1
|
Peroutka-Bigus N, Nielsen DW, Trachsel J, Mou KT, Sharma VK, Kudva IT, Loving CL. Phenotypic and genomic comparison of three human outbreak and one cattle-associated Shiga toxin-producing Escherichia coli O157:H7. Microbiol Spectr 2024; 12:e0414023. [PMID: 39254337 PMCID: PMC11451603 DOI: 10.1128/spectrum.04140-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/02/2024] [Indexed: 09/11/2024] Open
Abstract
Escherichia coli O157:H7-adulterated food products are associated with disease outbreaks in humans. Although cattle feces are a source for E. coli O157:H7 contamination, it is unclear if human-associated outbreak isolates differentially colonize and shed in the feces of cattle from that of non-outbreak isolates. It is also unclear if phenotypes, such as biofilm formation, cell attachment, or toxin production, differentiate environmental E. coli O157:H7 isolates from those associated with human illness. The objective of this study was to compare the genotypes and phenotypes of a diverse set of E. coli O157:H7 isolates, with the intent of identifying differences that could inform cattle colonization and fecal shedding, along with virulence potential in humans. Isolates differed in attachment phenotypes on human Caco-2 cells and bovine-derived recto-anal junction squamous epithelial cells, with curli having a strong impact on attachment to the human-derived cell line. The prototypical E. coli O157 isolate EDL933 had the greatest expression of the adhesin gene iha, yet it had decreased expression of the virulence genes stx2, eae, and ehxA compared the lineage I/II isolates RM6067W and/or FRIK1989. Strong or weak biofilm production was not associated with significant differences in cattle colonization or shedding, suggesting biofilms may not play a major role in cattle colonization. No significant differences in cattle colonization and fecal shedding were detected, despite genomic and in vitro phenotypic differences. The outbreak isolate associated with the greatest incidence of hemolytic uremic syndrome, RM6067W, induced the greatest Vero cell cytotoxicity and had the greatest stx2 gene expression. IMPORTANCE Foodborne illness has major impacts on global health and imposes financial hardships on food industries. Escherichia coli serotype O157:H7 is associated with foodborne illness. Cattle feces are a source of E. coli O157:H7, and routine surveillance has led to an abundance of E. coli O157:H7 genomic data. The relationship between E. coli O157:H7 genome and phenotype is not clearly discerned for cattle colonization/shedding and improved understanding could lead to additional strategies to limit E. coli O157:H7 in the food chain. The goal of the research was to evaluate genomic and phenotypic attributes of E. coli O157:H7 associated with cattle colonization and shedding, environmental persistence, and human illness. Our results indicate variations in biofilm formation and in vitro cellular adherence was not associated with differences in cattle colonization or shedding. Overall, processes involved in cattle colonization and various phenotypes in relation to genotype are complex and remain not well understood.
Collapse
Affiliation(s)
- Nathan Peroutka-Bigus
- Food Safety and
Enteric Pathogens Research Unit, National Animal Disease Center,
Agricultural Research Service, USDA,
Ames, Iowa, USA
- Oak Ridge Institute
for Science and Education, Agricultural Research Service Participation
Program, Oak Ridge,
Tennessee, USA
| | - Daniel W. Nielsen
- Food Safety and
Enteric Pathogens Research Unit, National Animal Disease Center,
Agricultural Research Service, USDA,
Ames, Iowa, USA
- Oak Ridge Institute
for Science and Education, Agricultural Research Service Participation
Program, Oak Ridge,
Tennessee, USA
| | - Julian Trachsel
- Food Safety and
Enteric Pathogens Research Unit, National Animal Disease Center,
Agricultural Research Service, USDA,
Ames, Iowa, USA
| | - Kathy T. Mou
- Food Safety and
Enteric Pathogens Research Unit, National Animal Disease Center,
Agricultural Research Service, USDA,
Ames, Iowa, USA
- Oak Ridge Institute
for Science and Education, Agricultural Research Service Participation
Program, Oak Ridge,
Tennessee, USA
| | - Vijay K. Sharma
- Food Safety and
Enteric Pathogens Research Unit, National Animal Disease Center,
Agricultural Research Service, USDA,
Ames, Iowa, USA
| | - Indira T. Kudva
- Food Safety and
Enteric Pathogens Research Unit, National Animal Disease Center,
Agricultural Research Service, USDA,
Ames, Iowa, USA
| | - Crystal L. Loving
- Food Safety and
Enteric Pathogens Research Unit, National Animal Disease Center,
Agricultural Research Service, USDA,
Ames, Iowa, USA
| |
Collapse
|
2
|
Carter MQ, Carychao D, Lindsey RL. Conditional expression of flagellar motility, curli fimbriae, and biofilms in Shiga toxin- producing Escherichia albertii. Front Microbiol 2024; 15:1456637. [PMID: 39318426 PMCID: PMC11420993 DOI: 10.3389/fmicb.2024.1456637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/14/2024] [Indexed: 09/26/2024] Open
Abstract
Escherichia albertii is an emerging foodborne pathogen. We previously reported that some avian Shiga toxin-producing E. albertii strains exhibited higher or comparable cytotoxicity in Vero-d2EGFP cells with several enterohemorrhagic E. coli (EHEC) outbreak strains. To better understand the environmental persistence of this pathogen, comparative genomics and phenotypic assays were applied to assess adhesion capability, motility, and biofilm formation in E. albertii. Among the 108 adherence-related genes, those involved in biogenesis of curli fimbriae, hemorrhagic E. coli pilus, type 1 fimbriae, and Sfm fimbriae were conserved in E. albertii. All 20 E. albertii strains carried a complete set of primary flagellar genes that were organized into four gene clusters, while five strains possessed genes related to the secondary flagella, also known as lateral flagella. Compared to EHEC strain EDL933, the eight chemotaxis genes located within the primary flagellar gene clusters were deleted in E. albertii. Additional deletion of motility genes flhABCD and motBC was identified in several E. albertii strains. Swimming motility was detected in three strains when grown in LB medium, however, when grown in 5% TSB or in the pond water-supplemented with 10% pigeon droppings, an additional four strains became motile. Although all E. albertii strains carried curli genes, curli fimbriae were detected only in four, eight, and nine strains following 24, 48, and 120 h incubation, respectively. Type 1 fimbriae were undetectable in any of the strains grown at 37°C or 28°C. Strong biofilms were detected in strains that produced curli fimbriae and in a chicken isolate that was curli fimbriae negative but carried genes encoding adhesive fimbriae K88, a signature of enterotoxigenic E. coli strains causing neonatal diarrhea in piglets. In all phenotypic traits examined, no correlation was revealed between the strains isolated from different sources, or between the strains with and without Shiga toxin genes. The phenotypic variations could not be explained solely by the genetic diversity or the difference in adherence genes repertoire, implying complex regulation in expression of various adhesins. Strains that exhibited a high level of cytotoxicity and were also proficient in biofilm production, may have potential to emerge into high-risk pathogens.
Collapse
Affiliation(s)
- Michelle Qiu Carter
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Diana Carychao
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Rebecca L Lindsey
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
3
|
Imklin N, Sriprasong P, Thanantong N, Lekcharoensuk P, Nasanit R. Two Novel Bacteriophage Species Against Hybrid Intestinal Pathogenic Escherichia coli/Extraintestinal Pathogenic Escherichia coli Strains. PHAGE (NEW ROCHELLE, N.Y.) 2024; 5:107-116. [PMID: 39119207 PMCID: PMC11304831 DOI: 10.1089/phage.2023.0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Background Colibacillosis caused by Escherichia coli is one of the main problems in the swine industry. In addition, the emergence of antimicrobial resistance and the combination of virulence genes among pathotypes have led to the emergence of more virulent pathogenic E. coli strains. Phage therapy has become a promising approach to address these issues. Materials and Methods Virulence genes for intestinal pathogenic E. coli (IPEC) and extraintestinal pathogenic E. coli (ExPEC) were investigated in pathogenic E. coli isolated from pigs. In addition, two potential phages, vB_EcoM-RPN187 and vB_EcoM-RPN226, isolated in our previous study, were further characterized in this study. Results Both phages were lytic and were highly effective at 20-37°C. Interestingly, they infected the hybrid IPEC/ExPEC strains. vB_EcoM-RPN187 and vB_EcoM-RPN226 possess 167 kbp of linear double-stranded DNA without virulence or antibiotic resistance genes and may be classified as new phage species in the genera Mosigvirus and Tequatrovirus, respectively. Conclusion Both phages could be promising candidates for phage therapy against pathogenic E. coli.
Collapse
Affiliation(s)
- Napakhwan Imklin
- Department of Biotechnology, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, Thailand
| | - Pattaraporn Sriprasong
- Department of Biotechnology, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, Thailand
| | - Narut Thanantong
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom, Thailand
| | - Porntippa Lekcharoensuk
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Center for Advanced Studies in Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
| | - Rujikan Nasanit
- Department of Biotechnology, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, Thailand
| |
Collapse
|
4
|
Saint Martin C, Darsonval M, Grégoire M, Caccia N, Midoux L, Berland S, Leroy S, Dubois-Brissonnet F, Desvaux M, Briandet R. Spatial organisation of Listeria monocytogenes and Escherichia coli O157:H7 cultivated in gel matrices. Food Microbiol 2022; 103:103965. [DOI: 10.1016/j.fm.2021.103965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 01/01/2023]
|
5
|
Badi S, Salah Abbassi M, Snoussi M, Werheni R, Hammami S, Maal-Bared R, Hassen A. High rates of antibiotic resistance and biofilm production in Escherichia coli isolates from food products of animal and vegetable origins in Tunisia: a real threat to human health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:406-416. [PMID: 32452215 DOI: 10.1080/09603123.2020.1769039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study was to compare the antibiotic susceptibility of eighty Escherichia coli isolates from vegetables and food products of animal origin in Tunisia, and to study their genes encoding antibiotic resistance and in vitro biofilm forming capacity. Antimicrobial susceptibilities were determined, as well as PCR investigation of genes associated with antibiotic resistance. Biofilm formation was tested using four different methods: the microtiter plate-, MTT-staining-, XTT-staining-, and the Congo Red Agar assays. High antibiotic resistance rates were observed for amoxicillin (68.7%), amoxicillin/clavulanic acid (73.7%), gentamicin (68.7%), kanamycin (66.2%), nalidixic acid (36.2%), streptomycin (68.7%) and tetracycline (35%). The majority of isolates was multidrug resistant and biofilm producer. MTT testing showed that vegetables isolates were significantly higher biofilm producers compared to foods of animal origins. This study showed that E. coli isolates from food products were reservoirs of genes encoding antibiotic-resistance and have a high propensity to produce biofilm.
Collapse
Affiliation(s)
- Souhir Badi
- Institute of Veterinary Research of Tunisia, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Wastewater Treatment, Research Center of Wastewater technologies, Technopark Borj Cedria, Soliman, Tunisia
| | - Mohamed Salah Abbassi
- Institute of Veterinary Research of Tunisia, University of Tunis El Manar, Tunis, Tunisia
- Faculty of Medicine of Tunis, Laboratory of antibiotic resistance LR99ES09, University of Tunis El Manar, Tunisia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Rim Werheni
- Laboratory of Wastewater Treatment, Research Center of Wastewater technologies, Technopark Borj Cedria, Soliman, Tunisia
| | - Salah Hammami
- National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Tunisia
| | - Rasha Maal-Bared
- Microbiology Laboratories, Quality Assurance and Environment, EPCOR Water Inc., Edmonton, Alberta, Canada
| | - Abdennaceur Hassen
- Laboratory of Wastewater Treatment, Research Center of Wastewater technologies, Technopark Borj Cedria, Soliman, Tunisia
| |
Collapse
|
6
|
Detection of Escherichia coli by Combining an Affinity-Based Method with Contactless Atmospheric Pressure Ionization Mass Spectrometry. SEPARATIONS 2022. [DOI: 10.3390/separations9010013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Escherichia coli are common pathogens, whereas E. coli O157:H7 is the most notorious E. coli strain, owing to its high virulence that can cause serious adverse effects and death. E. coli contains abundant peroxidases. Thus, the presence of E. coli can be determined by mixing E. coli with its substrate such as 3,5,3′,5′ tetramethylbenzidines (TMB) for endogenous peroxidase reactions. Under the presence of a high concentration of E. coli, colorless TMB turned to bluish, owing to the generation of the complexity of TMB and its oxidized TMB. To further reduce the detectable cell concentration, we developed an affinity-based method combined with an endogenous peroxidase reaction and mass spectrometric detection to detect E. coli. Affinity probes (diameter: ~20 µm) modified with maltose were generated for the enrichment of E. coli from sample solutions. E. coli trapped by the affinity probes was reacted with TMB in the presence of hydrogen peroxide for endogenous peroxidase reactions. Contactless atmospheric pressure ionization mass spectrometry was used for the detection of the reaction product, oxidized TMB (TMB cationic radical), to indicate the presence of target bacteria. The results showed that the developed method can be used to rapidly determine the presence of E. coli from a sample solution based on the detection of the TMB cationic radicals. The lowest detectable concentration of our method against E. coli O157:H7 in buffers and in complex juice samples was as low as ~100 cfu mL−1.
Collapse
|
7
|
Fang Y, Visvalingam J, Zhang P, Yang X. Biofilm formation by Non-O157 Shiga toxin-producing Escherichia coli in monocultures and co-cultures with meat processing surface bacteria. Food Microbiol 2021; 102:103902. [PMID: 34809934 DOI: 10.1016/j.fm.2021.103902] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/10/2021] [Accepted: 09/10/2021] [Indexed: 11/04/2022]
Abstract
This study investigated the impact of meat processing surface bacteria (MPB) on biofilm formation by non-O157 Shiga toxin-producing Escherichia coli (STEC), and potential links between biofilm formation by STEC and biofilm-related genes in their genomes. Biofilm development by 50 MPB and 6 STEC strains in mono- and co-cultures was assessed by the crystal violet staining method, and their expression of curli and cellulose was determined using the Congo red agar method. Genes (n = 141) associated with biofilm formation in the STEC strains were profiled. Biofilm formation in general correlated with cellulose and curli expression in both mono- and co-cultures. Most MPB strains had antagonistic effects on the biofilm formation of the STEC strains. Of the genes investigated, 81% were common among the STEC strains and there seems to be a gene-redundancy in biofilm formation. The inability of the O26 strain to form biofilms could be due to mutations in the rpoS gene. Truncation in the mlrA gene in the O145 strain seems not affecting its biofilm formation alone or with MPB. The O45 strain, despite having the greatest number of biofilm-related genes, did not form measurable biofilms. Overall, biofilm formation of STEC was affected by curli-cellulose expression and companion strains.
Collapse
Affiliation(s)
- Yuan Fang
- Agriculture and Agri-Food Canada Lacombe Research and Development Centre, 6000 C & E Trail, Lacombe, Alberta, T4L 1W1, Canada
| | - Jeyachchandran Visvalingam
- Agriculture and Agri-Food Canada Lacombe Research and Development Centre, 6000 C & E Trail, Lacombe, Alberta, T4L 1W1, Canada
| | - Peipei Zhang
- Agriculture and Agri-Food Canada Lacombe Research and Development Centre, 6000 C & E Trail, Lacombe, Alberta, T4L 1W1, Canada
| | - Xianqin Yang
- Agriculture and Agri-Food Canada Lacombe Research and Development Centre, 6000 C & E Trail, Lacombe, Alberta, T4L 1W1, Canada.
| |
Collapse
|
8
|
Interactions of Shiga toxin-producing Escherichia coli with leafy green vegetables. Braz J Microbiol 2020; 51:797-803. [PMID: 32125677 DOI: 10.1007/s42770-020-00251-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/20/2020] [Indexed: 10/24/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are important foodborne pathogens responsible for a wide spectrum of diseases including diarrhea, bloody diarrhea, and hemolytic uremic syndrome (HUS). A considerable number of outbreaks and sporadic cases of HUS have been associated with ingestion of fresh ready-to-eat products. Maintenance and persistence of STEC in the environment and foods can be related to its ability to form biofilm. A non-O157 STEC strain isolated from bovine feces was distinguished by its great ability to form biofilm in abiotic surfaces. In the present study, we aimed to investigate the ability of this strain to adhere to rocket leaves (Eruca sativa). Adherence assays were carried out for 3 h at 28 °C and analyzed by scanning electron microscopy. The non-O157 STEC strain adhered to leaf surface and inside the stomata forming several bacterial aggregates. The number of adherent bacteria per square millimeter of leaf was eightfold higher compared with an O157 STEC strain. Deletion of the STEC autotransporter protein contributing to biofilm (Sab) reduced the adherence ability of the non-O157 strain in almost 50%, and deletion of antigen 43 (Ag43) almost abolished this interaction. Very few bacteria were seen on the leaf surface, and these differences were statistically significant, suggesting the role of both proteins and especially Ag43 in the interaction of the non-O157 STEC strain with leaves. The risk posed by non-O157 STEC adherence to leaves on fresh produce contamination should not be neglected, and measures that effectively control adherence should be included in strategies to control non-O157 STEC.
Collapse
|
9
|
Bumunang EW, Ateba CN, Stanford K, McAllister TA, Niu YD. Biofilm formation by South African non-O157 Shiga toxigenic Escherichia coli on stainless steel coupons. Can J Microbiol 2020; 66:328-336. [PMID: 32017602 DOI: 10.1139/cjm-2019-0554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study examined the biofilm-forming ability of six non-O157 Shiga-toxin-producing Escherichia coli (STEC) strains: O116:H21, wzx-Onovel5:H19, O129:H21, O129:H23, O26:H11, and O154:H10 on stainless steel coupons after 24, 48, and 72 h of incubation at 22 °C and after 168 h at 10 °C. The results of crystal violet staining revealed that strains O129:H23 and O154:H10 were able to form biofilms on both the submerged surface and the air-liquid interface of coupons, whereas strains O116:H21, wzx-Onovel5:H19, O129:H21, and O26:H11 formed biofilm only at the air-liquid interface. Viable cell counts and scanning electron microscopy showed that biofilm formation increased (p < 0.05) over time. The biofilm-forming ability of non-O157 STEC was strongest (p < 0.05) at 22 °C after 48 h of incubation. The strongest biofilm former regardless of temperature was O129:H23. Generally, at 10 °C, weak to no biofilm was observed for isolates O154:H10, O116:H21, wzx-Onovel5:H19, O26:H11, and O129:H21 after 168 h. This study found that temperature affected the biofilm-forming ability of non-O157 STEC strains. Overall, our data indicate a high potential for biofilm formation by the isolates at 22 °C, suggesting that non-O157 STEC strains could colonize stainless steel within food-processing facilities. This could serve as a potential source of adulteration and promote the dissemination of these potential pathogens in food.
Collapse
Affiliation(s)
- Emmanuel W Bumunang
- Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa.,Alberta Agriculture and Forestry, Lethbridge, Alberta, Canada.,Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - Collins N Ateba
- Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa
| | - Kim Stanford
- Alberta Agriculture and Forestry, Lethbridge, Alberta, Canada
| | - Tim A McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - Yan D Niu
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
10
|
G M Gonzalez A, M F Cerqueira A. Shiga toxin-producing Escherichia coli in the animal reservoir and food in Brazil. J Appl Microbiol 2019; 128:1568-1582. [PMID: 31650661 DOI: 10.1111/jam.14500] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/18/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022]
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a zoonotic pathotype associated with human gastrointestinal disease that may progress to severe complications. Ruminants, especially cattle, are the main reservoirs of STEC contaminating the environment and foods of animal or vegetable origin. Besides Shiga toxin, other virulence factors are involved in STEC virulence. O157:H7 remains the most frequent serotype associated with disease. In Brazil, the prevalence of STEC reaches values as high as 90% in cattle and 20% in meat products which may impact the Brazilian food export trade. However, only few reports are related to human disease. The stx1 gene prevails in cattle, whereas the stx2 gene is more frequent in food. Several STEC serotypes have been isolated from cattle and food in Brazil, including the O157:H7, O111:NT, NT:H19 as well as O26 and O103 serogroups. O113: H21 STEC strains are frequent in ruminants and foods but with no report in human disease. The virulence profile of Brazilian STEC strains from cattle and food suggests a pathogenic potential to humans, although some differences with clinical strains have been detected. Further studies, employing recent and more discriminative techniques are in need to better clarify their virulence potential.
Collapse
Affiliation(s)
- Alice G M Gonzalez
- Departamento de Bromatologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Aloysio M F Cerqueira
- Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói, Brazil
| |
Collapse
|
11
|
Characterization of Non-O157 Escherichia coli from Cattle Faecal Samples in the North-West Province of South Africa. Microorganisms 2019; 7:microorganisms7080272. [PMID: 31434244 PMCID: PMC6723556 DOI: 10.3390/microorganisms7080272] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 02/06/2023] Open
Abstract
Escherichia coli are commensal bacteria in the gastrointestinal tract of mammals, but some strains have acquired Shiga-toxins and can cause enterohemorrhagic diarrhoea and kidney failure in humans. Shiga-toxigenic E. coli (STEC) strains such as E. coli O157:H7 and some non-O157 strains also contain other virulence traits, some of which contribute to their ability to form biofilms. This study characterized non-O157 E. coli from South African cattle faecal samples for their virulence potential, antimicrobial resistance (AMR), biofilm-forming ability, and genetic relatedness using culture-based methods, pulsed-field gel electrophoresis (PFGE), and whole genome sequencing (WGS). Of 80 isolates screened, 77.5% (62/80) possessed Shiga-toxins genes. Of 18 antimicrobials tested, phenotypic resistance was detected against seven antimicrobials. Resistance ranged from 1.3% (1/80) for ampicillin-sulbactam to 20% (16/80) for tetracycline. Antimicrobial resistance genes were infrequently detected except for tetA, which was found in 31.3% (25/80) and tetB detected in 11.3% (9/80) of isolates. Eight biofilm-forming associated genes were detected in STEC isolates (n = 62) and two non-STEC strains. Prevalence of biofilm genes ranged from 31.3% (20/64) for ehaAβ passenger to 100% for curli structural subunit (csgA) and curli regulators (csgA and crl). Of the 64 STEC and multi-drug resistant isolates, 70.3% (45/64) and 37.5% (24/64) formed strong biofilms on polystyrene at 22 and 37 °C, respectively. Of 59 isolates screened by PFGE, 37 showed unique patterns and the remaining isolates were grouped into five clusters with a ≥90% relatedness. In silico serotyping following WGS on a subset of 24 non-O157 STEC isolates predicted 20 serotypes comprising three novel serotypes, indicating their diversity as potential pathogens. These findings show that North West South African cattle harbour genetically diverse, virulent, antimicrobial-resistant and biofilm-forming non-O157 E. coli. Biofilm-forming ability may increase the likelihood of persistence of these pathogens in the environment and facilitate their dissemination, increasing the risk of cross contamination or establishment of infections in hosts.
Collapse
|
12
|
Bhatwalkar SB, Gound SS, Mondal R, Srivastava RK, Anupam R. Anti-biofilm and Antibacterial Activity of Allium sativum Against Drug Resistant Shiga-Toxin Producing Escherichia coli (STEC) Isolates from Patient Samples and Food Sources. Indian J Microbiol 2019; 59:171-179. [PMID: 31031431 PMCID: PMC6458215 DOI: 10.1007/s12088-019-00784-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/28/2019] [Indexed: 12/28/2022] Open
Abstract
Escherichia coli (E. coli) colonizes human intestinal tract and is usually harmless to the host. However, several strains of E. coli have acquired virulent genes and could cause enteric diseases, urinary tract and even brain infections. Shiga toxin producing Escherichia coli (STEC) is an enterohaemorrhagic E. coli (EHEC) which can result in bloody diarrhoea and could potentially lead to deadly heamolytic uremic syndrome (HUS). STEC is one of the important food borne pathogens that causes food poisoning leading to diarrhoea and number of STEC outbreaks have occurred across the world. The use of standard antibiotics to treat STEC infection is not recommended as it increases the production of shiga toxin which could lead to HUS. Therefore, use of alternative approaches which include use of plant products to treat STEC infections have been gaining attention. The objective of this study was to evaluate the antibacterial and anti-biofilm activity of garlic (Allium sativum) against STEC strains isolated from various patient and food samples using in vitro assays. The microbiological isolation of STEC from various patient and food samples resulted in eight STEC isolates of which seven strains were multidrug resistant. Antibacterial assay results indicated that all the strains exhibited dose dependent sensitivity towards garlic with zone of inhibition diameters ranging from 7 to 24 mm with 15 µl of fresh garlic extract (FGE). Minimum inhibitory concentration (MIC) of FGE for isolates ranged from 30 to 140 µl/ml. Interestingly, the biofilm formation of all isolates in presence of 4% of FGE decreased by 35 to 59%. FTIR analysis indicated that treatment with 1% FGE results in compositional and content changes in the biofilm. In addition, the total carbohydrate content of biofilm was reduced by 40% upon 1% FGE treatment. The results of the present study report for the first time the antibacterial and anti-biofilm activity of garlic against STEC. The findings will enable development of novel garlic organosulfide based drugs for the prevention and treatment of STEC infections.
Collapse
Affiliation(s)
- Sushma Bagde Bhatwalkar
- Department of Biotechnology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, M. P. 470003 India
| | - Surendra Singh Gound
- Department of Microbiology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, M. P. 470003 India
| | - Rajesh Mondal
- Department of Microbiology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, M. P. 470003 India
- Present Address: Bacteriology Division, National Institute for Research in Tuberculosis, Chennai, T. N. 600031 India
| | - Rupesh K. Srivastava
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, M. P. 470003 India
- Present Address: Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Rajaneesh Anupam
- Department of Biotechnology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, M. P. 470003 India
| |
Collapse
|
13
|
Biofilm Formation by Shiga Toxin-Producing Escherichia coli on Stainless Steel Coupons as Affected by Temperature and Incubation Time. Microorganisms 2019; 7:microorganisms7040095. [PMID: 30935149 PMCID: PMC6518284 DOI: 10.3390/microorganisms7040095] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/24/2019] [Accepted: 03/27/2019] [Indexed: 01/01/2023] Open
Abstract
Forming biofilm is a strategy utilized by Shiga toxin-producing Escherichia coli (STEC) to survive and persist in food processing environments. We investigated the biofilm-forming potential of STEC strains from 10 clinically important serogroups on stainless steel at 22 °C or 13 °C after 24, 48, and 72 h of incubation. Results from crystal violet staining, plate counts, and scanning electron microscopy (SEM) identified a single isolate from each of the O113, O145, O91, O157, and O121 serogroups that was capable of forming strong or moderate biofilms on stainless steel at 22 °C. However, the biofilm-forming strength of these five strains was reduced when incubation time progressed. Moreover, we found that these strains formed a dense pellicle at the air-liquid interface on stainless steel, which suggests that oxygen was conducive to biofilm formation. At 13 °C, biofilm formation by these strains decreased (P < 0.05), but gradually increased over time. Overall, STEC biofilm formation was most prominent at 22 °C up to 24 h. The findings in this study identify the environmental conditions that may promote STEC biofilm formation in food processing facilities and suggest that the ability of specific strains to form biofilms contributes to their persistence within these environments.
Collapse
|
14
|
Andreozzi E, Gunther NW, Reichenberger ER, Rotundo L, Cottrell BJ, Nuñez A, Uhlich GA. Pch Genes Control Biofilm and Cell Adhesion in a Clinical Serotype O157:H7 Isolate. Front Microbiol 2018; 9:2829. [PMID: 30532745 PMCID: PMC6265319 DOI: 10.3389/fmicb.2018.02829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/05/2018] [Indexed: 01/06/2023] Open
Abstract
In a previous study, induction of the Escherichia coli serotype O157:H7 SOS response decreased csgD expression in the clinical isolate PA20 at 30°C but strongly induced genes in the horizontally transferred-DNA regions (HTR), including many known virulence regulators. To determine the role of HTR regulators in the control of csgD and curli, specific regulators were plasmid-expressed in the wild-type and mutant strains of PA20 and its biofilm-forming derivative, 20R2R. At 30°C, plasmid over-expression of the O157:H7 group 3 perC homolog, pchE, strongly repressed PA20 csgD transcription (>7-fold) while the group 1 homologs, pchA and pchB, resulted in smaller reductions (<2.5-fold). However, SOS induction decreased rather than increased pchE expression (>6-fold) making group 1 pch, which are enhanced by the SOS response, the likely SOS-induced csgD repressors. Plasmid-based pchE over-expression also reduced 20R2R biofilm formation (>6-fold) and the curli-dependent, Congo red affinity of both PA20 and 20R2R. However, to properly appreciate the regulatory direction, expression patterns, and environmental consequences of these and other CsgD-controlled functions, a better understanding of natural pchE regulation will be required. The effects of HTR regulators on PA20 and 20R2R adhesion to HEp-2 cell at host temperature were also studied. Under conditions where prophage genes were not induced, curli, rather than espA, contributed to host cell adhesion in strain 20R2R. High levels of pchE expression in trans reduced curli-dependent cell adherence (>2-fold) to both 20R2R and the clinical isolate PA20, providing a host-adapting adhesion control mechanism. Expression of pchE was also repressed by induction of the SOS response at 37°C, providing a mechanism by which curli expression might complement EspA-dependent intimate adhesion initiated by the group1 pch homologs. This study has increased our understanding of the O157 pch genes at both host and environment temperatures, identifying pchE as a strong regulator of csgD and CsgD-dependent properties.
Collapse
Affiliation(s)
- Elisa Andreozzi
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Nereus W Gunther
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Erin R Reichenberger
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Luca Rotundo
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Bryan J Cottrell
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Alberto Nuñez
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Gaylen A Uhlich
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| |
Collapse
|
15
|
First report of the distribution of Locus of Adhesion and Autoaggregation (LAA) pathogenicity island in LEE-negative Shiga toxin-producing Escherichia coli isolates from Argentina. Microb Pathog 2018; 123:259-263. [DOI: 10.1016/j.micpath.2018.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 11/19/2022]
|
16
|
Partyka ML, Bond RF, Chase JA, Atwill ER. Spatiotemporal Variability in Microbial Quality of Western US Agricultural Water Supplies: A Multistate Study. JOURNAL OF ENVIRONMENTAL QUALITY 2018; 47:939-948. [PMID: 30272786 DOI: 10.2134/jeq2017.12.0501] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In 2011, the US Congress passed the Food Safety Modernization Act, which tasks the US Food and Drug Administration to establish microbiological standards for agricultural water. However, little data are available for the microbiological quality of surface water irrigation supplies. During the 2015 irrigation season, we conducted a baseline study on the microbial water quality of large irrigation districts in California ( = 2) and Washington ( 4). Monthly samples ( 517) were analyzed for bacterial indicators (fecal coliforms, enterococci, and ) and pathogens ( spp., O157, and non-O157 Shiga toxin-producing [STEC]). Although there was a high degree of variability (μ ± SD = 59.13 ± 106.0), only 11% of samples (56/517) exceeded 126 colony-forming units (CFU) 100 mL, and only six samples exceeded 410 CFU 100 mL. Two volumes of water were collected for pathogen analysis (1 L and 10 L); prevalence of in 10-L samples (68149) was nearly double of that found in 1-L samples (132/517). We found STEC during ∼9% of sampling events (58/517); serotypes O26 and O45 were the most common at 31 and 26%, respectively. Pathogens were not associated with exceedance of the regulatory threshold, yet the odds of detecting increased approximately threefold (odds ration [O.R.] = 3.14, 0.0001) for every log increase in turbidity. Microbiological outcomes were highly district-specific, suggesting drivers of water quality vary across spatiotemporal scales. The true risk of contamination of produce from irrigation water supplies remains unknown, along with the optimal monitoring strategy to improve food safety.
Collapse
|
17
|
Adator EH, Cheng M, Holley R, McAllister T, Narvaez-Bravo C. Ability of Shiga toxigenic Escherichia coli to survive within dry-surface biofilms and transfer to fresh lettuce. Int J Food Microbiol 2018; 269:52-59. [PMID: 29421358 DOI: 10.1016/j.ijfoodmicro.2018.01.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 11/22/2022]
Abstract
Biofilms are known to play important roles in bacterial survival and persistence in food-processing environments. This study aimed to determine the ability of the top 7 STEC serotypes to form biofilms on polystyrene (POL) and stainless steel (SS) plates and to quantify their survival and transfer from dry-surface biofilms to lettuce pieces. The ability of 14 STEC strains to form biofilms on these two materials at different exposure times and temperatures was assessed using crystal violet, Congo red and SEM. At 10 °C all serotypes were weak biofilm producers on both surfaces. In contrast, serotypes O45-040, O45-445, O103-102, O103-670 and O157-R508 were strong biofilm producers at 25 °C. Strains O103-102, O103-670, O111-CFS, O111-053 and O157:H7-R508 were expressers of curli. Under scanning electron microscopy, strains O103-670, O111-CFS, O157-R508, and O121-083 formed more discernible multilayer, mature biofilms on SS coupons. Regardless of the surface (POL/SS), all STEC strains were able to transfer viable cells onto fresh lettuce within a short contact time (2 min) to varying degrees (up to 6.35 log cfu/g). On POL, viable cell of almost all serotypes exhibited decreased detachment (p = 0.001) over 6 days; while after 30 days on SS, serotypes O45-040, O103-102, O103-670, O111-053, O111-CFS, O121-083, O145-231 O157:H7-R508 and O157:H7-122 were transferred to lettuce. After enrichment, all 14 STEC strains were recovered from dry-surface biofilms on POL and SS plates after 30 days. Results demonstrated that the top 7 STEC remained viable within dry-surface biofilms for at least 30 days, transferring to lettuce within 2 min of exposure and acting as a source of adulteration.
Collapse
Affiliation(s)
- Emelia Hornam Adator
- Food and Human Nutritional Sciences, Faculty of Agricultural & Food Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue, South Lethbridge, AB, T1J 4B1, Canada
| | - Meining Cheng
- Food and Human Nutritional Sciences, Faculty of Agricultural & Food Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Rick Holley
- Food and Human Nutritional Sciences, Faculty of Agricultural & Food Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Tim McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue, South Lethbridge, AB, T1J 4B1, Canada
| | - Claudia Narvaez-Bravo
- Food and Human Nutritional Sciences, Faculty of Agricultural & Food Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
18
|
Vargová R, Kmeťová M, Čurová K, Siegfried L. Virulence genes in Escherichia coli strains isolated from urine of elderly patients. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
Taghadosi R, Shakibaie MR, Ghanbarpour R, Hosseini-Nave H. Role of antigen-43 on biofilm formation and horizontal antibiotic resistance gene transfer in non-O157 Shiga toxin producing Escherichia coli strains. IRANIAN JOURNAL OF MICROBIOLOGY 2017; 9:89-96. [PMID: 29214000 PMCID: PMC5715282 DOI: pmid/29214000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND OBJECTIVES The objectives of this study were to evaluate the antibiotic resistance profiles, biofilm formation, presence of antigen 43 (Ag43) gene, and transfer of antibiotic resistance phenotype among non-O157 Shiga toxin producing Escherichia coli (STEC). MATERIALS AND METHODS From October 2014 to November 2015 a total of 276 stool samples were collected from healthy calves, goats and 395 patients with the sign of nonbloody diarrhea and screened for presence of stx and serotype O157 genes by polymerase chain reaction (PCR) technique. Susceptibility to 14 antibiotics was determined as per CLSI guideline. Presence of Ag43 and intimin (eaeA) genes were detected by PCR. Biofilm formation was measured by microtiter plate method. Conjugation was carried out by membrane filter technique. RESULTS We isolated 74 (93.6%) non-O157 STEC strains from 41 calves, 33 goats and 5 (6.3%) patients' stools, however, no O157 serotype was detected in our study. Resistance was observed most commonly to tobramycin (66.2%), kanamycin (48.6%), and amikacin (29.7%) and less frequently to ciprofloxacin (4.1%), amoxicillin-clavulanic acid (5.4%), and ceftriaxone (9.5%) in isolates recovered from calves and goats fecal samples, whereas, all human isolates were sensitive to ceftazidime, ciprofloxacin, tobramycin and imipenem, respectively. Furthermore, Ag43 was detected in 60 STEC isolated from animals and 5 human origins (no eaeA gene was found in this study). Biofilm formation from Ag43+ and Ag43- colonies showed 20 isolates with strong biofilm activities. Cefotaxime resistance phenotype was transferred to E. coli ATCC 25922.1 (Nalr) by conjugation at a frequency of 1.6×10-4. CONCLUSION From the above results we concluded that, human infections with non-O157 STEC were significantly low in Kerman. Ag43 was insignificant with biofilm quantity in most cases.
Collapse
Affiliation(s)
- Roholla Taghadosi
- Department of Microbiology and Virology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Reza Shakibaie
- Department of Microbiology and Virology, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Ghanbarpour
- Department of Microbiology, Faculty of Veterinary Medicine, Shahid Bahonar University, Kerman, Iran
| | - Hossein Hosseini-Nave
- Department of Microbiology and Virology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
20
|
Al-Shabib NA, Husain FM, Ahmad I, Khan MS, Khan RA, Khan JM. Rutin inhibits mono and multi-species biofilm formation by foodborne drug resistant Escherichia coli and Staphylococcus aureus. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Maharjan P, Dey S, Huff G, Zhang W, Phillips GK, Watkins S. Effect of chlorine treatment on inhibition of E. coli serogroup O2 incorporation into 7-day-old biofilm on polyvinylchloride surface. Poult Sci 2017; 96:2862-2870. [PMID: 28419339 DOI: 10.3382/ps/pex088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 03/21/2017] [Indexed: 12/30/2022] Open
Abstract
Poultry waterlines are constructed using polyvinylchloride (PVC) material on which bacterial biofilm can easily form. Biofilm can harbor pathogens including avian pathogenic E. coli (APEC) strains. An in vitro evaluation was performed to determine if E. coli sero group O2 (avian pathogenic) could attach on a PVC surface that had pre-formed biofilm and if this phenomenon could be affected when water was treated with chlorine. Initially, biofilm growth was induced in PVC test coupons (15.16 cm2) for a 7-day period mimicking the waterline scenario in the first wk of poultry brooding; and then this biofilm was challenged with E. coli O2 seeded water in presence/absence of chlorine treatment. After rinsing, test coupons were sampled for bacterial (APC) and E. coli O2 enumeration at various occasions post seeding the pathogen and chlorine treatment. Day 7 APC recovered from coupons was 4.35 log10 cfu/cm2 in trial 1 and 3.66 log10 cfu/cm2 in trial 2. E. coli O2 was not recovered from chlorine treated test coupons (P < 0.05), whereas it was retrieved from untreated coupons (untreated contained > 3 log10 cfu/cm2 in trial 1 and > 2 log10 cfu/cm2 in trial 2). This study suggests that E. coli O2 can incorporate into pre-formed biofilm on a PVC surface within 24 h if water sanitation is not present, and the attachment time of the pathogen can prolong in the absence of already formed biofilm.
Collapse
Affiliation(s)
- P Maharjan
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville 72701
| | - S Dey
- Program in Cell and Molecular Biology, University of Arkansas, Fayetteville 72701.,Department of Biological Sciences, University of Arkansas, Fayetteville 72701
| | - G Huff
- USDA-ARS Poultry Production and Product Safety Research, University of Arkansas, Fayetteville 72701
| | - W Zhang
- Department of Civil Engineering, University of Arkansas, Fayetteville, 72701
| | - G K Phillips
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville 72701
| | - S Watkins
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville 72701
| |
Collapse
|
22
|
dos Santos L, Biscola F, Gonçalves E, Guth B. Biofilm formation, invasiveness and colicinogeny in locus of enterocyte and effacement negative O113:H21 ShigatoxigenicEscherichia coli. J Appl Microbiol 2017; 122:1101-1109. [DOI: 10.1111/jam.13409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 01/02/2017] [Accepted: 01/27/2017] [Indexed: 11/28/2022]
Affiliation(s)
- L.F. dos Santos
- Adolfo Lutz Institute; Center of Bacteriology; Sao Paulo Brazil
- Department of Microbiology, Immunology and Parasitology; Federal University of Sao Paulo; Sao Paulo Brazil
| | - F.T. Biscola
- Department of Microbiology, Immunology and Parasitology; Federal University of Sao Paulo; Sao Paulo Brazil
| | - E.M. Gonçalves
- Department of Microbiology, Immunology and Parasitology; Federal University of Sao Paulo; Sao Paulo Brazil
| | - B.E.C. Guth
- Department of Microbiology, Immunology and Parasitology; Federal University of Sao Paulo; Sao Paulo Brazil
| |
Collapse
|
23
|
Ximenes E, Hoagland L, Ku S, Li X, Ladisch M. Human pathogens in plant biofilms: Formation, physiology, and detection. Biotechnol Bioeng 2017; 114:1403-1418. [PMID: 28067424 DOI: 10.1002/bit.26247] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Eduardo Ximenes
- Laboratory of Renewable Resources Engineering; Purdue University; West Lafayette Indiana 47907-2022
- Department of Agricultural and Biological Engineering; Purdue University; West Lafayette Indiana
| | - Lori Hoagland
- Horticulture and Landscape Architecture; Purdue University; West Lafayette Indiana
| | - Seockmo Ku
- Laboratory of Renewable Resources Engineering; Purdue University; West Lafayette Indiana 47907-2022
- Department of Agricultural and Biological Engineering; Purdue University; West Lafayette Indiana
| | - Xuan Li
- Laboratory of Renewable Resources Engineering; Purdue University; West Lafayette Indiana 47907-2022
| | - Michael Ladisch
- Laboratory of Renewable Resources Engineering; Purdue University; West Lafayette Indiana 47907-2022
- Department of Agricultural and Biological Engineering; Purdue University; West Lafayette Indiana
- Weldon School of Biomedical Engineering; Purdue University; West Lafayette Indiana
| |
Collapse
|
24
|
Ravva SV, Sarreal CZ, Cooley MB. Expression of Curli by Escherichia coli O157:H7 Strains Isolated from Patients during Outbreaks Is Different from Similar Strains Isolated from Leafy Green Production Environments. Front Cell Infect Microbiol 2017; 6:189. [PMID: 28066724 PMCID: PMC5167686 DOI: 10.3389/fcimb.2016.00189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/05/2016] [Indexed: 11/17/2022] Open
Abstract
We previously reported that the strains of Escherichia coli O157:H7 (EcO157) that survived longer in austere soil environment lacked expression of curli, a fitness trait linked with intestinal colonization. In addition, the proportion of curli-positive variants of EcO157 decreased with repeated soil exposure. Here we evaluated 84 and 176 clinical strains from outbreaks and sporadic infections in the US, plus 211 animal fecal and environmental strains for curli expression. These shiga-toxigenic strains were from 328 different genotypes, as characterized by multi-locus variable-number tandem-repeat analysis (MLVA). More than half of the fecal strains (human and animal) and a significant proportion of environmental isolates (82%) were found to lack curli expression. EcO157 strains from several outbreaks linked with the consumption of contaminated apple juice, produce, hamburgers, steak, and beef were also found to lack curli expression. Phylogenetic analysis of fecal strains indicates curli expression is distributed throughout the population. However, a significant proportion of animal fecal isolates (84%) gave no curli expression compared to human fecal isolates (58%). In addition, analysis of environmental isolates indicated nearly exclusive clustering of curli expression to a single branch of the minimal spanning tree. This indicates that curli expression depends primarily upon the type of environmental exposure and the isolation source, although genotypic differences also contribute to clonal variation in curli. Furthermore, curli-deficient phenotype appears to be a selective trait for survival of EcO157 in agricultural environments.
Collapse
Affiliation(s)
- Subbarao V Ravva
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture Albany, CA, USA
| | - Chester Z Sarreal
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture Albany, CA, USA
| | - Michael B Cooley
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture Albany, CA, USA
| |
Collapse
|
25
|
Gomes TAT, Elias WP, Scaletsky ICA, Guth BEC, Rodrigues JF, Piazza RMF, Ferreira LCS, Martinez MB. Diarrheagenic Escherichia coli. Braz J Microbiol 2016; 47 Suppl 1:3-30. [PMID: 27866935 PMCID: PMC5156508 DOI: 10.1016/j.bjm.2016.10.015] [Citation(s) in RCA: 257] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 10/27/2016] [Indexed: 12/22/2022] Open
Abstract
Most Escherichia coli strains live harmlessly in the intestines and rarely cause disease in healthy individuals. Nonetheless, a number of pathogenic strains can cause diarrhea or extraintestinal diseases both in healthy and immunocompromised individuals. Diarrheal illnesses are a severe public health problem and a major cause of morbidity and mortality in infants and young children, especially in developing countries. E. coli strains that cause diarrhea have evolved by acquiring, through horizontal gene transfer, a particular set of characteristics that have successfully persisted in the host. According to the group of virulence determinants acquired, specific combinations were formed determining the currently known E. coli pathotypes, which are collectively known as diarrheagenic E. coli. In this review, we have gathered information on current definitions, serotypes, lineages, virulence mechanisms, epidemiology, and diagnosis of the major diarrheagenic E. coli pathotypes.
Collapse
Affiliation(s)
- Tânia A T Gomes
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo, SP, Brazil.
| | - Waldir P Elias
- Instituto Butantan, Laboratório de Bacterologia, São Paulo, SP, Brazil
| | - Isabel C A Scaletsky
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo, SP, Brazil
| | - Beatriz E C Guth
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo, SP, Brazil
| | - Juliana F Rodrigues
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Roxane M F Piazza
- Instituto Butantan, Laboratório de Bacterologia, São Paulo, SP, Brazil
| | - Luís C S Ferreira
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Marina B Martinez
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas e Toxicológicas, São Paulo, SP, Brazil
| |
Collapse
|
26
|
Whole-Genome Sequence of Escherichia coli Serotype O157:H7 Strain EDL932 (ATCC 43894). GENOME ANNOUNCEMENTS 2016; 4:4/4/e00647-16. [PMID: 27417834 PMCID: PMC4945794 DOI: 10.1128/genomea.00647-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The genome sequence of Escherichia coli serotype O157:H7 EDL933, a ground beef isolate from a 1983 hemorrhagic colitis outbreak, is a standard reference for comparative genomic studies of Shiga toxin-producing E. coli strains. Here, we report the genome sequence of a patient stool isolate from that outbreak, strain EDL932.
Collapse
|
27
|
Wang J, Stanford K, McAllister TA, Johnson RP, Chen J, Hou H, Zhang G, Niu YD. Biofilm Formation, Virulence Gene Profiles, and Antimicrobial Resistance of Nine Serogroups of Non-O157 Shiga Toxin–ProducingEscherichia coli. Foodborne Pathog Dis 2016; 13:316-24. [DOI: 10.1089/fpd.2015.2099] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Jiaying Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Kim Stanford
- Alberta Agriculture and Forestry, Lethbridge, Alberta, Canada
| | | | - Roger P. Johnson
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hongman Hou
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Gongliang Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Yan D. Niu
- Alberta Agriculture and Forestry, Lethbridge, Alberta, Canada
| |
Collapse
|
28
|
Colello R, Cáceres ME, Ruiz MJ, Sanz M, Etcheverría AI, Padola NL. From Farm to Table: Follow-Up of Shiga Toxin-Producing Escherichia coli Throughout the Pork Production Chain in Argentina. Front Microbiol 2016; 7:93. [PMID: 26903972 PMCID: PMC4744844 DOI: 10.3389/fmicb.2016.00093] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/18/2016] [Indexed: 12/03/2022] Open
Abstract
Pigs are important reservoirs of Shiga toxin-producing Escherichia coli (STEC). The entrance of these strains into the food chain implies a risk to consumers because of the severity of hemolytic uremic syndrome. This study reports the prevalence and characterization of STEC throughout the pork production chain. From 764 samples, 31 (4.05%) were stx positive by PCR screening. At farms, 2.86% of samples were stx positive; at slaughter, 4.08% of carcasses were stx positive and at boning rooms, 6% of samples were stx positive. These percentages decreased in pork meat ready for sale at sales markets (4.59%). From positive samples, 50 isolates could be characterized. At farms 37.5% of the isolates carried stx1/stx2 genes, 37.5% possessed stx2e and 25%, carried only stx2. At slaughter we detected 50% of isolates positive for stx2, 33% for stx2e, and 16% for stx1/stx2. At boning rooms 59% of the isolates carried stx1/stx2, 14% stx2e, and 5% stx1/stx2/stx2e. At retail markets 66% of isolates were positive for stx2, 17% stx2e, and 17% stx1/stx2. For the other virulence factors, ehxA and saa were not detected and eae gene was detected in 12% of the isolates. Concerning putative adhesins, agn43 was detected in 72%, ehaA in 26%, aida in 8%, and iha in 6% of isolates. The strains were typed into 14 E. coli O groups (O1, O2, O8, O15, O20, O35, O69, O78, O91, O121, O138, O142, O157, O180) and 10 H groups (H9, H10, H16, H21, H26, H29, H30, H32, H45, H46). This study reports the prevalence and characterization of STEC strains through the chain pork suggesting the vertical transmission. STEC contamination originates in the farms and is transferred from pigs to carcasses in the slaughter process and increase in meat pork at boning rooms and sales markets. These results highlight the need to implement an integrated STEC control system based on good management practices on the farm and critical control point systems in the food chain.
Collapse
Affiliation(s)
- Rocío Colello
- Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil - Consejo Nacional de Investigaciones Científicas y Técnicas - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires Tandil, Argentina
| | - María E Cáceres
- Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil - Consejo Nacional de Investigaciones Científicas y Técnicas - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires Tandil, Argentina
| | - María J Ruiz
- Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil - Consejo Nacional de Investigaciones Científicas y Técnicas - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires Tandil, Argentina
| | - Marcelo Sanz
- Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil - Consejo Nacional de Investigaciones Científicas y Técnicas - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires Tandil, Argentina
| | - Analía I Etcheverría
- Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil - Consejo Nacional de Investigaciones Científicas y Técnicas - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires Tandil, Argentina
| | - Nora L Padola
- Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil - Consejo Nacional de Investigaciones Científicas y Técnicas - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires Tandil, Argentina
| |
Collapse
|
29
|
Biofilm-Forming Abilities of Shiga Toxin-Producing Escherichia coli Isolates Associated with Human Infections. Appl Environ Microbiol 2015; 82:1448-1458. [PMID: 26712549 DOI: 10.1128/aem.02983-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/02/2015] [Indexed: 02/06/2023] Open
Abstract
Forming biofilms may be a survival strategy of Shiga toxin-producing Escherichia coli to enable it to persist in the environment and the food industry. Here, we evaluate and characterize the biofilm-forming ability of 39 isolates of Shiga toxin-producing Escherichia coli isolates recovered from human infection and belonging to seropathotypes A, B, or C. The presence and/or production of biofilm factors such as curli, cellulose, autotransporter, and fimbriae were investigated. The polymeric matrix of these biofilms was analyzed by confocal microscopy and by enzymatic digestion. Cell viability and matrix integrity were examined after sanitizer treatments. Isolates of the seropathotype A (O157:H7 and O157:NM), which have the highest relative incidence of human infection, had a greater ability to form biofilms than isolates of seropathotype B or C. Seropathotype A isolates were unique in their ability to produce cellulose and poly-N-acetylglucosamine. The integrity of the biofilms was dependent on proteins. Two autotransporter genes, ehaB and espP, and two fimbrial genes, z1538 and lpf2, were identified as potential genetic determinants for biofilm formation. Interestingly, the ability of several isolates from seropathotype A to form biofilms was associated with their ability to agglutinate yeast in a mannose-independent manner. We consider this an unidentified biofilm-associated factor produced by those isolates. Treatment with sanitizers reduced the viability of Shiga toxin-producing Escherichia coli but did not completely remove the biofilm matrix. Overall, our data indicate that biofilm formation could contribute to the persistence of Shiga toxin-producing Escherichia coli and specifically seropathotype A isolates in the environment.
Collapse
|
30
|
Chen CY, Nguyen LHT, Cottrell BJ, Irwin PL, Uhlich GA. Multiple mechanisms responsible for strong Congo-red-binding variants of Escherichia coli O157:H7 strains. Pathog Dis 2015; 74:ftv123. [PMID: 26702633 DOI: 10.1093/femspd/ftv123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2015] [Indexed: 11/12/2022] Open
Abstract
High variability in the expression of csgD-dependent, biofilm-forming and adhesive properties is common among Shiga toxin-producing Escherichia coli. Although many strains of serotype O157:H7 form little biofilm, conversion to stronger biofilm phenotypes has been observed. In this study, we screened different strains of serotype O157:H7 for the emergence of strong Congo-red (CR) affinity/biofilm-forming properties and investigated the underlying genetic mechanisms. Two major mechanisms which conferred stronger biofilm phenotypes were identified: mutations (insertion, deletion, single nucleotide change) in rcsB region and stx-prophage excision from the mlrA site. Restoration of the native mlrA gene (due to prophage excision) resulted in strong biofilm properties to all variants. Whereas RcsB mutants showed weaker CR affinity and biofilm properties, it provided more possibilities for phenotypic presentations through heterogenic sequence mutations.
Collapse
Affiliation(s)
- Chin-Yi Chen
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, U. S. Department of Agriculture, Wyndmoor, PA 19038, USA
| | - Ly-Huong T Nguyen
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, U. S. Department of Agriculture, Wyndmoor, PA 19038, USA
| | - Bryan J Cottrell
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, U. S. Department of Agriculture, Wyndmoor, PA 19038, USA
| | - Peter L Irwin
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, U. S. Department of Agriculture, Wyndmoor, PA 19038, USA
| | - Gaylen A Uhlich
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, U. S. Department of Agriculture, Wyndmoor, PA 19038, USA
| |
Collapse
|
31
|
Devaraj A, Justice SS, Bakaletz LO, Goodman SD. DNABII proteins play a central role in UPEC biofilm structure. Mol Microbiol 2015; 96:1119-35. [PMID: 25757804 DOI: 10.1111/mmi.12994] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2015] [Indexed: 01/28/2023]
Abstract
Most chronic and recurrent bacterial infections involve a biofilm component, the foundation of which is the extracellular polymeric substance (EPS). Extracellular DNA (eDNA) is a conserved and key component of the EPS of pathogenic biofilms. The DNABII protein family includes integration host factor (IHF) and histone-like protein (HU); both are present in the extracellular milieu. We have shown previously that the DNABII proteins are often found in association with eDNA and are critical for the structural integrity of bacterial communities that utilize eDNA as a matrix component. Here, we demonstrate that uropathogenic Escherichia coli (UPEC) strain UTI89 incorporates eDNA within its biofilm matrix and that the DNABII proteins are not only important for biofilm growth, but are limiting; exogenous addition of these proteins promotes biofilm formation that is dependent on eDNA. In addition, we show that both subunits of IHF, yet only one subunit of HU (HupB), are critical for UPEC biofilm development. We discuss the roles of these proteins in context of the UPEC EPS.
Collapse
Affiliation(s)
- Aishwarya Devaraj
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH, 43205, USA
| | - Sheryl S Justice
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH, 43205, USA
| | - Lauren O Bakaletz
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH, 43205, USA
| | - Steven D Goodman
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH, 43205, USA
| |
Collapse
|
32
|
Cergole-Novella MC, Pignatari ACC, Guth BEC. Adhesion, biofilm and genotypic characteristics of antimicrobial resistant Escherichia coli isolates. Braz J Microbiol 2015. [PMID: 26221104 PMCID: PMC4512061 DOI: 10.1590/s1517-838246120140077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aggregative adherence to human epithelial cells, most to renal proximal tubular (HK-2) cells, and biofilm formation was identified among antimicrobial resistant Escherichia coli strains mainly isolated from bacteremia. The importance of these virulence properties contributing to host colonization and infection associated with multiresistant E. coli should not be neglected.
Collapse
Affiliation(s)
- Maria C Cergole-Novella
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Antonio C C Pignatari
- Divisão de Doenças Infecciosas, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Beatriz E C Guth
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
33
|
Hojati Z, Zamanzad B, Hashemzadeh M, Molaie R, Gholipour A. The FimH Gene in Uropathogenic Escherichia coli Strains Isolated From Patients With Urinary Tract Infection. Jundishapur J Microbiol 2015; 8:e17520. [PMID: 25825648 PMCID: PMC4376967 DOI: 10.5812/jjm.17520] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 06/15/2014] [Accepted: 07/02/2014] [Indexed: 12/28/2022] Open
Abstract
Background: Urinary tract infections (UTIs) are one of main health problems caused by many microorganisms, including uropathogenic Escherichia coli (UPEC). UPEC strains are the most frequent pathogens responsible for 85% and 50% of community and hospital acquired UTIs, respectively. UPEC strains have special virulence factors, including type 1 fimbriae, which can result in worsening of UTIs. Objectives: This study was performed to detect type 1 fimbriae (the FimH gene) among UPEC strains by molecular method. Materials and Methods: A total of 140 isolated E. coli strains from patients with UTI were identified using biochemical tests and then evaluated for the FimH gene by polymerase chain reaction (PCR) analysis. Results: The UPEC isolates were identified using biochemical tests and were screened by PCR. The fimH gene was amplified using specific primers and showed a band about 164 bp. The FimH gene was found in 130 isolates (92.8%) of the UPEC strains. Of 130 isolates positive for the FimH gene, 62 (47.7%) and 68 (52.3%) belonged to hospitalized patients and outpatients, respectively. Conclusions: The results of this study indicated that more than 90% of E. coli isolates harbored the FimH gene. The high binding ability of FimH could result in the increased pathogenicity of E. coli; thus, FimH could be used as a possible diagnostic marker and/or vaccine candidate.
Collapse
Affiliation(s)
- Zohreh Hojati
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, IR Iran
| | - Behnam Zamanzad
- Department of Microbiology and Immunology, Cellular and Molecular Research Center, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, IR Iran
| | - Morteza Hashemzadeh
- Cellular and Molecular Research center, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, IR Iran
| | - Razieh Molaie
- Department of Microbiology and Immunology, Cellular and Molecular Research Center, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, IR Iran
| | - Abolfazl Gholipour
- Department of Microbiology and Immunology, Cellular and Molecular Research Center, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, IR Iran
- Corresponding author: Abolfazl Gholipour, Department of Microbiology and Immunology, Cellular and Molecular Research Center, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, IR Iran. Tel: +98-9137046656, Fax: +98-3813334911, E-mail:
| |
Collapse
|
34
|
Jaglic Z, Desvaux M, Weiss A, Nesse LL, Meyer RL, Demnerova K, Schmidt H, Giaouris E, Sipailiene A, Teixeira P, Kačániová M, Riedel CU, Knøchel S. Surface adhesins and exopolymers of selected foodborne pathogens. MICROBIOLOGY-SGM 2014; 160:2561-2582. [PMID: 25217529 DOI: 10.1099/mic.0.075887-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The ability of bacteria to bind different compounds and to adhere to biotic and abiotic surfaces provides them with a range of advantages, such as colonization of various tissues, internalization, avoidance of an immune response, and survival and persistence in the environment. A variety of bacterial surface structures are involved in this process and these promote bacterial adhesion in a more or less specific manner. In this review, we will focus on those surface adhesins and exopolymers in selected foodborne pathogens that are involved mainly in primary adhesion. Their role in biofilm development will also be considered when appropriate. Both the clinical impact and the implications for food safety of such adhesion will be discussed.
Collapse
Affiliation(s)
- Zoran Jaglic
- Veterinary Research Institute, Brno, Czech Republic
| | - Mickaël Desvaux
- INRA, UR454 Microbiologie, F-63122 Saint-Genès Champanelle, France
| | - Agnes Weiss
- Department of Food Microbiology, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany
| | | | - Rikke L Meyer
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Katerina Demnerova
- Institute of Chemical Technology, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Technicka 5, Prague, 166 28, Czech Republic
| | - Herbert Schmidt
- Department of Food Microbiology, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany
| | - Efstathios Giaouris
- Department of Food Science and Nutrition, Faculty of the Environment, University of the Aegean, 81400 Myrina, Lemnos Island, Greece
| | | | - Pilar Teixeira
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | | | - Christian U Riedel
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Susanne Knøchel
- Department of Food Science, University of Copenhagen, Rolighedsvej 30, Frederiksberg C 1958, Denmark
| |
Collapse
|
35
|
Ravva SV, Sarreal CZ, Mandrell RE. Strain differences in fitness of Escherichia coli O157:H7 to resist protozoan predation and survival in soil. PLoS One 2014; 9:e102412. [PMID: 25019377 PMCID: PMC4097067 DOI: 10.1371/journal.pone.0102412] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 06/18/2014] [Indexed: 11/19/2022] Open
Abstract
Escherichia coli O157:H7 (EcO157) associated with the 2006 spinach outbreak appears to have persisted as the organism was isolated, three months after the outbreak, from environmental samples in the produce production areas of the central coast of California. Survival in harsh environments may be linked to the inherent fitness characteristics of EcO157. This study evaluated the comparative fitness of outbreak-related clinical and environmental strains to resist protozoan predation and survive in soil from a spinach field in the general vicinity of isolation of strains genetically indistinguishable from the 2006 outbreak strains. Environmental strains from soil and feral pig feces survived longer (11 to 35 days for 90% decreases, D-value) with Vorticella microstoma and Colpoda aspera, isolated previously from dairy wastewater; these D-values correlated (P<0.05) negatively with protozoan growth. Similarly, strains from cow feces, feral pig feces, and bagged spinach survived significantly longer in soil compared to clinical isolates indistinguishable by 11-loci multi-locus variable-number tandem-repeat analysis. The curli-positive (C+) phenotype, a fitness trait linked with attachment in ruminant and human gut, decreased after exposure to protozoa, and in soils only C− cells remained after 7 days. The C+ phenotype correlated negatively with D-values of EcO157 exposed to soil (rs = −0.683; P = 0.036), Vorticella (rs = −0.465; P = 0.05) or Colpoda (rs = −0.750; P = 0.0001). In contrast, protozoan growth correlated positively with C+ phenotype (Vorticella, rs = 0.730, P = 0.0004; Colpoda, rs = 0.625, P = 0.006) suggesting a preference for consumption of C+ cells, although they grew on C− strains also. We speculate that the C− phenotype is a selective trait for survival and possibly transport of the pathogen in soil and water environments.
Collapse
Affiliation(s)
- Subbarao V. Ravva
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agriculture Research Service, Western Regional Research Center, Albany, California, United States of America
- * E-mail:
| | - Chester Z. Sarreal
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agriculture Research Service, Western Regional Research Center, Albany, California, United States of America
| | - Robert E. Mandrell
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agriculture Research Service, Western Regional Research Center, Albany, California, United States of America
| |
Collapse
|
36
|
Vogeleer P, Tremblay YDN, Mafu AA, Jacques M, Harel J. Life on the outside: role of biofilms in environmental persistence of Shiga-toxin producing Escherichia coli. Front Microbiol 2014; 5:317. [PMID: 25071733 PMCID: PMC4076661 DOI: 10.3389/fmicb.2014.00317] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/10/2014] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli is a heterogeneous species that can be part of the normal flora of humans but also include strains of medical importance. Among pathogenic members, Shiga-toxin producing E. coli (STEC) are some of the more prominent pathogenic E. coli within the public sphere. STEC disease outbreaks are typically associated with contaminated beef, contaminated drinking water, and contaminated fresh produce. These water- and food-borne pathogens usually colonize cattle asymptomatically; cows will shed STEC in their feces and the subsequent fecal contamination of the environment and processing plants is a major concern for food and public safety. This is especially important because STEC can survive for prolonged periods of time outside its host in environments such as water, produce, and farm soil. Biofilms are hypothesized to be important for survival in the environment especially on produce, in rivers, and in processing plants. Several factors involved in biofilm formation such as curli, cellulose, poly-N-acetyl glucosamine, and colanic acid are involved in plant colonization and adherence to different surfaces often found in meat processing plants. In food processing plants, contamination of beef carcasses occurs at different stages of processing and this is often caused by the formation of STEC biofilms on the surface of several pieces of equipment associated with slaughtering and processing. Biofilms protect bacteria against several challenges, including biocides used in industrial processes. STEC biofilms are less sensitive than planktonic cells to several chemical sanitizers such as quaternary ammonium compounds, peroxyacetic acid, and chlorine compounds. Increased resistance to sanitizers by STEC growing in a biofilm is likely to be a source of contamination in the processing plant. This review focuses on the role of biofilm formation by STEC as a means of persistence outside their animal host and factors associated with biofilm formation.
Collapse
Affiliation(s)
- Philippe Vogeleer
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Centre de Recherche d'Infectiologie Porcine et Avicole, Université de Montréal St-Hyacinthe, QC, Canada
| | - Yannick D N Tremblay
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Centre de Recherche d'Infectiologie Porcine et Avicole, Université de Montréal St-Hyacinthe, QC, Canada
| | - Akier A Mafu
- Food Research and Development Centre, Agriculture and Agri-Food Canada St-Hyacinthe, QC, Canada
| | - Mario Jacques
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Centre de Recherche d'Infectiologie Porcine et Avicole, Université de Montréal St-Hyacinthe, QC, Canada
| | - Josée Harel
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Centre de Recherche d'Infectiologie Porcine et Avicole, Université de Montréal St-Hyacinthe, QC, Canada
| |
Collapse
|
37
|
Ravva SV, Cooley MB, Sarreal CZ, Mandrell RE. Fitness of Outbreak and Environmental Strains of Escherichia coli O157:H7 in Aerosolizable Soil and Association of Clonal Variation in Stress Gene Regulation. Pathogens 2014; 3:528-48. [PMID: 25438010 PMCID: PMC4243427 DOI: 10.3390/pathogens3030528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/20/2014] [Accepted: 06/24/2014] [Indexed: 11/16/2022] Open
Abstract
Airborne dust from feedlots is a potential mechanism of contamination of nearby vegetable crops with Escherichia coli O157:H7 (EcO157). We compared the fitness of clinical and environmental strains of EcO157 in <45 µm soil from a spinach farm. Differences in survival were observed among the 35 strains with D-values (days for 90% decreases) ranging from 1–12 days. Strains that survived longer, generally, were from environmental sources and lacked expression of curli, a protein associated with attachment and virulence. Furthermore, the proportion of curli-positive (C+) variants of EcO157 strains decreased with repeated soil exposure and the strains that were curli-negative (C−) remained C− post-soil exposure. Soil exposure altered expression of stress-response genes linked to fitness of EcO157, but significant clonal variation in expression was measured. Mutations were detected in the stress-related sigma factor, rpoS, with a greater percentage occurring in parental strains of clinical origin prior to soil exposure. We speculate that these mutations in rpoS may confer a differential expression of genes, associated with mechanisms of survival and/or virulence, and thus may influence the fitness of EcO157.
Collapse
Affiliation(s)
- Subbarao V Ravva
- Produce Safety and Microbiology Research Unit, United States Department of Agriculture, Agriculture Research Service, Western Regional Research Center, Albany, CA 94710, USA.
| | - Michael B Cooley
- Produce Safety and Microbiology Research Unit, United States Department of Agriculture, Agriculture Research Service, Western Regional Research Center, Albany, CA 94710, USA.
| | - Chester Z Sarreal
- Produce Safety and Microbiology Research Unit, United States Department of Agriculture, Agriculture Research Service, Western Regional Research Center, Albany, CA 94710, USA.
| | - Robert E Mandrell
- Produce Safety and Microbiology Research Unit, United States Department of Agriculture, Agriculture Research Service, Western Regional Research Center, Albany, CA 94710, USA.
| |
Collapse
|
38
|
Molecular characterization of enterohemorrhagic E. coli O157 isolated from animal fecal and food samples in Eastern China. ScientificWorldJournal 2014; 2014:946394. [PMID: 25003156 PMCID: PMC4066714 DOI: 10.1155/2014/946394] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/19/2014] [Accepted: 05/19/2014] [Indexed: 01/20/2023] Open
Abstract
Objective. To elucidate the extent of food contamination by enterohemorrhagic Escherichia coli (EHEC) O157 in Eastern China. Methods. A total of 1100 food and animal fecal samples were screened for EHEC O157. Then, molecular characterization of each isolate was determined. Results. EHEC O157 was isolated as follows: pig feces, 4% (20/500); cattle feces, 3.3% (2/60); chicken feces, 1.43% (2/140); pork, 2.14% (3/140), milk, 1.67% (1/60); and chicken meat, 1.67% (1/60). The stx1, stx2, eae, and hlyA genes were present in 26.7% (8/30), 40% (12/30), 63.3% (19/30), and 50% (15/30) of the O157 isolates, respectively. Molecular typing showed that strains from fecal and food samples were clustered into the same molecular typing group. Furthermore, the isolates from pork and pig feces possessed the same characterization as the clinical strains ATCC35150 and ATCC43889. Biofilm formation assays showed that 53.3% of the EHEC O157 isolates could produce biofilm. However, composite analyses showed that biofilm formation of EHEC O157 was independent of genetic background. Conclusions. Animal feces, especially from pigs, serve as reservoirs for food contamination by EHEC O157. Thus, it is important to control contamination by EHEC O157 on farms and in abattoirs to reduce the incidence of foodborne infections in humans.
Collapse
|
39
|
Atypical enteropathogenic Escherichia coli strains form biofilm on abiotic surfaces regardless of their adherence pattern on cultured epithelial cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:845147. [PMID: 24883330 PMCID: PMC4032706 DOI: 10.1155/2014/845147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/11/2014] [Accepted: 04/13/2014] [Indexed: 12/30/2022]
Abstract
The aim of this study was to determine the capacity of biofilm formation of atypical enteropathogenic Escherichia coli (aEPEC) strains on abiotic and biotic surfaces. Ninety-one aEPEC strains, isolated from feces of children with diarrhea, were analyzed by the crystal violet (CV) assay on an abiotic surface after 24 h of incubation. aEPEC strains representing each HEp-2 cell type of adherence were analyzed after 24 h and 6, 12, and 18 days of incubation at 37°C on abiotic and cell surfaces by CFU/cm2 counting and confocal laser scanning microscopy (CLSM). Biofilm formation on abiotic surfaces occurred in 55 (60.4%) of the aEPEC strains. There was no significant difference in biofilm biomass formation on an abiotic versus prefixed cell surface. The biofilms could be visualized by CLSM at various developmental stages. aEPEC strains are able to form biofilm on an abiotic surface with no association with their adherence pattern on HEp-2 cells with the exception of the strains expressing UND (undetermined adherence). This study revealed the capacity of adhesion and biofilm formation by aEPEC strains on abiotic and biotic surfaces, possibly playing a role in pathogenesis, mainly in cases of persistent diarrhea.
Collapse
|
40
|
Escherichia coli Capsular Polysaccharide Synthesis, Antibiotic Susceptibility, and Red Blood Cell Agglutination. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.jecm.2014.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
41
|
Chen CY, Hofmann CS, Cottrell BJ, Strobaugh Jr TP, Paoli GC, Nguyen LH, Yan X, Uhlich GA. Phenotypic and genotypic characterization of biofilm forming capabilities in non-O157 Shiga toxin-producing Escherichia coli strains. PLoS One 2013; 8:e84863. [PMID: 24386426 PMCID: PMC3874044 DOI: 10.1371/journal.pone.0084863] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/20/2013] [Indexed: 01/12/2023] Open
Abstract
The biofilm life style helps bacteria resist oxidative stress, desiccation, antibiotic treatment, and starvation. Biofilm formation involves a complex regulatory gene network controlled by various environmental signals. It was previously shown that prophage insertions in mlrA and heterogeneous mutations in rpoS constituted major obstacles limiting biofilm formation and the expression of extracellular curli fibers in strains of Escherichia coli serotype O157:H7. The purpose of this study was to test strains from other important serotypes of Shiga toxin-producing E. coli (STEC) (O26, O45, O103, O111, O113, O121, and O145) for similar regulatory restrictions. In a small but diverse collection of biofilm-forming and non-forming strains, mlrA prophage insertions were identified in only 4 of the 19 strains (serotypes O103, O113, and O145). Only the STEC O103 and O113 strains could be complemented by a trans-copy of mlrA to restore curli production and Congo red (CR) dye affinity. RpoS mutations were found in 5 strains (4 serotypes), each with low CR affinity, and the defects were moderately restored by a wild-type copy of rpoS in 2 of the 3 strains attempted. Fourteen strains in this study showed no or weak biofilm formation, of which 9 could be explained by prophage insertions or rpoS mutations. However, each of the remaining five biofilm-deficient strains, as well as the two O145 strains that could not be complemented by mlrA, showed complete or nearly complete lack of motility. This study indicates that mlrA prophage insertions and rpoS mutations do limit biofilm and curli expression in the non-serotype O157:H7 STEC but prophage insertions may not be as common as in serotype O157:H7 strains. The results also suggest that lack of motility provides a third major factor limiting biofilm formation in the non-O157:H7 STEC. Understanding biofilm regulatory mechanisms will prove beneficial in reducing pathogen survival and enhancing food safety.
Collapse
Affiliation(s)
- Chin-Yi Chen
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, Pennsylvania, United States of America
- * E-mail:
| | - Christopher S. Hofmann
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, Pennsylvania, United States of America
| | - Bryan J. Cottrell
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, Pennsylvania, United States of America
| | - Terence P. Strobaugh Jr
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, Pennsylvania, United States of America
| | - George C. Paoli
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, Pennsylvania, United States of America
| | - Ly-Huong Nguyen
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, Pennsylvania, United States of America
| | - Xianghe Yan
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, Pennsylvania, United States of America
| | - Gaylen A. Uhlich
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, Pennsylvania, United States of America
| |
Collapse
|
42
|
Matheus-Guimarães C, Gonçalves EM, Cabilio Guth BE. Interactions of O157 and non-O157 Shiga toxin-producing Escherichia coli (STEC) recovered from bovine hide and carcass with human cells and abiotic surfaces. Foodborne Pathog Dis 2013; 11:248-55. [PMID: 24313785 DOI: 10.1089/fpd.2013.1653] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Different structures related to biofilm formation by Shiga toxin-producing Escherichia coli (STEC), particularly O157 strains, have been described, but there are few data regarding their involvement in non-O157 strains. The aim of this study was to determine the ability of 14 O157 and 8 non-O157 strains isolated from bovine hide and carcass to interact with biotic and abiotic surfaces and also to evaluate the role of different adhesins. Biofilm formation assays showed that four O157 and two non-O157 strains were able to adhere to glass, and that only one O157 strain adhered to polystyrene. Reverse transcriptase-polymerase chain reaction was carried out using biofilm-forming strains to determine the expression of antigen 43 (Ag43), curli, type 1 fimbriae, STEC autotransporter contributing to biofilm formation (Sab), calcium-binding antigen 43 homologue (Cah), and autotransporter protein of enterohemorrhagic E. coli (EhaA). Most of these structures were expressed under biofilm conditions. However, the lack of Ag43 in one non-O157 strain, as well as Cah and EhaA in two O157 strains, suggests that other adhesins are involved in biofilm formation in these strains. Despite the fact that adherence to HeLa cells was detected in 20 strains (91%), it was not possible to correlate biofilm formation with adherence patterns. Invasiveness in T84 and Caco-2 cells was observed in four and three O157 strains, respectively. Altogether, we showed that there are different sets of genes involved in the interactions of STEC with biotic and abiotic surfaces. Interestingly, one O157 strain that was able to form biofilm on both glass and polystyrene also adhered to and invaded human cells, indicating an important route for its persistence in the environment and interaction with the host. Additionally, the ability of non-O157 strains not carrying the LEE pathogenicity island to form biofilm highlights an industrial and health problem that cannot be neglected.
Collapse
Affiliation(s)
- Cecilia Matheus-Guimarães
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo , São Paulo, Brazil
| | | | | |
Collapse
|
43
|
Cadona JS, Bustamante AV, Parma AE, Lucchesi PMA, Sanso AM. Distribution of additional virulence factors related to adhesion and toxicity in Shiga toxin-producing Escherichia coli isolated from raw products in Argentina. Lett Appl Microbiol 2013; 56:449-55. [PMID: 23488818 DOI: 10.1111/lam.12067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 02/25/2013] [Accepted: 03/06/2013] [Indexed: 12/01/2022]
Abstract
UNLABELLED A total of 73 Shiga toxin-producing Escherichia coli (STEC) isolates, belonging to 25 serotypes and isolated from raw products in Argentina, were examined for the occurrence of genes responsible for bacterial adhesions to intestine, ehaA (EHEC autotransporter), lpfAO113 (long polar fimbriae), sab (STEC autotransporter [AT] contributing to biofilm formation), ecpA (E. coli common pilus), hcpA (haemorrhagic coli pilus), elfA (E. coli laminin-binding fimbriae), sfpA (sorbitol-fermenting EHEC O157 fimbriae plasmid-encoded) and of the toxigenic gene cdt-V (cytolethal distending toxin). Our study showed different adhesin profiles that are not linked to one specific serotype and that all analysed isolates possess, besides stx genes, some adherence genes. Several of the isolates contained also multiple toxin genes. The results of the present work alert the presence of genes coding for additional adhesins and cdt-V toxin in LEE-negative STEC strains that occur in foods, and this traits could increase their pathogenic potential. SIGNIFICANCE AND IMPACT OF THE STUDY Meat products are one of the main vehicles of Shiga toxin-producing E. coli, and the presence of genes coding for additional adhesins and toxins could increase their pathogenic potential. There is a need for a more detailed characterization of the strains in regard to these extra virulence factors.
Collapse
Affiliation(s)
- J S Cadona
- Laboratorio de Inmunoquímica y Biotecnología, CIVETAN-Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Pcia. de Buenos Aires, Tandil, Argentina
| | | | | | | | | |
Collapse
|
44
|
Wang R, Bono JL, Kalchayanand N, Shackelford S, Harhay DM. Biofilm formation by Shiga toxin-producing Escherichia coli O157:H7 and Non-O157 strains and their tolerance to sanitizers commonly used in the food processing environment. J Food Prot 2012; 75:1418-28. [PMID: 22856565 DOI: 10.4315/0362-028x.jfp-11-427] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) strains are important foodborne pathogens. Among these, E. coli O157:H7 is the most frequently isolated STEC serotype responsible for foodborne diseases. However, the non-O157 serotypes have been associated with serious outbreaks and sporadic diseases as well. It has been shown that various STEC serotypes are capable of forming biofilms on different food or food contact surfaces that, when detached, may lead to cross-contamination. Bacterial cells at biofilm stage also are more tolerant to sanitizers compared with their planktonic counterparts, which makes STEC biofilms a serious food safety concern. In the present study, we evaluated the potency of biofilm formation by a variety of STEC strains from serotypes O157:H7, O26:H11, and O111:H8; we also compared biofilm tolerance with two types of common sanitizers, a quaternary ammonium chloride-based sanitizer and chlorine. Our results demonstrated that biofilm formation by various STEC serotypes on a polystyrene surface was highly strain-dependent, whereas the two non-O157 serotypes showed a higher potency of pellicle formation at air-liquid interfaces on a glass surface compared with serotype O157:H7. Significant reductions of viable biofilm cells were achieved with sanitizer treatments. STEC biofilm tolerance to sanitization was strain-dependent regardless of the serotypes. Curli expression appeared to play a critical role in STEC biofilm formation and tolerance to sanitizers. Our data indicated that multiple factors, including bacterial serotype and strain, surface materials, and other environmental conditions, could significantly affect STEC biofilm formation. The high potential for biofilm formation by various STEC serotypes, especially the strong potency of pellicle formation by the curli-positive non-O157 strains with high sanitization tolerance, might contribute to bacterial colonization on food contact surfaces, which may result in downstream product contamination.
Collapse
Affiliation(s)
- Rong Wang
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, NE 68933-0166, USA.
| | | | | | | | | |
Collapse
|
45
|
Nara JM, Pimenta DC, Abe CM, Abreu PAE, Moraes CTP, Freitas NC, Elias WP, Piazza RMF. Low-molecular mass comparative proteome of four atypical enteropathogenic Escherichia coli isolates showing different adherence patterns. Comp Immunol Microbiol Infect Dis 2012; 35:539-49. [PMID: 22768807 DOI: 10.1016/j.cimid.2012.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 06/04/2012] [Accepted: 06/10/2012] [Indexed: 11/19/2022]
Abstract
Atypical enteropathogenic Escherichia coli (aEPEC) are heterogeneous in terms of serotypes, adherence patterns and the presence of non-locus of enterocyte effacement virulence factors. In this study, the low-molecular mass proteomes of four representative aEPEC, comprising three different adhesion phenotypes (localized-like, aggregative and diffuse) and one non-adherent isolate, were analyzed and compared by 2D gel electrophoresis and LC-MS/MS. By mass spectrometry, a total of 59 proteins were identified according to their annotated function, with most of them being involved in metabolism, protection, and transport; some of them still classified as hypothetical proteins. Thus, in this comparative proteomic analysis of low-molecular mass extracted proteins from different aEPEC isolates, the proteins identified are mainly involved in key metabolic pathways. Also, the majority of the hypothetical and filamentous proteins identified in the isolates studied are products of genes originally identified in the genome of enterohemorrhagic E. coli.
Collapse
Affiliation(s)
- Júlia M Nara
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Farfan MJ, Torres AG. Molecular mechanisms that mediate colonization of Shiga toxin-producing Escherichia coli strains. Infect Immun 2012; 80:903-13. [PMID: 22144484 PMCID: PMC3294676 DOI: 10.1128/iai.05907-11] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a group of pathogens which cause gastrointestinal disease in humans and have been associated with numerous food-borne outbreaks worldwide. The intimin adhesin has been considered for many years to be the only colonization factor in these strains. However, the rapid progress in whole-genome sequencing of different STEC serotypes has accelerated the discovery of other adhesins (fimbrial and afimbrial), which have emerged as important contributors to the intestinal colonization occurring during STEC infection. This review summarizes recent progress to identify and characterize, at the molecular level, novel adhesion and colonization factors in STEC strains, with an emphasis on their contribution to virulence traits, their host-pathogen interactions, the regulatory mechanisms controlling their expression, and their role as targets eliciting immune responses in the host.
Collapse
Affiliation(s)
- Mauricio J. Farfan
- Centro de Estudios Moleculares, Departamento de Pediatría, Hospital Dr. Luis Calvo Mackenna, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alfredo G. Torres
- Department of Microbiology and Immunology, Department of Pathology, Sealy Center for Vaccine Development, and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|