1
|
Molpeceres-García FJ, Sanz-Mata D, García-Miro A, Prieto A, Barriuso J. Towards polyethylene terephthalate valorisation into PHB using an engineered Comamonas testosteroni strain. N Biotechnol 2024; 85:75-83. [PMID: 39708916 DOI: 10.1016/j.nbt.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
The abundant production of plastic materials, coupled with their recalcitrant nature, makes plastic waste a major challenge as a pollutant. Polyethylene terephthalate (PET) is a polyester formed by polycondensation of terephthalic acid (TPA) and ethylene glycol (EG). This plastic polymer can be completely depolymerized to its monomers using microbial enzymes. In this study, we verified in silico and in vivo that the bacterium Comamonas testosteroni RW31 is able to assimilate TPA and to produce the bioplastic polyhydroxybutyrate (PHB). This bacterium was engineered to heterologously express a fusion of the PET-degrading enzymes FAST-PETase and IsMHETase. We verified that our strain successfully secretes the enzymes and depolymerize PET both in vitro and in vivo, achieving a weight loss of 37.1 % and 0.83 %, respectively. We also studied its capacity to form biofilm. Furthermore, our strain can employ bis(2-hydroxyethyl) terephthalate (BHET), an intermediate of PET degradation, as feedstock to accumulate PHB up to 12.03 % of its dry weight in 14 h. Our findings highlight C. testosteroni RW31 as a promising chassis for synthetic biology strategies aimed at upcycling PET waste.
Collapse
Affiliation(s)
- Francisco J Molpeceres-García
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), C/ Ramiro de Maeztu 9, Madrid E-28040, Spain
| | - David Sanz-Mata
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), C/ Ramiro de Maeztu 9, Madrid E-28040, Spain
| | - Alejandro García-Miro
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), C/ Ramiro de Maeztu 9, Madrid E-28040, Spain
| | - Alicia Prieto
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), C/ Ramiro de Maeztu 9, Madrid E-28040, Spain
| | - Jorge Barriuso
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), C/ Ramiro de Maeztu 9, Madrid E-28040, Spain.
| |
Collapse
|
2
|
Lin H, Wang D, Wang Q, Mao J, Bai Y, Qu J. Interspecific competition prevents the proliferation of social cheaters in an unstructured environment. THE ISME JOURNAL 2024; 18:wrad038. [PMID: 38365247 PMCID: PMC10939377 DOI: 10.1093/ismejo/wrad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 02/18/2024]
Abstract
Bacterial communities are intricate ecosystems in which various members interact, compete for resources, and influence each other's growth. Antibiotics intensify this complexity, posing challenges in maintaining biodiversity. In this study, we delved into the behavior of kin bacterial communities when subjected to antibiotic perturbations, with a particular focus on how interspecific interactions shape these responses. We hypothesized that social cheating-where resistant strains shield both themselves and neighboring cheaters-obstructed coexistence, especially when kin bacteria exhibited varied growth rates and antibiotic sensitivities. To explore potential pathways to coexistence, we incorporated a third bacterial member, anticipating a shift in the dynamics of community coexistence. Simulations and experimental bacterial communities confirmed our predictions, emphasizing the pivotal role of interspecific competition in promoting coexistence under antibiotic interference. These insights are crucial for understanding bacterial ecosystem stability, interpreting drug-microbiome interactions, and predicting bacterial community adaptations to environmental changes.
Collapse
Affiliation(s)
- Hui Lin
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Donglin Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Qiaojuan Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Jie Mao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
3
|
Lin H, Ning X, Wang D, Wang Q, Bai Y, Qu J. Quorum-sensing gene regulates hormetic effects induced by sulfonamides in Comamonadaceae. Appl Environ Microbiol 2023; 89:e0166223. [PMID: 38047646 PMCID: PMC10734536 DOI: 10.1128/aem.01662-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/17/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE Antibiotics can induce dose-dependent hormetic effects on bacterial cell proliferation, i.e., low-dose stimulation and high-dose inhibition. However, the underlying molecular basis has yet to be clarified. Here, we showed that sulfonamides play dual roles as a weapon and signal against Comamonas testosteroni that can modulate cell physiology and phenotype. Subsequently, through investigating the hormesis mechanism, we proposed a comprehensive regulatory pathway for the hormetic effects of Comamonas testosteroni low-level sulfonamides and determined the generality of the observed regulatory model in the Comamonadaceae family. Considering the prevalence of Comamonadaceae in human guts and environmental ecosystems, we provide critical insights into the health and ecological effects of antibiotics.
Collapse
Affiliation(s)
- Hui Lin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Science, Beijing, China
| | - Xue Ning
- MaREI Centre, Environmental Research Institute, School of Engineering, University College Cork, Cork, Ireland
| | - Donglin Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Qiaojuan Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Science, Beijing, China
| | - Yaohui Bai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jiuhui Qu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Cao Z, Xia W, Wu S, Ma J, Zhou X, Qian X, Xu A, Dong W, Jiang M. Bioengineering Comamonas testosteroni CNB-1: a robust whole-cell biocatalyst for efficient PET microplastic degradation. BIORESOUR BIOPROCESS 2023; 10:94. [PMID: 38647778 PMCID: PMC10992048 DOI: 10.1186/s40643-023-00715-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/10/2023] [Indexed: 04/25/2024] Open
Abstract
The escalating crisis of polyethylene terephthalate (PET) microplastic contamination in biological wastewater treatment systems is a pressing environmental concern. These microplastics inevitably accumulate in sewage sludge due to the absence of effective removal technologies. Addressing this urgent issue, this study introduces a novel approach using DuraPETase, a potent enzyme with enhanced PET hydrolytic activity at ambient temperatures. Remarkably, this enzyme was successfully secreted from Comamonas testosteroni CNB-1, a dominant species in the active sludge. The secreted DuraPETase showed significant hydrolytic activity toward p-NPB and PET nanoplastics. Furthermore, the CNB-1 derived whole-cell biocatalyst was able to depolymerize PET microplastics under ambient temperature, achieving a degradation efficiency of 9% within 7 days. The CNB-1-based whole biocatalysts were also capable of utilizing PET degradation intermediates, such as terephthalic acid (TPA) and ethylene glycol (EG), and bis(2-hydroxyethyl)-TPA (BHET), for growth. This indicates that it can completely mineralize PET, as opposed to merely breaking it down into smaller molecules. This research highlights the potential of activated sludge as a potent source for insitu microplastic removal.
Collapse
Affiliation(s)
- Zhanqing Cao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Wei Xia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Shilei Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jiale Ma
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xiaoli Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xiujuan Qian
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Anming Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Weiliang Dong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China.
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, Nanjing Tech University, Nanjing, 211816, China.
| | - Min Jiang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
5
|
Horinouchi M, Hayashi T. Comprehensive summary of steroid metabolism in Comamonas testosteroni TA441: entire degradation process of basic four rings and removal of C12 hydroxyl group. Appl Environ Microbiol 2023; 89:e0014323. [PMID: 37815361 PMCID: PMC10654043 DOI: 10.1128/aem.00143-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/02/2023] [Indexed: 10/11/2023] Open
Abstract
Comamonas testosteroni is one of the representative aerobic steroid-degrading bacteria. We previously revealed the mechanism of steroidal A,B,C,D-ring degradation by C. testosteroni TA441. The corresponding genes are located in two clusters at both ends of a mega-cluster of steroid degradation genes. ORF7 and ORF6 are the only two genes in these clusters, whose function has not been determined. Here, we characterized ORF7 as encoding the dehydrase responsible for converting the C12β hydroxyl group to the C10(12) double bond on the C-ring (SteC), and ORF6 as encoding the hydrogenase responsible for converting the C10(12) double bond to a single bond (SteD). SteA and SteB, encoded just upstream of SteC and SteD, are in charge of oxidizing the C12α hydroxyl group to a ketone group and of reducing the latter to the C12β hydroxyl group, respectively. Therefore, the C12α hydroxyl group in steroids is removed with SteABCD via the C12 ketone and C12β hydroxyl groups. Given the functional characterization of ORF6 and ORF7, we disclose the entire pathway of steroidal A,B,C,D-ring breakdown by C. testosteroni TA441.IMPORTANCEStudies on bacterial steroid degradation were initiated more than 50 years ago, primarily to obtain materials for steroid drugs. Now, their implications for the environment and humans, especially in relation to the infection and the brain-gut-microbiota axis, are attracting increasing attention. Comamonas testosteroni TA441 is the leading model of bacterial aerobic steroid degradation with the ability to break down cholic acid, the main component of bile acids. Bile acids are known for their variety of physiological activities according to their substituent group(s). In this study, we identified and functionally characterized the genes for the removal of C12 hydroxyl groups and provided a comprehensive summary of the entire A,B,C,D-ring degradation pathway by C. testosteroni TA441 as the representable bacterial aerobic degradation process of the steroid core structure.
Collapse
Affiliation(s)
- Masae Horinouchi
- Environmental Molecular Biology Laboratory, RIKEN, Saitama, Japan
- Surface and Interface Science Laboratory, RIKEN, Saitama, Japan
| | - Toshiaki Hayashi
- Environmental Molecular Biology Laboratory, RIKEN, Saitama, Japan
| |
Collapse
|
6
|
Zhao Z, Liu Y, Liu C, Xu Q, Song M, Yan H. Whole-genome analysis of Comamonas sp. USTBZA1 for biodegrading diethyl phthalate. 3 Biotech 2023; 13:329. [PMID: 37670801 PMCID: PMC10475450 DOI: 10.1007/s13205-023-03736-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 06/15/2023] [Indexed: 09/07/2023] Open
Abstract
Extensive use of phthalic acid esters (PAEs) as plasticizer causes diffusion into the environment, which posed a great threat to mankind. It was reported that Comamonas sp. was a potentially robust aromatic biodegrader. Although the biodegradation of several PAEs by Comamonas sp. was studies, the comprehensive genomic analysis of Comamonas sp. was few reported. In the present study, one promising bacterial strain for biodegrading diethyl phthalate (DEP) was successfully isolated from activated sludge and characterized as Comamonas sp. USTBZA1 based on the 16S rRNA sequence analysis. The results showed that pH 7.5, 30 °C and inoculum volume ratio of 6% were optimal for biodegradation. Initial DEP of 50 mg/L could be completely biodegrade by strain USTBZA1 within 24 h which conformed to the Gompertz model. Based on the Q-TOF LC/MS analysis, monoethyl phthalate (MEP) and phthalic acid (PA) were identified as the metabolic products of DEP biodegradation by USTBZA1. Furthermore, the whole genome of Comamonas sp. USTBZA1 was analyzed to clarify the molecular mechanism for PAEs biodegradation by USTBZA1. There were 3 and 41 genes encoding esterase/arylesterase and hydrolase, respectively, and two genes regions (pht34512 and pht4253) were responsible for the conversion of PA to protocatechuate (PCA), and two genes regions (ligCBAIKJ) were involved in PCA metabolism in USTBZA1. These results substantiated that Comamonas sp. USTBZA1 has potential application in the DEP bioremediation. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03736-3.
Collapse
Affiliation(s)
- Zhenzhen Zhao
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, 261061 China
| | - Yanfeng Liu
- Weifang Ecological Environment Monitoring Center of Shandong Province, Weifang, 261011 China
| | - Chao Liu
- School of Chemistry and Biological Engineering, University of Science and Technology, Beijing, Beijing, 100083 China
| | - Qianqian Xu
- School of Chemistry and Biological Engineering, University of Science and Technology, Beijing, Beijing, 100083 China
| | - Meijie Song
- School of Chemistry and Biological Engineering, University of Science and Technology, Beijing, Beijing, 100083 China
| | - Hai Yan
- School of Chemistry and Biological Engineering, University of Science and Technology, Beijing, Beijing, 100083 China
| |
Collapse
|
7
|
Carneiro J, Pascoal F, Semedo M, Pratas D, Tomasino MP, Rego A, Carvalho MDF, Mucha AP, Magalhães C. Mapping human pathogens in wastewater using a metatranscriptomic approach. ENVIRONMENTAL RESEARCH 2023; 231:116040. [PMID: 37150387 PMCID: PMC10172761 DOI: 10.1016/j.envres.2023.116040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
The monitoring of cities' wastewaters for the detection of potentially pathogenic viruses and bacteria has been considered a priority during the COVID-19 pandemic to monitor public health in urban environments. The methodological approaches frequently used for this purpose include deoxyribonucleic acid (DNA)/Ribonucleic acid (RNA) isolation followed by quantitative polymerase chain reaction (qPCR) and reverse transcription (RT)‒qPCR targeting pathogenic genes. More recently, the application of metatranscriptomic has opened opportunities to develop broad pathogenic monitoring workflows covering the entire pathogenic community within the sample. Nevertheless, the high amount of data generated in the process requires an appropriate analysis to detect the pathogenic community from the entire dataset. Here, an implementation of a bioinformatic workflow was developed to produce a map of the detected pathogenic bacteria and viruses in wastewater samples by analysing metatranscriptomic data. The main objectives of this work was the development of a computational methodology that can accurately detect both human pathogenic virus and bacteria in wastewater samples. This workflow can be easily reproducible with open-source software and uses efficient computational resources. The results showed that the used algorithms can predict potential human pathogens presence in the tested samples and that active forms of both bacteria and virus can be identified. By comparing the computational method implemented in this study to other state-of-the-art workflows, the implementation analysis was faster, while providing higher accuracy and sensitivity. Considering these results, the processes and methods to monitor wastewater for potential human pathogens can become faster and more accurate. The proposed workflow is available at https://github.com/waterpt/watermonitor and can be implemented in currently wastewater monitoring programs to ascertain the presence of potential human pathogenic species.
Collapse
Affiliation(s)
- João Carneiro
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/n, 4450-208, Matosinhos, Portugal.
| | - Francisco Pascoal
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/n, 4450-208, Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre S/n, 4169- 007, Porto, Portugal
| | - Miguel Semedo
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/n, 4450-208, Matosinhos, Portugal
| | - Diogo Pratas
- IEETA - Institute of Electronics and Informatics Engineering of Aveiro, University of Aveiro, Portugal; Department of Virology, University of Helsinki, Finland; Department of Electronics Telecommunications and Informatics, University of Aveiro, Portugal
| | - Maria Paola Tomasino
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/n, 4450-208, Matosinhos, Portugal
| | - Adriana Rego
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/n, 4450-208, Matosinhos, Portugal
| | - Maria de Fátima Carvalho
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/n, 4450-208, Matosinhos, Portugal; School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Portugal
| | - Ana Paula Mucha
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/n, 4450-208, Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre S/n, 4169- 007, Porto, Portugal
| | - Catarina Magalhães
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/n, 4450-208, Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre S/n, 4169- 007, Porto, Portugal
| |
Collapse
|
8
|
Li Y, Fang C, Wang X, Liu Q, Qiu Y, Dai X, Zhang L. A new class A beta-lactamase gene bla CAE-1 coexists with bla AFM-1 in a novel untypable plasmid in Comamonas aquatica. Sci Rep 2023; 13:3634. [PMID: 36869066 PMCID: PMC9984417 DOI: 10.1038/s41598-023-28312-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/17/2023] [Indexed: 03/05/2023] Open
Abstract
Antimicrobial resistance, especially carbapenem resistance, poses a serious threat to global public health. Here, a carbapenem-resistant Comamonas aquatica isolate SCLZS63 was recovered from hospital sewage. Whole-genome sequencing showed that SCLZS63 has a 4,048,791-bp circular chromosome and three plasmids. The carbapenemase gene blaAFM-1 is located on the 143,067-bp untypable plasmid p1_SCLZS63, which is a novel type of plasmid with two multidrug-resistant (MDR) regions. Notably, a novel class A serine β-lactamase gene, blaCAE-1, coexists with blaAFM-1 in the mosaic MDR2 region. Cloning assay showed that CAE-1 confers resistance to ampicillin, piperacillin, cefazolin, cefuroxime, and ceftriaxone, and elevates the MIC of ampicillin-sulbactam two-fold in Escherichia coli DH5α, suggesting that CAE-1 functions as a broad-spectrum β-lactamase. Amino acid sequences analysis suggested that blaCAE-1 may originate from Comamonadaceae. The blaAFM-1 in p1_SCLZS63 is located in a conserved structure of ISCR29-ΔgroL-blaAFM-1-ble-ΔtrpF-ΔISCR27-msrB-msrA-yfcG-corA. Comprehensive analysis of the blaAFM-bearing sequences revealed important roles of ISCR29 and ΔISCR27 in the mobilization and truncation of the core module of blaAFM alleles, respectively. The diverse passenger contents of class 1 integrons flanking the blaAFM core module make the complexity of genetic contexts for blaAFM. In conclusion, this study reveals that Comamonas may act as an important reservoir for antibiotics-resistance genes and plasmids in the environment. Continuous monitoring for the environmental emergence of antimicrobial-resistant bacteria is needed to control the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Ying Li
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Chengju Fang
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Xu Wang
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Qian Liu
- Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Yichuan Qiu
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Xiaoyi Dai
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
| | - Luhua Zhang
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
| |
Collapse
|
9
|
Brison A, Rossi P, Derlon N. Single CSTR can be as effective as an SBR in selecting PHA-storing biomass from municipal wastewater-derived feedstock. WATER RESEARCH X 2023; 18:100165. [PMID: 37250287 PMCID: PMC10214291 DOI: 10.1016/j.wroa.2023.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A key step for the production of polyhydroxyalkanoates (PHAs) from organic waste streams is the selection of a biomass with a high PHA-storage capacity (selection-step), which is usually performed in sequencing batch reactors (SBR). A major advancement would be to perform such selection in continuous reactors to facilitate the full-scale implementation of PHA production from municipal wastewater (MWW)-derived feedstock. The present study therefore investigates to what extent a simple continuous-flow stirred-tank reactor (CSTR) represents a relevant alternative to anSBR. To this end, we operated two selection reactors (CSTR vs. SBR) on filtered primary sludge fermentate while performing a detailed analysis of the microbial communities, and monitoring PHA-storage over long-term (∼150 days) and during accumulation batches. Our study demonstrates that a simple CSTR is as effective as an SBR in selecting biomass with high PHA-storage capacity (up to 0.65 gPHA gVSS-1) while being 50% more efficient in terms of substrate to biomass conversion yields. We also show that such selection can occur on VFA-rich feedstock containing nitrogen (N) and phosphorus (P) in excess, whereas previously, selection of PHA-storing organisms in a single CSTR has only been studied under P limitation. We further found that microbial competition was mostly affected by nutrient availability (N and P) rather than by the reactor operation mode (CSTR vs. SBR). Similar microbial communities therefore developed in both selection reactors, while microbial communities were very different depending on N availability. Rhodobacteraceae gen. were most abundant when growth conditions were stable and N-limited, whereas dynamic N- (and P-) excess conditions favoured the selection of the known PHA-storer Comamonas, and led to the highest observed PHA-storage capacity. Overall, we demonstrate that biomass with high storage capacity can be selected in a simple CSTR on a wider range of feedstock than just P-limited ones.
Collapse
Affiliation(s)
- Antoine Brison
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- ETH Zürich, Institute of Environmental Engineering, 8093 Zürich, Switzerland
| | - Pierre Rossi
- Central Environmental Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Nicolas Derlon
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| |
Collapse
|
10
|
Wang H, Feng Y, Lu H. Low-Level Cefepime Exposure Induces High-Level Resistance in Environmental Bacteria: Molecular Mechanism and Evolutionary Dynamics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15074-15083. [PMID: 35608924 DOI: 10.1021/acs.est.2c00793] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Antibiotics exert selective pressures on clinically relevant antibiotic resistance. It is critical to understand how antibiotic resistance evolves in environmental microbes exposed to subinhibitory concentrations of antibiotics and whether evolutionary dynamics and emergence of resistance are predictable. In this study, Comamonas testosteroni isolated from wastewater activated sludge were subcultured in a medium containing 10 ng/mL cefepime for 40 days (∼300 generations). Stepwise mutations were accumulated, leading to an ultimate 200-fold increase in the minimum inhibitory concentration (MIC) of cefepime. Early stage mutation in DNA polymerase-encoding gene dnaE2 played an important role in antibiotic resistance evolution. Diverse resistance mechanisms were employed and validated experimentally, including increased efflux, biofilm formation, reduced antibiotic uptake, and drug inactivation. The cefepime minimal selective concentrations (MSCs) and relative fitness of susceptible, intermediate, and resistant mutants were determined. Agent-based modeling of the modified Moran process enabled simulations of resistance evolution and predictions of the emergence time and frequency of resistant mutants. The unraveled cefepime resistance mechanisms could be employed by broader bacteria, and the newly developed model is applicable to the predictions of general resistance evolution. The improved knowledge facilitates the assessment, prediction, and mitigation of antibiotic resistance progression in antibiotic-polluted environments.
Collapse
Affiliation(s)
- Hanqing Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Youjun Feng
- Departments of Microbiology & General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Huijie Lu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Academy of Ecological Civilization, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
11
|
Ortega Á, Matilla MA, Krell T. The Repertoire of Solute-Binding Proteins of Model Bacteria Reveals Large Differences in Number, Type, and Ligand Range. Microbiol Spectr 2022; 10:e0205422. [PMID: 36121253 PMCID: PMC9602780 DOI: 10.1128/spectrum.02054-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/24/2022] [Indexed: 12/31/2022] Open
Abstract
Solute-binding proteins (SBPs) are of central physiological relevance for bacteria. They are located in the extracytosolic space, where they present substrates to transporters but also stimulate different types of transmembrane receptors coordinating compound uptake with signal transduction. SBPs are a superfamily composed of proteins recognized by 45 Pfam profiles. The definition of SBP profiles for bacteria is hampered by the fact that these Pfam profiles recognize sensor domains for different types of signaling proteins or cytosolic proteins with alternative functions. We report here the retrieval of the SBPs from 49 bacterial model strains with different lifestyles and phylogenetic distributions. Proteins were manually curated, and the ligands recognized were predicted bioinformatically. There were very large differences in the number and type of SBPs between strains, ranging from 7 SBPs in Helicobacter pylori 26695 to 189 SBPs in Sinorhizobium meliloti 1021. SBPs were found to represent 0.22 to 5.13% of the total protein-encoding genes. The abundance of SBPs was largely determined by strain phylogeny, and no obvious link with the bacterial lifestyle was noted. Most abundant (36%) were SBPs predicted to recognize amino acids or peptides, followed by those expected to bind different sugars (18%). To the best of our knowledge, this is the first comparative study of bacterial SBP repertoires. Given the importance of SBPs in nutrient uptake and signaling, this study enhances the knowledge of model bacteria and will permit the definition of SBP profiles of other strains. IMPORTANCE SBPs are essential components for many transporters, but multiple pieces of more recent evidence indicate that the SBP-mediated stimulation of different transmembrane receptors is a general and widespread signal transduction mechanism in bacteria. The double function of SBPs in coordinating transport with signal transduction remains to a large degree unexplored and represents a major research need. The definition of the SBP repertoire of the 49 bacterial model strains examined here, along with information on their cognate ligand profiles forms the basis to close this gap in knowledge. Furthermore, this study provides information on the forces that have driven the evolution of transporters with different ligand specificities in bacteria that differ in phylogenetics and lifestyle. This article is also a first step in setting up automatic algorithms that permit the large-scale identification of the SBP repertoire in proteomes.
Collapse
Affiliation(s)
- Álvaro Ortega
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence Campus Mare Nostrum, Murcia, Spain
| | - Miguel A. Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
12
|
Wilkes RA, Waldbauer J, Aristilde L. Analogous Metabolic Decoupling in Pseudomonas putida and Comamonas testosteroni Implies Energetic Bypass to Facilitate Gluconeogenic Growth. mBio 2021; 12:e0325921. [PMID: 34903058 PMCID: PMC8669468 DOI: 10.1128/mbio.03259-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022] Open
Abstract
Gluconeogenic carbon metabolism is not well understood, especially within the context of flux partitioning between energy generation and biomass production, despite the importance of gluconeogenic carbon substrates in natural and engineered carbon processing. Here, using multiple omics approaches, we elucidate the metabolic mechanisms that facilitate gluconeogenic fast-growth phenotypes in Pseudomonas putida and Comamonas testosteroni, two Proteobacteria species with distinct metabolic networks. In contrast to the genetic constraint of C. testosteroni, which lacks the enzymes required for both sugar uptake and a complete oxidative pentose phosphate (PP) pathway, sugar metabolism in P. putida is known to generate surplus NADPH by relying on the oxidative PP pathway within its characteristic cyclic connection between the Entner-Doudoroff (ED) and Embden-Meyerhoff-Parnas (EMP) pathways. Remarkably, similar to the genome-based metabolic decoupling in C. testosteroni, our 13C-fluxomics reveals an inactive oxidative PP pathway and disconnected EMP and ED pathways in P. putida during gluconeogenic feeding, thus requiring transhydrogenase reactions to supply NADPH for anabolism in both species by leveraging the high tricarboxylic acid cycle flux during gluconeogenic growth. Furthermore, metabolomics and proteomics analyses of both species during gluconeogenic feeding, relative to glycolytic feeding, demonstrate a 5-fold depletion in phosphorylated metabolites and the absence of or up to a 17-fold decrease in proteins of the PP and ED pathways. Such metabolic remodeling, which is reportedly lacking in Escherichia coli exhibiting a gluconeogenic slow-growth phenotype, may serve to minimize futile carbon cycling while favoring the gluconeogenic metabolic regime in relevant proteobacterial species. IMPORTANCE Glycolytic metabolism of sugars is extensively studied in the Proteobacteria, but gluconeogenic carbon sources (e.g., organic acids, amino acids, aromatics) that feed into the tricarboxylic acid (TCA) cycle are widely reported to produce a fast-growth phenotype, particularly in species with biotechnological relevance. Much remains unknown about the importance of glycolysis-associated pathways in the metabolism of gluconeogenic carbon substrates. Here, we demonstrate that two distinct proteobacterial species, through genetic constraints or metabolic regulation at specific metabolic nodes, bypass the oxidative PP pathway during gluconeogenic growth and avoid unnecessary carbon fluxes by depleting protein investment into connected glycolysis pathways. Both species can leverage instead the high TCA cycle flux during gluconeogenic feeding to meet NADPH demand. Importantly, lack of a complete oxidative pentose phosphate pathway is a widespread metabolic trait in Proteobacteria with a gluconeogenic carbon preference, thus highlighting the important relevance of our findings toward elucidating the metabolic architecture in these bacteria.
Collapse
Affiliation(s)
- Rebecca A. Wilkes
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
| | - Jacob Waldbauer
- Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, USA
| | - Ludmilla Aristilde
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
13
|
Vural C, Diallo MM, Ozdemir G. Assessment of Comamonas testosteroni strain PT9 as a rapid phthalic acid degrader for industrial wastewaters. J Basic Microbiol 2021; 62:508-517. [PMID: 34596900 DOI: 10.1002/jobm.202100258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/31/2021] [Accepted: 09/11/2021] [Indexed: 11/06/2022]
Abstract
In this study, characterization of industry-borne Comamonas testosteroni strain PT9 isolate was performed by determining degradation ability on phthalic acid (PA). High-performance liquid chromatography analyses showed that strain PT9 completely degraded 102.94 mg/L of PA within 6 h. Viability polymerase chain reaction (vPCR) was performed with propidium monoazide treatment. vPCR showed that the PA has positively stimulated the cell growth during degradation. To consider the fate of PA, the proposed catalytic genes (ophA2, iphA2, tphA2, tphA3, pmdA, and pmdB) for the degradation pathways of PA isomers for C. testosteroni were screened in strain PT9. All genes except iphA2 were detected in strain PT9, and expression levels of related genes were analyzed by Real-Time PCR (qPCR).
Collapse
Affiliation(s)
- Caner Vural
- Department of Biology, Molecular Biology Section, Faculty of Science and Arts, Pamukkale University Kinikli Campus, Denizli, Turkey
| | - Mamadou M Diallo
- Department of Biology, Basic and Industrial Microbiology Section, Ege University, Izmir, Turkey
| | - Guven Ozdemir
- Department of Biology, Basic and Industrial Microbiology Section, Ege University, Izmir, Turkey
| |
Collapse
|
14
|
Esteves E, Whyte P, Mills J, Brightwell G, Gupta TB, Bolton D. An investigation into the anaerobic spoilage microbiota of beef carcass and rump steak cuts using high- throughput sequencing. FEMS Microbiol Lett 2021; 368:6362601. [PMID: 34472614 DOI: 10.1093/femsle/fnab109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/31/2021] [Indexed: 11/14/2022] Open
Abstract
The presence of anaerobic microflora on fresh beef carcass and rump steaks, which may contribute to meat spoilage, was explored in this study. A total of 120 carcass and 120 rump steak swabs were collected immediately after slaughtering and boning, respectively from five meat plants, anaerobically incubated and enriched at 4°C for 3 weeks. This was followed by DNA extraction and 16S rRNA amplicon sequencing using the Illumina MiSeq, with subsequent bioinformatics analysis. The enriched microbiota of the samples was classified and grouped into 149 operational taxonomic units (OTUs). The microbiota recovered from both sample types consisted mainly of Carnobacterium, with an average relative abundance of 28.4% and 32.8% in beef carcasses and beef rump steaks, respectively. This was followed by Streptococcus, Serratia, Lactococcus, Enterococcus, Escherichia-Shigella, Raoultella and Aeromonas ranging from 1.5 to 20% and 0.1 to 29.8% in enriched carcasses and rump steak swabs, respectively. Trichococcus, Bacteroides, Dysgomonas, Providencia, Paraclostridium and Proteus were also present ranging from 0 to 0.8% on carcass and 0 to 1.8% on rump steak swabs, respectively. Alpha and beta diversity measurements showed limited diversity between the two sample types, but some differences between samples from the beef plants investigated were evident. This study highlights the presence of potential spoilage bacteria, mainly anaerobic genera on and between carcass and rump steaks, as an indication of contamination on and between these samples.
Collapse
Affiliation(s)
- Eden Esteves
- Department of Food Safety, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland.,School of Veterinary Medicine, UCD, Belfield, Dublin 4, Ireland.,Food Assurance Team, AgResearch Limited, Hopkirk Research Institute, Massey University, Palmerston North 4472, New Zealand
| | - Paul Whyte
- School of Veterinary Medicine, UCD, Belfield, Dublin 4, Ireland
| | - John Mills
- Food Assurance Team, AgResearch Limited, Hopkirk Research Institute, Massey University, Palmerston North 4472, New Zealand
| | - Gale Brightwell
- Food Assurance Team, AgResearch Limited, Hopkirk Research Institute, Massey University, Palmerston North 4472, New Zealand
| | - Tanushree B Gupta
- Food Assurance Team, AgResearch Limited, Hopkirk Research Institute, Massey University, Palmerston North 4472, New Zealand
| | - Declan Bolton
- Department of Food Safety, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| |
Collapse
|
15
|
Liu N, Shi YE, Li J, Zhu M, Zhang T. Identification and genome analysis of Comamonas testosteroni strain JLU460ET, a novel steroid-degrading bacterium. 3 Biotech 2021; 11:404. [PMID: 34458066 DOI: 10.1007/s13205-021-02949-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/28/2021] [Indexed: 02/03/2023] Open
Abstract
In this work, C. testosteroni JLU460ET isolated from animal waste was confirmed to have great degradation capability for 17β-estradiol and testosterone. This bacterium could degrade nearly 90% of 17β-estradiol (5 mg L-1) in 4 days and transform it into estrone for further degradation. One hundred percent testosterone (144 mg L-1) could be completely degraded after 9 h of incubation. This is the first report of C. testosteroni strains with the ability to degrade both estrogens and testosterone. The whole genome sequence of C. testosteroni JLU460ET was obtained and annotated, containing one chromosome (5,497,097 bp) with 61.37% GC content. A total of 4805 protein-coding genes and 134 RNA genes (including 29 rRNA genes, 102 tRNA genes and three ncRNA genes) were identified. Furthermore, the complete genome sequence of C. testosteroni JLU460ET was compared with four other C. testosteroni strains. Altogether, these five C. testosteroni strains contain 3508 core genes and 7616 pan genes. A steroid degradation pathway including 11 steroid degradation genes exists in core genes of five C. testosteroni strains. Twenty-two steroid degradation genes were found in the C. testosteroni JLU460ET genome, which has the most reported steroid degradation genes among the five C. testosteroni genomes. Further functional genomic analysis identified a gene cluster responsible for testosterone degradation in C. testosteroni JLU460ET, as well as a gene encoding 17β-HSD, the key enzyme for transforming 17β-estradiol into estrone. This work could enrich the genome sources of steroid-degrading strains and promote the study of steroid-degradation mechanism in bacteria.
Collapse
|
16
|
Yang S, Wu Y, Qu C, Fein JB, He Y, Huang Q, Cai P. Quantitative analysis of the surficial and adhesion properties of the Gram-negative bacterial species Comamonas testosteroni modulated by c-di-GMP. Colloids Surf B Biointerfaces 2020; 198:111497. [PMID: 33296824 DOI: 10.1016/j.colsurfb.2020.111497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/09/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
Cyclic diguanylate monophosphate (c-di-GMP) is a ubiquitous intracellular secondary messenger which governs the transition from a bacterial cell's planktonic state to biofilm formation by stimulating the production of a variety of exopolysaccharide material by the bacterial cell. A range of genes involved in c-di-GMP signaling in the Gram-negative species Comamonas testosteroni have been identified previously, yet the physical-chemical properties of the produced extracellular polymeric substances (EPS) and the bacterial adhesion characteristics regulated by c-di-GMP are not well understood. Here, we modulated the in vivo c-di-GMP levels of Comamonas testosteroni WDL7 through diguanylate cyclase (YedQ) and phosphodiesterase (YhjH) gene editing. The strains and their adhesion properties were characterized by Fourier-transform infrared and two-dimensional correlation spectroscopy analysis (FTIR-2D CoS), contact angle and zeta potential measurements, atomic force microscopy (AFM) and extended-Derjaguin-Landau-Verwey-Overbeek (ExDLVO) analysis. Our results show that high c-di-GMP levels promoted the secretion of long-chain hydrophobic and electroneutral extracellular polysaccharides and proteins. The protein molecules on WDL7/pYedQ2 promoted the bacterial self-aggregation and adhesion onto negatively charged surfaces. In contrast, the reduction of intracellular c-di-GMP concentrations resulted in a nearly 80 % decrease in the adhesion of bacterial cells, although little change in the surface hydrophobicity or surface charge properties were observed for these cells relative to the wild type. These results indicate that the reduced adsorption of WDL7/YhjH that we observed may be caused by the flagellum-accelerated mobility at low c-di-GMP concentrations. Taken together, these results improve our mechanistic understanding of the effects of c-di-GMP in controlling bacterial physical-chemical properties and initial biofilm development.
Collapse
Affiliation(s)
- Shanshan Yang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yichao Wu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Chenchen Qu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jeremy B Fein
- University of Notre Dame, Department of Civil and Environmental Engineering and Earth Sciences, Notre Dame, IN 46556, USA
| | - Yizhuang He
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
17
|
Rodrigues C, Núñez-Gómez D, Follmann HVDM, Silveira DD, Nagel-Hassemer ME, Lapolli FR, Lobo-Recio MÁ. Biostimulation of sulfate-reducing bacteria and metallic ions removal from coal mine-impacted water (MIW) using shrimp shell as treatment agent. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122893. [PMID: 33027875 DOI: 10.1016/j.jhazmat.2020.122893] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
This paper comprises several assays aiming to identify the basis for the bioremediation of mine-impacted water (MIW). To do so, the conditions for build anoxic microcosms for treating this effluent were varied, containing MIW, and a source of chitin, to biostimulate sulfate-reducing bacteria (SRB). The chitin sources were: commercial chitin (CHIT) and shrimp shell (SS), which in addition to chitin, contains CaCO3, and proteins in its composition. The CHIT assays were not successful in sulfate-reduction, even when the pH was increased with CaCO3. However, in all SS assays the SRB development was successful (85% sulfate removal for assay 3), including the metal-free (MF-SS) assay (75% for assay 5). High-throughput sequencing analysis revealed the structure of bacterial community in the SS assay: the most abundant genera were Clostridium and Klebsiella, both fermentative and chitinase producers; a few SRB from the genera Desulfovibrio and Desulfosporosinus were also detected. In the MF-SS assay, Desulfovibrio genuswas detected but Comamonas was dominant. It could be deduced that SS is a suitable substrate for SRB development, but CHIT is not. The sulfate-reduction process was provided by the cooperation between fermentative/chitinase-producer bacteria together with SRB, which leads to efficient MIW treatment, removing sulfate and metallic ions.
Collapse
Affiliation(s)
- Caroline Rodrigues
- Department of Environmental Engineering, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil.
| | - Dámaris Núñez-Gómez
- Department of Environmental Engineering, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil.
| | - Hioná V Dal Magro Follmann
- Department of Environmental Engineering, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil.
| | - Daniele D Silveira
- Department of Environmental Engineering, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil.
| | - Maria Eliza Nagel-Hassemer
- Department of Environmental Engineering, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil.
| | - Flávio R Lapolli
- Department of Environmental Engineering, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil.
| | - María Ángeles Lobo-Recio
- Department of Environmental Engineering, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil; Department of Energy and Sustainability, UFSC, 88906-072, Araranguá, SC, Brazil.
| |
Collapse
|
18
|
Expanding the Application Range of Microbial Oxidoreductases by an Alcohol Dehydrogenase from Comamonas testosteroni with a Broad Substrate Spectrum and pH Profile. Catalysts 2020. [DOI: 10.3390/catal10111281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Alcohol dehydrogenases catalyse the conversion of a large variety of ketone substrates to the corresponding chiral products. Due to their high regio- and stereospecificity, they are key components in a wide range of industrial applications. A novel alcohol dehydrogenase from Comamonas testosteroni (CtADH) was identified in silico, recombinantly expressed and purified, enzymatically and biochemically investigated as well as structurally characterized. These studies revealed a broad pH profile and an extended substrate spectrum with the highest activity for compounds containing halogens as substituents and a moderate activity for bulky–bulky ketones. Biotransformations with selected ketones—performed with a coupled regeneration system for the co-substrate NADPH—resulted in conversions of more than 99% with all tested substrates and with excellent enantioselectivity for the corresponding S-alcohol products. CtADH/NADPH/substrate complexes modelled on the basis of crystal structures of CtADH and its closest homologue suggested preliminary hints to rationalize the enzyme’s substrate preferences
Collapse
|
19
|
Construction of an Efficient Nicotinate Dehydrogenase Expression System in Comamonas testosteroni CNB-2 with Multi-level N-Terminal Engineering. Appl Biochem Biotechnol 2020; 192:923-934. [DOI: 10.1007/s12010-020-03354-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/22/2020] [Indexed: 10/23/2022]
|
20
|
Performance and Application of 16S rRNA Gene Cycle Sequencing for Routine Identification of Bacteria in the Clinical Microbiology Laboratory. Clin Microbiol Rev 2020; 33:33/4/e00053-19. [PMID: 32907806 DOI: 10.1128/cmr.00053-19] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This review provides a state-of-the-art description of the performance of Sanger cycle sequencing of the 16S rRNA gene for routine identification of bacteria in the clinical microbiology laboratory. A detailed description of the technology and current methodology is outlined with a major focus on proper data analyses and interpretation of sequences. The remainder of the article is focused on a comprehensive evaluation of the application of this method for identification of bacterial pathogens based on analyses of 16S multialignment sequences. In particular, the existing limitations of similarity within 16S for genus- and species-level differentiation of clinically relevant pathogens and the lack of sequence data currently available in public databases is highlighted. A multiyear experience is described of a large regional clinical microbiology service with direct 16S broad-range PCR followed by cycle sequencing for direct detection of pathogens in appropriate clinical samples. The ability of proteomics (matrix-assisted desorption ionization-time of flight) versus 16S sequencing for bacterial identification and genotyping is compared. Finally, the potential for whole-genome analysis by next-generation sequencing (NGS) to replace 16S sequencing for routine diagnostic use is presented for several applications, including the barriers that must be overcome to fully implement newer genomic methods in clinical microbiology. A future challenge for large clinical, reference, and research laboratories, as well as for industry, will be the translation of vast amounts of accrued NGS microbial data into convenient algorithm testing schemes for various applications (i.e., microbial identification, genotyping, and metagenomics and microbiome analyses) so that clinically relevant information can be reported to physicians in a format that is understood and actionable. These challenges will not be faced by clinical microbiologists alone but by every scientist involved in a domain where natural diversity of genes and gene sequences plays a critical role in disease, health, pathogenicity, epidemiology, and other aspects of life-forms. Overcoming these challenges will require global multidisciplinary efforts across fields that do not normally interact with the clinical arena to make vast amounts of sequencing data clinically interpretable and actionable at the bedside.
Collapse
|
21
|
Wang YH, Chen HH, Huang Z, Li XJ, Zhou N, Liu C, Jiang CY, Li DF, Liu SJ. PapA, a peptidoglycan-associated protein, interacts with OmpC and maintains cell envelope integrity. Environ Microbiol 2020; 23:600-612. [PMID: 32329167 DOI: 10.1111/1462-2920.15038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/21/2020] [Indexed: 01/26/2023]
Abstract
The bacterial cell envelope is critical to support and maintain cellular life. In Gram-negative bacterial cells, the outer membrane and the peptidoglycan layer are two important parts of the cell envelope and they harbour abundant proteins. Here, we report the identification and characterization of a previously unknown peptidoglycan-associated protein, PapA, from the Gram-negative Comamonas testosteroni. PapA bound peptidoglycan with its C-terminal domain and interacted with the outer-membrane porin OmpC. The PapA-OmpC complex riveted the outer membrane and the peptidoglycan layer, and played a role in maintaining cell envelope integrity. When papA was disrupted, the mutant CNB-1ΔpapA apparently had an outer membrane partly separated from the peptidoglycan layer. Phenotypically, the mutant CNB-1ΔpapA lost chemotactic responses and had longer lag-phase of growth, less flagellation and higher sensitivity to harsh environments. Totally, 1093 functionally unknown PapA homologues were identified from the public NR protein database and they were mainly distributed in Burkholderiales of Betaproteobacteria. Our finding provides a clue that the PapA homologous proteins might function as a rivet to maintain cell envelope integrity in those Gram-negative bacteria.
Collapse
Affiliation(s)
- Yun-Hao Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Hong-He Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Zhou Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiao-Jing Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Nan Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Chang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - De-Feng Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.,Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.,Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| |
Collapse
|
22
|
Steroid Degradation in Comamonas testosteroni TA441: Identification of the Entire β-Oxidation Cycle of the Cleaved B Ring. Appl Environ Microbiol 2019; 85:AEM.01204-19. [PMID: 31375491 DOI: 10.1128/aem.01204-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/28/2019] [Indexed: 11/20/2022] Open
Abstract
Comamonas testosteroni TA441 degrades steroids via aromatization of the A ring, followed by degradation of 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid, mainly by β-oxidation. In this study, we revealed that 7β,9α-dihydroxy-17-oxo-1,2,3,4,10,19-hexanorandrostanoic acid-coenzyme A (CoA) ester is dehydrogenated by (3S)-3-hydroxylacyl CoA-dehydrogenase, encoded by scdE (ORF27), and then the resultant 9α-hydroxy-7,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid-CoA ester is converted by 3-ketoacyl-CoA transferase, encoded by scdF (ORF23). With these results, the whole cycle of β-oxidation on the side chain at C-8 of 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid is clarified; 9-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid-CoA ester is dehydrogenated at C-6 by ScdC1C2, followed by hydration by ScdD. 7β,9α-Dihydroxy-17-oxo-1,2,3,4,10,19-hexanorandrostanoic acid-CoA ester then is dehydrogenated by ScdE to be converted to 9α-hydroxy-17-oxo-1,2,3,4,5,6,10,19-octanorandrostan-7-oic acid-CoA ester and acetyl-CoA by ScdF. ScdF is an ortholog of FadA6 in Mycobacterium tuberculosis H37Rv, which was reported as a 3-ketoacyl-CoA transferase involved in C ring cleavage. We also obtained results suggesting that ScdF is also involved in C ring cleavage, but further investigation is required for confirmation. ORF25 and ORF26, located between scdF and scdE, encode enzymes belonging to the amidase superfamily. Disrupting either ORF25 or ORF26 did not affect steroid degradation. Among the bacteria having gene clusters similar to those of tesB to tesR, some have both ORF25- and ORF26-like proteins or only an ORF26-like protein, but others do not have either ORF25- or ORF26-like proteins. ORF25 and ORF26 are not crucial for steroid degradation, yet they might provide clues to elucidate the evolution of bacterial steroid degradation clusters.IMPORTANCE Studies on bacterial steroid degradation were initiated more than 50 years ago primarily to obtain materials for steroid drugs. Steroid-degrading bacteria are globally distributed, and the role of bacterial steroid degradation in the environment as well as in relation to human health is attracting attention. The overall aerobic degradation of the four basic steroidal rings has been proposed; however, there is still much to be revealed to understand the complete degradation pathway. This study aims to uncover the whole steroid degradation process in Comamonas testosteroni TA441 as a model of steroid-degrading bacteria. C. testosteroni is one of the most studied representative steroid-degrading bacteria and is suitable for exploring the degradation pathway, because the involvement of degradation-related genes can be determined by gene disruption. Here, we elucidated the entire β-oxidation cycle of the cleaved B ring. This cycle is essential for the following C and D ring cleavage.
Collapse
|
23
|
Chemotaxis Towards Aromatic Compounds: Insights from Comamonas testosteroni. Int J Mol Sci 2019; 20:ijms20112701. [PMID: 31159416 PMCID: PMC6600141 DOI: 10.3390/ijms20112701] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 02/07/2023] Open
Abstract
Chemotaxis is an important physiological adaptation that allows many motile bacteria to orientate themselves for better niche adaptation. Chemotaxis is best understood in Escherichia coli. Other representative bacteria, such as Rhodobacter sphaeroides, Pseudomonas species, Helicobacter pylori, and Bacillus subtilis, also have been deeply studied and systemically summarized. These bacteria belong to α-, γ-, ε-Proteobacteria, or Firmicutes. However, β-Proteobacteria, of which many members have been identified as holding chemotactic pathways, lack a summary of chemotaxis. Comamonas testosteroni, belonging to β-Proteobacteria, grows with and chemotactically responds to a range of aromatic compounds. This paper summarizes the latest research on chemotaxis towards aromatic compounds, mainly from investigations of C. testosteroni and other Comamonas species.
Collapse
|
24
|
Ke S, Fang S, He M, Huang X, Yang H, Yang B, Chen C, Huang L. Age-based dynamic changes of phylogenetic composition and interaction networks of health pig gut microbiome feeding in a uniformed condition. BMC Vet Res 2019; 15:172. [PMID: 31126262 PMCID: PMC6534858 DOI: 10.1186/s12917-019-1918-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/16/2019] [Indexed: 12/26/2022] Open
Abstract
Background The gut microbiota impacts on a range of host biological processes, and the imbalances in its composition are associated with pathology. Though the understanding of contribution of the many factors, e.g. gender, diet and age, in the development of gut microbiota has been well established, the dynamic changes of the phylogenetic composition and the interaction networks along with the age remain unclear in pigs. Results Here we applied 16S ribosomal RNA gene sequencing, enterotype-like clustering (Classification of the gut microbiome into distinct types) and phylogenetic co-occurrence network to explore the dynamic changes of pig gut microbiome following the ages with a successive investigation at four ages in a cohort of 953 pigs. We found that Firmicutes and Bacteroidetes are two predominant phyla throughout the experimental period. The richness of gut microbiota was significantly increased from 25 to 240 days of age. Principal coordinates analysis showed a clear difference in the gut microbial community compositions between pre-weaning piglets and the pigs at the other three age groups. The gut microbiota of pre-weaning piglets was clearly classified into two enterotypes, which were dominated by Fusobacterium and p-75-a5, respectively. However, Prevotella and Treponema were the main drivers of the enterotypes for pigs at the age of 80, 120 and 240 days. Besides the piglets, even some adult pigs switched putative enterotypes between ages. We confirmed that the topological features of phylogenetic co-occurrence networks, including scale, stability and complexity were increased along with the age. The biological significance for modules in the network of piglets were mainly associated with the utilization of simple carbohydrate and lactose, whereas the sub-networks identified at the ages of 80, 120 and 240 days may be involved in the digestion of complex dietary polysaccharide. The modules related to the metabolism of protein and amino acids could be identified in the networks at 120 and 240 days. This dynamic change of the functional capacities of gut microbiome was further supported by functional prediction analysis. Conclusions The present study provided meaningful biological insights into the age-based dynamic shifts of ecological community of porcine gut microbiota. Electronic supplementary material The online version of this article (10.1186/s12917-019-1918-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shanlin Ke
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, 330045, Nanchang, People's Republic of China
| | - Shaoming Fang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, 330045, Nanchang, People's Republic of China
| | - Maozhang He
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, 330045, Nanchang, People's Republic of China
| | - Xiaochang Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, 330045, Nanchang, People's Republic of China
| | - Hui Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, 330045, Nanchang, People's Republic of China
| | - Bin Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, 330045, Nanchang, People's Republic of China
| | - Congying Chen
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, 330045, Nanchang, People's Republic of China.
| | - Lusheng Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, 330045, Nanchang, People's Republic of China.
| |
Collapse
|
25
|
Chi H, Wang X, Shao Y, Qin Y, Deng Z, Wang L, Chen S. Engineering and modification of microbial chassis for systems and synthetic biology. Synth Syst Biotechnol 2019; 4:25-33. [PMID: 30560208 PMCID: PMC6290258 DOI: 10.1016/j.synbio.2018.12.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/14/2018] [Accepted: 12/05/2018] [Indexed: 12/14/2022] Open
Abstract
Engineering and modifying synthetic microbial chassis is one of the best ways not only to unravel the fundamental principles of life but also to enhance applications in the health, medicine, agricultural, veterinary, and food industries. The two primary strategies for constructing a microbial chassis are the top-down approach (genome reduction) and the bottom-up approach (genome synthesis). Research programs on this topic have been funded in several countries. The 'Minimum genome factory' (MGF) project was launched in 2001 in Japan with the goal of constructing microorganisms with smaller genomes for industrial use. One of the best examples of the results of this project is E. coli MGF-01, which has a reduced-genome size and exhibits better growth and higher threonine production characteristics than the parental strain [1]. The 'cell factory' project was carried out from 1998 to 2002 in the Fifth Framework Program of the EU (European Union), which tried to comprehensively understand microorganisms used in the application field. One of the outstanding results of this project was the elucidation of proteins secreted by Bacillus subtilis, which was summarized as the 'secretome' [2]. The GTL (Genomes to Life) program began in 2002 in the United States. In this program, researchers aimed to create artificial cells both in silico and in vitro, such as the successful design and synthesis of a minimal bacterial genome by John Craig Venter's group [3]. This review provides an update on recent advances in engineering, modification and application of synthetic microbial chassis, with particular emphasis on the value of learning about chassis as a way to better understand life and improve applications.
Collapse
Affiliation(s)
- Haotian Chi
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
- Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xiaoli Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Yue Shao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Ying Qin
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
- Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| |
Collapse
|
26
|
Abstract
Complex chemosensory systems control multiple biological functions in bacteria, such as chemotaxis, gene regulation, and cell cycle progression. Many species contain more than one chemosensory system per genome, but little is known about their potential interplay. In this study, we reveal cross talk between two chemosensory pathways that modulate chemotaxis and biofilm formation in Comamonas testosteroni We demonstrate that some chemoreceptors that govern chemotaxis also contribute to biofilm formation and these chemoreceptors can physically interact with components of both pathways. Finally, we show that the chemotaxis histidine kinase CheA can phosphorylate not only its cognate response regulator CheY2 but also one of the response regulators from the pathway mediating biofilm formation, FlmD. The phosphoryl group transfer from CheA to CheY2 is much faster than that from CheA to FlmD, which is consistent with chemotaxis being a fast response and biofilm formation being a much slower developmental process. We propose that cross talk between chemosensory pathways may play a role in coordination of complex behaviors in bacteria.IMPORTANCE In many bacteria, two or more homologous chemosensory pathways control several cellular functions, such as motility and gene regulation, in response to changes in the cell's microenvironment. Cross talk between signal transduction systems is poorly understood; while generally it is considered to be undesired, in some instances it might be beneficial for coregulation of complex behaviors. We demonstrate that several receptors from the pathway controlling motility can physically interact with downstream components of the pathway controlling biofilm formation. We further show that a kinase from the pathway controlling motility can also phosphorylate a response regulator from the pathway controlling biofilm formation. We propose that cross talk between two chemosensory pathways might be involved in coordination of two types of cell behavior-chemotaxis and biofilm formation.
Collapse
|
27
|
Wu Y, Zaiden N, Cao B. The Core- and Pan-Genomic Analyses of the Genus Comamonas: From Environmental Adaptation to Potential Virulence. Front Microbiol 2018; 9:3096. [PMID: 30619175 PMCID: PMC6299040 DOI: 10.3389/fmicb.2018.03096] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/29/2018] [Indexed: 01/30/2023] Open
Abstract
Comamonas is often reported to be one of the major members of microbial communities in various natural and engineered environments. Versatile catabolic capabilities of Comamonas have been studied extensively in the last decade. In contrast, little is known about the ecological roles and adaptation of Comamonas to different environments as well as the virulence of potentially pathogenic Comamonas strains. In this study, we provide genomic insights into the potential ecological roles and virulence of Comamonas by analysing the entire gene set (pangenome) and the genes present in all genomes (core genome) using 34 genomes of 11 different Comamonas species. The analyses revealed that the metabolic pathways enabling Comamonas to acquire energy from various nutrient sources are well conserved. Genes for denitrification and ammonification are abundant in Comamonas, suggesting that Comamonas plays an important role in the nitrogen biogeochemical cycle. They also encode sophisticated redox sensory systems and diverse c-di-GMP controlling systems, allowing them to be able to effectively adjust their biofilm lifestyle to changing environments. The virulence factors in Comamonas were found to be highly species-specific. The conserved strategies used by potentially pathogenic Comamonas for surface adherence, motility control, nutrient acquisition and stress tolerance were also revealed.
Collapse
Affiliation(s)
- Yichao Wu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Norazean Zaiden
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Bin Cao
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
28
|
Tang Q, Lu T, Liu SJ. Developing a Synthetic Biology Toolkit for Comamonas testosteroni, an Emerging Cellular Chassis for Bioremediation. ACS Synth Biol 2018; 7:1753-1762. [PMID: 29860823 DOI: 10.1021/acssynbio.7b00430] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Synthetic biology is rapidly evolving into a new phase that emphasizes real-world applications such as environmental remediation. Recently, Comamonas testosteroni has become a promising chassis for bioremediation due to its natural pollutant-degrading capacity; however, its application is hindered by the lack of fundamental gene expression tools. Here, we present a synthetic biology toolkit that enables rapid creation of functional gene circuits in C. testosteroni. We first built a shuttle system that allows efficient circuit construction in E. coli and necessary phenotypic testing in C. testosteroni. Then, we tested a set of wildtype inducible promoters, and further used a hybrid strategy to create engineered promoters to expand expression strength and dynamics. Additionally, we tested the T7 RNA Polymerase-PT7 promoter system and reduced its leaky expression through promoter mutation for gene expression. By coupling random library construction with FACS screening, we further developed a synthetic T7 promoter library to confer a wider range of expression strength and dynamic characteristics. This study provides a set of valuable tools to engineer gene circuits in C. testosteroni, facilitating the establishment of the organism as a useful microbial chassis for bioremediation purposes.
Collapse
Affiliation(s)
- Qiang Tang
- State Key Laboratory of Microbial Resources, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Environmental Microbiology Research Center, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
29
|
Tang Q, Lu T, Liu SJ. Engineering the bacterium Comamonas testosteroni CNB-1: Plasmid curing and genetic manipulation. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.01.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Novel Gene Encoding 5-Aminosalicylate 1,2-Dioxygenase from Comamonas sp. Strain QT12 and Catalytic Properties of the Purified Enzyme. J Bacteriol 2018; 200:JB.00395-17. [PMID: 29038259 DOI: 10.1128/jb.00395-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/05/2017] [Indexed: 12/16/2022] Open
Abstract
The 1,125-bp mabB gene encoding 5-aminosalicylate (5ASA) 1,2-dioxygenase, a nonheme iron dioxygenase in the bicupin family that catalyzes the cleavage of the 5ASA aromatic ring to form cis-4-amino-6-carboxy-2-oxohexa-3,5-dienoate in the biodegradation of 3-aminobenzoate, was cloned from Comamonas sp. strain QT12 and characterized. The deduced amino acid sequence of the enzyme has low sequence identity with that of other reported ring-cleaving dioxygenases. MabB was heterologously expressed in Escherichia coli cells and purified as a His-tagged enzyme. The optimum pH and temperature for MabB are 8.0 and 10°C, respectively. FeII is required for the catalytic activity of the purified enzyme. The apparent Km and Vmax values of MabB for 5ASA are 52.0 ± 5.6 μM and 850 ± 33.2 U/mg, respectively. The two oxygen atoms incorporated into the product of the MabB-catalyzed reaction are both from the dioxygen molecule. Both 5ASA and gentisate could be converted by MabB; however, the catalytic efficiency of MabB for 5ASA was much higher (∼70-fold) than that for gentisate. The mabB-disrupted mutant lost the ability to grow on 3-aminobenzoate, and mabB expression was higher when strain QT12 was cultivated in the presence of 3-aminobenzoate. Thus, 5ASA is the physiological substrate of MabB.IMPORTANCE For several decades, 5-aminosalicylate (5ASA) has been advocated as the drug mesalazine to treat human inflammatory bowel disease and considered the key intermediate in the xenobiotic degradation of many aromatic organic pollutants. 5ASA biotransformation research will help us elucidate the microbial degradation of these pollutants. Most studies have reported that gentisate 1,2-dioxygenases (GDOs) can convert 5ASA with significantly high activity; however, the catalytic efficiency of these enzymes for gentisate is much higher than that for 5ASA. This study showed that MabB can convert 5ASA to cis-4-amino-6-carboxy-2-oxohexa-3,5-dienoate, incorporating two oxygen atoms from the dioxygen molecule into the product. Unlike GDOs, MabB uses 5ASA instead of gentisate as the primary substrate. mabB is the first reported 5-aminosalicylate 1,2-dioxygenase gene.
Collapse
|
31
|
Carda-Diéguez M, Ghai R, Rodríguez-Valera F, Amaro C. Wild eel microbiome reveals that skin mucus of fish could be a natural niche for aquatic mucosal pathogen evolution. MICROBIOME 2017; 5:162. [PMID: 29268781 PMCID: PMC5740887 DOI: 10.1186/s40168-017-0376-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 11/21/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Fish skin mucosal surfaces (SMS) are quite similar in composition and function to some mammalian MS and, in consequence, could constitute an adequate niche for the evolution of mucosal aquatic pathogens in natural environments. We aimed to test this hypothesis by searching for metagenomic and genomic evidences in the SMS-microbiome of a model fish species (Anguilla Anguilla or eel), from different ecosystems (four natural environments of different water salinity and one eel farm) as well as the water microbiome (W-microbiome) surrounding the host. RESULTS Remarkably, potentially pathogenic Vibrio monopolized wild eel SMS-microbiome from natural ecosystems, Vibrio anguillarum/Vibrio vulnificus and Vibrio cholerae/Vibrio metoecus being the most abundant ones in SMS from estuary and lake, respectively. Functions encoded in the SMS-microbiome differed significantly from those in the W-microbiome and allowed us to predict that successful mucus colonizers should have specific genes for (i) attachment (mainly by forming biofilms), (ii) bacterial competence and communication, and (iii) resistance to mucosal innate immunity, predators (amoeba), and heavy metals/drugs. In addition, we found several mobile genetic elements (mainly integrative conjugative elements) as well as a series of evidences suggesting that bacteria exchange DNA in SMS. Further, we isolated and sequenced a V. metoecus strain from SMS. This isolate shares pathogenicity islands with V. cholerae O1 from intestinal infections that are absent in the rest of sequenced V. metoecus strains, all of them from water and extra-intestinal infections. CONCLUSIONS We have obtained metagenomic and genomic evidence in favor of the hypothesis on the role of fish mucosal surfaces as a specialized habitat selecting microbes capable of colonizing and persisting on other comparable mucosal surfaces, e.g., the human intestine.
Collapse
Affiliation(s)
- Miguel Carda-Diéguez
- Department of Microbiology and Ecology abd Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), University of Valencia, Valencia, Spain
| | - Rohit Ghai
- Institute of Hydrobiology, Department of Aquatic Microbial Ecology, Biology Center of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
| | - Francisco Rodríguez-Valera
- Evolutionary Genomics Group, Department de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Carmen Amaro
- Department of Microbiology and Ecology abd Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), University of Valencia, Valencia, Spain.
| |
Collapse
|
32
|
A Novel Steroid-Coenzyme A Ligase from Novosphingobium sp. Strain Chol11 Is Essential for an Alternative Degradation Pathway for Bile Salts. Appl Environ Microbiol 2017; 84:AEM.01492-17. [PMID: 29054875 DOI: 10.1128/aem.01492-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/06/2017] [Indexed: 02/05/2023] Open
Abstract
Bile salts such as cholate are steroid compounds with a C5 carboxylic side chain and occur ubiquitously in vertebrates. Upon their excretion into soils and waters, bile salts can serve as growth substrates for diverse bacteria. Novosphingobium sp. strain Chol11 degrades 7-hydroxy bile salts via 3-keto-7-deoxy-Δ4,6 metabolites by the dehydration of the 7-hydroxyl group catalyzed by the 7α-hydroxysteroid dehydratase Hsh2. This reaction has not been observed in the well-studied 9-10-seco degradation pathway used by other steroid-degrading bacteria indicating that strain Chol11 uses an alternative pathway. A reciprocal BLASTp analysis showed that known side chain degradation genes from other cholate-degrading bacteria (Pseudomonas stutzeri Chol1, Comamonas testosteroni CNB-2, and Rhodococcus jostii RHA1) were not found in the genome of strain Chol11. The characterization of a transposon mutant of strain Chol11 showing altered growth with cholate identified a novel steroid-24-oyl-coenzyme A ligase named SclA. The unmarked deletion of sclA resulted in a strong growth rate decrease with cholate, while growth with steroids with C3 side chains or without side chains was not affected. Intermediates with a 7-deoxy-3-keto-Δ4,6 structure, such as 3,12-dioxo-4,6-choldienoic acid (DOCDA), were shown to be likely physiological substrates of SclA. Furthermore, a novel coenzyme A (CoA)-dependent DOCDA degradation metabolite with an additional double bond in the side chain was identified. These results support the hypothesis that Novosphingobium sp. strain Chol11 harbors an alternative pathway for cholate degradation, in which side chain degradation is initiated by the CoA ligase SclA and proceeds via reaction steps catalyzed by so-far-unknown enzymes different from those of other steroid-degrading bacteria.IMPORTANCE This study provides further evidence of the diversity of metabolic pathways for the degradation of steroid compounds in environmental bacteria. The knowledge about these pathways contributes to the understanding of the CO2-releasing part of the global C cycle. Furthermore, it is useful for investigating the fate of pharmaceutical steroids in the environment, some of which may act as endocrine disruptors.
Collapse
|
33
|
Microbial communities of aquatic environments on Heard Island characterized by pyrotag sequencing and environmental data. Sci Rep 2017; 7:44480. [PMID: 28290555 PMCID: PMC5349573 DOI: 10.1038/srep44480] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 02/09/2017] [Indexed: 12/23/2022] Open
Abstract
Heard Island in the Southern Ocean is a biological hotspot that is suffering the effects of climate change. Significant glacier retreat has generated proglacial lagoons, some of which are open to the ocean. We used pyrotag sequencing of SSU rRNA genes and environmental data to characterize microorganisms from two pools adjacent to animal breeding areas, two glacial lagoons and Atlas Cove (marine site). The more abundant taxa included Actinobacteria, Bacteroidetes and Proteobacteria, ciliates and picoflagellates (e.g. Micromonas), and relatively few Archaea. Seal Pool, which is rich in organic matter, was characterized by a heterotrophic degradative community, while the less eutrophic Atlas Pool had more eucaryotic primary producers. Brown Lagoon, with the lowest nutrient levels, had Eucarya and Bacteria predicted to be oligotrophs, possess small cell sizes, and have the ability to metabolize organic matter. The marine influence on Winston Lagoon was evident by its salinity and the abundance of marine-like Gammaproteobacteria, while also lacking typical marine eucaryotes indicating the system was still functioning as a distinct niche. This is the first microbiology study of Heard Island and revealed that communities are distinct at each location and heavily influenced by local environmental factors.
Collapse
|
34
|
Farooq S, Farooq R, Nahvi N. Comamonas testosteroni: Is It Still a Rare Human Pathogen? Case Rep Gastroenterol 2017; 11:42-47. [PMID: 28203137 PMCID: PMC5301100 DOI: 10.1159/000452197] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/03/2016] [Indexed: 11/19/2022] Open
Abstract
Comamonas testosteroni (formally Pseudomonas testosteroni) is common environmental bacterium that is not part of the human microbiome. Since its identification as a human pathogen in 1987, numerous reports have drizzled in, implicating this organism for various infections. Although these organisms are of low virulence, some of their obscurity perhaps is due to the incapability of clinical laboratories to identify them. Most of the reported cases are bloodstream infections. We report a case of gastroenteritis caused by this organism in a 65-year-old female with colostomy in situ.
Collapse
Affiliation(s)
- Shaika Farooq
- Department of Microbiology, Government Medical College, Srinagar, India
| | - Rumana Farooq
- Department of Microbiology, Government Medical College, Srinagar, India
| | - Nahida Nahvi
- Department of Microbiology, Government Medical College, Srinagar, India
| |
Collapse
|
35
|
Shukla SP, Sanders JG, Byrne MJ, Pierce NE. Gut microbiota of dung beetles correspond to dietary specializations of adults and larvae. Mol Ecol 2016; 25:6092-6106. [DOI: 10.1111/mec.13901] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 09/09/2016] [Accepted: 10/14/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Shantanu P. Shukla
- Department of Organismic and Evolutionary Biology Harvard University 26 Oxford Street Cambridge 02138 MA USA
| | - Jon G. Sanders
- Department of Organismic and Evolutionary Biology Harvard University 26 Oxford Street Cambridge 02138 MA USA
| | - Marcus J. Byrne
- School of Animal, Plant, and Environmental Sciences University of Witwatersrand Wits 2050 South Africa
| | - Naomi E. Pierce
- Department of Organismic and Evolutionary Biology Harvard University 26 Oxford Street Cambridge 02138 MA USA
| |
Collapse
|
36
|
Abstract
A Gram-negative bacterial strain, Comamonas aquatica CJG, absorbs low-density lipoprotein but not high-density lipoprotein in serum. Here, we report its draft genomic sequence of 3,764,434 bp, containing total 3,425 genes, 27% of which encode proteins for metabolism and energy conversion, and it is 30% identical to the genome of Comamonas testosteroni.
Collapse
|
37
|
Luyckx K, Van Coillie E, Dewulf J, Van Weyenberg S, Herman L, Zoons J, Vervaet E, Heyndrickx M, De Reu K. Identification and biocide susceptibility of dominant bacteria after cleaning and disinfection of broiler houses. Poult Sci 2016; 96:938-949. [PMID: 28158762 DOI: 10.3382/ps/pew355] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/19/2016] [Indexed: 11/20/2022] Open
Affiliation(s)
- K Luyckx
- Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - E Van Coillie
- Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - J Dewulf
- Veterinary Epidemiology Unit, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - S Van Weyenberg
- Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - L Herman
- Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - J Zoons
- Experimental Poultry Center (EPC), Geel, Belgium
| | - E Vervaet
- Experimental Poultry Center (EPC), Geel, Belgium
| | | | - K De Reu
- Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| |
Collapse
|
38
|
Huang Z, Ni B, Jiang CY, Wu YF, He YZ, Parales RE, Liu SJ. Direct sensing and signal transduction during bacterial chemotaxis toward aromatic compounds inComamonas testosteroni. Mol Microbiol 2016; 101:224-37. [DOI: 10.1111/mmi.13385] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Zhou Huang
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Bin Ni
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
- IMCAS-RCEECAS Joint Laboratory for Environmental Microbial Technology; Beijing China
| | - Yu-Fan Wu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yun-Zhe He
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Rebecca E. Parales
- Department of Microbiology and Molecular Genetics; University of California; Davis CA 95616 USA
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
- University of Chinese Academy of Sciences; Beijing 100049 China
- IMCAS-RCEECAS Joint Laboratory for Environmental Microbial Technology; Beijing China
| |
Collapse
|
39
|
Li G, Masuko S, Green DE, Xu Y, Li L, Zhang F, Xue C, Liu J, DeAngelis PL, Linhardt RJ. N-sulfotestosteronan, a novel substrate for heparan sulfate 6-O-sulfotransferases and its analysis by oxidative degradation. Biopolymers 2016; 99:675-85. [PMID: 23606289 DOI: 10.1002/bip.22263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 03/13/2013] [Accepted: 04/12/2013] [Indexed: 01/14/2023]
Abstract
Testosteronan, an unusual glycosaminoglycan (GAG) first isolated from the microbe Comamonas testosteroni, was enzymatically synthesized in vitro by transferring uridine diphosphate sugars on β-p-nitrophenyl glucuronide acceptor. After chemically converting testosteronan to N-sulfotestosteronan it was tested as a substrate for sulfotransferases involved in the biosynthesis of the GAG, heparan sulfate. Studies using (35) S-labeled 3'-phosphoadenosine-5'-phosphosulfate (PAPS) showed that only 6-O-sulfotransferases acted on N-sulfotestosteronan. An oxidative depolymerization reaction was explored to generate oligosaccharides from (34) S-labeled 6-O-sulfo-N-sulfotestosteroran using (34) S-labeled PAPS because testosteronan was resistant to all of the tested GAG-degrading enzymes. Liquid chromotography-mass spectrometric analysis of the oxidatively depolymerized polysaccharides confirmed the incorporation of (34) S into ∼14% of the glucosamine residues. Nuclear magnetic resonance spectroscopy also showed that the sulfo groups were transferred to ∼20% of the 6-hydroxyl groups in the glucosamine residue of N-sulfotestosteronan. The bioactivity of 6-O-sulfo-N-sulfotestosteronan was examined by performing protein-binding studies with fibroblast growth factors and antithrombin (AT) III using a surface plasmon resonance competition assay. The introduction of 6-O-sulfo groups enhanced N-sulfotestosteronan binding to the fibroblast growth factors, but not to AT III.
Collapse
Affiliation(s)
- Guoyun Li
- College of Food Science and Technology, Ocean University of China, Qingdao, People's Republic of China, 266003; Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180; Department of Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ye Q, Liu J, Du J, Zhang J. Bacterial Diversity in Submarine Groundwater along the Coasts of the Yellow Sea. Front Microbiol 2016; 6:1519. [PMID: 26779172 PMCID: PMC4705239 DOI: 10.3389/fmicb.2015.01519] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/17/2015] [Indexed: 01/17/2023] Open
Abstract
Submarine groundwater (SGD) is one of the most significant pathways for the exchange of groundwater and/or source of nutrients, metals and carbon to the ocean, subsequently cause deleterious impacts on the coastal ecosystems. Microorganisms have been recognized as the important participators in the biogeochemical processes in the SGD. In this study, by utilizing 16S rRNA-based Illumina Miseq sequencing technology, we investigated bacterial diversity and distribution in both fresh well water and brackish recirculated porewater along the coasts in the Yellow Sea. The results showed that Actinobacteria and Betaproteobacteria, especially Comamonas spp. and Limnohabitans spp. were dominated in fresh well samples. Distinct patterns of bacterial communities were found among the porewater samples due to different locations, for examples, Cyanbacteria was the most abundant in the porewater samples far from the algal bloomed areas. The analysis of correlation between representative bacterial taxonomic groups and the contexture environmental parameters showed that fresh well water and brackish porewater might provide different nutrients to the coastal waters. Potential key bacterial groups such as Comamonas spp. may be excellent candidates for the bioremediation of the natural pollutants in the SGD. Our comprehensive understanding of bacterial diversity in the SGD along the coasts of the Yellow Sea will create a basis for designing the effective clean-up approach in-situ, and provide valuable information for the coastal management.
Collapse
Affiliation(s)
- Qi Ye
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University Shanghai, China
| | - Jianan Liu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University Shanghai, China
| | - Jinzhou Du
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University Shanghai, China
| | - Jing Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University Shanghai, China
| |
Collapse
|
41
|
Qiu L, Wang H, Wang X. Isolation and characterization of a cold-resistant PCB209-degrading bacterial strain from river sediment and its application in bioremediation of contaminated soil. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2015; 51:204-212. [PMID: 26635180 DOI: 10.1080/10934529.2015.1094324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A cold-resistant bacterium (strain QL) that can degrade 2,2',3,3',4,4',5,5',6,6'-decachlorobiphenyl (PCB209) was isolated from Wei-he River sediment. Strain QL was identified as a rod-shaped gram-negative bacterial strain, which was further identified as Comamonas testosteroni. C. testosteroni has never been reported to be capable of degrading PCB209 at low temperatures. In this study, the degradation characteristics showed that strain QL could grow with PCB209 as the sole carbon source at low temperatures (10 ± 0.5 °C). More significantly, strain QL of 40% inoculation volume was able to completely degrade PCB209 in 140 h (initial concentration of PCB209 was 100-500 µg L(-1) at 10 ± 0.5 °C and pH 7-8). The degradation process proceeded with zero-order reaction kinetics. Moreover, both laboratory simulation and real-world field experiments demonstrated that strain QL was effective in practical applications of PCB209 biodegradation in contaminated soil.
Collapse
Affiliation(s)
- Liping Qiu
- a School of Environmental Science and Engineering, Chang'an University , Xi'an , China
| | - Hu Wang
- b School of Natural and Applied Sciences, Chang'an University , Xi'an , China
| | - Xuntao Wang
- b School of Natural and Applied Sciences, Chang'an University , Xi'an , China
| |
Collapse
|
42
|
Draft Genome Sequence of the Polychlorinated Biphenyl-Degrading Bacterium Comamonas testosteroni KF712 (NBRC 110673). GENOME ANNOUNCEMENTS 2015; 3:3/5/e01214-15. [PMID: 26472850 PMCID: PMC4611702 DOI: 10.1128/genomea.01214-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
We present a 5.89-Mb draft genome sequence of Comamonas testosteroni KF712 (NBRC 110673), a polychlorinated biphenyl degrader. The genome sequence clarified that KF712 harbors the gene clusters coding for the catabolism of biphenyl and at least seven other aromatic compounds.
Collapse
|
43
|
Wu Y, Shukal S, Mukherjee M, Cao B. Involvement in Denitrification is Beneficial to the Biofilm Lifestyle of Comamonas testosteroni: A Mechanistic Study and Its Environmental Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:11551-11559. [PMID: 26327221 DOI: 10.1021/acs.est.5b03381] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Comamonas is one of the most abundant microorganisms in biofilm communities driving wastewater treatment. Little has been known about the role of this group of organisms and their biofilm mode of life. In this study, using Comamonas testosteroni as a model organism, we demonstrated the involvement of Comamonas biofilms in denitrification under bulk aerobic conditions and elucidated the influence of nitrate respiration on its biofilm lifestyle. Our results showed that C. testosteroni could use nitrate as the sole electron acceptor for anaerobic growth. Under bulk aerobic condition, biofilms of C. testosteroni were capable of reducing nitrate, and intriguingly, nitrate reduction significantly enhanced viability of the biofilm-cells and reduced cell detachment from the biofilms. Nitrate respiration was further shown to play an essential role in maintaining high cell viability in the biofilms. RNA-seq analysis, quantitative polymerase chain reaction, and liquid chromatography-mass spectrometry revealed a higher level of bis(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) in cells respiring on nitrate than those grown aerobically (1.3 × 10(-4) fmol/cell vs 7.9 × 10(-6) fmol/cell; P < 0.01). C-di-GMP is one universal signaling molecule that regulates the biofilm mode of life, and a higher c-di-GMP concentration reduces cell detachment from biofilms. Taking these factors together, this study reveals that nitrate reduction occurs in mature biofilms of C. testosteroni under bulk aerobic conditions, and the respiratory reduction of nitrate is beneficial to the biofilm lifestyle by providing more metabolic energy to maintain high viability and a higher level of c-di-GMP to reduce cell detachment.
Collapse
Affiliation(s)
- Yichao Wu
- School of Civil and Environmental Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551
| | - Sudha Shukal
- School of Civil and Environmental Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551
| | - Manisha Mukherjee
- School of Civil and Environmental Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551
| | - Bin Cao
- School of Civil and Environmental Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551
| |
Collapse
|
44
|
Shoemaker KM, Moisander PH. Microbial diversity associated with copepods in the North Atlantic subtropical gyre. FEMS Microbiol Ecol 2015; 91:fiv064. [DOI: 10.1093/femsec/fiv064] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2015] [Indexed: 01/21/2023] Open
|
45
|
Xiong G, Maser E. Construction of a biosensor mutant of Comamonas testosteroni for testosterone determination by cloning the EGFP gene downstream to the regulatory region of the 3,17β-HSD gene. Chem Biol Interact 2015; 234:188-96. [DOI: 10.1016/j.cbi.2014.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/20/2014] [Accepted: 11/20/2014] [Indexed: 10/24/2022]
|
46
|
Wu Y, Arumugam K, Tay MQX, Seshan H, Mohanty A, Cao B. Comparative genome analysis reveals genetic adaptation to versatile environmental conditions and importance of biofilm lifestyle in Comamonas testosteroni. Appl Microbiol Biotechnol 2015; 99:3519-32. [PMID: 25786738 DOI: 10.1007/s00253-015-6519-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/28/2015] [Accepted: 03/02/2015] [Indexed: 01/06/2023]
Abstract
Comamonas testosteroni is an important environmental bacterium capable of degrading a variety of toxic aromatic pollutants and has been demonstrated to be a promising biocatalyst for environmental decontamination. This organism is often found to be among the primary surface colonizers in various natural and engineered ecosystems, suggesting an extraordinary capability of this organism in environmental adaptation and biofilm formation. The goal of this study was to gain genetic insights into the adaption of C. testosteroni to versatile environments and the importance of a biofilm lifestyle. Specifically, a draft genome of C. testosteroni I2 was obtained. The draft genome is 5,778,710 bp in length and comprises 110 contigs. The average G+C content was 61.88 %. A total of 5365 genes with 5263 protein-coding genes were predicted, whereas 4324 (80.60 % of total genes) protein-encoding genes were associated with predicted functions. The catabolic genes responsible for biodegradation of steroid and other aromatic compounds on draft genome were identified. Plasmid pI2 was found to encode a complete pathway for aniline degradation and a partial catabolic pathway for chloroaniline. This organism was found to be equipped with a sophisticated signaling system which helps it find ideal niches and switch between planktonic and biofilm lifestyles. A large number of putative multi-drug-resistant genes coding for abundant outer membrane transporters, chaperones, and heat shock proteins for the protection of cellular function were identified in the genome of strain I2. In addition, the genome of strain I2 was predicted to encode several proteins involved in producing, secreting, and uptaking siderophores under iron-limiting conditions. The genome of strain I2 contains a number of genes responsible for the synthesis and secretion of exopolysaccharides, an extracellular component essential for biofilm formation. Overall, our results reveal the genomic features underlying the adaption of C. testosteroni to versatile environments and highlighting the importance of its biofilm lifestyle.
Collapse
Affiliation(s)
- Yichao Wu
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | | | | | | | | | | |
Collapse
|
47
|
Liu L, Zhu W, Cao Z, Xu B, Wang G, Luo M. High correlation between genotypes and phenotypes of environmental bacteria Comamonas testosteroni strains. BMC Genomics 2015; 16:110. [PMID: 25766446 PMCID: PMC4344759 DOI: 10.1186/s12864-015-1314-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/03/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Members of Comamonas testosteroni are environmental microorganisms that are usually found in polluted environment samples. They utilize steroids and aromatic compounds but rarely sugars, and show resistance to multiple heavy metals and multiple drugs. However, comprehensive genomic analysis among the C. testosteroni strains is lacked. RESULTS To understand the genome bases of the features of C. testosteroni, we sequenced 10 strains of this species and analyzed them together with other related published genome sequences. The results revealed that: 1) the strains of C. testosteroni have genome sizes ranging from 5.1 to 6.0 Mb and G + C contents ranging from 61.1% to 61.8%. The pan-genome contained 10,165 gene families and the core genome contained 3,599 gene families. Heap's law analysis indicated that the pan-genome of C. testosteroni may be open (α = 0.639); 2) by analyzing 31 phenotypes of 11 available C. testosteroni strains, 99.4% of the genotypes (putative genes) were found to be correlated to the phenotypes, indicating a high correlation between phenotypes and genotypes; 3) gene clusters for nitrate reduction, steroids degradation and metal and multi-drug resistance were found and were highly conserved among all the genomes of this species; 4) the genome similarity of C. testosteroni may be related to the geographical distances. CONCLUSIONS This work provided an overview on the genomes of C. testosteroni and new genome resources that would accelerate the further investigations of this species. Importantly, this work focused on the analysis of potential genetic determinants for the typical characters and found high correlation between the phenotypes and their corresponding genotypes.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.
| | - Wentao Zhu
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.
| | - Zhan Cao
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.
| | - Biao Xu
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.
| | - Meizhong Luo
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.
| |
Collapse
|
48
|
A novel chemoreceptor MCP2983 from Comamonas testosteroni specifically binds to cis-aconitate and triggers chemotaxis towards diverse organic compounds. Appl Microbiol Biotechnol 2014; 99:2773-81. [DOI: 10.1007/s00253-014-6216-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/28/2014] [Accepted: 11/01/2014] [Indexed: 01/25/2023]
|
49
|
Hwang OH, Raveendar S, Kim YJ, Kim JH, Choi JW, Kim TH, Choi DY, Jeon CO, Cho SB, Lee KT. Deodorization of pig slurry and characterization of bacterial diversity using 16S rDNA sequence analysis. J Microbiol 2014; 52:918-29. [PMID: 25359269 DOI: 10.1007/s12275-014-4251-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 09/01/2014] [Accepted: 09/05/2014] [Indexed: 02/05/2023]
Abstract
The concentration of major odor-causing compounds including phenols, indoles, short-chain fatty acids (SCFAs) and branched chain fatty acids (BCFAs) in response to the addition of powdered horse radish (PHR) and spent mushroom compost (SMC) was compared with control non-treated slurry (CNS) samples. A total of 97,465 rDNAs sequence reads were generated from three different samples (CNS, n = 2; PHR, n = 3; SMC, n = 3) using bar-coded pyrosequencing. The number of operational taxonomic units (OTUs) was lower in the PHR slurry compared with the other samples. A total of 11 phyla were observed in the slurry samples, while the phylogenetic analysis revealed that the slurry microbiome predominantly comprised members of the Bacteroidetes, Firmicutes, and Proteobacteria phyla. The rarefaction analysis showed the bacterial species richness varied among the treated samples. Overall, at the OTU level, 2,558 individual genera were classified, 276 genera were found among the three samples, and 1,832 additional genera were identified in the individual samples. A principal component analysis revealed the differences in microbial communities among the CNS, PHR, and SMC pig slurries. Correlation of the bacterial community structure with the Kyoto Encyclopedia of Genes and Genomes (KEGG) predicted pathways showed that the treatments altered the metabolic capabilities of the slurry microbiota. Overall, these results demonstrated that the PHR and S MC treatments significantly reduced the malodor compounds in pig slurry (P < 0.05).
Collapse
Affiliation(s)
- Ok-Hwa Hwang
- National Institute of Animal Science, Rural Development Administration, Suwon, 441-706, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wu Y, Ding Y, Cohen Y, Cao B. Elevated level of the second messenger c-di-GMP in Comamonas testosteroni enhances biofilm formation and biofilm-based biodegradation of 3-chloroaniline. Appl Microbiol Biotechnol 2014; 99:1967-76. [PMID: 25273178 DOI: 10.1007/s00253-014-6107-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 01/15/2023]
Abstract
The bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) is a ubiquitous second messenger that determines bacterial lifestyle between the planktonic and biofilm modes of life. Although the role of c-di-GMP signaling in biofilm development and dispersal has been extensively studied, how c-di-GMP signaling influences environmental bioprocess activities such as biodegradation remains unexplored. To elucidate the impacts of elevating c-di-GMP level on environmental bioprocesses, we constructed a Comamonas testosteroni strain constitutively expressing a c-di-GMP synthase YedQ from Escherichia coli and examined its capability in biofilm formation and biodegradation of 3-chloroaniline (3-CA). The high c-di-GMP strain exhibited an increased binding to Congo red dye, a decreased motility, and an enhanced biofilm formation capability. In planktonic cultures, the strain with an elevated c-di-GMP concentration and the wild type could degrade 3-CA comparably well. However, under batch growth conditions with a high surface to volume ratio, an elevated c-di-GMP concentration in C. testosteroni significantly increased the contribution of biofilms in 3-CA biodegradation. In continuous submerged biofilm reactors, C. testosteroni with an elevated c-di-GMP level exhibited an enhanced 3-CA biodegradation and a decreased cell detachment rate. Taken together, this study provides a novel strategy to enhance biofilm-based biodegradation of toxic xenobiotic compounds through manipulating bacterial c-di-GMP signaling.
Collapse
Affiliation(s)
- Yichao Wu
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Singapore
| | | | | | | |
Collapse
|