1
|
Wang H, Lu F, Feng X, Zhang Y, Di W, Chen M, Wu R, Rao M, Yin P, Hao Y, Zhai Z. Characterization of a novel antioxidant exopolysaccharide from an intestinal-originated bacteria Bifidobacterium pseudocatenulatum Bi-OTA128. Microbiol Res 2024; 289:127914. [PMID: 39353276 DOI: 10.1016/j.micres.2024.127914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/08/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024]
Abstract
Microbial exopolysaccharides (EPSs) have attracted extensive attention for their biological functions in antioxidant activities. In this study, we characterized a novel EPS produced by Bifidobacterium pseudocatenulatum Bi-OTA128 which exhibited the highest antioxidant capacity compared to nine other ropy bacterial strains, achieving 76.50 % and 93.84 % in DPPH· and ABTS·+ scavenging activity, and ferric reducing power of 134.34 μM Fe2+. Complete genomic analysis identified an eps gene cluster involved in the EPS biosynthesis of Bi-OTA128 strain, which might be responsible for its ropy phenotype. The EPS was then isolated and purified by a DEAE-Sepharose Fast Flow column. A single elution part EPS128 was obtained with a recovery rate of 43.5 ± 1.78 % and a total carbohydrate content of 93.6 ± 0.76 %. Structural characterization showed that EPS128 comprised glucose, galactose, and rhamnose (molar ratio 4.0:1.2:1.1), featuring a putative complex backbone structure with four branched chains and an unusual acetyl group at O-2 of terminal rhamnose. Antioxidant assay in vitro indicated that EPS128 exhibited antioxidant potential with 50.52 % DPPH· and 65.40 % ABTS·+ scavenging activities, reaching 54.3 % and 70.44 % of the efficacy of standard Vitamin C at 2.0 mg/L. Furthermore, EPS128 showed protective effects against H2O2-induced oxidative stress in HepG2 cells by reducing cellular reactive oxygen species (ROS) and increasing cell viability. These findings present the first comprehensive report of an antioxidant EPS from B. pseudocatenulatum, highlighting its potential as a natural antioxidant for applications in the food industry and clinical settings.
Collapse
Affiliation(s)
- Hui Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fangzhou Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xin Feng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuchen Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wenxuan Di
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ming Chen
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Ruiyun Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Man Rao
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Pengbin Yin
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Yanling Hao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Zhengyuan Zhai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China.
| |
Collapse
|
2
|
Ma G, Chen Z, Li Z, Xiao X. Unveiling the neonatal gut microbiota: exploring the influence of delivery mode on early microbial colonization and intervention strategies. Arch Gynecol Obstet 2024; 310:2853-2861. [PMID: 39589476 DOI: 10.1007/s00404-024-07843-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024]
Abstract
Recent research has emphasized the critical importance of establishing the neonatal gut microbiota for overall health and immune system development, prompting deeper studies about the early formation of neonatal gut microbiota and its influencing factors. Various factors, including maternal and environmental factors, affect the early formation of neonatal gut microbiota, in which delivery mode has been considered as one of the most crucial influencing factors. In recent years, the increasing trend of cesarean section during childbirth has become a serious challenge for global public health. This review thoroughly analyzes the effects of vaginal delivery and cesarean section on the establishment of neonatal gut microbiota and the potential long-term impacts. In addition, we analyze and discuss interventions such as probiotics, prebiotics, vaginal seeding, fecal microbiota transplantation, and breastfeeding to address the colonization defects of the neonatal gut microbiota caused by cesarean section, aiming to provide theoretical basis for the prevention and treatment of colonization defects and related diseases in infants caused by cesarean section in clinical practice and to provide a theoretical foundation for optimizing the development of neonatal gut microbiota.
Collapse
Affiliation(s)
- Guangyu Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhongsheng Chen
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhe Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Xiaomin Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
3
|
Chew C, Matsuyama M, Davies PSW, Hill RJ, Morrison M, Martin R, Codoñer FM, Knol J, Roeselers G. A young child formula supplemented with a synbiotic mixture of scGOS/lcFOS and Bifidobacterium breve M-16V improves the gut microbiota and iron status in healthy toddlers. Front Pediatr 2024; 12:1193027. [PMID: 39469104 PMCID: PMC11513326 DOI: 10.3389/fped.2024.1193027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/12/2024] [Indexed: 10/30/2024] Open
Abstract
Early-life gut microbiota development depends on a highly synchronized microbial colonization process in which diet is a key regulator. Microbiota transition toward a more adult-like state in toddlerhood goes hand in hand with the transition from a milk-based diet to a family diet. Microbiota development during the first year of life has been extensively researched; however, studies during toddlerhood remain sparse. Young children's requirement for micronutrients, such as dietary iron, is higher than adults. However, their intake is usually sub-optimal based on regular dietary consumption. The Child Health and Residence Microbes (CHaRM) study, conducted as an adjunct to the GUMLi (Growing Up Milk "Lite") trial, was a double-blind randomized controlled trial to investigate the effects on body composition of toddler milk compared to unfortified standard cow's milk in healthy children between 1 and 2 years of age in Brisbane (Australia). In this trial, fortified milk with reduced protein content and added synbiotics [Bifidobacterium breve M-16V, short-chain galactooligosaccharides, and long-chain fructooligosaccharides (ratio 9:1)] and micronutrients were compared to standard unfortified cow's milk. In the present study, the effects of the intervention on the gut microbiota and its relationship with iron status in toddlers were investigated in a subset of 29 children (18 in the Active group and 11 in the Control group) who completed the CHaRM study. The toddler microbiota consisted mainly of members of the phyla Firmicutes, Bacteroidota, and Actinobacteriota. The abundance of the B. breve species was quantified and was found to be lower in the Control group than in the Active group. Analysis of blood iron markers showed an improved iron status in the Active group. We observed a positive correlation between Bifidobacterium abundance and blood iron status. PICRUSt, a predictive functionality algorithm based on 16S ribosomal gene sequencing, was used to correlate potential microbial functions with iron status measurements. This analysis showed that the abundance of predicted genes encoding for enterobactin, a class of siderophores specific to Enterobacteriaceae, is inversely correlated with the relative abundance of members of the genus Bifidobacterium. These findings suggest that healthy children who consume a young child formula fortified with synbiotics as part of a healthy diet have improved iron availability and absorption in the gut and an increased abundance of Bifidobacterium in their gut microbiome.
Collapse
Affiliation(s)
- Charmaine Chew
- Danone Research & Innovation, Singapore, Singapore
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Misa Matsuyama
- Faculty of Medicine, Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Peter S. W. Davies
- Faculty of Medicine, Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Rebecca J. Hill
- Faculty of Medicine, Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Mark Morrison
- Faculty of Medicine, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Rocio Martin
- Danone Research & Innovation, Utrecht, Netherlands
| | | | - Jan Knol
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
- Danone Research & Innovation, Utrecht, Netherlands
| | | |
Collapse
|
4
|
Rizzo SM, Alessandri G, Tarracchini C, Bianchi MG, Viappiani A, Mancabelli L, Lugli GA, Milani C, Bussolati O, van Sinderen D, Ventura M, Turroni F. Molecular cross-talk among human intestinal bifidobacteria as explored by a human gut model. Front Microbiol 2024; 15:1435960. [PMID: 39314876 PMCID: PMC11418510 DOI: 10.3389/fmicb.2024.1435960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Bifidobacteria are well known as common and abundant colonizers of the human gut and are able to exert multiple beneficial effects on their host, although the cooperative and competitive relationships that may occur among bifidobacterial strains are still poorly investigated. Therefore, to dissect possible molecular interactions among bifidobacterial species that typically colonize the human gut, three previously identified bifidobacterial prototypes, i.e., B. bifidum PRL2010, B. breve PRL2012, and B. longum PRL2022 were cultivated individually as well as in bi- and tri-association in a human gut-simulating medium. Transcriptomic analyses of these co-associations revealed up-regulation of genes predicted to be involved in the production of extracellular structures including pili (i.e., flp pilus assembly TadE protein gene), exopolysaccharides (i.e., GtrA family protein gene) and teichoic acids (i.e., ABC transporter permease), along with carbohydrate, amino acid and vitamin metabolism-related genes (i.e., exo-alpha-sialidase; beta-galactosidase and pyridoxamine kinase), suggesting that co-cultivation of bifidobacteria induces a response, in individual bifidobacterial strains, aimed at enhancing their proliferation and survival, as well as their ability to cooperate with their host to promote their persistence. Furthermore, exposure of the selected prototypes to human cell line monolayers unveiled the ability of the bifidobacterial tri-association to communicate with their host by increasing the expression of genes involved in adherence to/interaction with intestinal human cells. Lastly, bifidobacterial tri-association promoted the transcriptional upregulation of genes responsible for maintaining the integrity and homeostasis of the intestinal epithelial barrier.
Collapse
Affiliation(s)
- Sonia Mirjam Rizzo
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Massimiliano G. Bianchi
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | | | - Leonardo Mancabelli
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Ovidio Bussolati
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
5
|
Wu Q, Li W, Kwok LY, Lv H, Sun J, Sun Z. Regional variation and adaptive evolution in Bifidobacterium pseudocatenulatum: Insights into genomic and functional diversity in human gut. Food Res Int 2024; 192:114840. [PMID: 39147525 DOI: 10.1016/j.foodres.2024.114840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
Bifidobacterium pseudocatenulatum is a prevalent gut microbe in humans of all ages and plays a crucial role in host health. However, its adaptive evolutionary characteristics remain poorly understood. This study analyzed the genome of 247 B. pseudocatenulatum isolates from Chinese, Vietnamese, Japanese and other region populations using population genomics and functional genomics. Our findings revealed high genetic heterogeneity and regional clustering within B. pseudocatenulatum isolates. Significant differences were observed in genome characteristics, phylogeny, and functional genes. Specifically, Chinese and Vietnamese isolates exhibited a higher abundance of genes involved in the metabolism of plant-derived carbohydrates (GH13, GH43, and GH5 enzyme families), aligning with the predominantly vegetable-, wheat- and fruit-based diets of these populations. Additionally, we found widespread transmission of antibiotic resistance genes (tetO and tetW) through mobile genetic elements, such as genomic islands (GIs), resulting in substantial intra-regional differences. Our findings highlight distinct adaptive evolution in B. pseudocatenulatum driven by gene specialization, possibly in response to regional variations in diet and lifestyle. This study sheds light on bifidobacteria colonization mechanisms in the host gut. IMPORTANCE: Gut microbiota, as a key link in the gut-brain axis, helps to maintain the health of the organism, among which, Bifidobacterium pseudocatenulatum (B. pseudocatenulatum) is an important constituent member of the gut microbiota, which plays an important role in maintaining the balance of gut microbiota. The probiotic properties of B. pseudocatenulatum have been widely elaborated, and in order to excavate its evolutionary features at the genomic level, here we focused on the genetic background and evolutionary mechanism of the B. pseudocatenulatum genomes isolated from the intestinal tracts of different populations. Ultimately, based on the phylogenetic tree, we found that B. pseudocatenulatum has high genetic diversity and regional clustering phenomenon, in which plant-derived carbohydrate metabolism genes (GH13, GH43, GH5) showed significant regional differences, and this genetic differentiation drove the adaptive evolution, which likely shaped by diet and lifestyle.
Collapse
Affiliation(s)
- Qiong Wu
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Weicheng Li
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China; Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Huimin Lv
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Jiaqi Sun
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China; Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China.
| |
Collapse
|
6
|
Sanchez-Gallardo R, Bottacini F, Friess L, Esteban-Torres M, Somers C, Moore RL, McAuliffe FM, Cotter PD, van Sinderen D. Unveiling metabolic pathways of selected plant-derived glycans by Bifidobacterium pseudocatenulatum. Front Microbiol 2024; 15:1414471. [PMID: 39081887 PMCID: PMC11286577 DOI: 10.3389/fmicb.2024.1414471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
Bifidobacteria are commonly encountered members of the human gut microbiota that possess the enzymatic machinery necessary for the metabolism of certain plant-derived, complex carbohydrates. In the current study we describe differential growth profiles elicited by a panel of 21 newly isolated Bifidobacterium pseudocatenulatum strains on various plant-derived glycans. Using a combination of gene-trait matching and comparative genome analysis, we identified two distinct xylanases responsible for the degradation of xylan. Furthermore, three distinct extracellular α-amylases were shown to be involved in starch degradation by certain strains of B. pseudocatenulatum. Biochemical characterization showed that all three α-amylases can cleave the related substrates amylose, amylopectin, maltodextrin, glycogen and starch. The genes encoding these enzymes are variably found in the species B. pseudocatenulatum, therefore constituting a strain-specific adaptation to the gut environment as these glycans constitute common plant-derived carbohydrates present in the human diet. Overall, our study provides insights into the metabolism of these common dietary carbohydrates by a human-derived bifidobacterial species.
Collapse
Affiliation(s)
- Rocio Sanchez-Gallardo
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Francesca Bottacini
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Lisa Friess
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Maria Esteban-Torres
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Clarissa Somers
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Rebecca L. Moore
- UCD Perinatal Research Centre, School of Medicine, National Maternity Hospital, University College Dublin, Dublin, Ireland
| | - Fionnuala M. McAuliffe
- UCD Perinatal Research Centre, School of Medicine, National Maternity Hospital, University College Dublin, Dublin, Ireland
| | - Paul D. Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre Moorepark, Cork, Ireland
| | - Douwe van Sinderen
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
7
|
Aihetanmu S, Liang Z, Zhang X, Luo B, Zhang H, Huang J, Tian F, Sun H, Ni Y. Genetic specialization of key bifidobacterial phylotypes in multiple mother-infant dyad cohorts from geographically isolated populations. Front Microbiol 2024; 15:1399743. [PMID: 39021621 PMCID: PMC11251887 DOI: 10.3389/fmicb.2024.1399743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/10/2024] [Indexed: 07/20/2024] Open
Abstract
Little has been known about symbiotic relationships and host specificity for symbionts in the human gut microbiome so far. Bifidobacteria are a paragon of the symbiotic bacteria biota in the human gut. In this study, we characterized the population genetic structure of three bifidobacteria species from 58 healthy mother-infant pairs of three ethnic groups in China, geographically isolated, by Rep-PCR, multi-locus sequence analysis (MLSA), and in vitro carbohydrate utilization. One hundred strains tested were incorporated into 50 sequence types (STs), of which 29 STs, 17 STs, and 4 STs belong to B. longum subsp. longum, B. breve, and B. animalis subsp. lactis, respectively. The conspecific strains from the same mother-child pair were genetically very similar, supporting the vertical transmission of Bifidobacterium phylotypes from mother to offspring. In particular, results based on allele profiles and phylogeny showed that B. longum subsp. longum and B. breve exhibited considerable intraspecies genetic heterogeneity across three ethnic groups, and strains were clustered into ethnicity-specific lineages. Yet almost all strains of B. animalis subsp. lactis were incorporated into the same phylogenetic clade, regardless of ethnic origin. Our findings support the hypothesis of co-evolution between human gut symbionts and their respective populations, which is closely linked to the lifestyle of specific bacterial lineages. Hence, the natural and evolutionary history of Bifidobacterium species would be an additional consideration when selecting bifidobacterial strains for industrial and therapeutic applications.
Collapse
Affiliation(s)
| | - Zhixuan Liang
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Xueling Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Baolong Luo
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Huimin Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Jian Huang
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Fengwei Tian
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hailong Sun
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Yongqing Ni
- School of Food Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
8
|
Hermes GDA, Rasmussen C, Wellejus A. Variation in the Conservation of Species-Specific Gene Sets for HMO Degradation and Its Effects on HMO Utilization in Bifidobacteria. Nutrients 2024; 16:1893. [PMID: 38931248 PMCID: PMC11206791 DOI: 10.3390/nu16121893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Human milk provides essential nutrients for infants but also consists of human milk oligosaccharides (HMOs), which are resistant to digestion by the infant. Bifidobacteria are among the first colonizers, providing various health benefits for the host. This is largely facilitated by their ability to efficiently metabolize HMOs in a species-specific way. Nevertheless, these abilities can vary significantly by strain, and our understanding of the mechanisms applied by different strains from the same species remains incomplete. Therefore, we assessed the effects of strain-level genomic variation in HMO utilization genes on growth on HMOs in 130 strains from 10 species of human associated bifidobacteria. Our findings highlight the extent of genetic diversity between strains of the same species and demonstrate the effects on species-specific HMO utilization, which in most species is largely retained through the conservation of a core set of genes or the presence of redundant pathways. These data will help to refine our understanding of the genetic factors that contribute to the persistence of individual strains and will provide a better mechanistic rationale for the development and optimization of new early-life microbiota-modulating products to improve infant health.
Collapse
Affiliation(s)
- Gerben D. A. Hermes
- Human Health Research, Human Health Biosolutions, Novonesis, Kogle Alle 6, 2970 Hoersholm, Denmark (A.W.)
| | | | | |
Collapse
|
9
|
Wong CB, Huang H, Ning Y, Xiao J. Probiotics in the New Era of Human Milk Oligosaccharides (HMOs): HMO Utilization and Beneficial Effects of Bifidobacterium longum subsp. infantis M-63 on Infant Health. Microorganisms 2024; 12:1014. [PMID: 38792843 PMCID: PMC11124435 DOI: 10.3390/microorganisms12051014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
A healthy gut microbiome is crucial for the immune system and overall development of infants. Bifidobacterium has been known to be a predominant species in the infant gut; however, an emerging concern is the apparent loss of this genus, in particular, Bifidobacterium longum subsp. infantis (B. infantis) in the gut microbiome of infants in industrialized nations, underscoring the importance of restoring this beneficial bacterium. With the growing understanding of the gut microbiome, probiotics, especially infant-type human-residential bifidobacteria (HRB) strains like B. infantis, are gaining prominence for their unique ability to utilize HMOs and positively influence infant health. This article delves into the physiology of a probiotic strain, B. infantis M-63, its symbiotic relationship with HMOs, and its potential in improving gastrointestinal and allergic conditions in infants and children. Moreover, this article critically assesses the role of HMOs and the emerging trend of supplementing infant formulas with the prebiotic HMOs, which serve as fuel for beneficial gut bacteria, thereby emulating the protective effects of breastfeeding. The review highlights the potential of combining B. infantis M-63 with HMOs as a feasible strategy to improve health outcomes in infants and children, acknowledging the complexities and requirements for further research in this area.
Collapse
Affiliation(s)
- Chyn Boon Wong
- International Division, Morinaga Milk Industry Co., Ltd., 5-2, Higashi Shimbashi 1-Chome, Minato-ku, Tokyo 105-7122, Japan
| | - Huidong Huang
- Nutrition Research Institute, Junlebao Dairy Group Co., Ltd., 36 Shitong Road, Shijiazhuang 050221, China
| | - Yibing Ning
- Nutrition Research Institute, Junlebao Dairy Group Co., Ltd., 36 Shitong Road, Shijiazhuang 050221, China
| | - Jinzhong Xiao
- Morinaga Milk Industry (Shanghai) Co., Ltd., Room 509 Longemont Yes Tower, No. 369 Kaixuan Road, Changning District, Shanghai 200050, China
- Department of Microbiota Research, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Research Center for Probiotics, Department of Nutrition and Health, China Agricultural University, Beijing 100093, China
| |
Collapse
|
10
|
Marbun KT, Sugata M, Purnomo JS, Dikson, Mudana SO, Jan TT, Jo J. Genomic Characterization and Safety Assessment of Bifidobacterium breve BS2-PB3 as Functional Food. J Microbiol Biotechnol 2024; 34:871-879. [PMID: 38494884 DOI: 10.4014/jmb.2311.11031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 03/19/2024]
Abstract
Our group had isolated Bifidobacterium breve strain BS2-PB3 from human breast milk. In this study, we sequenced the whole genome of B. breve BS2-PB3, and with a focus on its safety profile, various probiotic characteristics (presence of antibiotic resistance genes, virulence factors, and mobile elements) were then determined through bioinformatic analyses. The antibiotic resistance profile of B. breve BS2-PB3 was also evaluated. The whole genome of B. breve BS2-PB3 consisted of 2,268,931 base pairs with a G-C content of 58.89% and 2,108 coding regions. The average nucleotide identity and whole-genome phylogenetic analyses supported the classification of B. breve BS2-PB3. According to our in silico assessment, B. breve BS2-PB3 possesses antioxidant and immunomodulation properties in addition to various genes related to the probiotic properties of heat, cold, and acid stress, bile tolerance, and adhesion. Antibiotic susceptibility was evaluated using the Kirby-Bauer disk-diffusion test, in which the minimum inhibitory concentrations for selected antibiotics were subsequently tested using the Epsilometer test. B. breve BS2-PB3 only exhibited selected resistance phenotypes, i.e., to mupirocin (minimum inhibitory concentration/MIC >1,024 μg/ml), sulfamethoxazole (MIC >1,024 μg/ml), and oxacillin (MIC >3 μg/ml). The resistance genes against those antibiotics, i.e., ileS, mupB, sul4, mecC and ramA, were detected within its genome as well. While no virulence factor was detected, four insertion sequences were identified within the genome but were located away from the identified antibiotic resistance genes. In conclusion, B. breve BS2-PB3 demonstrated a sufficient safety profile, making it a promising candidate for further development as a potential functional food.
Collapse
Affiliation(s)
- Kristin Talia Marbun
- Department of Biology, Faculty of Science and Technology, Universitas Pelita Harapan, Tangerang 15811, Indonesia
| | - Marcelia Sugata
- Department of Biology, Faculty of Science and Technology, Universitas Pelita Harapan, Tangerang 15811, Indonesia
| | - Jonathan Suciono Purnomo
- Department of Biology, Faculty of Science and Technology, Universitas Pelita Harapan, Tangerang 15811, Indonesia
| | - Dikson
- Department of Biology, Faculty of Science and Technology, Universitas Pelita Harapan, Tangerang 15811, Indonesia
| | - Samuel Owen Mudana
- Department of Biology, Faculty of Science and Technology, Universitas Pelita Harapan, Tangerang 15811, Indonesia
| | - Tan Tjie Jan
- Department of Biology, Faculty of Science and Technology, Universitas Pelita Harapan, Tangerang 15811, Indonesia
| | - Juandy Jo
- Department of Biology, Faculty of Science and Technology, Universitas Pelita Harapan, Tangerang 15811, Indonesia
- Mochtar Riady Institute for Nanotechnology, Tangerang 15811, Indonesia
| |
Collapse
|
11
|
Yang S, Wu S, Zhao F, Zhao Z, Shen X, Yu X, Zhang M, Wen F, Sun Z, Menghe B. Diversity Analysis of Intestinal Bifidobacteria in the Hohhot Population. Microorganisms 2024; 12:756. [PMID: 38674700 PMCID: PMC11051944 DOI: 10.3390/microorganisms12040756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
(1) Background: Bifidobacterium plays a pivotal role within the gut microbiota, significantly affecting host health through its abundance and composition in the intestine. Factors such as age, gender, and living environment exert considerable influence on the gut microbiota, yet scant attention has been directed towards understanding the specific effects of these factors on the Bifidobacterium population. Therefore, this study focused on 98 adult fecal samples to conduct absolute and relative quantitative analyses of bifidobacteria. (2) Methods: Using droplet digital PCR and the PacBio Sequel II sequencing platform, this study sought to determine the influence of various factors, including living environment, age, and BMI, on the absolute content and biodiversity of intestinal bifidobacteria. (3) Results: Quantitative results indicated that the bifidobacteria content in the intestinal tract ranged from 106 to 109 CFU/g. Notably, the number of bifidobacteria in the intestinal tract of the school population surpassed that of the off-campus population significantly (p = 0.003). Additionally, the group of young people exhibited a significantly higher count of bifidobacteria than the middle-aged and elderly groups (p = 0.041). The normal-weight group displayed a significantly higher bifidobacteria count than the obese group (p = 0.027). Further analysis of the relative abundance of bifidobacteria under different influencing factors revealed that the living environment emerged as the primary factor affecting the intestinal bifidobacteria structure (p = 0.046, R2 = 2.411). Moreover, the diversity of bifidobacteria in the intestinal tract of college students surpassed that in the out-of-school population (p = 0.034). This was characterized by a notable increase in 11 strains, including B. longum, B. bifidum, and B. pseudolongum, in the intestinal tract of college students, forming a more intricate intestinal bifidobacteria interaction network. (4) Conclusions: In summary, this study elucidated the principal factors affecting intestinal bifidobacteria and delineated their characteristics of intestinal bifidobacteria in diverse populations. By enriching the theory surrounding gut microbiota and health, this study provides essential data support for further investigations into the intricate dynamics of the gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Bilige Menghe
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.Y.); (S.W.); (F.W.)
| |
Collapse
|
12
|
Ray S, Narayanan A, Vesterbacka J, Blennow O, Chen P, Gao Y, Gabarrini G, Ljunggren HG, Buggert M, Manoharan L, Chen MS, Aleman S, Sönnerborg A, Nowak P. Impact of the gut microbiome on immunological responses to COVID-19 vaccination in healthy controls and people living with HIV. NPJ Biofilms Microbiomes 2023; 9:104. [PMID: 38123600 PMCID: PMC10733305 DOI: 10.1038/s41522-023-00461-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Although mRNA SARS-CoV-2 vaccines are generally safe and effective, in certain immunocompromised individuals they can elicit poor immunogenic responses. Among these individuals, people living with HIV (PLWH) have poor immunogenicity to several oral and parenteral vaccines. As the gut microbiome is known to affect vaccine immunogenicity, we investigated whether baseline gut microbiota predicts immune responses to the BNT162b2 mRNA SARS-CoV-2 vaccine in healthy controls and PLWH after two doses of BNT162b2. Individuals with high spike IgG titers and high spike-specific CD4+ T-cell responses against SARS-CoV-2 showed low α-diversity in the gut. Here, we investigated and presented initial evidence that the gut microbial composition influences the response to BNT162b2 in PLWH. From our predictive models, Bifidobacterium and Faecalibacterium appeared to be microbial markers of individuals with higher spike IgG titers, while Cloacibacillus was associated with low spike IgG titers. We therefore propose that microbiome modulation could optimize immunogenicity of SARS-CoV-2 mRNA vaccines.
Collapse
Affiliation(s)
- Shilpa Ray
- Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden.
| | - Aswathy Narayanan
- Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
| | - Jan Vesterbacka
- Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Ola Blennow
- Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Puran Chen
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yu Gao
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Giorgio Gabarrini
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lokeshwaran Manoharan
- National Bioinformatics Infrastructure Sweden (NBIS), SciLifeLab, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - Soo Aleman
- Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Sönnerborg
- Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine, Division of Clinical Microbiology, ANA Futura, Karolinska Institutet, Stockholm, 141 52, Sweden
| | - Piotr Nowak
- Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
13
|
Tremblay A, Bronner S, Binda S. Review and Perspectives on Bifidobacterium lactis for Infants' and Children's Health. Microorganisms 2023; 11:2501. [PMID: 37894159 PMCID: PMC10609373 DOI: 10.3390/microorganisms11102501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
The influence of microbiota dysbiosis in early life is increasingly recognized as a risk factor for the development of several chronic diseases later in life, including an increased risk of asthma, eczema, allergies, obesity, and neurodevelopmental disorders. The question whether the potential lifelong consequences of early life dysbiosis could be mitigated by restoring microbiota composition remains unresolved. However, the current evidence base suggests that protecting the normal development of the microbiome during this critical developmental window could represent a valuable public health strategy to curb the incidence of chronic and lifestyle-related diseases. Probiotic Bifidobacteria are likely candidates for this purpose in newborns and infants considering the natural dominance of this genus on microbiota composition in early life. Moreover, the most frequently reported microbiota composition alteration in association with newborn and infant diseases, including necrotizing enterocolitis and diarrhea, is a reduction in Bifidobacteria levels. Several studies have assessed the effects of B. animalis subsp. lactis strains in newborns and infants, but recent expert opinions recommend analyzing their efficacy at the strain-specific level. Hence, using the B94 strain as an example, this review summarizes the clinical evidence available in infants and children in various indications, discussing the safety and potential modes of actions while providing perspectives on the concept of "non-infant-type" probiotics for infants' health.
Collapse
Affiliation(s)
- Annie Tremblay
- Rosell Institute for Microbiome and Probiotics, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada; (A.T.); (S.B.)
| | - Stéphane Bronner
- Rosell Institute for Microbiome and Probiotics, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada; (A.T.); (S.B.)
| | - Sylvie Binda
- Rosell Institute for Microbiome and Probiotics, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada; (A.T.); (S.B.)
- Lallemand Health Solutions, 19 Rue des Briquetiers, BP 59, 31702 Toulouse, France
| |
Collapse
|
14
|
Shoemaker WR. A macroecological perspective on genetic diversity in the human gut microbiome. PLoS One 2023; 18:e0288926. [PMID: 37478102 PMCID: PMC10361512 DOI: 10.1371/journal.pone.0288926] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 07/07/2023] [Indexed: 07/23/2023] Open
Abstract
While the human gut microbiome has been intensely studied, we have yet to obtain a sufficient understanding of the genetic diversity that it harbors. Research efforts have demonstrated that a considerable fraction of within-host genetic variation in the human gut is driven by the ecological dynamics of co-occurring strains belonging to the same species, suggesting that an ecological lens may provide insight into empirical patterns of genetic diversity. Indeed, an ecological model of self-limiting growth and environmental noise known as the Stochastic Logistic Model (SLM) was recently shown to successfully predict the temporal dynamics of strains within a single human host. However, its ability to predict patterns of genetic diversity across human hosts has yet to be tested. In this manuscript I determine whether the predictions of the SLM explain patterns of genetic diversity across unrelated human hosts for 22 common microbial species. Specifically, the stationary distribution of the SLM explains the distribution of allele frequencies across hosts and predicts the fraction of hosts harboring a given allele (i.e., prevalence) for a considerable fraction of sites. The accuracy of the SLM was correlated with independent estimates of strain structure, suggesting that patterns of genetic diversity in the gut microbiome follow statistically similar forms across human hosts due to the existence of strain-level ecology.
Collapse
Affiliation(s)
- William R. Shoemaker
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
15
|
Scarafile D, Luise D, Motta V, Spiezio C, Modesto M, Porcu MM, Yitzhak Y, Correa F, Sandri C, Trevisi P, Mattarelli P. Faecal Microbiota Characterisation of Potamochoerus porcus Living in a Controlled Environment. Microorganisms 2023; 11:1542. [PMID: 37375044 DOI: 10.3390/microorganisms11061542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Intestinal bacteria establish a specific relationship with the host animal, which causes the acquisition of gut microbiota with a unique composition classified as the enterotype. As the name suggests, the Red River Hog is a wild member of the pig family living in Africa, in particular through the West and Central African rainforest. To date, very few studies have analysed the gut microbiota of Red River Hogs (RRHs) both housed under controlled conditions and in wild habitats. This study analysed the intestinal microbiota and the distribution of Bifidobacterium species in five Red River Hog (RRH) individuals (four adults and one juvenile), hosted in two different modern zoological gardens (Parco Natura Viva, Verona, and Bioparco, Rome) with the aim of disentangling the possible effects of captive different lifestyle and host genetics. Faecal samples were collected and studied both for bifidobacterial counts and isolation by means of culture-dependent method and for total microbiota analysis through the high-quality sequences of the V3-V4 region of bacterial 16S rRNA. Results showed a host-specific bifidobacterial species distribution. Indeed, B. boum and B. thermoacidophilum were found only in Verona RRHs, whereas B. porcinum species were isolated only in Rome RRHs. These bifidobacterial species are also typical of pigs. Bifidobacterial counts were about 106 CFU/g in faecal samples of all the individuals, with the only exception for the juvenile subject, showing 107 CFU/g. As in human beings, in RRHs a higher count of bifidobacteria was also found in the young subject compared with adults. Furthermore, the microbiota of RRHs showed qualitative differences. Indeed, Firmicutes was found to be the dominant phylum in Verona RRHs whereas Bacteroidetes was the most represented in Roma RRHs. At order level, Oscillospirales and Spirochaetales were the most represented in Verona RRHs compared with Rome RRHs, where Bacteroidales dominated over the other taxa. Finally, at the family level, RRHs from the two sites showed the presence of the same families, but with different levels of abundance. Our results highlight that the intestinal microbiota seems to reflect the lifestyle (i.e., the diet), whereas age and host genetics are the driving factors for the bifidobacterial population.
Collapse
Affiliation(s)
- Donatella Scarafile
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Diana Luise
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Vincenzo Motta
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Caterina Spiezio
- Department of Animal Health Care and Management, Parco Natura Viva-Garda Zoological Park, 37012 Bussolengo, Italy
| | - Monica Modesto
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Marzia Mattia Porcu
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Yadid Yitzhak
- Fondazione Bioparco di Roma, Viale del Giardino Zoologico, 00100 Rome, Italy
| | - Federico Correa
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Camillo Sandri
- Department of Animal Health Care and Management, Parco Natura Viva-Garda Zoological Park, 37012 Bussolengo, Italy
| | - Paolo Trevisi
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Paola Mattarelli
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| |
Collapse
|
16
|
Dedon LR, Hilliard MA, Rani A, Daza-Merchan ZT, Story G, Briere CE, Sela DA. Fucosylated Human Milk Oligosaccharides Drive Structure-Specific Syntrophy between Bifidobacterium infantis and Eubacterium hallii within a Modeled Infant Gut Microbiome. Mol Nutr Food Res 2023; 67:e2200851. [PMID: 36938958 PMCID: PMC11010582 DOI: 10.1002/mnfr.202200851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/23/2023] [Indexed: 03/21/2023]
Abstract
SCOPE Fucosylated human milk oligosaccharides (fHMOs) are metabolized by Bifidobacterium infantis and promote syntrophic interactions between microbiota that colonize the infant gut. The role of fHMO structure on syntrophic interactions and net microbiome function is not yet fully understood. METHODS AND RESULTS Metabolite production and microbial populations are tracked during mono- and co-culture fermentations of 2'fucosyllactose (2'FL) and difucosyllactose (DFL) by two B. infantis strains and Eubacterium hallii. This is also conducted in an in vitro modeled microbiome supplemented by B. infantis and/or E. hallii. Metabolites are quantified by high performance liquid chromatography. Total B. infantis and E. hallii populations are quantified through qRT-PCR and community composition through 16S amplicon sequencing. Differential metabolism of 2'FL and DFL by B. infantis strains gives rise to strain- and fHMO structure-specific syntrophy with E. hallii. Within the modeled microbial community, fHMO structure does not strongly alter metabolite production in aggregate, potentially due to functional redundancy within the modeled community. In contrast, community composition is dependent on fHMO structure. CONCLUSION Whereas short chain fatty acid production is not significantly altered by the specific fHMO structure introduced to the modeled community, specific fHMO structure influences the composition of the gut microbiome.
Collapse
Affiliation(s)
- Liv R. Dedon
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA United States
| | - Margaret A. Hilliard
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA United States
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA United States
| | - Asha Rani
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA United States
| | | | - Galaxie Story
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA United States
| | - Carrie-Ellen Briere
- Elaine Marieb College of Nursing, University of Massachusetts Amherst, Amherst, MA, United States
| | - David A. Sela
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA United States
- Department of Nutrition, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Microbiology and Physiological Systems and Center for Microbiome Research, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
17
|
Matthews C, Walsh AM, Gordon SV, Markey B, Cotter PD, O' Mahony J. Differences in Faecal Microbiome Taxonomy, Diversity and Functional Potential in a Bovine Cohort Experimentally Challenged with Mycobacterium avium subsp. paratuberculosis (MAP). Animals (Basel) 2023; 13:ani13101652. [PMID: 37238082 DOI: 10.3390/ani13101652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) is the causative agent of Johne's disease in ruminants, a chronic enteritis which results in emaciation and eventual loss of the animal. Recent advances in metagenomics have allowed a more in-depth study of complex microbiomes, including that of gastrointestinal tracts, and have the potential to provide insights into consequences of the exposure of an animal to MAP or other pathogens. This study aimed to investigate taxonomic diversity and compositional changes of the faecal microbiome of cattle experimentally challenged with MAP compared to an unexposed control group. Faecal swab samples were collected from a total of 55 animals [exposed group (n = 35) and a control group (n = 20)], across three time points (months 3, 6 and 9 post-inoculation). The composition and functional potential of the faecal microbiota differed across time and between the groups (p < 0.05), with the primary differences, from both a taxonomic and functional perspective, occurring at 3 months post inoculation. These included significant differences in the relative abundance of the genera Methanobrevibacter and Bifidobacterium and also of 11 other species (4 at a higher relative abundance in the exposed group and 7 at a higher relative abundance in the control group). Correlations were made between microbiome data and immunopathology measurements and it was noted that changes in the microbial composition correlated with miRNA-155, miR-146b and IFN-ɣ. In summary, this study illustrates the impact of exposure to MAP on the ruminant faecal microbiome with a number of species that may have relevance in veterinary medicine for tracking exposure to MAP.
Collapse
Affiliation(s)
- Chloe Matthews
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland
- Teagasc Food Research Centre, Moorepark, P61 C996 Fermoy, Ireland
| | - Aaron M Walsh
- Teagasc Food Research Centre, Moorepark, P61 C996 Fermoy, Ireland
| | - Stephen V Gordon
- School of Veterinary Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Bryan Markey
- School of Veterinary Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, P61 C996 Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, T12 R229 Cork, Ireland
| | - Jim O' Mahony
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland
| |
Collapse
|
18
|
Li J, Wang J, Wang M, Zheng L, Cen Q, Wang F, Zhu L, Pang R, Zhang A. Bifidobacterium: a probiotic for the prevention and treatment of depression. Front Microbiol 2023; 14:1174800. [PMID: 37234527 PMCID: PMC10205982 DOI: 10.3389/fmicb.2023.1174800] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Depression is a common psychological disease, which has become one of the main factors affecting human health. It has a serious impact on individuals, families, and society. With the prevalence of COVID-19, the incidence of depression has further increased worldwide. It has been confirmed that probiotics play a role in preventing and treating depression. Especially, Bifidobacterium is the most widely used probiotic and has positive effects on the treatment of depression. The mechanisms underlying its antidepressant effects might include anti-inflammation and regulation of tryptophan metabolism, 5-hydroxytryptamine synthesis, and the hypothalamus-pituitary-adrenal axis. In this mini-review, the relationship between Bifidobacterium and depression was summarized. It is hoped that Bifidobacterium-related preparations would play a positive role in the prevention and treatment of depression in the future.
Collapse
Affiliation(s)
- Jiayu Li
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Junyu Wang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Meiyu Wang
- Rehabilitation and Wellness Care Centre, Tianfu College of Swufe, Chengdu, China
| | - Li Zheng
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Qiuyu Cen
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Fangfang Wang
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Li Zhu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Rizhao Pang
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Anren Zhang
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Arjun OK, Prakash T. Identification of conserved genomic signatures specific to Bifidobacterium species colonising the human gut. 3 Biotech 2023; 13:97. [PMID: 36852175 PMCID: PMC9958220 DOI: 10.1007/s13205-023-03492-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/25/2023] [Indexed: 02/26/2023] Open
Abstract
Bifidobacterium species are known for their ability to inhabit various habitats and are often regarded as the first colonisers of the human gut. In the present work, we have used comparative genomics to identify conserved genomic signatures specific to Bifidobacterium species associated with the human gut. Our approach discovered five genomic signatures with varying lengths and confidence. Among the predicted five signatures, a 1790 bp multi-drug resistance (MDR) signature was found to be remarkably specific to only those species that can colonise the human gut. The signature codes for a membrane transport protein belonging to the major facilitator superfamily (MFS) generally involved in MDR. Phylogenetic analyses of the MDR signature suggest a lineage-specific evolution of the MDR signature in bifidobacteria colonising the human gut. Functional annotation led to the discovery of two conserved domains in the protein; a catalytic MFS domain involved in the efflux of drugs and toxins, and a regulatory cystathionine-β-synthase (CBS) domain that can interact with adenosyl-carriers. Molecular docking simulation performed with the modelled tertiary structure of the MDR signature revealed the putative functional role of the covalently linked domains. The MFS domain displayed a high affinity towards various protein synthesis inhibitor antibiotics and human bile acids, whereas the C-terminally linked CBS domain exhibited favourable binding with molecular structures of ATP and AMP. Therefore, we believe that the predicted signature represents a niche-specific survival trait involved in bile and antibiotic resistance, imparting an adaptive advantage to the Bifidobacterium species colonising the human gut. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03492-4.
Collapse
Affiliation(s)
- O. K. Arjun
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005 India
| | - Tulika Prakash
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005 India
| |
Collapse
|
20
|
Wei X, Yu L, Zhang C, Ni Y, Zhang H, Zhai Q, Tian F. Genetic-Phenotype Analysis of Bifidobacterium bifidum and Its Glycoside Hydrolase Gene Distribution at Different Age Groups. Foods 2023; 12:foods12050922. [PMID: 36900439 PMCID: PMC10000437 DOI: 10.3390/foods12050922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Human gut microbiota interfere with host development and aging. Bifidobacterium is a microbial genus found in the human digestive tract that has probiotic activities such as improving constipation and enhancing immunity. The species and numbers present change with age, but there has been limited research on probiotic gut microbiota at specific ages. This study analyzed the distribution of 610 bifidobacteria in subjects in several age groups (0-17, 18-65, and 66-108 y) using 486 fecal samples and determined the distribution of glycoside hydrolases based on genetic analysis of strains representing 85% of the Bifidobacterium species abundance in each age group. 6'-Sialyllactose is a major component of acidic breast milk oligosaccharides, which can promote human neurogenesis and bifidobacteria growth. Using genotypic and phenotypic association analysis, we investigated the utilization of 6'-sialyllactose by six B. bifidum strains isolated from subjects 0-17 and 18-65 y. A comparative genomic analysis of the six B. bifidum strains revealed differences in genomic features across age groups. Finally, the safety of these strains was evaluated by antibiotic gene and drug resistance phenotype analysis. Our results reveal that the distribution of glycoside hydrolase genes in B. bifidum varies with age, thus affecting the phenotypic results. This provides important insights for the design and application of probiotic products for different ages.
Collapse
Affiliation(s)
- Xiaojing Wei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel./Fax: +86-510-85912155
| | - Chuan Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yongqing Ni
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
21
|
Sadeghpour Heravi F, Hu H. Bifidobacterium: Host-Microbiome Interaction and Mechanism of Action in Preventing Common Gut-Microbiota-Associated Complications in Preterm Infants: A Narrative Review. Nutrients 2023; 15:709. [PMID: 36771414 PMCID: PMC9919561 DOI: 10.3390/nu15030709] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
The development and health of infants are intertwined with the protective and regulatory functions of different microorganisms in the gut known as the gut microbiota. Preterm infants born with an imbalanced gut microbiota are at substantial risk of several diseases including inflammatory intestinal diseases, necrotizing enterocolitis, late-onset sepsis, neurodevelopmental disorders, and allergies which can potentially persist throughout adulthood. In this review, we have evaluated the role of Bifidobacterium as commonly used probiotics in the development of gut microbiota and prevention of common diseases in preterm infants which is not fully understood yet. The application of Bifidobacterium as a therapeutical approach in the re-programming of the gut microbiota in preterm infants, the mechanisms of host-microbiome interaction, and the mechanism of action of this bacterium have also been investigated, aiming to provide new insights and opportunities in microbiome-targeted interventions in personalized medicine.
Collapse
Affiliation(s)
| | - Honghua Hu
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
- Innovation Center of Translational Pharmacy, Jinhua Institute of Zhejiang University, Jinhua 321016, China
| |
Collapse
|
22
|
Ağagündüz D, Cocozza E, Cemali Ö, Bayazıt AD, Nanì MF, Cerqua I, Morgillo F, Saygılı SK, Berni Canani R, Amero P, Capasso R. Understanding the role of the gut microbiome in gastrointestinal cancer: A review. Front Pharmacol 2023; 14:1130562. [PMID: 36762108 PMCID: PMC9903080 DOI: 10.3389/fphar.2023.1130562] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Gastrointestinal cancer represents one of the most diagnosed types of cancer. Cancer is a genetic and multifactorial disease, influenced by the host and environmental factors. It has been stated that 20% of cancer is caused by microorganisms such as Helicobacter pylori, hepatitis B and C virus, and human papillomavirus. In addition to these well-known microorganisms associated with cancer, it has been shown differences in the composition of the microbiota between healthy individuals and cancer patients. Some studies have suggested the existence of the selected microorganisms and their metabolites that can promote or inhibit tumorigenesis via some mechanisms. Recent findings have shown that gut microbiome and their metabolites can act as cancer promotors or inhibitors. It has been shown that gastrointestinal cancer can be caused by a dysregulation of the expression of non-coding RNA (ncRNA) through the gut microbiome. This review will summarize the latest reports regarding the relationship among gut microbiome, ncRNAs, and gastrointestinal cancer. The potential applications of diagnosing and cancer treatments will be discussed.
Collapse
Affiliation(s)
- Duygu Ağagündüz
- Department of Nutrition and Dietetics, Gazi University, Emek, Ankara, Turkey
| | | | - Özge Cemali
- Department of Nutrition and Dietetics, Gazi University, Emek, Ankara, Turkey
| | - Ayşe Derya Bayazıt
- Department of Nutrition and Dietetics, Gazi University, Emek, Ankara, Turkey
| | | | - Ida Cerqua
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Floriana Morgillo
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Naples, Italy
| | - Suna Karadeniz Saygılı
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States,Department of Histology and Embryology, Kütahya Health Sciences University, Kütahya, Turkey
| | - Roberto Berni Canani
- Department of Translational Medical Science and ImmunoNutritionLab at CEINGE Biotechnologies Research Center and Task Force for Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States,*Correspondence: Raffaele Capasso, ; Paola Amero,
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy,*Correspondence: Raffaele Capasso, ; Paola Amero,
| |
Collapse
|
23
|
Mills S, Yang B, Smith GJ, Stanton C, Ross RP. Efficacy of Bifidobacterium longum alone or in multi-strain probiotic formulations during early life and beyond. Gut Microbes 2023; 15:2186098. [PMID: 36896934 PMCID: PMC10012958 DOI: 10.1080/19490976.2023.2186098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
The significance of Bifidobacterium to human health can be appreciated from its early colonization of the neonatal gut, where Bifidobacterium longum represents the most abundant species. While its relative abundance declines with age, it is further reduced in several diseases. Research into the beneficial properties of B. longum has unveiled a range of mechanisms, including the production of bioactive molecules, such as short-chain fatty acids, polysaccharides, and serine protease inhibitors. From its intestinal niche, B. longum can have far-reaching effects in the body influencing immune responses in the lungs and even skin, as well as influencing brain activity. In this review, we present the biological and clinical impacts of this species on a range of human conditions beginning in neonatal life and beyond. The available scientific evidence reveals a strong rationale for continued research and further clinical trials that investigate the ability of B. longum to treat or prevent a range of diseases across the human lifespan.
Collapse
Affiliation(s)
- Susan Mills
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | | | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Food Biosciences Department, Teagasc Food Research Centre, Co Cork, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
24
|
Suther C, Devon L, Daddi L, Matson A, Panier H, Yuan H, Saar K, Bokoliya S, Dorsett Y, Sela DA, Beigelman A, Bacharier LB, Moore MD, Zhou Y. Dietary Indian frankincense (Boswellia serrata) ameliorates murine allergic asthma through modulation of the gut microbiome. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
25
|
Hirata M, Matsuoka M, Hashimoto T, Oura T, Ohnuki Y, Yoshida C, Minemura A, Miura D, Oka K, Takahashi M, Morimatsu F. Supplemental Clostridium butyricum MIYAIRI 588 Affects Intestinal Bacterial Composition of Finishing Pigs. Microbes Environ 2022; 37. [PMID: 36155363 PMCID: PMC9530721 DOI: 10.1264/jsme2.me22011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Animal gastrointestinal tracts are populated by highly diverse and complex microbiotas. The gut microbiota influences the bioavailability of dietary components and is closely associated with physiological processes in the host. Clostridium butyricum reportedly improves growth performance and affects the gut microbiota and immune functions in post-weaning piglets. However, the effects of C. butyricum on finishing pigs remain unclear. Therefore, we herein investigated the effects of C. butyricum MIYAIRI 588 (CBM588) on the gut microbiota of finishing pigs. 16S rRNA gene sequencing was performed using fecal samples and ileal, cecal, and colonic contents collected after slaughtering. The α-diversity of the small intestinal microbiota was lower than that of the large intestinal microbiota, whereas β-diversity showed different patterns depending on sample collection sites. The administration of CBM588 did not significantly affect the α- or β-diversity of the microbiotas of fecal and intestinal content samples regardless of the collection site. However, a linear discriminant ana-lysis Effect Size revealed that the relative abundance of Lactobacillaceae at the family level, Bifidobacterium at the order level, and Lactobacillus ruminis and Bifidobacterium pseudolongum at the species level were higher in the fecal samples and cecal and colonic contents of the treatment group than in those of the control group. Therefore, the administration of CBM588 to finishing pigs affected the composition of the gut microbiota and increased the abundance of bacteria that are beneficial to the host. These results provide important insights into the effects of probiotic administration on relatively stable gut microbial ecosystems.
Collapse
Affiliation(s)
- Maki Hirata
- Bio-Innovation Research Center, Tokushima University.,Faculty of Bioscience and Bioindustry, Tokushima University
| | - Miki Matsuoka
- Bio-Innovation Research Center, Tokushima University.,R&D Division, Miyarisan Pharmaceutical Co., Ltd
| | | | - Takamichi Oura
- Faculty of Bioscience and Bioindustry, Tokushima University
| | - Yo Ohnuki
- Bio-Innovation Research Center, Tokushima University.,R&D Division, Miyarisan Pharmaceutical Co., Ltd
| | - Chika Yoshida
- Bio-Innovation Research Center, Tokushima University.,R&D Division, Miyarisan Pharmaceutical Co., Ltd
| | | | - Daiki Miura
- R&D Division, Miyarisan Pharmaceutical Co., Ltd
| | - Kentaro Oka
- R&D Division, Miyarisan Pharmaceutical Co., Ltd
| | | | - Fumiki Morimatsu
- Bio-Innovation Research Center, Tokushima University.,Faculty of Bioscience and Bioindustry, Tokushima University
| |
Collapse
|
26
|
Ojima MN, Jiang L, Arzamasov AA, Yoshida K, Odamaki T, Xiao J, Nakajima A, Kitaoka M, Hirose J, Urashima T, Katoh T, Gotoh A, van Sinderen D, Rodionov DA, Osterman AL, Sakanaka M, Katayama T. Priority effects shape the structure of infant-type Bifidobacterium communities on human milk oligosaccharides. THE ISME JOURNAL 2022; 16:2265-2279. [PMID: 35768643 PMCID: PMC9381805 DOI: 10.1038/s41396-022-01270-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 11/10/2022]
Abstract
Bifidobacteria are among the first colonizers of the infant gut, and human milk oligosaccharides (HMOs) in breastmilk are instrumental for the formation of a bifidobacteria-rich microbiota. However, little is known about the assembly of bifidobacterial communities. Here, by applying assembly theory to a community of four representative infant-gut associated Bifidobacterium species that employ varied strategies for HMO consumption, we show that arrival order and sugar consumption phenotypes significantly affected community formation. Bifidobacterium bifidum and Bifidobacterium longum subsp. infantis, two avid HMO consumers, dominate through inhibitory priority effects. On the other hand, Bifidobacterium breve, a species with limited HMO-utilization ability, can benefit from facilitative priority effects and dominates by utilizing fucose, an HMO degradant not utilized by the other bifidobacterial species. Analysis of publicly available breastfed infant faecal metagenome data showed that the observed trends for B. breve were consistent with our in vitro data, suggesting that priority effects may have contributed to its dominance. Our study highlights the importance and history dependency of initial community assembly and its implications for the maturation trajectory of the infant gut microbiota.
Collapse
Affiliation(s)
- Miriam N Ojima
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Keisuke Yoshida
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Kanagawa, Japan
| | - Toshitaka Odamaki
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Kanagawa, Japan
| | - Jinzhong Xiao
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Kanagawa, Japan
| | - Aruto Nakajima
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | - Junko Hirose
- School of Human Cultures, The University of Shiga Prefecture, Hikone, Shiga, Japan
- Department of Food and Nutrition, Kyoto Women's University, Kyoto, Japan
| | - Tadasu Urashima
- Department of Food and Life Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Toshihiko Katoh
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Aina Gotoh
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Douwe van Sinderen
- APC Microbiome Ireland and School of Microbiology, Food Science Building, University College Cork, Cork, Ireland
| | - Dmitry A Rodionov
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Andrei L Osterman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | - Takane Katayama
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| |
Collapse
|
27
|
Biggio F, Fattuoni C, Mostallino MC, Follesa P. Effects of Chronic Bifidobacteria Administration in Adult Male Rats on Plasma Metabolites: A Preliminary Metabolomic Study. Metabolites 2022; 12:762. [PMID: 36005634 PMCID: PMC9412907 DOI: 10.3390/metabo12080762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Probiotics are live microorganisms distributed in the gastrointestinal tract that confer health benefits to the host when administered in adequate amounts. Bifidobacteria have been widely tested as a therapeutic strategy in the prevention and treatment of a broad spectrum of gastrointestinal disorders as well as in the regulation of the "microbiota-gut-brain axis". Metabolomic techniques can provide details in the study of molecular metabolic mechanisms involved in Bifidobacteria function through the analysis of metabolites that positively contribute to human health. This study was focused on the effects of the chronic assumption of a mixture of Bifidobacteria in adult male rats using a metabolomic approach. Plasma samples were collected at the end of treatment and analyzed with a gas chromatography-mass spectrometry (GC-MS) platform. Partial least square discriminant analysis (PLS-DA) was performed to compare the metabolic pattern in control and probiotic-treated rats. Our results show, in probiotic-treated animals, an increase in metabolites involved in the energetic cycle, such as glucose, erythrose, creatinine, taurine and glycolic acid, as well as 3-hydroxybutyric acid. This is an important metabolite of short-chain fatty acids (SCFA) with multitasking roles in energy circuit balance, and it has also been proposed to have a key role in the prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Francesca Biggio
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato, 09042 Cagliari, Italy
| | - Claudia Fattuoni
- Department of Chemical and Geological Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy
| | | | - Paolo Follesa
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato, 09042 Cagliari, Italy
| |
Collapse
|
28
|
Akritidou T, Smet C, Akkermans S, Tonti M, Williams J, Van de Wiele T, Van Impe JFM. A protocol for the cultivation and monitoring of ileal gut microbiota surrogates. J Appl Microbiol 2022; 133:1919-1939. [PMID: 35751580 DOI: 10.1111/jam.15684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 11/28/2022]
Abstract
AIMS This research aimed to develop and validate a cultivation and monitoring protocol that is suitable for a surrogate microbial community that accounts for the gut microbiota of the ileum of the small intestine. METHODS AND RESULTS Five bacterial species have been selected as representatives of the ileal gut microbiota and a general anaerobic medium (MS-BHI, as minimally supplemented BHI) has been constructed and validated against BCCM/LGM recommended and commercial media. Moreover, appropriate selective/differential media have been investigated for monitoring each ileal gut microbiota surrogate. Results showed that MS-BHI was highly efficient in displaying individual and collective behavior of the ileal gut microbiota species, when compared with other types of media. Likewise, the selective/differential media managed to identify and describe the behavior of their targeted species. CONCLUSIONS MS-BHI renders a highly efficient, inexpensive and easy-to-prepare cultivation and enumeration alternative for the surrogate ileal microbiota species. Additionally, the selective/differential media can identify and quantify the bacteria of the surrogate ileal microbial community. SIGNIFICANCE AND IMPACT OF STUDY The selected gut microbiota species can represent an in vitro ileal community, forming the basis for future studies on small intestinal microbiota. MS-BHI and the proposed monitoring protocol can be used as a standard for gut microbiota studies that utilize conventional microbiological techniques.
Collapse
Affiliation(s)
- Theodora Akritidou
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Cindy Smet
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Simen Akkermans
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Maria Tonti
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Jennifer Williams
- School of Biological Sciences, Faculty of Science, Dublin Institute of Technology, Dublin, Ireland
| | - Tom Van de Wiele
- Laboratory of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Jan F M Van Impe
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| |
Collapse
|
29
|
The Comparative Analysis of Genomic Diversity and Genes Involved in Carbohydrate Metabolism of Eighty-Eight Bifidobacterium pseudocatenulatum Isolates from Different Niches of China. Nutrients 2022; 14:nu14112347. [PMID: 35684146 PMCID: PMC9183100 DOI: 10.3390/nu14112347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/03/2022] [Accepted: 06/01/2022] [Indexed: 02/06/2023] Open
Abstract
Eighty-eight Bifidobacterium pseudocatenulatum strains, which were isolated from human, chicken and cow fecal samples from different niches of China, were compared genomically in this study to evaluate their diversity. It was found that B. pseudocatenulatum displayed a closed pan-genome, including abundant glycoside hydrolase families of the carbohydrate active enzyme (CAZy). A total of 30 kinds of glycoside hydrolases (GHs), 14 kinds of glycosyl transferases (GTs), 13 kinds of carbohydrate-binding modules (CBMs), 6 kinds of carbohydrate-esterases (CEs), and 2 kinds of auxiliary activities (AAs) gene families were identified across the genomes of the 88 B. pseudocatenulatum strains. Specifically, this showed that significant differences were also present in the number of 10 carbohydrate-active enzyme gene families (GT51, GH13_32, GH26, GH42, GH121, GH3, AA3, CBM46, CE2, and CE6) among the strains derived from the hosts of different age groups, particularly between strains from infants and those from other human age groups. Twelve different individuals of B. pseudocatenulatum from four main clusters were selected for further study to reveal the genetic diversity of carbohydrate metabolism-related genes within the same phylogenetics. The animal experiment showed that 3 weeks of oral administration and 1 week after cessation of administration of these strains did not markedly alter the serum routine inflammatory indicators in mice. Furthermore, the administration of these strains did not significantly cause adverse changes in the gut microbiota, as indicated by the α- and β-diversity indexes, relative to the control group (normal diet). Beyond that, FAHBZ9L5 significantly increased the abundance of B. pseudocatenulatum after 3 weeks and significantly increased the abundance of acetic acid and butyric acid in the host’s intestinal tract 3 and 4 weeks after the first administration, respectively, compared with the control group. Corresponding to this, comparative genomic analyses of 12 B. pseudocatenulatum suggest that FAHBZ9L5-specific genes were rich in ABC transporters and carbohydrate esterase. Combining the results of comparative genomics analyses and animal experiment, it is suggested that the strains containing certain gene clusters contribute to another competitive growth advantage of B. pseudocatenulatum, which facilitates its intestinal carbohydrate metabolism in a host.
Collapse
|
30
|
Wongkaew M, Tangjaidee P, Leksawasdi N, Jantanasakulwong K, Rachtanapun P, Seesuriyachan P, Phimolsiripol Y, Chaiyaso T, Ruksiriwanich W, Jantrawut P, Sommano SR. Mango Pectic Oligosaccharides: A Novel Prebiotic for Functional Food. Front Nutr 2022; 9:798543. [PMID: 35399687 PMCID: PMC8987974 DOI: 10.3389/fnut.2022.798543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/22/2022] [Indexed: 12/27/2022] Open
Abstract
Prebiotics are functional food ingredients that assist probiotic growth and render many other health benefits. Mango peel is the biomass of the processing industry and has recently been value-added as a dietary fiber pectin. Besides its general use as a food additive, mango peel pectin (MPP) is partially hydrolyzed by pectinase to obtain pectic oligosaccharides (POSs) that have recently gained attention as novel prebiotic products and in medical research. This review describes probiotic candidates responsible for the digestion of pectin derivatives and the advantages of POSs as functional additives and their current best retrieval options. Mango pectic oligosaccharide (MPOS) recovery from low methoxyl MPP from mango with prebiotic performance both in vivo and in vitro environments is discussed. Current research gaps and potential developments in the field are also explored. The overall worthiness of this article is the potential use of the cheap-green food processing bioresource for high-value components.
Collapse
Affiliation(s)
- Malaiporn Wongkaew
- Program in Food Production and Innovation, College of Integrated Science and Technology, Rajamangala University of Technology Lanna, Chiang Mai, Thailand
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Pipat Tangjaidee
- Faculty of Agro-Industry, School of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Noppol Leksawasdi
- Faculty of Agro-Industry, School of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
| | - Kittisak Jantanasakulwong
- Faculty of Agro-Industry, School of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
| | - Pornchai Rachtanapun
- Faculty of Agro-Industry, School of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
| | - Phisit Seesuriyachan
- Faculty of Agro-Industry, School of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
| | - Yuthana Phimolsiripol
- Faculty of Agro-Industry, School of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
| | - Thanongsak Chaiyaso
- Faculty of Agro-Industry, School of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
| | - Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai, Thailand
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai, Thailand
| | - Sarana Rose Sommano
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai, Thailand
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
31
|
Gut Bifidobacterium responses to probiotic Lactobacillus casei Zhang administration vary between subjects from different geographic regions. Appl Microbiol Biotechnol 2022; 106:2665-2675. [PMID: 35318524 DOI: 10.1007/s00253-022-11868-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 01/26/2023]
Abstract
Bifidobacteria are health-promoting human gut inhabitants, but accurate species-level composition of the gut bifidobacteria and their responses to probiotic intervention have not been fully explored. This was a follow-up work of our previous study, in which 104 volunteers from six different Asiatic regions (Singapore, Indonesia, Xinjiang, Gansu, Inner Mongolia, Mongolia) were recruited. The gut microbiota and their responses towards Lactobacillus casei Zhang (LCZ) intervention were characterized (at days 0, 7, and 14; 14 days after stopping probiotic intake), and region-based differential responses were observed after LCZ intervention. This study further investigated changes in the species-level gut bifidobacteria by PacBio small-molecule real-time sequencing (SMRT) using bifidobacteria-specific primers. Firstly, this study found that Bifidobacterium adolescentis (42.58%) and Bifidobacterium breve (26.34%) were the core species across the six Asiatic regions. Secondly, principal coordinate analysis of probiotic-induced changes in the gut bifidobacterial microbiota (represented by weighted UniFrac distances) grouped the six regions into two clusters, namely northern (Xinjiang, Gansu, Inner Mongolia, and Mongolia) and southern (Singapore, Indonesia) regions. Thirdly, LCZ intervention induced region-based differential responses of gut bifidobacterial microbiota. The relative abundance of Bifidobacterium animalis in subjects from northern but not southern region substantially increased after LCZ intervention. Moreover, LCZ intervention significantly increased the weighted UniFrac distances in the southern but not northern subjects 7 days after LCZ intervention. The gut B. adolescentis correlated significantly and negatively with the weighted UniFrac distances of the baseline gut bifidobacterial microbiota in subjects of northern but not southern region, suggesting a possible homeostatic effect of LCZ on the gut bifidobacterial population of northern but not southern subjects. Collectively, our study found that probiotic-induced responses of the gut bifidobacterial microbiota varied with subjects' geographic origins, and B. adolescentis might play a role in maintaining the overall stability of the gut bifidobacterial population. KEY POINTS: • The core species in the six Asiatic regions are Bifidobacterium adolescentis and Bifidobacterium breve. • The gut bifidobacterial microbiota in people from various geographic origins showed different responses on probiotic administration.
Collapse
|
32
|
He BL, Xiong Y, Hu TG, Zong MH, Wu H. Bifidobacterium spp. as functional foods: A review of current status, challenges, and strategies. Crit Rev Food Sci Nutr 2022; 63:8048-8065. [PMID: 35319324 DOI: 10.1080/10408398.2022.2054934] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Members of Bifidobacterium are among the first microbes to colonize the human intestine naturally, their abundance and diversity in the colon are closely related to host health. Recently, the gut microbiota has been gradually proven to be crucial mediators of various metabolic processes between the external environment and the host. Therefore, the health-promoting benefits of Bifidobacterium spp. and their applications in food have gradually been widely concerned. The main purpose of this review is to comprehensively introduce general features, colonization methods, and safety of Bifidobacterium spp. in the human gut, highlighting its health benefits and industrial applications. On this basis, the existing limitations and scope for future research are also discussed. Bifidobacteria have beneficial effects on the host's digestive system, immune system, and nervous system. However, the first prerequisite for functioning is to have enough live bacteria before consumption and successfully colonize the colon after ingestion. At present, strain breeding, optimization (e.g., selecting acid and bile resistant strains, adaptive evolution, high cell density culture), and external protection technology (e.g., microencapsulation and protectants) are the main strategies to address these challenges in food application.
Collapse
Affiliation(s)
- Bao-Lin He
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Yong Xiong
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Teng-Gen Hu
- Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Guangzhou, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| |
Collapse
|
33
|
Isolation and Characterization of Commensal Bifidobacteria Strains in Gut Microbiota of Neonates Born Preterm: A Prospective Longitudinal Study. Microorganisms 2022; 10:microorganisms10030654. [PMID: 35336229 PMCID: PMC8951322 DOI: 10.3390/microorganisms10030654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
Bifidobacterial population dynamics were investigated using a longitudinal analysis of dominant species isolated from feces of neonates born preterm (singletons (n = 10), pairs of twins (n = 11)) from birth up to 16 months of age. We performed quantification, isolation, and identification of the dominant bifidobacteria strains. The genetic relationship of the isolates was investigated via pulsed field gel electrophoresis (PFGE) genotyping, and PCR was used to screen the specific genetic marker tet genes. Additionally, all of the isolated strains were phenotypically characterized by their response to gastro-intestinal stresses and the MIC determination of tetracycline. In the same individual, our results showed a turnover of the bifidobacteria dominant population not only at species but also at strain levels. In addition, we found clonally related strains between twins. A minority of strains were tolerant to gastric (6%) and intestinal (16%) stresses. Thirteen percent of the strains were resistant to tetracycline. This work is original as it provides insights at the strain level of the early life in vivo dynamics of gut microbiota bifidobacteria in preterm neonates. It highlights the need to take into consideration the fluctuation of bifidobacteria populations that may occur for one individual.
Collapse
|
34
|
Evaluation of Bacterial Diversity and Evolutionary Dynamics of Gut Bifidobacterium longum Isolates Obtained from Older Individuals in Hubei Province, China. Microbiol Spectr 2022; 10:e0144221. [PMID: 35044201 PMCID: PMC8768838 DOI: 10.1128/spectrum.01442-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bifidobacterium longum predominates in the human gut throughout the life span, from birth to old age, and could alter the intestinal microbial population and immune function in the elderly. We investigated the intestinal bacterial diversity in the elderly, and further evaluated the genetic diversity and population structure of B. longum. The results revealed a distinct difference in gut bacterial populations between the elderly from Xiangyang and its neighboring region, Enshi city. A total of 62 bifidobacterial strains were isolated, 30 of which were found to be B. longum. The multilocus sequence typing (MLST) analysis also revealed that 437 B. longum isolates from diverse regions worldwide, including the 30 isolated in this study, could be classified into 341 sequence types (STs). They could be further clustered into 10 clonal complexes and 127 singleton STs, indicating a highly genetic diversity among B. longum isolates. Two putative clone complexes (CCs) containing the isolates from Xiangyang were found to be geographically specific, and a 213-bp recombination fragment was detected. Phylogenetic trees divided these 437 isolates into three lineages, corresponding to the three subspecies of B. longum. It is noteworthy that two isolates from the elderly were identified to be B. longum subsp. suis, while the others were B. longum subsp. longum. Together, our study characterized the intestinal bacterial diversity and evolution of B. longum in the elderly, and it could contribute to further studies on the genotyping and discrimination of B. longum. IMPORTANCEBifidobacterium longum are common inhabitants of the human gut throughout the life span, and have been associated with health-promoting effects, yet little is known about the genotype profile and evolution of these isolates. Our study showed that there was significant difference in gut bacterial community and abundance of B. longum between the elderly from two neighboring cities. Furthermore, the possible geographically specific STs, CCs, and intraspecies recombination fragment were found among the B. longum isolates from elderly.
Collapse
|
35
|
Pyle S. Human Gut Microbiota and the Influence of Probiotics, Prebiotics, and Micronutrients. COMPREHENSIVE GUT MICROBIOTA 2022:271-288. [DOI: 10.1016/b978-0-12-819265-8.00076-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
36
|
Moya-Gonzálvez EM, Rubio-Del-Campo A, Rodríguez-Díaz J, Yebra MJ. Infant-gut associated Bifidobacterium dentium strains utilize the galactose moiety and release lacto-N-triose from the human milk oligosaccharides lacto-N-tetraose and lacto-N-neotetraose. Sci Rep 2021; 11:23328. [PMID: 34857830 PMCID: PMC8639736 DOI: 10.1038/s41598-021-02741-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022] Open
Abstract
Much evidence suggests a role for human milk oligosaccharides (HMOs) in establishing the infant microbiota in the large intestine, but the response of particular bacteria to individual HMOs is not well known. Here twelve bacterial strains belonging to the genera Bifidobacterium, Enterococcus, Limosilactobacillus, Lactobacillus, Lacticaseibacillus, Staphylococcus and Streptococcus were isolated from infant faeces and their growth was analyzed in the presence of the major HMOs, 2′-fucosyllactose (2′FL), 3-fucosyllactose (3FL), 2′,3-difucosyllactose (DFL), lacto-N-tetraose (LNT) and lacto-N-neo-tetraose (LNnT), present in human milk. Only the isolated Bifidobacterium strains demonstrated the capability to utilize these HMOs as carbon sources. Bifidobacterium infantis Y538 efficiently consumed all tested HMOs. Contrarily, Bifidobacterium dentium strains Y510 and Y521 just metabolized LNT and LNnT. Both tetra-saccharides are hydrolyzed into galactose and lacto-N-triose (LNTII) by B. dentium. Interestingly, this species consumed only the galactose moiety during growth on LNT or LNnT, and excreted the LNTII moiety. Two β-galactosidases were characterized from B. dentium Y510, Bdg42A showed the highest activity towards LNT, hydrolyzing it into galactose and LNTII, and Bdg2A towards lactose, degrading efficiently also 6′-galactopyranosyl-N-acetylglucosamine, N-acetyl-lactosamine and LNnT. The work presented here supports the hypothesis that HMOs are mainly metabolized by Bifidobacterium species in the infant gut.
Collapse
Affiliation(s)
- Eva M Moya-Gonzálvez
- Laboratorio de Bacterias Lácticas y Probióticos, Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), Valencia, Spain
| | - Antonio Rubio-Del-Campo
- Laboratorio de Bacterias Lácticas y Probióticos, Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), Valencia, Spain
| | - Jesús Rodríguez-Díaz
- Departamento de Microbiología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - María J Yebra
- Laboratorio de Bacterias Lácticas y Probióticos, Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), Valencia, Spain.
| |
Collapse
|
37
|
Hassani S, Sotoodehnejadnematalahi F, Fateh A, Siadat SD. Evaluation of Association between Bifidobacterium bifidum Derived Extracellular Vesicles and Intestinal Epithelium Tight Junction Proteins through Notch-1 and AhR Activation in Caco-2 Cell Line. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2021; 36:S1-S6. [DOI: 10.3103/s0891416821050086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/30/2020] [Accepted: 07/30/2020] [Indexed: 10/13/2023]
|
38
|
Saturio S, Nogacka AM, Alvarado-Jasso GM, Salazar N, de los Reyes-Gavilán CG, Gueimonde M, Arboleya S. Role of Bifidobacteria on Infant Health. Microorganisms 2021; 9:2415. [PMID: 34946017 PMCID: PMC8708449 DOI: 10.3390/microorganisms9122415] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 12/19/2022] Open
Abstract
Bifidobacteria are among the predominant microorganisms during infancy, being a dominant microbial group in the healthy breastfed infant and playing a crucial role in newborns and infant development. Not only the levels of the Bifidobacterium genus but also the profile and quantity of the different bifidobacterial species have been demonstrated to be of relevance to infant health. Although no definitive proof is available on the causal association, reduced levels of bifidobacteria are perhaps the most frequently observed alteration of the intestinal microbiota in infant diseases. Moreover, Bifidobacterium strains have been extensively studied by their probiotic attributes. This review compiles the available information about bifidobacterial composition and function since the beginning of life, describing different perinatal factors affecting them, and their implications on different health alterations in infancy. In addition, this review gathers exhaustive information about pre-clinical and clinical studies with Bifidobacterium strains as probiotics in neonates.
Collapse
Affiliation(s)
- Silvia Saturio
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (S.S.); (A.M.N.); (G.M.A.-J.); (N.S.); (C.G.d.l.R.-G.)
- Diet, Human Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| | - Alicja M. Nogacka
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (S.S.); (A.M.N.); (G.M.A.-J.); (N.S.); (C.G.d.l.R.-G.)
- Diet, Human Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| | - Guadalupe M. Alvarado-Jasso
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (S.S.); (A.M.N.); (G.M.A.-J.); (N.S.); (C.G.d.l.R.-G.)
| | - Nuria Salazar
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (S.S.); (A.M.N.); (G.M.A.-J.); (N.S.); (C.G.d.l.R.-G.)
- Diet, Human Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| | - Clara G. de los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (S.S.); (A.M.N.); (G.M.A.-J.); (N.S.); (C.G.d.l.R.-G.)
- Diet, Human Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (S.S.); (A.M.N.); (G.M.A.-J.); (N.S.); (C.G.d.l.R.-G.)
- Diet, Human Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (S.S.); (A.M.N.); (G.M.A.-J.); (N.S.); (C.G.d.l.R.-G.)
- Diet, Human Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
39
|
Chen J, Vitetta L, Henson JD, Hall S. The intestinal microbiota and improving the efficacy of COVID-19 vaccinations. J Funct Foods 2021; 87:104850. [PMID: 34777578 PMCID: PMC8578005 DOI: 10.1016/j.jff.2021.104850] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/31/2021] [Accepted: 11/06/2021] [Indexed: 02/07/2023] Open
Abstract
Most COVID-19 cases are mild or asymptomatic and recover well, suggesting that effective immune responses ensue, which successfully eliminate SARS-CoV-2 viruses. However, a small proportion of patients develop severe COVID-19 with pathological immune responses. This indicates that a strong immune system balanced with anti-inflammatory mechanisms is critical for the recovery from SARS-CoV-2 infections. Many vaccines against SARS-CoV-2 have now been developed for eliciting effective immune responses to protect from SARS-CoV-2 infections or reduce the severity of the disease if infected. Although uncommon, serious morbidity and mortality have resulted from both COVID-19 vaccine adverse reactions and lack of efficacy, and further improvement of efficacy and prevention of adverse effects are urgently warranted. Many factors could affect efficacy of these vaccines to achieve optimal immune responses. Dysregulation of the gut microbiota (gut dysbiosis) could be an important risk factor as the gut microbiota is associated with the development and maintenance of an effective immune system response. In this narrative review, we discuss the immune responses to SARS-CoV-2, how COVID-19 vaccines elicit protective immune responses, gut dysbiosis involvement in inefficacy and adverse effects of COVID-19 vaccines and the modulation of the gut microbiota by functional foods to improve COVID-19 vaccine immunisations.
Collapse
Affiliation(s)
- Jiezhong Chen
- Medlab Clinical, Department of Research, Sydney 2015, Australia
| | - Luis Vitetta
- Medlab Clinical, Department of Research, Sydney 2015, Australia.,The University of Sydney, Faculty of Medicine and Health, Sydney 2006, Australia
| | - Jeremy D Henson
- Medlab Clinical, Department of Research, Sydney 2015, Australia.,The University of New South Wales, Faculty of Medicine, Prince of Wales Clinical School, Sydney, Australia
| | - Sean Hall
- Medlab Clinical, Department of Research, Sydney 2015, Australia
| |
Collapse
|
40
|
Fucosylated human milk oligosaccharide foraging within the species Bifidobacterium pseudocatenulatum is driven by glycosyl hydrolase content and specificity. Appl Environ Microbiol 2021; 88:e0170721. [PMID: 34757822 DOI: 10.1128/aem.01707-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Human milk enriches members of the genus Bifidobacterium in the infant gut. One species, Bifidobacterium pseudocatenulatum, is found in the gastrointestinal tracts of adults and breastfed infants. In this study, B. pseudocatenulatum strains were isolated and characterized to identify genetic adaptations to the breastfed infant gut. During growth on pooled human milk oligosaccharides (HMOs) we observed two distinct groups of B. pseudocatenulatum, isolates that readily consumed HMOs and those that did not, a difference driven by variable catabolism of fucosylated HMOs. A conserved gene cluster for fucosylated HMO utilization was identified in several sequenced B. pseudocatenulatum strains. One isolate, B. pseudocatenulatum MP80, which uniquely possessed GH95 and GH29 α-fucosidases consumed the majority of fucosylated HMOs tested. Furthermore, B. pseudocatenulatum SC585, which possesses only a single GH95 α-fucosidase, lacked the ability to consume the complete repertoire of linkages within the fucosylated HMO pool. Analysis of the purified GH29 and GH95 fucosidase activities directly on HMOs revealed complementing enzyme specificities with the GH95 enzyme preferring 1-2 fucosyl linkages and the GH29 enzyme favoring 1-3 and 1-4 linkages. The HMO binding specificity of the Family 1 solute binding protein component linked to the fucosylated HMO gene cluster in both SC585 and MP80 are similar, suggesting differential transport of fucosylated HMO is not a driving factor in each strain's distinct HMO consumption pattern. Taken together, this data indicates the presence or absence of specific α-fucosidases directs the strain-specific fucosylated HMO utilization pattern among bifidobacteria and likely influences competitive behavior for HMO foraging in situ. IMPORTANCE Often isolated from the human gut, microbes from the bacterial family Bifidobacteriaceae commonly possess genes enabling carbohydrate utilization. Isolates from breast fed infants often grow on and possess genes for the catabolism of human milk oligosaccharides (HMOs), glycans found in human breast milk. However, catabolism of structurally diverse HMOs differs between bifidobacterial strains. This study identifies gene differences between Bifidobacterium pseudocatenulatum isolates that may impact whether a microbe successfully colonizes an infant gut. In this case, the presence of complementary α-fucosidases may provide an advantage to microbes seeking residence in the infant gut. Such knowledge furthers our understanding of how diet drives bacterial colonization of the infant gut.
Collapse
|
41
|
El-Sayed SM, Elaaser M, El-Sayed HS. Ameliorate the processed cheese production by functional microcapsules loaded with mustard seed extract and Bifidobacterium bifidum. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
42
|
Fragomeno M, Assad S, Mobili P, Peruzzo PJ, Minnaard J, Pérez PF. Biomodification of acenocoumarol by bifidobacteria. FEMS Microbiol Lett 2021; 368:6371100. [PMID: 34529059 DOI: 10.1093/femsle/fnab125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022] Open
Abstract
The increased interest of consumers in probiotic foods requires a deeper knowledge on the possible interactions with drugs, because their pharmacological properties could be modified. In this context, these studies are relevant for drugs such as acenocoumarol, whose dosage must be controlled due to, among other factors, food-drug interactions. Acenocoumarol is an oral anticoagulant with a narrow therapeutic range. The aim of the present research is to evaluate, in vitro, the effect of bifidobacteria on acenocoumarol. The drug was incubated with Bifidobacterium bifidum CIDCA 5310 or Bifidobacterium adolescentis CIDCA 5317 in MRS broth at 37°C for 24 h in anaerobic conditions. The effect of incubation with sterilized spent culture supernatants (SSCS) was also evaluated. Analysis by RP-HPLC showed that both bifidobacterial strains reduced the area of the acenocoumarol peak and two new peaks were evidenced. In addition, a decrease in the intensity of the bands at 1650, 1390 and 1110/cm was observed in the FTIR spectroscopic determinations. Moreover, a new band appeared at 1720/cm. No effect on the drug was observed when incubation was performed with SSCS. The present study showed a significant change in the concentration of the anticoagulant after incubation with bifidobacteria and results are compatible with biomodification of the drug due to enzymatic activity of bifidobacteria.
Collapse
Affiliation(s)
- Melisa Fragomeno
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA)-Universidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET- CCT La Plata) and Consejo de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA). Calle 47 y 116, CP 1900, La Plata, Argentina
| | - Sabrina Assad
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA)-Universidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET- CCT La Plata) and Consejo de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA). Calle 47 y 116, CP 1900, La Plata, Argentina
| | - Pablo Mobili
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA)-Universidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET- CCT La Plata) and Consejo de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA). Calle 47 y 116, CP 1900, La Plata, Argentina
| | - Pablo J Peruzzo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas - INIFTA (UNLP - CONICET CCT La Plata), Diag. 113 y 64, CC 16 Suc. 4 (B1904DPI) La Plata, Argentina
| | - Jessica Minnaard
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA)-Universidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET- CCT La Plata) and Consejo de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA). Calle 47 y 116, CP 1900, La Plata, Argentina.,Área Microbiología e Inmunología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, UNLP. Calle 47 y 115, CP 1900, La Plata, 13, Argentina
| | - Pablo Fernando Pérez
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA)-Universidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET- CCT La Plata) and Consejo de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA). Calle 47 y 116, CP 1900, La Plata, Argentina.,Área Microbiología e Inmunología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, UNLP. Calle 47 y 115, CP 1900, La Plata, 13, Argentina
| |
Collapse
|
43
|
Colonized Niche, Evolution and Function Signatures of Bifidobacterium pseudolongum within Bifidobacterial Genus. Foods 2021; 10:foods10102284. [PMID: 34681333 PMCID: PMC8535030 DOI: 10.3390/foods10102284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 01/07/2023] Open
Abstract
Background: Although genomic features of various bifidobacterial species have received much attention in the past decade, information on Bifidobacterium pseudolongum was limited. In this study, we retrieved 887 publicly available genomes of bifidobacterial species, and tried to elucidate phylogenetic and potential functional roles of B. pseudolongum within the Bifidobacterium genus. Results: The results indicated that B. pseudolongum formed a population structure with multiple monophyletic clades, and had established associations with different types of mammals. The abundance of B. pseudolongum was inversely correlated with that of the harmful gut bacterial taxa. We also found that B. pseudolongum showed a strictly host-adapted lifestyle with a relatively smaller genome size, and higher intra-species genetic diversity in comparison with the other tested bifidobacterial species. For functional aspects, B. pseudolongum showed paucity of specific metabolic functions, and enrichment of specific enzymes degrading complex plant carbohydrates and host glycans. In addition, B. pseudolongum possessed a unique signature of probiotic effector molecules compared with the other tested bifidobacterial species. The investigation on intra-species evolution of B. pseudolongum indicated a clear evolution trajectory in which considerable clade-specific genes, and variation on genomic diversity by clade were observed. Conclusions: These findings provide valuable information for explaining the host adaptability of B. pseudolongum, its evolutionary role, as well as its potential probiotic effects.
Collapse
|
44
|
Byrd AL, Liu M, Fujimura KE, Lyalina S, Nagarkar DR, Charbit B, Bergstedt J, Patin E, Harrison OJ, Quintana-Murci L, Mellman I, Duffy D, Albert ML. Gut microbiome stability and dynamics in healthy donors and patients with non-gastrointestinal cancers. J Exp Med 2021; 218:211527. [PMID: 33175106 PMCID: PMC7664509 DOI: 10.1084/jem.20200606] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/20/2020] [Accepted: 09/09/2020] [Indexed: 12/26/2022] Open
Abstract
As microbial therapeutics are increasingly being tested in diverse patient populations, it is essential to understand the host and environmental factors influencing the microbiome. Through analysis of 1,359 gut microbiome samples from 946 healthy donors of the Milieu Intérieur cohort, we detail how microbiome composition is associated with host factors, lifestyle parameters, and disease states. Using a genome-based taxonomy, we found biological sex was the strongest driver of community composition. Additionally, bacterial populations shift across decades of life (age 20-69), with Bacteroidota species consistently increased with age while Actinobacteriota species, including Bifidobacterium, decreased. Longitudinal sampling revealed that short-term stability exceeds interindividual differences. By accounting for these factors, we defined global shifts in the microbiomes of patients with non-gastrointestinal tumors compared with healthy donors. Together, these results demonstrated that the microbiome displays predictable variations as a function of sex, age, and disease state. These variations must be considered when designing microbiome-targeted therapies or interpreting differences thought to be linked to pathophysiology or therapeutic response.
Collapse
Affiliation(s)
- Allyson L Byrd
- Department of Cancer Immunology, Genentech Inc., San Francisco, CA
| | - Menghan Liu
- Department of Cancer Immunology, Genentech Inc., San Francisco, CA.,Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY
| | - Kei E Fujimura
- Department of Cancer Immunology, Genentech Inc., San Francisco, CA
| | | | | | - Bruno Charbit
- Cytometry and Biomarkers UTechS, CRT, Institut Pasteur, Paris, France
| | - Jacob Bergstedt
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, Centre National de la Recherche Scientifique, Paris, France
| | - Etienne Patin
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, Centre National de la Recherche Scientifique, Paris, France
| | - Oliver J Harrison
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA
| | - Lluís Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, Centre National de la Recherche Scientifique, Paris, France.,Collège de France, Paris, France
| | - Ira Mellman
- Department of Cancer Immunology, Genentech Inc., San Francisco, CA
| | - Darragh Duffy
- Cytometry and Biomarkers UTechS, CRT, Institut Pasteur, Paris, France.,Translational Immunology Lab, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
45
|
Sikavi DR, Nguyen LH, Haruki K, Ugai T, Ma W, Wang DD, Thompson KN, Yan Y, Branck T, Wilkinson JE, Akimoto N, Zhong R, Lau MC, Mima K, Kosumi K, Morikawa T, Rimm EB, Garrett WS, Izard J, Cao Y, Song M, Huttenhower C, Ogino S, Chan AT. The Sulfur Microbial Diet and Risk of Colorectal Cancer by Molecular Subtypes and Intratumoral Microbial Species in Adult Men. Clin Transl Gastroenterol 2021; 12:e00338. [PMID: 34333506 PMCID: PMC8323793 DOI: 10.14309/ctg.0000000000000338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/05/2021] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION We recently described the sulfur microbial diet, a pattern of intake associated with increased gut sulfur-metabolizing bacteria and incidence of distal colorectal cancer (CRC). We assessed whether this risk differed by CRC molecular subtypes or presence of intratumoral microbes involved in CRC pathogenesis (Fusobacterium nucleatum and Bifidobacterium spp.). METHODS We performed Cox proportional hazards modeling to examine the association between the sulfur microbial diet and incidence of overall and distal CRC by molecular and microbial subtype in the Health Professionals Follow-Up Study (1986-2012). RESULTS We documented 1,264 incident CRC cases among 48,246 men, approximately 40% of whom had available tissue data. After accounting for multiple hypothesis testing, the relationship between the sulfur microbial diet and CRC incidence did not differ by subtype. However, there was a suggestion of an association by prostaglandin synthase 2 (PTGS2) status with a multivariable adjusted hazard ratio for highest vs lowest tertile of sulfur microbial diet scores of 1.31 (95% confidence interval: 0.99-1.74, Ptrend = 0.07, Pheterogeneity = 0.04) for PTGS2-high CRC. The association of the sulfur microbial diet with distal CRC seemed to differ by the presence of intratumoral Bifidobacterium spp. with an adjusted hazard ratio for highest vs lowest tertile of sulfur microbial diet scores of 1.65 (95% confidence interval: 1.14-2.39, Ptrend = 0.01, Pheterogeneity = 0.03) for Bifidobacterium-negative distal CRC. We observed no apparent heterogeneity by other tested molecular markers. DISCUSSION Greater long-term adherence to the sulfur microbial diet could be associated with PTGS2-high and Bifidobacterium-negative distal CRC in men. Additional studies are needed to further characterize the role of gut microbial sulfur metabolism and CRC.
Collapse
Affiliation(s)
- Daniel R. Sikavi
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Long H. Nguyen
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Koichiro Haruki
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Wenjie Ma
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Dong D. Wang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Kelsey N. Thompson
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Yan Yan
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Tobyn Branck
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Jeremy E. Wilkinson
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Naohiko Akimoto
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Rong Zhong
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Mai Chan Lau
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kosuke Mima
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Keisuke Kosumi
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Teppei Morikawa
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Eric B. Rimm
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Wendy S. Garrett
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Medicine, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jacques Izard
- Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Yin Cao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, Missouri, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri, USA
| | - Mingyang Song
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, Massachusetts, USA
| | - Andrew T. Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
46
|
Sadiq FA, Wenwei L, Heyndrickx M, Flint S, Wei C, Jianxin Z, Zhang H. Synergistic interactions prevail in multispecies biofilms formed by the human gut microbiota on mucin. FEMS Microbiol Ecol 2021; 97:6311811. [PMID: 34190973 DOI: 10.1093/femsec/fiab096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022] Open
Abstract
Bacterial species in the human gut predominantly exist in the form of mixed-species biofilms on mucosal surfaces. In this study, the biofilm-forming ability of many human gut bacterial strains (133 strains recovered from human faeces) on mucin-coated and non-coated polystyrene surfaces was determined. A significant variation (P < 0.05) in the biofilm-forming ability of many bacterial species on both surfaces was noticed. Based on some preliminary trials, four bacterial species were selected (Bifidobacterium bifidum, Bifidobacterium longum subsp. infantis, Parabacteroides distasonis and Bacteroides ovatus), which could not form any abundant biofilm individually under the in vitro conditions investigated, but produced abundant biofilms when co-cultured in different combinations of two, three and four species, giving an evidence of synergistic interactions in multispecies biofilm formation. There was a 4.74-fold increase in the biofilm mass when all strains developed a biofilm together. Strain-specific qPCR analysis showed that B. bifidum was the most dominant species (56%) in the four-species biofilm after 24 h, followed by B. longum subsp. infantis (36.2%). Study involving cell free supernatant of the cooperating strains showed that cell viability as well as physical presence of cooperating cells were prerequisites for the observed synergy in biofilms. The molecular mechanism behind these interactions and subsequent effects on the functionality of the strains involved were not determined in our study but merit further work.
Collapse
Affiliation(s)
- Faizan Ahmed Sadiq
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lu Wenwei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Marc Heyndrickx
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology & Food Sciences Unit, Melle, Belgium.,Department of Pathology, Bacteriology and Poultry Diseases, Ghent University, Merelbeke, Belgium
| | - Steve Flint
- School of Food and Advanced Technology, Massey University, Private Bag, 11222, Palmerston North, New Zealand
| | - Chen Wei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Zhao Jianxin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
47
|
Luck B, Horvath TD, Engevik KA, Ruan W, Haidacher SJ, Hoch KM, Oezguen N, Spinler JK, Haag AM, Versalovic J, Engevik MA. Neurotransmitter Profiles Are Altered in the Gut and Brain of Mice Mono-Associated with Bifidobacterium dentium. Biomolecules 2021; 11:1091. [PMID: 34439760 PMCID: PMC8392031 DOI: 10.3390/biom11081091] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/29/2021] [Accepted: 07/18/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Accumulating evidence indicates that the gut microbiota can synthesize neurotransmitters as well as impact host-derived neurotransmitter levels. In the past, it has been challenging to decipher which microbes influence neurotransmitters due to the complexity of the gut microbiota. METHODS To address whether a single microbe, Bifidobacterium dentium, could regulate important neurotransmitters, we examined Bifidobacteria genomes and explored neurotransmitter pathways in secreted cell-free supernatant using LC-MS/MS. To determine if B. dentium could impact neurotransmitters in vivo, we mono-associated germ-free mice with B. dentium ATCC 27678 and examined fecal and brain neurotransmitter concentrations. RESULTS We found that B. dentium possessed the enzymatic machinery to generate γ-aminobutyric acid (GABA) from glutamate, glutamine, and succinate. Consistent with the genome analysis, we found that B. dentium secreted GABA in a fully defined microbial media and elevated fecal GABA in B. dentium mono-associated mice compared to germ-free controls. We also examined the tyrosine/dopamine pathway and found that B. dentium could synthesize tyrosine, but could not generate L-dopa, dopamine, norepinephrine, or epinephrine. In vivo, we found that B. dentium mono-associated mice had elevated levels of tyrosine in the feces and brain. CONCLUSIONS These data indicate that B. dentium can contribute to in vivo neurotransmitter regulation.
Collapse
Affiliation(s)
- Berkley Luck
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; (B.L.); (T.D.H.); (S.J.H.); (K.M.H.); (N.O.); (J.K.S.); (A.M.H.); (J.V.)
- Department of Pathology, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Thomas D. Horvath
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; (B.L.); (T.D.H.); (S.J.H.); (K.M.H.); (N.O.); (J.K.S.); (A.M.H.); (J.V.)
- Department of Pathology, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Kristen A. Engevik
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Wenly Ruan
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA;
- Section of Gastroenterology, Hepatology, and Nutrition, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Sigmund J. Haidacher
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; (B.L.); (T.D.H.); (S.J.H.); (K.M.H.); (N.O.); (J.K.S.); (A.M.H.); (J.V.)
- Department of Pathology, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Kathleen M. Hoch
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; (B.L.); (T.D.H.); (S.J.H.); (K.M.H.); (N.O.); (J.K.S.); (A.M.H.); (J.V.)
- Department of Pathology, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Numan Oezguen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; (B.L.); (T.D.H.); (S.J.H.); (K.M.H.); (N.O.); (J.K.S.); (A.M.H.); (J.V.)
- Department of Pathology, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Jennifer K. Spinler
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; (B.L.); (T.D.H.); (S.J.H.); (K.M.H.); (N.O.); (J.K.S.); (A.M.H.); (J.V.)
- Department of Pathology, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Anthony M. Haag
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; (B.L.); (T.D.H.); (S.J.H.); (K.M.H.); (N.O.); (J.K.S.); (A.M.H.); (J.V.)
- Department of Pathology, Texas Children’s Hospital, Houston, TX 77030, USA
| | - James Versalovic
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; (B.L.); (T.D.H.); (S.J.H.); (K.M.H.); (N.O.); (J.K.S.); (A.M.H.); (J.V.)
- Department of Pathology, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Melinda A. Engevik
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; (B.L.); (T.D.H.); (S.J.H.); (K.M.H.); (N.O.); (J.K.S.); (A.M.H.); (J.V.)
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
48
|
Comparative genomics and in silico gene evaluation involved in the probiotic potential of Bifidobacterium longum 5 1A. Gene 2021; 795:145781. [PMID: 34153410 DOI: 10.1016/j.gene.2021.145781] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 06/01/2021] [Accepted: 06/14/2021] [Indexed: 12/26/2022]
Abstract
The Bifidobacterium longum 51A strain of isolated from feces of a healthy child, has demonstrated probiotic properties by in vivo and in vitro studies, which may be assigned to its production of metabolites such as acetate. Thus, through the study of comparative genomics, the present work sought to identify unique genes that might be related to the production of acetate. To perform the study, the DNA strain was sequenced using Illumina HiSeq technology, followed by assembly and manual curation of coding sequences. Comparative analysis was performed including 19 complete B. longum genomes available in Genbank/NCBI. In the phylogenetic analysis, the CECT 7210 and 157F strains of B. longum subsp. infantis aggregated within the subsp. longum cluster, suggesting that their taxonomic classification should be reviewed. The strain 51A of B. longum has 26 unique genes, six of which are possibly related to carbohydrate metabolism and acetate production. The phosphoketolase pathway from B. longum 51A showed a difference in acetyl-phosphate production. This result seems to corroborate the analysis of their unique genes, whose presence suggests the strain may use different sources of carbohydrates that allow a greater production of acetate and consequently offer benefits to the host health.
Collapse
|
49
|
Gene-Phenotype Associations Involving Human-Residential Bifidobacteria (HRB) Reveal Significant Species- and Strain-Specificity in Carbohydrate Catabolism. Microorganisms 2021; 9:microorganisms9050883. [PMID: 33919102 PMCID: PMC8143103 DOI: 10.3390/microorganisms9050883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 12/17/2022] Open
Abstract
Bifidobacteria are among the first colonizers of the human gastrointestinal tract. Different bacterial species use different mechanisms for utilization of various carbon sources in order to establish themselves in the complex microbial ecosystem of the gut. However, these mechanisms still need to be explored. Here, a large gene–phenotype correlation analysis was carried out to explore the metabolic and genetic diversity of bifidobacterial carbohydrate utilization abilities. In this study, we used 21 different carbohydrates to determine the growth phenotypes, the distribution of glycoside hydrolases (GHs), and gene clusters related to the utilization of multiple carbon sources in six human-residential Bifidobacterium species. Five carbohydrates significantly stimulated growth of almost all strains, while the remaining sugars exhibited species- and strain-specificity. Correspondingly, different Bifidobacterium species also had specific GHs involved in fermentation of plant or host glycans. Moreover, we analyzed several carbohydrate utilization gene clusters, such as 2-fucosyllactose (2′FL), sialic acid (SA), and fructooligosaccharide (FOS). In summary, by using 217 bifidobacterial strains and a wide range of growth substrates, our research revealed inter- and intra-species differences in bifidobacterial in terms of carbohydrate utilization. The findings of this study are useful for the process of developing prebiotics for optimum growth of probiotics, especially Bifidobacterium species.
Collapse
|
50
|
Moubareck CA. Human Milk Microbiota and Oligosaccharides: A Glimpse into Benefits, Diversity, and Correlations. Nutrients 2021; 13:1123. [PMID: 33805503 PMCID: PMC8067037 DOI: 10.3390/nu13041123] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Human milk represents a cornerstone for growth and development of infants, with extensive array of benefits. In addition to exceptionally nutritive and bioactive components, human milk encompasses a complex community of signature bacteria that helps establish infant gut microbiota, contributes to maturation of infant immune system, and competitively interferes with pathogens. Among bioactive constituents of milk, human milk oligosaccharides (HMOs) are particularly significant. These are non-digestible carbohydrates forming the third largest solid component in human milk. Valuable effects of HMOs include shaping intestinal microbiota, imparting antimicrobial effects, developing intestinal barrier, and modulating immune response. Moreover, recent investigations suggest correlations between HMOs and milk microbiota, with complex links possibly existing with environmental factors, genetics, geographical location, and other factors. In this review, and from a physiological and health implications perspective, milk benefits for newborns and mothers are highlighted. From a microbiological perspective, a focused insight into milk microbiota, including origins, diversity, benefits, and effect of maternal diet is presented. From a metabolic perspective, biochemical, physiological, and genetic significance of HMOs, and their probable relations to milk microbiota, are addressed. Ongoing research into mechanistic processes through which the rich biological assets of milk promote development, shaping of microbiota, and immunity is tackled.
Collapse
Affiliation(s)
- Carole Ayoub Moubareck
- College of Natural and Health Sciences, Zayed University, Dubai 19282, United Arab Emirates
| |
Collapse
|