1
|
Zhao N, Qi P, Li J, Tan B, Kong W, Lu H. Tracking the nitrogen transformation in saline wastewater by marine anammox bacteria-based Fe(II)-driven autotrophic denitratation and anammox. WATER RESEARCH 2024; 272:122995. [PMID: 39708377 DOI: 10.1016/j.watres.2024.122995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Marine anammox bacteria-based Fe(II)-driven autotrophic denitratation and anammox (MFeADA) was investigated for nitrogen removal from saline wastewater for the first time. The study demonstrated that varying influent doses of Fe(II), which participate in the Fe cycle, significantly influenced nitrogen removal performance by altering the fate of nitrite. When 50 mg/L Fe(II) was added, the nitrogen removal was mainly performed by the anammox and Fe(II)-driven autotrophic denitratation (FeAD). As the Fe(II) rose to 100-150 mg/L, the anammox, FeAD and Feammox mainly occurred. Optimal nitrogen removal efficiency, reaching 93 %, was achieved at an influent Fe(II) concentration of 150 mg/L. As the Fe(II) reached 250 mg/L, however, nitrate was directly reduced to dinitrogen gas by the excessive Fe(II) through the Fe(II)-driven autotrophic denitrification (FeADN). Candidatus Scalindua (4.1 %), Marinicella (5.3 %) and SM1A02 (31.8 %) were the dominant functional microbes. In addition, the normalized nitrate reductase abundance was about 3.1 times that of nitrite reductase, leading to the occurrence of FeAD, which achieved a stable nitrite supply for marine anammox bacteria. This novel study can promote the practical implementation of the MFeADA process in nitrogen-laden saline wastewater treatment.
Collapse
Affiliation(s)
- Na Zhao
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Panqing Qi
- College of Engineering, Peking University, Beijing 100871, China
| | - Jin Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Bowei Tan
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Weichuan Kong
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Sun J, Feng Y, Zheng R, Wu X, Kong L, Zhang K, Liu S. Potential Growth of Anammox Bacteria under Aerobic Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18244-18254. [PMID: 39352194 DOI: 10.1021/acs.est.4c06413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Anammox bacteria are obligate anaerobic bacteria that exist widely in nature with sufficient amounts of dissolved oxygen. However, whether anammox bacteria can grow under aerobic conditions remains unclear. In this study, we found that the production of nitrate in the anammox system under aerobic conditions was significantly higher than that under anaerobic conditions without total nitrogen loss. Anammox bacteria can grow by oxidizing nitrite and dehydrogenating hydrazine to produce electrons for carbon fixation. The hydrazine dehydrogenase in anammox bacteria was inhibited under aerobic conditions, and the nitrite oxidoreductase transcription expression of anammox bacteria increased by 2.7 times compared to that under anaerobic conditions, which was the main way for anammox bacteria perform carbon fixation. DNA-stable isotope probing with 13C bicarbonate found the existence of anammox bacteria with 13C isotopes in aerobic cultivation, further proving that anammox bacteria can grow under aerobic condition. More than half of the pathways in glycolysis, the Wood-Ljungdahl pathway, and the tricarboxylic acid cycle were upregulated in anammox bacteria in aerobic condition. Large amounts of bacterioferritins are the important antioxidative enzymes in anammox bacteria in the aerobic environment, which contributes to their stronger oxygen adaptation than other anaerobes. This study expands our understanding of the growth mechanism of anammox bacteria as well as the oxygen adaptation strategies of obligate anaerobic bacteria.
Collapse
Affiliation(s)
- Jingqi Sun
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Yiming Feng
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Ru Zheng
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Xiaogang Wu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Lingrui Kong
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Kuo Zhang
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Sitong Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| |
Collapse
|
3
|
Kadam R, Kim M, Yang H, Jo S, Jun H, Park J. Magnetite addition reduces nitrite requirement for efficient anaerobic ammonium oxidation by facilitating mutualism of ANAMMOX and FEAMMOX bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174497. [PMID: 38969131 DOI: 10.1016/j.scitotenv.2024.174497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/16/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Partial nitrification (PN) is crucial for anaerobic ammonium oxidation (ANAMMOX), but faces challenges such as high energy demands and process control. Recent research has highlighted additives like magnetite as potential alternatives to conventional electron acceptors (O₂ and NO₂-) for enhancing ammonium (NH4+) oxidation with lower energy consumption. This study investigated the effect of adding 50 mg/L of magnetite to ANAMMOX reactors, resulting in improved nitrogen (N) removal efficiency. The magnetite-added ANAMMOX (M-ANA) reactor yielded N removal efficiencies of 71 %, 66 %, and 57 % for NH4+:NO2- molar ratios of 1:1.3, 1:0.8, and 1:0.5, respectively. The M-ANA reactor operated under a 0.5 mol lower NO2- concentration achieved similar performance to the control ANAMMOX (C-ANA) reactor operated with a theoretical amount of NO2-. Moreover, the M-ANA reactor showed the potential to remove NH4+ by 56 % without any NO2- supplementation. Metagenomic analysis showed that the addition of magnetite significantly improved the relative abundance of microorganisms involved in the FEAMMOX reaction, such as Fimbriimonas ginsengisoli and Pseudomonas stutzeri. It also facilitated positive mutualism between ANAMMOX and FEAMMOX reactions. In addition, M-ANA granules exhibited a dense and compact structure compared with C-ANA, and the presence of magnetite facilitated the formation of resilient granules. Notably, the useful protein (Heme C) concentration and specific microbial activity in the M-ANA reactor were 1.3 and 2.2 times higher than those in the C-ANA reactor. Overall, the results demonstrate that an appropriate amount of magnetite can enhance the N removal efficiency while reducing the energy input requirements and associated carbon emissions. These findings can guide the future development of carbon- and energy-neutral N removal processes.
Collapse
Affiliation(s)
- Rahul Kadam
- Department of Advanced Energy Engineering, Chosun University, Gwangju 61457, Republic of Korea
| | - Minji Kim
- Department of Environmental Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hyeonmyeong Yang
- Department of Environmental Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Sangyeol Jo
- Department of Advanced Energy Engineering, Chosun University, Gwangju 61457, Republic of Korea
| | - Hangbae Jun
- Department of Environmental Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jungyu Park
- Department of Advanced Energy Engineering, Chosun University, Gwangju 61457, Republic of Korea.
| |
Collapse
|
4
|
Shaw DR, Tobon Gonzalez J, Bibiano Guadarrama C, Saikaly PE. Emerging biotechnological applications of anaerobic ammonium oxidation. Trends Biotechnol 2024; 42:1128-1143. [PMID: 38519307 DOI: 10.1016/j.tibtech.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/24/2024]
Abstract
Anaerobic ammonium oxidation (anammox) is an energy-efficient method for nitrogen removal that opens the possibility for energy-neutral wastewater treatment. Research on anammox over the past decade has primarily focused on its implementation in domestic wastewater treatment. However, emerging studies are now expanding its use to novel biotechnological applications and wastewater treatment processes. This review highlights recent advances in the anammox field that aim to overcome conventional bottlenecks, and explores novel and niche-specific applications of the anammox process. Despite the promising results and potential of these advances, challenges persist for their real-world implementation. This underscores the need for a transition from laboratory achievements to practical, scalable solutions for wastewater treatment which mark the next crucial phase in the evolution of anammox research.
Collapse
Affiliation(s)
- Dario Rangel Shaw
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Julian Tobon Gonzalez
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Carlos Bibiano Guadarrama
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Pascal E Saikaly
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Environmental Science and Engineering Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
5
|
He BH, Wang HX, Jin RF, Tian T, Zhou JT. Enhanced-nitrogen removal through Fe(III)-triggered partial dissimilatory nitrate reduction to ammonium coupling with anammox in anammox bioreactor. BIORESOURCE TECHNOLOGY 2024; 408:131195. [PMID: 39098358 DOI: 10.1016/j.biortech.2024.131195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 08/06/2024]
Abstract
Anammox is recognized as a prospective alternative for future biological nitrogen removal technologies. However, the nitrate by-products produced by anammox bacteria limit its overall nitrogen removal efficiency below 88 %. This study introduced Fe(III) into the anammox bioreactor to enhance the nitrogen removal efficiency to approximately 95 %, surpassing the biochemical limit of 88 % imposed by anammox stoichiometry. Anammox sludge was demonstrated to utilize extracellular polymeric substances to reduce Fe(III) into Fe(II), and this process promoted the dominance of Ca. Brocadia. The iron addition improved the abundance of narGHI genes and facilitated the partial dissimilatory nitrate reduction to ammonium, with nitrite as the end product. The accumulated nitrite was then eliminated through the anammox pathway, along with the excess ammonium (30 mg/L) in the influent. Overall, this study deepens our understanding of the enhanced nitrogen removal triggered by Fe(III) in anammox sludge and offers an effective approach to boost anammox process.
Collapse
Affiliation(s)
- Bang-Hui He
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hui-Xuan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ruo-Fei Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Tian Tian
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Ji-Ti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
6
|
Ye W, Yan J, Yan J, Lin JG, Ji Q, Li Z, Ganjidoust H, Huang L, Li M, Zhang H. Potential electron acceptors for ammonium oxidation in wastewater treatment system under anoxic condition: A review. ENVIRONMENTAL RESEARCH 2024; 252:118984. [PMID: 38670211 DOI: 10.1016/j.envres.2024.118984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Anaerobic ammonium oxidation has been considered as an environmental-friendly and energy-efficient biological nitrogen removal (BNR) technology. Recently, new reaction pathway for ammonium oxidation under anaerobic condition had been discovered. In addition to nitrite, iron trivalent, sulfate, manganese and electrons from electrode might be potential electron acceptors for ammonium oxidation, which can be coupled to traditional BNR process for wastewater treatment. In this paper, the pathway and mechanism for ammonium oxidation with various electron acceptors under anaerobic condition is studied comprehensively, and the research progress of potentially functional microbes is summarized. The potential application of various electron acceptors for ammonium oxidation in wastewater is addressed, and the N2O emission during nitrogen removal is also discussed, which was important greenhouse gas for global climate change. The problems remained unclear for ammonium oxidation by multi-electron acceptors and potential interactions are also discussed in this review.
Collapse
Affiliation(s)
- Weizhuo Ye
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, 510006, Guangzhou, China
| | - Jiaqi Yan
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, 510006, Guangzhou, China
| | - Jia Yan
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, 510006, Guangzhou, China.
| | - Jih-Gaw Lin
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu City, 30010, Taiwan
| | - Qixing Ji
- The Earth, Ocean and atmospheric sciences thrust (EOAS), Hong Gong University of Science and Technology (Guangzhou), 511442, Guangzhou, China
| | - Zilei Li
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, 510006, Guangzhou, China
| | - Hossein Ganjidoust
- Faculty of Civil and Environmental Engineering, Tarbiat Modarres University, 14115-397, Tehran, Iran
| | - Lei Huang
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, 510006, Guangzhou, China
| | - Meng Li
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, 510006, Guangzhou, China
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, 510006, Guangzhou, China
| |
Collapse
|
7
|
Fifer LM, Wong ML. Quantifying the Potential for Nitrate-Dependent Iron Oxidation on Early Mars: Implications for the Interpretation of Gale Crater Organics. ASTROBIOLOGY 2024; 24:590-603. [PMID: 38805190 DOI: 10.1089/ast.2023.0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Geological evidence and atmospheric and climate models suggest habitable conditions occurred on early Mars, including in a lake in Gale crater. Instruments aboard the Curiosity rover measured organic compounds of unknown provenance in sedimentary mudstones at Gale crater. Additionally, Curiosity measured nitrates in Gale crater sediments, which suggests that nitrate-dependent Fe2+ oxidation (NDFO) may have been a viable metabolism for putative martian life. Here, we perform the first quantitative assessment of an NDFO community that could have existed in an ancient Gale crater lake and quantify the long-term preservation of biological necromass in lakebed mudstones. We find that an NDFO community would have the capacity to produce cell concentrations of up to 106 cells mL-1, which is comparable to microbes in Earth's oceans. However, only a concentration of <104 cells mL-1, due to organisms that inefficiently consume less than 10% of precipitating nitrate, would be consistent with the abundance of organics found at Gale. We also find that meteoritic sources of organics would likely be insufficient as a sole source for the Gale crater organics, which would require a separate source, such as abiotic hydrothermal or atmospheric production or possibly biological production from a slowly turning over chemotrophic community.
Collapse
Affiliation(s)
- Lucas M Fifer
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
- Astrobiology Program, University of Washington, Seattle, Washington, USA
| | - Michael L Wong
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, USA
- NHFP Sagan Fellow, NASA Hubble Fellowship Program, Space Telescope Science Institute, Baltimore, Maryland, USA
- NASA Nexus for Exoplanet System Science, Virtual Planetary Laboratory Team, University of Washington, Seattle, Washington, USA
| |
Collapse
|
8
|
Wan Q, Li X, Wang F, Yang G, Ju K, Jing H, Li K, He P, Zhang X. Study on the transformation of nitrate nitrogen by manganese-catalyzed iron-carbon micro-electrolysis and microbial coupling. RSC Adv 2024; 14:10905-10919. [PMID: 38577425 PMCID: PMC10993045 DOI: 10.1039/d4ra00377b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/15/2024] [Indexed: 04/06/2024] Open
Abstract
Nitrate-nitrogen pertains to the nitrogen component of the overall nitrate present in a given sample in order to reduce nitrate nitrogen pollution in water, nitrate nitrogen removal methods based on iron-carbon micro-electrolysis have become a key research focus. The process and mechanism of nitrate nitrogen removal by microbial coupling was comprehensively explored in a novel iron-carbon micro-electrolysis (ICME) system. In order to establish the transformation pathway of nitrate nitrogen in water, the transformation paths of nitrate nitrogen in water before and after coupling microorganisms in three groups of continuous flow reaction devices, namely sponge iron (s-Fe0), sponge iron + biochar (s-Fe0/BC) and sponge iron + biochar + manganese sand (s-Fe0/BC/MS), were studied. The morphology and composition changes of sponge iron were analyzed by means of characterization, and the microbial population changes in the three groups were analyzed by high-throughput sequencing. Results showed that the nitrate conversion rate in the s-Fe0, s-Fe0/BC and s-Fe0/BC/MS systems reached 99.48%, 99.57% and 99.36%, respectively, with corresponding ammonia nitrogen generation, rates of 3.77%, 9.34% and 11.24% and nitrogen generation rates of 95.71%, 90.23% and 88.12%. Scanning electron microscopy imaging showed that in the s-Fe0/BC and s-Fe0/BC/MS systems the surface of sponge iron was highly corroded, with granular substances in the corrosion product clusters. X-ray photoelectron spectroscopy analysis found that the relative contents of Fe2O3 in the surface oxides of sponge iron after microbial coupling were 38.02% and 71.27% in the s-Fe0/BC and s-Fe0/BC/MS systems, while the relative Fe3O4 contents were 61.98% and 28.72%, respectively. Microbial high-throughput sequencing analysis revealed that the Chao and Ace index values in the s-Fe0 system were 871.89 and 880.78, while in the s-Fe0/BC system they were 1012.05 and 1017.29, and in the s-Fe0/BC/MS system were 1241.09 and 1198.29, respectively. The relative proportion of Thauera in the s-Fe0, s-Fe0/BC, and s-Fe0/BC/MS systems was 16.76%,14.25% and 10.01%, while the proportion of Acetoanaerobium was 15.36%, 13.27% and 11.11%, and the proportion of Chloroflexi was 0%, 1.11% and 2.18%, respectively. Furthermore, FAPROTAX function annotation found that the expression levels of chemoheterotrophs in the s-Fe0, s-Fe0/BC and s-Fe0/BC/MS systems were 43 316 OTU, 37 289 OTU and 34 205 OTU, while nitrate respiration expression levels were 16 230 OTU, 15 483 OTU and 9149 OTU, with nitrogen respiration expression levels of 16 328 OTU, 15 493 OTU and 9154 OTU, respectively. These findings suggest that nitrate is converted into nitrogen gas and ammonia nitrogen through the actions of the coupled system of sponge iron/biochar/manganese sand and microorganisms. The catalytic effect of MnO2 promotes the conversion of Fe2+ to Fe3+, generating more electrons, allowing denitrifying bacteria to reduce more nitrate nitrogen, effectively coupling the manganese-catalyzed ICME reaction and microbial denitrification. The micro-electrolysis system and the addition of manganese sand enhanced biodiversity within the s-Fe0/BC/MS system. The heterotrophic bacteria Thauera and Acetoanaerobium were the dominant microorganisms in all three systems, although the micro-electrolysis system with added manganese sand significantly reduced the proportion of facultative bacteria Thauera and Acetoanaerobium and promoted the growth of autotrophic Chloroflexi bacteria. The ecological functions of the three systems were mainly nitrate respiration and nitrogen respiration. By comparing the expression levels of nitrate respiration and nitrogen respiration in s-Fe0/BC and s-Fe0/BC/MS systems, it can be seen that the addition of manganese sand reduced microbial activity.
Collapse
Affiliation(s)
- Qiong Wan
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology Xi'an 710054 China
| | - Xiayin Li
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology Xi'an 710054 China
| | - Feng Wang
- Shaanxi Water Group Water Ecology Comprehensive Development Co., Ltd 2206 Hongqi Road, Weiyang District Xi'an 710018 China
| | - Guohong Yang
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology Xi'an 710054 China
| | - Kai Ju
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology Xi'an 710054 China
| | - Hongbin Jing
- Shaanxi Water Group Water Ecology Comprehensive Development Co., Ltd 2206 Hongqi Road, Weiyang District Xi'an 710018 China
| | - Kun Li
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology Xi'an 710054 China
| | - Peng He
- Shaanxi Water Group Water Ecology Comprehensive Development Co., Ltd 2206 Hongqi Road, Weiyang District Xi'an 710018 China
| | - Xinyan Zhang
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology Xi'an 710054 China
| |
Collapse
|
9
|
He X, Fan X, Cao M, Zhang Y, Shi S, He L, Zhou J. Iron-electrolysis assisted anammox/denitrification system for intensified nitrate removal and phosphorus recovery in low-strength wastewater treatment. WATER RESEARCH 2024; 253:121312. [PMID: 38367383 DOI: 10.1016/j.watres.2024.121312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/17/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Two iron-electrolysis assisted anammox/denitrification (EAD) systems, including the suspended sludge reactor (ESR) and biofilm reactor (EMR) were constructed for mainstream wastewater treatment, achieving 84.51±4.38 % and 87.23±3.31 % of TN removal efficiencies, respectively. Sludge extracellular polymeric substances (EPS) analysis, cell apoptosis detection and microbial analysis demonstrated that the strengthened cell lysate/apoptosis and EPS production acted as supplemental carbon sources to provide new ecological niches for heterotrophic bacteria. Therefore, NO3--N accumulated intrinsically during anammox reaction was reduced. The rising cell lysis and apoptosis in the ESR induced the decline of anammox and enzyme activities. In contrast, this inhibition was scavenged in EMR because of the more favorable environment and the significant increase in EPS. Moreover, ESR and EMR achieved efficient phosphorus removal (96.98±5.24 % and 96.98±4.35 %) due to the continued release of Fe2+ by the in-situ corrosion of iron anodes. The X-ray diffraction (XRD) indicated that vivianite was the dominant P recovery product in EAD systems. The anaerobic microenvironment and the abundant EPS in the biofilm system showed essential benefits in the mineralization of vivianite.
Collapse
Affiliation(s)
- Xuejie He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xing Fan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Meng Cao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Ying Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Shuohui Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Lei He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
10
|
Chen Y, He X, Zhang Y, Cao M, Lin S, Huang W, Pan X, Zhou J. Response of nutrients removal efficiency, enzyme activities and microbial community to current and voltage in a bio-electrical anammox system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120322. [PMID: 38350279 DOI: 10.1016/j.jenvman.2024.120322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/21/2024] [Accepted: 02/08/2024] [Indexed: 02/15/2024]
Abstract
The effects of different current intensities and voltage levels on nutrient removal performance and microbial community evolution in a Bio-Electrical Anammox (BEA) membrane bioreactor (MBR) were evaluated. The nitrogen removal efficiency increased with the current intensity within the range of 64-83 mA, but this improvement was limited at the current further increased. The phosphorus removal in the BEA MBR was attributed to the release of Fe2+, which was closely associated with the applied current to the electrodes. Heme c concentration, enzyme activities, and specific anammox activity exhibited a decreasing trend, while the functional denitrification genes showed a positive correlation with rising voltage. The nitrogen removal efficiency of the BEA system initially increased and then decreased with the voltage rose from 1.5V to 3.5V, peaking at 2.0V of 94.02% ± 1.19%. Transmission electron microscopy and flow cytometry results indicated that accelerated cell apoptosis/lysis led to an irreversible collapse of the biological nitrogen removal system at 3.5V. Candidatus Brocadia was the predominant anammox bacteria in the BEA system. In contrast, closely related Candidatus Kuenenia and Chloroflexi bacteria were gradually eliminated in electrolytic environment. The abundances of Proteobacteria-affiliated denitrifiers were increased with the voltage rising since the organic matter released by the cell apoptosis/lysis was accelerated at a high voltage level.
Collapse
Affiliation(s)
- Yihong Chen
- Power Construction Corporation of China Guiyang Engineering Corporation Limited, Guiyang, 550081, China
| | - Xuejie He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Ying Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Meng Cao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Shuxuan Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Wei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Xinglin Pan
- Power Construction Corporation of China Guiyang Engineering Corporation Limited, Guiyang, 550081, China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
11
|
González M, Cerda Á, Rodríguez C, Serrano J, Leiva E. Coupling of the Feammox - Anammox pathways by using a sequential discontinuous bioreactor. BIORESOURCE TECHNOLOGY 2024; 395:130334. [PMID: 38242238 DOI: 10.1016/j.biortech.2024.130334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
Treating nitrogenous compounds in wastewater is a contemporary challenge, prompting novel approaches for ammonium (NH4+) conversion to molecular nitrogen (N2). This study explores the classic anaerobic ammonium oxidation process (Anammox) coupled to the iron-dependent anaerobic ammonium oxidation process (Feammox) in a sequential discontinuous bioreactor (SBR) for NH4+ removal. Feammox and Anammox cultures were individually enriched and combined, optimizing the coupling, and identifying key variables influencing the enrichment process. Adding sodium acetate as a carbon source significantly reduces Fe3+ to Fe2+, indicating Feammox activity. Both Anammox and Feammox processes were successfully operated in SBRs, achieving efficient NH4+ removal (Anammox: 64.6 %; Feammox: 43.4 %). Combining these pathways in a single SBR enhances the NH4+ removal capacity of 50.8 %, improving Feammox efficiency. The Feammox process coupled with Anammox may generate the nitrite (NO2-) needed for Anammox. This research contributes to biotechnological advancements for sustainable nitrogenous compound treatment in SBRs.
Collapse
Affiliation(s)
- Macarena González
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul 7820436, Santiago, Chile
| | - Ámbar Cerda
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul 7820436, Santiago, Chile.
| | - Carolina Rodríguez
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul 7820436, Santiago, Chile.
| | - Jennyfer Serrano
- Escuela de Biotecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile.
| | - Eduardo Leiva
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul 7820436, Santiago, Chile; Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile.
| |
Collapse
|
12
|
Xiu W, Gai R, Chen S, Ren C, Lloyd JR, Bassil NM, Nixon SL, Polya DA, Hou S, Guo H. Ammonium-Enhanced Arsenic Mobilization from Aquifer Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38317381 DOI: 10.1021/acs.est.3c09640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Ammonium-related pathways are important for groundwater arsenic (As) enrichment, especially via microbial Fe(III) reduction coupled with anaerobic ammonium oxidation; however, the key pathways (and microorganisms) underpinning ammonium-induced Fe(III) reduction and their contributions to As mobilization in groundwater are still unknown. To address this gap, aquifer sediments hosting high As groundwater from the western Hetao Basin were incubated with 15N-labeled ammonium and external organic carbon sources (including glucose, lactate, and lactate/acetate). Decreases in ammonium concentrations were positively correlated with increases in the total produced Fe(II) (Fe(II)tot) and released As. The molar ratios of Fe(II)tot to oxidized ammonium ranged from 3.1 to 3.7 for all incubations, and the δ15N values of N2 from the headspace increased in 15N-labeled ammonium-treated series, suggesting N2 as the key end product of ammonium oxidation. The addition of ammonium increased the As release by 16.1% to 49.6%, which was more pronounced when copresented with organic electron donors. Genome-resolved metagenomic analyses (326 good-quality MAGs) suggested that ammonium-induced Fe(III) reduction in this system required syntrophic metabolic interactions between bacterial Fe(III) reduction and archaeal ammonium oxidation. The current results highlight the significance of syntrophic ammonium-stimulated Fe(III) reduction in driving As mobilization, which is underestimated in high As groundwater.
Collapse
Affiliation(s)
- Wei Xiu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China
- Institute of Earth sciences, China University of Geosciences (Beijing), Beijing 100083, PR China
- MWR Key Laboratory of Groundwater Conservation and School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
- Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Ruixuan Gai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China
- Institute of Earth sciences, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Songze Chen
- Shenzhen Ecological and Environmental Monitoring Center of Guangdong Province, Shenzhen 518049, China
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Cui Ren
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China
- MWR Key Laboratory of Groundwater Conservation and School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Jonathan R Lloyd
- Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Naji M Bassil
- Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Sophie L Nixon
- Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
- Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, U.K
| | - David A Polya
- Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Shengwei Hou
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China
- MWR Key Laboratory of Groundwater Conservation and School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| |
Collapse
|
13
|
Xue H, Wang H, Zhou M, Kumari S, Wang Y. Innovative determination of the specific anammox activity for anammox sludge from continuous flow reactors: A comparison between continuous flow test and batch test. BIORESOURCE TECHNOLOGY 2024; 394:130253. [PMID: 38145765 DOI: 10.1016/j.biortech.2023.130253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/09/2023] [Accepted: 12/23/2023] [Indexed: 12/27/2023]
Abstract
A novel method for measuring specific anammox activity (SAA) was proposed based on continuous flow tests to accurately determine the SAA of anammox sludge from continuous flow reactors, resolving the challenges of inaccurate SAA assessment caused by substrate shock to anammox bacteria. Results showed SAA of expanded granular sludge bed sludge via batch tests (0.101 ± 0.018 g-N·g-VSS-1·d-1) was lower than continuous flow tests (0.206 ± 0.010 g-N·g-VSS-1·d-1) (p < 0.05), highlighting the impact of substrate shock. Conversely, SAA of sequencing batch reactor sludge assessed via batch tests (0.878 ± 0.008 g-N·g-VSS-1·d-1) was higher than continuous flow tests (0.809 ± 0.005 g-N·g-VSS-1·d-1) (p < 0.01), attributed to endogenous denitrification. The advantages of continuous flow tests over batch tests included milder feeding way, stricter anaerobic conditions, and minimal sampling impact on system. Our study contributes to more accurate measurements of SAA of anammox sludge from continuous flow reactors, favoring long-term robust operation of anammox reactors.
Collapse
Affiliation(s)
- Hao Xue
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China.
| | - Mingda Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| |
Collapse
|
14
|
Wang Z, Ruan X, Li R, Zhang Y. Microbial interaction patterns and nitrogen cycling regularities in lake sediments under different trophic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167926. [PMID: 37863216 DOI: 10.1016/j.scitotenv.2023.167926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
Exploring how nitrogen (N) cycling microbes interact in eutrophic lake sediments and how biogenic elements influence the nitrogen cycle is crucial for understanding biogeochemical cycles and nitrogen accumulation mechanisms. In this study, sediment samples were collected from various areas of Taihu Lake with different trophic conditions in all four seasons from 2015 to 2017. Using high-throughput sequencing and molecular ecological network analysis, we investigated the microbial interaction patterns and the role of nitrogen cycling in sediments from lakes with different trophic conditions. The results showed distinct structures of sediment microbial networks between lake areas with different trophic conditions. In the more eutrophic region, network indices indicate higher transfer efficiency of energy, material, and information, more significant competition, and weaker niche differentiation of the microbial community. The sedimentary environment in the moderately eutrophic area exhibited greater potential for denitrification, nitrification, and anammox compared to the mesotrophic area, but the inhibition between N functional microbes and limitations in N removal processes were also more likely to occur. The topological structure of the networks showed that the carbon (C), sulfur (S), and iron (Fe) cycles had a strong influence on the nitrogen cycle in both lake areas. In the moderately eutrophic lake area, C- and S-cycling functional bacteria facilitated a closed cycle of the coupled N fixation-nitrification-DNRA (dissimilatory nitrate reduction to ammonium) process and reduced N removal. In the mesotrophic lake area, C- and S-cycling functional bacteria promoted both N fixation and mineralization, and Fe-cycling functional bacteria coupled with denitrifiers enhanced the nitrogen removal process of products from nitrogen fixation and mineralization. This study improved the understanding of the nitrogen cycling mechanism in lake sediments under different trophic conditions.
Collapse
Affiliation(s)
- Ziwei Wang
- Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China; MOE Key Laboratory of Surficial Geochemistry, Nanjing University, Nanjing 210023, China
| | - Xiaohong Ruan
- Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China; MOE Key Laboratory of Surficial Geochemistry, Nanjing University, Nanjing 210023, China.
| | - Rongfu Li
- Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China; MOE Key Laboratory of Surficial Geochemistry, Nanjing University, Nanjing 210023, China
| | - Yaping Zhang
- Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China; MOE Key Laboratory of Surficial Geochemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
15
|
Oshiki M, Morimoto E, Kobayashi K, Satoh H, Okabe S. Collaborative metabolisms of urea and cyanate degradation in marine anammox bacterial culture. ISME COMMUNICATIONS 2024; 4:ycad007. [PMID: 38304081 PMCID: PMC10833080 DOI: 10.1093/ismeco/ycad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 02/03/2024]
Abstract
Anammox process greatly contributes to nitrogen loss occurring in oceanic oxygen minimum zones (OMZs), where the availability of NH4+ is scarce as compared with NO2-. Remineralization of organic nitrogen compounds including urea and cyanate (OCN-) into NH4+ has been believed as an NH4+ source of the anammox process in oxygen minimum zones. However, urea- or OCN-- dependent anammox has not been well examined due to the lack of marine anammox bacterial culture. In the present study, urea and OCN- degradation in a marine anammox bacterial consortium were investigated based on 15N-tracer experiments and metagenomic analysis. Although a marine anammox bacterium, Candidatus Scalindua sp., itself was incapable of urea and OCN- degradation, urea was anoxically decomposed to NH4+ by the coexisting ureolytic bacteria (Rhizobiaceae, Nitrosomonadaceae, and/or Thalassopiraceae bacteria), whereas OCN- was abiotically degraded to NH4+. The produced NH4+ was subsequently utilized in the anammox process. The activity of the urea degradation increased under microaerobic condition (ca. 32-42 μM dissolved O2, DO), and the contribution of the anammox process to the total nitrogen loss also increased up to 33.3% at 32 μM DO. Urea-dependent anammox activities were further examined in a fluid thioglycolate media with a vertical gradient of O2 concentration, and the active collaborative metabolism of the urea degradation and anammox was detected at the lower oxycline (21 μM DO).
Collapse
Affiliation(s)
- Mamoru Oshiki
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Emi Morimoto
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Kanae Kobayashi
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Hisashi Satoh
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Satoshi Okabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
16
|
Yang L, Li W, Zhu H, Dong S, Mu H, Hu K, Wang T, Li J. Functions and mechanisms of sponge iron-mediated multiple metabolic processes in anaerobic ammonium oxidation. BIORESOURCE TECHNOLOGY 2023; 390:129821. [PMID: 37806360 DOI: 10.1016/j.biortech.2023.129821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
Sponge iron (SI) is a promising material for nitrogen removal from wastewater. This study reveals the potential functions and mechanisms of SI-mediated multiple metabolic processes in the nitrogen removal of Anammox. The results showed that although the SI application prolonged the start-up time of the reactor, achieved efficient and stable nitrogen removal after a successful start-up. The total nitrogen removal efficiency of the SI-Anammox system (92.62%) was 13.30% higher than that of R0 without SI (79.32%). The increase in nitrogen removal performance was accompanied by an increase in SAA and EPS content. Further microbial analysis showed significant enrichment of functional microorganisms, such as Candidatus_Brocadia, Nitrosomonas, Ellin6067, and Nitrospira. Multi-omics evidence suggests that efficient nitrogen removal is ultimately attributable to the enhancement of the specific key Fe- and N-functional genes in Anammox.
Collapse
Affiliation(s)
- Lili Yang
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Wenxuan Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Hongjuan Zhu
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Sanqiang Dong
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Hao Mu
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Kaiyao Hu
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Te Wang
- Shaanxi Municipal Architectural Design & Research Institute Co., Ltd., Xi'an 710000, China
| | - Jie Li
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou 730070, China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Lanzhou 730020, China
| |
Collapse
|
17
|
Oshiki M, Saito T, Nakaya Y, Satoh H, Okabe S. Growth of the Nitrosomonas europaea cells in the biofilm and planktonic growth mode: Responses of extracellular polymeric substances production and transcriptome. J Biosci Bioeng 2023; 136:430-437. [PMID: 37925312 DOI: 10.1016/j.jbiosc.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/29/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023]
Abstract
Nitrosomonas europaea, an aerobic ammonia oxidizing bacterium, is responsible for the first and rate-limiting step of the nitrification process, and their ammonia oxidation activities are critical for the biogeochemical cycling and the biological nitrogen removal of wastewater treatment. In the present study, N. europaea cells were cultivated in the inorganic or organic media (the NBRC829 and the nutrient-rich, NR, media, respectively), and the cells proliferated in the form of planktonic and biofilm in those media, respectively. The N. europaea cells in the biofilm growth mode produced larger amounts of the extracellular polymeric substances (EPS), and the composition of the EPS was characterized by the chemical analyses including Fourier transform infrared spectroscopy (FT-IR) and 1H-nuclear magnetic resonance (NMR) measurements. The RNA-Seq analysis of N. europaea in the biofilm or planktonic growth mode revealed that the following gene transcripts involved in central nitrogen metabolisms were abundant in the biofilm growth mode; amo encoding ammonia monooxygenase, hao encoding hydroxylamine dehydrogenase, the gene encoding nitrosocyanine, nirK encoding copper-containing nitrite reductase. Additionally, the transcripts of the pepA and wza involved in the bacterial floc formation and the translocation of EPS, respectively, were also abundant in the biofilm-growth mode. Our study was first to characterize the EPS production and transcriptome of N. europaea in the biofilm and planktonic growth mode.
Collapse
Affiliation(s)
- Mamoru Oshiki
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| | - Takahiro Saito
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Yuki Nakaya
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Hisashi Satoh
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Satoshi Okabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
18
|
Huang S, Fu Y, Zhang H, Wang C, Zou C, Lu X. Research progress of novel bio-denitrification technology in deep wastewater treatment. Front Microbiol 2023; 14:1284369. [PMID: 37860138 PMCID: PMC10582329 DOI: 10.3389/fmicb.2023.1284369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023] Open
Abstract
Excessive nitrogen emissions are a major contributor to water pollution, posing a threat not only to the environment but also to human health. Therefore, achieving deep denitrification of wastewater is of significant importance. Traditional biological denitrification methods have some drawbacks, including long processing times, substantial land requirements, high energy consumption, and high investment and operational costs. In contrast, the novel bio-denitrification technology reduces the traditional processing time and lowers operational and maintenance costs while improving denitrification efficiency. This technology falls within the category of environmentally friendly, low-energy deep denitrification methods. This paper introduces several innovative bio-denitrification technologies and their combinations, conducts a comparative analysis of their denitrification efficiency across various wastewater types, and concludes by outlining the future prospects for the development of these novel bio-denitrification technologies.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiuguo Lu
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, China
| |
Collapse
|
19
|
Jiang Y, Chen Y, Wang Y, Chen X, Zhou X, Qing K, Cao W, Zhang Y. Novel insight into the inhibitory effects and mechanisms of Fe(II)-mediated multi-metabolism in anaerobic ammonium oxidation (anammox). WATER RESEARCH 2023; 242:120291. [PMID: 37413747 DOI: 10.1016/j.watres.2023.120291] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/23/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
Fe(II) participates in complex Fe-N cycles and effects on the microbial metabolism in the anaerobic ammonium oxidation (anammox) dominated system. In this study, the inhibitory effects and mechanisms of Fe(II)-mediated multi-metabolism in anammox were revealed, and the potential role of Fe(II) in the nitrogen cycle was evaluated. The results showed that the long-term accumulation of high Fe(II) concentrations (70-80 mg/L) led to a hysteretic inhibition of anammox. High Fe(II) concentrations induced the generation of high levels of intracellular ·O2-, whereas the antioxidant capacity was insufficient to eliminate the excess ·O2-, thus causing ferroptosis to anammox cells. In addition, Fe(II) was oxidized via nitrate-dependent anaerobic ferrous-oxidation (NAFO) process, and mineralized to coquimbite and phosphosiderite. They formed crusts on the surface of the sludge, leading to mass transfer obstruction. The results of the microbial analysis showed that the addition of appropriate Fe(II) increased the abundance of Candidatus Kuenenia, and served as a potential electron donor to enrich Denitratisoma, promoting anammox and NAFO coupled with nitrogen removal, while high Fe(II) concentrations reduced the enrichment level. In this study, the understanding of Fe(II)-mediated multi-metabolism in the nitrogen cycle was deepened, providing the basis for the development of Fe(II)-based anammox technologies.
Collapse
Affiliation(s)
- Yushi Jiang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Yuqi Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Ying Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Xuanfan Zhou
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Kexin Qing
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Wenzhi Cao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Yanlong Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian Province, 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control (CPPC), College of Environment and Ecology, Xiamen University, Xiamen, Fujian Province, 361102, China.
| |
Collapse
|
20
|
Li N, Li Y, Lou R, Xu H, Saeed L. Effects of Fe(II) and organic carbon on nitrate reduction in surficial sediments of a large shallow freshwater lake. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117623. [PMID: 36893539 DOI: 10.1016/j.jenvman.2023.117623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/26/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Nitrate-reducing ferrous [Fe(II)]-oxidizing (NRFO) has been reported from lake sediments as a natural reduction pathway. However, the effects of the contents of Fe(II) and sediment organic carbon (SOC) on the NRFO process still remain unclear. In this study, the influences of Fe(II) and organic carbon on nitrate reduction were analyzed quantitatively at two typical seasonal temperatures (25 °C representing summers and 5 °C for winters) by conducting a series of batch incubation experiments, using surficial sediments at the western zone of Lake Taihu (Eastern China). Results showed that Fe(II) greatly promoted NO3‾-N reduction by denitrification (DNF) and dissimilatory nitrate reduction to ammonium (DNRA) processes at high-temperature (25 °C, representing summer season). As Fe (II) increased (e.g., Fe(II)/NO3‾ = 4), the promotion effect on NO3‾-N reduction was weakened, but on the other side, the DNRA process was enhanced. In comparison, the NO3‾-N reduction rate obviously decreased at low-temperature (5 °C, representing the winter season). NRFO in sediments mainly belongs to biological rather than abiotic processes. A relatively high SOC content apparently increased the rate of NO3‾-N reduction (r = 0.023-0.053 mM/d), particularly on the heterotrophic NRFO. It is interesting that the Fe(II) consistently remained active in the nitrate reduction processes no matter whether SOC was sufficient in the sediment, particularly at high-temperature. Overall, the combining effects of both Fe(II) and SOC in surficial sediments made a great contribution towards NO3‾-N reduction and N removal in a lake system. These results provide a better understanding and estimation of N transformation in sediments of the aquatic ecosystem under different environmental conditions.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Yong Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Ruitao Lou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Hong Xu
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Laraib Saeed
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
21
|
Okabe S, Ye S, Lan X, Nukada K, Zhang H, Kobayashi K, Oshiki M. Oxygen tolerance and detoxification mechanisms of highly enriched planktonic anaerobic ammonium-oxidizing (anammox) bacteria. ISME COMMUNICATIONS 2023; 3:45. [PMID: 37137967 PMCID: PMC10156729 DOI: 10.1038/s43705-023-00251-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023]
Abstract
Oxygen is a key regulatory factor of anaerobic ammonium oxidation (anammox). Although the inhibitory effect of oxygen is evident, a wide range of oxygen sensitivities of anammox bacteria have been reported so far, which makes it difficult to model the marine nitrogen loss and design anammox-based technologies. Here, oxygen tolerance and detoxification mechanisms of four genera of anammox bacteria; one marine species ("Ca. Scalindua sp.") and four freshwater anammox species ("Ca. Brocadia sinica", "Ca. Brocadia sapporoensis", "Ca. Jettenia caeni", and "Ca. Kuenenia stuttgartiensis") were determined and then related to the activities of anti-oxidative enzymes. Highly enriched planktonic anammox cells were exposed to various levels of oxygen, and oxygen inhibition kinetics (50% inhibitory concentration (IC50) and upper O2 limits (DOmax) of anammox activity) were quantitatively determined. A marine anammox species, "Ca. Scalindua sp.", exhibited much higher oxygen tolerance capability (IC50 = 18.0 µM and DOmax = 51.6 µM) than freshwater species (IC50 = 2.7-4.2 µM and DOmax = 10.9-26.6 µM). The upper DO limit of "Ca. Scalindua sp." was much higher than the values reported so far (~20 µM). Furthermore, the oxygen inhibition was reversible even after exposed to ambient air for 12-24 h. The comparative genome analysis confirmed that all anammox species commonly possess the genes considered to function for reduction of O2, superoxide anion (O2•-), and H2O2. However, the superoxide reductase (Sor)-peroxidase dependent detoxification system alone may not be sufficient for cell survival under microaerobic conditions. Despite the fact that anaerobes normally possess no or little superoxide dismutase (Sod) or catalase (Cat), only Scalindua exhibited high Sod activity of 22.6 ± 1.9 U/mg-protein with moderate Cat activity of 1.6 ± 0.7 U/mg-protein, which was consistent with the genome sequence analysis. This Sod-Cat dependent detoxification system could be responsible for the higher O2 tolerance of Scalindua than other freshwater anammox species lacking the Sod activity.
Collapse
Affiliation(s)
- Satoshi Okabe
- Department of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.
| | - Shaoyu Ye
- Department of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Xi Lan
- Department of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Keishi Nukada
- Department of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Haozhe Zhang
- Department of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Kanae Kobayashi
- Department of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan
| | - Mamoru Oshiki
- Department of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| |
Collapse
|
22
|
Wang J, Wang Q, Tang YJ, Fu HM, Fang F, Guo JS, Yan P, Chen YP. Unraveling the structure and function of bacterioferritin in Candidatus Kuenenia stuttgartiensis: Iron storage sites maintain cellular iron homeostasis. WATER RESEARCH 2023; 238:120016. [PMID: 37146397 DOI: 10.1016/j.watres.2023.120016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 04/03/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Anammox bacteria rely heavily on iron and have many iron storage sites. However, the biological significance of these iron storage sites has not been clearly defined. In this study, we explored the properties and location of iron storage sites to better understand their cellular function. To do this, the Candidatus Kuenenia stuttgartiensis iron storage protein, bacterioferritin (K.S Bfr), was successfully expressed and purified. In vitro, correctly assembled globulins were observed by transmission electron microscopy. The self-assembled K.S Bfr has active redox and can bind Fe2+ and mineralize it in the protein cavity. In vivo, engineered bacteria with K.S Bfr showed good adaptability to Fe2+, with a survival rate of 78.9% when exposed to 5 mM Fe2+, compared with only 66.0% for wild-type bacteria lacking K.S Bfr. A potential iron regulatory strategy similar to that of Anammox was identified in transcriptomic analysis of engineered bacteria. This system may be controlled by the iron uptake regulator Furto transport Fe2+ via FeoB and store excess Fe2+ in K.S Bfr to maintain cellular homeostasis. K.S Bfr has superior iron storage capacity both intracellularly and in vitro. The discovery of K.S Bfr reveals the storage location of iron-rich nanoparticles, increases our understanding of the adaptability of iron-dependent bacteria to Fe2+, and suggests possible iron regulation strategies in Anammox bacteria.
Collapse
Affiliation(s)
- Jin Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Que Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Yu-Jiao Tang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Hui-Min Fu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
23
|
Al-Hazmi HE, Lu X, Grubba D, Majtacz J, Badawi M, Mąkinia J. Sustainable nitrogen removal in anammox-mediated systems: Microbial metabolic pathways, operational conditions and mathematical modelling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161633. [PMID: 36669661 DOI: 10.1016/j.scitotenv.2023.161633] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Anammox-mediated systems have attracted considerable attention as alternative cost-effective technologies for sustainable nitrogen (N) removal from wastewater. This review comprehensively highlights the importance of understanding microbial metabolism in anammox-mediated systems under crucial operation parameters, indicating the potentially wide applications for the sustainable treatment of N-containing wastewater. The partial nitrification-anammox (PN-A), simultaneous PN-A and denitrification (SNAD) processes have demonstrated sustainable N removal from sidestream wastewater. The partial denitrification-anammox (PD-A) and denitrifying anaerobic methane oxidation-anammox (DAMO-A) processes have advanced sustainable N removal efficiency in mainstream wastewater treatment. Moreover, N2O production/emission hotspots are extensively discussed in anammox-based processes and are related to the dominant ammonia-oxidizing bacteria (AOB) and denitrifying heterotrophs. In contrast, N2O is not produced in the metabolism pathways of AnAOB and DAMO-archaea; Moreover, the actual contribution of N2O production by dissimilatory nitrate reduction to ammonium (DNRA) and DAMO-bacteria in their species remains uncertain. Thus, PD-A and DAMO-A processes would achieve reduction in greenhouse gas production, as well as energy consumption for the reliability of N removal efficiencies. In addition to reaction mechanisms, this review covers the mathematical models for simultaneous anammox, partial nitrification and/or denitrification (i.e., PN-A, PD-A, and SNAD). Promising NO3- reduction technologies by endogenous PD, sulfur-driven autotrophic denitrification, and DNRA by anammox are also discussed. In summary, this review provides a better understanding of sustainable N removal in anammox-mediated systems, thereby encouraging future investigation and exploration of the sustainable N bio-treatment from wastewater.
Collapse
Affiliation(s)
- Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Xi Lu
- Three Gorges Smart Water Technology Co., Ltd., 65 LinXin Road, ChangNing District, 200335 Shanghai, China
| | - Dominika Grubba
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Joanna Majtacz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques UMR CNRS 7019, Université de Lorraine, Nancy, France
| | - Jacek Mąkinia
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
24
|
Wang C, Qiao S, Zhou J. Strategy of nitrate removal in anaerobic ammonia oxidation-dependent processes. CHEMOSPHERE 2023; 313:137586. [PMID: 36529177 DOI: 10.1016/j.chemosphere.2022.137586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
The anaerobic ammonium oxidation (anammox), a microbial process that is considered as a low-cost and high efficient wastewater treatment, has received extensive attention with an attractive application prospect. The anammox process reduces nitrite (NO2-) to nitrogen gas (N2) with ammonium (NH4+) as the electron donor. However, some nitrate (NO3-) equivalent to 11% of total nitrogen (TN) is generated in this process, which limits the development of anammox. To overcome this problem, many efforts have been made in this regard, mainly combining with other biological treatment methods (denitrification, denitrifying anaerobic methane oxidation, etc.), introducing the substance into anammox process, etc. Herein, we summarized a detailed review of previous researches on the removal of NO3- in the anammox-dependent processes. It is hoped that this review could serve as valuable guidance in future research and practical applications of anammox.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Sen Qiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
25
|
Sun S, Zhang M, Gu X, Yan P, He S, Chachar A. New insight and enhancement mechanisms for Feammox process by electron shuttles in wastewater treatment - A systematic review. BIORESOURCE TECHNOLOGY 2023; 369:128495. [PMID: 36526117 DOI: 10.1016/j.biortech.2022.128495] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Ammonium oxidation coupled to Fe(III) reduction (Feammox) is a newly discovered iron-nitrogen cycle process of microbial catalyzed NH4+ oxidation coupled with iron reduction. Fe(III) often exists in the form of insoluble iron minerals resulting in reduced microbial availability and low efficiency of Feammox. Electron shuttles(ESs) can be reversibly oxidized and reduced which has the potential to improve Feammox efficiency. This review summarizes the discovery process, electron transfer mechanism, influencing factors and driven microorganisms of Feammox, ang expounds the possibility and potential mechanism of ESs to enhance Feammox efficiency. Based on an in-depth analysis of the current research situation of Feammox for nitrogen removal, the knowledge gaps and future research directions including how to apply ESs enhanced Feammox to promote nitrogen removal in practical wastewater treatment have been highlighted. This review can provide new ideas for the engineering application research of Feammox and strong theoretical support for its development.
Collapse
Affiliation(s)
- Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Manping Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Pan Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 20092, PR China; Shanghai Engineering Research Center of Landscape Water Environment, Shanghai 200031, PR China.
| | - Azharuddin Chachar
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|
26
|
Suarez C, Hackl T, Wilen BM, Persson F, Hagelia P, Jetten MSM, Dalcin Martins P. Novel and unusual genes for nitrogen and metal cycling in Planctomycetota- and KSB1-affiliated metagenome-assembled genomes reconstructed from a marine subsea tunnel. FEMS Microbiol Lett 2023; 370:fnad049. [PMID: 37291701 PMCID: PMC10732223 DOI: 10.1093/femsle/fnad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/10/2023] Open
Abstract
The Oslofjord subsea road tunnel is a unique environment in which the typically anoxic marine deep subsurface is exposed to oxygen. Concrete biodeterioration and steel corrosion in the tunnel have been linked to the growth of iron- and manganese-oxidizing biofilms in areas of saline water seepage. Surprisingly, previous 16S rRNA gene surveys of biofilm samples revealed microbial communities dominated by sequences affiliated with nitrogen-cycling microorganisms. This study aimed to identify microbial genomes with metabolic potential for novel nitrogen- and metal-cycling reactions, representing biofilm microorganisms that could link these cycles and play a role in concrete biodeterioration. We reconstructed 33 abundant, novel metagenome-assembled genomes (MAGs) affiliated with the phylum Planctomycetota and the candidate phylum KSB1. We identified novel and unusual genes and gene clusters in these MAGs related to anaerobic ammonium oxidation, nitrite oxidation, and other nitrogen-cycling reactions. Additionally, 26 of 33 MAGs also had the potential for iron, manganese, and arsenite cycling, suggesting that bacteria represented by these genomes might couple these reactions. Our results expand the diversity of microorganisms putatively involved in nitrogen and metal cycling, and contribute to our understanding of potential biofilm impacts on built infrastructure.
Collapse
Affiliation(s)
- Carolina Suarez
- Division of Water Resources Engineering, Faculty of Engineering LTH, Lund University, Lund 221 00, Sweden
| | - Thomas Hackl
- Microbial Ecology Cluster, GELIFES, University of Groningen, Groningen 9747 AG, Netherlands
| | - Britt-Marie Wilen
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Frank Persson
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Per Hagelia
- Construction Division, The Norwegian Public Roads, Administration, Oslo 0667, Norway
| | - Mike S M Jetten
- Department of Microbiology, RIBES, Radboud University, Nijmegen 6525 AJ, Netherlands
| | - Paula Dalcin Martins
- Microbial Ecology Cluster, GELIFES, University of Groningen, Groningen 9747 AG, Netherlands
| |
Collapse
|
27
|
Chen S, Zhou B, Chen H, Yuan R. Iron mediated autotrophic denitrification for low C/N ratio wastewater: A review. ENVIRONMENTAL RESEARCH 2023; 216:114687. [PMID: 36356669 DOI: 10.1016/j.envres.2022.114687] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/06/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
In recent years, iron mediated autotrophic denitrification has been a concern because it overcomes the absence of organic carbon and has been successfully used in denitrification for low C/N ratio wastewater. However, there is currently a lack of a more systematic summary of iron-based materials that can be used for denitrification, and no detailed overview about the mechanism of iron mediated autotrophic denitrification has been reported. In this study, the iron materials with different valence states that can be used for denitrification were summarized, and emphasized, as well as the mechanism in different interaction systems were emphasize. In addition, the contribution of various microorganisms in nitrate reduction were analyzed and the effects of operating conditions and water quality were evaluated. Finally, the challenges and shortcomings of the denitrification process were discussed aiming to find better practical engineering applications of iron-based denitrification.
Collapse
Affiliation(s)
- Shaoting Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
28
|
Shulga N, Abramov S, Klyukina A, Ryazantsev K, Gavrilov S. Fast-growing Arctic Fe-Mn deposits from the Kara Sea as the refuges for cosmopolitan marine microorganisms. Sci Rep 2022; 12:21967. [PMID: 36539439 PMCID: PMC9768204 DOI: 10.1038/s41598-022-23449-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/31/2022] [Indexed: 12/24/2022] Open
Abstract
The impact of biomineralization and redox processes on the formation and growth of ferromanganese deposits in the World Ocean remains understudied. This problem is particularly relevant for the Arctic marine environment where sharp seasonal variations of temperature, redox conditions, and organic matter inflow significantly impact the biogenic and abiotic pathways of ferromanganese deposits formation. The microbial communities of the fast-growing Arctic Fe-Mn deposits have not been reported so far. Here, we describe the microbial diversity, structure and chemical composition of nodules, crust and their underlying sediments collected from three different sites of the Kara Sea. Scanning electron microscopy revealed a high abundance of microfossils and biofilm-like structures within the nodules. Phylogenetic profiling together with redundancy and correlation analyses revealed a positive selection for putative metal-reducers (Thermodesulfobacteriota), iron oxidizers (Hyphomicrobiaceae and Scalinduaceae), and Fe-scavenging Nitrosopumilaceae or Magnetospiraceae in the microenvironments of the Fe-Mn deposits from their surrounding benthic microbial populations. We hypothesize that in the Kara Sea, the nodules provide unique redox-stable microniches for cosmopolitan benthic marine metal-cycling microorganisms in an unsteady environment, thus focusing the overall geochemical activity of nodule-associated microbial communities and accelerating processes of ferromanganese deposits formation to uniquely high rates.
Collapse
Affiliation(s)
- Natalia Shulga
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia.
| | - Sergey Abramov
- Department of Environmental Microbiology, Institute of Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Stuttgart, Germany
| | - Alexandra Klyukina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Konstantin Ryazantsev
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sergey Gavrilov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
29
|
Al-Hazmi HE, Hassan GK, Maktabifard M, Grubba D, Majtacz J, Mąkinia J. Integrating conventional nitrogen removal with anammox in wastewater treatment systems: Microbial metabolism, sustainability and challenges. ENVIRONMENTAL RESEARCH 2022; 215:114432. [PMID: 36167115 DOI: 10.1016/j.envres.2022.114432] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The various forms of nitrogen (N), including ammonium (NH4+), nitrite (NO2-), and nitrate (NO3-), present in wastewaters can create critical biotic stress and can lead to hazardous phenomena that cause imbalances in biological diversity. Thus, biological nitrogen removal (BNR) from wastewaters is considered to be imperatively urgent. Therefore, anammox-based systems, i.e. partial nitrification and anaerobic ammonium oxidation (PN/anammox) and partial denitrification and anammox (PD/anammox) have been universally acknowledged to consider as alternatives, promising and cost-effective technologies for sustainable N removal from wastewaters compared to nitrification-denitrification processes. This review comprehensively presents and discusses the latest advances in BNR technologies, including traditional nitrification-denitrification and anammox-based systems. To a deep understanding of a better-controlled combining anammox with traditional processes, the microbial community diversity and metabolism, as well as, biomass morphological characteristics were clearly reviewed in the anammox-based systems. Explaining simultaneous microbial competition and control of crucial operation parameters in single-stage anammox-based processes in terms of optimization and economic benefits makes this contribution a different vision from available review papers. The most important sustainability indicators, including global warming potential (GWP), carbon footprint (CF) and energy behaviours were explored to evaluate the sustainability of BNR processes in wastewater treatment. Additionally, the challenges and solutions for BNR processes are extensively discussed. In summary, this review helps facilitate a critical understanding of N removal technologies. It is confirmed that sustainability and saving energy would be achieved by anammox-based systems, thereby could be encouraged future outcomes for a sustainable N removal economy.
Collapse
Affiliation(s)
- Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Ul. Narutowicza 11/12, Gdańsk, 80-233, Poland.
| | - Gamal K Hassan
- Water Pollution Research Department, National Research Centre, 33 Bohouth St, Giza, Dokki, P.O. Box 12622, Egypt
| | - Mojtaba Maktabifard
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Ul. Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Dominika Grubba
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Ul. Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Joanna Majtacz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Ul. Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Jacek Mąkinia
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Ul. Narutowicza 11/12, Gdańsk, 80-233, Poland
| |
Collapse
|
30
|
Liu W, Li T, Wang J, Shen Y, Ji X, Yang D. A new concept of waste iron recycling for the enhancement of the anammox process. CHEMOSPHERE 2022; 307:136151. [PMID: 36028122 DOI: 10.1016/j.chemosphere.2022.136151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
As a by-product of industry, waste iron scraps (WIS) are low-cost and widely available, which was potential for the development of iron-assisted anammox. In this study, the feasibility of adding WIS to enhance the nitrogen removal of the anammox process (also called WIS-assisted anammox) was demonstrated. Results indicated that the WIS-assisted anammox reactors performed a 15-35% higher nitrogen removal efficiency than that of the control. Compared to the sludge from the control, the sludge from the WIS-assisted anammox reactors had a higher iron content (78-113 g kg-1 SS) and a better specific anammox activity (10.8-15.5 mg N g-1 VSS h-1). The enhanced growth of the anammox bacteria (related to Ca. Kuenenia stuttgartiensis with 99% similarity) in the WIS-assisted anammox reactors was also confirmed by high-throughput sequencing and qPCR. Furthermore, the functional genes predicted by PICRUSt2 revealed a higher level of hydroxylamine oxidoreductase (hao)-like proteins expression of the biomass from the WIS-assisted anammox reactors, implying that the hydroxylamine-related anammox pathway was promoted. Additionally, the observation of cytoplasmic nitrate reductase (narG), copper-containing nitrite reductase (nirK), and nitric oxide reductase (norB) suggested that the introduction of WIS might promote the denitrification ability. This was correlated to the lower ΔNO3-/ΔNH4+ ratio observed in these WIS-assisted anammox reactors. Overall, the WIS-assisted anammox offers a sustainable nitrogen removal process for wastewater treatment with waste iron recycling.
Collapse
Affiliation(s)
- Wenru Liu
- National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Tianhao Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jianfang Wang
- National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yaoliang Shen
- National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaoming Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dianhai Yang
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China
| |
Collapse
|
31
|
Yang H, Deng L, Yang H, Xiao Y, Zheng D. Promotion of nitrogen removal in a zero-valent iron-mediated nitrogen removal system operated in co-substrate mode. CHEMOSPHERE 2022; 307:135779. [PMID: 35868531 DOI: 10.1016/j.chemosphere.2022.135779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 06/21/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
In this study, the performance and mechanism of nitrogen removal were investigated in a zero-valent iron-mediated nitrogen removal system operated in co-substrate mode with sodium acetate as the organic carbon source. The results showed that the additional organic matter had the capacity to promote NH4+-N and total inorganic nitrogen (TIN) removal with efficiencies of 91.09% and 84.10%, and increases of 60.06% and 75.32% compared with the control group, respectively. The organic matter also stimulated the production of extracellular polymer substances that reduced the passivation and toxicity of iron to microorganisms. The ammonia oxidation activity was 2.5 times higher than that in the control group, and the anammonia oxidation activity and denitrification activity were substantially higher than in the control group with TIN removal efficiencies of 1.02 and 1.19 mgN/(gVSS·d), respectively. In addition, the organic matter increased the enrichment of the heterotrophic denitrification bacterium Diaphorobacter and facultative iron salt-based bacterium Dechloromonas.
Collapse
Affiliation(s)
- Han Yang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; Chengdu Drainage Limited Liability Company, Chengdu 610000, China
| | - Liangwei Deng
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Hongnan Yang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Youqian Xiao
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Dan Zheng
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, China.
| |
Collapse
|
32
|
Xia Q, Ai Z, Huang W, Yang F, Liu F, Lei Z, Huang W. Recent progress in applications of Feammox technology for nitrogen removal from wastewaters: A review. BIORESOURCE TECHNOLOGY 2022; 362:127868. [PMID: 36049707 DOI: 10.1016/j.biortech.2022.127868] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Feammox process is crucial for the global nitrogen cycle and has great potentials for the treatment of low COD/NH4+-N wastewaters. This work provides a systematic and comprehensive overview of the Feammox process. Specifically, underlying mechanisms and functional microbes mediating the Feammox process are summarized in detail. And key influencing factors including pH, temperature, dissolved oxygen, organic carbon, source of Fe(III) as well as various electron shuttles are discussed. Additionally, recent development trends and attempts of the Feammox technology in wastewater treatment applications are reviewed, and perspectives for future development are presented. A thorough review of the recent progress in Feammox process is expected to provide valuable information for further process optimization, which is helpful to achieve a more economical operation and better nitrogen removal performance in future field applications.
Collapse
Affiliation(s)
- Qing Xia
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Ziyin Ai
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Wenli Huang
- MOE Key Laboratory of Pollution Process and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, China
| | - Fei Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Fei Liu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Weiwei Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China.
| |
Collapse
|
33
|
Gu M, Wang Y, Wan D, Shi Y, He Q. Electrodialysis ion-exchange membrane bioreactor (EDIMB) to remove nitrate from water: Optimization of operating conditions and kinetics analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156046. [PMID: 35597341 DOI: 10.1016/j.scitotenv.2022.156046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Nitrate pollution has become a worldwide problem. In this study, we remove nitrate from water by electrodialysis ion-exchange membrane bioreactor (EDIMB) and enabling simultaneous nitrate enrichment and denitrification. In this reactor, nitrate migrated from the water chamber to the biological chamber via electrodialysis and was degraded by microorganisms. The effects of voltage and biomass concentration on the reactor performance were examined, and the kinetics data of the water chamber and biological chamber were fitted. The experimental results showed that the migration of nitrate in the water chamber conformed to the first-order model, and the constructed zero-Michaelis-Menten model described changes in nitrate concentration in the biological chamber. Furthermore, when the inflow nitrate concentration was 40 mg N/L, 5 V was the best voltage, and 3.00 g VSS/L was the best biomass concentration. The nitrate removal rate in the water chamber was 98.94%, and there was no accumulation of nitrate or nitrite in the biological chamber. Compared with traditional ED processes, the nitrate removal efficiency was 8.86% higher, and the current efficiency was 22.14% higher. The total organic carbon (TOC) of the water chamber was only 1.43 mg C/L, which proves that the structure of the EDIMB confined the denitrifying bacteria and organic carbon donors in the biological chamber and avoided secondary pollution in the water chamber. Microbial community analysis showed that Thauera (66.06%) was the dominant bacterium in the EDIMB system, and Azoarcus (9.81%) was a minor denitrifying genus.
Collapse
Affiliation(s)
- Mengqi Gu
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Yanan Wang
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Dongjin Wan
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, Henan 450001, China; Institute for Carbon Neutrality, Henan University of Technology, Zhengzhou, Henan 450001, China.
| | - Yahui Shi
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, Henan 450001, China
| | - Qiaochong He
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, Henan 450001, China
| |
Collapse
|
34
|
Hu L, Cheng X, Qi G, Zheng M, Dang Y, Li J, Xu K. Achieving Ammonium Removal Through Anammox-Derived Feammox With Low Demand of Fe(III). Front Microbiol 2022; 13:918634. [PMID: 35832814 PMCID: PMC9271925 DOI: 10.3389/fmicb.2022.918634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Feammox-based nitrogen removal technology can reduce energy consumption by aeration and emission of carbon dioxide. However, the huge theoretical demand for Fe(III) becomes a challenge for the further development of Feammox. This study investigated an anammox-derived Feammox process with an intermittent dosage of Fe2O3 and proposed a novel approach to reduce the Fe(III) consumption. The results showed that anammox genera Candidatus Brocadia and Candidatus Kuenenia in the seed anammox sludge significantly decreased after cultivation. The formation of N2 was the dominating pathway in Feammox while that of nitrite and nitrate could be neglected. Batch tests showed that specific Feammox activity of ammonium oxidation was 1.14–9.98 mg N/(g VSS·d). The maximum removal efficiency of ammonium reached 52.3% in the bioreactor with a low dosage of Fe(III) which was only 5.8% of the theoretical demand in Feammox. The removal of ammonium was mainly achieved through Feammox, while partial nitrification/anammox also played a role due to the non-power and unintentional oxygen leakage. The super-low oxygen also responded to the low demand of Fe(III) in the bioreactor because it could trigger the cycle of Fe(III)/Fe(II) by coupling Feammox and chemical oxidation of Fe(II) to Fe(III). Therefore, anammox-derived Feammox can achieve the removal of ammonium with low Fe(III) demand at super-low oxygen.
Collapse
Affiliation(s)
- Lanlan Hu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Xiaohui Cheng
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Guangxia Qi
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, China
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Yan Dang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Jiyun Li
- School of Environment, Tsinghua University, Beijing, China
| | - Kangning Xu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
- *Correspondence: Kangning Xu
| |
Collapse
|
35
|
Wan L, Liu H, Wang X. Anaerobic ammonium oxidation coupled to Fe(III) reduction: Discovery, mechanism and application prospects in wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151687. [PMID: 34788664 DOI: 10.1016/j.scitotenv.2021.151687] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Fe(III) reduction coupled with anaerobic ammonium oxidation is known as Feammox. Feammox, which was first discovered in wetland ecosystems, has the potential to be used in wastewater treatment systems due to its ability to remove ammonium. Feammox can produce N2, NO2- or NO3- through the reduction of Fe(III) and oxidation of ammonium, which is a potential process to nitrogen loss from aquatic ecosystems and terrestrial ecosystems. The Acidimicrobiaceae sp. A6 was the first Feammox functional bacteria that was successfully isolated from wetlands. The nitrogen removal effect of Feammox can be influenced by many environmental factors, such as pH, organic matter, and different sources of Fe(III). Feammox has broad application prospects, but more exploration is needed to apply this principle to wastewater treatment. This review introduces the development, mechanism, functional microbes and factors affecting the Feammox process, and discusses its potential applications.
Collapse
Affiliation(s)
- Liuyang Wan
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Sciences, Chongqing 400714, China
| | - Hong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Sciences, Chongqing 400714, China
| | - Xingzu Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
36
|
Wang X, Yang H, Geng L, Liu X. Analyzing the effect of storage conditions on anammox recovery performance from the perspectives of time, temperature and biomass form. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151577. [PMID: 34801501 DOI: 10.1016/j.scitotenv.2021.151577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/19/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
In this study, the effects of different storage conditions, such as temperature, storage time and biomass form, on the properties of anaerobic ammonia oxidation (anammox) were investigated along with the identification of the process mechanism. The results showed that the influence of storage time on anammox properties was stronger than that of storage temperature and biomass form. Also, the anammox recovery activity at 15 °C was better than that at 4 °C, and the anammox recovery activity of immobilized filler was better than that of anammox granular sludge (AnGS). Although cryogenic storage severely damaged anammox activity, lower loss of extracellular polymeric substances maintained the AnGS structure. The maximum recovery of specific anammox activity at 15 °C for the immobilized filler was observed to be 109%. In addition, intermittent substrate supplementation weakened the adverse effect of long-term storage on anammox activity, and was conducive to maintaining stable flora composition and promoting regeneration of anammox bacteria (AnAOB). High-throughput sequencing analysis showed that starvation resulted in increased community diversity, and the functional bacteria Candidatus Brocadia was observed to be more tolerant to starvation than Candidatus Kuenenia. Finally, principal component analysis was used to explain the complex relationship between process performance and preservation conditions. Based on the results of this work, it is recommended to preserve AnAOB in the form of immobilized filler at 15 °C and supplement substrate intermittently during long term storage. This study provides an economical and robust strategy for the short-term and long-term preservation of AnAOB.
Collapse
Affiliation(s)
- XiaoTong Wang
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hong Yang
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China.
| | - LiangHan Geng
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China
| | - XuYan Liu
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
37
|
Determination of 15N/ 14N of Ammonium, Nitrite, Nitrate, Hydroxylamine, and Hydrazine Using Colorimetric Reagents and Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS). Appl Environ Microbiol 2022; 88:e0241621. [PMID: 35285242 DOI: 10.1128/aem.02416-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the nitrogen (N) cycle, nitrogenous compounds are chemically and biologically converted to various aqueous and gaseous N species. The 15N-labeling approach is a powerful culture-dependent technique to obtain insights into the complex nitrogen transformation reactions that occur in cultures. In the 15N-labeling approach, the fates of supplemented 15N- and/or unlabeled gaseous and aqueous compounds are tracked by mass spectrometry (MS) analysis, whereas MS analysis of aqueous N species requires laborious sample preparation steps and is performed using isotope-ratio mass spectrometry, which requires an expensive mass spectrometer. We developed a simple and high-throughput MS method for determining the 15N atoms percent of NH4+, NO2-, NO3-, NH2OH, and N2H4, where liquid samples (<0.5 mL) were mixed with colorimetric reagents (naphthylethylenediamine for NO2-, indophenol for NH4+, and p-aminobenzaldehyde for N2H4), and the mass spectra of the formed N complex dyes were obtained by matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) MS. NH2OH and NO3- were chemically converted to NO2- by iodine oxidation and copper/hydrazine reduction reaction, respectively, prior to the above colorimetric reaction. The intensity of the isotope peak (M + 1 or M + 2) increased when the N complex dye was formed by coupling with a 15N-labeled compound, and a linear relationship was found between the determined 15N/14N peak ratio and 15N atom% for the tested N species. The developed method was applied to bacterial cultures to examine their N-transformation reactions, enabling us to observe the occurrence of NO2- oxidation and NO3- reduction in a hypoxic Nitrobacter winogradskyi culture. IMPORTANCE 15N/14N analysis for aqueous N species is a powerful tool for obtaining insights into the global N cycle, but the procedure is cumbersome and laborious. The combined use of colorimetric reagents and MALDI-TOF MS, designated color MALDI-TOF MS, enabled us to determine the 15N atom% of common aqueous N species without laborious sample preparation and chromatographic separation steps; for instance, the 15N atom% of NO2- can be determined from >1,000 liquid samples daily at <$1 (U.S.) per 384 samples for routine analysis. This convenient MS method is a powerful tool that will advance our ability to explore the N-transformation reactions that occur in various environments and biological samples.
Collapse
|
38
|
Cao J, Li N, Jiang J, Xu Y, Zhang B, Luo X, Hu Y. Activated carbon as an insoluble electron shuttle to enhance the anaerobic ammonium oxidation coupled with Fe(III) reduction process. ENVIRONMENTAL RESEARCH 2022; 204:111972. [PMID: 34487698 DOI: 10.1016/j.envres.2021.111972] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic ammonium oxidation coupled with Fe(III) reduction (Feammox) is an autotrophic biological nitrogen removal (BNR) technique in treating low-C/N wastewater. However, the nitrogen removal rate of Feammox is limited by the extracellular electron transfer. In this study, wood activated carbon (AC) was chosen as electron shuttle to enhance the start-up of the Feammox process. Within an operational period of 150 days, the NH4+-N removal efficiency reached 97.9-99.5% with a volumetric loading rate (VLR) of 0.04-0.06 kg N m-3 d-1. Batch experiments indicated that compared with Fe2O3-AQDS and Fe2O3 groups, Fe2O3-AC group showed higher catalytic performance and TN removal efficiency reached 85.7%. Quinone (CO) and phenolic (-OH) chemical groups of AC were equipped with electron transfer capacity (76.51 ± 9.27 μmol e- g-1). Moreover, Fe(II)/Fe(III) species and the secondary iron minerals were found in our system. Microbial analysis showed that Proteobacteria and Acidobacteriota, which observed with relatively high abundance, were played an important role in the integrated Feammox system. This study demonstrates the significant influence of AC on Feammox process and provides an enhanced biological nitrogen removal strategy for practice engineering application.
Collapse
Affiliation(s)
- Jie Cao
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Ning Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Beiping Zhang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Xiaonan Luo
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Yingbin Hu
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| |
Collapse
|
39
|
Dreher CL, Schad M, Robbins LJ, Konhauser KO, Kappler A, Joshi P. Microbial processes during deposition and diagenesis of Banded Iron Formations. PALAONTOLOGISCHE ZEITSCHRIFT 2021; 95:593-610. [PMID: 35034981 PMCID: PMC8724090 DOI: 10.1007/s12542-021-00598-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Banded Iron Formations (BIFs) are marine chemical sediments consisting of alternating iron (Fe)-rich and silica (Si)-rich bands which were deposited throughout much of the Precambrian era. BIFs represent important proxies for the geochemical composition of Precambrian seawater and provide evidence for early microbial life. Iron present in BIFs was likely precipitated in the form of Fe3+ (Fe(III)) minerals, such as ferrihydrite (Fe(OH)3), either through the metabolic activity of anoxygenic photoautotrophic Fe2+ (Fe(II))-oxidizing bacteria (photoferrotrophs), by microaerophilic bacteria, or by the oxidation of dissolved Fe(II) by O2 produced by early cyanobacteria. However, in addition to oxidized Fe-bearing minerals such as hematite (FeIII 2O3), (partially) reduced minerals such as magnetite (FeIIFeIII 2O4) and siderite (FeIICO3) are found in BIFs as well. The presence of reduced Fe in BIFs has been suggested to reflect the reduction of primary Fe(III) minerals by dissimilatory Fe(III)-reducing bacteria, or by metamorphic (high pressure and temperature) reactions occurring in presence of buried organic matter. Here, we present the current understanding of the role of Fe-metabolizing bacteria in the deposition of BIFs, as well as competing hypotheses that favor an abiotic model for BIF deposition. We also discuss the potential abiotic and microbial reduction of Fe(III) in BIFs after deposition. Further, we review the availability of essential nutrients (e.g. P and Ni) and their implications on early Earth biogeochemistry. Overall, the combined results of various ancient seawater analogue experiments aimed at assessing microbial iron cycling pathways, coupled with the analysis of the BIF rock record, point towards a strong biotic influence during BIF genesis.
Collapse
Affiliation(s)
- Carolin L. Dreher
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Germany
| | - Manuel Schad
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB Canada
| | | | - Kurt O. Konhauser
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB Canada
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Germany
| | - Prachi Joshi
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
40
|
Chen Y, Jia F, Liu Y, Yu W, Cai W, Zhang X, He H, Yao H. The effects of Fe(III) and Fe(II) on anammox process and the Fe-N metabolism. CHEMOSPHERE 2021; 285:131322. [PMID: 34246098 DOI: 10.1016/j.chemosphere.2021.131322] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/14/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
This study aims to compare the effects of different Fe stress on anammox (anaerobic ammonium oxidation) process, therefore seven identical reactors were operated under different Fe(II)/Fe(III) concentrations. After 38 days of operation, the anammox activity was highest (10.49 ± 0.41 mg-TN/(g-VSS·h)) under conditions of 5 mg/L-Fe(II), while under 30 mg/L-Fe(III) displayed severe inhibition. The results showed that continuous addition of 30 mg/L-Fe(III) would damage the composition of EPS (extracellular polymeric substances) and make anammox bacteria more sensitive to environmental stress. While high Fe(II) concentrations could result in precipitates encasing granular sludge, affecting substrate utilization. Moreover, the results of ΔNO3--N/ΔNH4+-N indicated that Fe(II)-dependent nitrate reduction was induced in reactors added with Fe(II). OM27_clade and norank_f__Burkholderiaceae might be candidates for this process according to the correlation of genera and functional genes (based on the PICRUSt 2 functional prediction). Overall, this research is expected to provide new ideas to the effects of Fe(II)/Fe(III) on anammox and to the practical application of coupled system based on anammox in wastewater treatment.
Collapse
Affiliation(s)
- Yao Chen
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, PR China
| | - Fangxu Jia
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, PR China.
| | - Yingjie Liu
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, PR China
| | - Wanrou Yu
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, PR China
| | - Weiwei Cai
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, PR China
| | - Xiaofan Zhang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, PR China
| | - Haodong He
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, PR China
| | - Hong Yao
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, PR China
| |
Collapse
|
41
|
Zhao B, Li X, Wang Y, Tan X, Qi W, Li H, Wei J, You Y, Shi W, Zhang Q. Dissimilatory nitrate reduction and functional genes in two subtropical rivers, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:68155-68173. [PMID: 34264489 DOI: 10.1007/s11356-021-15197-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Dissimilatory nitrate reduction processes, including denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA), are important pathways of nitrate transformation in the aquatic environments. In this study, we investigated potential rates of denitrification, anammox, and DNRA in the sediments of two subtropical rivers, Jinshui River and Qi River, with different intensities of human activities in their respective catchment, China. Our objectives were to assess the seasonality of dissimilatory nitrate reduction rates, quantify their respective contributions to nitrate reduction, and reveal the relationship between dissimilatory nitrate reduction rates, functional gene abundances, and physicochemicals in the river ecosystems. Our results showed higher rates of denitrification and anammox in the intensively disturbed areas in autumn and spring, and higher potential DNRA in the slightly disturbed areas in summer. Generally, denitrification, anammox, and DNRA were higher in summer, autumn, and spring, respectively. Relative contributions of nitrate reduction from denitrification, anammox, and DNRA were quite different in different seasons. Dissimilatory nitrate reduction rates and gene abundances correlated significantly with water temperature, dissolved organic carbon (DOC), sediment total organic carbon (SOC), NO3-, NH4+, DOC/NO3-, iron ions, and sulfide. Understanding dissimilatory nitrate reduction is essential for restoring nitrate reduction capacity and improving and sustaining ecohealth of the river ecosystems.
Collapse
Affiliation(s)
- Binjie Zhao
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinshuai Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang Tan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Wenhua Qi
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongran Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junwei Wei
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Research Center for Ecology and Environment of Qinghai-Tibetan Plateau, Tibet University, Lhasa, 850000, China
- College of Science, Tibet University, Lhasa, 850000, China
| | - Yong You
- College of Land and Resources, China West Normal University, Nanchong, 637009, China
| | - Wenjun Shi
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Quanfa Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
42
|
Chan-Pacheco CR, Valenzuela EI, Cervantes FJ, Quijano G. Novel biotechnologies for nitrogen removal and their coupling with gas emissions abatement in wastewater treatment facilities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149228. [PMID: 34346385 DOI: 10.1016/j.scitotenv.2021.149228] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Wastewaters contaminated with nitrogenous pollutants, derived from anthropogenic activities, have exacerbated our ecosystems sparking environmental problems, such as eutrophication and acidification of water reservoirs, emission of greenhouse gases, death of aquatic organisms, among others. Wastewater treatment facilities (WWTF) combining nitrification and denitrification, and lately partial nitrification coupled to anaerobic ammonium oxidation (anammox), have traditionally been applied for the removal of nitrogen from wastewaters. The present work provides a comprehensive review of the recent biotechnologies developed in which nitrogen-removing processes are relevant for the treatment of both wastewaters and gas emissions. These novel processes include the anammox process with alternative electron acceptors, such as sulfate (sulfammox), ferric iron (feammox), and anodes in microbial electrolysis cells (anodic anammox). New technologies that couple nitrate/nitrite reduction with the oxidation of methane, H2S, volatile methyl siloxanes, and other volatile organic compounds are also described. The potential of these processes for (i) minimizing greenhouse gas emissions from WWTF, (ii) biogas purification, and (iii) air pollution control is critically discussed considering the factors that might trigger N2O release during nitrate/nitrite reduction. Moreover, this review provides a discussion on the main challenges to tackle towards the consolidation of these novel biotechnologies.
Collapse
Affiliation(s)
- Carlos R Chan-Pacheco
- Laboratory for Research on Advanced Processes for Water Treatment, Engineering Institute, Campus Juriquilla, Universidad Nacional Autónoma de México (UNAM), Blvd. Juriquilla 3001, 76230 Querétaro, Mexico
| | - Edgardo I Valenzuela
- Laboratory for Research on Advanced Processes for Water Treatment, Engineering Institute, Campus Juriquilla, Universidad Nacional Autónoma de México (UNAM), Blvd. Juriquilla 3001, 76230 Querétaro, Mexico
| | - Francisco J Cervantes
- Laboratory for Research on Advanced Processes for Water Treatment, Engineering Institute, Campus Juriquilla, Universidad Nacional Autónoma de México (UNAM), Blvd. Juriquilla 3001, 76230 Querétaro, Mexico.
| | - Guillermo Quijano
- Laboratory for Research on Advanced Processes for Water Treatment, Engineering Institute, Campus Juriquilla, Universidad Nacional Autónoma de México (UNAM), Blvd. Juriquilla 3001, 76230 Querétaro, Mexico.
| |
Collapse
|
43
|
Mishra P, Burman I, Sinha A. Performance enhancement and optimization of the anammox process with the addition of iron. ENVIRONMENTAL TECHNOLOGY 2021; 42:4158-4169. [PMID: 32202215 DOI: 10.1080/09593330.2020.1746408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
This study was conducted to evaluate the performance of anammox reaction on the addition of iron. Iron was added in the form of FeSO4 starting with 2 mg/L (phase I), 5 mg/L (phase II), 8 mg/L (phase III), 10 mg/L (phase IV), 30 mg/L (phase V) and 50 mg/L (phase VI) on the addition of Fe (II) in anammox reactor. The efficiency of ammonia removal increased up to 90% with 5 mg/L of Fe (II) addition as compared to 77% when no Fe (II) was added. As the iron dosing was increased from 10 to 30 mg/L, ammonia removal declined sharply, which recovered slowly at steady-state condition. However, on the addition of 30 and 50 mg/L of Fe (II), the efficiency declined to 55% and 44%, respectively and did not recover. At 5 mg/L Fe (II) the nitrite removal was nearly 80% which declined to 44% at 50 mg/L. This was attributed to low pH values which hindered anammox activity. The mass balance study of nitrogen in the anammox process revealed that gas production was highest at 5 mg/L of Fe (II) conforming that 5 mg/L of Fe (II) is the optimum dose of iron for enhancing anammox reaction.
Collapse
Affiliation(s)
- Pooja Mishra
- Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| | - Isha Burman
- Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| | - Alok Sinha
- Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| |
Collapse
|
44
|
Yang Y, Azari M, Herbold CW, Li M, Chen H, Ding X, Denecke M, Gu JD. Activities and metabolic versatility of distinct anammox bacteria in a full-scale wastewater treatment system. WATER RESEARCH 2021; 206:117763. [PMID: 34700143 DOI: 10.1016/j.watres.2021.117763] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/16/2021] [Accepted: 10/10/2021] [Indexed: 05/05/2023]
Abstract
Anaerobic ammonium oxidation (anammox) is a key N2-producing process in the global nitrogen cycle. Major progress in understanding the core mechanism of anammox bacteria has been made, but our knowledge of the survival strategies of anammox bacteria in complex ecosystems, such as full-scale wastewater treatment plants (WWTPs), remains limited. Here, by combining metagenomics with in situ metatranscriptomics, complex anammox-driven nitrogen cycles in an anoxic tank and a granular activated carbon (GAC) biofilm module of a full-scale WWTP treating landfill leachate were constructed. Four distinct anammox metagenome-assembled genomes (MAGs), representing a new genus named Ca. Loosdrechtii, a new species in Ca. Kuenenia, a new species in Ca. Brocadia, and a new strain in "Ca. Kuenenia stuttgartiensis", were simultaneously retrieved from the GAC biofilm. Metabolic reconstruction revealed that all anammox organisms highly expressed the core metabolic enzymes and showed a high metabolic versatility. Pathways for dissimilatory nitrate reduction to ammonium (DNRA) coupled to volatile fatty acids (VFAs) oxidation likely assist anammox bacteria to survive unfavorable conditions and facilitate switches between lifestyles in oxygen fluctuating environments. The new Ca. Kuenenia species dominated the anammox community of the GAC biofilm, specifically may be enhanced by the uniquely encoded flexible ammonium and iron acquisition strategies. The new Ca. Brocadia species likely has an extensive niche distribution that is simultaneously established in the anoxic tank and the GAC biofilm, the two distinct niches. The highly diverse and impressive metabolic versatility of anammox bacteria revealed in this study advance our understanding of the survival and application of anammox bacteria in the full-scale wastewater treatment system.
Collapse
Affiliation(s)
- Yuchun Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, Guangdong 510275, People's Republic of China
| | - Mohammad Azari
- Department of Urban Water- and Waste Management, University of Duisburg-Essen, Universitätsstraße 15, Essen 45141, Germany; Department of Aquatic Environmental Engineering, Institute for Water and River Basin Management, Karlsruhe Institute of Technology (KIT), Gotthard-Franz-Str. 3, Karlsruhe 76131, Germany
| | - Craig W Herbold
- Center for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, Vienna 1090, Austria
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Huaihai Chen
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, Guangdong 510275, People's Republic of China
| | - Xinghua Ding
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | - Martin Denecke
- Department of Urban Water- and Waste Management, University of Duisburg-Essen, Universitätsstraße 15, Essen 45141, Germany
| | - Ji-Dong Gu
- Environmental Science and Engineering Research Group, Guangdong Technion Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, The People's Republic of China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, Guangdong, The People's Republic of China.
| |
Collapse
|
45
|
Ahn JY, Hwang I, Park N, Park SH. Laboratory and field study on changes in water quality and increase in dissolved iron during riverbank filtration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:50142-50152. [PMID: 33950421 DOI: 10.1007/s11356-021-14101-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Changes in the water quality by the riverbank filtration (RBF) process were investigated in the field-scale demonstration sites. The overall water quality was improved by RBF, but Fe2+ concentration significantly increased in the riverbank-filtered water more than in the river water. This result would be caused by the interaction between the iron minerals and the river water in the aquifer and the influx of the hinterland groundwater into RBF wells. Dissolution properties of iron from the aquifer soils cored at the sites were evaluated through incubation experiment considering various values of redox potential (Eh), dissolved oxygen (DO), and hydrogen-ion concentration exponent (pH). These results presented that at the incubator with the final Eh of 470 mV, DO of 3.4, and pH of 4.53, the iron from the aquifer soil was most dissolved, and the pyrite and siderite contents in the aquifer soil decreased significantly from 11.5 to 6.22% and from 50.8 to 24.5%, respectively. Based on changes of ion concentrations (such as Fe2+, Fe3+, SO42- and NO3-) and iron species in the incubators, it was believed that pyrite and siderite minerals in the aquifer soils cause an increase in the Fe2+ concentration with the absence of DO and an increase in the Fe2+ and Fe3+ concentrations with the presence of DO. The dissolution rates of iron minerals into Fe2+ and Fe3+ were dependent on Eh, pH, and DO and were more sensitive to Eh and pH than DO. The results of this study can provide information on RBF site selection and its operation.
Collapse
Affiliation(s)
- Jun-Young Ahn
- Department of Civil and Environmental Engineering, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Inseong Hwang
- Department of Civil and Environmental Engineering, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Namsik Park
- Department of Civil Engineering, Dong-A University, 37 Nakdong-Daero 550beon-gil, Saha-gu, Busan, 49315, Republic of Korea
| | - Sung-Hyuk Park
- Department of Civil Engineering, Dong-A University, 37 Nakdong-Daero 550beon-gil, Saha-gu, Busan, 49315, Republic of Korea.
| |
Collapse
|
46
|
Li D, Wei Z, Li S, Wang W, Zeng H, Zhang J. Operational mode affects the role of organic matter in granular anammox process. BIORESOURCE TECHNOLOGY 2021; 336:125337. [PMID: 34087731 DOI: 10.1016/j.biortech.2021.125337] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
In the presence of organic matter, the granular anammox system under sequencing batch mode showed more robust anammox performance than that under completely mixed mode, which was attributed to the better biomass retention with high settling ability and stability of granular sludge. Based on the specific anammox activity test, stratified and mixed distribution of heterotrophic bacteria was found under completely mixed and sequencing batch mode, respectively. The stratified microbial distribution resulted in low enzyme activity of anammox bacteria and sludge disintegration by hindering substrate transfer with a large accumulation of EPS on the granular surface. Whereas the heterotrophic bacteria mixed in granules (mixed microbial distribution) act as a "skeleton", which increased the particle size, density, and stability of granular sludge. Compared with biokinetic-based selection, diffusion-based selection with high substrate penetration depth more likely resulted in the mixed granular structure and strong resistance to organic inhibition under sequencing batch mode.
Collapse
Affiliation(s)
- Dong Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China.
| | - Ziqing Wei
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Shuai Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Wenqiang Wang
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Huiping Zeng
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Jie Zhang
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
47
|
Suenaga T, Ota T, Oba K, Usui K, Sako T, Hori T, Riya S, Hosomi M, Chandran K, Lackner S, Smets BF, Terada A. Combination of 15N Tracer and Microbial Analyses Discloses N 2O Sink Potential of the Anammox Community. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9231-9242. [PMID: 34142798 DOI: 10.1021/acs.est.1c00674] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although nitrogen removal by partial nitritation and anammox is more cost-effective than conventional nitrification and denitrification, one downside is the production and accumulation of nitrous oxide (N2O). The potential exploitation of N2O-reducing bacteria, which are resident members of anammox microbial communities, for N2O mitigation would require more knowledge of their ecophysiology. This study investigated the phylogeny of resident N2O-reducing bacteria in an anammox microbial community and quantified individually the processes of N2O production and N2O consumption. An up-flow column-bed anammox reactor, fed with NH4+ and NO2- and devoid of oxygen, emitted N2O at an average conversion ratio (produced N2O: influent nitrogen) of 0.284%. Transcriptionally active and highly abundant nosZ genes in the reactor biomass belonged to the Burkholderiaceae (clade I type) and Chloroflexus genera (clade II type). Meanwhile, less abundant but actively transcribing nosZ strains were detected in the genera Rhodoferax, Azospirillum, Lautropia, and Bdellovibrio and likely act as an N2O sink. A novel 15N tracer method was adapted to individually quantify N2O production and N2O consumption rates. The estimated true N2O production rate and true N2O consumption rate were 3.98 ± 0.15 and 3.03 ± 0.18 mgN·gVSS-1·day-1, respectively. The N2O consumption rate could be increased by 51% (4.57 ± 0.51 mgN·gVSS-1·day-1) with elevated N2O concentrations but kept comparable irrespective of the presence or absence of NO2-. Collectively, the approach allowed the quantification of N2O-reducing activity and the identification of transcriptionally active N2O reducers that may constitute as an N2O sink in anammox-based processes.
Collapse
Affiliation(s)
- Toshikazu Suenaga
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo 185-8538, Japan
| | - Takumi Ota
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Kohei Oba
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Kentaro Usui
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Toshiki Sako
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-0053, Japan
| | - Shohei Riya
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo 185-8538, Japan
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Masaaki Hosomi
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Kartik Chandran
- Department of Earth and Environmental Engineering, Columbia University, 116th Street and Broadway, New York, New York 10027, United States
| | - Susanne Lackner
- Department of Civil and Environmental Engineering Science, Institute IWAR, Chair of Wastewater Engineering, Technical University of Darmstadt, Franziska-Braun-Straße 7, 64287 Darmstadt, Germany
| | - Barth F Smets
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo 185-8538, Japan
- Department of Environmental Engineering, Denmark Technical University, Anker Engelunds Vej 1 Bygning 101A, 2800 Kongens Lyngby, Denmark
| | - Akihiko Terada
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo 185-8538, Japan
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
48
|
Synergism Red Mud-Acid Mine Drainage as a Sustainable Solution for Neutralizing and Immobilizing Hazardous Elements. METALS 2021. [DOI: 10.3390/met11040620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Acid mine drainage (AMD) and red mud (RM) are frequently available in the metallurgical and mining industry. Treating AMD solutions require the generation of enough alkalinity to neutralize the acidity excess. RM, recognized as a waste generating high alkalinity solution when it is in contact with water, was chosen to treat AMD from South Africa at room temperature. A German and a Greek RM have been evaluated as a potential low-cost material to neutralize and immobilize harmful chemical ions from AMD. Results showed that heavy metals and other hazardous elements such as As, Se, Cd, and Zn had been immobilized in the mineral phase. According to European environmental standards, S and Cr, mainly present in RM, were the only two elements not immobilized below the concentration established for inert waste.
Collapse
|
49
|
Yang Y, Xiao C, Yu Q, Zhao Z, Zhang Y. Using Fe(II)/Fe(III) as catalyst to drive a novel anammox process with no need of anammox bacteria. WATER RESEARCH 2021; 189:116626. [PMID: 33249306 DOI: 10.1016/j.watres.2020.116626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 11/04/2020] [Accepted: 11/08/2020] [Indexed: 06/12/2023]
Abstract
A novel 'anammox' in the absence of anammox bacteria was confirmed to occur in an anaerobic sludge slurry system, in which Fe(II)/Fe(III) cycle driven by NO2--induced Fe(II) oxidation and subsequent NH4+-induced Fe(III) reduction (Feammox) pushed the nitrogen removal. Results showed that Fe(II) contents significantly (p<0.05) decreased and Fe(III) accordingly increased with NO2- addition, indicating that Fe(II) was anaerobically oxidized to Fe(III). With depletion of NO2-, the Fe(II) content began to increase which was a result of Feammox. Consequently, 96.0% NH4+-N of the NO2--added reactor was removed during 18 days operation, while NH4+-N content remained essentially unchanged in the control in which NO2- was not added. X-ray diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) analysis indicated that FeOOH was produced from chemical Fe(II) oxidation with NO2-. During the treatment, anammox bacteria was not detected, but the relative abundance of Geobacter of the NO2--added group increased by 13 folds. Isotope experiment in 15NH4+-containing reactors found that much more 30N2 and 29N2 in the 14NO2--added group were produced than those in the control (without 14NO2-), confirming that 14NO2- induced Fe(II) oxidation to participate in Feammox for 15NH4+ removal. Also, NO2- could be produced from partial denitrification of NO3-, meaning that NO3- as a more common species might substitute NO2- to trigger this new anammox process.
Collapse
Affiliation(s)
- Yafei Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China; School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Cancan Xiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qing Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhiqiang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
50
|
Li J, Chen X, Liu W, Tao Y. Biostimulation of a marine anammox bacteria-dominated bioprocess by Co(II) to treat nitrogen-rich, saline wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141489. [PMID: 32846348 DOI: 10.1016/j.scitotenv.2020.141489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
The biostimulation of a marine anammox bacteria (MAB)-dominated bioprocess with Co(II) was studied in a sequencing batch reactor (SBR) treating nitrogen-rich saline wastewater at 15 °C. The low Co(II) load of 0.0015 kgCo2+added/(m3.d) had little effect on the removal of nitrogen. The nitrite removal rate (NRR), ammonia removal rate (ARR), and specific anammox activity (SAA) reached 0.73 kg/(m3·d), 0.59 kg/(m3·d), and 0.23 kg/(kg·d), respectively, under the Co(II) load of 0.009 kgCo2+added/(m3.d). However, the loadings of Co(II) at 0.024-0.03 kgCo2+added/(m3.d) negatively affected the activity of MAB. Besides, the values of ΔNO2--N/ΔNH4+-N (1.15-1.29) were lower than the theoretical ratio values (around 1.32) likely because of the marine commamox process. The removal of nitrogen from nitrogen-rich saline wastewater was achieved by the synergy between Candidatus Scalindua (27.11%) and Candidatus Kuenenia (9.55%). The nitrogen removal with Co(II) addition could be well described by a modified Logistic model.
Collapse
Affiliation(s)
- Jin Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Xiuqin Chen
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Wenzong Liu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yu Tao
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|