1
|
Gambardella N, Costa J, Martins BM, Folhas D, Ribeiro AP, Hintelmann H, Canário J, Magalhães C. The role of prokaryotic mercury methylators and demethylators in Canadian Arctic thermokarst lakes. Sci Rep 2025; 15:7173. [PMID: 40021694 PMCID: PMC11871057 DOI: 10.1038/s41598-025-89438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/05/2025] [Indexed: 03/03/2025] Open
Abstract
Permafrost soils are critical reservoirs for mercury (Hg), with the thawing process leading to the release of this element into the environment, posing significant environmental risks. Of particular concern is the methylated form of mercury, monomethylmercury (MMHg), known for its adverse effects on Human health. Microbial communities play a pivotal role in the formation of MMHg by facilitating Hg methylation and in the demethylation of MMHg, slowing the crossing of toxic threshold concentration in the environment. However, the specific microbes involved still need to be understood. This study aimed to identify the microbial drivers behind changes in Hg speciation (MMHg and Hg) in permafrost thaw lakes and assess the significance of the biotic component in Hg biogeochemistry. Sediment samples from two thermokarst lakes in the Canadian sub-Arctic were collected during the winter and summer of 2022. Gene-centric metagenomics using whole-genome sequencing (WGS) was employed to identify key genes involved in mercury methylation (hgcA and hgcB) and demethylation (merA and merB), supported by qPCR analyses. A seasonal decline in microbial diversity, involved in the Hg methylation, and hgcA gene coverage was observed from winter to summer, mirroring patterns in mercury methylation rates. Notably, hgcA sequences were significantly more abundant than merAB sequences, with contrasting seasonal trends. These results indicate a seasonal shift in the microbial community, transitioning from a dominance of mercury methylation in winter to a predominance of mercury demethylation in summer. Environmental drivers of these dynamics were integrated into a conceptual model. This study provide new insights on the microbial processes influencing the Hg cycle in Arctic permafrost undergoing degradation.
Collapse
Affiliation(s)
- Nicola Gambardella
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| | - Joana Costa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
| | - Beatriz Malcata Martins
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Diogo Folhas
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Ana Patrícia Ribeiro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| | - Holger Hintelmann
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
- Water Quality Centre, Trent University, Peterborough, Canada
| | - João Canário
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Catarina Magalhães
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal.
- Faculty of Sciences, University of Porto, Porto, Portugal.
| |
Collapse
|
2
|
Xiong B, Cheng H, Deng Y, Imanaka T, Igarashi Y, Ma M, Du H, Wang D. Role of Methanosarcina in mercuric mercury transportation and methylation in sulfate-driven anaerobic oxidation of methane with municipal wastewater sludge. ENVIRONMENTAL RESEARCH 2025; 267:120689. [PMID: 39716678 DOI: 10.1016/j.envres.2024.120689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 12/25/2024]
Abstract
Sulfate-driven anaerobic oxidation of methane (AOM) and anaerobic digestion (AD) with municipal wastewater sludge containing heavy metals may provide favorable conditions for the biogeochemical transformation of mercury (Hg) by methanogens and methanotrophs. However, it remains largely unclear what Hg-methylators functioned and what role Methanosarcina played in these processes. Here, we performed sulfate-driven AOM following AD with Hg-containing wastewater sludge and investigated the role of microbes, especially Methanosarcina, in the biogeochemical transformation of Hg based on 16S rRNA amplicon and metatranscriptomic sequencing. Results showed that methylmercury (MeHg) concentrations and MeHg/total Hg ratios increased significantly, implying mercuric Hg [Hg(II)] methylation predominated MeHg demethylation. Desulfovibrio, Desulfobulbus and Methanosarcina dominated and thus likely played important roles in Hg(II) methylation, while Methanosarcina dominated and functioned in methane metabolism. In the presence of sulfate, differentially-expressed genes (DEGs) related to Hg transporting ATPase increased significantly, indicating Methanosarcina absorbed a large amount of Hg(II) and likely further methylated it to MeHg. No Hg response DEGs were found in the absence of sulfate, further confirming sulfate played an essential role in Hg cycle. Overall, these results suggest that controlling sulfate levels and Methanosarcina abundances in municipal wastewater could potentially mitigate MeHg risks to humans.
Collapse
Affiliation(s)
- Bingcai Xiong
- Chongqing Key Laboratory of Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Hao Cheng
- Chongqing Key Laboratory of Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yuhan Deng
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Tadayuki Imanaka
- Chongqing Key Laboratory of Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yasuo Igarashi
- Chongqing Key Laboratory of Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Ming Ma
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Hongxia Du
- Chongqing Key Laboratory of Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| |
Collapse
|
3
|
Hao YY, Capo E, Yang Z, Wen S, Hu ZC, Feng J, Huang Q, Gu B, Liu YR. Distribution and Environmental Preference of Potential Mercury Methylators in Paddy Soils across China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2059-2069. [PMID: 39823367 DOI: 10.1021/acs.est.4c05242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The neurotoxin methylmercury (MeHg) is produced mainly from the transformation of inorganic Hg by microorganisms carrying the hgcAB gene pair. Paddy soils are known to harbor diverse microbial communities exhibiting varying abilities in methylating inorganic Hg, but their distribution and environmental drivers remain unknown at a large spatial scale. Using hgcA gene amplicon sequencing, this study examined Hg-methylating communities from major rice-producing paddy soils across a transect of ∼3600 km and an altitude of ∼1300 m in China. Results showed that hgcA+ OTU richness was higher in tropical and subtropical paddy soils compared to temperate zones. Geobacteraceae, Smithellaceae, and Methanoregulaceae were identified as the dominant hgcA+ families associated with MeHg production, collectively accounting for up to 77% of total hgcA+ sequences. Hierarchical partitioning analyses revealed that pH was the main driver of hgcA genes from Geobacteraceae (14.8%) and Methanoregulaceae (16.3%), while altitude accounted for 21.4% of hgcA genes from Smithellaceae. Based on these environmental preferences, a machine-learning algorithm was used to predict the spatial distribution of these dominant hgcA+ families, thereby providing novel insights into important microbial determinants for improved prediction of MeHg production in paddy soils across China.
Collapse
Affiliation(s)
- Yun-Yun Hao
- National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Eric Capo
- Department of Ecology and Environmental Science, Umeå University, 907 36 Umeå, Sweden
| | - Ziming Yang
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, United States
| | - Shuhai Wen
- National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi-Cheng Hu
- National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiao Feng
- National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Yu-Rong Liu
- National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Evers DC, Ackerman JT, Åkerblom S, Bally D, Basu N, Bishop K, Bodin N, Braaten HFV, Burton MEH, Bustamante P, Chen C, Chételat J, Christian L, Dietz R, Drevnick P, Eagles-Smith C, Fernandez LE, Hammerschlag N, Harmelin-Vivien M, Harte A, Krümmel EM, Brito JL, Medina G, Barrios Rodriguez CA, Stenhouse I, Sunderland E, Takeuchi A, Tear T, Vega C, Wilson S, Wu P. Global mercury concentrations in biota: their use as a basis for a global biomonitoring framework. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:325-396. [PMID: 38683471 PMCID: PMC11213816 DOI: 10.1007/s10646-024-02747-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 05/01/2024]
Abstract
An important provision of the Minamata Convention on Mercury is to monitor and evaluate the effectiveness of the adopted measures and its implementation. Here, we describe for the first time currently available biotic mercury (Hg) data on a global scale to improve the understanding of global efforts to reduce the impact of Hg pollution on people and the environment. Data from the peer-reviewed literature were compiled in the Global Biotic Mercury Synthesis (GBMS) database (>550,000 data points). These data provide a foundation for establishing a biomonitoring framework needed to track Hg concentrations in biota globally. We describe Hg exposure in the taxa identified by the Minamata Convention: fish, sea turtles, birds, and marine mammals. Based on the GBMS database, Hg concentrations are presented at relevant geographic scales for continents and oceanic basins. We identify some effective regional templates for monitoring methylmercury (MeHg) availability in the environment, but overall illustrate that there is a general lack of regional biomonitoring initiatives around the world, especially in Africa, Australia, Indo-Pacific, Middle East, and South Atlantic and Pacific Oceans. Temporal trend data for Hg in biota are generally limited. Ecologically sensitive sites (where biota have above average MeHg tissue concentrations) have been identified throughout the world. Efforts to model and quantify ecosystem sensitivity locally, regionally, and globally could help establish effective and efficient biomonitoring programs. We present a framework for a global Hg biomonitoring network that includes a three-step continental and oceanic approach to integrate existing biomonitoring efforts and prioritize filling regional data gaps linked with key Hg sources. We describe a standardized approach that builds on an evidence-based evaluation to assess the Minamata Convention's progress to reduce the impact of global Hg pollution on people and the environment.
Collapse
Affiliation(s)
- David C Evers
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA.
| | - Joshua T Ackerman
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive, Suite D, Dixon, CA, 95620, USA
| | | | - Dominique Bally
- African Center for Environmental Health, BP 826 Cidex 03, Abidjan, Côte d'Ivoire
| | - Nil Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| | - Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Upsalla, Sweden
| | - Nathalie Bodin
- Research Institute for Sustainable Development Seychelles Fishing Authority, Victoria, Seychelles
| | | | - Mark E H Burton
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Paco Bustamante
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Celia Chen
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - John Chételat
- Environment and Cliamte Change Canada, National Wildlife Research Centre, Ottawa, ON, K1S 5B6, Canada
| | - Linroy Christian
- Department of Analytical Services, Dunbars, Friars Hill, St John, Antigua and Barbuda
| | - Rune Dietz
- Department of Ecoscience, Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000, Roskilde, Denmark
| | - Paul Drevnick
- Teck American Incorporated, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Collin Eagles-Smith
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR, 97331, USA
| | - Luis E Fernandez
- Sabin Center for Environment and Sustainability and Department of Biology, Wake Forest University, Winston-Salem, NC, 29106, USA
- Centro de Innovación Científica Amazonica (CINCIA), Puerto Maldonado, Madre de Dios, Peru
| | - Neil Hammerschlag
- Shark Research Foundation Inc, 29 Wideview Lane, Boutiliers Point, NS, B3Z 0M9, Canada
| | - Mireille Harmelin-Vivien
- Aix-Marseille Université, Université de Toulon, CNRS/INSU/IRD, Institut Méditerranéen d'Océanologie (MIO), UM 110, Campus de Luminy, case 901, 13288, Marseille, cedex 09, France
| | - Agustin Harte
- Basel, Rotterdam and Stockholm Conventions Secretariat, United Nations Environment Programme (UNEP), Chem. des Anémones 15, 1219, Vernier, Geneva, Switzerland
| | - Eva M Krümmel
- Inuit Circumpolar Council-Canada, Ottawa, Canada and ScienTissiME Inc, Barry's Bay, ON, Canada
| | - José Lailson Brito
- Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier, 524, Sala 4002, CEP 20550-013, Maracana, Rio de Janeiro, RJ, Brazil
| | - Gabriela Medina
- Director of Basel Convention Coordinating Centre, Stockholm Convention Regional Centre for Latin America and the Caribbean, Hosted by the Ministry of Environment, Montevideo, Uruguay
| | | | - Iain Stenhouse
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Elsie Sunderland
- Harvard University, Pierce Hall 127, 29 Oxford Street, Cambridge, MA, 02138, USA
| | - Akinori Takeuchi
- National Institute for Environmental Studies, Health and Environmental Risk Division, 16-2 Onogawa Tsukuba, Ibaraki, 305-8506, Japan
| | - Tim Tear
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Claudia Vega
- Centro de Innovaccion Cientifica Amazonica (CINCIA), Jiron Ucayali 750, Puerto Maldonado, Madre de Dios, 17001, Peru
| | - Simon Wilson
- Arctic Monitoring and Assessment Programme (AMAP) Secretariat, N-9296, Tromsø, Norway
| | - Pianpian Wu
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| |
Collapse
|
5
|
Lawruk-Desjardins C, Storck V, Ponton DE, Amyot M, Walsh DA. A genome catalogue of mercury-methylating bacteria and archaea from sediments of a boreal river facing human disturbances. Environ Microbiol 2024; 26:e16669. [PMID: 38922750 DOI: 10.1111/1462-2920.16669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
Methyl mercury, a toxic compound, is produced by anaerobic microbes and magnifies in aquatic food webs, affecting the health of animals and humans. The exploration of mercury methylators based on genomes is still limited, especially in the context of river ecosystems. To address this knowledge gap, we developed a genome catalogue of potential mercury-methylating microorganisms. This was based on the presence of hgcAB from the sediments of a river affected by two run-of-river hydroelectric dams, logging activities and a wildfire. Through the use of genome-resolved metagenomics, we discovered a unique and diverse group of mercury methylators. These were dominated by members of the metabolically versatile Bacteroidota and were particularly rich in microbes that ferment butyrate. By comparing the diversity and abundance of mercury methylators between sites subjected to different disturbances, we found that ongoing disturbances, such as the input of organic matter related to logging activities, were particularly conducive to the establishment of a mercury-methylating niche. Finally, to gain a deeper understanding of the environmental factors that shape the diversity of mercury methylators, we compared the mercury-methylating genome catalogue with the broader microbial community. The results suggest that mercury methylators respond to environmental conditions in a manner similar to the overall microbial community. Therefore, it is crucial to interpret the diversity and abundance of mercury methylators within their specific ecological context.
Collapse
Affiliation(s)
| | - Veronika Storck
- Department of Biology, Concordia University, Montreal, Quebec, Canada
- Département de sciences biologiques, Université de Montréal, Montreal, Quebec, Canada
| | - Dominic E Ponton
- Département de sciences biologiques, Université de Montréal, Montreal, Quebec, Canada
| | - Marc Amyot
- Département de sciences biologiques, Université de Montréal, Montreal, Quebec, Canada
| | - David A Walsh
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Wu Z, Li Z, Shao B, Chen J, Cui X, Cui X, Liu X, Zhao YX, Pu Q, Liu J, He W, Liu Y, Liu Y, Wang X, Meng B, Tong Y. Differential response of Hg-methylating and MeHg-demethylating microbiomes to dissolved organic matter components in eutrophic lake water. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133298. [PMID: 38141310 DOI: 10.1016/j.jhazmat.2023.133298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/01/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
Methylmercury (MeHg) production in aquatic ecosystems is a global concern because of its neurotoxic effect. Dissolved organic matter (DOM) plays a crucial role in biogeochemical cycling of Hg. However, owing to its complex composition, the effects of DOM on net MeHg production have not been fully understood. Here, the Hg isotope tracer technique combined with different DOM treatments was employed to explore the influences of DOM with divergent compositions on Hg methylation/demethylation and its microbial mechanisms in eutrophic lake waters. Our results showed that algae-derived DOM treatments enhanced MeHg concentrations by 1.42-1.53 times compared with terrestrial-derived DOM. Algae-derived DOM had largely increased the methylation rate constants by approximately 1-2 orders of magnitude compared to terrestrial-derived DOM, but its effects on demethylation rate constants were less pronounced, resulting in the enhancement of net MeHg formation. The abundance of hgcA and merB genes suggested that Hg-methylating and MeHg-demethylating microbiomes responded differently to DOM treatments. Specific DOM components (e.g., aromatic proteins and soluble microbial byproducts) were positively correlated with both methylation rate constants and the abundance of Hg-methylating microbiomes. Our results highlight that the DOM composition influences the Hg methylation and MeHg demethylation differently and should be incorporated into future Hg risk assessments in aquatic ecosystems.
Collapse
Affiliation(s)
- Zhengyu Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zhike Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Bo Shao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Ji Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xiaomei Cui
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Xiaoyu Cui
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Ying Xin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Qiang Pu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Jiang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Wei He
- School of Water Resource and Environment, China University of Geoscience (Beijing), Beijing 100083, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yurong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuejun Wang
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; School of Ecology and Environment, Tibet University, Lhasa 850000, China.
| |
Collapse
|
7
|
Peng X, Yang Y, Yang S, Li L, Song L. Recent advance of microbial mercury methylation in the environment. Appl Microbiol Biotechnol 2024; 108:235. [PMID: 38407657 PMCID: PMC10896945 DOI: 10.1007/s00253-023-12967-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 02/27/2024]
Abstract
Methylmercury formation is mainly driven by microbial-mediated process. The mechanism of microbial mercury methylation has become a crucial research topic for understanding methylation in the environment. Pioneering studies of microbial mercury methylation are focusing on functional strain isolation, microbial community composition characterization, and mechanism elucidation in various environments. Therefore, the functional genes of microbial mercury methylation, global isolations of Hg methylation strains, and their methylation potential were systematically analyzed, and methylators in typical environments were extensively reviewed. The main drivers (key physicochemical factors and microbiota) of microbial mercury methylation were summarized and discussed. Though significant progress on the mechanism of the Hg microbial methylation has been explored in recent decade, it is still limited in several aspects, including (1) molecular biology techniques for identifying methylators; (2) characterization methods for mercury methylation potential; and (3) complex environmental properties (environmental factors, complex communities, etc.). Accordingly, strategies for studying the Hg microbial methylation mechanism were proposed. These strategies include the following: (1) the development of new molecular biology methods to characterize methylation potential; (2) treating the environment as a micro-ecosystem and studying them from a holistic perspective to clearly understand mercury methylation; (3) a more reasonable and sensitive inhibition test needs to be considered. KEY POINTS: • Global Hg microbial methylation is phylogenetically and functionally discussed. • The main drivers of microbial methylation are compared in various condition. • Future study of Hg microbial methylation is proposed.
Collapse
Affiliation(s)
- Xuya Peng
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, No. 174, Shapingba Street, Chongqing, 400045, China
| | - Yan Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, No. 174, Shapingba Street, Chongqing, 400045, China
| | - Shu Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, No. 174, Shapingba Street, Chongqing, 400045, China.
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Lei Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, No. 174, Shapingba Street, Chongqing, 400045, China
| | - Liyan Song
- School of resources and environmental engineering, Anhui University, No 111 Jiulong Road, Economic and Technology Development Zone, Hefei, 230601, People's Republic of China.
| |
Collapse
|
8
|
Hao Z, Zhao L, Liu J, Pu Q, Chen J, Meng B, Feng X. Relative importance of aceticlastic methanogens and hydrogenotrophic methanogens on mercury methylation and methylmercury demethylation in paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167601. [PMID: 37832685 DOI: 10.1016/j.scitotenv.2023.167601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
The accumulation of methylmercury (MeHg) in paddy soil results from a subtle balance between inorganic mercury (e.g., HgII) methylation and MeHg demethylation. Methanogens not only act as Hg methylators but may also facilitate MeHg demethylation. However, the diverse methanogen flora (e.g., aceticlastic and hydrogenotrophic types) that exists under ambient conditions has not previously been considered. Accordingly, the roles of different types of methanogens in HgII methylation and MeHg degradation in paddy soils were studied using the Hg isotope tracing technique combined with the application of methanogen inhibitors/stimulants. It was found that the response of HgII methylation to methanogen inhibitors or stimulants was site-dependent. Specifically, aceticlastic methanogens were suggested as the potential HgII methylators at the low Hg level background site, whereas hydrogenotrophic methanogens were potentially involved in MeHg production as Hg levels increased. In contrast, both aceticlastic and hydrogenotrophic methanogens facilitated MeHg degradation across the sampling sites. Additionally, competition between hydrogenotrophic and aceticlastic methanogens was observed in Hg-polluted paddy soils, implying that net MeHg production could be alleviated by promoting aceticlastic methanogens or inhibiting hydrogenotrophic methanogens. The findings gained from this study improve the understanding of the role of methanogens in net MeHg formation and link carbon turnover to Hg biogeochemistry in rice paddy ecosystems.
Collapse
Affiliation(s)
- Zhengdong Hao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Zhao
- School of Management Science, Guizhou University of Finance and Economics, Guiyang 550025, China; Guizhou Key Laboratory of Big Data Statistical Analysis (No. [2019]5103), Guiyang 550025, China.
| | - Jiang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Qiang Pu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ji Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Bustamante P, Le Verge T, Bost CA, Brault-Favrou M, Le Corre M, Weimerskirch H, Cherel Y. Mercury contamination in the tropical seabird community from Clipperton Island, eastern Pacific Ocean. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:1050-1061. [PMID: 37615819 DOI: 10.1007/s10646-023-02691-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 08/25/2023]
Abstract
Mercury (Hg) pollution is a global problem affecting remote areas of the open ocean, but the bioaccumulation of this neurotoxic pollutant in tropical top predators remains poorly documented. The objective of this study was to determine Hg contamination of the seabird community nesting on Clipperton Island using blood and feathers to investigate short and longer-term contamination, respectively. We examined the significance of various factors (species, sex, feeding habitat [δ13C] and trophic position [δ15N]) on Hg concentrations in six seabird species. Among species, Great Frigatebirds had the highest Hg concentrations in blood and feathers, boobies had intermediate values, and Brown Noddies and Sooty Terns the lowest. At the interspecific level, although δ13C values segregated boobies from frigatebirds and noddies/terns, Hg concentrations were explained by neither δ13C nor δ15N values. At the intraspecific level, both Hg concentrations in blood and feathers show relatively small variations (16-32 and 26-74%, respectively), suggesting that feeding ecology had low seasonal variation among individuals. Despite most species being sexually dimorphic, differences in Hg contamination according to sex was detected only in Brown Boobies during the breeding period. Indeed, female Brown Boobies feed at a higher trophic level and in a different area than males during this period, resulting in higher blood Hg concentrations. The present study also shows that most of the seabirds sampled at Clipperton Island had little or no exposure to Hg toxicity, with 30% in the no risk category and 70% in the low risk category.
Collapse
Affiliation(s)
- Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France.
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005, Paris, France.
| | - Thibault Le Verge
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - Charles-André Bost
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Maud Brault-Favrou
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - Matthieu Le Corre
- UMR ENTROPIE (Université de La Réunion, IRD, CNRS, IFREMER, Université de Nouvelle-Calédonie), Université de La Réunion, 15 Avenue René Cassin, CS92003, Saint Denis cedex, 997744, La Réunion, France
| | - Henri Weimerskirch
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 79360, Villiers-en-Bois, France
| |
Collapse
|
10
|
Guo P, Rennenberg H, Du H, Wang T, Gao L, Flemetakis E, Hänsch R, Ma M, Wang D. Bacterial assemblages imply methylmercury production at the rice-soil system. ENVIRONMENT INTERNATIONAL 2023; 178:108066. [PMID: 37399771 DOI: 10.1016/j.envint.2023.108066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/03/2023] [Accepted: 06/24/2023] [Indexed: 07/05/2023]
Abstract
The plant microbiota can affect plant health and fitness by promoting methylmercury (MeHg) production in paddy soil. Although most well-known mercury (Hg) methylators are observed in the soil, it remains unclear how rice rhizosphere assemblages alter MeHg production. Here, we used network analyses of microbial diversity to identify bulk soil (BS), rhizosphere (RS) and root bacterial networks during rice development at Hg gradients. Hg gradients greatly impacted the niche-sharing of taxa significantly relating to MeHg/THg, while plant development had little effect. In RS networks, Hg gradients increased the proportion of MeHg-related nodes in total nodes from 37.88% to 45.76%, but plant development enhanced from 48.59% to 50.41%. The module hub and connector in RS networks included taxa positively (Nitrososphaeracea, Vicinamibacteraceae and Oxalobacteraceae) and negatively (Gracilibacteraceae) correlating with MeHg/THg at the blooming stage. In BS networks, Deinococcaceae and Paludibacteraceae were positively related to MeHg/THg, and constituted the connector at the reviving stage and the module hub at the blooming stage. Soil with an Hg concentration of 30 mg kg-1 increased the complexity and connectivity of root microbial networks, although microbial community structure in roots was less affected by Hg gradients and plant development. As most frequent connector in root microbial networks, Desulfovibrionaceae did not significantly correlate with MeHg/THg, but was likely to play an important role in the response to Hg stress.
Collapse
Affiliation(s)
- Pan Guo
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| | - Hongxia Du
- Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing, China
| | - Tao Wang
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| | - Lan Gao
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Robert Hänsch
- Institute for Plant Biology, Technische Universität Braunschweig, Humboldtstraße 1, D-38106 Braunschweig, Germany
| | - Ming Ma
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China; Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing, China.
| | - Dingyong Wang
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Chongqing, China
| |
Collapse
|
11
|
Zhang L, Kang-Yun CS, Lu X, Chang J, Liang X, Pierce EM, Semrau JD, Gu B. Adsorption and intracellular uptake of mercuric mercury and methylmercury by methanotrophs and methylating bacteria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121790. [PMID: 37187279 DOI: 10.1016/j.envpol.2023.121790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/25/2023] [Accepted: 05/07/2023] [Indexed: 05/17/2023]
Abstract
The cell surface adsorption and intracellular uptake of mercuric Hg(II) and methylmercury (MeHg) are important in determining the fate and transformation of Hg in the environment. However, current information is limited about their interactions with two important groups of microorganisms, i.e., methanotrophs and Hg(II)-methylating bacteria, in aquatic systems. This study investigated the adsorption and uptake dynamics of Hg(II) and MeHg by three strains of methanotrophs, Methylomonas sp. Strain EFPC3, Methylosinus trichosporium OB3b, and Methylococcus capsulatus Bath, and two Hg(II)-methylating bacteria, Pseudodesulfovibrio mercurii ND132 and Geobacter sulfurreducens PCA. Distinctive behaviors of these microorganisms towards Hg(II) and MeHg adsorption and intracellular uptake were observed. The methanotrophs generally took up 60-80% of inorganic Hg(II) inside cells after 24 h incubation, lower than methylating bacteria (>90%). Approximately 80-95% of MeHg was rapidly taken up by all the tested methanotrophs within 24 h. In contrast, after the same time, G. sulfurreducens PCA adsorbed 70% but took up <20% of MeHg, while P. mercurii ND132 only adsorbed 20% but took up negligible amounts of MeHg. These results suggest that microbial surface adsorption and intracellular uptake of Hg(II) and MeHg depend on the specific types of microbes and appear to be related to microbial physiology that requires further detailed investigation. Despite being incapable of methylating Hg(II), methanotrophs play important roles in immobilizing both Hg(II) and MeHg, potentially influencing their bioavailability and trophic transfer. Therefore, methanotrophs are not only important sinks for methane but also for Hg(II) and MeHg and can influence the global cycling of C and Hg.
Collapse
Affiliation(s)
- Lijie Zhang
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA; Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Christina S Kang-Yun
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xia Lu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin Chang
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xujun Liang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Eric M Pierce
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jeremy D Semrau
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Department of Biosystems Engineering and Soil Science, University of Tennesee, Knoxville, TN 37996, USA
| |
Collapse
|
12
|
Du H, Gu X, Johs A, Yin X, Spano T, Wang D, Pierce EM, Gu B. Sonochemical oxidation and stabilization of liquid elemental mercury in water and soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130589. [PMID: 37055993 DOI: 10.1016/j.jhazmat.2022.130589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 06/19/2023]
Abstract
Over 3000 mercury (Hg)-contaminated sites worldwide contain liquid metallic Hg [Hg(0)l] representing a continuous source of elemental Hg(0) in the environment through volatilization and solubilization in water. Currently, there are few effective treatment technologies available to remove or sequester Hg(0)l in situ. We investigated sonochemical treatments coupled with complexing agents, polysulfide and sulfide, in oxidizing Hg(0)l and stabilizing Hg in water, soil and quartz sand. Results indicate that sonication is highly effective in breaking up and oxidizing liquid Hg(0)l beads via acoustic cavitation, particularly in the presence of polysulfide. Without complexing agents, sonication caused only minor oxidation of Hg(0)l but increased headspace gaseous Hg(0)g and dissolved Hg(0)aq in water. However, the presence of polysulfide essentially stopped Hg(0) volatilization and solubilization. As a charged polymer, polysulfide was more effective than sulfide in oxidizing Hg(0)l and subsequently stabilizing the precipitated metacinnabar (β-HgS) nanocrystals. Sonochemical treatments with sulfide yielded incomplete oxidation of Hg(0)l, likely resulting from the formation of HgS coatings on the dispersed µm-size Hg(0)l bead surfaces. Sonication with polysulfide also resulted in rapid oxidation of Hg(0)l and precipitation of HgS in quartz sand and in the Hg(0)l-contaminated soil. This research indicates that sonochemical treatment with polysulfide could be an effective means in rapidly converting Hg(0)l to insoluble HgS precipitates in water and sediments, thereby preventing its further emission and release to the environment. We suggest that future studies are performed to confirm its technical feasibility and treatment efficacy for remediation applications.
Collapse
Affiliation(s)
- Hongxia Du
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Xin Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Alexander Johs
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Xiangping Yin
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Tyler Spano
- Nuclear Nonproliferation Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Eric M Pierce
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996, United States.
| |
Collapse
|
13
|
Park J, Cho H, Han S, An SU, Choi A, Lee H, Hyun JH. Impacts of the invasive Spartina anglica on C-S-Hg cycles and Hg(II) methylating microbial communities revealed by hgcA gene analysis in intertidal sediment of the Han River estuary, Yellow Sea. MARINE POLLUTION BULLETIN 2023; 187:114498. [PMID: 36603235 DOI: 10.1016/j.marpolbul.2022.114498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
We investigated the impact of invasive vegetation on mercury cycles, and identified microorganisms directly related to Hg(II) methylation using hgcA gene in vegetated mud flats (VMF) inhabited by native Suaeda japonica (SJ) and invasive Spartina anglica (SA), and unvegetated mud flats (UMF) in Ganghwa intertidal sediments. Sulfate reduction rate (SRR) and rate constants of Hg(II) methylation (Km) and methyl-Hg demethylation (Kd) were consistently greater in VMF than in UMF, specifically 1.5, 2 and 11.7 times higher, respectively, for SA. Both Km and Kd were significantly correlated with SRR and the abundance of sulfate-reducing bacteria. These results indicate that the rhizosphere of invasive SA provides a hotspot for Hg dynamics coupled with sulfate reduction. HgcA gene analysis revealed that Hg(II)-methylators were dominated by Deltaproteobacteria, Chloroflexi and Euryarchaeota, comprising 37.9%, 35.8%, and 6.5% of total hgcA gene sequences, respectively, which implies that coastal sediments harbor diverse Hg(II)-methylating microorganisms that previously underrepresented.
Collapse
Affiliation(s)
- Jisu Park
- Department of Marine Sciences and Convergent Technology, Hanyang University (ERICA Campus), 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, South Korea
| | - Hyeyoun Cho
- Department of Marine Sciences and Convergent Technology, Hanyang University (ERICA Campus), 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, South Korea
| | - Seunghee Han
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, South Korea
| | - Sung-Uk An
- Department of Marine Sciences and Convergent Technology, Hanyang University (ERICA Campus), 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, South Korea; Korean Institute of Ocean Science & Technology (KIOST), 385 Haeyang-ro, Yeongdo-gu, Busan Metropolitan City 49111, South Korea
| | - Ayeon Choi
- Department of Marine Sciences and Convergent Technology, Hanyang University (ERICA Campus), 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, South Korea; Korean Institute of Ocean Science & Technology (KIOST), 385 Haeyang-ro, Yeongdo-gu, Busan Metropolitan City 49111, South Korea
| | - Hyeonji Lee
- Department of Marine Sciences and Convergent Technology, Hanyang University (ERICA Campus), 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, South Korea
| | - Jung-Ho Hyun
- Department of Marine Sciences and Convergent Technology, Hanyang University (ERICA Campus), 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, South Korea.
| |
Collapse
|
14
|
Tada Y, Marumoto K, Iwamoto Y, Takeda K, Sakugawa H. Distribution and phylogeny of mercury methylation, demethylation, and reduction genes in the Seto Inland Sea of Japan. MARINE POLLUTION BULLETIN 2023; 186:114381. [PMID: 36459771 DOI: 10.1016/j.marpolbul.2022.114381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Mercury (Hg) adversely affects human and environmental health. To evaluate the mercury (Hg) speciation (methylation, demethylation, and reduction) of microorganisms in coastal seawater, we analyzed the microbial functional gene sets involved in Hg methylation (hgcA and hgcB), demethylation (merB), and reduction (merA) using a metagenomic approach in the eastern and western parts (the Kii and Bungo channels, respectively) of the Seto Inland Sea (SIS) of Japan. We determined the concentration of dissolved total mercury (dTHg) and methylated mercury (dMeHg) in seawater. The metagenomic analysis detected hgcAB, merA, and merB in both channels, whereas the phylogenies of these genes differed between them. A correlation between Hg concentration (both dTHg and dMeHg) and the relative abundance of each gene was not observed. Our data suggests that microbial Hg methylation and demethylation could occur in the SIS and there could be a distinct microbial Hg speciation process between the Kii and Bungo channels.
Collapse
Affiliation(s)
- Yuya Tada
- National Institute for Minamata Disease, Department of Environment and Public Health, Kumamoto, Japan.
| | - Kohji Marumoto
- National Institute for Minamata Disease, Department of Environment and Public Health, Kumamoto, Japan
| | - Yoko Iwamoto
- Hiroshima University, Graduate School of Integrated Sciences for Life, Hiroshima, Japan
| | - Kazuhiko Takeda
- Hiroshima University, Graduate School of Integrated Sciences for Life, Hiroshima, Japan
| | - Hiroshi Sakugawa
- Hiroshima University, Graduate School of Integrated Sciences for Life, Hiroshima, Japan
| |
Collapse
|
15
|
Mercury Accumulation in a Stream Ecosystem: Linking Labile Mercury in Sediment Porewaters to Bioaccumulative Mercury in Trophic Webs. WATER 2022. [DOI: 10.3390/w14132003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mercury (Hg) deposition and accumulation in the abiotic and biotic environments of a stream ecosystem were studied. This study aimed to link labile Hg in porewater to bioaccumulative Hg in biota. Sediment cores, porewaters, and biota were sampled from four sites along the Fourmile Branch (SC, USA) and measured for total Hg (THg) and methyl-Hg (MHg) concentrations. Water quality parameters were also measured at the sediment–water interface (SWI) to model the Hg speciation. In general, Hg concentrations in porewaters and bulk sediment were relatively high, and most of the sediment Hg was in the solid phase as non-labile species. Surface sediment presented higher Hg concentrations than the medium and bottom layers. Mercury methylation and MHg production in the sediment was primarily influenced by sulfate levels, since positive correlations were observed between sulfate and Hg in the porewaters. The majority of Hg species at the SWI were in non-labile form, and the dominant labile Hg species was complexed with dissolved organic carbon. MHg concentrations in the aquatic food web biomagnified with trophic levels (biofilm, invertebrates, and fish), increasing by 3.31 times per trophic level. Based on the derived data, a modified MHg magnification model was established to estimate the Hg bioaccumulation at any trophic level using Hg concentrations in the abiotic environment (i.e., porewater).
Collapse
|
16
|
Nádudvari Á, Cabała J, Marynowski L, Jabłońska M, Dziurowicz M, Malczewski D, Kozielska B, Siupka P, Piotrowska-Seget Z, Simoneit BRT, Szczyrba M. High concentrations of HgS, MeHg and toxic gas emissions in thermally affected waste dumps from hard coal mining in Poland. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128542. [PMID: 35248960 DOI: 10.1016/j.jhazmat.2022.128542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/13/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
This study aims to provide numerous environmental research approaches to understand the formation of mineral and organic mercury compounds in self-heating coal waste dumps of the Upper Silesian Coal Basin (USCB). The results are combined with environmental and health risk assessments. The mineralogy comprised accessory minerals in the fine fraction of thermally affected waste, i.e., Hg sulfides, most likely cinnabar or metacinnabar. Moreover, other metals, e.g., Pb, Zn and Cu, were found as sulfide forms. Apart from Hg, the ICP-ES/MS data confirmed the high content of Mn, Zn, Pb, Hg, Cr and Ba in these wastes. The high concentration of available Hg resulted in elevated MeHg concentrations in the dumps. There were no correlations or trends between MeHg concentrations and elemental Hg, TS, TOC, and pH. Furthermore, we did not detect microbial genes responsible for Hg methylation. The organic compounds identified in waste and emitted gases, such as organic acids, or free methyl radicals, common in such burn environments, could be responsible for the formation of MeHg. The concentration levels of gases, e.g., benzene, formaldehyde, NH3, emitted by the vents, reached or surpassed acceptable levels numerous times. The potential ecological and human health risks of these dumps were moderate to very high due to the significant influence of the high Hg concentrations.
Collapse
Affiliation(s)
- Ádám Nádudvari
- University of Silesia in Katowice, Faculty of Natural Sciences, 60 Będzińska Street, 41-200 Sosnowiec, Poland.
| | - Jerzy Cabała
- University of Silesia in Katowice, Faculty of Natural Sciences, 60 Będzińska Street, 41-200 Sosnowiec, Poland
| | - Leszek Marynowski
- University of Silesia in Katowice, Faculty of Natural Sciences, 60 Będzińska Street, 41-200 Sosnowiec, Poland
| | - Mariola Jabłońska
- University of Silesia in Katowice, Faculty of Natural Sciences, 60 Będzińska Street, 41-200 Sosnowiec, Poland
| | - Maria Dziurowicz
- University of Silesia in Katowice, Faculty of Natural Sciences, 60 Będzińska Street, 41-200 Sosnowiec, Poland
| | - Dariusz Malczewski
- University of Silesia in Katowice, Faculty of Natural Sciences, 60 Będzińska Street, 41-200 Sosnowiec, Poland
| | - Barbara Kozielska
- Silesian University of Technology, Faculty of Power and Environmental Engineering, Department of Air Protection, 22B Konarskiego St., 44-100 Gliwice, Poland
| | - Piotr Siupka
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032 Katowice, Poland
| | - Zofia Piotrowska-Seget
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032 Katowice, Poland
| | - Bernd R T Simoneit
- Oregon State University, Department of Chemistry, College of Science, Corvallis, OR 97331, USA
| | - Mirosław Szczyrba
- University of Silesia in Katowice, Faculty of Natural Sciences, 60 Będzińska Street, 41-200 Sosnowiec, Poland
| |
Collapse
|
17
|
Stenzler BR, Zhang R, Semrau JD, DiSpirito AA, Poulain AJ. Diffusion of H 2 S from anaerobic thiolated ligand biodegradation rapidly generated bioavailable mercury. Environ Microbiol 2022; 24:3212-3228. [PMID: 35621051 DOI: 10.1111/1462-2920.16078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 11/27/2022]
Abstract
Methylmercury (MeHg) is a potent neurotoxin that biomagnifies through food webs and which production depends on anaerobic microbial uptake of inorganic mercury (Hg) species. One outstanding knowledge gap in understanding Hg methylation is the nature of bioavailable Hg species. It has become increasingly obvious that Hg bioavailability is spatially diverse and temporally dynamic but current models are built on single thiolated ligand systems, mostly omitting ligand exchanges and interactions, or the inclusion of dissolved gaseous phases. In this study, we used a whole-cell anaerobic biosensor to determine the role of a mixture of thiolated ligands on Hg bioavailability. Serendipitously, we discovered how the diffusion of trace amounts of exogenous biogenic H2 S, originating from anaerobic microbial ligand degradation, can alter Hg speciation - away from H2 S production site - to form bioavailable species. Regardless of its origins, H2 S stands as a mobile mediator of microbial Hg metabolism, connecting spatially separated microbial communities. At a larger scale, global planetary changes are expected to accelerate the production and mobilization of H2 S and Hg, possibly leading to increased production of the potent neurotoxin; this work provides mechanistic insights into the importance of co-managing biogeochemical cycle disruptions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Benjamin R Stenzler
- Biology Department, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada
| | - Rui Zhang
- Biology Department, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada
| | - Jeremy D Semrau
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Alan A DiSpirito
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Alexandre J Poulain
- Biology Department, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada
| |
Collapse
|
18
|
Yu RQ, Barkay T. Microbial mercury transformations: Molecules, functions and organisms. ADVANCES IN APPLIED MICROBIOLOGY 2022; 118:31-90. [PMID: 35461663 DOI: 10.1016/bs.aambs.2022.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mercury (Hg) methylation, methylmercury (MeHg) demethylation, and inorganic redox transformations of Hg are microbe-mediating processes that determine the fate and cycling of Hg and MeHg in many environments, and by doing so influence the health of humans and wild life. The discovery of the Hg methylation genes, hgcAB, in the last decade together with advances in high throughput and genome sequencing methods, have resulted in an expanded appreciation of the diversity of Hg methylating microbes. This review aims to describe experimentally confirmed and recently discovered hgcAB gene-carrying Hg methylating microbes; phylogenetic and taxonomic analyses are presented. In addition, the current knowledge on transformation mechanisms, the organisms that carry them out, and the impact of environmental parameters on Hg methylation, MeHg demethylation, and inorganic Hg reduction and oxidation is summarized. This knowledge provides a foundation for future action toward mitigating the impact of environmental Hg pollution.
Collapse
Affiliation(s)
- Ri-Qing Yu
- Department of Biology, University of Texas at Tyler, Tyler, TX, United States.
| | - Tamar Barkay
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
19
|
Zhang L, Philben M, Taş N, Johs A, Yang Z, Wullschleger SD, Graham DE, Pierce EM, Gu B. Unravelling biogeochemical drivers of methylmercury production in an Arctic fen soil and a bog soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118878. [PMID: 35085651 DOI: 10.1016/j.envpol.2022.118878] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Arctic tundra soils store a globally significant amount of mercury (Hg), which could be transformed to the neurotoxic methylmercury (MeHg) upon warming and thus poses serious threats to the Arctic ecosystem. However, our knowledge of the biogeochemical drivers of MeHg production is limited in these soils. Using substrate addition (acetate and sulfate) and selective microbial inhibition approaches, we investigated the geochemical drivers and dominant microbial methylators in 60-day microcosm incubations with two tundra soils: a circumneutral fen soil and an acidic bog soil, collected near Nome, Alaska, United States. Results showed that increasing acetate concentration had negligible influences on MeHg production in both soils. However, inhibition of sulfate-reducing bacteria (SRB) completely stalled MeHg production in the fen soil in the first 15 days, whereas addition of sulfate in the low-sulfate bog soil increased MeHg production by 5-fold, suggesting prominent roles of SRB in Hg(II) methylation. Without the addition of sulfate in the bog soil or when sulfate was depleted in the fen soil (after 15 days), both SRB and methanogens contributed to MeHg production. Analysis of microbial community composition confirmed the presence of several phyla known to harbor microorganisms associated with Hg(II) methylation in the soils. The observations suggest that SRB and methanogens were mainly responsible for Hg(II) methylation in these tundra soils, although their relative contributions depended on the availability of sulfate and possibly syntrophic metabolisms between SRB and methanogens.
Collapse
Affiliation(s)
- Lijie Zhang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA; Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Michael Philben
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Neslihan Taş
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, USA
| | - Alexander Johs
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Ziming Yang
- Department of Chemistry, Oakland University, Rochester, MI, 48309, USA
| | - Stan D Wullschleger
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - David E Graham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Eric M Pierce
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
20
|
Zhang Y, Zhang L, Liang X, Wang Q, Yin X, Pierce EM, Gu B. Competitive exchange between divalent metal ions [Cu(II), Zn(II), Ca(II)] and Hg(II) bound to thiols and natural organic matter. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127388. [PMID: 34879578 DOI: 10.1016/j.jhazmat.2021.127388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Mercuric Hg(II) ion forms exceptionally strong complexes with various organic ligands, particularly thiols and dissolved organic matter (DOM) in natural water. Few studies, however, have experimentally determined whether or not the presence of base cations and transition metal ions, such as Ca(II), Cu(II), and Zn(II), would compete with Hg(II) bound to these ligands, as concentrations of these metal ions are usually orders of magnitude higher than Hg(II) in aquatic systems. Different from previous model predictions, a significant fraction of Hg(II) bound to cysteine (CYS), glutathione (GSH), or DOM was found to be competitively exchanged by Cu(II), but not by Zn(II) or Ca(II). About 20-75% of CYS-bound-Hg(II) [at 2:1 CYS:Hg(II)] and 14-40% of GSH-bound-Hg(II) [at 1:1 GSH:Hg(II)] were exchanged by Cu(II) at concentrations 1-3 orders of magnitude greater than Hg(II). Competitive exchange was also observed between Cu(II) and Hg(II) bound to DOM, albeit to a lower extent, depending on relative abundances of thiol and carboxylate functional groups on DOM and their equilibrium time with Hg(II). When complexed with ethylenediaminetetraacetate (EDTA), most Hg(II) could be exchanged by Cu(II) and Zn(II), as well as Ca(II) at increasing concentrations. These results shed additional light on competitive exchange reactions between Hg(II) and coexisting metal ions and have important implications in Hg(II) chemical speciation and biogeochemical transformation, particularly in contaminated environments containing relatively high concentrations of Hg(II) and metal ions.
Collapse
Affiliation(s)
- Yaoling Zhang
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources and Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China; Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Lijie Zhang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Xujun Liang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Quanying Wang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Xiangping Yin
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Eric M Pierce
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996, United States.
| |
Collapse
|
21
|
Priyadarshanee M, Chatterjee S, Rath S, Dash HR, Das S. Cellular and genetic mechanism of bacterial mercury resistance and their role in biogeochemistry and bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126985. [PMID: 34464861 DOI: 10.1016/j.jhazmat.2021.126985] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Mercury (Hg) is a highly toxic element that occurs at low concentrations in nature. However, various anthropogenic and natural sources contribute around 5000 to 8000 metric tons of Hg per year, rapidly deteriorating the environmental conditions. Mercury-resistant bacteria that possess the mer operon system have the potential for Hg bioremediation through volatilization from the contaminated milieus. Thus, bacterial mer operon plays a crucial role in Hg biogeochemistry and bioremediation by converting both reactive inorganic and organic forms of Hg to relatively inert, volatile, and monoatomic forms. Both the broad-spectrum and narrow-spectrum bacteria harbor many genes of mer operon with their unique definitive functions. The presence of mer genes or proteins can regulate the fate of Hg in the biogeochemical cycle in the environment. The efficiency of Hg transformation depends upon the nature and diversity of mer genes present in mercury-resistant bacteria. Additionally, the bacterial cellular mechanism of Hg resistance involves reduced Hg uptake, extracellular sequestration, and bioaccumulation. The presence of unique physiological properties in a specific group of mercury-resistant bacteria enhances their bioremediation capabilities. Many advanced biotechnological tools also can improve the bioremediation efficiency of mercury-resistant bacteria to achieve Hg bioremediation.
Collapse
Affiliation(s)
- Monika Priyadarshanee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology Rourkela, Rourkela 769 008, Odisha, India
| | - Shreosi Chatterjee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology Rourkela, Rourkela 769 008, Odisha, India
| | - Sonalin Rath
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology Rourkela, Rourkela 769 008, Odisha, India
| | - Hirak R Dash
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology Rourkela, Rourkela 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology Rourkela, Rourkela 769 008, Odisha, India.
| |
Collapse
|
22
|
Golden Gate Assembly of Aerobic and Anaerobic Microbial Bioreporters. Appl Environ Microbiol 2021; 88:e0148521. [PMID: 34705553 DOI: 10.1128/aem.01485-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial bioreporters provide direct insight into cellular processes by producing a quantifiable signal dictated by reporter gene expression. The core of a bioreporter is a genetic circuit in which a reporter gene (or operon) is fused to promoter and regulatory sequences that govern its expression. In this study, we develop a system for constructing novel Escherichia coli bioreporters based on Golden Gate assembly, a synthetic biology approach for the rapid and seamless fusion of DNA fragments. Gene circuits are generated by fusing promoter and reporter sequences encoding yellow fluorescent protein, mCherry, bacterial luciferase, and an anaerobically active flavin-based fluorescent protein. We address a barrier to the implementation of Golden Gate assembly by designing a series of compatible destination vectors that can accommodate the assemblies. We validate the approach by measuring the activity of constitutive bioreporters and mercury and arsenic biosensors in quantitative exposure assays. We also demonstrate anaerobic quantification of mercury and arsenic in biosensors that produce flavin-based fluorescent protein, highlighting the expanding range of redox conditions that can be examined by microbial bioreporters. IMPORTANCE Microbial bioreporters are versatile genetic tools with wide-ranging applications, particularly in the field of environmental toxicology. For example, biosensors that produce a signal output in the presence of a specific analyte offer less costly alternatives to analytical methods for the detection of environmental toxins such as mercury and arsenic. Biosensors of specific toxins can also be used to test hypotheses regarding mechanisms of uptake, toxicity, and biotransformation. In this study, we develop an assembly platform that uses a synthetic biology technique to streamline construction of novel Escherichia coli bioreporters that produce fluorescent or luminescent signals either constitutively or in response to mercury and arsenic exposure. Beyond the synthesis of novel biosensors, our assembly platform can be adapted for numerous applications, including labelling bacteria for fluorescent microscopy, developing gene expression systems, and modifying bacterial genomes.
Collapse
|
23
|
Roth S, Poulin BA, Baumann Z, Liu X, Zhang L, Krabbenhoft DP, Hines ME, Schaefer JK, Barkay T. Nutrient Inputs Stimulate Mercury Methylation by Syntrophs in a Subarctic Peatland. Front Microbiol 2021; 12:741523. [PMID: 34675906 PMCID: PMC8524442 DOI: 10.3389/fmicb.2021.741523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
Climate change dramatically impacts Arctic and subarctic regions, inducing shifts in wetland nutrient regimes as a consequence of thawing permafrost. Altered hydrological regimes may drive changes in the dynamics of microbial mercury (Hg) methylation and bioavailability. Important knowledge gaps remain on the contribution of specific microbial groups to methylmercury (MeHg) production in wetlands of various trophic status. Here, we measured aqueous chemistry, potential methylation rates (kmeth), volatile fatty acid (VFA) dynamics in peat-soil incubations, and genetic potential for Hg methylation across a groundwater-driven nutrient gradient in an interior Alaskan fen. We tested the hypotheses that (1) nutrient inputs will result in increased methylation potentials, and (2) syntrophic interactions contribute to methylation in subarctic wetlands. We observed that concentrations of nutrients, total Hg, and MeHg, abundance of hgcA genes, and rates of methylation in peat incubations (kmeth) were highest near the groundwater input and declined downgradient. hgcA sequences near the input were closely related to those from sulfate-reducing bacteria (SRB), methanogens, and syntrophs. Hg methylation in peat incubations collected near the input source (FPF2) were impacted by the addition of sulfate and some metabolic inhibitors while those down-gradient (FPF5) were not. Sulfate amendment to FPF2 incubations had higher kmeth relative to unamended controls despite no effect on kmeth from addition of the sulfate reduction inhibitor molybdate. The addition of the methanogenic inhibitor BES (25 mM) led to the accumulation of VFAs, but unlike molybdate, it did not affect Hg methylation rates. Rather, the concurrent additions of BES and molybdate significantly decreased kmeth, suggesting a role for interactions between SRB and methanogens in Hg methylation. The reduction in kmeth with combined addition of BES and molybdate, and accumulation of VFA in peat incubations containing BES, and a high abundance of syntroph-related hgcA sequences in peat metagenomes provide evidence for MeHg production by microorganisms growing in syntrophy. Collectively the results suggest that wetland nutrient regimes influence the activity of Hg methylating microorganisms and, consequently, Hg methylation rates. Our results provide key information about microbial Hg methylation and methylating communities under nutrient conditions that are expected to become more common as permafrost soils thaw.
Collapse
Affiliation(s)
- Spencer Roth
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States.,Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Brett A Poulin
- Department of Environmental Toxicology, University of California, Davis, Davis, CA, United States
| | - Zofia Baumann
- Department of Marine Sciences, University of Connecticut, Groton, CT, United States
| | - Xiao Liu
- Department of Biological Sciences, University of Massachusetts, Lowell, MA, United States.,Department of Physical and Environmental Sciences, Texas A&M University - Corpus Christi, Corpus Christi, TX, United States
| | - Lin Zhang
- Department of Physical and Environmental Sciences, Texas A&M University - Corpus Christi, Corpus Christi, TX, United States
| | - David P Krabbenhoft
- United States Geological Survey, Upper Midwest Water Science Center, Mercury Research Laboratory, Middleton, WI, United States
| | - Mark E Hines
- Department of Biological Sciences, University of Massachusetts, Lowell, MA, United States
| | - Jeffra K Schaefer
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Tamar Barkay
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
24
|
Rodríguez-Moro G, Ramírez-Acosta S, Callejón-Leblic B, Arias-Borrego A, García-Barrera T, Gómez-Ariza JL. Environmental metal toxicity assessment by the combined application of metallomics and metabolomics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:25014-25034. [PMID: 33782823 DOI: 10.1007/s11356-021-13507-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
The growing interest of our society for the environment, climate change, and the assurance of the quality of life and health has been the motor of new methodological proposals that allow a more comprehensive knowledge of the problems to be solved. In this sense, the potential of omic methodologies to study these problems from a global perspective represents a milestone in environmental studies. Therefore, the study of essential and toxic metals has a special interest, particularly in relation to toxicity issues and their association to biological interactions, transport, binding to biomolecules, and behavior in biological interfaces. These studies have promoted new instrumental platforms and methodological approaches that allow addressing these problems. Furthermore, to encompass the reality of molecule-atoms interactions in their completeness, combinations of omics have been tried, focusing on environment, food, and health issues. In this sense, the present work is situated, with the objective of reviewing the most recent methodological proposals in the field of the environment and their applications, considering not only the analytical approaches but also how they have to be applied, the use of bioindicators' exposure experiments in the laboratory, and the potential transfer of the findings from the laboratory to the field. This latter point is a true touchstone, which makes these new analytical methodologies in the necessary tools for understanding the environment and the consequences of its imbalance.
Collapse
Affiliation(s)
- Gema Rodríguez-Moro
- Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, Huelva, Spain
- International Agrofood Campus of Excellence International ceiA3, University of Huelva, Huelva, Spain
- Research Center of Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva, Spain
| | - Sara Ramírez-Acosta
- Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, Huelva, Spain
- International Agrofood Campus of Excellence International ceiA3, University of Huelva, Huelva, Spain
- Research Center of Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva, Spain
| | - Belén Callejón-Leblic
- Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, Huelva, Spain
- International Agrofood Campus of Excellence International ceiA3, University of Huelva, Huelva, Spain
- Research Center of Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva, Spain
| | - Ana Arias-Borrego
- Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, Huelva, Spain
- International Agrofood Campus of Excellence International ceiA3, University of Huelva, Huelva, Spain
- Research Center of Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva, Spain
| | - Tamara García-Barrera
- Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, Huelva, Spain.
- International Agrofood Campus of Excellence International ceiA3, University of Huelva, Huelva, Spain.
- Research Center of Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva, Spain.
| | - José-Luis Gómez-Ariza
- Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, Huelva, Spain.
- International Agrofood Campus of Excellence International ceiA3, University of Huelva, Huelva, Spain.
- Research Center of Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva, Spain.
| |
Collapse
|
25
|
Cao D, Chen W, Xiang Y, Mi Q, Liu H, Feng P, Shen H, Zhang C, Wang Y, Wang D. The efficiencies of inorganic mercury bio-methylation by aerobic bacteria under different oxygen concentrations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111538. [PMID: 33254400 DOI: 10.1016/j.ecoenv.2020.111538] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 06/12/2023]
Abstract
Limited information is available about the bio-methylation of inorganic mercury (iHg) under aerobic conditions. In this study, two γ-proteobacteria strains (P. fluorescens TGR-B2 and P. putida TGR-B4) were obtained from the soil of The Three Gorges Reservoir (TGR), demonstrating effective aerobic transformation capacities of iHg into methylmercury (MeHg). Based on periodical changes in soil oxygen content of the TGR, a culture system was established, in which 300 ng Hg (II) L-1 and O2 were set at 7%, 14%, and 21%, respectively. Results indicated that the two strains differed significantly in bacterial growth rate and MeHg production. The kinetic model of MeHg showed typical characteristics of a "two-staged" process: The first stage was dominated by bio-methylation, which was shown by increasing of net MeHg content. Moreover, the second stage was dominated by bio-demethylation, which decreased net MeHg content. Thus, we hypothesized that the mechanism of aerobic bacterial iHg bio-methylation: (1) should inefficiency compared to anaerobic bacteria i.e.SRB, which were regulated by hgcA/B gene clusters, (2) might be regarded as a passive stress response and depended on the bacterial iHg intoxication threshold and MeHg tolerance threshold.
Collapse
Affiliation(s)
- Dan Cao
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Weihong Chen
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yuping Xiang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Qianfen Mi
- Biological Science Research Center of Southwest University, Chongqing 400715, China
| | - Hang Liu
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - PengYu Feng
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Hong Shen
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Biological Science Research Center of Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Agricultural Non-point Source Pollution Control in the Three Gorges Reservoir Area, Chongqing 400715, China.
| | - Cheng Zhang
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Biological Science Research Center of Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400715, China
| | - Yongmin Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Biological Science Research Center of Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400715, China
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Biological Science Research Center of Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400715, China.
| |
Collapse
|
26
|
Fuhrmann BC, Beutel MW, O'Day PA, Tran C, Funk A, Brower S, Pasek J, Seelos M. Effects of mercury, organic carbon, and microbial inhibition on methylmercury cycling at the profundal sediment-water interface of a sulfate-rich hypereutrophic reservoir. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115853. [PMID: 33120160 DOI: 10.1016/j.envpol.2020.115853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Methylmercury (MeHg) produced by anaerobic bacteria in lakes and reservoirs, poses a threat to ecosystem and human health due to its ability to bioaccumulate in aquatic food webs. This study used 48-hr microcosm incubations of profundal sediment and bottom water from a sulfate-rich, hypereutrophic reservoir to assess seasonal patterns of MeHg cycling under various treatments. Treatments included addition of air, Hg(II), organic carbon, and microbial inhibitors. Both aeration and sodium molybdate, a sulfate-reducing bacteria (SRB) inhibitor, generally decreased MeHg concentration in microcosm water, likely by inhibiting SRB activity. The methanogenic inhibitor bromoethanesulfonate increased MeHg concentration 2- to 4- fold, suggesting that methanogens were potent demethylators. Pyruvate increased MeHg concentration under moderately reduced conditions, likely by stimulating SRB, but decreased it under highly reduced conditions, likely by stimulating methanogens. Acetate increased MeHg concentration, likely due to the stimulation of acetotrophic SRB. Results suggest that iron-reducing bacteria (IRB) were not especially prominent methylators and MeHg production at the sediment-water interface is elevated under moderately reduced conditions corresponding with SRB activity. In contrast, it is suppressed under oxic conditions due to low SRB activity, and under highly reduced conditions (<-100 mV) due to enhanced demethylation by methanogens.
Collapse
Affiliation(s)
- Byran C Fuhrmann
- University of California, Environmental Systems Graduate Program, 5200 North Lake Road, Merced, CA, 95340, USA.
| | - Marc W Beutel
- University of California, Environmental Systems Graduate Program, 5200 North Lake Road, Merced, CA, 95340, USA
| | - Peggy A O'Day
- University of California, Environmental Systems Graduate Program, 5200 North Lake Road, Merced, CA, 95340, USA
| | - Christian Tran
- Environmental Analytical Laboratory, University of California, 5200 North Lake Rd, Merced, CA, 95340, USA
| | - Andrew Funk
- City of San Diego, Public Utilities Department, 9192 Topaz Way, San Diego, CA, 92123, USA
| | - Sarah Brower
- City of San Diego, Public Utilities Department, 9192 Topaz Way, San Diego, CA, 92123, USA
| | - Jeffery Pasek
- City of San Diego, Public Utilities Department, 9192 Topaz Way, San Diego, CA, 92123, USA
| | - Mark Seelos
- University of California, Environmental Systems Graduate Program, 5200 North Lake Road, Merced, CA, 95340, USA
| |
Collapse
|
27
|
Gionfriddo CM, Wymore AM, Jones DS, Wilpiszeski RL, Lynes MM, Christensen GA, Soren A, Gilmour CC, Podar M, Elias DA. An Improved hgcAB Primer Set and Direct High-Throughput Sequencing Expand Hg-Methylator Diversity in Nature. Front Microbiol 2020; 11:541554. [PMID: 33123100 PMCID: PMC7573106 DOI: 10.3389/fmicb.2020.541554] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/25/2020] [Indexed: 01/27/2023] Open
Abstract
The gene pair hgcAB is essential for microbial mercury methylation. Our understanding of its abundance and diversity in nature is rapidly evolving. In this study we developed a new broad-range primer set for hgcAB, plus an expanded hgcAB reference library, and used these to characterize Hg-methylating communities from diverse environments. We applied this new Hg-methylator database to assign taxonomy to hgcA sequences from clone, amplicon, and metagenomic datasets. We evaluated potential biases introduced in primer design, sequence length, and classification, and suggest best practices for studying Hg-methylator diversity. Our study confirms the emerging picture of an expanded diversity of HgcAB-encoding microbes in many types of ecosystems, with abundant putative mercury methylators Nitrospirae and Chloroflexi in several new environments including salt marsh and peat soils. Other common microbes encoding HgcAB included Phycisphaerae, Aminicenantes, Spirochaetes, and Elusimicrobia. Combined with high-throughput amplicon specific sequencing, the new primer set also indentified novel hgcAB sequences similar to Lentisphaerae, Bacteroidetes, Atribacteria, and candidate phyla WOR-3 and KSB1 bacteria. Gene abundance data also corroborate the important role of two "classic" groups of methylators (Deltaproteobacteria and Methanomicrobia) in many environments, but generally show a scarcity of hgcAB+ Firmicutes. The new primer set was developed to specifically target hgcAB sequences found in nature, reducing degeneracy and providing increased sensitivity while maintaining broad diversity capture. We evaluated mock communities to confirm primer improvements, including culture spikes to environmental samples with variable DNA extraction and PCR amplification efficiencies. For select sites, this new workflow was combined with direct high-throughput hgcAB sequencing. The hgcAB diversity generated by direct amplicon sequencing confirmed the potential for novel Hg-methylators previously identified using metagenomic screens. A new phylogenetic analysis using sequences from freshwater, saline, and terrestrial environments showed Deltaproteobacteria HgcA sequences generally clustered among themselves, while metagenome-resolved HgcA sequences in other phyla tended to cluster by environment, suggesting horizontal gene transfer into many clades. HgcA from marine metagenomes often formed distinct subtrees from those sequenced from freshwater ecosystems. Overall the majority of HgcA sequences branch from a cluster of HgcAB fused proteins related to Thermococci, Atribacteria (candidate division OP9), Aminicenantes (OP8), and Chloroflexi. The improved primer set and library, combined with direct amplicon sequencing, provide a significantly improved assessment of the abundance and diversity of hgcAB+ microbes in nature.
Collapse
Affiliation(s)
- Caitlin M Gionfriddo
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Ann M Wymore
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Daniel S Jones
- BioTechnology Institute, University of Minnesota, St. Paul, MN, United States.,Department of Earth Sciences, Minneapolis, MN, United States
| | - Regina L Wilpiszeski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Mackenzie M Lynes
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Geoff A Christensen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Ally Soren
- Smithsonian Environmental Research Center, Edgewater, MD, United States
| | | | - Mircea Podar
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Dwayne A Elias
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
28
|
Duan P, Khan S, Ali N, Shereen MA, Siddique R, Ali B, Iqbal HM, Nabi G, Sajjad W, Bilal M. Biotransformation fate and sustainable mitigation of a potentially toxic element of mercury from environmental matrices. ARAB J CHEM 2020; 13:6949-6965. [DOI: 10.1016/j.arabjc.2020.06.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
29
|
McDaniel EA, Peterson BD, Stevens SLR, Tran PQ, Anantharaman K, McMahon KD. Expanded Phylogenetic Diversity and Metabolic Flexibility of Mercury-Methylating Microorganisms. mSystems 2020; 5:e00299-20. [PMID: 32817383 PMCID: PMC7438021 DOI: 10.1128/msystems.00299-20] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/29/2020] [Indexed: 11/23/2022] Open
Abstract
Methylmercury is a potent bioaccumulating neurotoxin that is produced by specific microorganisms that methylate inorganic mercury. Methylmercury production in diverse anaerobic bacteria and archaea was recently linked to the hgcAB genes. However, the full phylogenetic and metabolic diversity of mercury-methylating microorganisms has not been fully unraveled due to the limited number of cultured experimentally verified methylators and the limitations of primer-based molecular methods. Here, we describe the phylogenetic diversity and metabolic flexibility of putative mercury-methylating microorganisms by hgcAB identification in publicly available isolate genomes and metagenome-assembled genomes (MAGs) as well as novel freshwater MAGs. We demonstrate that putative mercury methylators are much more phylogenetically diverse than previously known and that hgcAB distribution among genomes is most likely due to several independent horizontal gene transfer events. The microorganisms we identified possess diverse metabolic capabilities spanning carbon fixation, sulfate reduction, nitrogen fixation, and metal resistance pathways. We identified 111 putative mercury methylators in a set of previously published permafrost metatranscriptomes and demonstrated that different methylating taxa may contribute to hgcA expression at different depths. Overall, we provide a framework for illuminating the microbial basis of mercury methylation using genome-resolved metagenomics and metatranscriptomics to identify putative methylators based upon hgcAB presence and describe their putative functions in the environment.IMPORTANCE Accurately assessing the production of bioaccumulative neurotoxic methylmercury by characterizing the phylogenetic diversity, metabolic functions, and activity of methylators in the environment is crucial for understanding constraints on the mercury cycle. Much of our understanding of methylmercury production is based on cultured anaerobic microorganisms within the Deltaproteobacteria, Firmicutes, and Euryarchaeota. Advances in next-generation sequencing technologies have enabled large-scale cultivation-independent surveys of diverse and poorly characterized microorganisms from numerous ecosystems. We used genome-resolved metagenomics and metatranscriptomics to highlight the vast phylogenetic and metabolic diversity of putative mercury methylators and their depth-discrete activities in thawing permafrost. This work underscores the importance of using genome-resolved metagenomics to survey specific putative methylating populations of a given mercury-impacted ecosystem.
Collapse
Affiliation(s)
- Elizabeth A McDaniel
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Benjamin D Peterson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sarah L R Stevens
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
- American Family Insurance Data Science Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Patricia Q Tran
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Katherine D McMahon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
30
|
Cooper CJ, Zheng K, Rush KW, Johs A, Sanders BC, Pavlopoulos GA, Kyrpides NC, Podar M, Ovchinnikov S, Ragsdale SW, Parks JM. Structure determination of the HgcAB complex using metagenome sequence data: insights into microbial mercury methylation. Commun Biol 2020; 3:320. [PMID: 32561885 PMCID: PMC7305189 DOI: 10.1038/s42003-020-1047-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/27/2020] [Indexed: 11/09/2022] Open
Abstract
Bacteria and archaea possessing the hgcAB gene pair methylate inorganic mercury (Hg) to form highly toxic methylmercury. HgcA consists of a corrinoid binding domain and a transmembrane domain, and HgcB is a dicluster ferredoxin. However, their detailed structure and function have not been thoroughly characterized. We modeled the HgcAB complex by combining metagenome sequence data mining, coevolution analysis, and Rosetta structure calculations. In addition, we overexpressed HgcA and HgcB in Escherichia coli, confirmed spectroscopically that they bind cobalamin and [4Fe-4S] clusters, respectively, and incorporated these cofactors into the structural model. Surprisingly, the two domains of HgcA do not interact with each other, but HgcB forms extensive contacts with both domains. The model suggests that conserved cysteines in HgcB are involved in shuttling HgII, methylmercury, or both. These findings refine our understanding of the mechanism of Hg methylation and expand the known repertoire of corrinoid methyltransferases in nature. Connor J. Cooper et al. expressed HgcA and HgcB in Escherichia coli and modeled the structure of the HgcAB complex by combining metagenome sequence data, coevolution analysis, and ab initio structure calculations. This study provides insights into the biochemical mechanism of mercury (Hg) methylation.
Collapse
Affiliation(s)
- Connor J Cooper
- Graduate School of Genome Science and Technology, University of Tennessee, F225 Walters Life Science, Knoxville, TN, 37996, USA.,Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831-6038, USA
| | - Kaiyuan Zheng
- Department of Biological Chemistry, University of Michigan Medical School, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-0606, USA
| | - Katherine W Rush
- Department of Biological Chemistry, University of Michigan Medical School, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-0606, USA
| | - Alexander Johs
- Environmental Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831-6038, USA
| | - Brian C Sanders
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831-6038, USA
| | - Georgios A Pavlopoulos
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.,Institute for Fundamental Biomedical Research, Biomedical Science Research Center "Alexander Fleming", 34 Fleming Street, 16672, Vari, Greece
| | - Nikos C Kyrpides
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory Berkeley, California, USA
| | - Mircea Podar
- Graduate School of Genome Science and Technology, University of Tennessee, F225 Walters Life Science, Knoxville, TN, 37996, USA.,Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831-6038, USA
| | - Sergey Ovchinnikov
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA, 02138, USA
| | - Stephen W Ragsdale
- Department of Biological Chemistry, University of Michigan Medical School, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-0606, USA
| | - Jerry M Parks
- Graduate School of Genome Science and Technology, University of Tennessee, F225 Walters Life Science, Knoxville, TN, 37996, USA. .,Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831-6038, USA.
| |
Collapse
|
31
|
Bravo AG, Cosio C. Biotic formation of methylmercury: A bio-physico-chemical conundrum. LIMNOLOGY AND OCEANOGRAPHY 2020; 65:1010-1027. [PMID: 32612306 PMCID: PMC7319479 DOI: 10.1002/lno.11366] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/17/2019] [Accepted: 10/02/2019] [Indexed: 05/11/2023]
Abstract
Mercury (Hg) is a natural and widespread trace metal, but is considered a priority pollutant, particularly its organic form methylmercury (MMHg), because of human's exposure to MMHg through fish consumption. Pioneering studies showed the methylation of divalent Hg (HgII) to MMHg to occur under oxygen-limited conditions and to depend on the activity of anaerobic microorganisms. Recent studies identified the hgcAB gene cluster in microorganisms with the capacity to methylate HgII and unveiled a much wider range of species and environmental conditions producing MMHg than previously expected. Here, we review the recent knowledge and approaches used to understand HgII-methylation, microbial biodiversity and activity involved in these processes, and we highlight the current limits for predicting MMHg concentrations in the environment. The available data unveil the fact that HgII methylation is a bio-physico-chemical conundrum in which the efficiency of biological HgII methylation appears to depend chiefly on HgII and nutrients availability, the abundance of electron acceptors such as sulfate or iron, the abundance and composition of organic matter as well as the activity and structure of the microbial community. An increased knowledge of the relationship between microbial community composition, physico-chemical conditions, MMHg production, and demethylation is necessary to predict variability in MMHg concentrations across environments.
Collapse
Affiliation(s)
- Andrea G. Bravo
- Department of Marine Biology and Oceanography, Institute of Marine SciencesSpanish National Research Council (CSIC)BarcelonaSpain
| | - Claudia Cosio
- Université de Reims Champagne Ardennes, UMR‐I 02 INERIS‐URCA‐ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des milieux aquatiquesReimsFrance
| |
Collapse
|
32
|
Tang WL, Liu YR, Guan WY, Zhong H, Qu XM, Zhang T. Understanding mercury methylation in the changing environment: Recent advances in assessing microbial methylators and mercury bioavailability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136827. [PMID: 32018974 DOI: 10.1016/j.scitotenv.2020.136827] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 06/10/2023]
Abstract
Methylmercury (MeHg) is a neurotoxin, mainly derived from microbial mercury methylation in natural aquatic environments, and poses threats to human health. Polar regions and paddy soils are potential hotspots of mercury methylation and represent environmental settings that are susceptible to natural and anthropogenic perturbations. The effects of changing environmental conditions on the methylating microorganisms and mercury speciation due to global climate change and farming practices aimed for sustainable agriculture were discussed for polar regions and paddy soils, respectively. To better understand and predict microbial mercury methylation in the changing environment, we synthesized current understanding of how to effectively identify active mercury methylators and assess the bioavailability of different mercury species for methylation. The application of biomarkers based on the hgcAB genes have demonstrated the occurrence of potential mercury methylators, such as sulfate-reducing bacteria, iron-reducing bacteria, methanogen and syntrophs, in a diverse variety of microbial habitats. Advanced techniques, such as enriched stable isotope tracers, whole-cell biosensor and diffusive gradient thin film (DGT) have shown great promises in quantitatively assessing mercury availability to microbial methylators. Improved understanding of the complex structure of microbial communities consisting mercury methylators and non-methylators, chemical speciation of inorganic mercury under geochemically relevant conditions, and the pathway of cellular mercury uptake will undoubtedly facilitate accurate assessment and prediction of in situ microbial mercury methylation.
Collapse
Affiliation(s)
- Wen-Li Tang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yu-Rong Liu
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Wen-Yu Guan
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Environmental and Life Science Program (EnLS), Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Xiao-Min Qu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China.
| |
Collapse
|
33
|
Yoshimura KM, Todorova S, Biddle JF. Mercury geochemistry and microbial diversity in meromictic Glacier Lake, Jamesville, NY. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:195-202. [PMID: 32036624 DOI: 10.1111/1758-2229.12823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/06/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Meromictic lakes are stratified lakes that typically stimulate phototrophic anoxic microbial metabolism, including the transformation of sulphur. Less studied are the transformations of mercury in these environments, and the microorganisms, which mediate these reactions. In order to further an understanding of redox species, mercury and microbial populations in meromictic lakes, we examined the geochemistry and microbiology of Glacier Lake in Jamesville, NY. We found an anoxic transition at a depth of 6 m, followed by active nitrate and sulphate utilization. A chlorophyll a maximum was located at 11 m, coinciding with peaks of several photoautotrophic microbial lineages and total mercury and methyl mercury. Via amplicon sequencing, the microbial population showed pronounced peaks of cyanobacteria at 10 m, Chlorobi at 12 m and Chloroflexi at 14 m. Sulphate-reducing bacteria were also most abundant between 10 and 14 m depth. A functional gene indicating the potential for the production of methyl mercury, hgcA, was detected at several depths in the lake. Our work suggests that in addition to the sulphur cycle, the cycling of mercury may be indirectly coupled with phototrophic processes in Glacier Lake.
Collapse
Affiliation(s)
| | - Svetoslava Todorova
- Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY, USA
| | - Jennifer F Biddle
- School of Marine Science and Policy, University of Delaware, Lewes, DE, USA
| |
Collapse
|
34
|
Du H, Sun T, Wang D, Ming M. Bacterial and archaeal compositions and influencing factors in soils under different submergence time in a mercury-sensitive reservoir. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110155. [PMID: 31972452 DOI: 10.1016/j.ecoenv.2019.110155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/27/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Soils in the water-level-fluctuating zone (WLFZ) of Three Gorges Reservoir (TGR) inundated by water for different periods of time are confirmed to have disparate characteristics to mercury (Hg), and thus it is of great significance to further investigate microbial compositions and influencing factors. The objective of this study was to compare bacterial and archaeal richness, α-diversities and compositions, as well as affecting variables, especially Hg concentrations, among soils under different submergence time-SI (inundated soil), SS (semi-inundated soil), SN(non-inundated soil) and SSe (sediment)-based on high throughput sequencing. Results showed that sediment had significantly higher bacterial and archaeal richness and α-diversities than the other soil types. Anaerolinea and Aeromonas, as well as Altiarchaeales, Nitrosoarchaeum, and Methanosarta were dominant in SSe, while sharply decreasing in the other soil types, with significant difference among groups. An unclassified genus in SCG critically predominating in SI, SS and SN, drastically reduced in SSe, with extremely significant difference among groups. Bathyarchaeota and Nitrososphaera, both dominating in SSe, decreased dramatically and almost vanished in SI and SN. All the variables except pH posed a significant positive effect on bacterial and archaeal compositions in SSe, while opposite effect in the other three soil types. MeHg and THg concentrations had relatively weaker effects on microbial compositions comparing to variables like NH4+, CEC, OM and SO42+.
Collapse
Affiliation(s)
- Hongxia Du
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Bioresource for Bioenergy, Southwest University, Chongqing, 400715, China
| | - Tao Sun
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Ma Ming
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Bioresource for Bioenergy, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
35
|
Chen CF, Ju YR, Lim YC, Chen CW, Wu CH, Lin YL, Dong CD. Dry and wet seasonal variation of total mercury, inorganic mercury, and methylmercury formation in estuary and harbor sediments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 253:109683. [PMID: 31666210 DOI: 10.1016/j.jenvman.2019.109683] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 09/17/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
This study analyzed the seasonal variations and the spatial distributions of total mercury (THg), inorganic divalent mercury (IHg), and methylmercury (MeHg) in sediments of river mouth (RM), main channel (MC), and entrance (E) of the Port of Kaohsiung, Taiwan. The THg, IHg, and MeHg concentrations were, respectively, 198-9130, 2.6-3164, and <0.3-42.6 μg/kg in the wet season and 362-2264, 11.0-790, and 3.3-65.6 μg/kg in the dry season. As for seasonal variations, the concentrations of THg and IHg for RM sediment were higher in the wet season than in the dry season, whereas for MC and E was converse. Generally, MeHg in sediment was higher in the dry season than in the wet season. THg and IHg were mainly transported from the river, whereas MeHg was generated by onsite microbes transforming the local available IHg. Results indicated that the formation of MeHg in sediment may be mainly influenced by the concentration of IHg and seasonal variations.
Collapse
Affiliation(s)
- Chih-Feng Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Yun-Ru Ju
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli, 36063, Taiwan
| | - Yee Cheng Lim
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan.
| | - Chung-Hsin Wu
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan
| | - Yi-Li Lin
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 82445, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan.
| |
Collapse
|
36
|
Yuan K, Chen X, Chen P, Huang Y, Jiang J, Luan T, Chen B, Wang X. Mercury methylation-related microbes and genes in the sediments of the Pearl River Estuary and the South China Sea. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 185:109722. [PMID: 31577991 DOI: 10.1016/j.ecoenv.2019.109722] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/14/2019] [Accepted: 09/23/2019] [Indexed: 05/16/2023]
Abstract
Methylmercury (MeHg) is a toxicant that mainly originates from in situ microbial methylation of inorganic mercury (Hg) in the environment and poses a severe health risk to the public. However, the characteristics of the Hg-methylating microbial community and its relationship with MeHg production in various environments remain to be understood. In the present study, Hg-methylating microbial communities and genes (hgcAB cluster) in the sediments of the Pearl River (PR), Pearl River Estuary (PRE) and South China Sea (SCS) were investigated at a large spatial scale using high-throughput sequencing-based approaches. The results showed that sulfur-reducing bacteria (SRB) and iron-reducing bacteria (IRB) were consistently the dominant microbial strains responsible for the methylation of inorganic Hg in all three regions investigated. The abundance and diversity of Hg-methylating communities and genes were both found to be higher in the PR sediments compared to that in the PRE and SCS sediments, and in good agreement with the spatial distribution of MeHg. Furthermore, a significant correlation was observed between the MeHg concentration and the abundance of both hgcA and hgcB genes in the sediments of the PR, PRE and SCS regions. Overall, the present study suggested that there was the presence of a close link between MeHg and Hg-methylating communities or genes in the ambient aquatic environment, which could be used to reflect the potential of in situ MeHg production.
Collapse
Affiliation(s)
- Ke Yuan
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Xin Chen
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Ping Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yongshun Huang
- Guangdong Provincial Hospital for Occupational Diseases Prevention and Treatment, Guangzhou, 510300, China
| | - Jie Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Tiangang Luan
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China; State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Baowei Chen
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China.
| | - Xiaowei Wang
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China.
| |
Collapse
|
37
|
Oxidative Damage in Human Periodontal Ligament Fibroblast (hPLF) after Methylmercury Exposure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8470857. [PMID: 31885822 PMCID: PMC6893261 DOI: 10.1155/2019/8470857] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/17/2019] [Accepted: 10/24/2019] [Indexed: 12/20/2022]
Abstract
Human exposure to mercury (Hg) is primary associated with its organic form, methylmercury (MeHg), through the ingestion of contaminated seafood. However, Hg contamination is also positively correlated with the number of dental restorations, total surface of amalgam, and organic mercury concentration in the saliva. Among the cells existing in the oral cavity, human periodontal ligament fibroblast (hPLF) cells are important cells responsible for the production of matrix and extracellular collagen, besides sustentation, renewal, repair, and tissue regeneration. In this way, the present study is aimed at investigating the potential oxidative effects caused by MeHg on hPLF. Firstly, we analyzed the cytotoxic effects of MeHg (general metabolism status, cell viability, and mercury accumulation) followed by the parameters related to oxidative stress (total antioxidant capacity, GSH levels, and DNA damage). Our results demonstrated that MeHg toxicity increased in accordance with the rise of MeHg concentration in the exposure solutions (1-7 μM) causing 100% of cell death at 7 μM MeHg exposure. The general metabolism status was firstly affected by 2 μM MeHg exposure (43.8 ± 1.7%), while a significant decrease of cell viability has arisen significantly only at 3 μM MeHg exposure (68.7 ± 1.4%). The ratio among these two analyses (named fold change) demonstrated viable hPLF with compromised cellular machinery along with the range of MeHg exposure. Subsequently, two distinct MeHg concentrations (0.3 and 3 μM) were chosen based on LC50 value (4.2 μM). hPLF exposed to these two MeHg concentrations showed an intracellular Hg accumulation as a linear-type saturation curve indicating that metal accumulated diffusively in the cells, typical for metal organic forms such as methyl. The levels of total GSH decreased 50% at exposure to 3 μM MeHg when compared to control. Finally, no alteration in the DNA integrity was observed at 0.3 μM MeHg exposure, but 3 μM MeHg caused significant damage. In conclusion, it was observed that MeHg exposure affected the general metabolism status of hPLF with no necessary decrease on the cell death. Additionally, although the oxidative imbalance in the hPLF was confirmed only at 3 μM MeHg through the increase of total GSH level and DNA damage, the lower concentration of MeHg used (0.3 μM) requires attention since the intracellular mercury accumulation may be toxic at chronic exposures.
Collapse
|
38
|
Chen CF, Ju YR, Chen CW, Dong CD. The distribution of methylmercury in estuary and harbor sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:55-63. [PMID: 31319258 DOI: 10.1016/j.scitotenv.2019.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/24/2019] [Accepted: 07/01/2019] [Indexed: 06/10/2023]
Abstract
Methylmercury (MeHg) presents high toxicity to humans and can be accumulated to organisms via the food chains. In aquatic environments, MeHg is mainly formed by microorganism using the bioavailable inorganic mercury in sediment. In this study, a total of 120 surface sediments from 20 sites in the Kaohsiung Harbor were collected quarterly in the period from July 2016 to October 2017 and analyzed for total mercury (THg), bioavailable inorganic mercury (BIHg), MeHg, and several geochemical parameters. The concentrations of THg, BIHg, and MeHg in sediment were 455-5108, 7.0-1021, and 0.84-24.1 μg/kg dw, respectively. Results indicated that the percentage of MeHg to THg (MeHg ratio) in most sediment (85%) is <1.2%. Correlation analysis showed that MeHg in sediment was mainly controlled by BIHg (r = 0.759, p < 0.01), while the concentration of BIHg in sediment was mainly related to TOC (r = 0. 480, p < 0.01) and THg (r = 0.435, p < 0.01). The relationship between total bioavailable inorganic mercury (containing BIHg and the bioavailable inorganic mercury used in the synthesis of MeHg) and MeHg concentration in the sediments that collected from the estuary, harbor channel, and the entrance was established by a Michaelis-Menten model to predict the maximum value of MeHg. The efficiency of Hg methylation in the sediments of Kaohsiung Harbor is significantly affected by the total bioavailable inorganic mercury and the related environmental factors. In addition, changes in environmental conditions caused by local seasonality should also be an important factor to consider when assessing the efficiency of Hg methylation.
Collapse
Affiliation(s)
- Chih-Feng Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Yun-Ru Ju
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| |
Collapse
|
39
|
Chow E, Tsui MTK. Elucidating Microbial Pathways of Mercury Methylation During Litter Decomposition. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 103:617-622. [PMID: 31471658 DOI: 10.1007/s00128-019-02700-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Tree foliage sequesters gaseous elemental mercury (Hg) through stomatal uptake, when the foliage senesces and falls into the water, Hg from leaf litter can be released into the water and/or microbially methylated into a highly toxic form, methylmercury. The dominant groups of microbial communities that can methylate Hg during litter decomposition are, however, less certain. We conducted a microbial inhibition experiment to identify the primary methylators of leaf litter Hg during 28-day decomposition of two litter species of contrasting quality (pine and maple). We demonstrate that sulfate-reducing bacteria are the dominant microbial groups for Hg methylation during anoxic litter decomposition, and our study also indicates that methanogens may have a minor role in mediating Hg methylation during litter decomposition. Thus, aquatic environment with extensive litter accumulation and decomposition (e.g., wetlands, ponds, and river pools) can be hotspots of Hg methylation through sulfate-reduction and, to a lesser extent, methanogenesis.
Collapse
Affiliation(s)
- Elaine Chow
- Department of Biology, University of North Carolina at Greensboro, 321 McIver St, Room 312 Eberhart Building, Greensboro, NC, 27402, USA
| | - Martin Tsz-Ki Tsui
- Department of Biology, University of North Carolina at Greensboro, 321 McIver St, Room 312 Eberhart Building, Greensboro, NC, 27402, USA.
| |
Collapse
|
40
|
Christensen GA, Gionfriddo CM, King AJ, Moberly JG, Miller CL, Somenahally AC, Callister SJ, Brewer H, Podar M, Brown SD, Palumbo AV, Brandt CC, Wymore AM, Brooks SC, Hwang C, Fields MW, Wall JD, Gilmour CC, Elias DA. Determining the Reliability of Measuring Mercury Cycling Gene Abundance with Correlations with Mercury and Methylmercury Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8649-8663. [PMID: 31260289 DOI: 10.1021/acs.est.8b06389] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Methylmercury (MeHg) is a bioaccumulative toxic contaminant in many ecosystems, but factors governing its production are poorly understood. Recent work has shown that the anaerobic microbial conversion of mercury (Hg) to MeHg requires the Hg-methylation genes hgcAB and that these genes can be used as biomarkers in PCR-based estimators of Hg-methylator abundance. In an effort to determine reliable methods for assessing hgcA abundance and diversity and linking them to MeHg concentrations, multiple approaches were compared including metagenomic shotgun sequencing, 16S rRNA gene pyrosequencing and cloning/sequencing hgcAB gene products. Hg-methylator abundance was also determined by quantitative hgcA qPCR amplification and metaproteomics for comparison to the above measurements. Samples from eight sites were examined covering a range of total Hg (HgT; 0.03-14 mg kg-1 dry wt. soil) and MeHg (0.05-27 μg kg-1 dry wt. soil) concentrations. In the metagenome and amplicon sequencing of hgcAB diversity, the Deltaproteobacteria were the dominant Hg-methylators while Firmicutes and methanogenic Archaea were typically ∼50% less abundant. This was consistent with metaproteomics estimates where the Deltaproteobacteria were steadily higher. The 16S rRNA gene pyrosequencing did not have sufficient resolution to identify hgcAB+ species. Metagenomic and hgcAB results were similar for Hg-methylator diversity and clade-specific qPCR-based approaches for hgcA are only appropriate when comparing the abundance of a particular clade across various samples. Weak correlations between Hg-methylating bacteria and soil Hg concentrations were observed for similar environmental samples, but overall total Hg and MeHg concentrations poorly correlated with Hg-cycling genes.
Collapse
Affiliation(s)
- Geoff A Christensen
- Biosciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831-6342 , United States
| | - Caitlin M Gionfriddo
- Biosciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831-6342 , United States
| | - Andrew J King
- Biosciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831-6342 , United States
| | - James G Moberly
- College of Engineering , University of Idaho , Moscow , Idaho 83844 , United States
| | - Carrie L Miller
- School of Theoretical and Applied Science , Ramapo College of New Jersey , Mahwah , New Jersey 07430 , United States
| | - Anil C Somenahally
- Department of Soil and Crop Sciences , Texas A&M University , Overton , Texas 77843-2474 , United States
| | - Stephen J Callister
- Biological Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Heather Brewer
- Biological Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Mircea Podar
- Biosciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831-6342 , United States
| | - Steven D Brown
- Biosciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831-6342 , United States
| | - Anthony V Palumbo
- Biosciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831-6342 , United States
| | - Craig C Brandt
- Biosciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831-6342 , United States
| | - Ann M Wymore
- Biosciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831-6342 , United States
| | - Scott C Brooks
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37830 , United States
| | - Chiachi Hwang
- Center for Biofilm Engineering , Montana State University , Bozeman , Montana 59717 , United States
| | - Matthew W Fields
- Department of Microbiology and Immunology , Montana State University , Bozeman , Montana 59717 , United States
- Center for Biofilm Engineering , Montana State University , Bozeman , Montana 59717 , United States
| | - Judy D Wall
- Department of Biochemistry , University of Missouri , Columbia , Missouri 65211 , United States
| | - Cynthia C Gilmour
- Smithsonian Environmental Research Center , Edgewater , Maryland 21037 , United States
| | - Dwayne A Elias
- Biosciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831-6342 , United States
| |
Collapse
|
41
|
Rivera NA, Bippus PM, Hsu-Kim H. Relative Reactivity and Bioavailability of Mercury Sorbed to or Coprecipitated with Aged Iron Sulfides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7391-7399. [PMID: 31173690 PMCID: PMC8412064 DOI: 10.1021/acs.est.9b00768] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The potential for inorganic mercury (Hg) to be converted to methylmercury depends, in part, on the chemical form of Hg and its bioavailability to anaerobic microorganisms that can methylate Hg. In anaerobic settings, Hg can be associated with sulfide phases, including ferrous iron sulfide (FeS), which can sorb or be coprecipitated with Hg. The objective of this study was to determine if the aging state of FeS alters the Hg coordination environment as well as the reactivity and bioavailability of sorbed and coprecipitated Hg species. FeS particles were synthesized with and without Hg2+ and aged in anaerobic conditions for multiple time frames spanning from 1 h to 1 month. For FeS particles synthesized without Hg, Hg2+ was subsequently sorbed to the FeS for 1 day. Analysis of Hg speciation of these materials by X-ray absorption near edge spectroscopy revealed a predominance of four-coordinate Hg-S species in the sorbed Hg-FeS solids and a mixture of two- and four-coordinate Hg-S in the coprecipitated Hg-FeS. The leaching potential of the Hg was assessed by exposing the particles to a solution of dissolved glutathione (a thiolate-based Hg chelator). As expected, the sorbed Hg-FeS released more soluble Hg compared to the coprecipitated Hg-FeS. However, when these particles were exposed to Desulfovibrio desulfuricans ND132 (a known Hg methylator), more Hg was methylated from the coprecipitated Hg-FeS than the sorbed Hg-FeS, consistent with expectations from the Hg-S coordination state and inconsistent with the selective leaching results. Overall, these results suggest that the bioavailability of particulate Hg cannot be easily discerned by its leaching potential into bulk solution. Rather, bioavailability entails more subtle interactions at particle-cell interfaces and perhaps correlates with the local Hg-S coordination state in the particles.
Collapse
Affiliation(s)
- Nelson A. Rivera
- Department of Civil and Environmental Engineering, Box 90287, Duke University, Durham, North Carolina 27708, USA
| | - Paige M. Bippus
- Department of Civil and Environmental Engineering, Box 90287, Duke University, Durham, North Carolina 27708, USA
| | - Heileen Hsu-Kim
- Department of Civil and Environmental Engineering, Box 90287, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
42
|
Ding LY, Zhang YY, Zhang LJ, Fang F, He NN, Liang P, Wu SC, Wong MH, Tao HC. Mercury methylation by Geobacter metallireducens GS-15 in the presence of Skeletonema costatum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:208-214. [PMID: 30928750 DOI: 10.1016/j.scitotenv.2019.03.222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
In this study, bacterial mercury (Hg) methylation was investigated under the influence of red-tide algae of Skeletonema costatum (S. costatum). The distribution and speciation of total mercury (THg) and methylmercury (MeHg) were profiled by employing Geobacter metallireducens (G. metallireducens GS-15) as the methylating bacteria. G. metallireducens GS-15 showed different capabilities in methylating different inorganic forms of Hg(II) (HgCl2) and Hg(II)-Algae (HgCl2 captured by S. costatum) to MeHg. In the absence of S. costatum, a maximum methylation efficiency of 4.31 ± 0.47% was achieved with Hg(II) of 1-100 μg L-1, while accelerated MeHg formation rate was detected at a higher initial Hg(II) concentration. In the presence of S. costatum, there were distinct changes in the distribution of THg and MeHg by altering the bioavailability of Hg(II) and Hg(II)-Algae. A larger proportion of THg tended to be retained by a higher algal biomass, resulting in decreased methylation efficiencies. The methylation efficiency of Hg(II) decreased from 3.01 ± 0.10% to 1.01 ± 0.01% with 10-mL and 250-mL algal media, and that of Hg(II)-Algae decreased from 0.83 ± 0.13% to 0.22 ± 0.01% with 10-mL and 250-mL Hg(II)-Algae media. Fourier transform infrared spectrometry, surface charge properties and elemental compositions of S. costatum were used to infer that amine, carboxyl and sulfonate functional groups were most likely to interact with Hg(II) through complexation and/or electrostatic attraction. These results suggest that red-tide algae may be an influencing factor on bacterial Hg methylation in eutrophic water bodies.
Collapse
Affiliation(s)
- Ling-Yun Ding
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, PR China
| | - Yao-Yu Zhang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, PR China
| | - Li-Juan Zhang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, PR China
| | - Fang Fang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, PR China
| | - Ning-Ning He
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, PR China
| | - Peng Liang
- School of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Linan 311300, Zhejiang, PR China
| | - Sheng Chun Wu
- School of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Linan 311300, Zhejiang, PR China
| | - Ming Hung Wong
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, State Environmental Protection Key Laboratory of Integrated Water-Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, Guangdong, PR China; Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Hu-Chun Tao
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, PR China.
| |
Collapse
|
43
|
Du H, Ma M, Igarashi Y, Wang D. Biotic and Abiotic Degradation of Methylmercury in Aquatic Ecosystems: A Review. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 102:605-611. [PMID: 30603765 DOI: 10.1007/s00128-018-2530-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/18/2018] [Indexed: 05/16/2023]
Abstract
Mercury (Hg) methylation and demethylation is supposed to simultaneously exist in the environment and form a cycle, which determines the net production of methylmercury (MeHg). Exploring the mechanisms of MeHg formation and degradation, and its final fate in the natural environment is essential to understanding the biogeochemical cycle of Hg. However, MeHg demethylation has been less studied in the past years comparing with Hg methylation, particularly in anaerobic microorganisms whose demethylation role has been under-evaluated. This review described the current state of knowledge on biotic (microorganisms) and abiotic demethylation (photodegradation, chemical degradation) of MeHg. The decomposition of MeHg performed by microorganisms has been identified as two different pathways, reductive demethylation (RD) and oxidative demethylation (OD). Anaerobic and aerobic microorganisms involved in the process of RD and OD, influencing factors as well as research background and histories are systematically described in this review. It is predicted that the photodegradation mechanism, as well as anaerobic microorganisms involved in MeHg formation and degradation cycle will be the focus of future research.
Collapse
Affiliation(s)
- Hongxia Du
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Bio-Resource for Bioenergy, Southwest University, Chongqing, 400715, China
| | - Ming Ma
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yasuo Igarashi
- College of Resources and Environment, Southwest University, Chongqing, 400715, China.
- Chongqing Key Laboratory of Bio-Resource for Bioenergy, Southwest University, Chongqing, 400715, China.
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
44
|
Zhang L, Wu S, Zhao L, Lu X, Pierce EM, Gu B. Mercury Sorption and Desorption on Organo-Mineral Particulates as a Source for Microbial Methylation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2426-2433. [PMID: 30702880 DOI: 10.1021/acs.est.8b06020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In natural freshwater and sediments, mercuric mercury (Hg(II)) is largely associated with particulate minerals and organics, but it remains unclear under what conditions particulates may become a sink or a source for Hg(II) and whether the particulate-bound Hg(II) is bioavailable for microbial uptake and methylation. In this study, we investigated Hg(II) sorption-desorption characteristics on three organo-coated hematite particulates and a Hg-contaminated natural sediment and evaluated the potential of particulate-bound Hg(II) for microbial methylation. Mercury rapidly sorbed onto particulates, especially the cysteine-coated hematite and sediment, with little desorption observed (0.1-4%). However, the presence of Hg-binding ligands, such as low-molecular-weight thiols and humic acids, resulted in up to 60% of Hg(II) desorption from the Hg-laden hematite particulates but <6% from the sediment. Importantly, the particulate-bound Hg(II) was bioavailable for uptake and methylation by a sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 under anaerobic incubations, and the methylation rate was 4-10 times higher than the desorption rate of Hg(II). These observations suggest direct contacts and interactions between bacterial cells and the particulate-bound Hg(II), resulting in rapid exchange or uptake of Hg(II) by the bacteria. The results highlight the importance of Hg(II) partitioning at particulate-water interfaces and the role of particulates as a significant source of Hg(II) for methylation in the environment.
Collapse
Affiliation(s)
- Lijie Zhang
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Shan Wu
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
- School of Resource, Environmental and Chemical Engineering , Nanchang University , Nanchang 330031 , China
| | - Linduo Zhao
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Xia Lu
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Eric M Pierce
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Baohua Gu
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
- Department of Biosystems Engineering and Soil Science , University of Tennessee , Knoxville , Tennessee 37996 , United States
| |
Collapse
|
45
|
Ma M, Du H, Sun T, An S, Yang G, Wang D. Characteristics of archaea and bacteria in rice rhizosphere along a mercury gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:1640-1651. [PMID: 30054090 DOI: 10.1016/j.scitotenv.2018.07.175] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
Several strains of archaea have the ability to methylate or resist mercury (Hg), and the paddy field is regarded to be conducive to Hg methylation. However, our knowledge of Hg-methylating or Hg-resistant archaea in paddy soils is very limited so far. Therefore, the distribution of archaea and bacteria in the rhizosphere (RS) and bulk soil (BS) of the rice growing in Xiushan Hg-mining area of southwest China was investigated. Bacterial and archaeal 16S rRNA gene amplicon sequencing of the rice rhizosphere along the Hg gradient was conducted. THg concentrations in RS were significantly higher than that in BS at site S1 and S2, while MeHg concentrations in RS was always higher than that in BS, except S6. Bacterial species richness estimates were much higher than that in archaea. The bacterial α-diversity in high-Hg sites was significant higher than that in low-Hg sites based on ACE and Shannon indices. At the genus level, Thiobacillus, Xanthomonas, Defluviicoccus and Candidatus Nitrosoarchaeum were significantly more abundant in the rhizosphere of high-Hg sites, which meant that strains in these genera might play important roles in response to Hg stress. Hg-methylating archaea in the paddy field could potentially be affiliated to strains in Methanosarcina, but further evidence need to be found. The results provide reference to understand archaeal rhizosphere community along an Hg gradient paddy soils.
Collapse
Affiliation(s)
- Ming Ma
- College of Resources and Environment, Southwest University, Chongqing 400715, China; School of Environment, Jinan University, Guangzhou 510632, China
| | - Hongxia Du
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Research Center of Bioenergy and Bioremediation, Southwest University, Chongqing 400715, China
| | - Tao Sun
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Siwei An
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Guang Yang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
46
|
Regnell O, Watras CJ. Microbial Mercury Methylation in Aquatic Environments: A Critical Review of Published Field and Laboratory Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4-19. [PMID: 30525497 DOI: 10.1021/acs.est.8b02709] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Methylmercury (MeHg) is an environmental contaminant of concern because it biomagnifies in aquatic food webs and poses a health hazard to aquatic biota, piscivorous wildlife and humans. The dominant source of MeHg to freshwater systems is the methylation of inorganic Hg (IHg) by anaerobic microorganisms; and it is widely agreed that in situ rates of Hg methylation depend on two general factors: the activity of Hg methylators and their uptake of IHg. A large body of research has focused on the biogeochemical processes that regulate these two factors in nature; and studies conducted within the past ten years have made substantial progress in identifying the genetic basis for intracellular methylation and defining the processes that govern the cellular uptake of IHg. Current evidence indicates that all Hg methylating anaerobes possess the gene pair hgcAB that encodes proteins essential for Hg methylation. These genes are found in a large variety of anaerobes, including iron reducers and methanogens; but sulfate reduction is the metabolic process most often reported to show strong links to MeHg production. The uptake of Hg substrate prior to methylation may occur by passive or active transport, or by a combination of both. Competitive inhibition of Hg uptake by Zn speaks in favor of active transport and suggests that essential metal transporters are involved. Shortly after its formation, MeHg is typically released from cells, but the efflux mechanisms are unknown. Although methylation facilitates Hg depuration from the cell, evidence suggests that the hgcAB genes are not induced or favored by Hg contamination. Instead, high MeHg production can be linked to high Hg bioavailability as a result of the formation of Hg(SH)2, HgS nanoparticles, and Hg-thiol complexes. It is also possible that sulfidic conditions require strong essential metal uptake systems that inadvertently bring Hg into the cytoplasm of Hg methylating microbes. In comparison with freshwaters, Hg methylation in open ocean waters appears less restricted to anoxic environments. It does seem to occur mainly in oxygen deficient zones (ODZs), and possibly within anaerobic microzones of settling organic matter, but MeHg (CH3Hg+) and Me2Hg ((CH3)2Hg) have been shown to form also in surface water samples from the euphotic zone. Future studies may disclose whether several different pathways lead to Hg methylation in marine waters and explain why Me2Hg is a significant Hg species in oceans but seemingly not in most freshwaters.
Collapse
Affiliation(s)
- Olof Regnell
- Department of Biology/Aquatic Ecology , Lund University , SE-223 62 Lund , Sweden
| | - Carl J Watras
- Bureau of Water Quality , Wisconsin Department of Natural Resources , Madison , Wisconsin 53703 , United States
- Center for Limnology , University of Wisconsin-Madison , 3110 Trout Lake Station Drive , Boulder Junction , Wisconsin 54512 , United States
| |
Collapse
|
47
|
Qin C, Chen M, Yan H, Shang L, Yao H, Li P, Feng X. Compound specific stable isotope determination of methylmercury in contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:406-412. [PMID: 29981990 DOI: 10.1016/j.scitotenv.2018.06.328] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/24/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
Rice is one of the main sources of methylmercury (MeHg) to humans, and soil is the main source of MeHg to rice grains. Determining the Hg isotope composition in environmental samples is a good way of characterizing sources of Hg pollution and investigating environmental processes. We developed a new compound-specific method for determining stable Hg isotopes in MeHg in contaminated soil and sediment. The method involved HNO3 leaching/solvent extraction, chemical ethylation, and separation by gas chromatography with a solenoid valve optimized to enrich MeHg. The method was optimized by using MeHg standard solution, certified reference materials and paddy soil samples. The δ202Hg precision for replicate MeHg isotope analyses was 0.14‰ (2 × standard deviation, n = 11), and no fractionation of Hg stable isotopes was found during the separation processes. The δ202Hg values for MeHg in paddy soils were -1.78‰ to -1.30‰, which were lower than the δ202Hg values for total Hg (-1.32‰ to -0.44‰). The results indicated that methylation (rather than demethylation) was the dominant process in the paddy soils. The method developed in this study can help us to better understand MeHg migration and transformation processes in paddy soil-rice ecosystem.
Collapse
Affiliation(s)
- Chongyang Qin
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Chen
- School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Haiyu Yan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Lihai Shang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Heng Yao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
48
|
Liu YR, Johs A, Bi L, Lu X, Hu HW, Sun D, He JZ, Gu B. Unraveling Microbial Communities Associated with Methylmercury Production in Paddy Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13110-13118. [PMID: 30335986 DOI: 10.1021/acs.est.8b03052] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Rice consumption is now recognized as an important pathway of human exposure to the neurotoxin methylmercury (MeHg), particularly in countries where rice is a staple food. Although the discovery of a two-gene cluster hgcAB has linked Hg methylation to several phylogenetically diverse groups of anaerobic microorganisms converting inorganic mercury (Hg) to MeHg, the prevalence and diversity of Hg methylators in microbial communities of rice paddy soils remain unclear. We characterized the abundance and distribution of hgcAB genes using third-generation PacBio long-read sequencing and Illumina short-read metagenomic sequencing, in combination with quantitative PCR analyses in several mine-impacted paddy soils from southwest China. Both Illumina and PacBio sequencing analyses revealed that Hg methylating communities were dominated by iron-reducing bacteria (i.e., Geobacter) and methanogens, with a relatively low abundance of hgcA + sulfate-reducing bacteria in the soil. A positive correlation was observed between the MeHg content in soil and the relative abundance of Geobacter carrying the hgcA gene. Phylogenetic analysis also uncovered some hgcAB sequences closely related to three novel Hg methylators, Geobacter anodireducens, Desulfuromonas sp. DDH964, and Desulfovibrio sp. J2, among which G. anodireducens was validated for its ability to methylate Hg. These findings shed new light on microbial community composition and major clades likely driving Hg methylation in rice paddy soils.
Collapse
Affiliation(s)
- Yu-Rong Liu
- State Key Laboratory of Urban and Regional Ecology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing Shi 100085 , China
| | - Alexander Johs
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Li Bi
- State Key Laboratory of Urban and Regional Ecology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing Shi 100085 , China
| | - Xia Lu
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Hang-Wei Hu
- Department of Veterinary and Agricultural Sciences , The University of Melbourne , Melbourne , Victoria 3004 , Australia
| | - Dan Sun
- Ocean College , Zhejiang University , Zhejiang , 310058 , China
| | - Ji-Zheng He
- State Key Laboratory of Urban and Regional Ecology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing Shi 100085 , China
- Department of Veterinary and Agricultural Sciences , The University of Melbourne , Melbourne , Victoria 3004 , Australia
| | - Baohua Gu
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
- Department of Biosystems Engineering and Soil Science , University of Tennessee , Knoxville , Tennessee 37996 , United States
| |
Collapse
|
49
|
Methanogens and Iron-Reducing Bacteria: the Overlooked Members of Mercury-Methylating Microbial Communities in Boreal Lakes. Appl Environ Microbiol 2018; 84:AEM.01774-18. [PMID: 30242005 PMCID: PMC6238055 DOI: 10.1128/aem.01774-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 09/15/2018] [Indexed: 12/28/2022] Open
Abstract
Despite the global awareness that mercury, and methylmercury in particular, is a neurotoxin to which millions of people continue to be exposed, there are sizable gaps in the understanding of the processes and organisms involved in methylmercury formation in aquatic ecosystems. In the present study, we shed light on the diversity of the microorganisms responsible for methylmercury formation in boreal lake sediments. All the microorganisms identified are associated with the processing of organic matter in aquatic systems. Moreover, our results show that the well-known mercury-methylating sulfate-reducing bacteria constituted only a minor portion of the potential mercury methylators. In contrast, methanogens and iron-reducing bacteria were important contributors to methylmercury formation, highlighting their role in mercury cycling in the environment. Methylmercury is a potent human neurotoxin which biomagnifies in aquatic food webs. Although anaerobic microorganisms containing the hgcA gene potentially mediate the formation of methylmercury in natural environments, the diversity of these mercury-methylating microbial communities remains largely unexplored. Previous studies have implicated sulfate-reducing bacteria as the main mercury methylators in aquatic ecosystems. In the present study, we characterized the diversity of mercury-methylating microbial communities of boreal lake sediments using high-throughput sequencing of 16S rRNA and hgcA genes. Our results show that in the lake sediments, Methanomicrobiales and Geobacteraceae also represent abundant members of the mercury-methylating communities. In fact, incubation experiments with a mercury isotopic tracer and molybdate revealed that only between 38% and 45% of mercury methylation was attributed to sulfate reduction. These results suggest that methanogens and iron-reducing bacteria may contribute to more than half of the mercury methylation in boreal lakes. IMPORTANCE Despite the global awareness that mercury, and methylmercury in particular, is a neurotoxin to which millions of people continue to be exposed, there are sizable gaps in the understanding of the processes and organisms involved in methylmercury formation in aquatic ecosystems. In the present study, we shed light on the diversity of the microorganisms responsible for methylmercury formation in boreal lake sediments. All the microorganisms identified are associated with the processing of organic matter in aquatic systems. Moreover, our results show that the well-known mercury-methylating sulfate-reducing bacteria constituted only a minor portion of the potential mercury methylators. In contrast, methanogens and iron-reducing bacteria were important contributors to methylmercury formation, highlighting their role in mercury cycling in the environment.
Collapse
|
50
|
Gilmour C, Bell JT, Soren AB, Riedel G, Riedel G, Kopec AD, Bodaly RA. Distribution and biogeochemical controls on net methylmercury production in Penobscot River marshes and sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:555-569. [PMID: 29864668 DOI: 10.1016/j.scitotenv.2018.05.276] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 05/28/2023]
Abstract
The distribution of mercury and methylmercury (MeHg) in sediment, mudflats, and marsh soils of the Hg-contaminated tidal Penobscot River was investigated, along with biogeochemical controls on production. Average total Hg in surface samples (0-3 cm) ranged from 100 to 1200 ng/g; average MeHg ranged from 5 to 50 ng/g. MeHg was usually highest at or near the surface except in highly mobile mudflats. Although total Hg concentrations in the Penobscot are elevated, it is the accumulation of MeHg that stands out in comparison to other ecosystems. Surface soils in the large Mendall Marsh, about 17 km downstream from the contamination source, contained particularly high %MeHg (averaging 8%). In Mendall marsh soil porewaters, MeHg often accounted for more than half of total Hg. Salt marshes are areas of particular concern in the Penobscot River, for they are depositional environments for a Hg-contaminated mobile pool of river sediment, hot spots for net MeHg production, and sources of risk to marsh animals. We hypothesized that exceptionally low mercury partitioning between the solid and aqueous phases (with log Kd averaging ~4.5) drives high MeHg in Penobscot marshes. The co-occurrence of iron and sulfide in filtered soil porewaters, sometimes both above 100 μM, suggests the presence of nanoparticulate and/or colloidal metal sulfides. These colloids may be stabilized by high concentrations of aromatic and potentially sulfurized dissolved organic matter (DOM) in marsh soils. Thus, Hg in Penobscot marsh soils appears to be in a highly available for microbial methylation through the formation of DOM-associated HgS complexes. Additionally, low partitioning of MeHg to marsh soils suggests high MeHg bioavailability to animals. Overall, drivers of high MeHg in Penobscot marshes include elevated Hg in soils, low partitioning of Hg to solids, high Hg bioavailability for methylation, rapidly shifting redox conditions in surface marsh soils, and high rates of microbial activity.
Collapse
Affiliation(s)
- Cynthia Gilmour
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd., Edgewater, MD 20657, United States.
| | - James Tyler Bell
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd., Edgewater, MD 20657, United States
| | - Ally Bullock Soren
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd., Edgewater, MD 20657, United States
| | - Georgia Riedel
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd., Edgewater, MD 20657, United States
| | - Gerhardt Riedel
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd., Edgewater, MD 20657, United States
| | | | - R A Bodaly
- Penobscot River Mercury Study, Bangor, ME, US.
| |
Collapse
|