1
|
Hamilton AN, Maes F, Reyes GYC, Almeida G, Li D, Uyttendaele M, Gibson KE. Machine Learning and Imputation to Characterize Human Norovirus Genotype Susceptibility to Sodium Hypochlorite. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:492-505. [PMID: 39259473 PMCID: PMC11525273 DOI: 10.1007/s12560-024-09613-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024]
Abstract
Human norovirus (HuNoV) is the leading cause of foodborne illness in the developed world and a major contributor to gastroenteritis globally. Its low infectious dose and environmental persistence necessitate effective disinfection protocols. Sodium hypochlorite (NaOCl) bleach is a widely used disinfectant for controlling HuNoV transmission via contaminated fomites. This study aimed to evaluate the susceptibility of HuNoV genotypes (n = 11) from genogroups I, II, and IV to NaOCl in suspension. HuNoV was incubated for 1 and 5 min in diethyl pyrocarbonate (DEPC) treated water containing 50 ppm, 100 ppm, or 150 ppm NaOCl, buffered to maintain a pH between 7.0 and 7.5. Neutralization was achieved by a tenfold dilution into 100% fetal bovine serum. RNase pre-treatment followed by RT-qPCR was used to distinguish between infectious and non-infectious HuNoV. Statistical methods, including imputation, machine learning, and generalized linear models, were applied to process and analyze the data. Results showed that NaOCl reduced viral loads across all genotypes, though efficacy varied. Genotypes GI.1, GII.4 New Orleans, and GII.4 Sydney were the least susceptible, while GII.6 and GII.13 were the most susceptible. All NaOCl concentrations above 0 ppm were statistically indistinguishable, and exposure duration did not significantly affect HuNoV reduction, suggesting rapid inactivation at effective concentrations. For instance, some genotypes were completely inactivated within 1 min, rendering extended exposure unnecessary, while other genotypes maintained the initial concentration at both 1 and 5 min, indicating a need for longer contact times. These findings underscore the critical role of HuNoV genotype selection in testing disinfection protocols and optimizing NaOCl concentrations. Understanding HuNoV susceptibility to NaOCl bleach informs better disinfection strategies, aiding public health and food safety authorities in reducing HuNoV transmission and outbreaks.
Collapse
Affiliation(s)
- Allyson N Hamilton
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 1371 West Altheimer Dr, Fayetteville, AR, 72704, USA
| | - Flor Maes
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 1371 West Altheimer Dr, Fayetteville, AR, 72704, USA
- Food Microbiology and Food Preservation Research Unit, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
- BESTMIX® Software, Vlaanderen, Maldegem, Belgium
| | - Génesis Yosbeth Chávez Reyes
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 1371 West Altheimer Dr, Fayetteville, AR, 72704, USA
- Steuben Foods Inc., Bozeman, Montana, United States
| | - Giselle Almeida
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 1371 West Altheimer Dr, Fayetteville, AR, 72704, USA
- Arkansas Children's Hospital, Little Rock, Arkansas, United States
| | - Dan Li
- Department of Food Science & Technology, Faculty of Science, National University of Singapore (NUS), Singapore, 117542, Singapore
| | - Mieke Uyttendaele
- Food Microbiology and Food Preservation Research Unit, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Kristen E Gibson
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 1371 West Altheimer Dr, Fayetteville, AR, 72704, USA.
| |
Collapse
|
2
|
Liang Z, Lu K, Xu C, Huang X, Zhang X. Systematic investigation and modeling prediction of virus inactivation by ozone in wastewater: Decoupling the matrix effects. WATER RESEARCH 2024; 257:121685. [PMID: 38728774 DOI: 10.1016/j.watres.2024.121685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/02/2024] [Accepted: 04/27/2024] [Indexed: 05/12/2024]
Abstract
Water disinfection is undoubtedly regarded as a critical step in ensuring the water safety for human consumption, and ozone is widely used as a highly effective disinfectant for the control of pathogenic microorganisms in water. Although the diminished ozone efficiencies in complex water matrices have been widely reported, the specific extent to which individual components of matrix act on the virus inactivation by ozone remains unclear, and effective methodologies to predict the comprehensive effects of various factors are needed. In this study, the decoupled impact of the intricate water matrix on the ozone inactivation of viruses was systematically investigated and assessed from a simulative perspective. The concept of "equivalent ozone depletion rate constant" (k') was introduced to quantify the influence of different species, and a kinetic model was developed based on the k' values for simulating the ozone inactivation processes in complex matrix. The mechanisms through which diverse species influenced the ozone inactivation effectiveness were identified: 1) competition effects (k' = 105∼107 M-1s-1), including organic matters and reductive ions (SO32-, NO2-, and I-), which were the most influential species inhibiting the virus inactivation; 2) shielding effects (k' = 103∼104 M-1s-1), including Ca2+, Mg2+, and kaolin; 3) insignificant effects (k' = 0∼1 M-1s-1), including Cl-, SO42-, NO3-, NH4+, and Br-; 4) promotion effects (k' = ∼-103 M-1s-1), including CO32- and HCO3-. Prediction of ozone disinfection efficiency and evaluation of species contribution under complex aquatic matrices were successfully realized utilizing the model. The systematic understanding and methodologies developed in this research provide a reliable framework for predicting ozone inactivation efficiency under complex matrix, and a potential tool for accurate disinfectant dosage determination and interfering factors control in actual wastewater treatment processes.
Collapse
Affiliation(s)
- Zhiting Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Kechao Lu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Chenyang Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
3
|
Torii S, Gouttenoire J, Kumar K, Antanasijevic A, Kohn T. Influence of Amino Acid Substitutions in Capsid Proteins of Coxsackievirus B5 on Free Chlorine and Thermal Inactivation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5279-5289. [PMID: 38488515 PMCID: PMC10976892 DOI: 10.1021/acs.est.3c10409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/27/2024]
Abstract
The sensitivity of enteroviruses to disinfectants varies among genetically similar variants and coincides with amino acid changes in capsid proteins, although the effect of individual substitutions remains unknown. Here, we employed reverse genetics to investigate how amino acid substitutions in coxsackievirus B5 (CVB5) capsid proteins affect the virus' sensitivity to free chlorine and heat treatment. Of ten amino acid changes observed in CVB5 variants with free chlorine resistance, none significantly reduced the chlorine sensitivity, indicating a minor role of the capsid composition in chlorine sensitivity of CVB5. Conversely, a subset of these amino acid changes located at the C-terminal region of viral protein 1 led to reduced heat sensitivity. Cryo-electron microscopy revealed that these changes affect the assembly of intermediate viral states (altered and empty particles), suggesting that the mechanism for reduced heat sensitivity could be related to improved molecular packing of CVB5, resulting in greater stability or altered dynamics of virus uncoating during infection.
Collapse
Affiliation(s)
- Shotaro Torii
- Laboratory
of Environmental Chemistry, School of Architecture, Civil and Environmental
Engineering (ENAC), École Polytechnique
Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jérôme Gouttenoire
- Division
of Gastroenterology and Hepatology, Lausanne
University Hospital and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Kiruthika Kumar
- Virology
and Structural Immunology Laboratory, School of Life Sciences, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Aleksandar Antanasijevic
- Virology
and Structural Immunology Laboratory, School of Life Sciences, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Tamar Kohn
- Laboratory
of Environmental Chemistry, School of Architecture, Civil and Environmental
Engineering (ENAC), École Polytechnique
Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
4
|
Heffron J, Samsami M, Juedemann S, Lavin J, Tavakoli Nick S, Kieke BA, Mayer BK. Mitigation of viruses of concern and bacteriophage surrogates via common unit processes for water reuse: A meta-analysis. WATER RESEARCH 2024; 252:121242. [PMID: 38342066 DOI: 10.1016/j.watres.2024.121242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/13/2024]
Abstract
Water reuse is a growing global reality. In regulating water reuse, viruses have come to the fore as key pathogens due to high shedding rates, low infectious doses, and resilience to traditional wastewater treatments. To demonstrate the high log reductions required by emerging water reuse regulations, cost and practicality necessitate surrogates for viruses for use as challenge organisms in unit process evaluation and monitoring. Bacteriophage surrogates that are mitigated to the same or lesser extent than viruses of concern are routinely used for individual unit process testing. However, the behavior of these surrogates over a multi-barrier treatment train typical of water reuse has not been well-established. Toward this aim, we performed a meta-analysis of log reductions of common bacteriophage surrogates for five treatment processes typical of water reuse treatment trains: advanced oxidation processes, chlorination, membrane filtration, ozonation, and ultraviolet (UV) disinfection. Robust linear regression was applied to identify a range of doses consistent with a given log reduction of bacteriophages and viruses of concern for each treatment process. The results were used to determine relative conservatism of surrogates. We found that no one bacteriophage was a representative or conservative surrogate for viruses of concern across all multi-barrier treatments (encompassing multiple mechanisms of virus mitigation). Rather, a suite of bacteriophage surrogates provides both a representative range of inactivation and information about the effectiveness of individual processes within a treatment train. Based on the abundance of available data and diversity of virus treatability using these five key water reuse treatment processes, bacteriophages MS2, phiX174, and Qbeta were recommended as a core suite of surrogates for virus challenge testing.
Collapse
Affiliation(s)
- Joe Heffron
- U.S. Department of Agriculture-Agricultural Research Service, Environmentally Integrated Dairy Management Research Unit, 2615 Yellowstone Dr., Marshfield, WI 54449, USA.
| | - Maryam Samsami
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 West Wisconsin Avenue, Milwaukee, WI 53233, USA
| | - Samantha Juedemann
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 West Wisconsin Avenue, Milwaukee, WI 53233, USA
| | - Jennifer Lavin
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 West Wisconsin Avenue, Milwaukee, WI 53233, USA
| | - Shadi Tavakoli Nick
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 West Wisconsin Avenue, Milwaukee, WI 53233, USA
| | - Burney A Kieke
- Marshfield Clinic Research Institute, Center for Clinical Epidemiology and Population Health, 1000 N Oak Ave., Marshfield, WI 54449, USA
| | - Brooke K Mayer
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 West Wisconsin Avenue, Milwaukee, WI 53233, USA
| |
Collapse
|
5
|
Lin Y, He Y, Sun Q, Ping Q, Huang M, Wang L, Li Y. Underlying the mechanisms of pathogen inactivation and regrowth in wastewater using peracetic acid-based disinfection processes: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132868. [PMID: 37944231 DOI: 10.1016/j.jhazmat.2023.132868] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
Peracetic acid (PAA) disinfection is an emerging wastewater disinfection process. Its advantages include excellent pathogen inactivation performance and little generation of toxic and harmful disinfection byproducts. The objective of this review is to comprehensively analyze the experimental data and scientific information related to PAA-based disinfection processes. Kinetic models and modeling frameworks are discussed to provide effective tools to assess pathogen inactivation efficacy. Then, the efficacy of PAA-based disinfection processes for pathogen inactivation is summarized, and the inactivation mechanisms involved in disinfection and the interactions of PAA with conventional disinfection processes are elaborated. Subsequently, the risk of pathogen regrowth after PAA-based disinfection process is clearly discussed. Finally, to address ecological risks related to PAA-based disinfection, its impact on the spread of antibiotic-resistant bacteria and the transfer of antibiotic resistance genes (ARGs) is also assessed. Among advanced PAA-based disinfection processes, ultraviolet/PAA is promising not only because it has practical application value but also because pathogen regrowth can be inhibited and ARGs transfer risk can be significantly reduced via this process. This review presents valuable and comprehensive information to provide an in-depth understanding of PAA as an alternative wastewater disinfection technology.
Collapse
Affiliation(s)
- Yuqian Lin
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Yunpeng He
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Qiya Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| | - Manhong Huang
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China; Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Lin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China.
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| |
Collapse
|
6
|
Zhao D, Lu H, Cheng Q, Huang Q, Ai J, Zhang Z, Liu H, He Z, Li Q. Research Progress on Inactivation of Bacteriophages by Visible-Light Photocatalytic Composite Materials: A Mini Review. MATERIALS (BASEL, SWITZERLAND) 2023; 17:44. [PMID: 38203898 PMCID: PMC10779577 DOI: 10.3390/ma17010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Infectious diseases caused by waterborne viruses have attracted researchers' great attention. To ensure a safe water environment, it is important to advance water treatment and disinfection technology. Photocatalytic technology offers an efficient and practical approach for achieving this goal. This paper reviews the latest studies on visible-light composite catalysts for bacteriophage inactivation, with a main focus on three distinct categories: modified UV materials, direct visible-light materials and carbon-based materials. This review gives an insight into the progress in photocatalytic material development and offers a promising solution for bacteriophage inactivation.
Collapse
Affiliation(s)
- Deqiang Zhao
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; (H.L.); (Q.H.); (H.L.); (Q.L.)
- National Engineering Research Center for Inland Waterway Regulation, Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing 400074, China
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden; (J.A.); (Z.Z.)
| | - Heng Lu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; (H.L.); (Q.H.); (H.L.); (Q.L.)
- National Engineering Research Center for Inland Waterway Regulation, Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing 400074, China
| | - Qingkong Cheng
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; (H.L.); (Q.H.); (H.L.); (Q.L.)
- National Engineering Research Center for Inland Waterway Regulation, Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing 400074, China
- Joint Graduate Training Base for Resources and Environment between Chongqing Jiaotong University and Chongqing Gangli Environmental Protection Co., Ltd., Chongqing Jiaotong University, Chongqing 400074, China
| | - Qi Huang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; (H.L.); (Q.H.); (H.L.); (Q.L.)
- National Engineering Research Center for Inland Waterway Regulation, Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing 400074, China
| | - Jing Ai
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden; (J.A.); (Z.Z.)
| | - Zhibo Zhang
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden; (J.A.); (Z.Z.)
| | - Hainan Liu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; (H.L.); (Q.H.); (H.L.); (Q.L.)
- National Engineering Research Center for Inland Waterway Regulation, Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing 400074, China
| | - Zongfei He
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;
| | - Qiuhong Li
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; (H.L.); (Q.H.); (H.L.); (Q.L.)
- National Engineering Research Center for Inland Waterway Regulation, Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing 400074, China
| |
Collapse
|
7
|
Wang J, Chen W, Wang T, Reid E, Krall C, Kim J, Zhang T, Xie X, Huang CH. Bacteria and Virus Inactivation: Relative Efficacy and Mechanisms of Peroxyacids and Chlor(am)ine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18710-18721. [PMID: 36995048 PMCID: PMC10690719 DOI: 10.1021/acs.est.2c09824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Peroxyacids (POAs) are a promising alternative to chlorine for reducing the formation of disinfection byproducts. However, their capacity for microbial inactivation and mechanisms of action require further investigation. We evaluated the efficacy of three POAs (performic acid (PFA), peracetic acid (PAA), and perpropionic acid (PPA)) and chlor(am)ine for inactivation of four representative microorganisms (Escherichia coli (Gram-negative bacteria), Staphylococcus epidermidis (Gram-positive bacteria), MS2 bacteriophage (nonenveloped virus), and Φ6 (enveloped virus)) and for reaction rates with biomolecules (amino acids and nucleotides). Bacterial inactivation efficacy (in anaerobic membrane bioreactor (AnMBR) effluent) followed the order of PFA > chlorine > PAA ≈ PPA. Fluorescence microscopic analysis indicated that free chlorine induced surface damage and cell lysis rapidly, whereas POAs led to intracellular oxidative stress through penetrating the intact cell membrane. However, POAs (50 μM) were less effective than chlorine at inactivating viruses, achieving only ∼1-log PFU removal for MS2 and Φ6 after 30 min of reaction in phosphate buffer without genome damage. Results suggest that POAs' unique interaction with bacteria and ineffective viral inactivation could be attributed to their selectivity toward cysteine and methionine through oxygen-transfer reactions and limited reactivity for other biomolecules. These mechanistic insights could inform the application of POAs in water and wastewater treatment.
Collapse
Affiliation(s)
- Junyue Wang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Wensi Chen
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ting Wang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Elliot Reid
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Caroline Krall
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Juhee Kim
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Tianqi Zhang
- School
of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique FÉdÉrale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Xing Xie
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ching-Hua Huang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
8
|
Al-Hazmi HE, Mohammadi A, Hejna A, Majtacz J, Esmaeili A, Habibzadeh S, Saeb MR, Badawi M, Lima EC, Mąkinia J. Wastewater reuse in agriculture: Prospects and challenges. ENVIRONMENTAL RESEARCH 2023; 236:116711. [PMID: 37487927 DOI: 10.1016/j.envres.2023.116711] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
Sustainable water recycling and wastewater reuse are urgent nowadays considering water scarcity and increased water consumption through human activities. In 2015, United Nations Sustainable Development Goal 6 (UN SDG6) highlighted the necessity of recycling wastewater to guarantee water availability for individuals. Currently, wastewater irrigation (WWI) of crops and agricultural land appears essential. The present work overviews the quality of treated wastewater in terms of soil microbial activities, and discusses challenges and benefits of WWI in line with wastewater reuse in agriculture and aquaculture irrigation. Combined conventional-advanced wastewater treatment processes are specifically deliberated, considering the harmful impacts on human health arising from WWI originating from reuse of contaminated water (salts, organic pollutants, toxic metals, and microbial pathogens i.e., viruses and bacteria). The comprehensive literature survey revealed that, in addition to the increased levels of pathogen and microbial threats to human wellbeing, poorly-treated wastewater results in plant and soil contamination with toxic organic/inorganic chemicals, and microbial pathogens. The impact of long-term emerging pollutants like plastic nanoparticles should also be established in further studies, with the development of standardized analytical techniques for such hazardous chemicals. Likewise, the reliable, long-term and extensive judgment on heavy metals threat to human beings's health should be explored in future investigations.
Collapse
Affiliation(s)
- Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Ali Mohammadi
- Department of Engineering and Chemical Sciences, Karlstad University, 65188, Karlstad, Sweden.
| | - Aleksander Hejna
- Institute of Materials Technology, Poznan University of Technology, Poznań, Poland
| | - Joanna Majtacz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Amin Esmaeili
- Department of Chemical Engineering, School of Engineering Technology and Industrial Trades, University of Doha for Science and Technology (UDST), 24449, Arab League St, Doha, Qatar
| | - Sajjad Habibzadeh
- Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233, Gdańsk, Poland.
| | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques UMR CNRS 7019, Université de Lorraine, Nancy, France
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Jacek Mąkinia
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233, Gdańsk, Poland
| |
Collapse
|
9
|
Shirakawa D, Shirasaki N, Hu Q, Matsushita T, Matsui Y, Takagi H, Oka T. Investigation of removal and inactivation efficiencies of human sapovirus in drinking water treatment processes by applying an in vitro cell-culture system. WATER RESEARCH 2023; 236:119951. [PMID: 37060876 DOI: 10.1016/j.watres.2023.119951] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Here, we examined the efficiencies of drinking water treatment processes for the removal and inactivation of human sapovirus (HuSaV). We applied a recently developed in vitro cell-culture system to produce purified solutions of HuSaV containing virus concentrations high enough to conduct virus-spiking experiments, to develop an integrated cell culture-polymerase chain reaction (ICC-PCR) assay to quantify the infectivity of HuSaV, and to conduct virus-spiking experiments. In virus-spiking coagulation-sedimentation-rapid sand filtration (CS-RSF) and coagulation-microfiltration (C-MF) experiments, HuSaV removals of 1.6-3.7-log10 and 1.2->4.3-log10, respectively, were observed. The removal ratios observed with CS-RSF were comparable and correlated with those of murine norovirus (MNV, a widely used surrogate for human noroviruses) and pepper mild mottle virus (PMMoV, a potential surrogate for human enteric viruses in physical and physicochemical drinking water treatment processes), and those observed with C-MF were higher than but still correlated with those of MNV and PMMoV, indicating that MNV and PMMoV are both potential surrogates for HuSaV in CS-RSF and C-MF. For astrovirus (AstV, a representative human enteric virus), removal ratios of 1.8-3.3-log10 and 1.1->4.0-log10 were observed with CS-RSF and C-MF, respectively. The removal ratios of AstV observed with CS-RSF were comparable and correlated with those of PMMoV, and those observed with C-MF were higher than but still correlated with those of PMMoV, indicating that PMMoV is a potential surrogate for AstV in CS-RSF and C-MF. When the efficacy of chlorine treatment was examined by using the developed ICC-PCR assay, 3.8-4.0-log10 inactivation of HuSaV was observed at a CT value (free-chlorine concentration [C] multiplied by contact time [T]) of 0.02 mg-Cl2·min/L. The infectivity reduction ratios of HuSaV were comparable with those of MNV. For AstV, 1.3-1.7-log10 and >3.4-log10 inactivation, as evaluated by ICC-PCR, was observed at CT values of 0.02 and 0.09 mg-Cl2·min/L, respectively. These results indicate that HuSaV and AstV are both highly sensitive to chlorine treatment and more sensitive than a chlorine-resistant virus, coxsackievirus B5 (1.3-log10 inactivation at a CT value of 0.4 mg-Cl2·min/L, as evaluated by the ICC-PCR assay).
Collapse
Affiliation(s)
- D Shirakawa
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, N13W8, Sapporo, 060-8628, Japan
| | - N Shirasaki
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, N13W8, Sapporo, 060-8628, Japan.
| | - Q Hu
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, N13W8, Sapporo, 060-8628, Japan
| | - T Matsushita
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, N13W8, Sapporo, 060-8628, Japan
| | - Y Matsui
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, N13W8, Sapporo, 060-8628, Japan
| | - H Takagi
- Management Department of Biosafety, Laboratory Animal and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, 208-0011, Japan
| | - T Oka
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, 208-0011, Japan
| |
Collapse
|
10
|
Miller S, Greenwald H, Kennedy LC, Kantor RS, Jiang R, Pisarenko A, Chen E, Nelson KL. Microbial Water Quality through a Full-Scale Advanced Wastewater Treatment Demonstration Facility. ACS ES&T ENGINEERING 2022; 2:2206-2219. [PMID: 36530600 PMCID: PMC9745798 DOI: 10.1021/acsestengg.2c00198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/17/2023]
Abstract
The fates of viruses, bacteria, and antibiotic resistance genes during advanced wastewater treatment are important to assess for implementation of potable reuse systems. Here, a full-scale advanced wastewater treatment demonstration facility (ozone, biological activated carbon filtration, micro/ultrafiltration, reverse osmosis, and advanced oxidation) was sampled over three months. Atypically, no disinfectant residual was applied before the microfiltration step. Microbial cell concentrations and viability were assessed via flow cytometry and adenosine triphosphate (ATP). Concentrations of bacteria (16S rRNA gene), viruses (human adenovirus and JC polyomavirus), and antibiotic resistance genes (sul1 and bla TEM ) were assessed via quantitative PCR following the concentration of large sample volumes by dead-end ultrafiltration. In all membrane filtration permeates, microbial concentrations were higher than previously reported for chloraminated membranes, and log10 reduction values were lower than expected. Concentrations of 16S rRNA and sul1 genes were reduced by treatment but remained quantifiable in reverse osmosis permeate. It is unclear whether sul1 in the RO permeate was from the passage of resistance genes or new growth of microorganisms, but the concentrations were on the low end of those reported for conventional drinking water distribution systems. Adenovirus, JC polyomavirus, and bla TEM genes were reduced below the limit of detection (∼10-2 gene copies per mL) by microfiltration. The results provide insights into how treatment train design and operation choices affect microbial water quality as well as the use of flow cytometry and ATP for online monitoring and process control.
Collapse
Affiliation(s)
- Scott Miller
- Department
of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- National
Science Foundation Engineering Research Center for Re-inventing the
Nation’s Urban Water Infrastructure (ReNUWIt), Berkeley, California 94720, United States
| | - Hannah Greenwald
- Department
of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- National
Science Foundation Engineering Research Center for Re-inventing the
Nation’s Urban Water Infrastructure (ReNUWIt), Berkeley, California 94720, United States
| | - Lauren C. Kennedy
- Department
of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- National
Science Foundation Engineering Research Center for Re-inventing the
Nation’s Urban Water Infrastructure (ReNUWIt), Berkeley, California 94720, United States
- Department
of Civil and Environmental Engineering, College of Engineering, Stanford University, Stanford, California 94305, United States
| | - Rose S. Kantor
- Department
of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- National
Science Foundation Engineering Research Center for Re-inventing the
Nation’s Urban Water Infrastructure (ReNUWIt), Berkeley, California 94720, United States
| | - Renjing Jiang
- Department
of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- National
Science Foundation Engineering Research Center for Re-inventing the
Nation’s Urban Water Infrastructure (ReNUWIt), Berkeley, California 94720, United States
| | - Aleksey Pisarenko
- Trussell
Technologies, Inc., Solana
Beach, California 92075, United States
| | - Elise Chen
- Trussell
Technologies, Inc., Solana
Beach, California 92075, United States
| | - Kara L. Nelson
- Department
of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- National
Science Foundation Engineering Research Center for Re-inventing the
Nation’s Urban Water Infrastructure (ReNUWIt), Berkeley, California 94720, United States
| |
Collapse
|
11
|
Szczuka A, Horton J, Evans KJ, DiPietri VT, Sivey JD, Wigginton KR. Chloride Enhances DNA Reactivity with Chlorine under Conditions Relevant to Water Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13347-13356. [PMID: 36027047 PMCID: PMC9494735 DOI: 10.1021/acs.est.2c03267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Free available chlorine (FAC) is widely used to inactivate viruses by oxidizing viral components, including genomes. It is commonly assumed that hypochlorous acid (HOCl) is the chlorinating agent responsible for virus inactivation; however, recent studies have underscored that minor constituents of FAC existing in equilibrium with HOCl, such as molecular chlorine (Cl2), can influence FAC reactivity toward select organic compounds. This study measures the FAC reaction kinetics with dsDNA and ssDNA extracted from representative bacteriophages (T3 and ϕX174) in samples augmented with chloride. Herein, chloride enhances FAC reactivity toward dsDNA and, to a lesser extent, toward ssDNA, especially at pH < 7.5. The enhanced reactivity can be attributed to the formation of Cl2. Second-order rate constants were determined for reactions of ssDNA and dsDNA with HOCl and Cl2. DNA chlorination kinetics followed the reactivity-selectivity principle, where the more-reactive nucleophilic species (ssDNA, ∼100× more reactive than dsDNA) reacted less selectively with electrophilic FAC species. The addition of chloride was also shown to enhance the inactivation of bacteriophage T3 (dsDNA genome) by FAC but did not enhance the inactivation of bacteriophage ϕX174 (ssDNA genome). Overall, the results suggest that Cl2 is an important chlorinating agent of nucleic acids and viruses.
Collapse
Affiliation(s)
- Aleksandra Szczuka
- Department
of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jordon Horton
- Department
of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kelsey J. Evans
- Department
of Chemistry, Towson University, Towson, Maryland 21252, United States
| | - Vincent T. DiPietri
- Department
of Chemistry, Towson University, Towson, Maryland 21252, United States
| | - John D. Sivey
- Department
of Chemistry, Towson University, Towson, Maryland 21252, United States
| | - Krista R. Wigginton
- Department
of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
12
|
Córdoba-Lanús E, García-Pérez O, Rodríguez-Esparragón F, Bethencourt-Estrella CJ, Torres-Mata LB, Blanco A, Villar J, Sanz O, Díaz JJ, Martín-Barrasa JL, Serrano-Aguilar P, Piñero JE, Clavo B, Lorenzo-Morales J. Ozone treatment effectively eliminates SARS-CoV-2 from infected face masks. PLoS One 2022; 17:e0271826. [PMID: 35867641 PMCID: PMC9307172 DOI: 10.1371/journal.pone.0271826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
The current COVID-19 pandemic is causing profound health, economic, and social problems worldwide. The global shortage of medical and personal protective equipment (PPE) in specialized centers during the outbreak demonstrated the need for efficient methods to disinfect and recycle them in times of emergency. We have previously described that high ozone concentrations destroyed viral RNA in an inactivated SARS-CoV-2 strain within a few minutes. However, the efficient ozone dosages for active SARS-CoV-2 are still unknown. The present study aimed to evaluate the systematic effects of ozone exposure on face masks from hospitalized patients infected with SARS-CoV-2. Face masks from COVID-19 patients were collected and treated with a clinical ozone generator at high ozone concentrations in small volumes for short periods. The study focused on SARS-CoV-2 gene detection (assessed by real-time quantitative polymerase chain reaction (RT-qPCR)) and on the virus inactivation by in vitro studies. We assessed the effects of different high ozone concentrations and exposure times on decontamination efficiency. We showed that high ozone concentrations (10,000, 2,000, and 4,000 ppm) and short exposure times (10, 10, and 2 minutes, respectively), inactivated both the original strain and the B.1.1.7 strain of SARS-CoV-2 from 24 contaminated face masks from COVID-19 patients. The validation results showed that the best condition for SARS-CoV-2 inactivation was a treatment of 4,000 ppm of ozone for 2 minutes. Further studies are in progress to advance the potential applications of these findings.
Collapse
Affiliation(s)
- Elizabeth Córdoba-Lanús
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias de la Universidad de La Laguna, La Laguna, Tenerife, Spain
- Departamento de Medicina Interna Dermatología y Psiquiatría Universidad de La Laguna, La Laguna, Tenerife, Spain
- Red Cooperativa de Enfermedades Tropicales (RICET), Instituto de Salud Carlos III, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Omar García-Pérez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias de la Universidad de La Laguna, La Laguna, Tenerife, Spain
- Departamento de Medicina Interna Dermatología y Psiquiatría Universidad de La Laguna, La Laguna, Tenerife, Spain
- Red Cooperativa de Enfermedades Tropicales (RICET), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Rodríguez-Esparragón
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Research Unit Hospital Universitario Dr Negrín, Instituto de Investigación Sanitaria de Canarias (IISC), Las Palmas de Gran Canaria, Spain
- Fundación Canaria del Instituto de Investigación Sanitaria de Canarias (FIISC), Las Palmas de Gran Canaria Spain
| | - Carlos J. Bethencourt-Estrella
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias de la Universidad de La Laguna, La Laguna, Tenerife, Spain
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna La Laguna, Tenerife, Spain
| | - Laura B. Torres-Mata
- Research Unit Hospital Universitario Dr Negrín, Instituto de Investigación Sanitaria de Canarias (IISC), Las Palmas de Gran Canaria, Spain
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), BioPharm Group Universidad de Las Palmas de Gran Canaria, Spain
| | - Angeles Blanco
- Chemical Engineering & Materials Department, Universidad Complutense, Madrid, Spain
| | - Jesús Villar
- Research Unit Hospital Universitario Dr Negrín, Instituto de Investigación Sanitaria de Canarias (IISC), Las Palmas de Gran Canaria, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Li Ka Shing Knowledge Institute at the St Michael’s Hospital, Toronto, Ontario, Canada
| | - Oscar Sanz
- Fundación Canaria del Instituto de Investigación Sanitaria de Canarias (FIISC), Las Palmas de Gran Canaria Spain
- Internal Medicine and Infectious Diseases Department, Hospital Universitario Dr Negrín, Instituto de Investigación Sanitaria de Canarias (IISC), Las Palmas de Gran Canaria, Spain
| | - Juan J. Díaz
- Fundación Canaria del Instituto de Investigación Sanitaria de Canarias (FIISC), Las Palmas de Gran Canaria Spain
- Intensive Care Unit, Hospital Universitario Dr Negrín, Instituto de Investigación Sanitaria de Canarias (IISC), Las Palmas de Gran Canaria, Spain
| | - José L. Martín-Barrasa
- Research Unit Hospital Universitario Dr Negrín, Instituto de Investigación Sanitaria de Canarias (IISC), Las Palmas de Gran Canaria, Spain
- Fundación Canaria del Instituto de Investigación Sanitaria de Canarias (FIISC), Las Palmas de Gran Canaria Spain
- Animal Infectious Diseases and Ictiopathology, Universitary Institute of Animal Health and Food Safety (IUSA), Universidad de Las Palmas de Gran Canaria, Arucas, Spain
| | - Pedro Serrano-Aguilar
- RETIC de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), Instituto de Salud Carlos III, Madrid, Spain
- Servicio de Evaluación y Planificación del Servicio Canario de Salud (SESCS), Santa Cruz de Tenerife, Spain
- Red de Agencias de Evaluación de Tecnologías Sanitarias y Prestaciones del Sistema Nacional de Salud (RedETS), Madrid, Spain
| | - José-Enrique Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias de la Universidad de La Laguna, La Laguna, Tenerife, Spain
- Red Cooperativa de Enfermedades Tropicales (RICET), Instituto de Salud Carlos III, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna La Laguna, Tenerife, Spain
| | - Bernardino Clavo
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Research Unit Hospital Universitario Dr Negrín, Instituto de Investigación Sanitaria de Canarias (IISC), Las Palmas de Gran Canaria, Spain
- Fundación Canaria del Instituto de Investigación Sanitaria de Canarias (FIISC), Las Palmas de Gran Canaria Spain
- RETIC de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), Instituto de Salud Carlos III, Madrid, Spain
- Chronic Pain Unit Hospital Universitario Dr Negrín Las Palmas de Gran Canaria, Spain
- Radiation Oncology Department, Hospital Universitario Dr Negrín Las Palmas de Gran Canaria, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias de la Universidad de La Laguna, La Laguna, Tenerife, Spain
- Red Cooperativa de Enfermedades Tropicales (RICET), Instituto de Salud Carlos III, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna La Laguna, Tenerife, Spain
| |
Collapse
|
13
|
Gupta V, Shekhawat SS, Kulshreshtha NM, Gupta AB. A systematic review on chlorine tolerance among bacteria and standardization of their assessment protocol in wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:261-291. [PMID: 35906907 DOI: 10.2166/wst.2022.206] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Though chlorine is a cost-effective disinfectant for water and wastewaters, the bacteria surviving after chlorination pose serious public health and environmental problems. This review critically assesses the mechanism of chlorine disinfection as described by various researchers; factors affecting chlorination efficacy; and the re-growth potential of microbial contaminations in treated wastewater post chlorination to arrive at meaningful doses for ensuring health safety. Literature analysis shows procedural inconsistencies in the assessment of chlorine tolerant bacteria, making it extremely difficult to compare the tolerance characteristics of different reported tolerant bacteria. A comparison of logarithmic reduction after chlorination and the concentration-time values for prominent pathogens led to the generation of a standard protocol for the assessment of chlorine tolerance. The factors that need to be critically monitored include applied chlorine doses, contact time, determination of chlorine demands of the medium, and the consideration of bacterial counts immediately after chlorination and in post chlorinated samples (regrowth). The protocol devised here appropriately assesses the chlorine-tolerant bacteria and urges the scientific community to report the regrowth characteristics as well. This would increase the confidence in data interpretation that can provide a better understanding of chlorine tolerance in bacteria and aid in formulating strategies for effective chlorination.
Collapse
Affiliation(s)
- Vinayak Gupta
- Alumnus, Department of Civil and Environmental Engineering, National University of Singapore, Singapore; School of Environment and Society, Tokyo Institute of Technology, Tokyo, Japan
| | - Sandeep Singh Shekhawat
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, India E-mail: ; School of Life and Basic Sciences, SIILAS Campus, Jaipur National University Jaipur, India
| | - Niha Mohan Kulshreshtha
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, India E-mail:
| | - Akhilendra Bhushan Gupta
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, India E-mail:
| |
Collapse
|
14
|
Morrison CM, Hogard S, Pearce R, Gerrity D, von Gunten U, Wert EC. Ozone disinfection of waterborne pathogens and their surrogates: A critical review. WATER RESEARCH 2022; 214:118206. [PMID: 35276607 DOI: 10.1016/j.watres.2022.118206] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 05/21/2023]
Abstract
Viruses, Giardia cysts, and Cryptosporidium parvum oocysts are all major causes of waterborne diseases that can be uniquely challenging in terms of inactivation/removal during water and wastewater treatment and water reuse. Ozone is a strong disinfectant that has been both studied and utilized in water treatment for more than a century. Despite the wealth of data examining ozone disinfection, direct comparison of results from different studies is challenging due to the complexity of aqueous ozone chemistry and the variety of the applied approaches. In this systematic review, an analysis of the available ozone disinfection data for viruses, Giardia cysts, and C. parvum oocysts, along with their corresponding surrogates, was performed. It was based on studies implementing procedures which produce reliable and comparable datasets. Datasets were compiled and compared with the current USEPA Ct models for ozone. Additionally, the use of non-pathogenic surrogate organisms for prediction of pathogen inactivation during ozone disinfection was evaluated. Based on second-order inactivation rate constants, it was determined that the inactivation efficiency of ozone decreases in the following order: Viruses >> Giardia cysts > C. parvum oocysts. The USEPA Ct models were found to be accurate to conservative in predicting inactivation of C. parvum oocysts and viruses, respectively, however they overestimate inactivation of Giardia cysts at ozone Ct values greater than ∼1 mg min L-1. Common surrogates of these pathogens, such as MS2 bacteriophage and Bacillus subtilis spores, were found to exhibit different inactivation kinetics to mammalian viruses and C. parvum oocysts, respectively. The compilation of data highlights the need for further studies on disinfection kinetics and inactivation mechanisms by ozone to better fit inactivation models as well as for proper selection of surrogate organisms.
Collapse
Affiliation(s)
- Christina M Morrison
- Southern Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, NV 89193-9954, USA.
| | - Samantha Hogard
- Civil and Environmental Engineering Department, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Hampton Roads Sanitation District, P.O. Box 5911, Virginia Beach, VA 23471-0911
| | - Robert Pearce
- Civil and Environmental Engineering Department, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Hampton Roads Sanitation District, P.O. Box 5911, Virginia Beach, VA 23471-0911
| | - Daniel Gerrity
- Southern Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, NV 89193-9954, USA
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, CH-8600 Dubendorf, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Eric C Wert
- Southern Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, NV 89193-9954, USA
| |
Collapse
|
15
|
Tharak A, Kopperi H, Hemalatha M, Kiran U, C. G. G, Moharir S, Mishra RK, Mohan SV. Longitudinal and Long-Term Wastewater Surveillance for COVID-19: Infection Dynamics and Zoning of Urban Community. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:2697. [PMID: 35270390 PMCID: PMC8910010 DOI: 10.3390/ijerph19052697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023]
Abstract
Wastewater-based epidemiology (WBE) is emerging as a potential approach to study the infection dynamics of SARS-CoV-2 at a community level. Periodic sewage surveillance can act as an indicative tool to predict the early surge of pandemic within the community and understand the dynamics of infection and, thereby, facilitates for proper healthcare management. In this study, we performed a long-term epidemiological surveillance to assess the SARS-CoV-2 spread in domestic sewage over one year (July 2020 to August 2021) by adopting longitudinal sampling to represent a selected community (~2.5 lakhs population). Results indicated temporal dynamics in the viral load. A consistent amount of viral load was observed during the months from July 2020 to November 2020, suggesting a higher spread of the viral infection among the community, followed by a decrease in the subsequent two months (December 2020 and January 2021). A marginal increase was observed during February 2021, hinting at the onset of the second wave (from March 2021) that reached it speak in April 2021. Dynamics of the community infection rates were calculated based on the viral gene copies to assess the severity of COVID-19 spread. With the ability to predict the infection spread, longitudinal WBE studies also offer the prospect of zoning specific areas based on the infection rates. Zoning of the selected community based on the infection rates assists health management to plan and manage the infection in an effective way. WBE promotes clinical inspection with simultaneous disease detection and management, in addition to an advance warning signal to anticipate outbreaks, with respect to the slated community/zones, to tackle, prepare for and manage the pandemic.
Collapse
Affiliation(s)
- Athmakuri Tharak
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; (A.T.); (H.K.); (M.H.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| | - Harishankar Kopperi
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; (A.T.); (H.K.); (M.H.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| | - Manupati Hemalatha
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; (A.T.); (H.K.); (M.H.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| | - Uday Kiran
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, India; (G.C.G.); (S.M.)
| | - Gokulan C. G.
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, India; (G.C.G.); (S.M.)
| | - Shivranjani Moharir
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, India; (G.C.G.); (S.M.)
| | - Rakesh K. Mishra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, India; (G.C.G.); (S.M.)
| | - S. Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; (A.T.); (H.K.); (M.H.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| |
Collapse
|
16
|
Wolfgruber S, Loibner M, Puff M, Melischnig A, Zatloukal K. SARS-CoV2 neutralizing activity of ozone on porous and non-porous materials. N Biotechnol 2022; 66:36-45. [PMID: 34626837 PMCID: PMC8492887 DOI: 10.1016/j.nbt.2021.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 01/19/2023]
Abstract
The COVID-19 pandemic has generated a major need for non-destructive and environmentally friendly disinfection methods. This work presents the development and testing of a disinfection process based on gaseous ozone for SARS-CoV-2-contaminated porous and non-porous surfaces. A newly developed disinfection chamber was used, equipped with a CeraPlas™ cold plasma generator that produces ozone during plasma ignition. A reduction of more than log 6 of infectious virus could be demonstrated for virus-contaminated cotton and FFP3 face masks as well as glass slides after exposure to 800 ppm ozone for 10-60 min, depending on the material. In contrast to other disinfectants, ozone can be produced quickly and cost-effectively, and its environmentally friendly breakdown product oxygen does not leave harmful residues. Disinfection with ozone could help to overcome delivery difficulties of personal protective equipment by enabling safe reuse with further applications, thereby reducing waste generation, and may allow regular disinfection of personal items with non-porous surfaces.
Collapse
Affiliation(s)
- Stella Wolfgruber
- Diagnostic- and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Martina Loibner
- Diagnostic- and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Markus Puff
- TDK Electronics GmbH & Co OG, Deutschlandsberg, Austria
| | | | - Kurt Zatloukal
- Diagnostic- and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
17
|
Rius-Rocabert S, Arranz-Herrero J, Fernández-Valdés A, Marciello M, Moreno S, Llinares-Pinel F, Presa J, Hernandez-Alcoceba R, López-Píriz R, Torrecillas R, García A, Brun A, Filice M, Moya JS, Cabal B, Nistal-Villan E. Broad virus inactivation using inorganic micro/nano-particulate materials. Mater Today Bio 2022; 13:100191. [PMID: 35024597 PMCID: PMC8733340 DOI: 10.1016/j.mtbio.2021.100191] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/23/2022]
Abstract
Inorganic materials can provide a set of tools to decontaminate solid, liquid or air containing viral particles. The use of disinfectants can be limited or not practical in scenarios where continuous cleaning is not feasible. Physicochemical differences between viruses raise the need for effective formulations for all kind of viruses. In the present work we describe two types of antimicrobial inorganic materials: i) a novel soda-lime glass (G3), and ii) kaolin containing metals nanoparticles (Ag or CuO), as materials to disable virus infectivity. Strong antiviral properties can be observed in G3 glass, and kaolin-containing nanoparticle materials showing a reduction of viral infectivity close to 99%. in the first 10 min of contact of vesicular stomatitis virus (VSV). A potent virucidal activity is also present in G3 and kaolin containing Ag or CuO nanoparticles against all kinds of viruses tested, reducing more than 99% the amount of HSV-1, Adenovirus, VSV, Influenza virus and SARS-CoV-2 exposed to them. Virucidal properties could be explained by a direct interaction of materials with viruses as well as inactivation by the presence of virucidal elements in the material lixiviates. Kaolin-based materials guarantee a controlled release of active nanoparticles with antiviral activity. Current coronavirus crisis highlights the need for new strategies to remove viruses from contaminated areas. We propose these low-cost inorganic materials as useful disinfecting antivirals in the actual or future pandemic threats.
Collapse
Affiliation(s)
- Sergio Rius-Rocabert
- Microbiology Section, Dpto. CC, Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, 28668, Madrid, Spain.,Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, 28668, Madrid, Spain.,CEMBIO (Centre for Metabolomics and Bioanalysis), Facultad de Farmacia, Universidad San Pablo-CEU, 28668, Madrid, Spain
| | - Javier Arranz-Herrero
- Microbiology Section, Dpto. CC, Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, 28668, Madrid, Spain.,Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, 28668, Madrid, Spain
| | - Adolfo Fernández-Valdés
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, Principado de Asturias, Avda de la Vega 4-6, El Entrego, 33940, Spain
| | - Marzia Marciello
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal, 28040, Madrid, Spain
| | - Sandra Moreno
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria - Centro Superior de Investigaciones Científicas (INIA-CSIC), Valdeolmos, Madrid, Spain
| | - Francisco Llinares-Pinel
- Microbiology Section, Dpto. CC, Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, 28668, Madrid, Spain
| | | | - Rubén Hernandez-Alcoceba
- Gene Therapy Program. University of Navarra-CIMA, Navarra Institute of Health Research, Av. Pio XII 55, 31008, Pamplona, Navarra, Spain
| | - Roberto López-Píriz
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, Principado de Asturias, Avda de la Vega 4-6, El Entrego, 33940, Spain
| | - Ramón Torrecillas
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, Principado de Asturias, Avda de la Vega 4-6, El Entrego, 33940, Spain
| | - Antonia García
- CEMBIO (Centre for Metabolomics and Bioanalysis), Facultad de Farmacia, Universidad San Pablo-CEU, 28668, Madrid, Spain
| | - Alejandro Brun
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria - Centro Superior de Investigaciones Científicas (INIA-CSIC), Valdeolmos, Madrid, Spain
| | - Marco Filice
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal, 28040, Madrid, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.,Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
| | - José S Moya
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, Principado de Asturias, Avda de la Vega 4-6, El Entrego, 33940, Spain
| | - Belen Cabal
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, Principado de Asturias, Avda de la Vega 4-6, El Entrego, 33940, Spain
| | - Estanislao Nistal-Villan
- Microbiology Section, Dpto. CC, Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, 28668, Madrid, Spain.,Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, 28668, Madrid, Spain
| |
Collapse
|
18
|
Bayarri B, Cruz-Alcalde A, López-Vinent N, Micó MM, Sans C. Can ozone inactivate SARS-CoV-2? A review of mechanisms and performance on viruses. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125658. [PMID: 33752085 PMCID: PMC7955572 DOI: 10.1016/j.jhazmat.2021.125658] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 05/11/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic has challenged societies around the globe. Technologies based on ozone, a powerful oxidant, have been evaluated to inactivate this virus in aerosols and fomites. However, the high data diversity hinders the possibility of establishing a common ground for determining best practices for the use of these technologies. Furthermore, there is a lack of consensus regarding which are the main mechanisms of ozone virus inactivation. This critical review examined the most relevant information available regarding ozone application in gas-phase for different viruses inactivation (including recent publications dealing with SARS-CoV-2), and pointed towards envelope alteration as the main reaction pathway for enveloped viruses, such as is the case of SARS-CoV-2. It could also be concluded that gaseous ozone can be indeed an effective disinfectant, successfully inactivating viruses such us influenza A H1N1, MERS-CoV, SARS-CoV-1 or even SARS-CoV-2 in aerosols or fomites. In reviewed works, low ozone exposures, just around 0.1-0.4 mg L-1 min, achieve about 4 log10 of inactivation in aerosols, while exposures between 1 and 4 mg L-1 min may be needed to guarantee an inactivation of 3-4 log10 in different fomites. Although further studies are required, ozone is an effective candidate to be used against SARS-CoV-2 or other viruses in surfaces and indoor locations.
Collapse
Affiliation(s)
- Bernardí Bayarri
- Department of Chemical Engineering and Analytical Chemistry, Faculty of Chemistry, Universitat de Barcelona, C/Martí i Franqués 1, 08028 Barcelona, Spain.
| | - Alberto Cruz-Alcalde
- Department of Chemical Engineering and Analytical Chemistry, Faculty of Chemistry, Universitat de Barcelona, C/Martí i Franqués 1, 08028 Barcelona, Spain
| | - Núria López-Vinent
- Department of Chemical Engineering and Analytical Chemistry, Faculty of Chemistry, Universitat de Barcelona, C/Martí i Franqués 1, 08028 Barcelona, Spain
| | - María M Micó
- Department of Chemical Engineering and Analytical Chemistry, Faculty of Chemistry, Universitat de Barcelona, C/Martí i Franqués 1, 08028 Barcelona, Spain
| | - Carme Sans
- Department of Chemical Engineering and Analytical Chemistry, Faculty of Chemistry, Universitat de Barcelona, C/Martí i Franqués 1, 08028 Barcelona, Spain
| |
Collapse
|
19
|
Kopperi H, Tharak A, Hemalatha M, Kiran U, Gokulan CG, Mishra RK, Mohan SV. Defining the methodological approach for wastewater-based epidemiological studies-Surveillance of SARS-CoV-2. ENVIRONMENTAL TECHNOLOGY & INNOVATION 2021; 23:101696. [PMID: 34250217 PMCID: PMC8253532 DOI: 10.1016/j.eti.2021.101696] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/10/2021] [Accepted: 06/13/2021] [Indexed: 05/24/2023]
Abstract
Since COVID-19 outbreak, wastewater-based epidemiology (WBE) studies as surveillance system is becoming an emerging interest due to its functional advantage as a tool for early warning signal and to catalyze effective disease management strategies based on the community diagnosis. An attempt was made in this study to define and establish a methodological approach for conducting WBE studies in the framework of identifying/selection of surveillance sites, standardizing sampling policy, designing sampling protocols to improve sensitivity, adopting safety protocol, and interpreting the data. Data from hourly sampling indicated a peak in the viral RNA during the morning hours (6-9 am) when the all the domestic activities are maximum. The daily sampling and processing revealed the dynamic nature of infection spread among the population. The two sampling methods viz. grab, and composite showed a good correlation. Overall, this study establishes a structured protocol for performing WBE studies that could provide useful insights on the spread of the pandemic at a given point of time. Moreover, this framework could be extrapolated to monitor several other clinically relevant diseases. Following these guidelines, it is possible to achieve measurable and reliable SARS-CoV-2 RNA concentrations in wastewater infrastructure and therefore, provides a methodological basis for the establishment of a national surveillance system.
Collapse
Affiliation(s)
- Harishankar Kopperi
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Athmakuri Tharak
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - Manupati Hemalatha
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Uday Kiran
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - C G Gokulan
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, India
| | - Rakesh K Mishra
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
20
|
Gold-Oligonucleotide Nanoconstructs Engineered to Detect Conserved Enteroviral Nucleic Acid Sequences. BIOSENSORS-BASEL 2021; 11:bios11070238. [PMID: 34356709 PMCID: PMC8301919 DOI: 10.3390/bios11070238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 12/19/2022]
Abstract
Enteroviruses are ubiquitous mammalian pathogens that can produce mild to life-threatening disease. We developed a multimodal, rapid, accurate and economical point-of-care biosensor that can detect nucleic acid sequences conserved amongst 96% of all known enteroviruses. The biosensor harnesses the physicochemical properties of gold nanoparticles and oligonucleotides to provide colourimetric, spectroscopic and lateral flow-based identification of an exclusive enteroviral nucleic acid sequence (23 bases), which was identified through in silico screening. Oligonucleotides were designed to demonstrate specific complementarity towards the target enteroviral nucleic acid to produce aggregated gold–oligonucleotide nanoconstructs. The conserved target enteroviral nucleic acid sequence (≥1 × 10−7 M, ≥1.4 × 10−14 g/mL) initiates gold–oligonucleotide nanoconstruct disaggregation and a signal transduction mechanism, producing a colourimetric and spectroscopic blueshift (544 nm (purple) > 524 nm (red)). Furthermore, lateral-flow assays that utilise gold–oligonucleotide nanoconstructs were unaffected by contaminating human genomic DNA, demonstrated rapid detection of conserved target enteroviral nucleic acid sequence (<60 s), and could be interpreted with a bespoke software and hardware electronic interface. We anticipate that our methodology will translate in silico screening of nucleic acid databases to a tangible enteroviral desktop detector, which could be readily translated to related organisms. This will pave the way forward in the clinical evaluation of disease and complement existing strategies to overcome antimicrobial resistance.
Collapse
|
21
|
Cheng S, Ge Y, Lee Y, Yang X. Prediction of Photolysis Kinetics of Viral Genomes under UV 254 Irradiation to Estimate Virus Infectivity Loss. WATER RESEARCH 2021; 198:117165. [PMID: 33962243 DOI: 10.1016/j.watres.2021.117165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
UV254 irradiation disinfection is a commonly used method to inactivate pathogenic viruses in water and wastewater treatment. Model prediction method can serve as a pre-screening tool to quickly estimate the effectiveness of UV254 irradiation on emerging or unculturable viruses. In this study, an improved prediction model was applied to estimate UV254 photolysis kinetics of viral genomes (kpred, genome) based on the genome sequences and their photoreactivity and to correlate with the experimental virus infectivity loss kinetics (kexp, infectivity). The UV254 inactivation data of 102 viruses (including 2 dsRNA, 65 ssRNA, 33 dsDNA and 2 ssDNA viruses) were collected from the published experimental data with kexp, infectivity ranging from 0.016 to 3.49 cm2 mJ-1. The model had fairly good performance in predicting the virus susceptibility to UV254 irradiation except dsRNA viruses (Pearson's correlation coefficient = 0.64) and 70% of kpred, genome fell in the range of 1/2 to 2 times of kexp, infectivity. The positive deviation of the model often occurred for photoresistant viruses with low kexp, infectivity less than 0.20 cm2 mJ-1 (e.g., Adenovirus, Papovaviridae and Retroviridae). We also applied this model to predict the UV254 inactivation rate of SARS-CoV-2 (kpred, genome = 3.168 cm2 mJ-1) and a UV dose of 3 mJ cm-2 seemed to be able to achieve a 2-log removal by conservative calculation using 1/2kpred, genome value. This prediction method can be used as a prescreening tool to assess the effectiveness of UV254 irradiation for emerging/unculturable viruses in water or wastewater treatment.
Collapse
Affiliation(s)
- Shuangshuang Cheng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuexian Ge
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
22
|
Abstract
Ongoing disease surveillance is a critical tool to mitigate viral outbreaks, especially during a pandemic. Environmental monitoring has significant promise even following widespread vaccination among high-risk populations. The goal of this work is to demonstrate molecular severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) monitoring in bulk floor dust and related samples as a proof of concept of a noninvasive environmental surveillance methodology for coronavirus disease 2019 (COVID-19) and potentially other viral diseases. Surface swab, passive sampler, and bulk floor dust samples were collected from the rooms of individuals positive for COVID-19, and SARS-CoV-2 was measured with quantitative reverse transcription-PCR (RT-qPCR) and two digital PCR (dPCR) methods. Bulk dust samples had a geometric mean concentration of 163 copies/mg of dust and ranged from nondetects to 23,049 copies/mg of dust detected using droplet digital PCR (ddPCR). An average of 89% of bulk dust samples were positive for the virus by the detection methods compared to 55% of surface swabs and fewer on the passive sampler (19% carpet, 29% polystyrene). In bulk dust, SARS-CoV-2 was detected in 76%, 93%, and 97% of samples measured by qPCR, chip-based dPCR, and droplet dPCR, respectively. Detectable viral RNA in the bulk vacuum bags did not measurably decay over 4 weeks, despite the application of a disinfectant before room cleaning. Future monitoring efforts should further evaluate RNA persistence and heterogeneity in dust. This study did not measure virus infectivity in dust or potential transmission associated with dust. Overall, this work demonstrates that bulk floor dust is a potentially useful matrix for long-term monitoring of viral disease in high-risk populations and buildings. IMPORTANCE Environmental surveillance to assess pathogen presence within a community is proving to be a critical tool to protect public health, and it is especially relevant during the ongoing COVID-19 pandemic. Importantly, environmental surveillance tools also allow for the detection of asymptomatic disease carriers and for routine monitoring of a large number of people as has been shown for SARS-CoV-2 wastewater monitoring. However, additional monitoring techniques are needed to screen for outbreaks in high-risk settings such as congregate care facilities. Here, we demonstrate that SARS-CoV-2 can be detected in bulk floor dust collected from rooms housing infected individuals. This analysis suggests that dust may be a useful and efficient matrix for routine surveillance of viral disease.
Collapse
|
23
|
Maal-Bared R, Brisolara K, Munakata N, Bibby K, Gerba C, Sobsey M, Schaefer S, Swift J, Gary L, Sherchan S, Babatola A, Bastian R, Olabode L, Reimers R, Rubin A. Implications of SARS-CoV-2 on current and future operation and management of wastewater systems. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:502-515. [PMID: 32866312 DOI: 10.1002/wer.1446] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/22/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
While researchers have acknowledged the potential role of environmental scientists, engineers, and industrial hygienists during this pandemic, the role of the water utility professional is often overlooked. The wastewater sector is critical to public health protection and employs collection and treatment system workers who perform tasks with high potential for exposures to biological agents. While various technical guidances and reports have initially provided direction to the water sector, the rapidly growing body of research publications necessitates the constant review of these papers and data synthesis. This paper presents the latest findings and highlights their implications from a water and wastewater utility operation and management perspective. PRACTITIONER POINTS: Extrapolation from SARS-CoV-1 and MERS-CoV, as well as other surrogates, has helped predicting SARS-CoV-2 behavior and risk management. Data from treated wastewater effluent suggest that current processes are sufficient for SARS-CoV-2 control. Scientific evidence supports the possibility of fecal-oral transmission for SARS-CoV-2. Limited evidence supports the potential survival of infective SARS-CoV-2 on surfaces and in aerosols and the efficacy of control measures at reducing transmission. Protective practices and PPE can protect workers from SARS-CoV-2 and other pathogens found in wastewater.
Collapse
Affiliation(s)
| | - Kari Brisolara
- Environmental and Occupational Health Sciences, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Naoko Munakata
- Supervising Engineer at the Los Angeles County Sanitation Districts, Los Angeles, CA, USA
| | - Kyle Bibby
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Charles Gerba
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
| | - Mark Sobsey
- Distinguished Professor of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | | | | | - Lee Gary
- Tulane University and Instructor with the Basic Academy at the FEMA/Emergency Management Institute, Emmitsburg, MD, USA
| | - Samendra Sherchan
- Tulane School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Akin Babatola
- Laboratory and Environmental Compliance Manager, Santa Cruz, San Francisco, CA, USA
| | | | - Lola Olabode
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | | | - Albert Rubin
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
24
|
Blanco A, Ojembarrena FDB, Clavo B, Negro C. Ozone potential to fight against SAR-COV-2 pandemic: facts and research needs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:16517-16531. [PMID: 33389580 PMCID: PMC7778500 DOI: 10.1007/s11356-020-12036-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/08/2020] [Indexed: 05/05/2023]
Abstract
The greatest challenge the world is facing today is to win the battle against COVID-19 pandemic as soon as possible. Until a vaccine is available, personal protection, social distancing, and disinfection are the main tools against SARS-CoV-2. Although it is quite infectious, the SARS-CoV-2 virus itself is an enveloped virus that is relatively fragile because its protective fatty layer is sensitive to heat, ultraviolet radiation, and certain chemicals. However, heat and liquid treatments can damage some materials, and ultraviolet light is not efficient in shaded areas, so other disinfection alternatives are required to allow safe re-utilization of materials and spaces. As of this writing, evidences are still accumulating for the use of ozone gas as a disinfectant for sanitary materials and ambient disinfection in indoor areas. This paper reviews the most relevant results of virus disinfection by the application of gaseous ozone. The review covers disinfection treatments of both air and surfaces carried out in different volumes, which varies from small boxes and controlled chambers to larger rooms, as a base to develop future ozone protocols against COVID-19. Published papers have been critically analyzed to evaluate trends in the required ozone dosages, as a function of relative humidity (RH), contact time, and viral strains. The data have been classified depending on the disinfection objective and the volume and type of the experimental set-up. Based on these data, conservative dosages and times to inactivate the SARS-CoV-2 are estimated. In small chambers, 10-20 mg ozone/m3 over 10 to 50 min can be sufficient to significantly reduce the virus load of personal protection equipment. In large rooms, 30 to 50 mg ozone/m3 would be required for treatments of 20-30 min. Maximum antiviral activity of ozone is achieved at high humidity, while the same ozone concentrations under low RH could result inefficient. At these ozone levels, safety protocols must be strictly followed. These data can be used for reducing significantly the viral load although for assuring a safe disinfection, the effective dosages under different conditions need to be confirmed with experimental data.
Collapse
Affiliation(s)
- Angeles Blanco
- Chemical Engineering and Materials Department, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain.
| | - Francisco de Borja Ojembarrena
- Chemical Engineering and Materials Department, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain
| | - Bernardino Clavo
- Research Unit, Chronic Pain Unit, Dr. Negrín University Hospital, Calle Barranco de la Ballena, s/n, 35019, Las Palmas de Gran Canaria, Spain
| | - Carlos Negro
- Chemical Engineering and Materials Department, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain
| |
Collapse
|
25
|
Izzotti A, Fracchia E, Au W, Colombo M, Pfeffer U, Emionite L, Pavan S, Miotto D, Lova P, Grasselli E, Faelli E, Piero R, Tiso M, Pulliero A. Prevention of Covid-19 Infection and Related Complications by Ozonized Oils. J Pers Med 2021; 11:226. [PMID: 33809879 PMCID: PMC8004285 DOI: 10.3390/jpm11030226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/05/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The COVID-19 pandemic continues to ravage the human population; therefore, multiple prevention and intervention protocols are being rapidly developed. The aim of our study was to develop a new chemo-prophylactic/-therapeutic strategy that effectively prevents COVID-19 and related complications. METHODS In in vitro studies, COVID-19 infection-sensitive cells were incubated with human oropharyngeal fluids containing high SARS-CoV-2 loads. Levels of infection were determined via intra-cellular virus loads using quantitative PCR (qPCR). Efficacies for infection prevention were determined using several antiviral treatments: lipid-encapsulated ozonized oil (HOO), water-soluble HOO (HOOws), UV, and hydrogen peroxide. In in vivo studies, safety and efficacy of HOO in fighting COVID-19 infection was evaluated in human subjects. RESULTS HOO in combination with HOOws was the only treatment able to fully neutralize SARS-CoV-2 as well as its capacity to penetrate and reproduce inside sensitive cells. Accordingly, the feasibility of using HOO/HOOws was tested in vivo. Analysis of expired gas in healthy subjects indicates that HOO administration increases oxygen availability in the lung. For our human studies, HOO/HOOws was administered to 52 cancer patients and 21 healthy subjects at high risk for COVID-19 infection, and all of them showed clinical safety. None of them developed COVID-19 infection, although an incidence of at least 11 cases was expected. Efficacy of HOO/HOOws was tested in four COVID-19 patients obtaining recovery and qPCR negativization in less than 10 days. CONCLUSIONS Based on our experience, the HOO/HOOws treatment can be administered at standard doses (three pills per day) for chemo-prophylactic purposes to healthy subjects for COVID-19 prevention and at high doses (up to eight pills per day) for therapeutic purposes to infected patients. This combined prevention strategy can provide a novel protocol to fight the COVID-19 pandemic.
Collapse
Affiliation(s)
- Alberto Izzotti
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy; (E.F.); (R.P.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.C.); (U.P.); (L.E.)
| | | | - William Au
- Faculty of Medicine, Pharmacy, Science and Technology, The George Emil Palade University, 540142 Targu Mures, Romania;
| | - Monica Colombo
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.C.); (U.P.); (L.E.)
| | - Ulrich Pfeffer
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.C.); (U.P.); (L.E.)
| | - Laura Emionite
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.C.); (U.P.); (L.E.)
| | - Simone Pavan
- BWH Graphic Solutions, 28001 Madrid, Spain; (S.P.); (D.M.)
| | - Daniele Miotto
- BWH Graphic Solutions, 28001 Madrid, Spain; (S.P.); (D.M.)
| | - Paola Lova
- Department of Chemistry and Industrial Chemistry, University of Genoa, 16132 Genoa, Italy;
| | - Elena Grasselli
- Department of Earth Sciences, University of Genoa, 16132 Genoa, Italy;
| | - Emanuela Faelli
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy; (E.F.); (R.P.)
| | - Ruggeri Piero
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy; (E.F.); (R.P.)
| | - Micaela Tiso
- MICAMO Spin-Off Department of Earth Sciences, University of Genoa, 16132 Genoa, Italy;
| | | |
Collapse
|
26
|
Torii S, Miura F, Itamochi M, Haga K, Katayama K, Katayama H. Impact of the Heterogeneity in Free Chlorine, UV 254, and Ozone Susceptibilities Among Coxsackievirus B5 on the Prediction of the Overall Inactivation Efficiency. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3156-3164. [PMID: 33583178 DOI: 10.1021/acs.est.0c07796] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The disinfection susceptibilities of viruses vary even among variants, yet the inactivation efficiency of a certain virus genotype, species, or genus was determined based on the susceptibility of its laboratory strain. The objectives were to evaluate the variability in susceptibilities to free chlorine, UV254, and ozone among 13 variants of coxsackievirus B5 (CVB5) and develop the model allowing for predicting the overall inactivation of heterogeneous CVB5. Our results showed that the susceptibilities differed by up to 3.4-fold, 1.3-fold, and 1.8-fold in free chlorine, UV254, and ozone, respectively. CVB5 in genogroup B exhibited significantly lower susceptibility to free chlorine and ozone than genogroup A, where the laboratory strain, Faulkner, belongs. The capsid protein in genogroup B contained a lower number of sulfur-containing amino acids, readily reactive to oxidants. We reformulated the Chick-Watson model by incorporating the probability distributions of inactivation rate constants to capture the heterogeneity. This expanded Chick-Watson model indicated that up to 4.2-fold larger free chlorine CT is required to achieve 6-log inactivation of CVB5 than the prediction by the Faulkner strain. Therefore, it is recommended to incorporate the variation in disinfection susceptibilities for predicting the overall inactivation of a certain type of viruses.
Collapse
Affiliation(s)
- Shotaro Torii
- Department of Urban Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Fuminari Miura
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama-shi, Ehime 790-8577, Japan
| | - Masae Itamochi
- Department of Virology, Toyama Institute of Health, 17-1 Nakataikoyama, Imizu-shi, Toyama 939-0363, Japan
| | - Kei Haga
- Laboratory of Viral Infection I, Department of Infection Control and Immunology, O̅mura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Kazuhiko Katayama
- Laboratory of Viral Infection I, Department of Infection Control and Immunology, O̅mura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Hiroyuki Katayama
- Department of Urban Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| |
Collapse
|
27
|
Mohan SV, Hemalatha M, Kopperi H, Ranjith I, Kumar AK. SARS-CoV-2 in environmental perspective: Occurrence, persistence, surveillance, inactivation and challenges. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 405:126893. [PMID: 32901196 PMCID: PMC7471803 DOI: 10.1016/j.cej.2020.126893] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 05/03/2023]
Abstract
The unprecedented global spread of the severe acute respiratory syndrome (SARS) caused by SARS-CoV-2 is depicting the distressing pandemic consequence on human health, economy as well as ecosystem services. So far novel coronavirus (CoV) outbreaks were associated with SARS-CoV-2 (2019), middle east respiratory syndrome coronavirus (MERS-CoV, 2012), and SARS-CoV-1 (2003) events. CoV relates to the enveloped family of Betacoronavirus (βCoV) with positive-sense single-stranded RNA (+ssRNA). Knowing well the persistence, transmission, and spread of SARS-CoV-2 through proximity, the faecal-oral route is now emerging as a major environmental concern to community transmission. The replication and persistence of CoV in the gastrointestinal (GI) tract and shedding through stools is indicating a potential transmission route to the environment settings. Despite of the evidence, based on fewer reports on SARS-CoV-2 occurrence and persistence in wastewater/sewage/water, the transmission of the infective virus to the community is yet to be established. In this realm, this communication attempted to review the possible influx route of the enteric enveloped viral transmission in the environmental settings with reference to its occurrence, persistence, detection, and inactivation based on the published literature so far. The possibilities of airborne transmission through enteric virus-laden aerosols, environmental factors that may influence the viral transmission, and disinfection methods (conventional and emerging) as well as the inactivation mechanism with reference to the enveloped virus were reviewed. The need for wastewater epidemiology (WBE) studies for surveillance as well as for early warning signal was elaborated. This communication will provide a basis to understand the SARS-CoV-2 as well as other viruses in the context of the environmental engineering perspective to design effective strategies to counter the enteric virus transmission and also serves as a working paper for researchers, policy makers and regulators.
Collapse
Key Words
- (h+), Photoholes
- +ssRNA, Positive Sense Single-Stranded RNA
- A-WWTS, Algal-WWTS
- ACE2, Angiotensin-converting enzyme 2
- AH, Absolute Humidity
- AOPs, Advanced Oxidation Processes
- ASP, Activate Sludge Process
- Aerosols
- BCoV, Bovine Enteric Coronavirus)
- BSL, Biosafety Level
- BVDV1, Bovine Viral Diarrhea Virus Type 1
- BVDV2, Bovine Viral Diarrhea Virus Type 2
- BoRv, Bovine Rotavirus Group A
- CCA, Carbon Covered Alumina
- CNT, Carbon Nanotubes
- COVID-19
- COVID-19, Coronavirus Disease 2019
- CRFK, Crandell Reese feline kidney cell line (CRFK)
- CVE, Coxsackievirus B5
- ClO2, Chlorine dioxide
- Cl−, Chlorine
- Cys, Cysteine
- DBP, Disinfection by-products
- DBT, L2 and Delayed Brain Tumor Cell Cultures
- DMEM, Dulbecco’s Modified Eagle Medium
- DNA, deoxyribose nucleic acid
- Disinfection
- E gene, Envelope protein gene
- EV, Echovirus 11
- Enteric virus
- Enveloped virus
- FC, Free Chlorine
- FFP3, Filtering Face Piece
- FIPV, Feline infectious peritonitis virus
- GI, Gastrointestinal tract
- H2O2, Hydrogen Peroxide
- H3N2, InfluenzaA
- H6N2, Avian influenza virus
- HAV, Hepatitis A virus (HAV)
- HAdV, Human Adenovirus
- HCoV, Human CoV
- HEV, Hepatitis E virus
- HKU1, Human CoV1
- ICC-PCR, Integrated Cell Culture with PCR
- JCV, JCV polyomavirus
- MALDI-TOF MS, Mass Spectrometry
- MBR, Membrane Bioreactor (MBR)
- MERS-CoV, Middle East Respiratory Syndrome Coronavirus
- MHV, Murine hepatitis virus
- MNV-1, Murine Norovirus
- MWCNTs, Multiwalled Carbon Nanotubes
- Met, Methionine
- N gene, Nucleocapsid protein gene
- NCoV, Novel coronavirus
- NGS, Next generation sequencing
- NTP, Non-Thermal Plasma
- O2, Singlet Oxygen
- O3, Ozone
- ORF, Open Reading Frame
- PAA, Para Acetic Acid
- PCR, Polymerase Chain Reaction
- PEC, Photoelectrocatalytical
- PEG, Polyethylene Glycol
- PFU, Plaque Forming Unit
- PMMoV, Pepper Mild Mottle Virus
- PMR, Photocatalytic Membrane Reactors
- PPE, Personal Protective Equipment
- PTAF, Photocatalytic Titanium Apatite Filter
- PV-1, Polivirus-1
- PV-3, Poliovirus 3
- PVDF, Polyvinylidene Fluoride
- Qβ, bacteriophages
- RH, Relative Humidity
- RNA, Ribose nucleic acid
- RONS, Reactive Oxygen and/or Nitrogen Species
- RT-PCR, Real Time Polymerase Chain Reaction
- RVA, Rotaviruses A
- SARS-CoV-1, Severe Acute Respiratory Syndrome Coronavirus 1
- SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2
- SBR, Sequential Batch Reactor
- SODIS, Solar water disinfection
- STP, Sewage Treatment Plant
- Sewage
- T90, First order reaction time required for completion of 90%
- T99.9, First order reaction time required for completion of 99.9%
- TGEV, Porcine Coronavirus Transmissible Gastroenteritis Virus
- TGEV, Transmissible Gastroenteritis
- Trp, Tryptophan
- Tyr, Tyrosine
- US-EPA, United States Environmental Protection Agency
- UV, Ultraviolet
- WBE, Wastewater-Based Epidemiology
- WWT, Wastewater Treatment
- WWTPs, Wastewater Treatment Plants
- dPCR, Digital PCR
- ds, Double Stranded
- dsDNA, Double Stranded DNA
- log10, logarithm with base 10
- qRT-PCR, quantitative RT-PCR
- ss, Single Stranded
- ssDNA, Single Stranded DNA
- ssRNA, Single Stranded RNA
- αCoV, Alphacoronavirus
- βCoV, Betacoronavirus
Collapse
Affiliation(s)
- S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Campus, Hyderabad 500007, India
| | - Manupati Hemalatha
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Campus, Hyderabad 500007, India
| | - Harishankar Kopperi
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - I Ranjith
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - A Kiran Kumar
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Dispensary, Hyderabad 500007, India
| |
Collapse
|
28
|
Lahrich S, Laghrib F, Farahi A, Bakasse M, Saqrane S, El Mhammedi MA. Review on the contamination of wastewater by COVID-19 virus: Impact and treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:142325. [PMID: 33182015 PMCID: PMC7481832 DOI: 10.1016/j.scitotenv.2020.142325] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 04/14/2023]
Abstract
Emerging viruses are a major public health problem. Most zoonotic pathogens originate in wildlife, including human immunodeficiency virus (HIV), influenza, Ebola, and coronavirus. Severe acute respiratory syndrome (SARS) is a viral respiratory illness caused by a coronavirus called SARS-associated coronavirus (SARS-CoV). Viruses are charged colloidal particles that have the ability to adsorb on surfaces depending on pH. Their sorptive interaction with solid particles has important implications for their behavior in aquatic environments, soils, sewage sludge, and other solid materials and their removal or concentration by water treatment processes. Current state of knowledge on the potential of wastewater surveillance to understand the COVID-19 pandemic is reviewed. This study also identified wastewater irrigation systems with a higher risk of COVID-19 transmission. Emphasis was placed on methodologies for the detection and quantification of SARS-CoV-2 in wastewater.
Collapse
Affiliation(s)
- S Lahrich
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - F Laghrib
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - A Farahi
- Ibn Zohr University, Team of Catalysis and Environment, Faculty of Sciences, BP 8106 Cité Dakhla, Agadir, Morocco
| | - M Bakasse
- Chouaib Doukkali University, Faculty of Sciences, Laboratory of Organic Bioorganic Chemistry and Environment, El Jadida, Morocco
| | - S Saqrane
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - M A El Mhammedi
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco.
| |
Collapse
|
29
|
Effects of Ozone Treatment on Personal Protective Equipment Contaminated with SARS-CoV-2. Antioxidants (Basel) 2020; 9:antiox9121222. [PMID: 33287249 PMCID: PMC7761685 DOI: 10.3390/antiox9121222] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 01/12/2023] Open
Abstract
Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing profound health, economic, and social problems worldwide. Management of personal protective equipment (PPE) and its potential limited availability have created concerns about the increased risks for healthcare professionals at hospitals and nursing homes. Ozone is a powerful oxidant agent. The objectives of this study were to examine the effects of ozone treatment on PPE contaminated with SARS-CoV-2, and to explore whether relative humidity could modify those effects. Methods: PPE contaminated by heat-inactivated SARS-CoV-2 were treated with different ozone concentrations, exposure times, and relative humidity conditions. SARS-CoV-2 gene amplification was assessed by real-time polymerase chain reaction. Results: There was no amplification of SARS-CoV-2 in PPE after the following ozone exposures: 30 s at 10,000 ppm (20 g/m3), 5 min at 4000 ppm, and 10 min at 2000 ppm. At lower ozone concentrations, 4–12 ppm (0.008–0.024 g/m3), the effects were highly dependent on the relative humidity conditions. Conclusions: Oxidative stress induced by ozone exposure eliminated heat-inactivated SARS-CoV-2 in different PPE components under appropriate exposure times, ozone concentrations, and relative humidity conditions. These findings could have implications in decreasing the risk of contamination associated with personal protective equipment management and in increasing its availability. Further research in the original SARS-CoV-2 strain is guaranteed.
Collapse
|
30
|
Torii S, Itamochi M, Katayama H. Inactivation kinetics of waterborne virus by ozone determined by a continuous quench flow system. WATER RESEARCH 2020; 186:116291. [PMID: 32836147 DOI: 10.1016/j.watres.2020.116291] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 05/22/2023]
Abstract
Ozone has a strong oxidation power that allows effective inactivation of waterborne viruses. Few studies have accurately measured the kinetic relationship between virus inactivation and ozone exposure, because the high reactivity of ozone makes it difficult to measure them simultaneously. A continuous quench flow system (CQFS) is a possible solution for analyzing such a fast reaction; however, previous studies reported that CQFS provided different results of inactivation rate constants from the batch system. The objectives of this study were (1) to develop a CQFS to evaluate the kinetics of microbial inactivation accurately, (2) to evaluate the inactivation rate constants of waterborne virus by ozone, and (3) to compare the results with previous studies. The results indicated that the simple plug flow assumption in the reaction tube of CQFS led to underestimation of the rate constants. The accurate measurement of rate constants was achieved by the pseudo-first-order reaction model that takes the residence time distribution (RTD; i.e., the laminar flow assumption) into account. The results of inactivation experiments suggested that the resistance of viruses were getting higher in the following order: Qβ < MS2, fr, GA < CVB5 Faulkner, φX-174, PV1 Sabin, CVB3 Nancy. The environmental isolates of CVB3 and CVB5 had a 2-fold higher resistance compared with their lab strains. Predicted CT values for 4-log inactivation ranged from 0.018 mg sec L-1 (Qβ) to 0.31 mg sec L-1 (CVB3 Environmental strain). The required CT values for 4-log PV1 inactivation was 0.15 mg sec L-1, which was 166-fold smaller than those reported in the United States Environmental Protection Agency guidance manuals. The overestimation in previous studies was due to the sparse assumption of RTD in the reactor. Consequently, the required ozone CT values for virus inactivation should be reconsidered to minimize the health risks and environmental costs in water treatment.
Collapse
Affiliation(s)
- Shotaro Torii
- Department of Urban Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| | - Masae Itamochi
- Department of Virology, Toyama Institute of Health, 17-1 Nakataikoyama, Imizu-shi, Toyama, Japan
| | - Hiroyuki Katayama
- Department of Urban Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
31
|
Shirasaki N, Matsushita T, Matsui Y, Koriki S. Suitability of pepper mild mottle virus as a human enteric virus surrogate for assessing the efficacy of thermal or free-chlorine disinfection processes by using infectivity assays and enhanced viability PCR. WATER RESEARCH 2020; 186:116409. [PMID: 32942179 DOI: 10.1016/j.watres.2020.116409] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/02/2020] [Accepted: 09/06/2020] [Indexed: 05/05/2023]
Abstract
Evaluating the efficacy of disinfection processes to inactivate human enteric viruses is important for the prevention and control of waterborne diseases caused by exposure to those viruses via drinking water. Here, we evaluated the inactivation of two representative human enteric viruses (adenovirus type 40 [AdV] and coxsackievirus B5 [CV]) by thermal or free-chlorine disinfection. In addition, we compared the infectivity reduction ratio of a plant virus (pepper mild mottle virus [PMMoV], a recently proposed novel surrogate for human enteric viruses for the assessment of virus removal by coagulation‒rapid sand filtration and membrane filtration) with that of the two human enteric viruses to assess the suitability of PMMoV as a human enteric virus surrogate for use in thermal and free-chlorine disinfection processes. Finally, we examined whether conventional or enhanced viability polymerase chain reaction (PCR) analysis using propidium monoazide (PMA) or improved PMA (PMAxx) with or without an enhancer could be used as alternatives to infectivity assays (i.e., plaque-forming unit method for AdV and CV; local lesion count assay for PMMoV) for evaluating virus inactivation by disinfection processes. We found that PMMoV was more resistant to heat treatment than AdV and CV, suggesting that PMMoV is a potential surrogate for these two enteric viruses with regard to thermal disinfection processes. However, PMMoV was much more resistant to chlorine treatment compared with AdV and CV (which is chlorine-resistant) (CT value for 4-log10 inactivation: PMMoV, 84.5 mg-Cl2·min/L; CV, 1.15-1.19 mg-Cl2·min/L), suggesting that PMMoV is not useful as a surrogate for these enteric viruses with regard to free-chlorine disinfection processes. For thermal disinfection, the magnitude of the signal reduction observed with PMAxx-Enhancer-PCR was comparable with the magnitude of reduction in infectivity, indicating that PMAxx-Enhancer-PCR is a potential alternative to infectivity assay. However, for free-chlorine disinfection, the magnitude of the signal reduction observed with PMAxx-Enhancer-PCR was smaller than the magnitude of the reduction in infectivity, indicating that PMAxx-Enhancer-PCR underestimated the efficacy of virus inactivation (i.e., overestimated the infectious virus concentration) by chlorine treatment. Nevertheless, among the PCR approaches examined in the present study (PCR alone, PMA-PCR or PMAxx-PCR either with or without enhancer), PMAxx-Enhancer-PCR provided the most accurate assessment of the efficacy of virus inactivation by thermal or free chlorine disinfection processes.
Collapse
Affiliation(s)
- N Shirasaki
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, N13W8, Sapporo, 060-8628, Japan.
| | - T Matsushita
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, N13W8, Sapporo, 060-8628, Japan
| | - Y Matsui
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, N13W8, Sapporo, 060-8628, Japan
| | - S Koriki
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, N13W8, Sapporo, 060-8628, Japan
| |
Collapse
|
32
|
Blanchard EL, Lawrence JD, Noble JA, Xu M, Joo T, Ng NL, Schmidt BE, Santangelo PJ, Finn M. Enveloped Virus Inactivation on Personal Protective Equipment by Exposure to Ozone. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.05.23.20111435. [PMID: 32511511 PMCID: PMC7273279 DOI: 10.1101/2020.05.23.20111435] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ozone is a highly oxidizing gas easily generated from atmospheric oxygen with inexpensive equipment and is commonly used for the disinfection of municipal water, foods, and surfaces. We report tests of the ability of ozone to inactivate enveloped respiratory viruses (influenza A virus and respiratory syncytial virus), chosen as more easily handled surrogates for SARS-CoV-2, on N95 respirators and other personal protective equipment (PPE) commonly used in hospitals. At 20 ppm, an ozone concentration easily achieved by standard commercial equipment, the viruses were inactivated with high efficiency as long as the relative humidity was above a threshold value of approximately 50%. In the absence of humidity control, disinfection is more variable and requires considerably longer exposure under relatively dry conditions. This report extends the observations of a previous publication (http://doi.org/10.1080/01919510902747969) to hospital-relevant materials and provides additional details about the relationship of humidity to the antiviral activity of ozone. Home CPAP disinfection devices using ozone can provide effective results for individuals. Ozone did not appear to degrade any of the materials tested except for elastic bands if strained during treatment (such as by the pressure exerted by stapled attachment to N95 respirators). The filtration efficiency of N95 respirator material was not compromised. Overall, we recommend exposures of at least 40 minutes to 20 ppm ozone and >70% relative humidity at ambient temperatures (21-24°C) for 4-log (99.99%) reduction of viral infectivity on a variety of PPE, including gowns, face shields, and respirators. Shorter exposure times are likely to be effective under these conditions, but at the risk of some variability for different materials. Higher ozone concentrations and higher humidity levels promoted faster inactivation of viruses. Our work suggests that ozone exposure can be a widely accessible method for disinfecting PPE, permitting safer re-use for healthcare workers and patients alike in times of shortage.
Collapse
Affiliation(s)
- Emmeline L. Blanchard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Justin D. Lawrence
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jeffery A. Noble
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Minghao Xu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Taekyu Joo
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nga Lee Ng
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Britney E. Schmidt
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Philip J. Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - M.G. Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences; Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
33
|
Rockey N, Young S, Kohn T, Pecson B, Wobus CE, Raskin L, Wigginton KR. UV Disinfection of Human Norovirus: Evaluating Infectivity Using a Genome-Wide PCR-Based Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2851-2858. [PMID: 31976661 DOI: 10.1021/acs.est.9b05747] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The removal and inactivation of infectious human norovirus (HuNoV) is a major focus in water purification, but the effectiveness of disinfection processes on norovirus is largely unknown owing to the lack of a readily available infectivity assay. In particular, norovirus behavior through unit processes may be over- or underestimated using current approaches for assessing HuNoV infectivity (e.g., surrogates, molecular methods). Here, we fill a critical knowledge gap by estimating inactivation data for HuNoV after exposure to UV254, a commonly used disinfection process in the water industry. Specifically, we used a PCR-based approach that accurately tracks positive-sense single-stranded RNA virus inactivation without relying on culturing methods. We first confirmed that the approach is valid with a culturable positive-sense single-stranded RNA human virus, coxsackievirus B5, by applying both qPCR- and culture-based methods to measure inactivation kinetics with UV254 treatment. We then applied the qPCR-based method to establish a UV254 inactivation curve for HuNoV (inactivation rate constant = 0.27 cm2 mJ-1). Based on a comparison with previously published data, HuNoV exhibited similar UV254 susceptibility compared with other enteric single-stranded RNA viruses (e.g., Echovirus 12, feline calicivirus) but degraded much faster than MS2 (inactivation rate constant = 0.14 cm2 mJ-1). In addition to establishing a HuNoV inactivation rate constant, we developed an approach using a single qPCR assay that can be applied to estimate HuNoV inactivation in UV254 disinfection systems.
Collapse
Affiliation(s)
- Nicole Rockey
- Department of Civil & Environmental Engineering, University of Michigan, Ann Arbor 48109, Michigan, United States
| | - Suzanne Young
- Laboratory of Environmental Chemistry, School of Architecture, Civil & Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Tamar Kohn
- Laboratory of Environmental Chemistry, School of Architecture, Civil & Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Brian Pecson
- Trussell Technologies, Inc., Oakland 94612, California, United States
| | - Christiane E Wobus
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor 48109, Michigan, United States
| | - Lutgarde Raskin
- Department of Civil & Environmental Engineering, University of Michigan, Ann Arbor 48109, Michigan, United States
| | - Krista R Wigginton
- Department of Civil & Environmental Engineering, University of Michigan, Ann Arbor 48109, Michigan, United States
| |
Collapse
|
34
|
Young S, Torrey J, Bachmann V, Kohn T. Relationship Between Inactivation and Genome Damage of Human Enteroviruses Upon Treatment by UV 254, Free Chlorine, and Ozone. FOOD AND ENVIRONMENTAL VIROLOGY 2020; 12:20-27. [PMID: 31664651 DOI: 10.1007/s12560-019-09411-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/12/2019] [Indexed: 05/07/2023]
Abstract
Quantitative PCR (qPCR) is a convenient tool for monitoring virus concentrations in water and wastewater treatment trains, though it only informs about virus presence, but not infectivity. This limitation can be overcome if the relationship between infectivity loss and genome decay induced by a given disinfectant is known. Here, we performed inactivation experiments using two human enteroviruses, Coxsackievirus B5 and Echovirus 11, with three disinfection methods: low-pressure ultraviolet light (UV254), free chlorine (FC), and ozone. We compared the inactivation rates as measured by culturing to the decay rates of the whole genome, to evaluate the extent of qPCR-measurable genome damage as a function of inactivation. To determine genome damage, we used an approach that estimates damage across the full viral genome from the measured decay of multiple amplicons distributed across the viral genome. Correlations between inactivation and genome decay were observed for all viruses and all disinfection treatments, but results showed that even among closely related viruses, disinfection methods can damage the viral genome to different extents and that genome damage does not necessarily translate to inactivation. For both viruses, UV254 treatment had the closest relationship between inactivation and genome decay and with ozone, the rate of genome decay exceeded the inactivation rate. Finally, for FC, the ratios between methods were vastly different between viruses. This work provides the basis to relate qPCR measurements to infectivity loss and enables the establishment of molecular monitoring tools for assessing enterovirus inactivation during disinfection treatments of water and wastewater.
Collapse
Affiliation(s)
- Suzanne Young
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Jason Torrey
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Virginie Bachmann
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Tamar Kohn
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| |
Collapse
|
35
|
Rachmadi AT, Kitajima M, Kato T, Kato H, Okabe S, Sano D. Required Chlorination Doses to Fulfill the Credit Value for Disinfection of Enteric Viruses in Water: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2068-2077. [PMID: 31927958 DOI: 10.1021/acs.est.9b01685] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A credit value of virus inactivation has been assigned to the disinfection step in international and domestic guidelines for wastewater reclamation and reuse. To fulfill the credit value for water disinfection, water engineers need to apply an appropriate disinfection strength, expressed as a CT value (mg × min/L), which is a product of disinfectant concentration and contact time, against enteric viruses in wastewater. In the present study, we extracted published experimental data on enteric virus inactivation using free chlorine and monochloramine and applied the Tobit analysis and simple linear regression analysis to calculate the range of CT values (mg × min/L) needed for 4-log10 inactivation. Data were selected from peer-reviewed papers containing kinetics data of virus infectivity and chlorine residual in water. Coxsackie B virus and echovirus require higher CT values (lower susceptibility) for 4-log10 inactivation than adenovirus and a human norovirus surrogate (murine norovirus) with free chlorine. On the other hand, adenovirus has lower susceptibility to monochloramine compared to murine norovirus, coxsackievirus, and echovirus. The factors that influence the required CT value are virus type, pH, water temperature, and water matrix. This systematic review demonstrates that enteroviruses and adenovirus are appropriate representative enteric viruses to evaluate water disinfection using free chlorine and monochloramine, respectively.
Collapse
Affiliation(s)
- Andri Taruna Rachmadi
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies , Tohoku University , Aoba 6-6-06, Aramaki, Aoba-ku , Sendai , Miyagi 980-8579 , Japan
- Division of Environmental Engineering , Hokkaido University , North 13, West 8, Kita-ku , Sapporo , Hokkaido 060-8628 , Japan
- Water Desalination and Reuse Center (WDRC) , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Masaaki Kitajima
- Division of Environmental Engineering , Hokkaido University , North 13, West 8, Kita-ku , Sapporo , Hokkaido 060-8628 , Japan
| | - Tsuyoshi Kato
- Division of Electronics and Informatics, Faculty of Science and Technology , Gunma University , Tenjin-cho 1-5-1 , Kiryu , Gunma 376-8515 , Japan
- Center for Research on Adoption of NextGen Transportation Systems (CRANTS) , Gunma University , Aramaki-machi 4-2 , Maebashi , Gunma 371-8510 , Japan
- Integrated Institute for Regulatory Science , Waseda University , Tsurumaki-cho 513, Shinjuku-ku , Tokyo 162-0041 , Japan
| | - Hiroyuki Kato
- Japan Institute of Wastewater Engineering and Technology , 3-1 Suido-Cho, Shinjuku-ku , Tokyo 162-0811 , Japan
- New Industry Creation Hatchery Center , Tohoku University , Aoba 6-6-10, Aramaki, Aoba-ku , Sendai , Miyagi 980-8579 , Japan
| | - Satoshi Okabe
- Division of Environmental Engineering , Hokkaido University , North 13, West 8, Kita-ku , Sapporo , Hokkaido 060-8628 , Japan
| | - Daisuke Sano
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies , Tohoku University , Aoba 6-6-06, Aramaki, Aoba-ku , Sendai , Miyagi 980-8579 , Japan
- Department of Civil and Environmental Engineering , Tohoku University , Aoba 6-6-06, Aramaki, Aoba-ku , Sendai , Miyagi 980-8579 , Japan
| |
Collapse
|