1
|
Darby AM, Okoro DO, Aredas S, Frank AM, Pearson WH, Dionne MS, Lazzaro BP. High sugar diets can increase susceptibility to bacterial infection in Drosophila melanogaster. PLoS Pathog 2024; 20:e1012447. [PMID: 39133760 PMCID: PMC11341100 DOI: 10.1371/journal.ppat.1012447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 08/22/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Overnutrition with dietary sugar can worsen infection outcomes in diverse organisms including insects and humans, through generally unknown mechanisms. In the present study, we show that adult Drosophila melanogaster fed high-sugar diets became more susceptible to infection by the Gram-negative bacteria Providencia rettgeri and Serratia marcescens. We found that P. rettgeri and S. marcescens proliferate more rapidly in D. melanogaster fed a high-sugar diet, resulting in increased probability of host death. D. melanogaster become hyperglycemic on the high-sugar diet, and we find evidence that the extra carbon availability may promote S. marcescens growth within the host. However, we found no evidence that increased carbon availability directly supports greater P. rettgeri growth. D. melanogaster on both diets fully induce transcription of antimicrobial peptide (AMP) genes in response to infection, but D. melanogaster provided with high-sugar diets show reduced production of AMP protein. Thus, overnutrition with dietary sugar may impair host immunity at the level of AMP translation. Our results demonstrate that dietary sugar can shape infection dynamics by impacting both host and pathogen, depending on the nutritional requirements of the pathogen and by altering the physiological capacity of the host to sustain an immune response.
Collapse
Affiliation(s)
- Andrea M. Darby
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
| | - Destiny O. Okoro
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
| | - Sophia Aredas
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
- University of California, Irvine, Irvine, California, United States of America
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - Ashley M. Frank
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Battelle, Columbus, Ohio, United States of America
| | - William H. Pearson
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Marc S. Dionne
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Brian P. Lazzaro
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
2
|
Łukasik P, Kolasa MR. With a little help from my friends: the roles of microbial symbionts in insect populations and communities. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230122. [PMID: 38705185 PMCID: PMC11070262 DOI: 10.1098/rstb.2023.0122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/14/2023] [Indexed: 05/07/2024] Open
Abstract
To understand insect abundance, distribution and dynamics, we need to understand the relevant drivers of their populations and communities. While microbial symbionts are known to strongly affect many aspects of insect biology, we lack data on their effects on populations or community processes, or on insects' evolutionary responses at different timescales. How these effects change as the anthropogenic effects on ecosystems intensify is an area of intense research. Recent developments in sequencing and bioinformatics permit cost-effective microbial diversity surveys, tracking symbiont transmission, and identification of functions across insect populations and multi-species communities. In this review, we explore how different functional categories of symbionts can influence insect life-history traits, how these effects could affect insect populations and their interactions with other species, and how they may affect processes and patterns at the level of entire communities. We argue that insect-associated microbes should be considered important drivers of insect response and adaptation to environmental challenges and opportunities. We also outline the emerging approaches for surveying and characterizing insect-associated microbiota at population and community scales. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.
Collapse
Affiliation(s)
- Piotr Łukasik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Michał R. Kolasa
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| |
Collapse
|
3
|
von Hoyningen-Huene AJE, Bang C, Rausch P, Rühlemann M, Fokt H, He J, Jensen N, Knop M, Petersen C, Schmittmann L, Zimmer T, Baines JF, Bosch TCG, Hentschel U, Reusch TBH, Roeder T, Franke A, Schulenburg H, Stukenbrock E, Schmitz RA. The archaeome in metaorganism research, with a focus on marine models and their bacteria-archaea interactions. Front Microbiol 2024; 15:1347422. [PMID: 38476944 PMCID: PMC10927989 DOI: 10.3389/fmicb.2024.1347422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/01/2024] [Indexed: 03/14/2024] Open
Abstract
Metaorganism research contributes substantially to our understanding of the interaction between microbes and their hosts, as well as their co-evolution. Most research is currently focused on the bacterial community, while archaea often remain at the sidelines of metaorganism-related research. Here, we describe the archaeome of a total of eleven classical and emerging multicellular model organisms across the phylogenetic tree of life. To determine the microbial community composition of each host, we utilized a combination of archaea and bacteria-specific 16S rRNA gene amplicons. Members of the two prokaryotic domains were described regarding their community composition, diversity, and richness in each multicellular host. Moreover, association with specific hosts and possible interaction partners between the bacterial and archaeal communities were determined for the marine models. Our data show that the archaeome in marine hosts predominantly consists of Nitrosopumilaceae and Nanoarchaeota, which represent keystone taxa among the porifera. The presence of an archaeome in the terrestrial hosts varies substantially. With respect to abundant archaeal taxa, they harbor a higher proportion of methanoarchaea over the aquatic environment. We find that the archaeal community is much less diverse than its bacterial counterpart. Archaeal amplicon sequence variants are usually host-specific, suggesting adaptation through co-evolution with the host. While bacterial richness was higher in the aquatic than the terrestrial hosts, a significant difference in diversity and richness between these groups could not be observed in the archaeal dataset. Our data show a large proportion of unclassifiable archaeal taxa, highlighting the need for improved cultivation efforts and expanded databases.
Collapse
Affiliation(s)
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Philipp Rausch
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Malte Rühlemann
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
- Hannover Medical School, Institute for Medical Microbiology and Hospital Epidemiology, Hannover, Germany
| | - Hanna Fokt
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jinru He
- Cell and Developmental Biology, Zoological Institute, Kiel University, Kiel, Germany
| | - Nadin Jensen
- Institute for General Microbiology, Kiel University, Kiel, Germany
| | - Mirjam Knop
- Department of Molecular Physiology, Zoology, Kiel University, Kiel, Germany
| | - Carola Petersen
- Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
| | - Lara Schmittmann
- Research Unit Ocean Dynamics, GEOMAR Helmholtz Institute for Ocean Research Kiel, Kiel, Germany
| | - Thorsten Zimmer
- Institute for General Microbiology, Kiel University, Kiel, Germany
- Research Unit Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - John F. Baines
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Thomas C. G. Bosch
- Cell and Developmental Biology, Zoological Institute, Kiel University, Kiel, Germany
| | - Ute Hentschel
- Marine Evolutionary Ecology, GEOMAR Helmholtz Center for Ocean Research, Kiel, Germany
- Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Thorsten B. H. Reusch
- Research Unit Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Thomas Roeder
- Department of Molecular Physiology, Zoology, Kiel University, Kiel, Germany
- German Center for Lung Research (DZL), Airway Research Center North (ARCN), Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Hinrich Schulenburg
- Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
- Antibiotic Resistance Group, Max-Planck Institute for Evolutionary Biology, Plön, Germany
| | - Eva Stukenbrock
- Max Planck Institute for Evolutionary Biology, Plön, Germany
- Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Ruth A. Schmitz
- Institute for General Microbiology, Kiel University, Kiel, Germany
| |
Collapse
|
4
|
Favaro R, Garrido PM, Bruno D, Braglia C, Alberoni D, Baffoni L, Tettamanti G, Porrini MP, Di Gioia D, Angeli S. Combined effect of a neonicotinoid insecticide and a fungicide on honeybee gut epithelium and microbiota, adult survival, colony strength and foraging preferences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167277. [PMID: 37741399 DOI: 10.1016/j.scitotenv.2023.167277] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Fungicides, insecticides and herbicides are widely used in agriculture to counteract pathogens and pests. Several of these molecules are toxic to non-target organisms such as pollinators and their lethal dose can be lowered if applied as a mixture. They can cause large and unpredictable problems, spanning from behavioural changes to alterations in the gut. The present work aimed at understanding the synergistic effects on honeybees of a combined in-hive exposure to sub-lethal doses of the insecticide thiacloprid and the fungicide penconazole. A multidisciplinary approach was used: honeybee mortality upon exposure was initially tested in cage, and the colonies development monitored. Morphological and ultrastructural analyses via light and transmission electron microscopy were carried out on the gut of larvae and forager honeybees. Moreover, the main pollen foraging sources and the fungal gut microbiota were studied using Next Generation Sequencing; the gut core bacterial taxa were quantified via qPCR. The mortality test showed a negative effect on honeybee survival when exposed to agrochemicals and their mixture in cage but not confirmed at colony level. Microscopy analyses on the gut epithelium indicated no appreciable morphological changes in larvae, newly emerged and forager honeybees exposed in field to the agrochemicals. Nevertheless, the gut microbial profile showed a reduction of Bombilactobacillus and an increase of Lactobacillus and total fungi upon mixture application. Finally, we highlighted for the first time a significant honeybee diet change after pesticide exposure: penconazole, alone or in mixture, significantly altered the pollen foraging preference, with honeybees preferring Hedera pollen. Overall, our in-hive results showed no severe effects upon administration of sublethal doses of thiacloprid and penconazole but indicate a change in honeybees foraging preference. A possible explanation can be that the different nutritional profile of the pollen may offer better recovery chances to honeybees.
Collapse
Affiliation(s)
- Riccardo Favaro
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen, Bolzano, Italy
| | - Paula Melisa Garrido
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET, Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina; Centro de Investigaciones en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Daniele Bruno
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
| | - Chiara Braglia
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Daniele Alberoni
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy.
| | - Loredana Baffoni
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; Interuniversity Center for Studies on Bioinspired Agro-environmental Technology (BAT Center), University of Napoli Federico II, 80055 Portici, Italy
| | - Martin Pablo Porrini
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET, Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina; Centro de Investigaciones en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Diana Di Gioia
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Sergio Angeli
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen, Bolzano, Italy
| |
Collapse
|
5
|
Ponton F, Tan YX, Forster CC, Austin AJ, English S, Cotter SC, Wilson K. The complex interactions between nutrition, immunity and infection in insects. J Exp Biol 2023; 226:jeb245714. [PMID: 38095228 DOI: 10.1242/jeb.245714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Insects are the most diverse animal group on the planet. Their success is reflected by the diversity of habitats in which they live. However, these habitats have undergone great changes in recent decades; understanding how these changes affect insect health and fitness is an important challenge for insect conservation. In this Review, we focus on the research that links the nutritional environment with infection and immune status in insects. We first discuss the research from the field of nutritional immunology, and we then investigate how factors such as intracellular and extracellular symbionts, sociality and transgenerational effects may interact with the connection between nutrition and immunity. We show that the interactions between nutrition and resistance can be highly specific to insect species and/or infection type - this is almost certainly due to the diversity of insect social interactions and life cycles, and the varied environments in which insects live. Hence, these connections cannot be easily generalised across insects. We finally suggest that other environmental aspects - such as the use of agrochemicals and climatic factors - might also influence the interaction between nutrition and resistance, and highlight how research on these is essential.
Collapse
Affiliation(s)
- Fleur Ponton
- School of Natural Sciences , Macquarie University, North Ryde, NSW 2109, Australia
| | - Yin Xun Tan
- School of Natural Sciences , Macquarie University, North Ryde, NSW 2109, Australia
| | - Casey C Forster
- School of Natural Sciences , Macquarie University, North Ryde, NSW 2109, Australia
| | | | - Sinead English
- School of Biological Sciences , University of Bristol, Bristol, BS8 1QU, UK
| | | | - Kenneth Wilson
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| |
Collapse
|
6
|
Yun HM, Hyun S. Role of gut commensal bacteria in juvenile developmental growth of the host: insights from Drosophila studies. Anim Cells Syst (Seoul) 2023; 27:329-339. [PMID: 38023592 PMCID: PMC10653766 DOI: 10.1080/19768354.2023.2282726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
The gut microbiome plays a crucial role in maintaining health in a variety of organisms, from insects to humans. Further, beneficial symbiotic microbes are believed to contribute to improving the quality of life of the host. Drosophila is an optimal model for studying host-commensal microbe interactions because it allows for convenient manipulation of intestinal microbial composition. Fly microbiota has a simple taxonomic composition and can be cultivated and genetically tracked. This permits functional studies and analyses of the molecular mechanisms underlying their effects on host physiological processes. In this context, we briefly introduce the principle of juvenile developmental growth in Drosophila. Then, we discuss the current understanding of the molecular mechanisms underlying the effects of gut commensal bacteria, such as Lactiplantibacillus plantarum and Acetobacter pomorum, in the fly gut microbiome on Drosophila juvenile growth, including specific actions of gut hormones and metabolites in conserved cellular signaling systems, such as the insulin/insulin-like (IIS) and the target of rapamycin (TOR) pathways. Given the similarities in tissue function/structure, as well as the high conservation of physiological systems between Drosophila and mammals, findings from the Drosophila model system will have significant implications for understanding the mechanisms underlying the interaction between the host and the gut microbiome in metazoans.
Collapse
Affiliation(s)
- Hyun Myoung Yun
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| | - Seogang Hyun
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| |
Collapse
|
7
|
Angstmann H, Pfeiffer S, Kublik S, Ehrhardt B, Uliczka K, Rabe KF, Roeder T, Wagner C, Schloter M, Krauss-Etschmann S. The microbial composition of larval airways from Drosophila melanogaster differ between specimens from laboratory and natural habitats. ENVIRONMENTAL MICROBIOME 2023; 18:55. [PMID: 37370177 DOI: 10.1186/s40793-023-00506-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/19/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND The fruit fly Drosophila melanogaster lives in natural habitats and has also long been used as a model organism in biological research. In this study, we used a molecular barcoding approach to analyse the airways microbiome of larvae of D. melanogaster, which were obtained from eggs of flies of the laboratory strain w1118 and from immune deficient flies (NF-kB-K), and from wild-caught flies. To assess intergenerational transmission of microbes, all eggs were incubated under the same semi-sterile conditions. RESULTS The airway microbiome of larvae from both lab-strains was dominated by the two families Acetobacteraceae and Lactobacillaceae, while larvae from wild-caught flies were dominated by Lactobacillaceae, Anaplasmataceae and Leuconostocaceae. Barcodes linked to Anaplasmataceae could be further assigned to Wolbachia sp., which is a widespread intracellular pathogen in arthropods. For Leuconostoceae, the most abundant reads were assigned to Weissella sp. Both Wolbachia and Weissella affect the development of the insects. Finally, a relative high abundance of Serratia sp. was found in larvae from immune deficient relish-/- compared to w1118 and wild-caught fly airways. CONCLUSIONS Our results show for the first time that larvae from D. melanogaster harbor an airway microbiome, which is of low complexity and strongly influenced by the environmental conditions and to a lesser extent by the immune status. Furthermore, our data indicate an intergenerational transmission of the microbiome as shaped by the environment.
Collapse
Affiliation(s)
- Hanna Angstmann
- Division of Experimental Asthma Research, Early Life Origins of Chronic Lung Disease, Research Center Borstel, German Center for Lung Research (DZL), Airway Research Center North (ARCN), Leibniz Lung Center, Borstel, Germany
| | - Stefan Pfeiffer
- ZIEL - Institute for Food and Health, Technical University of Munich, Freising, Germany
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, Oberschleißheim, Germany
| | - Susanne Kublik
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, Oberschleißheim, Germany
| | - Birte Ehrhardt
- Division of Experimental Asthma Research, Early Life Origins of Chronic Lung Disease, Research Center Borstel, German Center for Lung Research (DZL), Airway Research Center North (ARCN), Leibniz Lung Center, Borstel, Germany
| | - Karin Uliczka
- Division of Experimental Asthma Research, Early Life Origins of Chronic Lung Disease, Research Center Borstel, German Center for Lung Research (DZL), Airway Research Center North (ARCN), Leibniz Lung Center, Borstel, Germany
| | - Klaus F Rabe
- Department of Pneumology, Lungen Clinic, Grosshansdorf, Germany
- Department of Medicine, Christian Albrechts University, Germany Member of the German Center for Lung Research, Kiel, Germany
| | - Thomas Roeder
- Division of Molecular Physiology, Institute of Zoology, Christian-Albrechts University, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Kiel, Germany
| | - Christina Wagner
- Division of Experimental Asthma Research, Early Life Origins of Chronic Lung Disease, Research Center Borstel, German Center for Lung Research (DZL), Airway Research Center North (ARCN), Leibniz Lung Center, Borstel, Germany
| | - Michael Schloter
- ZIEL - Institute for Food and Health, Technical University of Munich, Freising, Germany
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, Oberschleißheim, Germany
| | - Susanne Krauss-Etschmann
- Division of Experimental Asthma Research, Early Life Origins of Chronic Lung Disease, Research Center Borstel, German Center for Lung Research (DZL), Airway Research Center North (ARCN), Leibniz Lung Center, Borstel, Germany.
- Department of Medicine, Institute for Experimental Medicine, Christian Albrechts University, Kiel, Germany.
| |
Collapse
|
8
|
Levine BH, Hoffman JM. Gut Microbiome Transplants and Their Health Impacts across Species. Microorganisms 2023; 11:1488. [PMID: 37374992 DOI: 10.3390/microorganisms11061488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
The human gut, required for ingesting and processing food, extracting nutrients, and excreting waste, is made up of not just human tissue but also trillions of microbes that are responsible for many health-promoting functions. However, this gut microbiome is also associated with multiple diseases and negative health outcomes, many of which do not have a cure or treatment. One potential mechanism to alleviate these negative health effects caused by the microbiome is the use of microbiome transplants. Here, we briefly review the gut's functional relationships in laboratory model systems and humans, with a focus on the different diseases they directly affect. We then provide an overview of the history of microbiome transplants and their use in multiple diseases including Alzheimer's disease, Parkinson's disease, as well as Clostridioides difficile infections, and irritable bowel syndrome. We finally provide insights into areas of research in which microbiome transplant research is lacking, but that simultaneously may provide significant health improvements, including age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Benjamin H Levine
- Department of Biological Sciences, Augusta University, Augusta, GA 30912, USA
| | - Jessica M Hoffman
- Department of Biological Sciences, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
9
|
Reactive Oxygen Species-Dependent Innate Immune Mechanisms Control Methicillin-Resistant Staphylococcus aureus Virulence in the Drosophila Larval Model. mBio 2021; 12:e0027621. [PMID: 34126772 PMCID: PMC8262968 DOI: 10.1128/mbio.00276-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Antibiotic-resistant Staphylococcus aureus strains constitute a major public health concern worldwide and are responsible for both health care- and community-associated infections. Here, we establish a robust and easy-to-implement model of oral S. aureus infection using Drosophila melanogaster larvae that allowed us to follow the fate of S. aureus at the whole-organism level as well as the host immune responses. Our study demonstrates that S. aureus infection triggers H2O2 production by the host via the Duox enzyme, thereby promoting antimicrobial peptide production through activation of the Toll pathway. Staphylococcal catalase mediates H2O2 neutralization, which not only promotes S. aureus survival but also minimizes the host antimicrobial response, hence reducing bacterial clearance in vivo. We show that while catalase expression is regulated in vitro by the accessory gene regulatory system (Agr) and the general stress response regulator sigma B (SigB), it no longer depends on these two master regulators in vivo. Finally, we confirm the versatility of this model by demonstrating the colonization and host stimulation capabilities of S. aureus strains belonging to different sequence types (CC8 and CC5) as well as of two other bacterial pathogens, Salmonella enterica serovar Typhimurium and Shigella flexneri. Thus, the Drosophila larva can be a general model to follow in vivo the innate host immune responses triggered during infection by human pathogens.
Collapse
|
10
|
Henry LP, Ayroles JF. Meta-analysis suggests the microbiome responds to Evolve and Resequence experiments in Drosophila melanogaster. BMC Microbiol 2021; 21:108. [PMID: 33836662 PMCID: PMC8034159 DOI: 10.1186/s12866-021-02168-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 03/31/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Experimental evolution has a long history of uncovering fundamental insights into evolutionary processes, but has largely neglected one underappreciated component--the microbiome. As eukaryotic hosts evolve, the microbiome may also respond to selection. However, the microbial contribution to host evolution remains poorly understood. Here, we re-analyzed genomic data to characterize the metagenomes from ten Evolve and Resequence (E&R) experiments in Drosophila melanogaster to determine how the microbiome changed in response to host selection. RESULTS Bacterial diversity was significantly different in 5/10 studies, primarily in traits associated with metabolism or immunity. Duration of selection did not significantly influence bacterial diversity, highlighting the importance of associations with specific host traits. CONCLUSIONS Our genomic re-analysis suggests the microbiome often responds to host selection; thus, the microbiome may contribute to the response of Drosophila in E&R experiments. We outline important considerations for incorporating the microbiome into E&R experiments. The E&R approach may provide critical insights into host-microbiome interactions and fundamental insight into the genomic basis of adaptation.
Collapse
Affiliation(s)
- Lucas P Henry
- Department of Ecology & Evolutionary Biology, 150 Carl Icahn Laboratory, Princeton University, Princeton, NJ, 08544, USA.
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA.
| | - Julien F Ayroles
- Department of Ecology & Evolutionary Biology, 150 Carl Icahn Laboratory, Princeton University, Princeton, NJ, 08544, USA.
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
11
|
McMullen JG, Peters-Schulze G, Cai J, Patterson AD, Douglas AE. How gut microbiome interactions affect nutritional traits of Drosophila melanogaster. ACTA ACUST UNITED AC 2020; 223:223/19/jeb227843. [PMID: 33051361 DOI: 10.1242/jeb.227843] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022]
Abstract
Most research on the impact of the gut microbiome on animal nutrition is designed to identify the effects of single microbial taxa and single metabolites of microbial origin, without considering the potentially complex network of interactions among co-occurring microorganisms. Here, we investigated how different microbial associations and their fermentation products affect host nutrition, using Drosophila melanogaster colonized with three gut microorganisms (the bacteria Acetobacter fabarum and Lactobacillus brevis, and the yeast Hanseniaspora uvarum) in all seven possible combinations. Some microbial effects on host traits could be attributed to single taxa (e.g. yeast-mediated reduction of insect development time), while other effects were sex specific and driven by among-microbe interactions (e.g. male lipid content determined by interactions between the yeast and both bacteria). Parallel analysis of nutritional indices of microbe-free flies administered different microbial fermentation products (acetic acid, acetoin, ethanol and lactic acid) revealed a single consistent effect: that the lipid content of both male and female flies is reduced by acetic acid. This effect was recapitulated in male flies colonized with both yeast and A. fabarum, but not for any microbial treatment in females or males with other microbial complements. These data suggest that the effect of microbial fermentation products on host nutritional status is strongly context dependent, with respect to both the combination of associated microorganisms and host sex. Taken together, our findings demonstrate that among-microbe interactions can play a critically important role in determining the physiological outcome of host-microbiome interactions in Drosophila and, likely, in other animal hosts.
Collapse
Affiliation(s)
- John G McMullen
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | | | - Jingwei Cai
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA .,Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
12
|
McMillan LE, Adamo SA. Friend or foe? Effects of host immune activation on the gut microbiome in the caterpillar Manduca sexta. ACTA ACUST UNITED AC 2020; 223:223/19/jeb226662. [PMID: 33046577 DOI: 10.1242/jeb.226662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/12/2020] [Indexed: 01/04/2023]
Abstract
For many animals, the gut microbiome plays an essential role in immunity and digestion. However, certain animals, such as the caterpillar Manduca sexta, do not have a resident gut microbiome. Although these animals do have bacteria that pass through their gut from their natural environment, the absence of such bacteria does not reduce growth or survival. We hypothesized that M. sexta would sterilize their gut as a protective measure against secondary infection when faced with a gut infection or exposure to heat-killed bacteria in the blood (haemolymph). However, we found that gut sterilization did not occur during either type of immune challenge, i.e. bacterial numbers did not decrease. By examining the pattern of immune-related gene expression, gut pH, live bacterial counts and mass change (as a measure of sickness behaviour), we found evidence for physiological trade-offs between regulating the microbiome and defending against systemic infections. Caterpillars exposed to both gut pathogens and a systemic immune challenge had higher numbers of bacteria in their gut than caterpillars exposed to a single challenge. Following a multivariate analysis of variance, we found that the response patterns following an oral challenge, systemic challenge or dual challenge were unique. Our results suggest that the immune response for each challenge resulted in a different configuration of the immunophysiological network. We hypothesize that these different configurations represent different resolutions of physiological trade-offs based on the immune responses needed to best protect the animal against the present immune challenges.
Collapse
Affiliation(s)
- Laura E McMillan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada, B3H4R2
| | - Shelley A Adamo
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada, B3H4R2
| |
Collapse
|
13
|
von Frieling J, Faisal MN, Sporn F, Pfefferkorn R, Nolte SS, Sommer F, Rosenstiel P, Roeder T. A high-fat diet induces a microbiota-dependent increase in stem cell activity in the Drosophila intestine. PLoS Genet 2020; 16:e1008789. [PMID: 32453733 PMCID: PMC7274450 DOI: 10.1371/journal.pgen.1008789] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/05/2020] [Accepted: 04/22/2020] [Indexed: 12/25/2022] Open
Abstract
Over-consumption of high-fat diets (HFDs) is associated with several pathologies. Although the intestine is the organ that comes into direct contact with all diet components, the impact of HFD has mostly been studied in organs that are linked to obesity and obesity related disorders. We used Drosophila as a simple model to disentangle the effects of a HFD on the intestinal structure and physiology from the plethora of other effects caused by this nutritional intervention. Here, we show that a HFD, composed of triglycerides with saturated fatty acids, triggers activation of intestinal stem cells in the Drosophila midgut. This stem cell activation was transient and dependent on the presence of an intestinal microbiota, as it was completely absent in germ free animals. Moreover, major components of the signal transduction pathway have been elucidated. Here, JNK (basket) in enterocytes was necessary to trigger synthesis of the cytokine upd3 in these cells. This ligand in turn activated the JAK/STAT pathway in intestinal stem cells. Chronic subjection to a HFD markedly altered both the microbiota composition and the bacterial load. Although HFD-induced stem cell activity was transient, long-lasting changes to the cellular composition, including a substantial increase in the number of enteroendocrine cells, were observed. Taken together, a HFD enhances stem cell activity in the Drosophila gut and this effect is completely reliant on the indigenous microbiota and also dependent on JNK signaling within intestinal enterocytes. High-fat diets have been associated with a plethora of morbidities. The major research focus has been on its effects on obesity related disorders, mostly omitting the intestine, although it is the organ that makes the first contact with all diet components. Here, we aimed to understand the effects of HFD on the intestine itself. Using Drosophila as a model, we showed that a HFD and more specifically, trigylcerides with saturated fatty acids, induced a transient activation of intestinal stem cells. This response completely depended on the presence of an intestinal microbiota, as in germ free flies this reaction was completely abolished. Mechanistically, we found that HFD induces JNK signaling in enterocytes, which triggers production of the cytokine upd3. This ligand of the JAK/STAT pathway, in turn activates STAT signaling in intestinal stem cells, leading to their activation. All these components of the JNK- and JAK/STAT-pathways are necessary for a HFD to lead to increased stem cell production. Moreover, HFD changed both, composition and abundance of the microbiota. As fecal transfer experiments failed to recapitulate the HFD phenotype, we assume that the increased bacterial load is the major cause for the HFD triggered stem cell activation in the intestine.
Collapse
Affiliation(s)
- Jakob von Frieling
- Zoological Institute, Department of Molecular Physiology, Kiel University, Kiel, Germany
| | - Muhammed Naeem Faisal
- Zoological Institute, Department of Molecular Physiology, Kiel University, Kiel, Germany
| | - Femke Sporn
- Zoological Institute, Department of Molecular Physiology, Kiel University, Kiel, Germany
| | - Roxana Pfefferkorn
- Zoological Institute, Department of Molecular Physiology, Kiel University, Kiel, Germany
| | - Stella Solveig Nolte
- Zoological Institute, Department of Molecular Physiology, Kiel University, Kiel, Germany
| | | | | | - Thomas Roeder
- Zoological Institute, Department of Molecular Physiology, Kiel University, Kiel, Germany
- German Center for Lung Research, Airway Research Center North, Kiel, Germany
- * E-mail:
| |
Collapse
|
14
|
Li Y, Romey-Glüsing R, Tahan Zadeh N, von Frieling J, Hoffmann J, Huebbe P, Bruchhaus I, Rimbach G, Fink C, Roeder T. Furbellow (Brown Algae) Extract Increases Lifespan in Drosophila by Interfering with TOR-Signaling. Nutrients 2020; 12:E1172. [PMID: 32331413 PMCID: PMC7230866 DOI: 10.3390/nu12041172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/30/2022] Open
Abstract
Algal products are well known for their health promoting effects. Nonetheless, an in depth understanding of the underlying molecular mechanisms is still only fragmentary. Here, we show that aqueous furbelow extracts (brown algae, Saccorhiza polyschides) lengthen the life of both sexes of the fruit fly Drosophila melanogaster substantially, if used as nutritional additives to conventional food. This life prolonging effect became even more pronounced in the presence of stressors, such as high-fat dieting of living under drought conditions. Application of the extracts did not change food intake, excretion, or other major physiological parameters. Nevertheless, effects on the intestinal microbiota were observed, leading to an increased species richness, which is usually associated with healthy conditions. Lifespan extension was not observed in target of rapamycin (TOR)-deficient animals, implying that functional TOR signaling is necessary to unfold the positive effects of brown algae extract (BAE) on this important trait. The lack of life lengthening in animals with deregulated TOR signaling exclusively targeted to body fat showed that this major energy storage organ is instrumental for transmitting these effects. In addition, expression of Imaginal morphogenesis protein-Late 2 (Imp-L2), an effective inhibitor of insulin signaling implies that BAE exerts their positive effects through interaction with the tightly interwoven TOR- and insulin-signaling systems, although insulin levels were not directly affected by this intervention.
Collapse
Affiliation(s)
- Yang Li
- Department of Molecular Physiology, Kiel University, D-24098 Kiel, Germany; (Y.L.); (R.R.-G.); (N.T.Z.); (J.v.F.); (J.H.); (C.F.)
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Renja Romey-Glüsing
- Department of Molecular Physiology, Kiel University, D-24098 Kiel, Germany; (Y.L.); (R.R.-G.); (N.T.Z.); (J.v.F.); (J.H.); (C.F.)
| | - Navid Tahan Zadeh
- Department of Molecular Physiology, Kiel University, D-24098 Kiel, Germany; (Y.L.); (R.R.-G.); (N.T.Z.); (J.v.F.); (J.H.); (C.F.)
| | - Jakob von Frieling
- Department of Molecular Physiology, Kiel University, D-24098 Kiel, Germany; (Y.L.); (R.R.-G.); (N.T.Z.); (J.v.F.); (J.H.); (C.F.)
| | - Julia Hoffmann
- Department of Molecular Physiology, Kiel University, D-24098 Kiel, Germany; (Y.L.); (R.R.-G.); (N.T.Z.); (J.v.F.); (J.H.); (C.F.)
| | - Patricia Huebbe
- Department of Food Sciences, Kiel University, 24098 Kiel, Germany; (P.H.); (G.R.)
| | - Iris Bruchhaus
- Bernhard-Nocht-Institute for Tropical Medicine, D-20359 Hamburg, Germany;
| | - Gerald Rimbach
- Department of Food Sciences, Kiel University, 24098 Kiel, Germany; (P.H.); (G.R.)
| | - Christine Fink
- Department of Molecular Physiology, Kiel University, D-24098 Kiel, Germany; (Y.L.); (R.R.-G.); (N.T.Z.); (J.v.F.); (J.H.); (C.F.)
- DZL, German Center for Lung Research, ARCN, D-24098 Kiel, Germany
| | - Thomas Roeder
- Department of Molecular Physiology, Kiel University, D-24098 Kiel, Germany; (Y.L.); (R.R.-G.); (N.T.Z.); (J.v.F.); (J.H.); (C.F.)
- DZL, German Center for Lung Research, ARCN, D-24098 Kiel, Germany
| |
Collapse
|
15
|
Wang Y, Kapun M, Waidele L, Kuenzel S, Bergland AO, Staubach F. Common structuring principles of the Drosophila melanogaster microbiome on a continental scale and between host and substrate. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:220-228. [PMID: 32003146 DOI: 10.1111/1758-2229.12826] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 05/26/2023]
Abstract
The relative importance of host control, environmental effects and stochasticity in the assemblage of host-associated microbiomes is being debated. We analysed the microbiome among fly populations that were sampled across Europe by the European Drosophila Population Genomics Consortium (DrosEU). In order to better understand the structuring principles of the natural D. melanogaster microbiome, we combined environmental data on climate and food-substrate with dense genomic data on host populations and microbiome profiling. Food-substrate, temperature, and host population structure correlated with microbiome structure. Microbes, whose abundance was co-structured with host populations, also differed in abundance between flies and their substrate in an independent survey. This finding suggests common, host-related structuring principles of the microbiome on different spatial scales.
Collapse
Affiliation(s)
- Yun Wang
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Evolutionary Biology and Animal Ecology, Biology I, University of Freiburg, Freiburg im Breisgau, Germany
| | - Martin Kapun
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
- Department of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Lena Waidele
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Evolutionary Biology and Animal Ecology, Biology I, University of Freiburg, Freiburg im Breisgau, Germany
| | - Sven Kuenzel
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Alan O Bergland
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Fabian Staubach
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Evolutionary Biology and Animal Ecology, Biology I, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
16
|
Zemanova MA. Towards more compassionate wildlife research through the 3Rs principles: moving from invasive to non-invasive methods. WILDLIFE BIOLOGY 2020. [DOI: 10.2981/wlb.00607] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Miriam A. Zemanova
- M. A. Zemanova (https://orcid.org/0000-0002-5002-3388) ✉ , Dept of Philosophy, Univ. of Basel, Steinengraben 5, CH-4051 Basel, Switzerland
| |
Collapse
|
17
|
Harrison XA, Price SJ, Hopkins K, Leung WTM, Sergeant C, Garner TWJ. Diversity-Stability Dynamics of the Amphibian Skin Microbiome and Susceptibility to a Lethal Viral Pathogen. Front Microbiol 2019; 10:2883. [PMID: 31956320 PMCID: PMC6951417 DOI: 10.3389/fmicb.2019.02883] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/29/2019] [Indexed: 12/20/2022] Open
Abstract
Variation among animals in their host-associated microbial communities is increasingly recognized as a key determinant of important life history traits including growth, metabolism, and resistance to disease. Quantitative estimates of the factors shaping the stability of host microbiomes over time at the individual level in non-model organisms are scarce. Addressing this gap in our knowledge is important, as variation among individuals in microbiome stability may represent temporal gain or loss of key microbial species and functions linked to host health and/or fitness. Here we use controlled experiments to investigate how both heterogeneity in microbial species richness of the environment and exposure to the emerging pathogen Ranavirus influence the structure and temporal dynamics of the skin microbiome in a vertebrate host, the European common frog (Rana temporaria). Our evidence suggests that altering the bacterial species richness of the environment drives divergent temporal microbiome dynamics of the amphibian skin. Exposure to ranavirus effects changes in skin microbiome structure irrespective of total microbial diversity, but individuals with higher pre-exposure skin microbiome diversity appeared to exhibit higher survival. Higher diversity skin microbiomes also appear less stable over time compared to lower diversity microbiomes, but stability of the 100 most abundant ("core") community members was similar irrespective of microbiome richness. Our study highlights the importance of extrinsic factors in determining the stability of host microbiomes over time, which may in turn have important consequences for the stability of host-microbe interactions and microbiome-fitness correlations.
Collapse
Affiliation(s)
- Xavier A Harrison
- Institute of Zoology, Zoological Society of London, London, United Kingdom.,Centre for Ecology and Conservation, University of Exeter, Exeter, United Kingdom
| | - Stephen J Price
- Institute of Zoology, Zoological Society of London, London, United Kingdom.,UCL Genetics Institute, University College London, London, United Kingdom
| | - Kevin Hopkins
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - William T M Leung
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - Chris Sergeant
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - Trenton W J Garner
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| |
Collapse
|
18
|
Harris EV, de Roode JC, Gerardo NM. Diet-microbiome-disease: Investigating diet's influence on infectious disease resistance through alteration of the gut microbiome. PLoS Pathog 2019; 15:e1007891. [PMID: 31671152 PMCID: PMC6822718 DOI: 10.1371/journal.ppat.1007891] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abiotic and biotic factors can affect host resistance to parasites. Host diet and host gut microbiomes are two increasingly recognized factors influencing disease resistance. In particular, recent studies demonstrate that (1) particular diets can reduce parasitism; (2) diets can alter the gut microbiome; and (3) the gut microbiome can decrease parasitism. These three separate relationships suggest the existence of indirect links through which diets reduce parasitism through an alteration of the gut microbiome. However, such links are rarely considered and even more rarely experimentally validated. This is surprising because there is increasing discussion of the therapeutic potential of diets and gut microbiomes to control infectious disease. To elucidate these potential indirect links, we review and examine studies on a wide range of animal systems commonly used in diet, microbiome, and disease research. We also examine the relative benefits and disadvantages of particular systems for the study of these indirect links and conclude that mice and insects are currently the best animal systems to test for the effect of diet-altered protective gut microbiomes on infectious disease. Focusing on these systems, we provide experimental guidelines and highlight challenges that must be overcome. Although previous studies have recommended these systems for microbiome research, here we specifically recommend these systems because of their proven relationships between diet and parasitism, between diet and the microbiome, and between the microbiome and parasite resistance. Thus, they provide a sound foundation to explore the three-way interaction between diet, the microbiome, and infectious disease.
Collapse
Affiliation(s)
- Erica V. Harris
- Department of Biology, O. Wayne Rollins Research Center, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| | - Jacobus C. de Roode
- Department of Biology, O. Wayne Rollins Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Nicole M. Gerardo
- Department of Biology, O. Wayne Rollins Research Center, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
19
|
Diouf M, Miambi E, Mora P, Frechault S, Robert A, Rouland-Lefèvre C, Hervé V. Variations in the relative abundance of Wolbachia in the gut of Nasutitermes arborum across life stages and castes. FEMS Microbiol Lett 2019; 365:4904115. [PMID: 29579215 DOI: 10.1093/femsle/fny046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/22/2018] [Indexed: 12/19/2022] Open
Abstract
There are multiple forms of interactions between termites and bacteria. In addition to their gut microbiota, which has been intensively studied, termites host intracellular symbionts such as Wolbachia. These distinct symbioses have been so far approached independently and mostly in adult termites. We addressed the dynamics of Wolbachia and the microbiota of the eggs and gut for various life stages and castes of the wood-feeding termite, Nasutitermes arborum, using deep-sequencing of the 16S rRNA gene. Wolbachia was dominant in eggs as expected. Unexpectedly, it persisted in the gut of nearly all stages and castes, indicating a wide somatic distribution in termites. Wolbachia-related sequences clustered into few operational taxonomic units, but these were within the same genotype, acquired maternally. Wolbachia was largely dominant in DNA extracts from the guts of larvae and pre-soldiers (59.1%-99.1% of reads) where gut-resident lineages were less represented and less diverse. The reverse was true for the adult castes. This is the first study reporting the age-dependency of the relative abundance of Wolbachia in the termite gut and its negative correlation with the diversity of the microbiota. The possible mechanisms underlying this negative interaction are discussed.
Collapse
Affiliation(s)
- Michel Diouf
- Faculté des Sciences et Technologie, Université Paris Est Créteil, Département ECOEVO, Institut d'Ecologie et des Sciences de l'Environnement de Paris (IEES, Paris). 61 Avenue du Général de Gaulle, 94010 Créteil Cedex, France
| | - Edouard Miambi
- Faculté des Sciences et Technologie, Université Paris Est Créteil, Département ECOEVO, Institut d'Ecologie et des Sciences de l'Environnement de Paris (IEES, Paris). 61 Avenue du Général de Gaulle, 94010 Créteil Cedex, France
| | - Philippe Mora
- Faculté des Sciences et Technologie, Université Paris Est Créteil, Département ECOEVO, Institut d'Ecologie et des Sciences de l'Environnement de Paris (IEES, Paris). 61 Avenue du Général de Gaulle, 94010 Créteil Cedex, France
| | - Sophie Frechault
- Faculté des Sciences et Technologie, Université Paris Est Créteil, Département ECOEVO, Institut d'Ecologie et des Sciences de l'Environnement de Paris (IEES, Paris). 61 Avenue du Général de Gaulle, 94010 Créteil Cedex, France
| | - Alain Robert
- Département ECOEVO, Institut d'Ecologie et des Sciences de l'Environnement de Paris (IEES, Paris). Centre IRD France Nord, 32 Avenue Henri Varagnat, 93143 Bondy, France
| | - Corinne Rouland-Lefèvre
- Département ECOEVO, Institut d'Ecologie et des Sciences de l'Environnement de Paris (IEES, Paris). Centre IRD France Nord, 32 Avenue Henri Varagnat, 93143 Bondy, France
| | - Vincent Hervé
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043 Marburg, Germany
| |
Collapse
|
20
|
Baenas N, Wagner AE. Drosophila melanogaster as an alternative model organism in nutrigenomics. GENES AND NUTRITION 2019; 14:14. [PMID: 31080523 PMCID: PMC6501408 DOI: 10.1186/s12263-019-0641-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022]
Abstract
Nutrigenomics explains the interaction between the genome, the proteome, the epigenome, the metabolome, and the microbiome with the nutritional environment of an organism. It is therefore situated at the interface between an organism's health, its diet, and the genome. The diet and/or specific dietary compounds are able to affect not only the gene expression patterns, but also the epigenetic mechanisms as well as the production of metabolites and the bacterial composition of the microbiota. Drosophila melanogaster provides a well-suited model organism to unravel these interactions in the context of nutrigenomics as it combines several advantages including an affordable maintenance, a short generation time, a high fecundity, a relatively short life expectancy, a well-characterized genome, and the availability of several mutant fly lines. Furthermore, it hosts a mammalian-like intestinal system with a clear microbiota and a fat body resembling the adipose tissue with liver-equivalent oenocytes, supporting the fly as an excellent model organism not only in nutrigenomics but also in nutritional research. Experimental approaches that are essentially needed in nutrigenomic research, including several sequencing technologies, have already been established in the fruit fly. However, studies investigating the interaction of a specific diet and/or dietary compounds in the fly are currently very limited. The present review provides an overview of the fly's morphology including the intestinal microbiome and antimicrobial peptides as modulators of the immune system. Additionally, it summarizes nutrigenomic approaches in the fruit fly helping to elucidate host-genome interactions with the nutritional environment in the model organism Drosophila melanogaster.
Collapse
Affiliation(s)
- Nieves Baenas
- 1Institute of Nutritional Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Anika E Wagner
- 2Institute of Nutritional Sciences, Justus-Liebig-University, Wilhelmstrasse 20, 35392 Giessen, Germany
| |
Collapse
|
21
|
Staats S, Wagner AE, Lüersen K, Künstner A, Meyer T, Kahns AK, Derer S, Graspeuntner S, Rupp J, Busch H, Sina C, Ipharraguerre IR, Rimbach G. Dietary ursolic acid improves health span and life span in male Drosophila melanogaster. Biofactors 2019; 45:169-186. [PMID: 30496629 DOI: 10.1002/biof.1467] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022]
Abstract
The health and life span of Drosophila melanogaster are partly determined by intestinal barrier integrity, metabolic rate as well as stress response and the expression of longevity-associated genes, depending on genetic and dietary factors. Ursolic acid (UA) is a naturally occurring triterpenoid exhibiting potential antimicrobial, anti-inflammatory, and antiobesity activity and counteracting age-related deficits in muscle strength. In this study, UA was dietarily administered to w1118 D. melanogaster which significantly elongated the health and life span of males. Spargel (srl) is the Drosophila orthologue of mammalian peroxisome proliferator-activated receptor-gamma coactivator 1 α(PGC1α), an important regulator of energy homeostasis and mitochondrial function. Our results indicate that the health-promoting effect of UA, demonstrated by a significant increase in climbing activity, occurs via an upregulation of srl expression leading to a metabolic shift in the fly without reducing fecundity or gut integrity. Moreover, UA affected the flies' microbiota in a manner that contributed to life span extension. Srl expression and microbiota both seem to be affected by UA, as we determined by using srl-mutant and axenic flies. © 2018 BioFactors, 45(2):169-186, 2019.
Collapse
Affiliation(s)
- Stefanie Staats
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Anika E Wagner
- Institute of Nutritional Medicine, University of Lübeck, Lübeck, Germany
| | - Kai Lüersen
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Axel Künstner
- Group for Medical Systems Biology, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Timo Meyer
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Anna K Kahns
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Stefanie Derer
- Institute of Nutritional Medicine, University of Lübeck, Lübeck, Germany
| | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Hauke Busch
- Group for Medical Systems Biology, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Christian Sina
- Institute of Nutritional Medicine, University of Lübeck, Lübeck, Germany
| | | | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| |
Collapse
|
22
|
Ma D, Leulier F. The importance of being persistent: The first true resident gut symbiont in Drosophila. PLoS Biol 2018; 16:e2006945. [PMID: 30071013 PMCID: PMC6091974 DOI: 10.1371/journal.pbio.2006945] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/14/2018] [Indexed: 12/05/2022] Open
Abstract
In the animal kingdom, nutritional mutualism is a perpetual and intimate dialogue carried out between the host and its associated gut community members. This dialogue affects many aspects of the host’s development and physiology. Some constituents of the animal gut microbiota can stably reside within the host for years, and such long-term persistence might be a prerequisite for these microbes to assert their beneficial impact. How long-term persistence is established and maintained is an interesting question, and several classic model organisms associated with cultivable resident strains are used to address this question. However, in Drosophila, this model has long eluded fly geneticists. In this issue of PLOS Biology, Pais and colleagues present the most rigorous and comprehensive demonstration to date that persistence and gut residency do take place in the digestive tract of Drosophila melanogaster. This natural gut isolate of Acetobacter thailandicus stably colonizes the adult fly foregut, accelerates larval maturation, and boosts host fecundity and fertility as efficiently as the known laboratory strains. The discovery of such stable association will be a boon for the Drosophila community interested in host–microbiota interaction, as it not only provides a novel model to unravel the molecular underpinnings of persistence but also opens a new arena for using Drosophila to study the implications of gut persistence in evolution and ecology.
Collapse
Affiliation(s)
- Dali Ma
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Unité Mixte de Recherche 5242, Lyon, France
- * E-mail: (FL); (DM)
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Unité Mixte de Recherche 5242, Lyon, France
- * E-mail: (FL); (DM)
| |
Collapse
|
23
|
Bost A, Martinson VG, Franzenburg S, Adair KL, Albasi A, Wells MT, Douglas AE. Functional variation in the gut microbiome of wild
Drosophila
populations. Mol Ecol 2018; 27:2834-2845. [DOI: 10.1111/mec.14728] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 04/27/2018] [Accepted: 05/14/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Alyssa Bost
- Department of Entomology Cornell University Ithaca New York
| | | | | | - Karen L. Adair
- Department of Entomology Cornell University Ithaca New York
| | - Alice Albasi
- Department of Entomology Cornell University Ithaca New York
| | - Martin T. Wells
- Department of Biological Statistics and Computational Biology Cornell University Ithaca New York
| | - Angela E. Douglas
- Department of Entomology Cornell University Ithaca New York
- Department of Molecular Biology and Genetics Cornell University Ithaca New York
| |
Collapse
|
24
|
Douglas AE. The Drosophila model for microbiome research. Lab Anim (NY) 2018; 47:157-164. [PMID: 29795158 DOI: 10.1038/s41684-018-0065-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/23/2018] [Indexed: 02/06/2023]
Abstract
The gut microbiome is increasingly recognized to play an important role in shaping the health and fitness of animals, including humans. Drosophila is emerging as a valuable model for microbiome research, combining genetic and genomic resources with simple protocols to manipulate the microbiome, such that microbiologically sterile flies and flies bearing a standardized microbiota can readily be produced in large numbers. Studying Drosophila has the potential to increase our understanding of how the microbiome influences host traits, and allows opportunities for hypothesis testing of microbial impacts on human health. Drosophila is being used to investigate aspects of host-microbe interactions, including the metabolism, the immune system and behavior. Drosophila offers a valuable alternative to rodent and other mammalian models of microbiome research for fundamental discovery of microbiome function, enabling improved research cost effectiveness and benefits for animal welfare.
Collapse
Affiliation(s)
- Angela E Douglas
- Department of Entomology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
25
|
The impact of genome variation and diet on the metabolic phenotype and microbiome composition of Drosophila melanogaster. Sci Rep 2018; 8:6215. [PMID: 29670218 PMCID: PMC5906449 DOI: 10.1038/s41598-018-24542-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/05/2018] [Indexed: 12/19/2022] Open
Abstract
The metabolic phenotype of an organism depends on a complex regulatory network, which integrates the plethora of intrinsic and external information and prioritizes the flow of nutrients accordingly. Given the rise of metabolic disorders including obesity, a detailed understanding of this regulatory network is in urgent need. Yet, our level of understanding is far from completeness and complicated by the discovery of additional layers in metabolic regulation, such as the impact of the microbial community present in the gut on the hosts’ energy storage levels. Here, we investigate the interplay between genome variation, diet and the gut microbiome in the shaping of a metabolic phenotype. For this purpose, we reared a set of fully sequenced wild type Drosophila melanogaster flies under basal and nutritionally challenged conditions and performed metabolic and microbiome profiling experiments. Our results introduce the fly as a model system to investigate the impact of genome variation on the metabolic response to diet alterations and reveal candidate single nucleotide polymorphisms associated with different metabolic traits, as well as metabolite-metabolite and metabolite-microbe correlations. Intriguingly, the dietary changes affected the microbiome composition less than anticipated. These results challenge the current view of a rapidly changing microbiome in response to environmental fluctuations.
Collapse
|
26
|
Inamine H, Ellner SP, Newell PD, Luo Y, Buchon N, Douglas AE. Spatiotemporally Heterogeneous Population Dynamics of Gut Bacteria Inferred from Fecal Time Series Data. mBio 2018; 9:e01453-17. [PMID: 29317508 PMCID: PMC5760738 DOI: 10.1128/mbio.01453-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/27/2017] [Indexed: 02/02/2023] Open
Abstract
A priority in gut microbiome research is to develop methods to investigate ecological processes shaping microbial populations in the host from readily accessible data, such as fecal samples. Here, we demonstrate that these processes can be inferred from the proportion of ingested microorganisms that is egested and their egestion time distribution, by using general mathematical models that link within-host processes to statistics from fecal time series. We apply this framework to Drosophila melanogaster and its gut bacterium Acetobacter tropicalis Specifically, we investigate changes in their interactions following ingestion of a food bolus containing bacteria in a set of treatments varying the following key parameters: the density of exogenous bacteria ingested by the flies (low/high) and the association status of the host (axenic or monoassociated with A. tropicalis). At 5 h post-ingestion, ~35% of the intact bacterial cells have transited through the gut with the food bolus and ~10% are retained in a viable and culturable state, leaving ~55% that have likely been lysed in the gut. Our models imply that lysis and retention occur over a short spatial range within the gut when the bacteria are ingested from a low density, but more broadly in the host gut when ingested from a high density, by both gnotobiotic and axenic hosts. Our study illustrates how time series data complement the analysis of static abundance patterns to infer ecological processes as bacteria traverse the host. Our approach can be extended to investigate how different bacterial species interact within the host to understand the processes shaping microbial community assembly.IMPORTANCE A major challenge to our understanding of the gut microbiome in animals is that it is profoundly difficult to investigate the fate of ingested microbial cells as they travel through the gut. Here, we created mathematical tools to analyze microbial dynamics in the gut from the temporal pattern of their abundance in fecal samples, i.e., without direct observation of the dynamics, and validated them with Drosophila fruit flies. Our analyses revealed that over 5 h after ingestion, most bacteria have likely died in the host or have been egested as intact cells, while some living cells have been retained in the host. Bacterial lysis or retention occurred across a larger area of the gut when flies ingest bacteria from high densities than when flies ingest bacteria from low densities. Our mathematical tools can be applied to other systems, including the dynamics of gut microbial populations and communities in humans.
Collapse
Affiliation(s)
- Hidetoshi Inamine
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Stephen P Ellner
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Peter D Newell
- Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Yuan Luo
- Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Nicolas Buchon
- Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, New York, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| |
Collapse
|
27
|
Romey-Glüsing R, Li Y, Hoffmann J, von Frieling J, Knop M, Pfefferkorn R, Bruchhaus I, Fink C, Roeder T. Nutritional regimens with periodically recurring phases of dietary restriction extend lifespan in Drosophila. FASEB J 2018; 32:1993-2003. [PMID: 29196499 DOI: 10.1096/fj.201700934r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nutritional interventions such as caloric and dietary restriction increase lifespan in various animal models. To identify alternative and less demanding nutritional interventions that extend lifespan, we subjected fruit flies ( Drosophila melanogaster) to weekly nutritional regimens that involved alternating a conventional diet with dietary restriction. Short periods of dietary restriction (up to 2 d) followed by longer periods of a conventional diet yielded minimal increases in lifespan. We found that 3 or more days of contiguous dietary restriction (DR) was necessary to yield a lifespan extension similar to that observed with persistent DR. Female flies were more responsive to these interventions than males. Physiologic changes known to be associated with prolonged DR, such as reduced metabolic rates, showed the same time course as lifespan extension. Moreover, concurrent transcriptional changes indicative of reduced insulin signaling were identified with DR. These physiologic and transcriptional changes were sustained, as they were detectable several days after switching to conventional diets. Taken together, diets with longer periods of DR extended lifespan concurrently with physiologic and transcriptional changes that may underlie this increase in lifespan.-Romey-Glüsing, R., Li, Y., Hoffmann, J., von Frieling, J., Knop, M., Pfefferkorn, R., Bruchhaus, I., Fink, C., Roeder, T. Nutritional regimens with periodically recurring phases of dietary restriction extend lifespan in Drosophila.
Collapse
Affiliation(s)
- Renja Romey-Glüsing
- Department of Molecular Physiology, Institute of Zoology, Kiel University, Kiel, Germany
| | - Yang Li
- Department of Molecular Physiology, Institute of Zoology, Kiel University, Kiel, Germany
| | - Julia Hoffmann
- Department of Molecular Physiology, Institute of Zoology, Kiel University, Kiel, Germany
| | - Jakob von Frieling
- Department of Molecular Physiology, Institute of Zoology, Kiel University, Kiel, Germany
| | - Mirjam Knop
- Department of Molecular Physiology, Institute of Zoology, Kiel University, Kiel, Germany
| | - Roxana Pfefferkorn
- Department of Molecular Physiology, Institute of Zoology, Kiel University, Kiel, Germany
| | - Iris Bruchhaus
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christine Fink
- Department of Molecular Physiology, Institute of Zoology, Kiel University, Kiel, Germany.,German Center for Lung Research (DZL), Airway Research Center North (ARCN), Grosshansdorf, Germany
| | - Thomas Roeder
- Department of Molecular Physiology, Institute of Zoology, Kiel University, Kiel, Germany.,German Center for Lung Research (DZL), Airway Research Center North (ARCN), Grosshansdorf, Germany
| |
Collapse
|
28
|
The Gut Commensal Microbiome of Drosophila melanogaster Is Modified by the Endosymbiont Wolbachia. mSphere 2017; 2:mSphere00287-17. [PMID: 28932814 PMCID: PMC5597968 DOI: 10.1128/msphere.00287-17] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 07/24/2017] [Indexed: 01/28/2023] Open
Abstract
Wolbachia bacteria are intracellular bacteria present in the microbiome of a large fraction of insects and parasitic nematodes. They can block mosquitos’ ability to transmit several infectious disease-causing pathogens, including Zika, dengue, chikungunya, and West Nile viruses and malaria parasites. Certain extracellular bacteria present in the gut lumen of these insects can also block pathogen transmission. However, our understanding of interactions between Wolbachia and gut bacteria and how they influence each other is limited. Here we show that the presence of Wolbachia strain wMel changes the composition of gut commensal bacteria in the fruit fly. Our findings implicate interactions between bacterial species as a key factor in determining the overall composition of the microbiome and thus reveal new paradigms to consider in the development of disease control strategies. Endosymbiotic Wolbachia bacteria and the gut microbiome have independently been shown to affect several aspects of insect biology, including reproduction, development, life span, stem cell activity, and resistance to human pathogens, in insect vectors. This work shows that Wolbachia bacteria, which reside mainly in the fly germline, affect the microbial species present in the fly gut in a lab-reared strain. Drosophila melanogaster hosts two main genera of commensal bacteria—Acetobacter and Lactobacillus. Wolbachia-infected flies have significantly reduced titers of Acetobacter. Sampling of the microbiome of axenic flies fed with equal proportions of both bacteria shows that the presence of Wolbachia bacteria is a significant determinant of the composition of the microbiome throughout fly development. However, this effect is host genotype dependent. To investigate the mechanism of microbiome modulation, the effect of Wolbachia bacteria on Imd and reactive oxygen species pathways, the main regulators of immune response in the fly gut, was measured. The presence of Wolbachia bacteria does not induce significant changes in the expression of the genes for the effector molecules in either pathway. Furthermore, microbiome modulation is not due to direct interaction between Wolbachia bacteria and gut microbes. Confocal analysis shows that Wolbachia bacteria are absent from the gut lumen. These results indicate that the mechanistic basis of the modulation of composition of the microbiome by Wolbachia bacteria is more complex than a direct bacterial interaction or the effect of Wolbachia bacteria on fly immunity. The findings reported here highlight the importance of considering the composition of the gut microbiome and host genetic background during Wolbachia-induced phenotypic studies and when formulating microbe-based disease vector control strategies. IMPORTANCEWolbachia bacteria are intracellular bacteria present in the microbiome of a large fraction of insects and parasitic nematodes. They can block mosquitos’ ability to transmit several infectious disease-causing pathogens, including Zika, dengue, chikungunya, and West Nile viruses and malaria parasites. Certain extracellular bacteria present in the gut lumen of these insects can also block pathogen transmission. However, our understanding of interactions between Wolbachia and gut bacteria and how they influence each other is limited. Here we show that the presence of Wolbachia strain wMel changes the composition of gut commensal bacteria in the fruit fly. Our findings implicate interactions between bacterial species as a key factor in determining the overall composition of the microbiome and thus reveal new paradigms to consider in the development of disease control strategies.
Collapse
|
29
|
Fink C, von Frieling J, Knop M, Roeder T. Drosophila Fecal Sampling. Bio Protoc 2017; 7:e2547. [DOI: 10.21769/bioprotoc.2547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/15/2017] [Accepted: 08/23/2017] [Indexed: 11/02/2022] Open
|
30
|
Lokmer A, Goedknegt MA, Thieltges DW, Fiorentino D, Kuenzel S, Baines JF, Wegner KM. Spatial and Temporal Dynamics of Pacific Oyster Hemolymph Microbiota across Multiple Scales. Front Microbiol 2016; 7:1367. [PMID: 27630625 PMCID: PMC5006416 DOI: 10.3389/fmicb.2016.01367] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/18/2016] [Indexed: 01/09/2023] Open
Abstract
Unveiling the factors and processes that shape the dynamics of host associated microbial communities (microbiota) under natural conditions is an important part of understanding and predicting an organism's response to a changing environment. The microbiota is shaped by host (i.e., genetic) factors as well as by the biotic and abiotic environment. Studying natural variation of microbial community composition in multiple host genetic backgrounds across spatial as well as temporal scales represents a means to untangle this complex interplay. Here, we combined a spatially-stratified with a longitudinal sampling scheme within differentiated host genetic backgrounds by reciprocally transplanting Pacific oysters between two sites in the Wadden Sea (Sylt and Texel). To further differentiate contingent site from host genetic effects, we repeatedly sampled the same individuals over a summer season to examine structure, diversity and dynamics of individual hemolymph microbiota following experimental removal of resident microbiota by antibiotic treatment. While a large proportion of microbiome variation could be attributed to immediate environmental conditions, we observed persistent effects of antibiotic treatment and translocation suggesting that hemolymph microbial community dynamics is subject to within-microbiome interactions and host population specific factors. In addition, the analysis of spatial variation revealed that the within-site microenvironmental heterogeneity resulted in high small-scale variability, as opposed to large-scale (between-site) stability. Similarly, considerable within-individual temporal variability was in contrast with the overall temporal stability at the site level. Overall, our longitudinal, spatially-stratified sampling design revealed that variation in hemolymph microbiota is strongly influenced by site and immediate environmental conditions, whereas internal microbiome dynamics and oyster-related factors add to their long-term stability. The combination of small and large scale resolution of spatial and temporal observations therefore represents a crucial but underused tool to study host-associated microbiome dynamics.
Collapse
Affiliation(s)
- Ana Lokmer
- Coastal Ecology, Wadden Sea Station Sylt, Alfred Wegener Institute - Helmholtz Centre for Polar and Marine Research List auf Sylt, Germany
| | - M Anouk Goedknegt
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research, Utrecht University Texel, Netherlands
| | - David W Thieltges
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research, Utrecht University Texel, Netherlands
| | - Dario Fiorentino
- Coastal Ecology, Wadden Sea Station Sylt, Alfred Wegener Institute - Helmholtz Centre for Polar and Marine Research List auf Sylt, Germany
| | - Sven Kuenzel
- Max Planck Institute for Evolutionary Biology Plön, Germany
| | - John F Baines
- Max Planck Institute for Evolutionary BiologyPlön, Germany; Institute for Experimental Medicine, Christian-Albrechts-Universität zu KielKiel, Germany
| | - K Mathias Wegner
- Coastal Ecology, Wadden Sea Station Sylt, Alfred Wegener Institute - Helmholtz Centre for Polar and Marine Research List auf Sylt, Germany
| |
Collapse
|
31
|
Huang JH, Jing X, Douglas AE. The multi-tasking gut epithelium of insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 67:15-20. [PMID: 25982023 PMCID: PMC4644519 DOI: 10.1016/j.ibmb.2015.05.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 05/24/2023]
Abstract
The insect gut epithelium plays a vital role in multiple processes, including nutrition, immunity and osmoregulation. Recent research is revealing the molecular and biochemical basis of these functions. For example, the pattern of nutrient acquisition by the gut epithelium is integrated into the overall regulation of nutrient allocation, as illustrated by evidence for systemic controls over expression of key genes coding digestive enzymes and transporters in carbohydrate acquisition; and the abundance and diversity of microorganisms in the gut lumen is regulated by multiple molecular properties of the gut epithelial cells, including the synthesis of enzymes that produce reactive oxygen species and anti-microbial peptides. These traits are underpinned by the function of the gut epithelium as a selective barrier which mediates the controlled movement of water, ions, metabolites and macromolecules between the gut lumen and insect tissues. Breakdown of the gut epithelial barrier has been implicated in muscle paralysis of insects at low temperatures (chill coma) and in aging. The key challenge for future research is to understand how the multiple functions of the insect gut epithelium are integrated by signaling interactions among epithelial cells, the gut microbiota and other insect organs.
Collapse
Affiliation(s)
- Jia-Hsin Huang
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA.
| | - Xiangfeng Jing
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA.
| | - Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
32
|
The Host as the Driver of the Microbiota in the Gut and External Environment of Drosophila melanogaster. Appl Environ Microbiol 2015; 81:6232-40. [PMID: 26150460 DOI: 10.1128/aem.01442-15] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/26/2015] [Indexed: 12/16/2022] Open
Abstract
Most associations between animals and their gut microbiota are dynamic, involving sustained transfer of food-associated microbial cells into the gut and shedding of microorganisms into the external environment with feces, but the interacting effects of host and microbial factors on the composition of the internal and external microbial communities are poorly understood. This study on laboratory cultures of the fruit fly Drosophila melanogaster reared in continuous contact with their food revealed time-dependent changes of the microbial communities in the food that were strongly influenced by the presence and abundance of Drosophila. When germfree Drosophila eggs were aseptically added to nonsterile food, the microbiota in the food and flies converged to a composition dramatically different from that in fly-free food, showing that Drosophila has microbiota-independent effects on the food microbiota. The microbiota in both the flies that developed from unmanipulated eggs (bearing microorganisms) and the associated food was dominated by the bacteria most abundant on the eggs, demonstrating effective vertical transmission via surface contamination of eggs. Food coinoculated with a four-species defined bacterial community of Acetobacter and Lactobacillus species revealed the progressive elimination of Lactobacillus from the food bearing few or no Drosophila, indicating the presence of antagonistic interactions between Acetobacter and Lactobacillus. Drosophila at high densities ameliorated the Acetobacter/Lactobacillus antagonism, enabling Lactobacillus to persist. This study with Drosophila demonstrates how animals can have major, coordinated effects on the composition of microbial communities in the gut and immediate environment.
Collapse
|
33
|
El-Kholy S, Stephano F, Li Y, Bhandari A, Fink C, Roeder T. Expression analysis of octopamine and tyramine receptors in Drosophila. Cell Tissue Res 2015; 361:669-84. [PMID: 25743690 DOI: 10.1007/s00441-015-2137-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 01/27/2015] [Indexed: 02/08/2023]
Abstract
The monoamines octopamine and tyramine, which are the invertebrate counterparts of epinephrine and norepinephrine, transmit their action through sets of G protein-coupled receptors. Four different octopamine receptors (Oamb, Octß1R, Octß2R, Octß3R) and 3 different tyramine receptors (TyrR, TyrRII, TyrRIII) are present in the fruit fly Drosophila melanogaster. Utilizing the presumptive promoter regions of all 7 octopamine and tyramine receptors, the Gal4/UAS system is utilized to elucidate their complete expression pattern in larvae as well as in adult flies. All these receptors show strong expression in the nervous system but their exact expression patterns vary substantially. Common to all octopamine and tyramine receptors is their expression in mushroom bodies, centers for learning and memory in insects. Outside the central nervous system, the differences in the expression patterns are more conspicuous. However, four of them are present in the tracheal system, where they show different regional preferences within this organ. On the other hand, TyrR appears to be the only receptor present in the heart muscles and TyrRII the only one expressed in oenocytes. Skeletal muscles express octß2R, Oamb and TyrRIII, with octß2R being present in almost all larval muscles. Taken together, this study provides comprehensive information about the sites of expression of all octopamine and tyramine receptors in the fruit fly, thus facilitating future research in the field.
Collapse
Affiliation(s)
- Samar El-Kholy
- Zoological Institute, Molecular Physiology, Christian-Albrechts University Kiel, Kiel, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Metazoans establish with microorganisms complex interactions for their mutual benefits. Drosophila, which has already proven useful host model to study several aspects of innate immunity and host-bacteria pathogenic associations has become a powerful model to dissect the mechanisms behind mutualistic host-microbe interactions. Drosophila microbiota is composed of simple and aerotolerant bacterial communities mostly composed of Lactobacillaceae and Acetobactereaceae. Drosophila mono- or poly-associated with lactobacilli strains constitutes a powerful model to dissect the complex interplay between lactobacilli and host biologic traits. Thanks to the genetic tractability of both Drosophila and lactobacilli this association model offers a great opportunity to reveal the underlying molecular mechanisms. Here, we review our current knowledge about how the Drosophila model is helping our understanding of how lactobacilli shapes host biology.
Collapse
|