1
|
Byun KH, Kang M, Seon Koo M, Lim MC, Sik Ok G, Jung Kim H. Potential risk of biofilm-forming Bacillus cereus group in fresh-cut lettuce production chain. Food Res Int 2024; 191:114692. [PMID: 39059950 DOI: 10.1016/j.foodres.2024.114692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Bacillus cereus and Bacillus thuringiensis, which belong to the B. cereus group, are widely distributed in nature and can cause food poisoning symptoms. In this study, we collected 131 isolates belonging to the B. cereus group, comprising 124B. cereus and seven B. thuringiensis isolates, from fresh-cut lettuce production chain and investigated their potential risk by analyzing genotypic (enterotoxin and emetic toxin gene profiles) and phenotypic (antibiotic susceptibility, sporulation, and biofilm formation) characteristics. Enterotoxin genes were present only in B. cereus, whereas the emetic toxin gene was not detected in any of the B. cereus isolates. All isolates were susceptible to vancomycin, which is a last resort for treating B. cereus group infection symptoms, but generally resistant to β-lactam antimicrobials, and had the ability to form spores (at an average sporulation rate of 24.6 %) and biofilms at 30 °C. Isolates that formed strong biofilms at 30 °C had a superior possibility of forming a dense biofilm by proliferating at 10 °C compared to other isolates. Additionally, confocal laser scanning microscopy (CLSM) images revealed a notable presence of spores within the submerged biofilm formed at 10 °C, and the strengthened attachment of biofilm inner cells to the substrate was further revealed through biofilm structure parameters analysis. Collectively, our study revealed the prevalence and contamination levels of B. cereus and B. thuringiensis at fresh-cut lettuce production chain and investigated their genotypic and phenotypic characteristics, aiming to provide valuable insights for the development of potential risk management strategies to ensure food safety, especially along the cold chain.
Collapse
Affiliation(s)
- Kye-Hwan Byun
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju, Jeollabuk-do 55365, Republic of Korea; Technology Innovation Research Division, Hygienic Safety and Materials Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Miseon Kang
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Min Seon Koo
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Min-Cheol Lim
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Gyeong Sik Ok
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju, Jeollabuk-do 55365, Republic of Korea
| | - Hyun Jung Kim
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
2
|
Qiu Q, Li H, Sun X, Zhang L, Tian K, Chang M, Li S, Zhou D, Huo H. Study on the estradiol degradation gene expression and resistance mechanism of Rhodococcus R-001 under low-temperature stress. CHEMOSPHERE 2024; 358:142146. [PMID: 38677604 DOI: 10.1016/j.chemosphere.2024.142146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/03/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Estradiol (E2), an endocrine disruptor, acts by mimicking or interfering with the normal physiological functions of natural hormones within organisms, leading to issues such as endocrine system disruption. Notably, seasonal fluctuations in environmental temperature may influence the degradation speed of estradiol (E2) in the natural environment, intensifying its potential health and ecological risks. Therefore, this study aims to explore how bacteria can degrade E2 under low-temperature conditions, unveiling their resistance mechanisms, with the goal of developing new strategies to mitigate the threat of E2 to health and ecological safety. In this paper, we found that Rhodococcus equi DSSKP-R-001 (R-001) can efficiently degrade E2 at 30 °C and 10 °C. Six genes in R-001 were shown to be involved in E2 degradation by heterologous expression at 30 °C. Among them, 17β-HSD, KstD2, and KstD3, were also involved in E2 degradation at 10 °C; KstD was not previously known to degrade E2. RNA-seq was used to characterize differentially expressed genes (DEGs) to explore the stress response of R-001 to low-temperature environments to elucidate the strain's adaptation mechanism. At the low temperature, R-001 cells changed from a round spherical shape to a long rod or irregular shape with elevated unsaturated fatty acids and were consistent with the corresponding genetic changes. Many differentially expressed genes linked to the cold stress response were observed. R-001 was found to upregulate genes encoding cold shock proteins, fatty acid metabolism proteins, the ABC transport system, DNA damage repair, energy metabolism and transcriptional regulators. In this study, we demonstrated six E2 degradation genes in R-001 and found for the first time that E2 degradation genes have different expression characteristics at 30 °C and 10 °C. Linking R-001 to cold acclimation provides new insights and a mechanistic basis for the simultaneous degradation of E2 under cold stress in Rhodococcus adaptation.
Collapse
Affiliation(s)
- Qing Qiu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China.
| | - Han Li
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China.
| | - Xuejian Sun
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China.
| | - Lili Zhang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China.
| | - Kejian Tian
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China.
| | - Menghan Chang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China.
| | - Shuaiguo Li
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China.
| | - Dandan Zhou
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China; Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun, 130117, China.
| | - Hongliang Huo
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China; Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun, 130117, China.
| |
Collapse
|
3
|
Chen W, Xie W, Gao Z, Lin C, Tan M, Zhang Y, Hou Z. Mild-Photothermal Effect Induced High Efficiency Ferroptosis-Boosted-Cuproptosis Based on Cu 2 O@Mn 3 Cu 3 O 8 Nanozyme. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303694. [PMID: 37822154 PMCID: PMC10667815 DOI: 10.1002/advs.202303694] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/02/2023] [Indexed: 10/13/2023]
Abstract
A core-shell-structured Cu2 O@Mn3 Cu3 O8 (CMCO) nanozyme is constructed to serve as a tumor microenvironment (TME)-activated copper ionophore to achieve safe and efficient cuproptosis. The Mn3 Cu3 O8 shell not only prevents exposure of normal tissues to the Cu2 O core to reduce systemic toxicity but also exhibits enhanced enzyme-mimicking activity owing to the better band continuity near the Fermi surface. The glutathione oxidase (GSHOx)-like activity of CMCO depletes glutathione (GSH), which diminishes the ability to chelate Cu ions, thereby exerting Cu toxicity and inducing cuproptosis in cancer cells. The catalase (CAT)-like activity catalyzes the overexpressed H2 O2 in the TME, thereby generating O2 in the tricarboxylic acid (TCA) cycle to enhance cuproptosis. More importantly, the Fenton-like reaction based on the release of Mn ions and the inactivation of glutathione peroxidase 4 induced by the elimination of GSH results in ferroptosis, accompanied by the accumulation of lipid peroxidation and reactive oxygen species that can cleave stress-induced heat shock proteins to compromise their protective capacity of cancer cells and further sensitize cuproptosis. CMCO nanozymes are partially sulfurized by hydrogen sulfide in the colorectal TME, exhibiting excellent photothermal properties and enzyme-mimicking activity. The mild photothermal effect enhances the enzyme-mimicking activity of the CMCO nanozymes, thus inducing high-efficiency ferroptosis-boosted-cuproptosis.
Collapse
Affiliation(s)
- Wei Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436P. R. China
| | - Wenyu Xie
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436P. R. China
| | - Zhimin Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436P. R. China
| | - Chen Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436P. R. China
| | - Meiling Tan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436P. R. China
| | - Yaru Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436P. R. China
| | - Zhiyao Hou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436P. R. China
| |
Collapse
|
4
|
Wang Y, Cai J, Li D. Efficient degradation of rice straw through a novel psychrotolerant Bacillus cereus at low temperature. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1394-1403. [PMID: 36138337 DOI: 10.1002/jsfa.12233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Rice straw (RS) is one of the largest sources of lignocellulosic, which is an abundant raw material for biofuels and chemicals. However, the natural degradation of RS under a low temperature environment is the biggest obstacle to returning straw to the field. RESULTS In the present study, one bacillus strain W118 was isolated. Strain W118 was identified as Bacillus cereus through morphological and physiological characterization and 16S rDNA sequencing. The optimum growth temperature and pH of strain W118 were 20 °C and 6.5, respectively. Simultaneously, it was found that the strain W118 grew well at low temperature, even at a temperature of 4 °C (OD600 = 1.40 ± 0.01). The decrease of various compositions of RS after the fermentation process at a temperature of 20 °C and 4 °C for 14 days was 27.00 ± 0.02% and 23.70 ± 0.04%, respectively. The composition of RS decreased to 50.71 ± 0.02% after being fermented at 4 °C for 25 days. The results of scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction of RS showed that the compositions of RS were significant decreased. CONCLUSION This test suggests that the strain W118 is efficient for degrading RS at low temperature, which has great application potential for straw degradation in a low temperature area. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST) Ministry of Education, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, China
| | - Jinling Cai
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST) Ministry of Education, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, China
| | - Demao Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Key Laboratory for Industrial Biosystems and Bioprocessing Engineering, Tianjin, China
| |
Collapse
|
5
|
Français M, Bott R, Dargaignaratz C, Giniès C, Carlin F, Broussolle V, Nguyen-Thé C. Short-Chain and Unsaturated Fatty Acids Increase Sequentially From the Lag Phase During Cold Growth of Bacillus cereus. Front Microbiol 2021; 12:694757. [PMID: 34367095 PMCID: PMC8339379 DOI: 10.3389/fmicb.2021.694757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/28/2021] [Indexed: 11/20/2022] Open
Abstract
Fatty acids of two mesophilic and one psychrotrophic strains of the foodborne pathogen Bacillus cereus were analyzed by gas chromatography coupled to mass spectrometry during growth at cold (10 and 12°C) vs. optimal (30°C) temperatures and during the whole growth process (6–7 sampling times) from lag to stationary phase. In all these strains, a sequential change of fatty acids during cold growth was observed. Fatty acids were modified as soon as the end of lag, with an increase of the short-chain fatty acids (less than 15 carbons), particularly i13. These short-chain fatty acids then reached a maximum at the beginning of growth and eventually decreased to their initial level, suggesting their importance as a rapid cold adaptation mechanism for B. cereus. In a second step, an increase in Δ5,10 di-saturated fatty acids and in monounsaturated fatty acids in Δ5 position, at the expense of unsaturation in Δ10, started during exponential phase and continued until the end of stationary phase, suggesting a role in growth consolidation and survival at cold temperatures. Among these unsaturated fatty acids, those produced by unsaturation of n16 increased in the three strains, whereas other unsaturated fatty acids increased in some strains only. This study highlights the importance of kinetic analysis of fatty acids during cold adaptation.
Collapse
Affiliation(s)
| | - Romain Bott
- INRAE, Avignon Université, UMR SQPOV, Avignon, France
| | | | | | | | | | | |
Collapse
|
6
|
Cairo J, Gherman I, Day A, Cook PE. Bacillus cytotoxicus-A potentially virulent food-associated microbe. J Appl Microbiol 2021; 132:31-40. [PMID: 34260791 PMCID: PMC9291862 DOI: 10.1111/jam.15214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/15/2021] [Accepted: 07/02/2021] [Indexed: 11/29/2022]
Abstract
Bacillus cytotoxicus is a member of the Bacillus cereus group with the ability to grow at high temperatures (up to 52℃) and to synthesize cytotoxin K-1, a diarrhoeagenic cytotoxin, which appears to be unique to this species and more cytotoxic than the cytotoxin K-2 produced by other members of this group. Only a few isolates of this species have been characterized with regard to their cytotoxic effects, and the role of cytotoxin K-1 as a causative agent of food poisoning remains largely unclear. Bacillus cytotoxicus was initially isolated from a food-borne outbreak, which led to three deaths, and the organism has since been linked to other outbreaks all involving plant-based food matrices. Other studies, as well as food-borne incidents reported to the UK Food Standards Agency, detected B. cytotoxicus in insect-related products and in dried food products. With insect-related food becoming increasingly popular, the association with this pathogen is concerning, requiring further investigation and evidence to protect public health. This review summarizes the current knowledge around B. cytotoxicus and highlights gaps in the literature from a food safety perspective.
Collapse
|
7
|
Park KM, Kim HJ, Kim MS, Koo M. Morphological Features and Cold-Response Gene Expression in Mesophilic Bacillus cereus Group and Psychrotolerant Bacillus cereus Group under Low Temperature. Microorganisms 2021; 9:microorganisms9061255. [PMID: 34207706 PMCID: PMC8229767 DOI: 10.3390/microorganisms9061255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/27/2022] Open
Abstract
At low temperatures, psychrotolerant B. cereus group strains exhibit a higher growth rate than mesophilic strains do. However, the different survival responses of the psychrotolerant strain (BCG34) and the mesophilic strain (BCGT) at low temperatures are unclear. We investigated the morphological and genomic features of BCGT and BCG34 to characterize their growth strategies at low temperatures. At low temperatures, morphological changes were observed only in BCGT. These morphological changes included the elongation of rod-shaped cells, whereas the cell shape in BCG34 was unchanged at the low temperature. A transcriptomic analysis revealed that both species exhibited different growth-related traits during low-temperature growth. The BCGT strain induces fatty acid biosynthesis, sulfur assimilation, and methionine and cysteine biosynthesis as a survival mechanism in cold systems. Increases in energy metabolism and fatty acid biosynthesis in the mesophilic B. cereus group strain might explain its ability to grow at low temperatures. Several pathways involved in carbohydrate mechanisms were downregulated to conserve the energy required for growth. Peptidoglycan biosynthesis was upregulated, implying that a change of gene expression in both RNA-Seq and RT-qPCR contributed to sustaining its growth and rod shape at low temperatures. These results improve our understanding of the growth response of the B. cereus group, including psychrotolerant B. cereus group strains, at low temperatures and provide information for improving bacterial inhibition strategies in the food industry.
Collapse
Affiliation(s)
- Kyung-Min Park
- Department of Food Analysis Center, Korea Research Institute, Wanju-gun 55365, Jeollabuk-do, Korea; (K.-M.P.); (M.-S.K.)
| | - Hyun-Jung Kim
- Research Group of Consumer Safety, Korea Food Research Institute, Wanju-gun 55365, Jeollabuk-do, Korea;
- Department of Food Biotechnology, Korea University of Science & Technology, Daejeon 34113, Korea
| | - Min-Sun Kim
- Department of Food Analysis Center, Korea Research Institute, Wanju-gun 55365, Jeollabuk-do, Korea; (K.-M.P.); (M.-S.K.)
| | - Minseon Koo
- Department of Food Analysis Center, Korea Research Institute, Wanju-gun 55365, Jeollabuk-do, Korea; (K.-M.P.); (M.-S.K.)
- Department of Food Biotechnology, Korea University of Science & Technology, Daejeon 34113, Korea
- Correspondence:
| |
Collapse
|
8
|
Li H, Yang R, Hao L, Wang C, Li M. CspB and CspC are induced upon cold shock in Bacillus cereus strain D2. Can J Microbiol 2021; 67:703-712. [PMID: 34058099 DOI: 10.1139/cjm-2021-0025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacillus cereus D2, a psychrotrophic strain, plays an essential role in the restoration of heavy metal-contaminated soils, especially at low temperatures. However, the cold shock response mechanisms of this strain are unclear. In this study, the cold shock response of B. cereus D2 was characterized; as per the Arrhenius curve, 10 °C was chosen as the cold shock temperature. Six cold shock-like proteins were found and temporarily named cold shock protein (Csp)1-6; the respective genes were cloned and identified. Quantitative real-time PCR results showed that csp1, csp2, csp3, and csp6 were overexpressed under cold shock conditions. Interestingly, after cloning the respective encoding genes into pET-28a (+) vector and their subsequent transformation into E. coli BL21 (DE3), the strains expressing Csp2 and Csp6 grew faster at 10 °C, showing a large number of bacteria. These results suggest that Csp2 and Csp6 are the major cold shock proteins in B. cereus D2. Of note, the comparison of amino acid sequences and structures showed that Csp2 and Csp6 belong to the CspB and CspC families, respectively. Additionally, we show that the number of hydrophobic residues is not a determining feature of major Csps, while, on the other hand, the formation of an α-helix in the context of a leucine residue is the most dominant difference between major, and other Bacillus and E. coli Csps.
Collapse
Affiliation(s)
- Haoyang Li
- Jilin Agricultural University, 85112, Changchun, China;
| | - Rui Yang
- Jilin University, 12510, Changchun, China;
| | - Linlin Hao
- Jilin University, 12510, Changchun, China;
| | | | - Mingtang Li
- Jilin Agricultural University, 85112, Changchun, China, 130018;
| |
Collapse
|
9
|
Metagenomics and Culture Dependent Insights into the Distribution of Firmicutes across Two Different Sample Types Located in the Black Hills Region of South Dakota, USA. Microorganisms 2021; 9:microorganisms9010113. [PMID: 33418927 PMCID: PMC7825136 DOI: 10.3390/microorganisms9010113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 11/17/2022] Open
Abstract
Firmicutes is almost a ubiquitous phylum. Several genera of this group, for instance, Geobacillus, are recognized for decomposing plant organic matter and for producing thermostable ligninolytic enzymes. Amplicon sequencing was used in this study to determine the prevalence and genetic diversity of the Firmicutes in two distinctly related environmental samples—South Dakota Landfill Compost (SDLC, 60 °C), and Sanford Underground Research Facility sediments (SURF, 45 °C). Although distinct microbial community compositions were observed, there was a dominance of Firmicutes in both the SDLC and SURF samples, followed by Proteobacteria. The abundant classes of bacteria in the SDLC site, within the phylum Firmicutes, were Bacilli (83.2%), and Clostridia (2.9%). In comparison, the sample from the SURF mine was dominated by the Clostridia (45.8%) and then Bacilli (20.1%). Within the class Bacilli, the SDLC sample had more diversity (a total of 11 genera with more than 1% operational taxonomic unit, OTU). On the other hand, SURF samples had just three genera, about 1% of the total population: Bacilli, Paenibacillus, and Solibacillus. With specific regard to Geobacillus, it was found to be present at a level of 0.07% and 2.5% in SURF and SDLC, respectively. Subsequently, culture isolations of endospore-forming Firmicutes members from these samples led to the isolation of a total of 117 isolates. According to colony morphologies, and identification based upon 16S rRNA and gyrB gene sequence analysis, we obtained 58 taxonomically distinct strains. Depending on the similarity indexes, a gyrB sequence comparison appeared more useful than 16S rRNA sequence analysis for inferring intra- and some intergeneric relationships between the isolates.
Collapse
|
10
|
Bacillus cereus cshA Is Expressed during the Lag Phase of Growth and Serves as a Potential Marker of Early Adaptation to Low Temperature and pH. Appl Environ Microbiol 2019; 85:AEM.00486-19. [PMID: 31076436 PMCID: PMC6606889 DOI: 10.1128/aem.00486-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/01/2019] [Indexed: 12/14/2022] Open
Abstract
The spore-forming bacterium B. cereus is a major cause of foodborne outbreaks in Europe. Some B. cereus strains can grow at low temperatures and low pH in many processed foods. Modeling of the bacterial lag time is hampered by a lack of knowledge of the timing of events occurring during this phase. In this context, the identification of lag phase markers, not currently available, could be a real advance for the better prediction of lag time duration. Currently, no molecular markers of this phase are available. By determining that cshA was always expressed early during the lag phase, we provide a molecular marker of the early adaptation process of B. cereus cells when exposed to low temperature and pH. Bacterial adaptation is characterized by a lag phase during which cells do not multiply or modify their physiology to cope with the constraints of their environment. Our aim was to determine a sequence of events during the lag phase of growth at low temperature and pH for three Bacillus cereus strains. The onsets of expression of two genes, one of which is essential for stress adaptation (cshA, coding for a RNA helicase) and one of which is involved in the transition between lag phase and exponential phase (abrB, coding for a transition regulator), were determined using fluorescent transcriptional reporter systems. Regardless of the stressing conditions and the tested strains, the cshA promoter was active very early, while the biomass increased and always did so before the first cell division. At 12°C and pH 7.0, the onset of cshA promoter activity occurred at between 3 h and 7 h, while the bacterial counts started to increase at between 12 h and 13 h. At pH 5.0 and at 20°C or 30°C, the onset of cshA promoter activity occurred before 1 h and earlier than at pH 7.0. In contrast, the onset of abrB promoter activity depended on the strain and the stressing conditions. In the ATCC 14579 strain, the onset of abrB promoter activity always started at between 30 min and 3 h, before biomass increased and cell division occurred. For the other strains, it took place along with the first cell division at 12°C but did so much later during growth under the other tested conditions. IMPORTANCE The spore-forming bacterium B. cereus is a major cause of foodborne outbreaks in Europe. Some B. cereus strains can grow at low temperatures and low pH in many processed foods. Modeling of the bacterial lag time is hampered by a lack of knowledge of the timing of events occurring during this phase. In this context, the identification of lag phase markers, not currently available, could be a real advance for the better prediction of lag time duration. Currently, no molecular markers of this phase are available. By determining that cshA was always expressed early during the lag phase, we provide a molecular marker of the early adaptation process of B. cereus cells when exposed to low temperature and pH.
Collapse
|
11
|
Beno SM, Orsi RH, Cheng RA, Kent DJ, Kovac J, Duncan DR, Martin NH, Wiedmann M. Genes Associated With Psychrotolerant Bacillus cereus Group Isolates. Front Microbiol 2019; 10:662. [PMID: 30984157 PMCID: PMC6449464 DOI: 10.3389/fmicb.2019.00662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/15/2019] [Indexed: 11/28/2022] Open
Abstract
The Bacillus cereus group comprises 18 different species, including human pathogens as well as psychrotolerant strains that are an important cause of fluid milk spoilage. To enhance our understanding of the genetic markers associated with psychrotolerance (defined here as > 1 log10 increase in cfu/mL after 21 days incubation at 6°C) among dairy-associated B. cereus group isolates, we used genetic (whole genome sequencing) and phenotypic methods [growth in Skim Milk Broth (SMB) and Brain Heart Infusion (BHI) broth] to characterize 23 genetically-distinct representative isolates from a collection of 503 dairy-associated isolates. Quality threshold clustering identified three categories of psychrotolerance: (i) 14 isolates that were not psychrotolerant in BHI or SMB, (ii) 6 isolates that were psychrotolerant in BHI but not in SMB, and (iii) 2 isolates that were psychrotolerant in BHI and SMB. One isolate, which was psychrotolerant in BHI broth but was just below the cut-off of >1 log10 cfu/mL increase in SMB was not assigned to a cluster. A maximum likelihood phylogeny constructed with core genome single nucleotide polymorphisms classified all psychrotolerant isolates (i.e., psychrotolerant in BHI) into clade VI (representing B. mycoides/weihenstephanensis). Analysis of correlations between gene ortholog presence or absence patterns and psychrotolerance identified 206 orthologous gene clusters that were significantly overrepresented among psychrotolerant strains, including two clusters of cold shock proteins, which were identified in 8/9 and 7/9 psychrotolerant isolates. Gene ontology analyses revealed 36 gene ontology terms that were overrepresented in psychrotolerant isolates, including putrescine catabolic processes and putrescine transmembrane transporter activity. Lastly, Hidden Markov Model searches identified three protein family motifs, including cold shock domain proteins and fatty acid hydroxylases that were significantly associated with psychrotolerance in BHI broth. Analyses of CspA sequences revealed a positive association between psychrotolerant strains and a previously identified “psychrotolerant” CspA sequence. Overall, our data highlight genetic and phenotypic differences in psychrotolerance among B. cereus group dairy-associated isolates and show that psychrotolerance is dependent on the growth medium. We also identified a number of gene targets that could be used for specific detection or control of psychrotolerant B. cereus group isolates.
Collapse
Affiliation(s)
- Sarah M Beno
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Renato H Orsi
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Rachel A Cheng
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - David J Kent
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Jasna Kovac
- Department of Food Science, Cornell University, Ithaca, NY, United States.,Department of Food Science, Penn State University, University Park, PA, United States
| | - Diana R Duncan
- Department of Food Science, Wageningen University, Wageningen, Netherlands
| | - Nicole H Martin
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
12
|
Soni A, Oey I, Silcock P, Permina E, Bremer PJ. Effect of cold storage and different ions on the thermal resistance of B. cereus NZAS01 spores- analysis of differential gene expression and ion exchange. Food Res Int 2019; 116:578-585. [PMID: 30716983 DOI: 10.1016/j.foodres.2018.08.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/16/2018] [Accepted: 08/25/2018] [Indexed: 10/28/2022]
Abstract
Bacillus cereus spores in food are able to survive pasteurization, and if conditions are favourable, subsequently germinate, grow and produce toxins causing food poisoning. The objectives of this study were to firstly determine the impact of cold storage and ion uptake on the thermal resistance of B. cereus spores and secondly to use differential gene expression to help elucidate possible molecular mechanisms for the changes detected in their thermal resistance. B. cereus spores were held at 4 °C in either 0.05 or 0.5 M solutions of cations (Na+, Ca2+ Mg2+,K+, Zn2+) for 6 days and their D88-values were estimated. In the presence of sodium chloride (0.05 and 0.5 M), sodium phosphate buffer, (pH 7, 0.05 and 0.5 M) or zinc acetate (0.05 M), D88 values decreased by 8.8, 10.9, 11.2, 12.9, and 10.2 min respectively, with no evidence of germination (plating methods). Exposure of spores to Na+ in sodium phosphate buffer (pH 7, 0.05 and 0.5 M) or sodium chloride (0.05 and 0.5 M) resulted in the accumulation of Na+ (66.0 ± 2.9, 193.1 ± 4.6, 136.2 ± 9.9 and 70.5 ± 2.7 μg/g) by spores at the significant expense of K+ (10.8 ± 0.5, 7.5 ± 0.2, 8.1 ± 0.4 and 3.6 ± 0.4 μg/g respectively). The mechanism behind the loss of resistance in sodium phosphate buffer (0.05 M) was further investigated by monitoring the differential gene expression using mRNA sequencing. Genes encoding for uracil permease (BC_3890), Mg2+ P-type ATPase-like protein (BC_1581), ABC transporter ATP-binding protein (BC_0815), and 2-keto-3-deoxygluconate permease (BC_4841) were significantly (FDR value ≤0.05) upregulated. This upregulation indicated a possible increase in permeability, which is suggested to account for the increased uptake of sodium ions and the reduction measured in the spore's thermal resistance. This data suggests that during storage at 4 °C in the presence of sodium ions, spores should not be considered to be completely dormant.
Collapse
Affiliation(s)
- Aswathi Soni
- Department of Food Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Indrawati Oey
- Department of Food Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Riddet Institute, Palmerston North, New Zealand
| | - Patrick Silcock
- Department of Food Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Elizabeth Permina
- Otago Genomics & Bioinformatics Facility, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Phil J Bremer
- Department of Food Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand; New Zealand Food Safety Science Research Centre, New Zealand.
| |
Collapse
|
13
|
Ginies C, Brillard J, Nguyen-The C. Identification of Fatty Acids in Bacillus cereus. J Vis Exp 2016. [PMID: 28060260 DOI: 10.3791/54960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The Bacillus species contain branched chain and unsaturated fatty acids (FAs) with diverse positions of the methyl branch (iso or anteiso) and of the double bond. Changes in FA composition play a crucial role in the adaptation of bacteria to their environment. These modifications entail a change in the ratio of iso versus anteiso branched FAs, and in the proportion of unsaturated FAs relative to saturated FAs, with double bonds created at specific positions. Precise identification of the FA profile is necessary to understand the adaptation mechanisms of Bacillus species. Many of the FAs from Bacillus are not commercially available. The strategy proposed herein identifies FAs by combining information on the retention time (by calculation of the equivalent chain length (ECL)) with the mass spectra of three types of FA derivatives: fatty acid methyl esters (FAMEs), 4,4-dimethyl oxazoline derivatives (DMOX), and 3-pyridylcarbinyl ester (picolinyl). This method can identify the FAs without the need to purify the unknown FAs. Comparing chromatographic profiles of FAME prepared from Bacillus cereus with a commercial mixture of standards allows for the identification of straight-chain saturated FAs, the calculation of the ECL, and hypotheses on the identity of the other FAs. FAMEs of branched saturated FAs, iso or anteiso, display a constant negative shift in the ECL, compared to linear saturated FAs with the same number of carbons. FAMEs of unsaturated FAs can be detected by the mass of their molecular ions, and result in a positive shift in the ECL compared to the corresponding saturated FAs. The branching position of FAs and the double bond position of unsaturated FAs can be identified by the electron ionization mass spectra of picolinyl and DMOX derivatives, respectively. This approach identifies all the unknown saturated branched FAs, unsaturated straight-chain FAs and unsaturated branched FAs from the B. cereus extract.
Collapse
Affiliation(s)
- Christian Ginies
- UMR408 SQPOV, Sécurité et Qualité des Produits d'Origine Végétale, INRA, Université d'Avignon
| | - Julien Brillard
- UMR408 SQPOV, Sécurité et Qualité des Produits d'Origine Végétale, INRA, Université d'Avignon; UMR1333 DGIMI, INRA, Université de Montpellier;
| | - Christophe Nguyen-The
- UMR408 SQPOV, Sécurité et Qualité des Produits d'Origine Végétale, INRA, Université d'Avignon
| |
Collapse
|
14
|
Diomandé SE, Doublet B, Vasaï F, Guinebretière MH, Broussolle V, Brillard J. Expression of the genes encoding the CasK/R two-component system and the DesA desaturase during Bacillus cereus cold adaptation. FEMS Microbiol Lett 2016; 363:fnw174. [PMID: 27435329 DOI: 10.1093/femsle/fnw174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2016] [Indexed: 11/13/2022] Open
Abstract
Two-component systems (TCS) allow a cell to elaborate a variety of adaptive responses to environment changes. The recently discovered CasK/R TCS plays a role in the optimal unsaturation of fatty acids necessary for cold adaptation of the foodborne-pathogen Bacillus cereus Here, we showed that the promoter activity of the operon encoding this TCS was repressed during growth at low temperature in the stationary phase in the parental strain when compared to the casK/R mutant, suggesting that CasR negatively regulates the activity of its own promoter in these conditions. The promoter activity of the desA gene encoding the Δ5 fatty acid desaturase, providing unsaturated fatty acids (UFAs) required for low temperature adaptation, was repressed in the casK/R mutant grown at 12°C versus 37°C. This result suggests that CasK/R activates desA expression during B. cereus growth at low temperature, allowing an optimal unsaturation of the fatty acids. In contrast, desA expression was repressed during the lag phase at low temperature in presence of UFAs, in a CasK/R-independent manner. Our findings confirm that the involvement of this major TCS in B. cereus cold adaptation is linked to the upregulation of a fatty acid desaturase.
Collapse
Affiliation(s)
| | | | | | | | | | - Julien Brillard
- SQPOV, INRA, Univ. Avignon, 84000 Avignon, France DGIMI, INRA, Univ. Montpellier, 34095 Montpellier, France
| |
Collapse
|
15
|
The adaptive response of bacterial food-borne pathogens in the environment, host and food: Implications for food safety. Int J Food Microbiol 2015; 213:99-109. [DOI: 10.1016/j.ijfoodmicro.2015.06.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 05/21/2015] [Accepted: 06/08/2015] [Indexed: 11/19/2022]
|
16
|
Omer H, Alpha-Bazin B, Brunet JL, Armengaud J, Duport C. Proteomics identifies Bacillus cereus EntD as a pivotal protein for the production of numerous virulence factors. Front Microbiol 2015; 6:1004. [PMID: 26500610 PMCID: PMC4595770 DOI: 10.3389/fmicb.2015.01004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/07/2015] [Indexed: 11/13/2022] Open
Abstract
Bacillus cereus is a Gram-positive pathogen that causes a wide variety of diseases in humans. It secretes into the extracellular milieu proteins that may contribute directly or indirectly to its virulence. EntD is a novel exoprotein identified by proteogenomics of B. cereus ATCC 14579. We constructed a ΔentD mutant and analyzed the impact of entD disruption on the cellular proteome and exoproteome isolated from early, late, and stationary-phase cultures. We identified 308 and 79 proteins regulated by EntD in the cellular proteome and the exoproteome, respectively. The contribution of these proteins to important virulence-associated functions, including central metabolism, cell structure, antioxidative ability, cell motility, and toxin production, are presented. The proteomic data were correlated with the growth defect, cell morphology change, reduced motility, and reduced cytotoxicity of the ΔentD mutant strain. We conclude that EntD is an important player in B. cereus virulence. The function of EntD and the putative EntD-dependent regulatory network are discussed. To our knowledge, this study is the first characterization of an Ent family protein in a species of the B. cereus group.
Collapse
Affiliation(s)
- Hélène Omer
- Université d'Avignon et des Pays de Vaucluse, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France ; INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France ; CEA-Marcoule, DSV/IBITEC-S/SPI/Li2D, Laboratory "Innovative technologies for Detection and Diagnostic" Bagnols-sur-Cèze, France
| | - Béatrice Alpha-Bazin
- CEA-Marcoule, DSV/IBITEC-S/SPI/Li2D, Laboratory "Innovative technologies for Detection and Diagnostic" Bagnols-sur-Cèze, France
| | | | - Jean Armengaud
- CEA-Marcoule, DSV/IBITEC-S/SPI/Li2D, Laboratory "Innovative technologies for Detection and Diagnostic" Bagnols-sur-Cèze, France
| | - Catherine Duport
- Université d'Avignon et des Pays de Vaucluse, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France ; INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France
| |
Collapse
|
17
|
Diomandé SE, Nguyen-The C, Guinebretière MH, Broussolle V, Brillard J. Role of fatty acids in Bacillus environmental adaptation. Front Microbiol 2015; 6:813. [PMID: 26300876 PMCID: PMC4525379 DOI: 10.3389/fmicb.2015.00813] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/23/2015] [Indexed: 11/23/2022] Open
Abstract
The large bacterial genus Bacillus is widely distributed in the environment and is able to colonize highly diverse niches. Some Bacillus species harbor pathogenic characteristics. The fatty acid (FA) composition is among the essential criteria used to define Bacillus species. Some elements of the FA pattern composition are common to Bacillus species, whereas others are specific and can be categorized in relation to the ecological niches of the species. Bacillus species are able to modify their FA patterns to adapt to a wide range of environmental changes, including changes in the growth medium, temperature, food processing conditions, and pH. Like many other Gram-positive bacteria, Bacillus strains display a well-defined FA synthesis II system that is equilibrated with a FA degradation pathway and regulated to efficiently respond to the needs of the cell. Like endogenous FAs, exogenous FAs may positively or negatively affect the survival of Bacillus vegetative cells and the spore germination ability in a given environment. Some of these exogenous FAs may provide a powerful strategy for preserving food against contamination by the Bacillus pathogenic strains responsible for foodborne illness.
Collapse
Affiliation(s)
- Sara E Diomandé
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France ; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France
| | - Christophe Nguyen-The
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France ; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France
| | - Marie-Hélène Guinebretière
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France ; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France
| | - Véronique Broussolle
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France ; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France
| | - Julien Brillard
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France ; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France ; UMR 1333 DGIMI, INRA, Université de Montpellier Montpellier, France
| |
Collapse
|
18
|
Diomandé SE, Guinebretière MH, De Sarrau B, Nguyen-the C, Broussolle V, Brillard J. Fatty acid profiles and desaturase-encoding genes are different in thermo- and psychrotolerant strains of the Bacillus cereus Group. BMC Res Notes 2015; 8:329. [PMID: 26227277 PMCID: PMC4521489 DOI: 10.1186/s13104-015-1288-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 07/22/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Bacillus cereus Group consists of closely-related bacteria, including pathogenic or harmless strains, and whose species can be positioned along the seven phylogenetic groups of Guinebretière et al. (I-VII). They exhibit different growth-temperature ranges, through thermotolerant to psychrotolerant thermotypes. Among these, B. cytotoxicus is an atypical thermotolerant and food-poisoning agent affiliated to group VII whose thermotolerance contrasts with the mesophilic and psychrotolerant thermotypes associated to the remaining groups I-VI. To understand the role of fatty acid (FA) composition in these variable thermotypes (i.e. growth behavior vs temperatures), we report specific features differentiating the FA pattern of B. cytotoxicus (group VII) from its counterparts (groups I-VI). FINDINGS The FA pattern of thermotolerant group VII (B. cytotoxicus) displayed several specific features. Most notably, we identified a high ratio of the branched-chain FAs iso-C15/iso-C13 (i15/i13) and the absence of the unsaturated FA (UFA) C16:1(5) consistent with the absence of ∆5 desaturase DesA. Conversely, phylogenetic groups II-VI were characterized by lower i15/i13 ratios and variable proportions of C16:1(5) depending on thermotype, and presence of the DesA desaturase. In mesophilic group I, thermotype seemed to be related to an atypically high amount of C16:1(10) that may involve ∆10 desaturase DesB. CONCLUSION The levels of i15/i13 ratio, C16:1(5) and C16:1(10) UFAs were related to growth temperature variations recorded between thermotypes and/or phylogenetic groups. These FA are likely to play a role in membrane fluidity and may account for the differences in temperature tolerance observed in B. cereus Group strains.
Collapse
Affiliation(s)
- Sara Esther Diomandé
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000, Avignon, France. .,Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000, Avignon, France.
| | - Marie-Hélène Guinebretière
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000, Avignon, France. .,Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000, Avignon, France. .,INRA, UMR408 SQPOV, Site Agroparcs, 228 route de l'Aérodrome, CS40509, 84914, Avignon Cedex 9, France.
| | - Benoit De Sarrau
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000, Avignon, France. .,Xurian Environnement, ZAE Béziers Ouest, rue du Jéroboam, 34500, Béziers, France.
| | - Christophe Nguyen-the
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000, Avignon, France. .,Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000, Avignon, France.
| | - Véronique Broussolle
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000, Avignon, France. .,Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000, Avignon, France.
| | - Julien Brillard
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000, Avignon, France. .,Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000, Avignon, France. .,INRA, UMR 1333 DGIMI, Université Montpellier, 34095, Montpellier Cedex 5, France.
| |
Collapse
|
19
|
Diomandé SE, Nguyen-the C, Abee T, Tempelaars MH, Broussolle V, Brillard J. Involvement of the CasK/R two-component system in optimal unsaturation of the Bacillus cereus fatty acids during low-temperature growth. Int J Food Microbiol 2015; 213:110-7. [PMID: 25987542 DOI: 10.1016/j.ijfoodmicro.2015.04.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 04/21/2015] [Accepted: 04/25/2015] [Indexed: 11/26/2022]
Abstract
Bacillus cereus sensu lato is composed of a set of ubiquitous strains including human pathogens that can survive a range of food processing conditions, grow in refrigerated food, and sometimes cause food poisoning. We previously identified the two-component system CasK/R that plays a key role in cold adaptation. To better understand the CasK/R-controlled mechanisms that support low-temperature adaptation, we performed a transcriptomic analysis on the ATCC 14579 strain and its isogenic ∆casK/R mutant grown at 12°C. Several genes involved in fatty acid (FA) metabolism were downregulated in the mutant, including desA and desB encoding FA acyl-lipid desaturases that catalyze the formation of a double-bond on the FA chain in positions ∆5 and ∆10, respectively. A lower proportion of FAs presumably unsaturated by DesA was observed in the ΔcasK/R strain compared to the parental strain while no difference was found for FAs presumably unsaturated by DesB. Addition of phospholipids from egg yolk lecithin rich in unsaturated FAs, to growth medium, abolished the cold-growth impairment of ΔcasK/R suggesting that exogenous unsaturated FAs can support membrane-level modifications and thus compensate for the decreased production of these FAs in the B. cereus ∆casK/R mutant during growth at low temperature. Our findings indicate that CasK/R is involved in the regulation of FA metabolism, and is necessary for cold adaptation of B. cereus unless an exogenous source of unsaturated FAs is available.
Collapse
Affiliation(s)
- Sara Esther Diomandé
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
| | - Christophe Nguyen-the
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
| | - Tjakko Abee
- Top Institute Food and Nutrition, NieuweKanaal 9A, 6709 PA, Wageningen, The Netherlands; Food Microbiology Laboratory, Wageningen University, BornseWeilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Marcel H Tempelaars
- Food Microbiology Laboratory, Wageningen University, BornseWeilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Véronique Broussolle
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
| | - Julien Brillard
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France; INRA, Université Montpellier, UMR1333 Diversité Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, France.
| |
Collapse
|
20
|
Brillard J, Dupont CMS, Berge O, Dargaignaratz C, Oriol-Gagnier S, Doussan C, Broussolle V, Gillon M, Clavel T, Bérard A. The Water Cycle, a Potential Source of the Bacterial Pathogen Bacillus cereus. BIOMED RESEARCH INTERNATIONAL 2015; 2015:356928. [PMID: 25918712 PMCID: PMC4395999 DOI: 10.1155/2015/356928] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/07/2014] [Indexed: 01/31/2023]
Abstract
The behaviour of the sporulating soil-dwelling Bacillus cereus sensu lato (B. cereus sl) which includes foodborne pathogenic strains has been extensively studied in relation to its various animal hosts. The aim of this environmental study was to investigate the water compartments (rain and soil water, as well as groundwater) closely linked to the primary B. cereus sl reservoir, for which available data are limited. B. cereus sl was present, primarily as spores, in all of the tested compartments of an agricultural site, including water from rain to groundwater through soil. During rain events, leachates collected after transfer through the soil eventually reached the groundwater and were loaded with B. cereus sl. In groundwater samples, newly introduced spores of a B. cereus model strain were able to germinate, and vegetative cells arising from this event were detected for up to 50 days. This first B. cereus sl investigation in the various types of interrelated environments suggests that the consideration of the aquatic compartment linked to soil and to climatic events should provide a better understanding of B. cereus sl ecology and thus be relevant for a more accurate risk assessment of food poisoning caused by B. cereus sl pathogenic strains.
Collapse
Affiliation(s)
- Julien Brillard
- INRA, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
- Université d'Avignon, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
- INRA-Université Montpellier II, UMR 1333 DGIMI, 34095 Montpellier, France
| | - Christian M. S. Dupont
- INRA, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
- Université d'Avignon, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
- CNRS, Université Montpellier II, UMR 5235 DIMNP, 34095 Montpellier, France
- EPIM EA 3647, Université de Versailles St-Quentin-en-Yvelines, 78035 Versailles, France
| | - Odile Berge
- INRA, UR 407 Pathologie Végétale, 84140 Montfavet, France
- CNRS, CEA, Université Aix-Marseille, UMR 7265, 13108 Saint-Paul-lez-Durance, France
| | - Claire Dargaignaratz
- INRA, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
- Université d'Avignon, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
| | - Stéphanie Oriol-Gagnier
- INRA, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
- Université d'Avignon, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
| | - Claude Doussan
- INRA, UMR 1114 EMMAH, 84914 Avignon, France
- Université d'Avignon, UMR 1114 EMMAH, 84914 Avignon, France
| | - Véronique Broussolle
- INRA, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
- Université d'Avignon, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
| | - Marina Gillon
- INRA, UMR 1114 EMMAH, 84914 Avignon, France
- Université d'Avignon, UMR 1114 EMMAH, 84914 Avignon, France
| | - Thierry Clavel
- INRA, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
- Université d'Avignon, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
| | - Annette Bérard
- INRA, UMR 1114 EMMAH, 84914 Avignon, France
- Université d'Avignon, UMR 1114 EMMAH, 84914 Avignon, France
| |
Collapse
|
21
|
The CasKR two-component system is required for the growth of mesophilic and psychrotolerant Bacillus cereus strains at low temperatures. Appl Environ Microbiol 2014; 80:2493-503. [PMID: 24509924 DOI: 10.1128/aem.00090-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The different strains of Bacillus cereus can grow at temperatures covering a very diverse range. Some B. cereus strains can grow in chilled food and consequently cause food poisoning. We have identified a new sensor/regulator mechanism involved in low-temperature B. cereus growth. Construction of a mutant of this two-component system enabled us to show that this system, called CasKR, is required for growth at the minimal temperature (Tmin). CasKR was also involved in optimal cold growth above Tmin and in cell survival below Tmin. Microscopic observation showed that CasKR plays a key role in cell shape during cold growth. Introducing the casKR genes in a ΔcasKR mutant restored its ability to grow at Tmin. Although it was first identified in the ATCC 14579 model strain, this mechanism has been conserved in most strains of the B. cereus group. We show that the role of CasKR in cold growth is similar in other B. cereus sensu lato strains with different growth temperature ranges, including psychrotolerant strains.
Collapse
|
22
|
de Sarrau B, Clavel T, Zwickel N, Despres J, Dupont S, Beney L, Tourdot-Maréchal R, Nguyen-The C. Unsaturated fatty acids from food and in the growth medium improve growth of Bacillus cereus under cold and anaerobic conditions. Food Microbiol 2013; 36:113-22. [PMID: 24010589 DOI: 10.1016/j.fm.2013.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 03/12/2013] [Accepted: 04/15/2013] [Indexed: 11/17/2022]
Abstract
In a chemically defined medium and in Luria broth, cold strongly reduced maximal population density of Bacillus cereus ATCC 14579 in anaerobiosis and caused formation of filaments. In cooked spinach, maximal population density of B. cereus in anaerobiosis was the same at cold and optimal temperatures, with normal cell divisions. The lipid containing fraction of spinach, but not the hydrophilic fraction, restored growth of B. cereus under cold and anaerobiosis when added to the chemically defined medium. This fraction was rich in unsaturated, low melting point fatty acids. Addition of phosphatidylcholine containing unsaturated, low melting point, fatty acids similarly improved B. cereus anaerobic growth at cold temperature. Addition of hydrogenated phosphatidylcholine containing saturated, high melting point, fatty acids did not modify growth. Fatty acids from phospholipids, from spinach and from hydrogenated phosphatidylcholine, although normally very rare in B. cereus, were inserted in the bacterium membrane. Addition of phospholipids rich in unsaturated fatty acids to cold and anaerobic cultures, increased fluidity of B. cereus membrane lipids, to the same level as those from B. cereus normally cold adapted, i.e. grown aerobically at 15 °C. B. cereus is therefore able to use external fatty acids from foods or from the growth medium to adapt its membrane to cold temperature under anaerobiosis, and to recover the maximal population density achieved at optimal temperature.
Collapse
Affiliation(s)
- Benoît de Sarrau
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, F-84000 Avignon, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Glucose 6P binds and activates HlyIIR to repress Bacillus cereus haemolysin hlyII gene expression. PLoS One 2013; 8:e55085. [PMID: 23405113 PMCID: PMC3566180 DOI: 10.1371/journal.pone.0055085] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/17/2012] [Indexed: 11/19/2022] Open
Abstract
Bacillus cereus is a Gram-positive spore-forming bacterium causing food poisoning and serious opportunistic infections. These infections are characterized by bacterial accumulation despite the recruitment of phagocytic cells. We have previously shown that B. cereus Haemolysin II (HlyII) induces macrophage cell death by apoptosis. In this work, we investigated the regulation of the hlyII gene. We show that HlyIIR, the negative regulator of hlyII expression in B. cereus, is especially active during the early bacterial growth phase. We demonstrate that glucose 6P directly binds to HlyIIR and enhances its activity at a post-transcriptional level. Glucose 6P activates HlyIIR, increasing its capacity to bind to its DNA-box located upstream of the hlyII gene, inhibiting its expression. Thus, hlyII expression is modulated by the availability of glucose. As HlyII induces haemocyte and macrophage death, two cell types that play a role in the sequestration of nutrients upon infection, HlyII may induce host cell death to allow the bacteria to gain access to carbon sources that are essential components for bacterial growth.
Collapse
|
24
|
Guinebretière MH, Auger S, Galleron N, Contzen M, De Sarrau B, De Buyser ML, Lamberet G, Fagerlund A, Granum PE, Lereclus D, De Vos P, Nguyen-The C, Sorokin A. Bacillus cytotoxicus sp. nov. is a novel thermotolerant species of the Bacillus cereus Group occasionally associated with food poisoning. Int J Syst Evol Microbiol 2013; 63:31-40. [DOI: 10.1099/ijs.0.030627-0] [Citation(s) in RCA: 241] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An aerobic endospore-forming bacillus (NVH 391-98T) was isolated during a severe food poisoning outbreak in France in 1998, and four other similar strains have since been isolated, also mostly from food poisoning cases. Based on 16S rRNA gene sequence similarity, these strains were shown to belong to the
Bacillus cereus
Group (over 97 % similarity with the current Group species) and phylogenetic distance from other validly described species of the genus
Bacillus
was less than 95 %. Based on 16S rRNA gene sequence similarity and MLST data, these novel strains were shown to form a robust and well-separated cluster in the
B. cereus
Group, and constituted the most distant cluster from species of this Group. Major fatty acids (iso-C15 : 0, C16 : 0, iso-C17 : 0, anteiso-C15 : 0, iso-C16 : 0, iso-C13 : 0) supported the affiliation of these strains to the genus
Bacillus
, and more specifically to the
B. cereus
Group. NVH 391-98T taxon was more specifically characterized by an abundance of iso-C15 : 0 and low amounts of iso-C13 : 0 compared with other members of the
B. cereus
Group. Genome similarity together with DNA–DNA hybridization values and physiological and biochemical tests made it possible to genotypically and phenotypically differentiate NVH 391-98T taxon from the six current
B. cereus
Group species. NVH 391-98T therefore represents a novel species, for which the name Bacillus cytotoxicus sp. nov. is proposed, with the type strain NVH 391-98T ( = DSM 22905T = CIP 110041T).
Collapse
Affiliation(s)
- Marie-Hélène Guinebretière
- Université d’Avignon, UMR408 Sécurité et Qualité des produits d’Origine Végétale, F-84000 Avignon, France
- INRA, UMR408 Sécurité et Qualité des produits d’Origine Végétale, F-84000 Avignon, France
| | - Sandrine Auger
- AgroParisTech, UMR1319 MICALIS, F-78352 Jouy-en-Josas, France
- INRA, UMR1319 MICALIS, F-78352 Jouy-en-Josas, France
| | - Nathalie Galleron
- AgroParisTech, UMR1319 MICALIS, F-78352 Jouy-en-Josas, France
- INRA, UMR1319 MICALIS, F-78352 Jouy-en-Josas, France
| | - Matthias Contzen
- Chemisches und Veterinäruntersuchungsamt Stuttgart, Schaflandstrasse 3/2, 70736 Fellbach, Germany
| | - Benoit De Sarrau
- Université d’Avignon, UMR408 Sécurité et Qualité des produits d’Origine Végétale, F-84000 Avignon, France
- INRA, UMR408 Sécurité et Qualité des produits d’Origine Végétale, F-84000 Avignon, France
| | - Marie-Laure De Buyser
- ANSE, LERQUAP, Unité Caractérisation et Epidémiologie Bactérienne, F-94706 Maisons-Alfort cedex, France
| | - Gilles Lamberet
- AgroParisTech, UMR1319 MICALIS, F-78352 Jouy-en-Josas, France
- INRA, UMR1319 MICALIS, F-78352 Jouy-en-Josas, France
| | - Annette Fagerlund
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, N-1432 Aas, Norway
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, PO Box 8146, N-0033 Oslo, Norway
| | - Per Einar Granum
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, PO Box 8146, N-0033 Oslo, Norway
| | - Didier Lereclus
- AgroParisTech, UMR1319 MICALIS, F-78352 Jouy-en-Josas, France
- INRA, UMR1319 MICALIS, F-78352 Jouy-en-Josas, France
| | - Paul De Vos
- Laboratory for Microbiology, Department Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Christophe Nguyen-The
- Université d’Avignon, UMR408 Sécurité et Qualité des produits d’Origine Végétale, F-84000 Avignon, France
- INRA, UMR408 Sécurité et Qualité des produits d’Origine Végétale, F-84000 Avignon, France
| | - Alexei Sorokin
- AgroParisTech, UMR1319 MICALIS, F-78352 Jouy-en-Josas, France
- INRA, UMR1319 MICALIS, F-78352 Jouy-en-Josas, France
| |
Collapse
|
25
|
Involvement of two-component system CBO0366/CBO0365 in the cold shock response and growth of group I (proteolytic) Clostridium botulinum ATCC 3502 at low temperatures. Appl Environ Microbiol 2012; 78:5466-70. [PMID: 22660717 DOI: 10.1128/aem.00555-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of the two-component system (TCS) CBO0366/CBO0365 in the cold shock response and growth of the mesophilic Clostridium botulinum ATCC 3502 at 15°C was demonstrated by induced expression of the TCS genes upon cold shock and impaired growth of the TCS mutants at 15°C.
Collapse
|
26
|
Song F, Peng Q, Brillard J, Buisson C, Been M, Abee T, Broussolle V, Huang D, Zhang J, Lereclus D, Nielsen‐LeRoux C. A multicomponent sugar phosphate sensor system specifically induced in
Bacillus cereus
during infection of the insect gut. FASEB J 2012; 26:3336-50. [DOI: 10.1096/fj.11-197681] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fuping Song
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1319 MicalisGénétique Microbienne et Environnement Guyancourt France
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection Beijing China
| | - Qi Peng
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1319 MicalisGénétique Microbienne et Environnement Guyancourt France
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection Beijing China
| | - Julien Brillard
- INRA Avignon France
- Université d'Avignon et des Pays de Vaucluse, UMR408, Sécurité et Qualité des Produits d'Origine Végétale Avignon France
| | - Christophe Buisson
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1319 MicalisGénétique Microbienne et Environnement Guyancourt France
| | - Mark Been
- Top Institute (TI) Food and Nutrition and Laboratory of Food Microbiology Wageningen The Netherlands
| | - Tjakko Abee
- Top Institute (TI) Food and Nutrition and Laboratory of Food Microbiology Wageningen The Netherlands
| | - Véronique Broussolle
- INRA Avignon France
- Université d'Avignon et des Pays de Vaucluse, UMR408, Sécurité et Qualité des Produits d'Origine Végétale Avignon France
| | - Dafang Huang
- Biotechnology Research InstituteChinese Academy of Agricultural Sciences (CAAS) Beijing China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection Beijing China
| | - Didier Lereclus
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1319 MicalisGénétique Microbienne et Environnement Guyancourt France
| | - Christina Nielsen‐LeRoux
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1319 MicalisGénétique Microbienne et Environnement Guyancourt France
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection Beijing China
| |
Collapse
|
27
|
Williams KM, Martin WE, Smith J, Williams BS, Garner BL. Production of protocatechuic acid in Bacillus Thuringiensis ATCC33679. Int J Mol Sci 2012; 13:3765-3772. [PMID: 22489181 PMCID: PMC3317741 DOI: 10.3390/ijms13033765] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 03/16/2012] [Accepted: 03/19/2012] [Indexed: 12/02/2022] Open
Abstract
Protocatechuic acid, or 3,4-dihydroxybenzoic acid, is produced by both soil and marine bacteria in the free form and as the iron binding component of the siderophore petrobactin. The soil bacterium, Bacillus thuringiensis kurstaki ATCC 33679, contains the asb operon, but does not produce petrobactin. Iron restriction resulted in diminished B. thuringiensis kurstaki ATCC 33679 growth and the production of catechol(s). The gene product responsible for protocatechuic acid (asbF) and its receptor (fatB) were expressed during stationary phase growth. Gene expression varied with growth temperature, with optimum levels occurring well below the Bacillus anthracis virulence temperature of 37 °C. Regulation of protocatechuic acid suggests a possible role for this compound during soil growth cycles.
Collapse
Affiliation(s)
- Kimtrele M. Williams
- Department of Biology, Tougaloo College, Tougaloo, MS 39174, USA; E-Mails: (K.M.W.); (W.E.M.); (J.S.); (B.S.W.)
| | - William E. Martin
- Department of Biology, Tougaloo College, Tougaloo, MS 39174, USA; E-Mails: (K.M.W.); (W.E.M.); (J.S.); (B.S.W.)
| | - Justin Smith
- Department of Biology, Tougaloo College, Tougaloo, MS 39174, USA; E-Mails: (K.M.W.); (W.E.M.); (J.S.); (B.S.W.)
| | - Baraka S. Williams
- Department of Biology, Tougaloo College, Tougaloo, MS 39174, USA; E-Mails: (K.M.W.); (W.E.M.); (J.S.); (B.S.W.)
- Center for Bioinformatics and Computational Biology, Department of Biology, Jackson State University, Jackson, MS 39217, USA
| | - Bianca L. Garner
- Department of Biology, Tougaloo College, Tougaloo, MS 39174, USA; E-Mails: (K.M.W.); (W.E.M.); (J.S.); (B.S.W.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-601-977-7933; Fax: +1-601-977-7898
| |
Collapse
|
28
|
de Sarrau B, Clavel T, Clerté C, Carlin F, Giniès C, Nguyen-The C. Influence of anaerobiosis and low temperature on Bacillus cereus growth, metabolism, and membrane properties. Appl Environ Microbiol 2012; 78:1715-23. [PMID: 22247126 PMCID: PMC3298147 DOI: 10.1128/aem.06410-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 01/02/2012] [Indexed: 02/02/2023] Open
Abstract
The impact of simultaneous anaerobiosis and low temperature on growth parameters, metabolism, and membrane properties of Bacillus cereus ATCC 14579 was studied. No growth was observed under anaerobiosis at 12°C. In bioreactors, growth rates and biomass production were drastically reduced by simultaneous anaerobiosis and low temperature (15°C). The two conditions had a synergistic effect on biomass reduction. In anaerobic cultures, fermentative metabolism was modified by low temperature, with a marked reduction in ethanol production leading to a lower ability to produce NAD(+). Anaerobiosis reduced unsaturated fatty acids at both low optimal temperatures. In addition, simultaneous anaerobiosis and low temperatures markedly reduced levels of branched-chain fatty acids compared to all other conditions (accounting for 33% of total fatty acids against more 71% for low-temperature aerobiosis, optimal-temperature aerobiosis, and optimal-temperature anaerobiosis). This corresponded to high-melting-temperature lipids and to low-fluidity membranes, as indicated by differential scanning calorimetry, 1,6-diphenyl-1,3,5-hexatriene (DPH) fluorescence anisotropy, and infrared spectroscopy. This is in contrast to requirements for cold adaptation. A link between modification in the synthesis of metabolites of fermentative metabolism and the reduction of branched-chain fatty acids at low temperature under anaerobiosis, through a modification of the oxidizing capacity, is assumed. This link may partly explain the impact of low temperature and anaerobiosis on membrane properties and growth performance.
Collapse
Affiliation(s)
- Benoît de Sarrau
- INRA, UMR408 Sécurité et Qualité des Produits d’Origine Végétale, Avignon, France.
| | | | | | | | | | | |
Collapse
|
29
|
Differential involvement of the five RNA helicases in adaptation of Bacillus cereus ATCC 14579 to low growth temperatures. Appl Environ Microbiol 2010; 76:6692-7. [PMID: 20709848 DOI: 10.1128/aem.00782-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus cereus ATCC 14579 possesses five RNA helicase-encoding genes overexpressed under cold growth conditions. Out of the five corresponding mutants, only the ΔcshA, ΔcshB, and ΔcshC strains were cold sensitive. Growth of the ΔcshA strain was also reduced at 30°C but not at 37°C. The cold phenotype was restored with the cshA gene for the ΔcshA strain and partially for the ΔcshB strain but not for the ΔcshC strain, suggesting different functions at low temperature.
Collapse
|