
|
50
|
Scientific Opinion on the substantiation of a health claim related to fermented milk containing Lactobacillus casei DN‐114 001 plus yoghurt symbiosis (Actimel®), and reduction of Clostridium difficile toxins in the gut of patients receiving antibiotics and reduced risk of acute diarrhoea in patients receiving antibiotics pursuant to Article 14 of Regulation (EC) No 1924/2006. EFSA J 2010. [DOI: 10.2903/j.efsa.2010.1903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|