1
|
Kilic G, Debisarun PA, Alaswad A, Baltissen MP, Lamers LA, de Bree LCJ, Benn CS, Aaby P, Dijkstra H, Lemmers H, Martens JHA, Domínguez-Andrés J, van Crevel R, Li Y, Xu CJ, Netea MG. Seasonal variation in BCG-induced trained immunity. Vaccine 2024; 42:126109. [PMID: 38981740 DOI: 10.1016/j.vaccine.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/03/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
The Bacille Calmette-Guerin (BCG) vaccine is a well-established inducer of innate immune memory (also termed trained immunity), causing increased cytokine production upon heterologous secondary stimulation. Innate immune responses are known to be influenced by season, but whether seasons impact induction of trained immunity is not known. To explore the influence of season on innate immune memory induced by the BCG vaccine, we vaccinated healthy volunteers with BCG either during winter or spring. Three months later, we measured the ex vivo cytokine responses against heterologous stimuli, analyzed gene expressions and epigenetic signatures of the immune cells, and compared these with the baseline before vaccination. BCG vaccination during winter induced a stronger increase in the production of pro-inflammatory cytokines by peripheral blood mononuclear cells (PBMCs) upon stimulation with different bacterial and fungal stimuli, compared to BCG vaccination in spring. In contrast, winter BCG vaccination resulted in lower IFNγ release in PBMCs compared to spring BCG vaccination. Furthermore, NK cells of the winter-vaccinated people had a greater pro-inflammatory cytokine and IFNγ production capacity upon heterologous stimulation. BCG had only minor effects on the transcriptome of monocytes 3 months later. In contrast, we identified season-dependent epigenetic changes in monocytes and NK cells induced by vaccination, partly explaining the higher immune cell reactivity in the winter BCG vaccination group. These results suggest that BCG vaccination during winter is more prone to induce a robust trained immunity response by activating and reprogramming the immune cells, especially NK cells. (Dutch clinical trial registry no. NL58219.091.16).
Collapse
Affiliation(s)
- Gizem Kilic
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Priya A Debisarun
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ahmed Alaswad
- Centre for Individualised Infection Medicine (CiiM), A Joint Venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany; TWINCORE, A Joint Venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Marijke P Baltissen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Lieke A Lamers
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - L Charlotte J de Bree
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Christine S Benn
- Bandim Health Project, Open Patient Data Explorative Network (OPEN), Department of Clinical Research, Odense University Hospital and University of Southern Denmark, Odense, Denmark; Danish Institute for Advanced Study, University of Southern Denmark, Copenhagen, Denmark
| | - Peter Aaby
- Bandim Health Project, Open Patient Data Explorative Network (OPEN), Department of Clinical Research, Odense University Hospital and University of Southern Denmark, Odense, Denmark
| | - Helga Dijkstra
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Heidi Lemmers
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Radboud University Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Jorge Domínguez-Andrés
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Reinout van Crevel
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Yang Li
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Centre for Individualised Infection Medicine (CiiM), A Joint Venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany; TWINCORE, A Joint Venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Cheng-Jian Xu
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Centre for Individualised Infection Medicine (CiiM), A Joint Venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany; TWINCORE, A Joint Venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Mihai G Netea
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany.
| |
Collapse
|
2
|
Dias M, Gomes B, Pena P, Cervantes R, Gonçalves S, Carolino E, Twarużek M, Kosicki R, Ałtyn I, Caetano LA, Viegas S, Viegas C. Assessment of the microbial contamination in "Do It Yourself" (DIY) stores - a holistic approach to protect workers' and consumers' health. Front Public Health 2024; 12:1483281. [PMID: 39494078 PMCID: PMC11528695 DOI: 10.3389/fpubh.2024.1483281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024] Open
Abstract
Introduction In "Do-It-Yourself" (DIY) stores, workers from the wood department are considered woodworkers. Given the health risks associated with woodworking, particularly from fungi and their metabolites, this study aims to assess microbial contamination and health risks for both workers and customers. Methods The study was developed in 13 DIY stores in Lisbon Metropolitan Area, Portugal. It employed a comprehensive sampling approach combining active (MAS-100, Andersen six-stage, Coriolis μ, and SKC Button Aerosol Sampler) and passive (electrostatic dust collectors, surface swabs, e-cloths, settled dust, filters from vacuumed dust, filtering respiratory protection devices, and mechanical protection gloves) methods to assess microbial contamination. A Lighthouse Handheld Particle Counter HH3016- IAQ was used to monitor the particulate matter size, temperature, and humidity. Results The wood exhibition area presented the highest fungal load, while the payment area exhibited the highest bacterial load. MAS-100 detected the highest fungal load, and surface swabs had the highest bacterial load. Penicillium sp. was the most frequently observed fungal species, followed by Aspergillus sp. Mycotoxins, namely mycophenolic acid, griseofulvin, and aflatoxin G1, were detected in settled dust samples and one filter from the vacuum cleaner from the wood exhibition area. Cytotoxicity evaluation indicates the wood-cutting area has the highest cytotoxic potential. Correlation analysis highlights relationships between fungal contamination and particle size and biodiversity differences among sampling methods. Discussion The comprehensive approach applied, integrating numerous sampling methods and laboratory assays, facilitated a thorough holistic analysis of this specific environment, enabling Occupational and Public Health Services to prioritize interventions for accurate exposure assessment and detailed risk management.
Collapse
Affiliation(s)
- Marta Dias
- H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA University Lisbon, Lisbon, Portugal
| | - Bianca Gomes
- H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- CE3C—Center for Ecology, Evolution and Environmental Change, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro Pena
- H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA University Lisbon, Lisbon, Portugal
| | - Renata Cervantes
- H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA University Lisbon, Lisbon, Portugal
| | - Sara Gonçalves
- H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Elisabete Carolino
- H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Magdalena Twarużek
- Department of Physiology and Toxicology, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Robert Kosicki
- Department of Physiology and Toxicology, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Iwona Ałtyn
- Department of Physiology and Toxicology, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Liliana Aranha Caetano
- H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- Research Institute for Medicines (iMed.uLisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Susana Viegas
- H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA University Lisbon, Lisbon, Portugal
| | - Carla Viegas
- H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA University Lisbon, Lisbon, Portugal
| |
Collapse
|
3
|
Madsen AM, Rasmussen PU, Delsuz MS, Frederiksen MW. A cross-sectional study on occupational hygiene in biowaste plants. Ann Work Expo Health 2024:wxae074. [PMID: 39312492 DOI: 10.1093/annweh/wxae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Recycling demands are increasing and new biowaste plants are established. The aim of this study is to obtain knowledge about occupational hygiene in biowaste pretreatment plants. At 6 plants, bioaerosol exposure, hand hygiene, and bioaerosol concentrations in work areas were investigated repeatedly. The total inflammatory potential (TIP) of exposures was measured using the human HL-60 cell line. Exposure to airborne bacteria, bacteria able to grow anaerobic, fungi(37°C), endotoxin, and TIP differed between plants and was lowest in a plant transporting waste in closed pipes compared to plants where waste was delivered on the receiving hall floor. Conversely, high exposures were measured in a plant that also processes compost. All microbial components had an impact on TIP of workers' exposure with main effects of fungi and endotoxin. Seasonality was found for several exposures and TIP, and they were lowest in the winter. Concentrations of bacteria and fungi on workers' hands at the end of the workday were 15 times higher for production than for nonproduction workers. In work areas, the concentrations of airborne fungi were highest in the waste-receiving area. Bacteria (3.2 µm) and anaerobic bacteria (4.0 µm) were present as larger airborne particles than fungi (2.8 µm), and bacteria were largest in the waste-receiving area. The microbial community compositions of exposures and work areas differed between plants and work areas. In conclusion, measures to reduce exposure should focus on the waste-receiving area and on the production workers. Differences in exposures and community compositions were found between seasons, work areas, work groups, and plants.
Collapse
Affiliation(s)
- Anne Mette Madsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Pil Uthaug Rasmussen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Mohammad Seeiar Delsuz
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Margit W Frederiksen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
4
|
Arese M, Mania I, Brunella V, Lambertini VG, Gorra R. Evaluation of Aging Effect on the Durability of Antibacterial Treatments Applied on Textile Materials for the Automotive Industry. ACS OMEGA 2024; 9:27169-27176. [PMID: 38947847 PMCID: PMC11209923 DOI: 10.1021/acsomega.4c01272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 07/02/2024]
Abstract
The automotive industry is always seeking novel solutions to improve the durability and the performance of textile materials used in vehicles. Indeed, especially after the coronavirus pandemic, antibacterial treatments have gained interest for their potential of ensuring cleanliness and safety toward microbial contamination within vehicles. This study gives a panoramic view of the durability of antibacterial treatments applied on textile materials in the automotive industry, focusing on their performance after experiencing accelerated aging processes. Two different textile materials, a fabric and a synthetic leather, both treated with antibacterial agents, were tested according to ISO 22196 and ISO 20743 standards, respectively, using two model microorganisms, Escherichia coli and Staphylococcus aureus. The impact of mechanical, thermal, and solar aging on the antibacterial properties has been evaluated. In addition, scanning electron microscope (SEM) analysis was performed to investigate the surface morphology of the materials before and after aging. Furthermore, contact angle measurements were conducted. The results suggest that neither mechanical nor thermal aging processes determined diminished antibacterial action. It was determined, instead, that the most damaging stressor for both textile materials was UV aging, causing severe surface alterations and a reduction in antibacterial activity.
Collapse
Affiliation(s)
- Matilde Arese
- Department
of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy
- Fiat
Research center SCPA (CRF), Stellantis, Corso Settembrini 40, 10135 Turin, Italy
| | - Ilaria Mania
- Department
of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095 Turin, Italy
| | - Valentina Brunella
- Department
of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy
| | - Vito Guido Lambertini
- Fiat
Research center SCPA (CRF), Stellantis, Corso Settembrini 40, 10135 Turin, Italy
| | - Roberta Gorra
- Department
of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095 Turin, Italy
| |
Collapse
|
5
|
Srikanth P, Doe RL, Croteau G, Cohen MA. Low-cost interventions to improve ventilation in long-term care facilities. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2024:1-10. [PMID: 38652919 DOI: 10.1080/15459624.2024.2328295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Residents of long-term care facilities are particularly vulnerable to communicable diseases. Low-cost interventions to increase air exchange rates (AERs) may be useful in reducing the transmission of airborne communicable diseases between long-term care residents and staff. In this study, carbon dioxide gas was used as a tracer to evaluate the AER associated with the implementation of low-cost ventilation interventions. Under baseline conditions with the room's door closed, the mean AER was 0.67 ACH; while baseline conditions with the door open had a significantly higher mean AER of 3.87 ACH (p < 0.001). Subsequently opening a window with the door open increased mean AER by 1.49 ACH (p = 0.012) and adding a fan in the window further increased mean AER by 1.87 ACH (p < 0.001). Regression analyses indicated that the flow rate of air entering through the window, both passively and through the use of a fan, was significantly associated with an increase in AER (p < 0.001). These results indicate that low-cost interventions that pull outside air into resident rooms were effective in improving the air exchange rates in these facilities. While implementation of these interventions is dependent on facility rules and isolation requirements of residents with airborne communicable diseases, these interventions remain viable options for long-term care facilities to improve resident room ventilation without requiring costly ventilation system upgrades.
Collapse
Affiliation(s)
- Pranav Srikanth
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, Washington
- Washington State Department of Health, Olympia, Washington
| | - Rebecca L Doe
- Washington State Department of Health, Olympia, Washington
| | - Gerry Croteau
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, Washington
| | - Martin A Cohen
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, Washington
| |
Collapse
|
6
|
Branysova T, Petru N, Lopez Marin MA, Solcova M, Demnerova K, Stiborova H. Uncovering the microbial diversity of Czech Republic archives: A study of metabolically active airborne microbes. Heliyon 2024; 10:e27930. [PMID: 38560214 PMCID: PMC10981025 DOI: 10.1016/j.heliyon.2024.e27930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/23/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
Despite the diligent efforts of libraries, archives, and similar institutions to preserve cultural monuments, biodeterioration continues to pose a significant threat to these objects. One of the main sources of microorganisms responsible for the biodeterioration process is the presence of airborne microorganisms. Therefore, this research aims to monitor and compare outcomes of both culture-dependent (utilising various cultivation strategies) and culture-independent approaches (RNA-based sequencing) to identifying metabolically active airborne microorganisms in archives in the Czech Republic. Through this study, several species that have the potential to pose risks to both cultural heritage objects and the health of institution employees were found. Additionally, the efficacy of different cultivation media was demonstrated to be varied across archive rooms, highlighting the necessity of employing multiple cultivation media for comprehensive analyses. Of noteworthy importance, the resuscitating-promoting factor (Rpf) proved to be a pivotal tool, increasing bacterial culturability by up to 30% when synergistically employed Reasoner's 2A agar (R2A) and R2A + Rpf media. Next, the study emphasises the importance of integrating both culture-dependent and culture-independent approaches. The overlap between genera identified by the culture-dependent approach and those identified also by the culture-independent approach varied from 33% to surpassing 94%, with the maximum alignment exceeding 94% in only one case. Our results highlight the importance of actively monitoring and assessing levels of microbial air contamination in archives to prevent further deterioration of cultural heritage objects and to promote improved conditions for employees in archives and similar institutions.
Collapse
Affiliation(s)
- Tereza Branysova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technicka 3, 166 28, Prague, Czech Republic
| | - Nicole Petru
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technicka 3, 166 28, Prague, Czech Republic
| | - Marco A. Lopez Marin
- Department of Water Technology and Environmental Engineering, Faculty of Environmental Technology, University of Chemistry and Technology, Technicka 3, 166 28, Prague, Czech Republic
| | - Milada Solcova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technicka 3, 166 28, Prague, Czech Republic
| | - Katerina Demnerova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technicka 3, 166 28, Prague, Czech Republic
| | - Hana Stiborova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technicka 3, 166 28, Prague, Czech Republic
| |
Collapse
|
7
|
Zhao C, Liu X, Tan H, Yin S, Su L, Du B, Khalid M, Sinkkonen A, Hui N. Neighborhood garden's age shapes phyllosphere microbiota associated with respiratory diseases in cold seasons. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 18:100315. [PMID: 37886031 PMCID: PMC10598728 DOI: 10.1016/j.ese.2023.100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 10/28/2023]
Abstract
Neighborhood gardens serve as sensitive sites for human microbial encounters, with phyllosphere microbes directly impacting our respiratory health. Yet, our understanding remains limited on how factors like season, garden age, and land use shape the risk of respiratory diseases (RDs) tied to these garden microbes. Here we examined the microbial communities within the phyllosphere of 72 neighborhood gardens across Shanghai, spanning different seasons (warm and cold), garden ages (old and young), and locales (urban and rural). We found a reduced microbial diversity during the cold season, except for Gammaproteobacteria which exhibited an inverse trend. While land use influenced the microbial composition, urban and rural gardens had strikingly similar microbial profiles. Alarmingly, young gardens in the cold season hosted a substantial proportion of RDs-associated species, pointing towards increased respiratory inflammation risks. In essence, while newer gardens during colder periods show a decline in microbial diversity, they have an increased presence of RDs-associated microbes, potentially escalating respiratory disease prevalence. This underscores the pivotal role the garden age plays in enhancing both urban microbial diversity and respiratory health.
Collapse
Affiliation(s)
- Chang Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., 200240, Shanghai, China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., 200240, Shanghai, China
| | - Xinxin Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., 200240, Shanghai, China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., 200240, Shanghai, China
| | - Haoxin Tan
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Shan Yin
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China
| | - Lantian Su
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China
| | - Baoming Du
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China
| | - Muhammad Khalid
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Aki Sinkkonen
- Department of Garden Technologies, Horticulture Technologies, Natural Resources Institute Finland, Helsinki, Finland
| | - Nan Hui
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| |
Collapse
|
8
|
Lee S, Ryu SH, Sul WJ, Kim S, Kim D, Seo S. Association of exposure to indoor molds and dampness with allergic diseases at water-damaged dwellings in Korea. Sci Rep 2024; 14:135. [PMID: 38167981 PMCID: PMC10762174 DOI: 10.1038/s41598-023-50226-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024] Open
Abstract
This study aims to characterize levels of molds, bacteria, and environmental pollutants, identify the associations between indoor mold and dampness exposures and childhood allergic diseases, including asthma, allergic rhinitis, atopic dermatitis, using three different exposure assessment tools. A total of 50 children with their parents who registered in Seoul and Gyeonggi-do in Korea participated in this study. We collated the information on demographic and housing characteristics, environmental conditions, and lifestyle factors using the Korean version of the International Study of Asthma and Allergies in Childhood questionnaire. We also collected environmental monitoring samples of airborne molds and bacteria, total volatile organic compounds, formaldehyde, and particulate matter less than 10 µm. We evaluated and determined water damage, hidden dampness, and mold growth in dwellings using an infrared (IR) thermal camera and field inspection. Univariate and multivariate regression analyses were performed to evaluate the associations between prevalent allergic diseases and exposure to indoor mold and dampness. Indoor mold and bacterial levels were related to the presence of water damage in dwellings, and the mean levels of indoor molds (93.4 ± 73.5 CFU/m3) and bacteria (221.5 ± 124.2 CFU/m3) in water-damaged homes were significantly higher than those for molds (82.0 ± 58.7 CFU/m3) and for bacteria (152.7 ± 82.1 CFU/m3) in non-damaged dwellings (p < 0.05). The crude odds ratios (ORs) of atopic dermatitis were associated with < 6th floor (OR = 3.80), and higher indoor mold (OR = 6.42) and bacterial levels (OR = 6.00). The crude ORs of allergic diseases, defined as a group of cases who ever suffered from two out of three allergic diseases, e.g., asthma and allergic rhinitis, and allergic rhinitis were also increased by 3.8 and 9.3 times as large, respectively, with water damage (+) determined by IR camera (p < 0.05). The adjusted OR of allergic rhinitis was significantly elevated by 10.4 times in the water-damaged dwellings after adjusting age, sex, and secondhand smoke. Therefore, a longitudinal study is needed to characterize dominant mold species using DNA/RNA-based sequencing techniques and identify a causal relationship between mold exposure and allergic diseases in the future.
Collapse
Affiliation(s)
- Seokwon Lee
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Seung-Hun Ryu
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Woo Jun Sul
- Department of Systems Biotechnology, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Seunghyun Kim
- Allergy Immunology Center, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Dohyeong Kim
- School of Economic, Political and Policy Sciences, University of Texas at Dallas, Richardson, TX, 75080-3021, USA
| | - SungChul Seo
- Department of Nano, Chemical and Biological Engineering, College of Engineering, Seokyeong University, Seoul, 02173, Republic of Korea.
| |
Collapse
|
9
|
Hill MS, Gilbert JA. Microbiology of the built environment: harnessing human-associated built environment research to inform the study and design of animal nests and enclosures. Microbiol Mol Biol Rev 2023; 87:e0012121. [PMID: 38047636 PMCID: PMC10732082 DOI: 10.1128/mmbr.00121-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
SUMMARYOver the past decade, hundreds of studies have characterized the microbial communities found in human-associated built environments (BEs). These have focused primarily on how the design and use of our built spaces have shaped human-microbe interactions and how the differential selection of certain taxa or genetic traits has influenced health outcomes. It is now known that the more removed humans are from the natural environment, the greater the risk for the development of autoimmune and allergic diseases, and that indoor spaces can be harsh, selective environments that can increase the emergence of antimicrobial-resistant and virulent phenotypes in surface-bound communities. However, despite the abundance of research that now points to the importance of BEs in determining human-microbe interactions, only a fraction of non-human animal structures have been comparatively explored. It is here, in the context of human-associated BE research, that we consider the microbial ecology of animal-built natural nests and burrows, as well as artificial enclosures, and point to areas of primary interest for future research.
Collapse
Affiliation(s)
- Megan S. Hill
- Department of Pediatrics, University of California San Diego School of Medicine, San Diego, California, USA
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Jack A. Gilbert
- Department of Pediatrics, University of California San Diego School of Medicine, San Diego, California, USA
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
10
|
Cochran SJ, Acosta L, Divjan A, Lemons AR, Rundle AG, Miller RL, Sobek E, Green BJ, Perzanowski MS, Dannemiller KC. Fungal diversity in homes and asthma morbidity among school-age children in New York City. ENVIRONMENTAL RESEARCH 2023; 239:117296. [PMID: 37806477 PMCID: PMC10842248 DOI: 10.1016/j.envres.2023.117296] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 09/15/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Asthma development has been inversely associated with exposure to fungal diversity. However, the influence of fungi on measures of asthma morbidity is not well understood. OBJECTIVES This study aimed to test the hypothesis that fungal diversity is inversely associated with neighborhood asthma prevalence and identify specific fungal species associated with asthma morbidity. METHODS Children aged 7-8 years (n = 347) living in higher (11-18%) and lower (3-9%) asthma prevalence neighborhoods were recruited within an asthma case-control study. Fungal communities were analyzed from floor dust using high-throughput DNA sequencing. A subset of asthmatic children (n = 140) was followed to age 10-11 to determine asthma persistence. RESULTS Neighborhood asthma prevalence was inversely associated with fungal species richness (P = 0.010) and Shannon diversity (P = 0.059). Associations between neighborhood asthma prevalence and diversity indices were driven by differences in building type and presence of bedroom carpet. Among children with asthma at age 7-8 years, Shannon fungal diversity was inversely associated with frequent asthma symptoms at that age (OR 0.57, P = 0.025) and with asthma persistence to age 10-11 (OR 0.48, P = 0.043). Analyses of individual fungal species did not show significant associations with asthma outcomes when adjusted for false discovery rates. DISCUSSION Lower fungal diversity was associated with asthma symptoms in this urban setting. Individual fungal species associated with asthma morbidity were not detected. Further research is warranted into building type, carpeting, and other environmental characteristics which influence fungal exposures in homes.
Collapse
Affiliation(s)
- Samuel J Cochran
- Division of Pulmonary, Critical Care, and Sleep Medicine, College of Medicine, Ohio State University, Columbus, OH, 43210, USA
| | - Luis Acosta
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Adnan Divjan
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Angela R Lemons
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, 26505, USA
| | - Andrew G Rundle
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, 10032, NY, USA
| | - Rachel L Miller
- Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
| | - Edward Sobek
- Assured Bio Laboratories, Oak Ridge, TN, 37830, USA
| | - Brett J Green
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, 26505, USA
| | - Matthew S Perzanowski
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA.
| | - Karen C Dannemiller
- Department of Civil, Environmental and Geodetic Engineering, College of Engineering, Ohio State University, Columbus, OH, 43210, USA; Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH, 43210, USA; Sustainability Institute, Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
11
|
Carrazana E, Ruiz-Gil T, Fujiyoshi S, Tanaka D, Noda J, Maruyama F, Jorquera MA. Potential airborne human pathogens: A relevant inhabitant in built environments but not considered in indoor air quality standards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165879. [PMID: 37517716 DOI: 10.1016/j.scitotenv.2023.165879] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Potential airborne human pathogens (PAHPs) may be a relevant component of the air microbiome in built environments. Despite that PAHPs can cause infections, particularly in immunosuppressed patients at medical centers, they are scarcely considered in standards of indoor air quality (IAQ) worldwide. Here, we reviewed the current information on microbial aerosols (bacteria, fungal and viruses) and PAHPs in different types of built environments (e.g., medical center, industrial and non-industrial), including the main factors involved in their dispersion, the methodologies used in their study and their associated biological risks. Our analysis identified the human occupancy and ventilation systems as the primary sources of dispersal of microbial aerosols indoors. We also observed temperature and relative humidity as relevant physicochemical factors regulating the dispersion and viability of some PAHPs. Our analysis revealed that some PAHPs can survive and coexist in different environments while other PAHPs are limited or specific for an environment. In relation to the methodologies (conventional or molecular) the nature of PAHPs and sampling type are pivotal. In this context, indoors air-borne viruses are the less studies because their small size, environmental lability, and absence of efficient sampling techniques and universal molecular markers for their study. Finally, it is noteworthy that PAHPs are not commonly considered and included in IAQ standards worldwide, and when they are included, the total abundance is the single parameter considered and biological risks is excluded. Therefore, we propose a revision, design and establishment of public health policies, regulations and IAQ standards, considering the interactions of diverse factors, such as nature of PAHPs, human occupancy and type of built environments where they develop.
Collapse
Affiliation(s)
- Elizabeth Carrazana
- Programa de Doctorado en Ciencias Mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Temuco, Chile; Laboratorio de Ecología Microbiana Aplicada, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Tay Ruiz-Gil
- Laboratorio de Ecología Microbiana Aplicada, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile; Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - So Fujiyoshi
- Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Japan; Microbial Genomics and Ecology, PHIS, The IDEC institute, Hiroshima University, Hiroshima, Japan
| | - Daisuke Tanaka
- School of Science Academic Assembly, University of Toyama, Toyama, Japan
| | - Jun Noda
- Graduate School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan
| | - Fumito Maruyama
- Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Japan; Microbial Genomics and Ecology, PHIS, The IDEC institute, Hiroshima University, Hiroshima, Japan
| | - Milko A Jorquera
- Laboratorio de Ecología Microbiana Aplicada, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile; Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Japan; Network for Extreme Environment Research (NEXER), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
12
|
Davies LR, Barbero-López A, Lähteenmäki VM, Salonen A, Fedorik F, Haapala A, Watts PC. Microbes within the building envelope-a case study on the patterns of colonization and potential sampling bias. PeerJ 2023; 11:e16355. [PMID: 38025723 PMCID: PMC10658902 DOI: 10.7717/peerj.16355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
Humans are exposed to diverse communities of microbes every day. With more time spent indoors by humans, investigations into the communities of microbes inhabiting occupied spaces have become important to deduce the impacts of these microbes on human health and building health. Studies so far have given considerable insight into the communities of the indoor microbiota humans interact with, but mainly focus on sampling surfaces or indoor dust from filters. Beneath the surfaces though, building envelopes have the potential to contain environments that would support the growth of microbial communities. But due to design choices and distance from ground moisture, for example, the temperature and humidity across a building will vary and cause environmental gradients. These microenvironments could then influence the composition of the microbial communities within the walls. Here we present a case study designed to quantify any patterns in the compositions of fungal and bacterial communities existing in a building envelope and determine some of the key variables, such as cardinal direction, distance from floor or distance from wall joinings, that may influence any microbial community composition variation. By drilling small holes across walls of a house, we extracted microbes onto air filters and conducted amplicon sequencing. We found sampling height (distance from the floor) and cardinal direction the wall was facing caused differences in the diversity of the microbial communities, showing that patterns in the microbial composition will be dependent on sampling location within the building. By sampling beneath the surfaces, our approach provides a more complete picture of the microbial condition of a building environment, with the significant variation in community composition demonstrating a potential sampling bias if multiple sampling locations across a building are not considered. By identifying features of the built environment that promote/retard microbial growth, improvements to building designs can be made to achieve overall healthier occupied spaces.
Collapse
Affiliation(s)
- Lucy R. Davies
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | | | | | - Antti Salonen
- Civil Engineering, Faculty of Technology, University of Oulu, Oulu, Finland
| | - Filip Fedorik
- Civil Engineering, Faculty of Technology, University of Oulu, Oulu, Finland
| | - Antti Haapala
- Department of Chemistry, University of Eastern Finland, Joensuu, Finland
| | - Phillip C. Watts
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
13
|
El Jaddaoui I, Ghazal H, Bennett JW. Mold in Paradise: A Review of Fungi Found in Libraries. J Fungi (Basel) 2023; 9:1061. [PMID: 37998867 PMCID: PMC10672585 DOI: 10.3390/jof9111061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
Libraries contain a large amount of organic material, frequently stored with inadequate climate control; thus, mold growth represents a considerable threat to library buildings and their contents. In this essay, we review published papers that have isolated microscopic fungi from library books, shelving, walls, and other surfaces, as well as from air samples within library buildings. Our literature search found 54 published studies about mold in libraries, 53 of which identified fungi to genus and/or species. In 28 of the 53 studies, Aspergillus was the single most common genus isolated from libraries. Most of these studies used traditional culture and microscopic methods for identifying the fungi. Mold damage to books and archival holdings causes biodeterioration of valuable educational and cultural resources. Exposure to molds may also be correlated with negative health effects in both patrons and librarians, so there are legitimate concerns about the dangers of contact with high levels of fungal contamination. Microbiologists are frequently called upon to help librarians after flooding and other events that bring water into library settings. This review can help guide microbiologists to choose appropriate protocols for the isolation and identification of mold in libraries and be a resource for librarians who are not usually trained in building science to manage the threat molds can pose to library holdings.
Collapse
Affiliation(s)
- Islam El Jaddaoui
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, University Mohammed V, Rabat 10000, Morocco
- Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat 10000, Morocco
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA;
| | - Hassan Ghazal
- Laboratory of Genomics and Bioinformatics, School of Pharmacy, Mohammed VI University of Health Sciences, Casablanca 82403, Morocco;
- Royal Institute of Sports, Royal Institute for Managerial Training in Youth and Sport, Department of Sports Sciences, Laboratory of Sports Sciences and Performance Optimization, Salé 10102, Morocco
| | - Joan W. Bennett
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA;
| |
Collapse
|
14
|
Ramirez VI, Wray R, Blount P, King MD. The Effects of Airflow on the Mechanosensitive Channels of Escherichia coli MG1655 and the Impact of Survival Mechanisms Triggered. Microorganisms 2023; 11:2236. [PMID: 37764080 PMCID: PMC10534522 DOI: 10.3390/microorganisms11092236] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Understanding how bacteria respond to ventilated environments is a crucial concept, especially when considering accurate airflow modeling and detection limits. To properly design facilities for aseptic conditions, we must minimize the parameters for pathogenic bacteria to thrive. Identifying how pathogenic bacteria continue to survive, particularly due to their multi-drug resistance characteristics, is necessary for designing sterile environments and minimizing pathogen exposure. A conserved characteristic among bacterial organisms is their ability to maintain intracellular homeostasis for survival and growth in hostile environments. Mechanosensitive (MS) channels are one of the characteristics that guide this phenomenon. Interestingly, during extreme stress, bacteria will forgo favorable homeostasis to execute fast-acting survival strategies. Physiological sensors, such as MS channels, that trigger this survival mechanism are not clearly understood, leaving a gap in how bacteria translate physical stress to an intracellular response. In this paper, we study the role of mechanosensitive ion channels that are potentially triggered by aerosolization. We hypothesize that change in antimicrobial uptake is affected by aerosolization stress. Bacteria regulate their defense mechanisms against antimicrobials, which leads to varying susceptibility. Based on this information we hypothesize that aerosolization stress affects the antimicrobial resistance defense mechanisms of Escherichia coli (E. coli). We analyzed the culturability of knockout E. coli strains with different numbers of mechanosensitive channels and compared antibiotic susceptibility under stressed and unstressed airflow conditions. As a result of this study, we can identify how the defensive mechanisms of resistant bacteria are triggered for their survival in built environments. By changing ventilation airflow velocity and observing the change in antibiotic responses, we show how pathogenic bacteria respond to ventilated environments via mechanosensitive ion channels.
Collapse
Affiliation(s)
- Violette I. Ramirez
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77845, USA
| | - Robin Wray
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Paul Blount
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Maria D. King
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77845, USA
| |
Collapse
|
15
|
Rasmussen PU, Uhrbrand K, Frederiksen MW, Madsen AM. Work in nursing homes and occupational exposure to endotoxin and bacterial and fungal species. Ann Work Expo Health 2023; 67:831-846. [PMID: 37300561 PMCID: PMC10410494 DOI: 10.1093/annweh/wxad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Indoor microbial exposure may cause negative health effects. Only little is known about the occupational microbial exposure in nursing homes and the factors that influence the exposure. The exposure in nursing homes may be increased due to close contact with elderly persons who may carry infectious or antimicrobial-resistant microorganisms and due to handling of laundry, such as used clothing and bed linen. We investigated the microbial exposure in 5 nursing homes in Denmark, by use of personal bioaerosol samples from different groups of staff members taken during a typical working day, stationary bioaerosol measurements taken during various work tasks, sedimented dust samples, environmental surface swabs, and swabs from staff members' hands. From the samples, we explored bacterial and fungal concentrations and species composition, endotoxin levels, and antimicrobial resistance in Aspergillus fumigatus isolates. Microbial concentrations from personal exposure samples differed among professions, and geometric means (GM) were 2,159 cfu/m3 (84 to 1.5 × 105) for bacteria incubated on nutrient agar, 1,745 cfu/m3 (82 to 2.0 × 104) for bacteria cultivated on a Staphylococcus selective agar, and 16 cfu/m3 air for potential pathogenic fungi incubated at 37 °C (below detection limit to 257). Bacterial exposures were elevated during bed making. On surfaces, the highest bacterial concentrations were found on bed railings. The majority of bacterial species found were related to the human skin microflora, such as different Staphylococcus and Corynebacterium species. Endotoxin levels ranged from 0.02 to 59.0 EU/m3, with a GM of 1.5 EU/m3. Of 40 tested A. fumigatus isolates, we found one multiresistant isolate, which was resistant towards both itraconazole and voriconazole, and one isolate resistant towards amphotericin B. In conclusion, we give an overview of the general microbial exposure in nursing homes and show that microbial exposures are higher for staff with more care and nursing tasks compared with administrative staff.
Collapse
Affiliation(s)
- Pil Uthaug Rasmussen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Katrine Uhrbrand
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Margit W Frederiksen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Anne Mette Madsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
16
|
Bastide GMGBH, Remund AL, Oosthuizen DN, Derron N, Gerber PA, Weber IC. Handheld device quantifies breath acetone for real-life metabolic health monitoring. SENSORS & DIAGNOSTICS 2023; 2:918-928. [PMID: 37465007 PMCID: PMC10351029 DOI: 10.1039/d3sd00079f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/10/2023] [Indexed: 07/20/2023]
Abstract
Non-invasive breath analysis with mobile health devices bears tremendous potential to guide therapeutic treatment and personalize lifestyle changes. Of particular interest is the breath volatile acetone, a biomarker for fat burning, that could help in understanding and treating metabolic diseases. Here, we report a hand-held (6 × 10 × 19.5 cm3), light-weight (490 g), and simple device for rapid acetone detection in breath. It comprises a tailor-made end-tidal breath sampling unit, connected to a sensor and a pump for on-demand breath sampling, all operated using a Raspberry Pi microcontroller connected with a HDMI touchscreen. Accurate acetone detection is enabled by introducing a catalytic filter and a separation column, which remove and separate undesired interferents from acetone upstream of the sensor. This way, acetone is detected selectively even in complex gas mixtures containing highly concentrated interferents. This device accurately tracks breath acetone concentrations in the exhaled breath of five volunteers during a ketogenic diet, being as high as 26.3 ppm. Most importantly, it can differentiate small acetone changes during a baseline visit as well as before and after an exercise stimulus, being as low as 0.5 ppm. It is stable for at least four months (122 days), and features excellent bias and precision of 0.03 and 0.6 ppm at concentrations below 5 ppm, as validated by proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF-MS). Hence, this detector is highly promising for simple-in-use, non-invasive, and routine monitoring of acetone to guide therapeutic treatment and track lifestyle changes.
Collapse
Affiliation(s)
- Grégoire M G B H Bastide
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich CH-8092 Zurich Switzerland
- Department of Endocrinology, Diabetology, and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH) CH-8091 Zurich Switzerland
| | - Anna L Remund
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich CH-8092 Zurich Switzerland
- Department of Endocrinology, Diabetology, and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH) CH-8091 Zurich Switzerland
| | - Dina N Oosthuizen
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich CH-8092 Zurich Switzerland
- Department of Mechanical and Industrial Engineering, Northeastern University 467 Egan Center 02115 MA Boston USA
| | - Nina Derron
- Department of Endocrinology, Diabetology, and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH) CH-8091 Zurich Switzerland
| | - Philipp A Gerber
- Department of Endocrinology, Diabetology, and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH) CH-8091 Zurich Switzerland
| | - Ines C Weber
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich CH-8092 Zurich Switzerland
- Department of Endocrinology, Diabetology, and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH) CH-8091 Zurich Switzerland
| |
Collapse
|
17
|
Zahradnik E, Sander I, Lotz A, Liebers V, Thullner I, Tacke S, Raulf M. Exposure levels of animal allergens, endotoxin, and β-(1,3)-glucan on a university campus of veterinary medicine. PLoS One 2023; 18:e0288522. [PMID: 37440536 DOI: 10.1371/journal.pone.0288522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
OBJECTIVES The study aimed to determine the allergen, endotoxin and β-(1,3)-glucan concentrations at various areas on a university campus of veterinary medicine. METHODS Dust samples were collected four times a year for three years using electrostatic dust collectors (EDC) at 25 different locations on a campus of veterinary medicine and in laboratories of inorganic chemistry as a control area representing animal-free environment. Major animal allergens from dog, cat, horse, cattle and mouse, domestic mite (DM) allergens, and β-(1,3)-glucan were measured using enzyme immunoassays and endotoxin using the limulus amoebocyte lysate (LAL) assay. Seasonal, annual and local influences on exposure levels were analyzed using Bayesian mixed models. RESULTS With the exception of mouse allergens, all other determinants were found in almost all locations on the campus and in the control area, but in up to 10.000-fold variable concentrations. By far the highest levels of feline, canine, equine and bovine allergens were detected in buildings where the respective species were examined. The highest levels of mouse and DM allergens, β-(1,3)-glucan and endotoxin occurred together and were associated with locations where large animals were present. In buildings without animals, allergen levels were considerably lower but still elevated at several locations compared to the control area, especially for dog and horse allergens, and β-(1,3)-glucan. Significant seasonal effects were observed for dog, cat, horse and DM allergens, and β-(1,3)-glucan. Variations between years were less apparent than between seasons (except for β-(1,3)-glucan). CONCLUSIONS The strongest influencing factor on the concentration of mammalian allergens was the presence of the corresponding animal at the collection site. Seasonal influence on allergen concentrations was observed, while the overall exposure remained constant over the years. At locations with horses, elevated levels of mite allergens, endotoxin, and β-(1,3)-glucan can be expected, probably due to passive transfer from stable environment.
Collapse
Affiliation(s)
- Eva Zahradnik
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bochum, Germany
| | - Ingrid Sander
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bochum, Germany
| | - Anne Lotz
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bochum, Germany
| | - Verena Liebers
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bochum, Germany
| | | | - Sabine Tacke
- Veterinary Medicine Clinic, Justus-Liebig-University Gießen, Gießen, Germany
| | - Monika Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bochum, Germany
| |
Collapse
|
18
|
Weber IC, Oosthuizen DN, Mohammad RW, Mayhew CA, Pratsinis SE, Güntner AT. Dynamic Breath Limonene Sensing at High Selectivity. ACS Sens 2023. [PMID: 37377394 DOI: 10.1021/acssensors.3c00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Liver diseases (e.g., cirrhosis, cancer) cause more than two million deaths per year worldwide. This is partly attributed to late diagnosis and insufficient screening techniques. A promising biomarker for noninvasive and inexpensive liver disease screening is breath limonene that can indicate a deficiency of the cytochrome P450 liver enzymes. Here, we introduce a compact and low-cost detector for dynamic and selective breath limonene sensing. It comprises a chemoresistive sensor based on Si/WO3 nanoparticles pre-screened by a packed bed Tenax separation column at room temperature. We demonstrate selective limonene detection down to 20 parts per billion over up to three orders of magnitude higher concentrated acetone, ethanol, hydrogen, methanol, and 2-propanol in gas mixtures, as well as robustness to 10-90% relative humidity. Most importantly, this detector recognizes the individual breath limonene dynamics of four healthy volunteers following the ingestion (swallowing or chewing) of a limonene capsule. Limonene release and subsequent metabolization are monitored from breath measurements in real time and in excellent agreement (R2 = 0.98) with high-resolution proton transfer reaction mass spectrometry. This study demonstrates the potential of the detector as a simple-to-use and noninvasive device for the routine monitoring of limonene levels in exhaled breath to facilitate early diagnosis of liver dysfunction.
Collapse
Affiliation(s)
- Ines C Weber
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
- Department of Endocrinology, Diabetology, and Clinical Nutrition, University Hospital Zürich (USZ) and University of Zürich (UZH), CH-8091 Zürich, Switzerland
| | - Dina N Oosthuizen
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Rawan W Mohammad
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Chris A Mayhew
- Institute for Breath Research, Universität Innsbruck, Innsbruck A-6020, Austria
| | - Sotiris E Pratsinis
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Andreas T Güntner
- Department of Endocrinology, Diabetology, and Clinical Nutrition, University Hospital Zürich (USZ) and University of Zürich (UZH), CH-8091 Zürich, Switzerland
- Human-centered Sensor Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
| |
Collapse
|
19
|
Ouradou A, Veillette M, Bélanger Cayouette A, Corbin S, Boulanger C, Dorner S, Duchaine C, Bédard E. Effect of odor treatment systems on bioaerosol microbial concentration and diversity from wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162419. [PMID: 36858219 DOI: 10.1016/j.scitotenv.2023.162419] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/30/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Biofiltration, activated carbon and chemical scrubbing are technologies used for odor control in wastewater treatment plants. These systems may also influence the airborne microbial load in treated air. The study objectives were to 1) evaluate the capacity of three odor control system technologies to reduce the airborne concentration of total bacteria, Legionella, L. pneumophila, non-tuberculous mycobacteria (NTM) and Cladosporium in winter and summer seasons and 2) to describe the microbial ecology of the biofiltration system and evaluate its impact on treated air microbial diversity. A reduction of the total bacterial concentration up to 25 times was observed after odor treatment. Quantification by qPCR revealed the presence of Legionella spp. in all air samples ranging between 26 and 1140 GC/m3, while L. pneumophila was not detected except for three samples below the limit of quantification. A significant increase of up to 25-fold of Legionella spp. was noticed at the outlet of two of the three treatment systems. NTM were ubiquitously detected before air treatment (up to 2500 GC/m3) and were significantly reduced by all 3 systems (up to 13-fold). Cladosporium was measured at low concentrations for each system (< 190 GC/m3), with 68 % of the air samples below the limit of detection. Biodiversity results revealed that biofiltration system is an active process that adapts to air pollutants over time. Legionella spp. were detected in significant abundance in the air once treated in winter (up to 27 %). Nevertheless, the abundance of protozoan hosts is low and does not explain the multiplication of Legionella spp. The season remains the most influential factor shaping biodiversity. In summer only, air biofiltration caused a significant enrichment of the biodiversity. Although odor control technologies are not designed for bacterial mitigation, findings from this study suggest their potential to reduce the abundance of some genera harboring pathogenic species.
Collapse
Affiliation(s)
- A Ouradou
- Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, Montréal, QC, Canada.
| | - M Veillette
- Research Center of the University Institute of Cardiology and Pneumology of Quebec-University Laval, Québec, QC, Canada.
| | - A Bélanger Cayouette
- Research Center of the University Institute of Cardiology and Pneumology of Quebec-University Laval, Québec, QC, Canada; Department of Biochemistry, Microbiology and Bioinformatics, Faculty of Science and Engineering, University Laval, Québec, QC, Canada.
| | - S Corbin
- City of Repentigny, Repentigny, QC, Canada.
| | | | - S Dorner
- Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, Montréal, QC, Canada.
| | - C Duchaine
- Research Center of the University Institute of Cardiology and Pneumology of Quebec-University Laval, Québec, QC, Canada; Department of Biochemistry, Microbiology and Bioinformatics, Faculty of Science and Engineering, University Laval, Québec, QC, Canada; Canada Research Chair on Bioaerosols, University Laval, Québec, QC, Canada.
| | - E Bédard
- Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, Montréal, QC, Canada.
| |
Collapse
|
20
|
Szulc J, Okrasa M, Ryngajłło M, Pielech-Przybylska K, Gutarowska B. Markers of Chemical and Microbiological Contamination of the Air in the Sport Centers. Molecules 2023; 28:molecules28083560. [PMID: 37110794 PMCID: PMC10144153 DOI: 10.3390/molecules28083560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
This study aimed to assess the markers of chemical and microbiological contamination of the air at sport centers (e.g., the fitness center in Poland) including the determination of particulate matter, CO2, formaldehyde (DustTrak™ DRX Aerosol Monitor; Multi-functional Air Quality Detector), volatile organic compound (VOC) concentration (headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry), the number of microorganisms in the air (culture methods), and microbial biodiversity (high-throughput sequencing on the Illumina platform). Additionally the number of microorganisms and the presence of SARS-CoV-2 (PCR) on the surfaces was determined. Total particle concentration varied between 0.0445 mg m-3 and 0.0841 mg m-3 with the dominance (99.65-99.99%) of the PM2.5 fraction. The CO2 concentration ranged from 800 ppm to 2198 ppm, while the formaldehyde concentration was from 0.005 mg/m3 to 0.049 mg m-3. A total of 84 VOCs were identified in the air collected from the gym. Phenol, D-limonene, toluene, and 2-ethyl-1-hexanol dominated in the air at the tested facilities. The average daily number of bacteria was 7.17 × 102 CFU m-3-1.68 × 103 CFU m-3, while the number of fungi was 3.03 × 103 CFU m-3-7.34 × 103 CFU m-3. In total, 422 genera of bacteria and 408 genera of fungi representing 21 and 11 phyla, respectively, were detected in the gym. The most abundant bacteria and fungi (>1%) that belonged to the second and third groups of health hazards were: Escherichia-Shigella, Corynebacterium, Bacillus, Staphylococcus, Cladosporium, Aspergillus, and Penicillium. In addition, other species that may be allergenic (Epicoccum) or infectious (Acinetobacter, Sphingomonas, Sporobolomyces) were present in the air. Moreover, the SARS-CoV-2 virus was detected on surfaces in the gym. The monitoring proposal for the assessment of the air quality at a sport center includes the following markers: total particle concentration with the PM2.5 fraction, CO2 concentration, VOCs (phenol, toluene, and 2-ethyl-1-hexanol), and the number of bacteria and fungi.
Collapse
Affiliation(s)
- Justyna Szulc
- Department of Environmental Biotechnology, Lodz University of Technology, 90-530 Łódź, Poland
| | - Małgorzata Okrasa
- Department of Personal Protective Equipment, Central Institute for Labour Protection-National Research Institute, 90-133 Łódź, Poland
| | - Małgorzata Ryngajłło
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, 90-573 Łódź, Poland
| | | | - Beata Gutarowska
- Department of Environmental Biotechnology, Lodz University of Technology, 90-530 Łódź, Poland
| |
Collapse
|
21
|
Madsen AM, Moslehi-Jenabian S, Frankel M, White JK, Frederiksen MW. Airborne bacterial species in indoor air and association with physical factors. UCL OPEN ENVIRONMENT 2023; 5:e056. [PMID: 37229345 PMCID: PMC10208329 DOI: 10.14324/111.444/ucloe.000056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/25/2023] [Indexed: 05/27/2023]
Abstract
The aim of this study is to obtain knowledge about which cultivable bacterial species are present in indoor air in homes, and whether the concentration and diversity of airborne bacteria are associated with different factors. Measurements have been performed for one whole year inside different rooms in five homes and once in 52 homes. Within homes, a room-to-room variation for concentrations of airborne bacteria was found, but an overlap in bacterial species was found across rooms. Eleven species were found very commonly and included: Acinetobacter lowffii, Bacillus megaterium, B. pumilus, Kocuria carniphila, K. palustris, K. rhizophila, Micrococcus flavus, M. luteus, Moraxella osloensis and Paracoccus yeei. The concentrations of Gram-negative bacteria in general and the species P. yeei were significantly associated with the season with the highest concentrations in spring. The concentrations of P. yeei, K. rhizophila and B. pumilus were associated positively with relative humidity (RH), and concentrations of K. rhizophila were associated negatively with temperature and air change rate (ACR). Micrococcus flavus concentrations were associated negatively with ACR. Overall, this study identified species which are commonly present in indoor air in homes, and that the concentrations of some species were associated with the factors: season, ACR and RH.
Collapse
Affiliation(s)
- Anne Mette Madsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Saloomeh Moslehi-Jenabian
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Mika Frankel
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - John Kerr White
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
- Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Margit W. Frederiksen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
22
|
Al Hallak M, Verdier T, Bertron A, Roques C, Bailly JD. Fungal Contamination of Building Materials and the Aerosolization of Particles and Toxins in Indoor Air and Their Associated Risks to Health: A Review. Toxins (Basel) 2023; 15:toxins15030175. [PMID: 36977066 PMCID: PMC10054896 DOI: 10.3390/toxins15030175] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
It is now well established that biological pollution is a major cause of the degradation of indoor air quality. It has been shown that microbial communities from the outdoors may significantly impact the communities detected indoors. One can reasonably assume that the fungal contamination of the surfaces of building materials and their release into indoor air may also significantly impact indoor air quality. Fungi are well known as common contaminants of the indoor environment with the ability to grow on many types of building materials and to subsequently release biological particles into the indoor air. The aerosolization of allergenic compounds or mycotoxins borne by fungal particles or vehiculated by dust may have a direct impact on the occupant’s health. However, to date, very few studies have investigated such an impact. The present paper reviewed the available data on indoor fungal contamination in different types of buildings with the aim of highlighting the direct connections between the growth on indoor building materials and the degradation of indoor air quality through the aerosolization of mycotoxins. Some studies showed that average airborne fungal spore concentrations were higher in buildings where mould was a contaminant than in normal buildings and that there was a strong association between fungal contamination and health problems for occupants. In addition, the most frequent fungal species on surfaces are also those most commonly identified in indoor air, regardless the geographical location in Europe or the USA. Some fungal species contaminating the indoors may be dangerous for human health as they produce mycotoxins. These contaminants, when aerosolized with fungal particles, can be inhaled and may endanger human health. However, it appears that more work is needed to characterize the direct impact of surface contamination on the airborne fungal particle concentration. In addition, fungal species growing in buildings and their known mycotoxins are different from those contaminating foods. This is why further in situ studies to identify fungal contaminants at the species level and to quantify their average concentration on both surfaces and in the air are needed to be better predict health risks due to mycotoxin aerosolization.
Collapse
Affiliation(s)
- Mohamad Al Hallak
- Laboratoire Matériaux et Durabilité des Constructions (LMDC), INSA Toulouse, 135 Avenue de Rangueil, 31400 Toulouse, France
| | - Thomas Verdier
- Laboratoire Matériaux et Durabilité des Constructions (LMDC), INSA Toulouse, 135 Avenue de Rangueil, 31400 Toulouse, France
| | - Alexandra Bertron
- Laboratoire Matériaux et Durabilité des Constructions (LMDC), INSA Toulouse, 135 Avenue de Rangueil, 31400 Toulouse, France
| | - Christine Roques
- Laboratoire Génie Chimique (LGC), Université de Toulouse, CNRS, 35 Chemin des Maraîchers, 31400 Toulouse, France
| | - Jean-Denis Bailly
- École Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRAE, INPT, 4 Allées Emile Monso, 31030 Toulouse, France
- Correspondence:
| |
Collapse
|
23
|
Wang S, Qian H, Sun Z, Cao G, Ding P, Zheng X. Comparison of airborne bacteria and fungi in different built environments in selected cities in five climate zones of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160445. [PMID: 36436636 DOI: 10.1016/j.scitotenv.2022.160445] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Bioaerosols in different built environments and climate zones have unique effects on occupant health, which demands comparisons of their characteristics to make targeted control measures. This study investigated bioaerosol distribution in five different climate zones across China with four building types (n = 686 rooms). The results showed significant disparities in bioaerosol concentrations among various buildings and climate zones. The bacterial concentrations in residences (536 ± 647 CFU/m3) were significantly higher than in schools, offices, and hospitals owing to different built environments and human activities. The highest mean value of fungal concentration was found in schools (826 ± 955 CFU/m3) due to their greater landscaping area. The bacterial concentrations in the cold zone (307 ± 506 CFU/m3) and the hot summer and cold winter zone (214 ± 180 CFU/m3) were significantly lower than in the other three climate zones. The fungal concentrations in the severe cold zone (709 ± 900 CFU/m3) and the hot summer and warm winter zone (1094 ± 832 CFU/m3) were significantly higher than in the other three climate zones; the lower the indoor temperature (T) and the higher the air exchange rate, the lower the indoor airborne bacterial concentration; the lower the relative humidity (RH), the lower the indoor airborne fungi. In addition, a higher air exchange rate could also reduce the effect of occupant density on indoor bacterial concentration. The results of this study provide valuable data on bioaerosol profiles in various built environments and climate zones and highlight the significance of T, RH, and air exchange rate on indoor bioaerosol concentrations.
Collapse
Affiliation(s)
- Shengqi Wang
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Hua Qian
- School of Energy and Environment, Southeast University, Nanjing 210096, China.
| | - Zongke Sun
- Department of Environmental Microbiology, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Guoqing Cao
- Institute of Building Environmental and Energy Efficiency, China Academy of Building Research, Beijing, China
| | - Pei Ding
- Department of Environmental Microbiology, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiaohong Zheng
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| |
Collapse
|
24
|
Madsen AM, Zhang F, Zeng Y, Frederiksen MW. Airborne methicillin-resistant Staphylococcus aureus, other bacteria, fungi, endotoxin, and dust in a pigeon exhibition. ENVIRONMENTAL RESEARCH 2023; 216:114642. [PMID: 36306875 DOI: 10.1016/j.envres.2022.114642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/15/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Pigeon breeding is associated with exposure to airborne microorganisms and endotoxin and with symptoms of the airways. Antibiotic resistance is a threat to human health. Some pigeons participate in national and international indoor exhibitions. This study aims to obtain knowledge about the potential human exposure to dust, endotoxin, fungi, and bacteria including the methicillin-resistant Staphylococcus aureus (MRSA) in a pigeon exhibition in Denmark. In walking areas for visitors, airborne microorganisms in different size fractions able to enter the airways were sampled and following identified. The average concentrations were: 5000 cfu fungi/m3, 1.8 × 104 cfu bacteria/m3, 37 endotoxin units/m3, and 0.18 mg dust/m3 air with the highest concentrations in-between rows with pigeon cages. The fungal species Wallemia sp. and Aspergillus versicolor and the bacterial species S. equorum and S. aureus were found in high concentrations. MRSA spa type t034 described to be associated with livestock was found in the air. Most of the S. aureus was present in the size fraction of 1.1-2.1 μm, which are particles able to enter the human terminal bronchi. In conclusion, fungi, bacteria, and endotoxin, respectively, were found in concentrations 10, 2000, and 200 times higher than outdoor references. The airborne bacteria in the exhibition were mainly species found previously in pigeon coops showing that the pigeons are the sources of exposure. The presence of airborne MRSA in the pigeon exhibition highlights the importance of also considering this environment as a potential place of exchange of resistant bacteria between animals and between animals and humans.
Collapse
Affiliation(s)
- Anne Mette Madsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100, Copenhagen, Denmark.
| | - Fei Zhang
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100, Copenhagen, Denmark; Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
| | - Yonghui Zeng
- Department of Plant and Environmental Sciences, University of Copenhagen 1871 Frederiksberg C, Copenhagen, Denmark.
| | - Margit W Frederiksen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100, Copenhagen, Denmark.
| |
Collapse
|
25
|
Fakunle AG, Jafta N, Smit LAM, Naidoo RN. Indoor bacterial and fungal aerosols as predictors of lower respiratory tract infections among under-five children in Ibadan, Nigeria. BMC Pulm Med 2022; 22:471. [PMID: 36494686 PMCID: PMC9733100 DOI: 10.1186/s12890-022-02271-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND This study aimed to investigate the association between exposure to diverse indoor microbial aerosols and lower respiratory tract infections (LRTI) among children aged 1 to 59 months in Ibadan, Nigeria. METHODS One hundred and seventy-eight (178) hospital-based LRTI cases among under-five children were matched for age (± 3 months), sex and geographical location with 180 community-based controls (under-five children without LRTI). Following consent from caregivers of eligible participants, a child's health questionnaire, clinical proforma and standardized home-walkthrough checklist were used to collect data. Participant homes were visited and sampled for indoor microbial exposures using active sampling approach by Anderson sampler. Indoor microbial count (IMC), total bacterial count (TBC), and total fungal count (TFC) were estimated and dichotomized into high (> median) and low (≤ median) exposures. Alpha diversity measures including richness (R), Shannon (H) and Simpson (D) indices were also estimated. Conditional logistic regression models were used to test association between exposure to indoor microbial aerosols and LRTI risk among under-five children. RESULTS Significantly higher bacterial and fungal diversities were found in homes of cases (R = 3.00; H = 1.04; D = 2.67 and R = 2.56; H = 0.82; D = 2.33) than homes of controls (R = 2.00; H = 0.64; D = 1.80 and R = 1.89; H = 0.55; D = 1.88) p < 0.001, respectively. In the multivariate models, higher categories of exposure to IMC (aOR = 2.67, 95% CI 1.44-4.97), TBC (aOR = 2.51, 95% CI 1.36-4.65), TFC (aOR = 2.75, 95% CI 1.54-4.89), bacterial diversity (aOR = 1.87, 95% CI 1.08-3.24) and fungal diversity (aOR = 3.00, 95% CI 1.55-5.79) were independently associated with LRTI risk among under-five children. CONCLUSIONS This study suggests an increased risk of LRTI when children under the age of five years are exposed to high levels of indoor microbial aerosols.
Collapse
Affiliation(s)
- Adekunle Gregory Fakunle
- Discipline of Occupational and Environmental Health, University of KwaZulu-Natal, 321 George Campbell Building Howard College Campus, Durban, 4041, South Africa.
- Department of Public Health, College of Health Sciences, Osun State University, Osogbo, Osun State, Nigeria.
| | - Nkosana Jafta
- Discipline of Occupational and Environmental Health, University of KwaZulu-Natal, 321 George Campbell Building Howard College Campus, Durban, 4041, South Africa
| | - Lidwien A M Smit
- Institute for Risk Assessment (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Rajen N Naidoo
- Discipline of Occupational and Environmental Health, University of KwaZulu-Natal, 321 George Campbell Building Howard College Campus, Durban, 4041, South Africa.
| |
Collapse
|
26
|
Cochran SJ, Acosta L, Divjan A, Lemons AR, Rundle AG, Miller RL, Sobek E, Green BJ, Perzanowski MS, Dannemiller KC. Spring is associated with increased total and allergenic fungal concentrations in house dust from a pediatric asthma cohort in New York City. BUILDING AND ENVIRONMENT 2022; 226:10.1016/j.buildenv.2022.109711. [PMID: 37215628 PMCID: PMC10193533 DOI: 10.1016/j.buildenv.2022.109711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Introduction Asthma and allergy symptoms vary seasonally due to exposure to environmental sources of allergen, including fungi. However, we need an improved understanding of seasonal influence on fungal exposures in the indoor environment. We hypothesized that concentrations of total fungi and allergenic species in vacuumed dust vary significantly by season. Objective Assess seasonal variation of indoor fungi with greater implications related to seasonal asthma control. Methods We combined next-generation sequencing with quantitative polymerase chain reaction (qPCR) to measure concentrations of fungal DNA in indoor floor dust samples (n = 298) collected from homes participating in the New York City Neighborhood Asthma and Allergy Study (NAAS). Results Total fungal concentration in spring was significantly higher than the other three seasons (p ≤ 0.005). Mean concentrations for 78% of fungal species were elevated in the spring (26% were significantly highest in spring, p < 0.05). Concentrations of 8 allergenic fungal species were significantly (p < 0.5) higher in spring compared to at least two other seasons. Indoor relative humidity and temperature were significantly highest in spring (p < 0.05) and were associated with total fungal concentration (R2 = 0.049, R2 = 0.11, respectively). Conclusion There is significant seasonal variation in total fungal concentration and concentration of select allergenic species. Indoor relative humidity and temperature may underlie these associations.
Collapse
Affiliation(s)
- Samuel J. Cochran
- Department of Civil, Environmental and Geodetic Engineering, College of Engineering, Ohio State University, Columbus, OH, 43210, USA
- Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH, 43210, USA
- Environmental Science Graduate Program. Ohio State University, Columbus, OH, 43210, USA
| | - Luis Acosta
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Adnan Divjan
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Angela R. Lemons
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, 26505, USA
| | - Andrew G. Rundle
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, 10032, NY, USA
| | - Rachel L. Miller
- Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Edward Sobek
- Assured Bio Laboratories, Oak Ridge, TN, 37830, USA
| | - Brett J. Green
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, 26505, USA
| | - Matthew S. Perzanowski
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Karen C. Dannemiller
- Department of Civil, Environmental and Geodetic Engineering, College of Engineering, Ohio State University, Columbus, OH, 43210, USA
- Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH, 43210, USA
- Sustainability Institute, Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
27
|
Du C, Li B, Yu W, Yao R, Cai J, Li B, Yao Y, Wang Y, Chen M, Essah E. Characteristics of annual mold variations and association with childhood allergic symptoms/diseases via combining surveys and home visit measurements. INDOOR AIR 2022; 32:e13113. [PMID: 36168229 DOI: 10.1111/ina.13113] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/20/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
The presence of dampness and visible molds leads to concerns of poor indoor air quality which has been consistently linked with increased exacerbation and development of allergy and respiratory diseases. Due to the limitations of epidemiological surveys, the actual fungal exposure characteristics in residences has not been sufficiently understood. This study aimed to characterize household fungal diversity and its annual temporal and spatial variations. We developed combined cross-sectional survey, repeated air sampling around a year, and DNA sequencing methods. The questionnaire survey was conducted in 2019, and 4943 valid cases were received from parents; a follow-up case-control study (11 cases and 12 controls) was designed, and onsite measurements of indoor environments were repeated in typical summer, transient season, and winter; dust from floor and beddings in children's room were collected and ITS based DNA sequencing of totally 68 samples was conducted. Results from 3361 children without changes to their residences since birth verified the significant associations of indoor dampness/mold indicators and prevalence of children-reported diseases, with increased adjusted odd ratios (aORs) >1 for studied asthma, wheeze, allergic rhinitis, and eczema. The airborne fungal concentrations from air sampling were higher than 1000 CFU/m3 in summer, regardless of indoors and outdoors, indicating an intermediate pollution level. The DNA sequencing for dust showed the Aspergillus was the predominant at genus level and the Aspergillus_penicillioides was the most common at species level; while the fungal community and composition varied significantly in different homes and seasons, according to α and β diversity analyses. The comprehensive research methods contribute to a holistic understanding of indoor fungal exposure, including the concentrations, seasonal variations, community, and diversity, and verifies the relations with children's adverse health outcomes. The study further elucidates the role of microbiome in human health, which helps setting health-protective thresholds and managing mold treatments in buildings, to promote indoor air quality and human well-beings.
Collapse
Affiliation(s)
- Chenqiu Du
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), School of Civil Engineering, Chongqing University, Chongqing, China
| | - Baizhan Li
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), School of Civil Engineering, Chongqing University, Chongqing, China
| | - Wei Yu
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), School of Civil Engineering, Chongqing University, Chongqing, China
| | - Runming Yao
- School of the Built Environment, University of Reading, Reading, UK
| | - Jiao Cai
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), School of Civil Engineering, Chongqing University, Chongqing, China
| | - Bicheng Li
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), School of Civil Engineering, Chongqing University, Chongqing, China
| | - Yinghui Yao
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), School of Civil Engineering, Chongqing University, Chongqing, China
| | - Yujue Wang
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), School of Civil Engineering, Chongqing University, Chongqing, China
| | - Min Chen
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Emmanuel Essah
- School of the Built Environment, University of Reading, Reading, UK
| |
Collapse
|
28
|
Fan L, Han X, Wang X, Li L, Gong S, Qi J, Li X, Ge T, Liu H, Ye D, Cao Y, Liu M, Sun Z, Su L, Yao X, Wang X. Levels, distributions and influential factors of residential airborne culturable bacteria in 12 Chinese cities: Multicenter on-site survey among dwellings. ENVIRONMENTAL RESEARCH 2022; 212:113425. [PMID: 35561831 DOI: 10.1016/j.envres.2022.113425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/14/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Residential airborne culturable bacteria (RAB) are commonly used to assess indoor microbial loads, which is a very effective and recognized indicator of public concern about residential air quality. Many countries and organizations have set exposure limits for residential bacteria. Nevertheless, few studies have been conducted in multicenter cities about the distribution and influencing factors of RAB. It is a challenge to investigate the distribution of RAB and identify the association between indoor influencing variables and RAB in China. The current finding implied the comparative results from a one-year on-site survey of 12 cities in China. The concentration of RAB ranged from 0 CFU/m3 to 18,078 CFU/m3, with an arithmetic median of 350 CFU/m3. RAB concentrations were more in the warm season than those in the cold season, and were more in the bedrooms than those in the living rooms. Indoor environmental indicators (including PM2.5 and PM10) showed the mediating role in the process of temperature and relative humidity effects on RAB. . Influential factors including family-related information (income), architectural characteristics (house type, building history, living floor, the layers of window glass, and decoration) and lifestyle behaviors (heating, new furniture, incense-burned, insecticides-used, air condition-used, and plants-growed) were related with the concentration of RAB. This study presents essential data on the distribution of RAB in some Chinese cities, and reveals the residential influential factors that might minimize health risk from RAB.
Collapse
Affiliation(s)
- Lin Fan
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xu Han
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xinqi Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Li Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Shuhan Gong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Jing Qi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xu Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Tanxi Ge
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hang Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Dan Ye
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yun Cao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Mengmeng Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Zongke Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Liqin Su
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiaoyuan Yao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xianliang Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| |
Collapse
|
29
|
Ejdys E, Kulesza K, Wiśniewski P, Pajewska M, Sucharzewska E. Window seals as a source of yeast contamination. Lett Appl Microbiol 2022; 75:1021-1027. [DOI: 10.1111/lam.13757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/26/2022] [Accepted: 05/29/2022] [Indexed: 11/30/2022]
Affiliation(s)
- E. Ejdys
- Department of Microbiology and Mycology, Faculty of Biology and Biotechnology University of Warmia and Mazury in Olsztyn Oczapowskiego 1A 10‐719 Olsztyn Poland
| | - K. Kulesza
- Department of Microbiology and Mycology, Faculty of Biology and Biotechnology University of Warmia and Mazury in Olsztyn Oczapowskiego 1A 10‐719 Olsztyn Poland
| | - P. Wiśniewski
- Department of Microbiology and Mycology, Faculty of Biology and Biotechnology University of Warmia and Mazury in Olsztyn Oczapowskiego 1A 10‐719 Olsztyn Poland
| | - M.S. Pajewska
- Department of Microbiology and Mycology, Faculty of Biology and Biotechnology University of Warmia and Mazury in Olsztyn Oczapowskiego 1A 10‐719 Olsztyn Poland
| | - E. Sucharzewska
- Department of Microbiology and Mycology, Faculty of Biology and Biotechnology University of Warmia and Mazury in Olsztyn Oczapowskiego 1A 10‐719 Olsztyn Poland
| |
Collapse
|
30
|
An Assessment of Airborne Bacteria and Fungi in the Female Dormitory Environment: Level, Impact Factors and Dose Rate. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116642. [PMID: 35682227 PMCID: PMC9180550 DOI: 10.3390/ijerph19116642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
In this study, the levels of airborne bacteria and fungi were tested in a female dormitory room; the effects of heating, relative humidity and number of occupants on indoor microorganisms were analyzed and the dose rate of exposure to microbes was assessed. The bacterial and fungal concentrations in the room ranged from 100 to several thousand CFU/m3, and the highest counts were observed in the morning (930 ± 1681 CFU/m3). Staphylococcus spp. and Micrococcus spp. were found in the dormitory. When the heating was on, the total bacterial and fungal counts were lower than when there was no heating. Moreover, statistically significant differences were observed for bacterial concentrations during the morning periods between the times when there was no heating and the times when there was heating. The number of occupants had an obvious positive effect on the total bacterial counts. Moreover, RH had no correlation with the airborne fungi in the dormitory, statistically. Furthermore, the highest dose rate from exposure to bacteria and fungi was observed during sleeping hours. The dose rate from exposure to airborne microorganisms in the dormitory was associated with the activity level in the room. These results helped to elucidate the threat of bioaerosols to the health of female occupants and provide guidance for protective measures.
Collapse
|
31
|
Li Z, Wang Y, Zheng W, Wang H, Li B, Liu C, Wang Y, Lei C. Effect of inlet-outlet configurations on the cross-transmission of airborne bacteria between animal production buildings. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128372. [PMID: 35236040 DOI: 10.1016/j.jhazmat.2022.128372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Cross-transmission of airborne pathogens between buildings facilitates the spread of both human and animal diseases. Rational spatial arrangement of buildings and air inlet-outlet design are well-established preventive measures, but the effectiveness of current configurations for mitigating pathogens cross-transmission is still under assessment. An intensive field study in a laying hen farm was conducted to elucidate the spatial distribution of airborne bacteria (AB) and the source of AB at the inlets under different wind regimes. We found higher concentrations of AB at the interspace and sidewall inlets of buildings with sidewall exhaust systems than at those with endwall exhaust systems. We observed significant differences in bacterial diversity and richness at the interspace and sidewall inlets between buildings with side exhaust systems and those with endwall exhaust systems. We further found that the AB emitted from buildings could translocate to the sidewall inlets of adjacent building to a greater extent between buildings with sidewall exhaust systems than between those with endwall exhaust systems. Our findings revealed that sidewall exhaust systems aggravate cross-transmission of AB between buildings, suggesting that endwall exhaust systems or other compensatory preventive measures combined with sidewall exhaust systems could be a better choice to suppress airborne cross-transmission.
Collapse
Affiliation(s)
- Zonggang Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing, China; Beijing Engineering Research Center on Animal Healthy Environment, Beijing, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Weichao Zheng
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing, China; Beijing Engineering Research Center on Animal Healthy Environment, Beijing, China.
| | - Hongning Wang
- College of Life Sciences, Sichuan University, Sichuan, China; Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, Sichuan, China
| | - Baoming Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing, China; Beijing Engineering Research Center on Animal Healthy Environment, Beijing, China
| | - Chang Liu
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing, China; Beijing Engineering Research Center on Animal Healthy Environment, Beijing, China
| | - Yuxin Wang
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing, China; Beijing Engineering Research Center on Animal Healthy Environment, Beijing, China
| | - Changwei Lei
- College of Life Sciences, Sichuan University, Sichuan, China; Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, Sichuan, China
| |
Collapse
|
32
|
Environmental Factors Affecting Diversity, Structure, and Temporal Variation of Airborne Fungal Communities in a Research and Teaching Building of Tianjin University, China. J Fungi (Basel) 2022; 8:jof8050431. [PMID: 35628687 PMCID: PMC9144611 DOI: 10.3390/jof8050431] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 01/27/2023] Open
Abstract
Airborne fungi are widely distributed in the environment and may have adverse effects on human health. A 12-month survey on the diversity and concentration of culturable airborne fungi was carried out in a research and teaching building of Tianjin University. Indoor and outdoor environments were analyzed using an HAS-100B air sampler. A total of 667 fungal strains, belonging to 160 species and 73 genera were isolated and identified based on morphological and molecular analysis. The most abundant fungal genera were Alternaria (38.57%), Cladosporium (21.49%), and Aspergillus (5.34%), while the most frequently appearing species was A. alternata (21%), followed by A. tenuissima (12.4%), and C. cladosporioides (9.3%). The concentration of fungi in different environments ranged from 0 to 150 CFU/m3 and was significantly higher outdoor than indoor. Temperature and sampling month were significant factors influencing the whole building fungal community, while relative humidity and wind speed were highly correlated with fungal composition outdoor. Variations in the relative abundance of major airborne fungal taxa at different heights above-ground could lead to different community structures at different floors. Our results may provide valuable information for air quality monitoring and microbial pollution control in university building environments.
Collapse
|
33
|
Liao ZN, Xu HJ, Ma J, Li M, He C, Zhang Q, Xu S. Seasonal and vegetational variations of culturable bacteria concentrations in air from urban forest parks: a case study in Hunan, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:28933-28945. [PMID: 34988785 DOI: 10.1007/s11356-021-17532-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
It is important to investigate the airborne bacterial air quality in urban forest parks as tree bacteriostasis practices are being increasingly advocated as measures to improve the air quality and public health in urban green spaces around the world. The aim of the study was to quantitatively investigate airborne culturable bacteria (ACB) concentration levels based on field measurements in every season in five selected forest communities and the uncovered space in an urban forest park, as well as the effects of several factors on the culturability of airborne bacteria. Results suggested that the airborne bacterial levels of all the forest communities reached the clean air quality standard with regard to the airborne bacteria content, with the highest concentration of ACB showing in the uncovered space (1658 ± 1298 CFU/m3) and the lowest showing in the mixed community (907 ± 567 CFU/m3). The temporal distribution analysis showed that the airborne bacteria were mostly concentrated in summer, as well as in the morning and afternoon. The bacteriostatic rates of the mixed community were significantly different with seasonal variation (p < 0.05). Spearman's correlations revealed that the concentration of ACB was significantly positively correlated with the season, wind speed (WS), temperature (T), ultraviolet light (UV), negative air ion (NAI), and total suspended particles (TSP) (p<0.05) but significantly negatively correlated with the forest community type (p < 0.05). Overall, the selection of tree species plays a key role in shaping the forest structure and improving air quality, and the urban forest highlights key priorities for future efforts toward a cleaner, healthier, and more diverse regional forest environment.
Collapse
Affiliation(s)
- Zhen-Ni Liao
- School of Geography, South China Normal University, Guangzhou, 510631, China
- Chenzhou Institute of Forestry, Chenzhou, 423000, China
| | - Hui-Juan Xu
- College of National Resources & Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaojiao Ma
- School of Geography, South China Normal University, Guangzhou, 510631, China
| | - Maojuan Li
- Chenzhou Institute of Forestry, Chenzhou, 423000, China
| | - Caisheng He
- Chenzhou Institute of Forestry, Chenzhou, 423000, China
| | - Qiongrui Zhang
- School of Geography, South China Normal University, Guangzhou, 510631, China
| | - Songjun Xu
- School of Geography, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
34
|
Madsen AM, White JK, Nielsen JL, Keskin ME, Tendal K, Frederiksen MW. A cross sectional study on airborne inhalable microorganisms, endotoxin, and particles in pigeon coops - Risk assessment of exposure. ENVIRONMENTAL RESEARCH 2022; 204:112404. [PMID: 34838572 DOI: 10.1016/j.envres.2021.112404] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Pigeon breeding is associated with symptoms of the airways. The aim of this study is to illuminate the bacteriological and toxicological characteristics of airborne dust in pigeon coops. Airborne dust was sampled in 31 urban pigeon coops with homing and fancy pigeons, and following the dust was characterized. In total 141 different bacterial species were identified using MALDI-TOF MS, and of these 11 species are classified in risk group 2. Of the cultivable bacteria, Staphylococcus equorum was present in the highest concentration. Microorganisms in the dust were able to form biofilm, and the amount correlated positively with the number of bacteria. Next generation sequencing showed 180 genera with Acinetobacter in highest reads. On average 999 ± 225 ZOTUs were observed per sample with a Shannon-Wiener biodiversity index of 6.17 ± 0.24. Of the identified species the following have previously been suggested as causative agents of extrinsic allergic alveolitis: Alcaligenes faecalis, Bacillus subtilis, Pantoea agglomerans, Sphingobacterium spiritivorum, Thermoactinomyces sp., and Streptomyces albus. Staphylococcus was present on particles with sizes between 1.1 and > 7.0 μm with a geometric mean diameter of particles on 4.7 ± 1.1 μm. Concentrations of airborne endotoxin and dust were elevated compared to references, and the geometric mean concentrations were 102 EU/m3 and 1.07 mg dust/m3, respectively. Upon exposure to the airborne dust human granulocytes produced Reactive Oxidative Species during the first 5 min, and then no further reaction was observed. The concentrations of bacteria in general, Staphylococcus spp., and endotoxin and biodiversity were associated significantly with season, temperature and/or relative humidity, but not with type or density of pigeons. The bacterial composition and biodiversity indices were not affected by type of pigeon. In conclusion, the exposure to bacteria and endotoxin in pigeon houses should not be neglected in the evaluation of causative agents of airways symptoms among pigeon breeders.
Collapse
Affiliation(s)
- Anne Mette Madsen
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen, Denmark.
| | - John Kerr White
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen, Denmark; Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg Ø, Denmark; Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institute and Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg Ø, Denmark
| | - Mehmet Emin Keskin
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen, Denmark
| | - Kira Tendal
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen, Denmark
| | | |
Collapse
|
35
|
Comprehensive health risk assessment of microbial indoor air quality in microenvironments. PLoS One 2022; 17:e0264226. [PMID: 35213573 PMCID: PMC8880710 DOI: 10.1371/journal.pone.0264226] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/04/2022] [Indexed: 11/19/2022] Open
Abstract
The higher airborne microbial concentration in indoor areas might be responsible for the adverse indoor air quality, which relates well with poor respiratory and general health effects in the form of Sick building syndromes. The current study aimed to isolate and characterize the seasonal (winter and spring) levels of culturable bio-aerosols from indoor air, implicating human health by using an epidemiological health survey. Microorganisms were identified by standard macro and microbiological methods, followed by biochemical testing and molecular techniques. Sampling results revealed the bacterial and fungal aerosol concentrations ranging between (300–3650 CFU/m3) and (300–4150 CFU/m3) respectively, in different microenvironments during the winter season (December-February). However, in spring (March-May), bacterial and fungal aerosol concentrations were monitored, ranging between (450–5150 CFU/m3) and (350–5070 CFU/m3) respectively. Interestingly, Aspergillus and Cladosporium were the majorly recorded fungi whereas, Staphylococcus, Streptobacillus, and Micrococcus found predominant bacterial genera among all the sites. Taken together, the elevated levels of bioaerosols are the foremost risk factor that can lead to various respiratory and general health issues in additional analysis, the questionnaire survey indicated the headache (28%) and allergy (20%) were significant indoor health concerns. This type of approach will serve as a foundation for assisting residents in taking preventative measures to avoid exposure to dangerous bioaerosols.
Collapse
|
36
|
Estensmo ELF, Morgado L, Maurice S, Martin-Sanchez PM, Engh IB, Mattsson J, Kauserud H, Skrede I. Spatiotemporal variation of the indoor mycobiome in daycare centers. MICROBIOME 2021; 9:220. [PMID: 34753520 PMCID: PMC8576891 DOI: 10.1186/s40168-021-01167-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 09/22/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND Children spend considerable time in daycare centers in parts of the world and are exposed to the indoor micro- and mycobiomes of these facilities. The level of exposure to microorganisms varies within and between buildings, depending on occupancy, climate, and season. In order to evaluate indoor air quality, and the effect of usage and seasonality, we investigated the spatiotemporal variation in the indoor mycobiomes of two daycare centers. We collected dust samples from different rooms throughout a year and analyzed their mycobiomes using DNA metabarcoding. RESULTS The fungal community composition in rooms with limited occupancy (auxiliary rooms) was similar to the outdoor samples, and clearly different from the rooms with higher occupancy (main rooms). The main rooms had higher abundance of Ascomycota, while the auxiliary rooms contained comparably more Basidiomycota. We observed a strong seasonal pattern in the mycobiome composition, mainly structured by the outdoor climate. Most markedly, basidiomycetes of the orders Agaricales and Polyporales, mainly reflecting typical outdoor fungi, were more abundant during summer and fall. In contrast, ascomycetes of the orders Saccharomycetales and Capnodiales were dominant during winter and spring. CONCLUSIONS Our findings provide clear evidences that the indoor mycobiomes in daycare centers are structured by occupancy as well as outdoor seasonality. We conclude that the temporal variability should be accounted for in indoor mycobiome studies and in the evaluation of indoor air quality of buildings. Video abstract.
Collapse
Affiliation(s)
- Eva Lena F. Estensmo
- Section for Genetics and Evolutionary Biology (Evogene), Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, 0316 Oslo, Norway
| | - Luis Morgado
- Section for Genetics and Evolutionary Biology (Evogene), Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, 0316 Oslo, Norway
- Naturalis Biodiversity Center, Darwinweg 2, 2333 Leiden, CR Netherlands
| | - Sundy Maurice
- Section for Genetics and Evolutionary Biology (Evogene), Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, 0316 Oslo, Norway
| | - Pedro M. Martin-Sanchez
- Section for Genetics and Evolutionary Biology (Evogene), Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, 0316 Oslo, Norway
| | | | | | - Håvard Kauserud
- Section for Genetics and Evolutionary Biology (Evogene), Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, 0316 Oslo, Norway
| | - Inger Skrede
- Section for Genetics and Evolutionary Biology (Evogene), Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, 0316 Oslo, Norway
| |
Collapse
|
37
|
Sánchez Espinosa KC, Rojas Flores TI, Davydenko SR, Venero Fernández SJ, Almaguer M. Fungal populations in the bedroom dust of children in Havana, Cuba, and its relationship with environmental conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53010-53020. [PMID: 34021890 DOI: 10.1007/s11356-021-14231-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
The study of the fungal community composition in house dust is useful to assess the accumulative exposure to fungi in indoor environments. The objective of this research was to characterize the fungal diversity of house dust and its association with the environmental conditions of bedrooms. For this, the dust was collected from 41 bedrooms of children between the ages of 8 and 9 with a family history of asthma, residents of Havana, Cuba. The fungal content of each sample was determined by two methods: plate culture with malt extract agar and by direct microscopy. An ecological analysis was carried out from the fungal diversity detected. To describe the factors associated with the fungi detected, bivariate logistic regression was used. Through direct microscopy, between 10 and 2311 fragments of hyphae and spores corresponding mainly to Cladosporium, Coprinus, Curvularia, Aspergillus/Penicillium, Xylariaceae, and Periconia were identified. Through the culture, 0-208 CFU were quantified, where Aspergillus, Cladosporium, and Penicillium predominated. The culturability evidenced the differences between the quantification determined by both methods. A positive relationship was found between the type of cleaning of the furniture, the presence of trees in front of the bedroom, indoor relative humidity, indoor temperature, the presence of air conditioning, and natural ventilation with specific spore types and genera. The use of two different identification methods allowed to detect a greater fungal diversity in the residences evaluated. Monitoring the exposure to these fungal allergens in childhood can help to prevent sensitization in the allergic child, the development of asthma, and other respiratory diseases.
Collapse
Affiliation(s)
- Kenia C Sánchez Espinosa
- Department of Microbiology and Virology, Faculty of Biology, University of Havana, 25 n. 455 e/I & J, Vedado, 10400, Havana, Cuba
| | - Teresa I Rojas Flores
- Department of Microbiology and Virology, Faculty of Biology, University of Havana, 25 n. 455 e/I & J, Vedado, 10400, Havana, Cuba
| | - Sonia Rodríguez Davydenko
- Department of Microbiology and Virology, Faculty of Biology, University of Havana, 25 n. 455 e/I & J, Vedado, 10400, Havana, Cuba
| | - Silvia J Venero Fernández
- National Institute of Hygiene, Epidemiology and Microbiology, Infanta n. 1158 e/Llinás & Clavel, Cerro, 10300, Havana, Cuba
| | - Michel Almaguer
- Department of Microbiology and Virology, Faculty of Biology, University of Havana, 25 n. 455 e/I & J, Vedado, 10400, Havana, Cuba.
| |
Collapse
|
38
|
Zíková N, Ziembik Z, Olszowski T, Bożym M, Nabrdalik M, Rybak J. Elemental and microbiota content in indoor and outdoor air using recuperation unit filters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147903. [PMID: 34052480 DOI: 10.1016/j.scitotenv.2021.147903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/05/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
This paper presents the results of a twelve-month measurement campaign conducted at a rural single-family house in Poland. The external and internal filters of a recuperator used to mechanically ventilate the building were used to separate the total suspended particles (TSPs), and the concentrations of fifteen elements and abundance of fungi and bacteria were determined. Lower annual mean concentrations were observed indoors, and the concentrations of most elements did not significantly change between seasons. There were some differences between winter and summer, which may have resulted from changes in the ventilation regimes in the house. The number of bacteria was similar outdoors and indoors, while the amounts of fungi were higher indoors (p < 0.05). The order of metal concentrations outdoors agreed well with observations in other countries, while indoors the metal concentrations order indicated the individual characteristics of the building. The species diversity of fungi was higher than that of bacteria, and different species were found indoors and outdoors, while bacteria were typically present both indoors and outdoors. Different TSP sources were identified indoors and outdoors, suggesting limited penetration between the two environments. However, both environments were affected by traffic. Mechanical ventilation systems with built-in filters (such as recuperators) were useful in assessing the air quality within the building, and the changeable recuperation filters offer an approach to assess the air quality in several houses without any additional cost or discomfort to the residents.
Collapse
Affiliation(s)
- Naděžda Zíková
- Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Albertov 6, 128 43 Prague, Czech Republic; Department of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 1/135, 165 02 Prague, Czech Republic.
| | - Zbigniew Ziembik
- University of Opole, Institute of Environmental Engineering and Biotechnology, 6a Kominka Str., 45-032 Opole, Poland
| | - Tomasz Olszowski
- Department of Thermal Engineering and Industrial Facilities, Opole University of Technology, 45-271 Opole, Poland
| | - Marta Bożym
- Faculty of Mechanical Engineering, Department of Environmental Protection, Opole University of Technology, 5 Mikołajczyka Str., 45-271 Opole, Poland
| | - Małgorzata Nabrdalik
- University of Opole, Institute of Environmental Engineering and Biotechnology, 6a Kominka Str., 45-032 Opole, Poland
| | - Justyna Rybak
- Faculty of Environmental Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
39
|
Fan L, Wang J, Yang Y, Yang W, Zhu Y, Zhang Y, Li L, Li X, Yan X, Yao X, Wang L, Wang X. Residential airborne culturable fungi under general living scenario: On-site investigation in 12 typical cities, China. ENVIRONMENT INTERNATIONAL 2021; 155:106669. [PMID: 34102580 DOI: 10.1016/j.envint.2021.106669] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/20/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Residential airborne fungi may present obvious risk to human health. However, many countries do not recognize the necessarily need to control residential airborne culturable fungi (RAF). In China, few systemic investigations have been conducted to illustrate the distribution of residential airborne fungi and identify the association between indoor influencing variables and RAF under general living scenario in China. OBJECTIVE This study aimed to investigate RAF with the on-site research of 12 typical cities in China, and provided the latest characteristics and potential influencing factors of RAF under general living scenario. METHODS We measured RAF and investigated residential characteristics in 12 typical cities in China, 2018. At least 50 resident families were randomly selected both from downwind and upwind districts in each city with pre-proposed requirements. The RAF were sampled by the six-stage Anderson impactor. PM2.5 and PM10 were monitored by calibrated light-scattering dust meters. CO and CO2 were monitored by non-dispersive infrared analyzer method. NO2 was determined by Saltzman method. General linear model was used to evaluate the association between RAF exposure and residential characteristics with adjustment for potential confounders. RESULTS The RAF concentrations ranged from 0 to 9371 CFU/m3 with a median concentration of 396 CFU/m3. The median concentrations of RAF in the warm season were statistically higher than the cold season in Panjin, Qingdao, Lanzhou and Luoyang, but lower than the cold season in Shijiazhuang, Ningbo and Nanning. RAF in the bedrooms were more than the living rooms in all cities except Xi'an. Temperature and humidity had an interactive effect on the RAF (OR = 1.0006, 95% CI: 1.0005, 1.0006). Some residential environmental pollutants, including PM2.5 (OR = 0.9989, 95% CI: 0.9988, 0.9989), PM10 (OR = 0.9993, 95% CI: 0.9993, 0.9993), and CO2 (OR = 0.0236, 95% CI: 0.0230, 0.0243), were negatively correlated with RAF. CO (OR = 1.1450, 95% CI: 1.1433, 1.1467) and NO2 (OR = 1.0026, 95% CI: 1.0024, 1.0028) were positively correlated with RAF. Architectural characteristics (sunlight exposure, building history, longitude, latitude, total living area, living floor, distance from the road, house type, the layers of window glass and decoration), family-related information (income) and lifestyle behaviors (keeping pets, growing plants, cooking, using insecticide, burning incense, heating, using air conditioner and cleaning frequencies) were also significantly related with RAF. CONCLUSIONS This study reported nation-wide baseline condition of RAF and related influencing factors under general living scenario with quantitative details, which are exceedingly promising for evidence-driven standard and reasonable control strategy of residential airborne culturable in China.
Collapse
Affiliation(s)
- Lin Fan
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Jiao Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yuyan Yang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Wenjing Yang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yuanduo Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yujing Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Li Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xu Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xu Yan
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiaoyuan Yao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Lin Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xianliang Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| |
Collapse
|
40
|
Nguyen M, Holmes EC, Angenent LT. The short-term effect of residential home energy retrofits on indoor air quality and microbial exposure: A case-control study. PLoS One 2021; 16:e0230700. [PMID: 34543270 PMCID: PMC8452058 DOI: 10.1371/journal.pone.0230700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/13/2021] [Indexed: 11/19/2022] Open
Abstract
Weatherization of residential homes is a widespread procedure to retrofit older homes to improve the energy efficiency by reducing building leakage. Several studies have evaluated the effect of weatherization on indoor pollutants, such as formaldehyde, radon, and indoor particulates, but few studies have evaluated the effect of weatherization on indoor microbial exposure. Here, we monitored indoor pollutants and bacterial communities during reductions in building leakage for weatherized single-family residential homes in New York State and compared the data to non-weatherized homes. Nine weatherized and eleven non-weatherized single-family homes in Tompkins County, New York were sampled twice: before and after the weatherization procedures for case homes, and at least 3 months apart for control homes that were not weatherized. We found that weatherization efforts led to a significant increase in radon levels, a shift in indoor microbial community, and a warmer and less humid indoor environment. In addition, we found that changes in indoor airborne bacterial load after weatherization were more sensitive to shifts in season, whereas indoor radon levels were more sensitive to ventilation rates.
Collapse
Affiliation(s)
- Mytien Nguyen
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, United States of America
| | - Eric C. Holmes
- Department of GeoSciences, University of Tübingen, Tübingen, Germany
| | - Largus T. Angenent
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, United States of America
- Department of GeoSciences, University of Tübingen, Tübingen, Germany
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
41
|
Tseng CC, Huang N, Hsieh CJ, Hung CC, Guo YLL. Contribution of Visible Surface Mold to Airborne Fungal Concentration as Assessed by Digital Image Quantification. Pathogens 2021; 10:1032. [PMID: 34451496 PMCID: PMC8400061 DOI: 10.3390/pathogens10081032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022] Open
Abstract
The rapid monitoring of total fungi, including air and surface fungal profiling, is an important issue. Here, we applied air and surface sampling, combined with digital image quantification of surface mold spots, to evaluate the contribution of surface fungi to airborne fungal concentrations. Cladosporium, Penicillium, Aspergillus, and yeast often appeared in the air or on wall surfaces during sampling. The indoor/outdoor concentration ratios (I/O ratios) demonstrated that the airborne concentrations of commonly found fungal genera outdoors were higher than those indoors (median I/O ratio = 0.65-0.91), excluding those of Penicillium and yeast. Additionally, the surface density (fungal concentration/area) of individual fungi showed no significant correlation with the airborne concentration, excluding that of Geotrichum. However, if a higher surface ratio (>0.00031) of mold spots appeared in the total area of an indoor environment, then the concentrations of Aspergillus and Geotrichum in the air increased significantly. Our results demonstrated that the airborne concentration of indoor fungi is significantly correlated with the outdoor concentration. A higher density of surface fungi does not necessarily contribute to a high fungal concentration in the air. In contrast to fungal density, quantification of the surface fungal area is recommended to assess the risk of surface fungi propelling into the air.
Collapse
Affiliation(s)
- Chun-Chieh Tseng
- Department and Graduate Institute of Public Health, Tzu Chi University, Hualien 97004, Taiwan; (C.-C.T.); (C.-J.H.); (C.-C.H.)
| | - Ning Huang
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 10617, Taiwan;
| | - Chia-Jung Hsieh
- Department and Graduate Institute of Public Health, Tzu Chi University, Hualien 97004, Taiwan; (C.-C.T.); (C.-J.H.); (C.-C.H.)
| | - Chien-Che Hung
- Department and Graduate Institute of Public Health, Tzu Chi University, Hualien 97004, Taiwan; (C.-C.T.); (C.-J.H.); (C.-C.H.)
| | - Yue-Liang Leon Guo
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 10617, Taiwan;
- Environmental and Occupational Medicine, National Taiwan University College of Medicine and NTU Hospital, Taipei 10617, Taiwan
| |
Collapse
|
42
|
de Sousa LP. Bacterial communities of indoor surface of stingless bee nests. PLoS One 2021; 16:e0252933. [PMID: 34242231 PMCID: PMC8270128 DOI: 10.1371/journal.pone.0252933] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022] Open
Abstract
Microbes have been identified as fundamental for the good health of bees, acting as pathogens, protective agent against infection/inorganic toxic compounds, degradation of recalcitrant secondary plant metabolites, definition of social group membership, carbohydrate metabolism, honey and bee pollen production. However, study of microbiota associated with bees have been largely confined to the honeybees and solitary bees. Here, I characterized the microbiota of indoor surface nest of four brazilian stingless bee species (Apidae: Meliponini) with different construction behaviors and populations. Bees that use predominantly plant material to build the nest (Frieseomelitta varia and Tetragonisca angustula) have a microbiome dominated by bacteria found in the phylloplane and flowers such as Pseudomonas sp. and Sphingomonas sp. Species that use mud and feces (Trigona spinipes) possess a microbiome dominated by coliforms such as Escherichia coli and Alcaligenes faecalis. Melipona quadrifasciata, which uses both mud / feces and plant resin, showed a hybrid microbiome with microbes found in soil, feces and plant material. These findings indicate that indoor surface microbiome varies widely among bees and reflects the materials used in the construction of the nests.
Collapse
Affiliation(s)
- Leandro Pio de Sousa
- Department of Genetic, Evolution, Microbiology and Immunology, Institute of Biology, State University of Campinas, Campinas, Brazil
| |
Collapse
|
43
|
Kumar P, Singh AB, Singh R. Seasonal variation and size distribution in the airborne indoor microbial concentration of residential houses in Delhi and its impact on health. AEROBIOLOGIA 2021; 37:719-732. [PMID: 34248257 PMCID: PMC8254435 DOI: 10.1007/s10453-021-09718-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 06/21/2021] [Indexed: 05/30/2023]
Abstract
Exposure of microbial agents in the air of indoor dwellings is associated with effects on respiratory and general health. The current study was conducted in the urban area of Delhi Metropolis for the seasonal quantitative assessment of viable microbial indoor air quality. Bioaerosol measurement was conducted by using Anderson six stage impactor with cut-off diameters of 7.0, 4.7, 3.3, 2.1, 1.1, and 0.65 µm) throughout the all the seasons (April 2019 to March 2020). Meteorological parameters such as temperature and relative humidity were measured to check their effect on microbial survival. Air quality index data of the sampling area were recorded by DPCC air quality monitoring system, Ashok Vihar, Delhi. The highest (1654 ± 876.87 CFU/m3) and lowest (738 ± 443.59 CFU/m3) mean bacterial concentration in houses was recorded in August and December, respectively. Similarly, the highest fungal concentration (1275 ± 645.22 CFU/m3) was found in August and the lowest in (776 ± 462.46 CFU/m3) in January. Bacterial respirable fraction shows an irregular pattern in different seasons. In the case of fungi, the respirable fraction of 2.1 and 1.1 contributes more than 60% of total culturable bioaerosols in all seasons. Bacterial genera including Staphylococcus, Micrococcus, and Streptobacillus were most dominant, and Cladosporium, Aspergillus, Penicillium, and Alternaria were the most dominant fungal genera observed indoors. The results of this study suggest that higher respirable fungal fraction might penetrate deeper into the lungs and cause various health effects. A higher concentration of bioaerosols in outdoor areas than indoor shows that the source of indoor bioaerosols is outdoor air. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10453-021-09718-3.
Collapse
Affiliation(s)
- Pradeep Kumar
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, India
| | - A. B. Singh
- CSIR- Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Delhi, India
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, India
| |
Collapse
|
44
|
Ye J, Qian H, Zhang J, Sun F, Zhuge Y, Zheng X. Combining culturing and 16S rDNA sequencing to reveal seasonal and room variations of household airborne bacteria and correlative environmental factors in nanjing, southeast china. INDOOR AIR 2021; 31:1095-1108. [PMID: 33655612 DOI: 10.1111/ina.12807] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Exposure to bioaerosols poses important health effects on occupants. To elucidate seasonal and room variations of household airborne bacteria, this study investigated 30 residential homes during summer and winter throughout Nanjing, Southeast China, with a humid subtropical climate. Culturing and 16S rDNA sequencing methods were combined in this study. Results showed that the community structure and composition in the same season but different homes show similarity, however, they in the same home but in different seasons show a huge difference, with Sphingomonas (25.3%), Clostridium (14.8%), and Pseudomonas (7.6%) being the dominant bacteria in summer, and Pseudomonas (57.1%) was dominant bacteria in winter. Culturable concentrations of bacteria were also significantly higher in summer (854 ± 425 CFU/m3 ) than in winter (231 ± 175 CFU/m3 ), but difference by home or room was relatively minor. More than 80% of culturable bacteria (<4.7 μm) could penetrate into lower respiratory tract. The seasonal variations of bacterial community and concentrations were closely associated with seasonal variations of temperature, humidity, and PM2.5 . Higher concentrations and larger sizes were observed in the bathroom and kitchen, typically with higher humidity than other rooms.
Collapse
Affiliation(s)
- Jin Ye
- School of Energy and Environment, Southeast University, Nanjing, China
- Engineering Research Center for Building Energy Environment & Equipments, Ministry of Education, China
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, USA
| | - Hua Qian
- School of Energy and Environment, Southeast University, Nanjing, China
- Engineering Research Center for Building Energy Environment & Equipments, Ministry of Education, China
| | - Jianshun Zhang
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, USA
| | - Fan Sun
- School of Energy and Environment, Southeast University, Nanjing, China
- Engineering Research Center for Building Energy Environment & Equipments, Ministry of Education, China
| | - Yang Zhuge
- School of Energy and Environment, Southeast University, Nanjing, China
- Engineering Research Center for Building Energy Environment & Equipments, Ministry of Education, China
| | - Xiaohong Zheng
- School of Energy and Environment, Southeast University, Nanjing, China
- Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology, School of Energy and Environment, Southeast University, Nanjing, China
| |
Collapse
|
45
|
Liquid crystal display screens as a source for indoor volatile organic compounds. Proc Natl Acad Sci U S A 2021; 118:2105067118. [PMID: 34074793 DOI: 10.1073/pnas.2105067118] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Liquid crystal displays (LCDs) have profoundly shaped the lifestyle of humans. However, despite extensive use, their impacts on indoor air quality are unknown. Here, we perform flow cell experiments on three different LCDs, including a new computer monitor, a used laptop, and a new television, to investigate whether their screens can emit air constituents. We found that more than 30 volatile organic compounds (VOCs) were emitted from LCD screens, with a total screen area-normalized emission rate of up to (8.25 ± 0.90) × 109 molecules ⋅ s-1 ⋅ cm-2 In addition to VOCs, 10 liquid crystal monomers (LCMs), a commercial chemical widely used in LCDs, were also observed to be released from those LCD screens. The structural identification of VOCs is based on a "building block" hypothesis (i.e., the screen-emitted VOCs originate from the "building block chemicals" used in the manufacturing of liquid crystals), which are the key components of LCD screens. The identification of LCMs is based upon the detailed information of 362 currently produced LCMs. The emission rates of VOCs and LCMs increased by up to a factor of 9, with an increase of indoor air humidity from 23 to 58% due to water-organic interactions likely facilitating the diffusion rates of organics. These findings indicate that LCD screens are a potentially important source for indoor VOCs that has not been considered previously.
Collapse
|
46
|
Yang L, Shen Z, Wang D, Wei J, Wang X, Sun J, Xu H, Cao J. Diurnal Variations of Size-Resolved Bioaerosols During Autumn and Winter Over a Semi-Arid Megacity in Northwest China. GEOHEALTH 2021; 5:e2021GH000411. [PMID: 34036209 PMCID: PMC8137277 DOI: 10.1029/2021gh000411] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Bioaerosols have a major negative effect on air quality and on public health by causing the spread of diseases. This study evaluated the bioaerosol composition and variation in a semi-arid megacity of northwest China from October 2019 to January 2020 using an Andersen six-stage impactor sampler. The size distribution, diurnal variations of the concentrations of airborne bacteria, airborne fungi, and total airborne microbes (TAM) were investigated in autumn and winter. The mean concentrations of airborne bacteria, fungi, and TAM were 523.5 ± 301.1 colony-forming units (CFU)/m3, 1318.9 ± 447.8 CFU/m3, and (7.25 ± 1.90) × 106 cells/m3, respectively, in autumn and 581 ± 305.4 CFU/m3, 1234.4 ± 519.9 CFU/m3, and (5.96 ± 1.65) × 106 cells/m3, respectively, in winter. The mean bioaerosol concentrations were slightly higher on nonhaze days than on haze days, but the difference was not statistically significant. Higher ambient particulate matter levels and atmospheric oxidation capacity inhibited bacteria survival. The diurnal maximum bioaerosol concentration was observed in the morning in autumn, whereas in winter, bioaerosols did not exhibit such a distribution, the impact of human activities on bioaerosols was still uncertain. The size of airborne bacteria exhibited a bimodal distribution, whereas a unimodal pattern was observed for fungi and TAM. Most bacteria, fungi, and TAM were distributed in the respirable ranges from trachea and primary bronchi to alveoli, indicating that bioaerosols have a high risk of being inhaled and causing respiratory diseases in Xi'an.
Collapse
Affiliation(s)
- Liu Yang
- Department of Environmental Science and EngineeringXi’an Jiaotong UniversityXi’anChina
- Key Lab of Aerosol Chemistry & PhysicsSKLLQGInstitute of Earth EnvironmentChinese Academy of SciencesXi’anChina
| | - Zhenxing Shen
- Department of Environmental Science and EngineeringXi’an Jiaotong UniversityXi’anChina
- Key Lab of Aerosol Chemistry & PhysicsSKLLQGInstitute of Earth EnvironmentChinese Academy of SciencesXi’anChina
| | - Diwei Wang
- Department of Environmental Science and EngineeringXi’an Jiaotong UniversityXi’anChina
| | - Junqiang Wei
- Department of Environmental Science and EngineeringXi’an Jiaotong UniversityXi’anChina
| | - Xin Wang
- School of Chemical & Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Jian Sun
- Department of Environmental Science and EngineeringXi’an Jiaotong UniversityXi’anChina
| | - Hongmei Xu
- Department of Environmental Science and EngineeringXi’an Jiaotong UniversityXi’anChina
| | - Junji Cao
- Key Lab of Aerosol Chemistry & PhysicsSKLLQGInstitute of Earth EnvironmentChinese Academy of SciencesXi’anChina
| |
Collapse
|
47
|
Azman NI, Wan-Mustapha WN, Goh YM, Hassim HA, Selamat J, Samsudin NIP. Climatic conditions and farm practices affected the prevalence of Aspergillus section Flavi on different types of dairy goat's feed. Int J Food Microbiol 2021; 347:109205. [PMID: 33901942 DOI: 10.1016/j.ijfoodmicro.2021.109205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/02/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
The present work aimed to determine the prevalence of aflatoxigenic Aspergillus section Flavi on different types of dairy goat's feed samples obtained from four dairy goat's farms around the central region of Peninsular Malaysia, and to examine the effects of climatic conditions (temperature, relative humidity) of the dairy goat's farms, and their feeding and storage practices on the fungal prevalence of different types of dairy goat's feed. A total of 60 goat's feed samples were obtained, and their proximate composition and water activity were determined, following which they were cultivated on DRBC and AFPA for total fungal load and Aspergillus section Flavi load determination, respectively. Fungal isolates were identified morphologically, and toxigenicity potentials of Aspergillus section Flavi isolates were determined using CCA. The temperature and relative humidity data of all farms were obtained from the Malaysian Meteorological Department. The total fungal loads (on DRBC) of the goat's feed samples were log 0.767 to 7.071 CFU/g which included the common feed contaminants such as Aspergillus, Fusarium, and Penicillium. The Aspergillus section Flavi loads (on AFPA) were log 0.667 to 3.206 CFU/g. Farm A yielded the highest number of Aspergillus section Flavi isolates as well as the highest number of aflatoxigenic isolates. It was found that climatic conditions and different practices between farms positively influenced the fungal prevalence on goat's feed samples based on the Pearson correlation analysis. The prevalence of mycotoxigenic isolates on goat's feed warrants for urgent intervention to ensure that goats are being fed with nutritionally adequate and safe feed. The presence of aflatoxigenic Aspergillus section Flavi isolates indicates the risk of aflatoxin B1 contamination on the goat's feed, aflatoxicosis development in the goats, and aflatoxin M1 bio-transformation in the goat's milk. This is a potential threat to the flourishing goat's milk industry in Malaysia.
Collapse
Affiliation(s)
- Nur Izzati Azman
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Wan Norazihan Wan-Mustapha
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yoh Meng Goh
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Veterinary Pre-Clinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Hasliza Abu Hassim
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Veterinary Pre-Clinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Jinap Selamat
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Nik Iskandar Putra Samsudin
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
48
|
Theisinger SM, de Smidt O, Lues JFR. Categorisation of culturable bioaerosols in a fruit juice manufacturing facility. PLoS One 2021; 16:e0242969. [PMID: 33882058 PMCID: PMC8059861 DOI: 10.1371/journal.pone.0242969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/12/2020] [Indexed: 11/18/2022] Open
Abstract
Bioaerosols are defined as aerosols that comprise particles of biological origin or activity that may affect living organisms through infectivity, allergenicity, toxicity, or through pharmacological or other processes. Interest in bioaerosol exposure has increased over the last few decades. Exposure to bioaerosols may cause three major problems in the food industry, namely: (i) contamination of food (spoilage); (ii) allergic reactions in individual consumers; or (iii) infection by means of pathogenic microorganisms present in the aerosol. The aim of this study was to characterise the culturable fraction of bioaerosols in the production environment of a fruit juice manufacturing facility and categorise isolates as harmful, innocuous or potentially beneficial to the industry, personnel and environment. Active sampling was used to collect representative samples of five areas in the facility during peak and off-peak seasons. Areas included the entrance, preparation and mixing area, between production lines, bottle dispersion and filling stations. Microbes were isolated and identified using 16S, 26S or ITS amplicon sequencing. High microbial counts and species diversity were detected in the facility. 239 bacteria, 41 yeasts and 43 moulds were isolated from the air in the production environment. Isolates were categorised into three main groups, namely 27 innocuous, 26 useful and 39 harmful bioaerosols. Harmful bioaerosols belonging to the genera Staphylococcus, Pseudomonas, Penicillium and Candida were present. Although innocuous and useful bioaerosols do not negatively influence human health their presence act as an indicator that an ideal environment exists for possible harmful bioaerosols to emerge.
Collapse
Affiliation(s)
- Shirleen M. Theisinger
- Centre for Applied Food Sustainability and Biotechnology (CAFSaB), Faculty of Health and Environmental Sciences, Central University of Technology, Free State, Bloemfontein, South Africa
| | - Olga de Smidt
- Centre for Applied Food Sustainability and Biotechnology (CAFSaB), Faculty of Health and Environmental Sciences, Central University of Technology, Free State, Bloemfontein, South Africa
| | - Jan F. R. Lues
- Centre for Applied Food Sustainability and Biotechnology (CAFSaB), Faculty of Health and Environmental Sciences, Central University of Technology, Free State, Bloemfontein, South Africa
| |
Collapse
|
49
|
Li Z, Zhang X, Wu T, Zhu L, Qin J, Yang X. Effects of slope and speed of escalator on the dispersion of cough-generated droplets from a passenger. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2021; 33:041701. [PMID: 33897245 PMCID: PMC8060973 DOI: 10.1063/5.0046870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/13/2021] [Indexed: 05/04/2023]
Abstract
During the pandemic of COVID-19, the public is encouraged to take stairs or escalators instead of elevators. However, the dispersion of respiratory droplets in these places, featured by slopes and human motion, is not well understood yet. It is consequently unclear whether the commonly recommended social-distancing guidelines are still appropriate in these scenarios. In this work, we analyze the dispersion of cough-generated droplets from a passenger riding an escalator with numerical simulations, focusing on the effects of the slope and speed of the escalator on the droplet dispersion. In the simulations, a one-way coupled Eulerian-Lagrangian approach is adopted, with the air-flow solved using the Reynolds-averaged Navier-Stokes method and the droplets modeled as passive Lagrangian particles. It is found that the slope alters the vertical concentration of the droplets in the passenger's wake significantly. The deflection of cough-generated jet and the wake flow behind the passenger drive the cough-generated droplets upwards when descending an escalator and downwards when ascending, resulting in both higher suspension height and larger spreading range of the viral droplets on a descending escalator than on an ascending one. These findings suggest that the present social-distancing guidelines may be inadequate on descending escalators and need further investigation.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaolei Yang
- Author to whom correspondence should be addressed:
| |
Collapse
|
50
|
Du C, Li B, Yu W, Cai J, Wang L, Li X, Yao Y, Li B. Evaluating the effect of building construction periods on household dampness/mold and childhood diseases corresponding to different energy efficiency design requirements. INDOOR AIR 2021; 31:541-556. [PMID: 32731305 DOI: 10.1111/ina.12723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/31/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Despite concerns about building dampness and children' health, few studies have examined the effects of building energy efficiency standards. This study explored the connections between self-reported household dampness and children' adverse health outcomes across buildings corresponding to construction periods (pre-2001, 2001-2010, post-2010). Significant differences of dampness-related indicators were found between buildings; the prevalence was remarkable in pre-2001 buildings. The prevalence of lifetime-ever doctor-diagnosed diseases for children was significantly associated with building dampness (adjust odd ratios > 1), but was not affected by construction periods. The hygrothermal performance for a typical residence was simulated, varying in U-values of envelopes and air change rates. The simulated performance improvement increased indoor temperatures in 2001-2010 and post-2010 buildings. The frequency with higher indoor relative humidity was higher in pre-2001 buildings, leading to the highest values for maximum mold index (Mmax ) on wall surface, especially in winter. Compared to buildings in 2001-2010, increased insulation and lower air change rate led to a relatively higher relative humidity in post-2010 buildings, adversely increasing the Mmax values. The findings addressed the positive and negative role of building standard development, which help suggesting appropriate environmental and design solutions to trade-off energy savings and dampness/mold risk in residences.
Collapse
Affiliation(s)
- Chenqiu Du
- Joint International Research Laboratory of Green Buildings and Built Environments, Ministry of Education, Chongqing University, Chongqing, China
- National Centre for International Research of Low-carbon and Green Buildings, Ministry of Science and Technology, Chongqing University, Chongqing, China
| | - Baizhan Li
- Joint International Research Laboratory of Green Buildings and Built Environments, Ministry of Education, Chongqing University, Chongqing, China
- National Centre for International Research of Low-carbon and Green Buildings, Ministry of Science and Technology, Chongqing University, Chongqing, China
| | - Wei Yu
- Joint International Research Laboratory of Green Buildings and Built Environments, Ministry of Education, Chongqing University, Chongqing, China
- National Centre for International Research of Low-carbon and Green Buildings, Ministry of Science and Technology, Chongqing University, Chongqing, China
| | - Jiao Cai
- Joint International Research Laboratory of Green Buildings and Built Environments, Ministry of Education, Chongqing University, Chongqing, China
- National Centre for International Research of Low-carbon and Green Buildings, Ministry of Science and Technology, Chongqing University, Chongqing, China
| | - Lexiang Wang
- Joint International Research Laboratory of Green Buildings and Built Environments, Ministry of Education, Chongqing University, Chongqing, China
- National Centre for International Research of Low-carbon and Green Buildings, Ministry of Science and Technology, Chongqing University, Chongqing, China
| | - Xinyi Li
- Department of Civil and Structural Engineering, Sheffield University, Sheffield, UK
| | - Yinghui Yao
- Joint International Research Laboratory of Green Buildings and Built Environments, Ministry of Education, Chongqing University, Chongqing, China
- National Centre for International Research of Low-carbon and Green Buildings, Ministry of Science and Technology, Chongqing University, Chongqing, China
| | - Bicheng Li
- Joint International Research Laboratory of Green Buildings and Built Environments, Ministry of Education, Chongqing University, Chongqing, China
- National Centre for International Research of Low-carbon and Green Buildings, Ministry of Science and Technology, Chongqing University, Chongqing, China
| |
Collapse
|