1
|
Ramkissoon NK, Macey MC, Kucukkilic-Stephens E, Barton T, Steele A, Johnson DN, Stephens BP, Schwenzer SP, Pearson VK, Olsson-Francis K. Experimental Identification of Potential Martian Biosignatures in Open and Closed Systems. ASTROBIOLOGY 2024; 24:538-558. [PMID: 38648554 DOI: 10.1089/ast.2023.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
NASA's Perseverance and ESA's Rosalind Franklin rovers have the scientific goal of searching for evidence of ancient life on Mars. Geochemical biosignatures that form because of microbe-mineral interactions could play a key role in achieving this, as they can be preserved for millions of years on Earth, and the same could be true for Mars. Previous laboratory experiments have explored the formation of biosignatures under closed systems, but these do not represent the open systems that are found in natural martian environments, such as channels and lakes. In this study, we have conducted environmental simulation experiments using a global regolith simulant (OUCM-1), a thermochemically modelled groundwater, and an anaerobic microbial community to explore the formation of geochemical biosignatures within plausible open and closed systems on Mars. This initial investigation showed differences in the diversity of the microbial community developed after 28 days. In an open-system simulation (flow-through experiment), the acetogenic Acetobacterium (49% relative abundance) and the sulfate reducer Desulfosporomusa (43% relative abundance) were the dominant genera. Whereas in the batch experiment, the sulfate reducers Desulfovibrio, Desulfomicrobium, and Desulfuromonas (95% relative abundance in total) were dominant. We also found evidence of enhanced mineral dissolution within the flow-through experiment, but there was little evidence of secondary deposits in the presence of biota. In contrast, SiO2 and Fe deposits formed within the batch experiment with biota but not under abiotic conditions. The results from these initial experiments indicate that different geochemical biosignatures can be generated between open and closed systems, and therefore, biosignature formation in open systems warrants further investigation.
Collapse
Affiliation(s)
| | - Michael C Macey
- AstrobiologyOU, STEM Faculty, The Open University, Milton Keynes, UK
| | | | - Timothy Barton
- AstrobiologyOU, STEM Faculty, The Open University, Milton Keynes, UK
| | - Andrew Steele
- Earth and Planetary Laboratory, Carnegie Institution of Washington, Washington, DC, USA
| | - David N Johnson
- AstrobiologyOU, STEM Faculty, The Open University, Milton Keynes, UK
| | - Ben P Stephens
- AstrobiologyOU, STEM Faculty, The Open University, Milton Keynes, UK
| | | | | | | |
Collapse
|
2
|
Yang S, Hou Q, Li N, Wang P, Zhao H, Chen Q, Qin X, Huang J, Li X, Liao N, Jiang G, Dong K, Zhang T. Rare subcommunity maintains the stability of ecosystem multifunctionality by deterministic assembly processes in subtropical estuaries. Front Microbiol 2024; 15:1365546. [PMID: 38706965 PMCID: PMC11066265 DOI: 10.3389/fmicb.2024.1365546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
Microorganisms, especially rare microbial species, are crucial in estuarine ecosystems for driving biogeochemical processes and preserving biodiversity. However, the understanding of the links between ecosystem multifunctionality (EMF) and the diversity of rare bacterial taxa in estuary ecosystems remains limited. Employing high-throughput sequencing and a variety of statistical methods, we assessed the diversities and assembly process of abundant and rare bacterioplankton and their contributions to EMF in a subtropical estuary. Taxonomic analysis revealed Proteobacteria as the predominant phylum among both abundant and rare bacterial taxa. Notably, rare taxa demonstrated significantly higher taxonomic diversity and a larger species pool than abundant taxa. Additionally, our findings highlighted that deterministic assembly processes predominantly shape microbial communities, with heterogeneous selection exerting a stronger influence on rare taxa. Further analysis reveals that rare bacterial beta-diversity significantly impacts to EMF, whereas alpha diversity did not. The partial least squares path modeling (PLS-PM) analysis demonstrated that the beta diversity of abundant and rare taxa, as the main biotic factor, directly affected EMF, while temperature and total organic carbon (TOC) were additional key factors to determine the relationship between beta diversity and EMF. These findings advance our understanding of the distribution features and ecological knowledge of the abundant and rare taxa in EMF in subtropical estuaries, and provide a reference for exploring the multifunctionality of different biospheres in aquatic environments.
Collapse
Affiliation(s)
- Shu Yang
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, China
| | - Qinghua Hou
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Nan Li
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Pengbin Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Re-sources, Hangzhou, China
| | - Huaxian Zhao
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, China
| | - Qingxiang Chen
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Xinyi Qin
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, China
| | | | - Xiaoli Li
- School of Agriculture, Ludong University, Yantai, China
| | - Nengjian Liao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
| | - Gonglingxia Jiang
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Ke Dong
- Department of Biological Sciences, Kyonggi University, Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Republic of Korea
| | - Tianyu Zhang
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
3
|
Zhang W, Ye J, Liu X, Zhang Y, Zhang J, Shen L, Jin Y, Zhang J, Li H. Spatiotemporal dynamics of bacterioplankton communities in the estuaries of two differently contaminated coastal areas: Composition, driving factors and ecological process. MARINE POLLUTION BULLETIN 2024; 201:116263. [PMID: 38531208 DOI: 10.1016/j.marpolbul.2024.116263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/05/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
Seasonal variations of environmental parameters usually lead to considerable changes in microbial communities. Nevertheless, the specific response patterns of these communities in coastal areas subjected to different levels of contamination remain unclear. Our results revealed notable fluctuations in the bacterioplankton community both seasonally and spatially, with seasonal variations being particularly significant. The diversity and composition of bacterioplankton communities in the estuaries varied significantly across seasons and between seas. Some bacterial phyla that were highly abundant in the dry season (e.g., Patescibacteria and Epsilonbacteraeota) were almost absent in the wet season. Furthermore, the network analysis revealed that the bacterioplankton networks were more complex during the wet season than in the dry season. In the wet season, the estuarine bacterioplankton network in the Yellow Sea region was more complex and stable, while the opposite was true in the dry season. According to the neutral community model, stochastic processes played a more significant role in the formation of bacterioplankton communities during the wet season than during the dry season. Estuarine bacterioplankton communities in the Yellow Sea region were more affected by stochastic processes compared to those in the Bohai Sea. In summary, in the estuaries of two differently contaminated coastal areas, the seasonal increase in nutrient levels enhanced the deterministic processes and network complexity of the bacterioplankton communities.
Collapse
Affiliation(s)
- Weiyue Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Jinqing Ye
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China.
| | - Xiaohan Liu
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Yunlei Zhang
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Jinyong Zhang
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Lingyu Shen
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Yuan Jin
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Jianheng Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Hongjun Li
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China.
| |
Collapse
|
4
|
Wang T, Liu R, Huang G, Tian X, Zhang Y, He M, Wang C. Assembly dynamics of eukaryotic plankton and bacterioplankton in the Yangtze River estuary: A hybrid community perspective. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106414. [PMID: 38394975 DOI: 10.1016/j.marenvres.2024.106414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/09/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024]
Abstract
Estuaries, acting as transitional habitats receiving species introductions from both freshwater and marine sources, undergo significant impacts from global climate changes. Planktonic microorganisms contribute significantly to estuarine biodiversity and ecological stability. These microorganisms primarily fall into three groups: eukaryotic plankton, particle-associated bacteria, and free-living bacteria. Understanding the structural characteristics and interactions within these subcommunities is crucial for comprehending estuarine dynamics. We collected samples from three distinct locations (< 0.1 PSU, 6.6 PSU, and 19 PSU) within the Yangtze River estuary. Samples underwent analysis for physicochemical indicators, while microbial communities were subjected to 16S/18S rRNA amplicon sequencing. Additionally, simulated mixing experiments were conducted using samples of varying salinities. Estuary samples, combined with simulated experiments, were employed to collectively examine the structural characteristics and assembly processes of estuarine microbes. Our research highlights the considerable impact of phylogenetic classification on prokaryotic behavior in these communities. We observed a transition in assembly processes from primarily stochastic for particle-associated bacteria to a predominant influence of homogeneous selection as salinity increased. Particle-associated bacterial communities exhibited a greater influence of stochastic processes compared to free-living bacteria, showcasing higher stability in diversity. The variations in composition and structure of estuarine microbial subcommunities were influenced by diverse environmental factors. Particle-associated bacteria displayed elevated network characterization values and established closer interactions with eukaryotic plankton. Structural equation modeling (SEM) analysis revealed that free-living bacteria displayed a heightened sensitivity to environmental factors and exerted a more significant influence on assembly processes and network characteristics. Simulated mixing in these environments resulted in the loss of species with similar microbial taxonomic relationships. The functioning of bacterioplankton is influenced by salinity and the processes governing their assembly, particularly in relation to different living states. These findings significantly contribute to our understanding of the intricate interplay between prokaryotic and eukaryotic plankton microorganisms in highly dynamic environments, laying a robust foundation for further exploration into the ecological mechanisms governing microbial dynamics in estuaries.
Collapse
Affiliation(s)
- Tong Wang
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruiqing Liu
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guolin Huang
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Tian
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yaru Zhang
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Meilin He
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Changhai Wang
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China; Co-Innovation Center for Jiangsu Marine Bio-Industry Technology, Lianyungang, 222005, China
| |
Collapse
|
5
|
Liu J, Huang X, Jiang X, Qing C, Li Y, Xia P. Loss of submerged macrophytes in shallow lakes alters bacterial and archaeal community structures, and reduces their co-occurrence networks connectivity and complexity. Front Microbiol 2024; 15:1380805. [PMID: 38601927 PMCID: PMC11004660 DOI: 10.3389/fmicb.2024.1380805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction Bacteria and archaea are important components in shallow lake ecosystems and are crucial for biogeochemical cycling. While the submerged macrophyte loss is widespread in shallow lakes, the effect on the bacteria and archaea in the sediment and water is not yet widely understood. Methods In this study, 16S rRNA gene sequencing was used to explore the bacteria and archaea in samples taken from the sediment and water in the submerged macrophyte abundant (MA) and submerged macrophyte loss (ML) areas of Caohai Lake, Guizhou, China. Results The results showed that the dominant bacterial phyla were Proteobacteria and Chloroflexi in the sediment; the dominant phyla were Proteobacteria, Actinobacteriota, and Bacteroidota in the water. The dominant archaea in sediment and water were the same, in the order of Crenarchaeota, Thermoplasmatota, and Halobacterota. Non-metric multidimensional scaling (NMDS) analyses showed that bacterial and archaeal community structures in the water were significantly affected by the loss of submerged macrophytes, but not by significant changes in the sediment. This suggests that the loss of submerged macrophytes has a stronger effect on the bacterial and archaeal community structures in water than in sediment. Furthermore, plant biomass (PB) was the key factor significantly influencing the bacterial community structure in water, while total nitrogen (TN) was the main factor significantly influencing the archaeal community structure in water. The loss of submerged macrophytes did not significantly affect the alpha diversity of the bacterial and archaeal communities in either the sediment or water. Based on network analyses, we found that the loss of submerged macrophytes reduced the connectivity and complexity of bacterial patterns in sediment and water. For archaea, network associations were stronger for MA network than for ML network in sediment, but network complexity for archaea in water was not significantly different between the two areas. Discussion This study assesses the impacts of submerged macrophyte loss on bacteria and archaea in lakes from microbial perspective, which can help to provide further theoretical basis for microbiological research and submerged macrophytes restoration in shallow lakes.
Collapse
Affiliation(s)
- Jiahui Liu
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
| | - Xianfei Huang
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
| | - Xin Jiang
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
| | - Chun Qing
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
| | - Yue Li
- Guizhou Caohai National Nature Reserve Management Committee, Bijie, Guizhou, China
| | - Pinhua Xia
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
| |
Collapse
|
6
|
Dash SP, Manu S, Kim JY, Rastogi G. Spatio-temporal structuring and assembly of abundant and rare bacteria in the benthic compartment of a marginally eutrophic lagoon. MARINE POLLUTION BULLETIN 2024; 200:116138. [PMID: 38359478 DOI: 10.1016/j.marpolbul.2024.116138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
The investigations on ecological processes that structure abundant and rare sub-communities are limited from the benthic compartments of tropical brackish lagoons. We examined the spatial and temporal patterns in benthic bacterial communities of a brackish lagoon; Chilika. Abundant and rare bacteria showed differences in niche specialization but exhibited similar distance-decay patterns. Abundant bacteria were mostly habitat generalists due to their broader niche breadth, environmental response thresholds, and greater functional redundancy. In contrast, rare bacteria were mostly habitat specialists due to their narrow niche breadth, lower environmental response thresholds, and functional redundancy. The spatial patterns in abundant bacteria were largely shaped by stochastic processes (88.7 %, mostly dispersal limitation). In contrast, rare bacteria were mostly structured by deterministic processes (56.4 %, mostly heterogeneous selection). These findings provided a quantitative assessment of the different forces namely spatial, environmental, and biotic that together structured bacterial communities in the benthic compartment of a marginally eutrophic lagoon.
Collapse
Affiliation(s)
- Stiti Prangya Dash
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon 752030, Odisha, India; KIIT School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, Odisha, India
| | - Shivakumara Manu
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500048, India
| | - Ji Yoon Kim
- Department of Biological Science, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Gurdeep Rastogi
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon 752030, Odisha, India.
| |
Collapse
|
7
|
Sao S, Ann V, Nishiyama M, Praise S, Watanabe T. Tracing the pathways by which flood duration impacts soil bacteria through soil properties and water-extractable dissolved organic matter: A soil column experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166524. [PMID: 37625709 DOI: 10.1016/j.scitotenv.2023.166524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/31/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
Soil microbial communities control biogeochemical processes, nutrient cycling, and organic carbon storage and release in wetlands, which are influenced by flooding. To predict soil nutrient function in wetland ecosystems, understanding the effect of flooding on soil biogeochemical cycling and energy flux, including soil properties, dissolved organic matter (DOM), and microbial communities is essential. This study investigated how different flood durations (1, 3, 8, 16, and 30 d) affect the interactions between physicochemical properties and bacterial communities in a river wetland. The DOM composition was measured using ultraviolet/visible spectrophotometry coupled with fluorescence spectroscopy, and the bacterial communities were identified using 16S rRNA sequencing. Simpson's diversity index varied from 0.92 to 0.94, indicating high bacterial diversity throughout the treatments; the highest and lowest bacterial diversities were found at 1 and 8 flooding days, respectively. The abundance of Desulturomonadales, Clostridiales, Bacteroidales, and Gaiellales was positively correlated with pH, electrical conductivity, water-extractable dissolved organic carbon (WEOC), and water-extractable total dissolved nitrogen (TDN) but negatively correlated with dissolved oxygen (DO) and soil organic matter (SOM), suggesting complex interactions among these factors in response to flooding. Structural equation model revealed that flooding directly increased TDN but indirectly increased WEOC through increasing soil pH; and directly decreased DO and SOM, leading to decreases in total protein-like fraction. Three significant pathways were identified, showing the impacts of flooding on bacterial diversity: (1) flood duration decreased DO, resulting in decreased bacterial diversity; (2) flood duration decreased SOM, leading to increased bacterial diversity; and (3) flood duration decreased DO and SOM, leading to increased bacterial diversity via decreased total protein-like fraction. This study indicated that prolonged flooding has both positive and negative impacts on bacterial diversity, depending on environmental factors. It highlights the importance of flooding in shaping soil bacterial communities, with implications for nutrient cycling and carbon storage in wetlands.
Collapse
Affiliation(s)
- Sochan Sao
- The United Graduate School of Agricultural Sciences, Iwate University, 18-8, Ueda 3-chome, Morioka, Iwate 020-8550, Japan; Faculty of Hydrology and Water Resources Engineering, Institute of Technology of Cambodia, Russian Federation Blvd, PO Box 86, Phnom Penh 120404, Cambodia.
| | - Vannak Ann
- Faculty of Hydrology and Water Resources Engineering, Institute of Technology of Cambodia, Russian Federation Blvd, PO Box 86, Phnom Penh 120404, Cambodia
| | - Masateru Nishiyama
- Department of Food, Life, and Environmental Sciences, Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata 997-8555, Japan
| | - Susan Praise
- Department of Food, Life, and Environmental Sciences, Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata 997-8555, Japan
| | - Toru Watanabe
- Department of Food, Life, and Environmental Sciences, Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata 997-8555, Japan.
| |
Collapse
|
8
|
Sun J, Zhang A, Zhang Z, Liu Y, Zhou H, Cheng H, Chen Z, Li H, Zhang R, Wang Y. Distinct assembly processes and environmental adaptation of abundant and rare archaea in Arctic marine sediments. MARINE ENVIRONMENTAL RESEARCH 2023; 190:106082. [PMID: 37429213 DOI: 10.1016/j.marenvres.2023.106082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
Revealing the ecological processes and environmental adaptation of abundant and rare archaea is a central, but poorly understood, topic in ecology. Here, abundant and rare archaeal diversity, community assembly processes and co-occurrence patterns were comparatively analyzed in Arctic marine sediments. Our findings revealed that the rare taxa exhibited significantly higher diversity compared to the abundant taxa. Additionally, the abundant taxa displayed stronger environmental adaptation than the rare taxa. The co-occurrence network analysis demonstrated that the rare taxa developed more interspecies interactions and modules in response to environmental disturbance. Furthermore, the community assembly of abundant and rare taxa in sediments was primarily controlled by stochastic and deterministic processes, respectively. These findings provide valuable insights into the archaeal community assembly processes and significantly contribute to a deeper understanding of the environmental adaptability of abundant and rare taxa in Arctic marine sediments.
Collapse
Affiliation(s)
- Jianxing Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China
| | - Aoqi Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China
| | - Zhongxian Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China
| | - Yang Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, PR China
| | - Haina Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, PR China
| | - Zhu Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, PR China
| | - Hai Li
- Laboratory of Marine Biodiversity Research, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, Hunan, PR China
| | - Ran Zhang
- Laboratory of Marine Biodiversity Research, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, Hunan, PR China
| | - Yuguang Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, PR China.
| |
Collapse
|
9
|
Zhao Z, Zhang L, Zhang G, Gao H, Chen X, Li L, Ju F. Hydrodynamic and anthropogenic disturbances co-shape microbiota rhythmicity and community assembly within intertidal groundwater-surface water continuum. WATER RESEARCH 2023; 242:120236. [PMID: 37356162 DOI: 10.1016/j.watres.2023.120236] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/22/2023] [Accepted: 06/15/2023] [Indexed: 06/27/2023]
Abstract
Tidal hydrodynamics drive the groundwater-seawater exchange and shifts in microbiota structure in the coastal zone. However, how the coastal water microbiota structure and assembly patterns respond to periodic tidal fluctuations and anthropogenic disturbance remains unexplored in the intertidal groundwater-surface water (GW-SW) continuum, although it affects biogeochemical cycles and coastal water quality therein. Here, through hourly time-series sampling in the saltmarsh tidal creek, rhythmic patterns of microbiota structure in response to daily and monthly tidal fluctuations in intertidal surface water are disentangled for the first time. The similarity in archaeal community structures between groundwater and ebb-tide surface water (R2=0.06, p = 0.2) demonstrated archaeal transport through groundwater discharge, whereas multi-source transport mechanisms led to unique bacterial biota in ebb-tide water. Homogeneous selection (58.6%-69.3%) dominated microbiota assembly in the natural intertidal GW-SW continuum and the presence of 157 rhythmic ASVs identified at ebb tide and 141 at flood tide could be attributed to the difference in environmental selection between groundwater and seawater. For intertidal groundwater in the tidal creek affected by anthropogenically contaminated riverine inputs, higher microbial diversity and shift in community structure were primarily controlled by increased co-contribution of dispersal limitation and drift (jointly 57.8%) and enhanced microbial interactions. Overall, this study fills the knowledge gaps in the tide-driven water microbial dynamics in coastal transition zone and the response of intertidal groundwater microbiota to anthropogenic pollution of overlying waters. It also highlights the potential of microbiome analysis in enhancing coastal water quality monitoring and identifying anthropogenic pollution sources (e.g., pathogenic Vibrio in aquaculture) through the detection of rhythmic microbial variances associated with intertidal groundwater discharge and seawater intrusion.
Collapse
Affiliation(s)
- Ze Zhao
- College of Environmental & Resources Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China; Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang 310030, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Lu Zhang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China; Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang 310030, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Guoqing Zhang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China; Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang 310030, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Han Gao
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Xiaogang Chen
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Ling Li
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China; Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang 310030, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Weingarten EA, Jackson CR. Microbial Composition of Freshwater Marsh Sediment Responds more Strongly to Microcosm Seawater Addition than Simulated Nitrate or Phosphate Eutrophication. MICROBIAL ECOLOGY 2023; 86:1060-1070. [PMID: 36152034 DOI: 10.1007/s00248-022-02111-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
As sea level rise impacts coastal wetlands, saltmarsh will overtake coastal freshwater marsh in many areas, but changes in the sediment microbiome in response to saltwater intrusion are difficult to predict. Coastal freshwater marsh sediment was exposed to ambient, brackish, and saline conditions as well as to elevated nitrate and phosphate to model the combined stresses of saltwater intrusion and coastal eutrophication. Initially, sediment prokaryotic composition was similar to prior studies of freshwater marsh but diverged over time, reflecting the magnitude of increase in saltwater. There was no observed effect of nutrient amendment, potentially ranking seawater intrusion as a higher-importance compositional driver. Although the previously described loss of methanogenic populations and promotion of sulfate reducers in response to saltwater exposure was observed, taxonomic distribution was not similar to typical meso-polyhaline wetlands. Without colonization by marine taxa, such a community may be short-lived naturally, ultimately equilibrating with more common saltmarsh species. However, the recapitulation of salinity concentration by freshwater sediment microbial composition demonstrates the overwhelming nature of saltwater intrusion relative to other drivers like eutrophication.
Collapse
Affiliation(s)
- Eric A Weingarten
- Department of Biology, University of Mississippi, University, MS, 38677, USA.
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS, 39180, USA.
| | - Colin R Jackson
- Department of Biology, University of Mississippi, University, MS, 38677, USA
| |
Collapse
|
11
|
Petrosyan K, Thijs S, Piwowarczyk R, Ruraż K, Kaca W, Vangronsveld J. Diversity and potential plant growth promoting capacity of seed endophytic bacteria of the holoparasite Cistanche phelypaea (Orobanchaceae). Sci Rep 2023; 13:11835. [PMID: 37481658 PMCID: PMC10363106 DOI: 10.1038/s41598-023-38899-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023] Open
Abstract
Salt marshes are highly dynamic, biologically diverse ecosystems with a broad range of ecological functions. We investigated the endophytic bacterial community of surface sterilized seeds of the holoparasitic Cistanche phelypaea growing in coastal salt marshes of the Iberian Peninsula in Portugal. C. phelypaea is the only representative of the genus Cistanche that was reported in such habitat. Using high-throughput sequencing methods, 23 bacterial phyla and 263 different OTUs on genus level were found. Bacterial strains belonging to phyla Proteobacteria and Actinobacteriota were dominating. Also some newly classified or undiscovered bacterial phyla, unclassified and unexplored taxonomic groups, symbiotic Archaea groups inhabited the C. phelypaea seeds. γ-Proteobacteria was the most diverse phylogenetic group. Sixty-three bacterial strains belonging to Bacilli, Actinomycetes, α-, γ- and β-Proteobacteria and unclassified bacteria were isolated. We also investigated the in vitro PGP traits and salt tolerance of the isolates. Among the Actinobacteria, Micromonospora spp. showed the most promising endophytes in the seeds. Taken together, the results indicated that the seeds were inhabited by halotolerant bacterial strains that may play a role in mitigating the adverse effects of salt stress on the host plant. In future research, these bacteria should be assessed as potential sources of novel and unique bioactive compounds or as novel bacterial species.
Collapse
Affiliation(s)
- Kristine Petrosyan
- Department of Microbiology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406, Kielce, Poland.
- Environmental Biology Research Group, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium.
| | - Sofie Thijs
- Environmental Biology Research Group, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Renata Piwowarczyk
- Department of Environmental Biology, Center for Research and Conservation of Biodiversity, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406, Kielce, Poland
| | - Karolina Ruraż
- Department of Environmental Biology, Center for Research and Conservation of Biodiversity, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406, Kielce, Poland
| | - Wiesław Kaca
- Department of Microbiology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406, Kielce, Poland
| | - Jaco Vangronsveld
- Environmental Biology Research Group, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
- Department of Plant Physiology and Biophysics, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka, 19, 20-033, Lublin, Poland
| |
Collapse
|
12
|
Morris N, Alldred M, Zarnoch C, Alter SE. Estuarine Sediment Microbiomes from a Chronosequence of Restored Urban Salt Marshes. MICROBIAL ECOLOGY 2023; 85:916-930. [PMID: 36826588 DOI: 10.1007/s00248-023-02193-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/09/2023] [Indexed: 05/04/2023]
Abstract
Salt marshes play an important role in the global nutrient cycle. The sediments in these systems harbor diverse and complex bacterial communities possessing metabolic capacities that provide ecosystem services such as nutrient cycling and removal. On the East Coast of the USA, salt marshes have been experiencing degradation due to anthropogenic stressors. Salt marsh islands within Jamaica Bay, New York City (USA), are surrounded by a large highly urbanized watershed and have declined in area. Restoration efforts have been enacted to reduce further loss, but little is known about how microbial communities develop following restoration activities, or how processes such as nitrogen cycling are impacted. Sediment samples were collected at two sampling depths from five salt marsh islands to characterize the bacterial communities found in marsh sediment including a post-restoration chronosequence of 3-12 years. We used 16s rRNA amplicon sequencing to define alpha and beta diversity, taxonomic composition, and predicted metabolic profile of each sediment sample. We found significant differences in alpha diversity between sampling depths, and significant differences in beta diversity, taxonomic composition, and predicted metabolic capacity among the five sampling locations. The youngest restored site and the degraded natural sampling site exhibited the most distinct communities among the five sites. Our findings suggest that while the salt marsh islands are located in close proximity to each other, they harbor distinct bacterial communities that can be correlated with post-restoration age, marsh health, and other environmental factors such as availability of organic carbon. IMPORTANCE: Salt marshes play a critical role in the global nutrient cycle due to sediment bacteria and their metabolic capacities. Many East Coast salt marshes have experienced significant degradation over recent decades, thought largely to be due to anthropogenic stressors such as nitrogen loading, urban development, and sea-level rise. Salt marsh islands in Jamaica Bay (Queens/Brooklyn NY) are exposed to high water column nitrogen due to wastewater effluent. Several receding marsh islands have been subjected to restoration efforts to mitigate this loss. Little is known about the effect marsh restoration has on bacterial communities, their metabolic capacity, or how they develop post-restoration. Here, we describe the bacterial communities found in marsh islands including a post-restoration chronosequence of 3-12 years and one degraded marsh island that remains unrestored. We found distinct communities at marsh sites, despite their geographic proximity. Differences in diversity and community composition were consistent with changes in organic carbon availability that occur during marsh development, and may result in differences in ecosystem function among sites.
Collapse
Affiliation(s)
- Nathan Morris
- The Graduate Center City University of New York, New York, NY, USA
- York College City University of New York, Jamaica, NY, USA
| | - Mary Alldred
- Center for Earth and Environmental Science State University of New York (SUNY), Plattsburgh, NY, USA
| | - Chester Zarnoch
- The Graduate Center City University of New York, New York, NY, USA
- Baruch College City University of New York, New York, NY, USA
| | - S Elizabeth Alter
- The Graduate Center City University of New York, New York, NY, USA.
- California State University-Monterey Bay, Seaside, CA, USA.
| |
Collapse
|
13
|
Liu H, Lin G, Gao D, Chen H, He M, Lu J. Geographic Scale Influences the Interactivities Between Determinism and Stochasticity in the Assembly of Sedimentary Microbial Communities on the South China Sea Shelf. MICROBIAL ECOLOGY 2023; 85:121-136. [PMID: 35039906 DOI: 10.1007/s00248-021-01946-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Determinism and stochasticity in microbial community composition decisions have attracted wide attention. However, there is no consensus on their interrelationships and relative importance, and the mechanism controlling the interaction between the two ecological processes remains to be revealed. The interaction of the two ecological processes on the continental shelf of the South China Sea was studied by performing 16S rRNA gene amplicon sequencing on 90 sediments at multiple depths in five sites. Three nearshore sites have higher microbial diversity than those two close to the shelf margin. Different microbial composition was observed between sites and microbial composition of nearshore sites was positively correlated with total nitrogen, total sulfur, total organic carbon, and dissolved oxygen, while that of offshore was positively correlated with total carbon, salinity, and photosynthetically active radiation. The null model test showed that the community composition among layers of the same site and between nearby sites was mainly dominated by the homogeneous selection, while that between distant sites was mainly affected by dispersal limitation, which indicates that geographic scale influences the interactivities of determinism and stochasticity. Our research indicates that the balance of these two ecological processes along the geographic scale is mainly determined by the dispersal ability of microbes and environmental heterogeneity between areas. The study provides new insights into how deterministic and stochastic processes shape microbial community composition on the continental shelf.
Collapse
Affiliation(s)
- Hualin Liu
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Genmei Lin
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Dong Gao
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Hongyu Chen
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Miao He
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510275, Guangdong, China.
- Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519000, China.
| |
Collapse
|
14
|
Plante CJ, Hill-Spanik KM, Emerson R. Inputs don't equal outputs: bacterial microbiomes of the ingesta, gut, and feces of the keystone deposit feeder Ilyanassa obsoleta. FEMS Microbiol Ecol 2022; 99:6887277. [PMID: 36496168 DOI: 10.1093/femsec/fiac152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/22/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Bacteria drive energy fluxes and geochemical processes in estuarine sediments. Deposit-feeding invertebrates alter the structure and activity of microbial communities through sediment ingestion, gut passage, and defecation. The eastern mud snail, Ilyanassa obsoleta, is native to estuaries of the northwestern Atlantic, ranging from Nova Scotia, Canada, to Florida in the USA. Given extremely high densities, their deposit-feeding and locomotory activities exert ecological influence on other invertebrates and microbes. Our aim was to characterize the bacterial microbiome of this 'keystone species' and determine how its feeding alters the native bacterial microbiota. We gathered snails from both mudflat and sandflat habitats and collected their fresh fecal pellets in the laboratory. Dissection of these same snails allowed us to compare bacterial assemblages of ingested sediments, shell surfaces, gut sections (esophagus, stomach, intestine), and feces using DNA metabarcoding. Our findings indicate a diverse, resident gut microbiota. The stomach and intestines were dominated by bacteria of the genus Mycoplasma. Comparison of ingesta and feces revealed digestion of several bacterial taxa, introduction of gut residents during passage, in addition to unique bacterial taxa within the feces of unknown provenance. Our results demonstrate that I. obsoleta has the potential to modify microbial community structure in estuarine sediments.
Collapse
Affiliation(s)
- Craig J Plante
- Grice Marine Laboratory, College of Charleston, Charleston, SC 29412, United States
| | | | - Rowan Emerson
- Grice Marine Laboratory, College of Charleston, Charleston, SC 29412, United States
| |
Collapse
|
15
|
Martínez-Ugalde E, Ávila-Akerberg V, González Martínez TM, Vázquez Trejo M, Zavala Hernández D, Anaya-Morales SL, Rebollar EA. The skin microbiota of the axolotl Ambystoma altamirani is highly influenced by metamorphosis and seasonality but not by pathogen infection. Anim Microbiome 2022; 4:63. [PMID: 36503640 PMCID: PMC9743558 DOI: 10.1186/s42523-022-00215-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/16/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Microbiomes have been increasingly recognized as major contributors to host health and survival. In amphibians, bacterial members of the skin microbiota protect their hosts by inhibiting the growth of the fungal pathogen Batrachochytrium dendrobatidis (Bd). Even though several studies describe the influence of biotic and abiotic factors over the skin microbiota, it remains unclear how these symbiotic bacterial communities vary across time and development. This is particularly relevant for species that undergo metamorphosis as it has been shown that host physiology and ecology drastically influence diversity of the skin microbiome. RESULTS We found that the skin bacterial communities of the axolotl A. altamirani are largely influenced by the metamorphic status of the host and by seasonal variation of abiotic factors such as temperature, pH, dissolved oxygen and conductivity. Despite high Bd prevalence in these samples, the bacterial diversity of the skin microbiota did not differ between infected and non-infected axolotls, although relative abundance of particular bacteria were correlated with Bd infection intensity. CONCLUSIONS Our work shows that metamorphosis is a crucial process that shapes skin bacterial communities and that axolotls under different developmental stages respond differently to environmental seasonal variations. Moreover, this study greatly contributes to a better understanding of the factors that shape amphibian skin microbiota, especially in a largely underexplored group like axolotls (Mexican Ambystoma species).
Collapse
Affiliation(s)
| | - Víctor Ávila-Akerberg
- Instituto de Ciencias Agropecuarias y Rurales, Universidad Autónoma del Estado de México, Toluca, Mexico
| | | | | | | | - Sara Lucia Anaya-Morales
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Eria A Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.
| |
Collapse
|
16
|
Zhao B, Jiao C, Wang S, Zhao D, Jiang C, Zeng J, Wu QL. Contrasting assembly mechanisms explain the biogeographic patterns of benthic bacterial and fungal communities on the Tibetan Plateau. ENVIRONMENTAL RESEARCH 2022; 214:113836. [PMID: 35810809 DOI: 10.1016/j.envres.2022.113836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/22/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The Tibetan Plateau characterized by high altitude and low temperature, where a great number of lakes are located, is a hotspot of global biodiversity research. Both bacterial and fungal communities are vital participants of biogeochemical cycling in lake ecosystems. However, we know very little about the large-scale biogeographic patterns and the underlying assembly mechanisms of lake benthic microbial communities on the Tibetan Plateau. To investigate the biogeographic patterns and their underlying assembly mechanisms of benthic bacterial and fungal communities, we collected sediment samples from 11 lakes on the Tibetan Plateau (maximum geographic distance between lakes over 1100 km). Benthic community diversity and composition were determined using the high-throughput sequencing technique. Our results indicated that there were contrasting distance-decay relationships between benthic bacterial and fungal communities on a regional scale. Benthic bacterial communities showed a significant distance-decay relationship, whereas no significant relationship was observed for benthic fungal communities. Deterministic processes dominated the bacterial community assembly, whereas fungal community assembly was more stochastic. pH was a dominant factor in influencing the geographic distribution of benthic microbial communities. Co-occurrence network analysis revealed that bacterial communities showed higher complexity and greater stability than those of the fungal communities. Taken together, this study contributes to a novel understanding of the assembly mechanisms underlying the biogeographic distribution of plateau benthic bacterial and fungal communities at a large scale.
Collapse
Affiliation(s)
- Baohui Zhao
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Congcong Jiao
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Shuren Wang
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Dayong Zhao
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Cuiling Jiang
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Jin Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
17
|
Chen Z, Fei YH, Liu WS, Ding K, Lu J, Cai X, Cui T, Tang YT, Wang S, Chao Y, Qiu R. Untangling microbial diversity and assembly patterns in rare earth element mine drainage in South China. WATER RESEARCH 2022; 225:119172. [PMID: 36191530 DOI: 10.1016/j.watres.2022.119172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Ion-adsorption rare earth element (REE) deposits are the main reservoirs of REEs worldwide, and are widely exploited in South China. Microbial diversity is essential for maintaining the performance and function of mining ecosystems. Investigating the ecological patterns underlying the REE mine microbiome is essential to understand ecosystem responses to environmental changes and to improve the bioremediation of mining areas. We applied 16S rRNA and ITS gene sequence analyses to investigate the composition characteristics of prokaryotic (bacteria, archaea) and fungal communities in a river impacted by REE acid mine drainage (REE-AMD). The river formed a unique micro-ecosystem, including the main prokaryotic taxa of Proteobacteria, Acidobacteria, Crenarchaeota, and Euryarchaeota, as well as the main fungal taxa of Ascomycota, Basidiomycota, and Chytridiomycota. Analysis of microbial diversity showed that, unlike prokaryotic communities that responded drastically to pollution disturbances, fungal communities were less affected by REE-AMD, but fluctuated significantly in different seasons. Ecological network analysis revealed that fungal communities have lower connectivity and centrality, and higher modularity than prokaryotic networks, indicating that fungal communities have more stable network structures. The introduction of REE-AMD mainly reduced the complexity of the community network and the number of keystone species, while the proportion of negative prokaryotic-fungal associations in the network increased. Ecological process analysis revealed that, compared to the importance of environmental selection for prokaryotes, stochastic processes might have contributed primarily to fungal communities in REE mining areas. These findings confirm that the different assembly mechanisms of prokaryotic and fungal communities are key to the differences in their responses to environmental perturbations. The findings also provide the first insights into microbiota assembly patterns in REE-AMD and important ecological knowledge for the formation and development of microbial communities in REE mining areas.
Collapse
Affiliation(s)
- Ziwu Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; National-level Nanchang Economic and Technical Development Zone, Nanchang 330000, China
| | - Ying-Heng Fei
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Wen-Shen Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China
| | - Kengbo Ding
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianan Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xuan Cai
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Tuantuan Cui
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Ye-Tao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China
| | - Shizhong Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuanqing Chao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China.
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
18
|
Li J, Li M, Zhao L, Sun X, Gao M, Sheng L, Bian H. Characteristics of soil carbon emissions and bacterial community composition in peatlands at different stages of vegetation succession. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156242. [PMID: 35643137 DOI: 10.1016/j.scitotenv.2022.156242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/09/2022] [Accepted: 05/22/2022] [Indexed: 05/16/2023]
Abstract
Microorganisms are important components of soil ecosystems and play an important role in material cycles. Northern peatlands are important ecosystems in middle-high latitude regions. In peatlands, different vegetation successions occur with changes in groundwater levels. The overall carbon emission of peat bogs is related to the carbon stability of the surrounding environment. Unraveling the assembly and distribution of bacterial communities at different succession stages in peatland is essential to understanding the soil nutrient cycle. In this study, we investigated the characteristics of soil carbon emissions and the composition of subsurface microorganisms under six different succession stages. The highest carbon emission was observed in mossy peatlands, and their soil enzyme activity was closely related to the aboveground vegetation cover type. The succession pattern of ground vegetation was the main driver of soil microorganisms. The abundance of the dominant Proteobacteria decreased with increasing soil depth, while the opposite trend was observed for Chloroflexi. Furthermore, the community structure of microorganisms became progressively simpler and looser as soil water content decreased. The bacterial alpha diversity was driven by soil dissolved organic carbon and Fe, and the beta diversity was driven mainly by soil water content. The bacteria presented a random distribution in a nutrient-rich soil environment and shifted to deterministic distribution with decreasing water and nutrient contents. The balance between taxonomic diversity and dispersal limitation mediates species coexistence in the soil microbiome. This study provides new insights into the soil environment at different stages of succession in peatlands.
Collapse
Affiliation(s)
- Jianwei Li
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Ming Li
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Liyuan Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Xiaoqian Sun
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Minghao Gao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Lianxi Sheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Hongfeng Bian
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
19
|
Zhang J, Fu Q, Huang Y, Fan Y, Liang M, Chen H, Yu S. Negative impacts of sea-level rise on soil microbial involvement in carbon metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156087. [PMID: 35605852 DOI: 10.1016/j.scitotenv.2022.156087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/07/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Sea-level rise has been threatening the terrestrial ecosystem functioning of coastal islands, of which the most important component is carbon (C) cycling. However, metagenomic and metabolomic evidence documenting salt intrusion effects on molecular biological processes of C cycling are still lacking. Here, we investigated microbial communities, metagenomic taxonomy and function, and metabolomic profiles in the marine-terrestrial transition zone of low- and high-tide, and low- and high-land areas based on distances of 0 m, 50 m, 100 m, and 200 m, respectively, to the water-land junction of Neilingding Island. Our results showed that soil salinity (EC) was the dominant driver controlling bacterial abundance and community composition and metagenomic taxonomy and function. The metabolomic profiling at the low-tide site was significantly different from that of other sites. The low-tide site had greater abundance of Proteobacteria and Bacteroidetes (1.6-3.7 fold), especially Gammaproteobacteria, but lower abundance (62-83%) of Acidobacteria and Chloroflexi, compared with other three sites. The metagenomic functional genes related to carbohydrate metabolism decreased at the low-tide site by 15.2%, including the metabolism of aminosugars, di- and oligo-saccharides, glycoside hydrolases, and monosaccharides, leading to significant decreases in 21 soil metabolites, such as monosaccharide (l-gulose), disaccharide (sucrose and turanose), and oligosaccharides (stachyose and maltotetraose). Our study demonstrates that elevated salinity due to sea-level rise may suppress C-cycling genes and their metabolites, therefore having negative impacts on microbial metabolism of organic matter.
Collapse
Affiliation(s)
- Juanjuan Zhang
- School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China; Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen 518057, China
| | - Qi Fu
- School of Ecology/State Key Laboratory of Biocontrol, Sun Yat-sen University, Shenzhen 518107, China
| | - Yu Huang
- School of Ecology/State Key Laboratory of Biocontrol, Sun Yat-sen University, Shenzhen 518107, China
| | - Yuxuan Fan
- School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China; Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen 518057, China
| | - Minxia Liang
- School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China; School of Ecology/State Key Laboratory of Biocontrol, Sun Yat-sen University, Shenzhen 518107, China
| | - Huaihai Chen
- School of Ecology/State Key Laboratory of Biocontrol, Sun Yat-sen University, Shenzhen 518107, China.
| | - Shixiao Yu
- School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China; Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen 518057, China.
| |
Collapse
|
20
|
Urvoy M, Gourmelon M, Serghine J, Rabiller E, L'Helguen S, Labry C. Free-living and particle-attached bacterial community composition, assembly processes and determinants across spatiotemporal scales in a macrotidal temperate estuary. Sci Rep 2022; 12:13897. [PMID: 35974094 PMCID: PMC9381549 DOI: 10.1038/s41598-022-18274-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/08/2022] [Indexed: 11/14/2022] Open
Abstract
Bacteria play an important role in biogeochemical cycles as they transform and remineralize organic matter. Particles are notable hotspots of activity, hosting particle-attached (PA) communities that can differ largely from their free-living (FL) counterparts. However, long-standing questions remain concerning bacterial community assembly processes and driving factors. This study investigated the FL and PA community compositions and determinants within the Aulne estuary and the Bay of Brest coastal waters (France). Our results revealed that the FL and PA community compositions greatly varied with salinity and season, explaining a larger part of the variance than the sampling fraction. Both the FL and PA communities were driven by deterministic assembly processes and impacted by similar factors. The FL-PA dissimilarity varied across space and time. It decreased in the estuarine stations compared to the freshwater and marine ends, and in summer. Interestingly, a significant proportion of the FL and PA communities' β-diversity and dissimilarity was explained by cohesion, measuring the degree of taxa co-occurrence. This suggested the importance of co-occurrence patterns in shaping the FL and PA community compositions. Our results shed light on the factors influencing estuarine bacterial communities and provide a first step toward understanding their biogeochemical impacts.
Collapse
Affiliation(s)
- Marion Urvoy
- Ifremer, DYNECO, 29280, Plouzané, France. .,CNRS, IRD, Ifremer, UMR 6539, Laboratoire des Sciences de l'Environnement Marin (LEMAR), Université de Bretagne Occidentale, 29280, Plouzané, France.
| | | | | | | | - Stéphane L'Helguen
- CNRS, IRD, Ifremer, UMR 6539, Laboratoire des Sciences de l'Environnement Marin (LEMAR), Université de Bretagne Occidentale, 29280, Plouzané, France
| | | |
Collapse
|
21
|
Broman E, Izabel-Shen D, Rodríguez-Gijón A, Bonaglia S, Garcia SL, Nascimento FJA. Microbial functional genes are driven by gradients in sediment stoichiometry, oxygen, and salinity across the Baltic benthic ecosystem. MICROBIOME 2022; 10:126. [PMID: 35965333 PMCID: PMC9377124 DOI: 10.1186/s40168-022-01321-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/05/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND Microorganisms in the seafloor use a wide range of metabolic processes, which are coupled to the presence of functional genes within their genomes. Aquatic environments are heterogenous and often characterized by natural physiochemical gradients that structure these microbial communities potentially changing the diversity of functional genes and its associated metabolic processes. In this study, we investigated spatial variability and how environmental variables structure the diversity and composition of benthic functional genes and metabolic pathways across various fundamental environmental gradients. We analyzed metagenomic data from sediment samples, measured related abiotic data (e.g., salinity, oxygen and carbon content), covering 59 stations spanning 1,145 km across the Baltic Sea. RESULTS The composition of genes and microbial communities were mainly structured by salinity plus oxygen, and the carbon to nitrogen (C:N) ratio for specific metabolic pathways related to nutrient transport and carbon metabolism. Multivariate analyses indicated that the compositional change in functional genes was more prominent across environmental gradients compared to changes in microbial taxonomy even at genus level, and indicate functional diversity adaptation to local environments. Oxygen deficient areas (i.e., dead zones) were more different in gene composition when compared to oxic sediments. CONCLUSIONS This study highlights how benthic functional genes are structured over spatial distances and by environmental gradients and resource availability, and suggests that changes in, e.g., oxygenation, salinity, and carbon plus nitrogen content will influence functional metabolic pathways in benthic habitats. Video Abstract.
Collapse
Affiliation(s)
- Elias Broman
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| | - Dandan Izabel-Shen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Alejandro Rodríguez-Gijón
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| | - Stefano Bonaglia
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Sarahi L. Garcia
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| | - Francisco J. A. Nascimento
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| |
Collapse
|
22
|
Shi J, Zuo Y, Qu W, Liu X, Fan Y, Cao P, Wang J. Stochastic processes shape the aggregation of free-living and particle-attached bacterial communities in the Yangtze River Estuary, China. J Basic Microbiol 2022; 62:1514-1525. [PMID: 35835725 DOI: 10.1002/jobm.202100666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/16/2022] [Accepted: 06/26/2022] [Indexed: 11/05/2022]
Abstract
An estuary plays an important role in material and energy exchange between the land and sea, where complex physical, chemical, and biological processes occur. Here, we investigated the assembly processes of free-living (FL) and particle-associated (PA) bacterial communities in two seawater layers at five stations in the Yangtze River Estuary (YRE) by using 16S rRNA sequencing methods. The results indicated that Proteobacteria was the most abundant phylum in the YRE. The α-diversity of PA community was significantly higher than FL community, and analysis of similarity showed significantly different (Global R = 0.2809, p < 0.005). RDA revealed that phosphate (PO4 3- ) was significantly correlated with PA bacterial community abundance (p < 0.05). An ecological null model showed that both PA and FL bacterial communities were mainly influenced by stochastic processes (PA: 100%, FL: 70%), which PA attached to nutrient particles and are less affected by environmental filtration. Dispersal limitation (50%) was the main assembly process of the PA community, while homogeneous selection (30%) and drift (30%) were important processes in the FL community assembly. The available substrate for colonization limits the transformation from FL to PA bacteria. This study would improve our understanding of FL and PA bacterial community structure and factors affecting assembly process in estuarine environments.
Collapse
Affiliation(s)
- Jing Shi
- Marine Microorganism Ecological & Application Lab, Zhejiang Ocean University, Zhejiang, China
| | - Yaqiang Zuo
- Marine Microorganism Ecological & Application Lab, Zhejiang Ocean University, Zhejiang, China
| | - Wu Qu
- Marine Microorganism Ecological & Application Lab, Zhejiang Ocean University, Zhejiang, China
| | - Xuezhu Liu
- Marine Microorganism Ecological & Application Lab, Zhejiang Ocean University, Zhejiang, China
| | - Yingping Fan
- Marine Microorganism Ecological & Application Lab, Zhejiang Ocean University, Zhejiang, China
| | - Pinglin Cao
- Marine Microorganism Ecological & Application Lab, Zhejiang Ocean University, Zhejiang, China
| | - Jianxin Wang
- Marine Microorganism Ecological & Application Lab, Zhejiang Ocean University, Zhejiang, China
| |
Collapse
|
23
|
Seasonal and Zonal Succession of Bacterial Communities in North Sea Salt Marsh Sediments. Microorganisms 2022; 10:microorganisms10050859. [PMID: 35630305 PMCID: PMC9146408 DOI: 10.3390/microorganisms10050859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Benthic microbial communities of intertidal zones perform important biogeochemical processes and provide accessible nutrients for higher organisms. To unravel the ecosystem services of salt marsh microbial communities, we analyzed bacterial diversity and metabolic potential along the land–sea transition zone on seasonal scales on the German North Sea Island of Spiekeroog. Analysis of bacterial community was based on amplicon sequencing of 16S rRNA genes and –transcripts. Insights into potential community function were obtained by applying the gene prediction tool tax4fun2. We found that spatial variation of community composition was greater than seasonal variations. Alphaproteobacteria (15%), Gammaproteobacteria (17%) and Planctomycetes (11%) were the most abundant phyla across all samples. Differences between the DNA-based resident and RNA-based active communities were most pronounced within the Planctomycetes (17% and 5%) and Cyanobacteriia (3% and 12%). Seasonal differences were seen in higher abundance of Gammaproteobacteria in March 2015 (25%) and a cyanobacterial summer bloom, accounting for up to 70% of the active community. Taxonomy-based prediction of function showed increasing potentials for nitrification, assimilatory nitrate and sulfate reduction from sea to land, while the denitrification and dissimilatory sulfate reduction increased towards the sea. In conclusion, seasonal differences mainly occurred by blooming of individual taxa, while the overall community composition strongly corresponded to locations. Shifts in their metabolism could drive the salt marsh’s function, e.g., as a potential nitrogen sink.
Collapse
|
24
|
Shah RM, Stephenson S, Crosswell J, Gorman D, Hillyer KE, Palombo EA, Jones OAH, Cook S, Bodrossy L, van de Kamp J, Walsh TK, Bissett A, Steven ADL, Beale DJ. Omics-based ecosurveillance uncovers the influence of estuarine macrophytes on sediment microbial function and metabolic redundancy in a tropical ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151175. [PMID: 34699819 DOI: 10.1016/j.scitotenv.2021.151175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Vertical zonation within estuarine ecosystems can strongly influence microbial diversity and function by regulating competition, predation, and environmental stability. The degree to which microbial communities exhibit horizontal patterns through an estuary has received comparatively less attention. Here, we take a multi-omics ecosurveillance approach to study environmental gradients created by the transition between dominant vegetation types along a near pristine tropical river system (Wenlock River, Far North Queensland, Australia). The study sites included intertidal mudflats fringed by saltmarsh, mangrove or mixed soft substrata habitats. Collected sediments were analyzed for eukaryotes and prokaryotes using small sub-unit (SSU) rRNA gene amplicons to profile the relative taxonomic composition. Central carbon metabolism metabolites and other associated organic polar metabolites were analyzed using established metabolomics-based approaches, coupled with total heavy metals analysis. Eukaryotic taxonomic information was found to be more informative of habitat type. Bacterial taxonomy and community composition also showed habitat-specificity, with phyla Proteobacteria and Cyanobacteria strongly linked to mangroves and saltmarshes, respectively. In contrast, metabolite profiling was critical for understanding the biochemical pathways and expressed functional outputs in these systems that were tied to predicted microbial gene function (16S rRNA). A high degree of metabolic redundancy was observed in the bacterial communities, with the metabolomics data suggesting varying degrees of metabolic criticality based on habitat type. The predicted functions of the bacterial taxa combined with annotated metabolites accounted for the conservative perspective of microbial community redundancy against the putative metabolic pathway impacts in the metabolomics data. Coupling these data demonstrates that habitat-mediated estuarine gradients drive patterns of community diversity and metabolic function and highlights the real redundancy potential of habitat microbiomes. This information is useful as a point of comparison for these sensitive ecosystems and provides a framework for identifying potentially vulnerable or at-risk systems before they are significantly degraded.
Collapse
Affiliation(s)
- Rohan M Shah
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Dutton Park, QLD 4102, Australia; Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Sarah Stephenson
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Lucas Heights, NSW 2234, Australia
| | - Joseph Crosswell
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Dutton Park, QLD 4102, Australia
| | - Daniel Gorman
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Indian Ocean Marine Research Centre, Crawley, WA 6009, Australia
| | - Katie E Hillyer
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Dutton Park, QLD 4102, Australia
| | - Enzo A Palombo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Oliver A H Jones
- Australian Centre for Research on Separation Science (ACROSS), School of Science, RMIT University, Bundoora West Campus, PO Box 71, Bundoora, VIC 3083, Australia
| | - Stephen Cook
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Berrimah, NT 0828, Australia
| | - Levente Bodrossy
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Battery Point, TAS 7004, Australia
| | - Jodie van de Kamp
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Battery Point, TAS 7004, Australia
| | - Thomas K Walsh
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT 2601, Australia
| | - Andrew Bissett
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Battery Point, TAS 7004, Australia
| | - Andrew D L Steven
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Dutton Park, QLD 4102, Australia
| | - David J Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Dutton Park, QLD 4102, Australia.
| |
Collapse
|
25
|
Wang H, Chen F, Zhang C, Wang M, Kan J. Estuarine gradients dictate spatiotemporal variations of microbiome networks in the Chesapeake Bay. ENVIRONMENTAL MICROBIOME 2021; 16:22. [PMID: 34838139 PMCID: PMC8627074 DOI: 10.1186/s40793-021-00392-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/10/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND Annually reoccurring microbial populations with strong spatial and temporal variations have been identified in estuarine environments, especially in those with long residence time such as the Chesapeake Bay (CB). However, it is unclear how microbial taxa cooccurr and how the inter-taxa networks respond to the strong environmental gradients in the estuaries. RESULTS Here, we constructed co-occurrence networks on prokaryotic microbial communities in the CB, which included seasonal samples from seven spatial stations along the salinity gradients for three consecutive years. Our results showed that spatiotemporal variations of planktonic microbiomes promoted differentiations of the characteristics and stability of prokaryotic microbial networks in the CB estuary. Prokaryotic microbial networks exhibited a clear seasonal pattern where microbes were more closely connected during warm season compared to the associations during cold season. In addition, microbial networks were more stable in the lower Bay (ocean side) than those in the upper Bay (freshwater side). Multivariate regression tree (MRT) analysis and piecewise structural equation modeling (SEM) indicated that temperature, salinity and total suspended substances along with nutrient availability, particulate carbon and Chl a, affected the distribution and co-occurrence of microbial groups, such as Actinobacteria, Bacteroidetes, Cyanobacteria, Planctomycetes, Proteobacteria, and Verrucomicrobia. Interestingly, compared to the abundant groups (such as SAR11, Saprospiraceae and Actinomarinaceae), the rare taxa including OM60 (NOR5) clade (Gammaproteobacteria), Micrococcales (Actinobacteria), and NS11-12 marine group (Bacteroidetes) contributed greatly to the stability of microbial co-occurrence in the Bay. Modularity and cluster structures of microbial networks varied spatiotemporally, which provided valuable insights into the 'small world' (a group of more interconnected species), network stability, and habitat partitioning/preferences. CONCLUSION Our results shed light on how estuarine gradients alter the spatiotemporal variations of prokaryotic microbial networks in the estuarine ecosystem, as well as their adaptability to environmental disturbances and co-occurrence network complexity and stability.
Collapse
Affiliation(s)
- Hualong Wang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| | - Chuanlun Zhang
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, People's Republic of China
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Min Wang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Jinjun Kan
- Microbiology Division, Stroud Water Research Center, Avondale, PA, USA.
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, People's Republic of China.
| |
Collapse
|
26
|
Yan Q, Deng J, Wang F, Liu Y, Liu K. Community Assembly and Co-occurrence Patterns Underlying the Core and Satellite Bacterial Sub-communities in the Tibetan Lakes. Front Microbiol 2021; 12:695465. [PMID: 34745022 PMCID: PMC8567192 DOI: 10.3389/fmicb.2021.695465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Microbial communities normally comprise a few core species and large numbers of satellite species. These two sub-communities have different ecological and functional roles in natural environments, but knowledge on the assembly processes and co-occurrence patterns of the core and satellite species in Tibetan lakes is still sparse. Here, we investigated the ecological processes and co-occurrence relationships of the core and satellite bacterial sub-communities in the Tibetan lakes via 454 sequencing of 16S rRNA gene. Our studies indicated that the core and satellite bacterial sub-communities have similar dominant phyla (Proteobacteria, Bacteroidetes, and Actinobacteria). But the core sub-communities were less diverse and exhibited a stronger distance-decay relationship than the satellite sub-communities. In addition, topological properties of nodes in the network demonstrated that the core sub-communities had more complex and stable co-occurrence associations and were primarily driven by stochastic processes (58.19%). By contrast, the satellite sub-communities were mainly governed by deterministic processes (62.17%). Overall, this study demonstrated the differences in the core and satellite sub-community assembly and network stability, suggesting the importance of considering species traits to understand the biogeographic distribution of bacterial communities in high-altitude lakes.
Collapse
Affiliation(s)
- Qi Yan
- School of Life Sciences, Lanzhou University, Lanzhou, China.,Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, China
| | - Jianming Deng
- School of Life Sciences, Lanzhou University, Lanzhou, China.,State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Feng Wang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yongqin Liu
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, China.,State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Keshao Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Song X, Song J, Yan Q, Zhou J, Cai Z. Assembly of a Benthic Microbial Community in a Eutrophic Bay with a Long History of Oyster Culturing. Microorganisms 2021; 9:microorganisms9102019. [PMID: 34683340 PMCID: PMC8536970 DOI: 10.3390/microorganisms9102019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 11/27/2022] Open
Abstract
The introduction of oysters to a waterbody is an efficient method for decreasing levels of eutrophication. Oysters affect sedimental environments and benthic microbes via their roles in nutrient cycling. However, little is known about how long-term oyster culturing affects benthic microbial community assembly. In the present study, top and bottom sediments from an oyster-culture area and non-culture area, in a eutrophic bay with a long history of oyster culturing, were obtained for environmental parameter measurement and microbe identification. Deterministic and stochastic processes in microbial community assembly were assessed. In particular, keystone species identification through network analysis was combined with measured environmental parameters to determine the factors related to community assembly processes. Our results suggest that oyster culturing relates to greater variation in both biological and non-biological sediment profiles. In benthic communities, Proteobacteria and Chloroflexi were the most abundant phyla, and community compositions were significantly different between sample groups. We also found that community assembly was more affected by deterministic factors than stochastic ones, when oysters were present. Moisture, or water content, and pH were identified as affecting deterministic and stochastic processes, respectively, but only water content was a driver associated with oyster culturing. Additionally, although keystone species presented a similar pattern of composition to peripheral species, they responded to their environments differently. Furthermore, model selection, fitting keystone species to community assembly processes, indicates their role in shaping microbial communities.
Collapse
Affiliation(s)
- Xiao Song
- School of Life Sciences, Tsinghua University, Beijing 100084, China; (X.S.); (J.S.); (Q.Y.)
- Shenzhen Public Platform of Screening and Application of Marine Microbial Resources, The Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
| | - Junting Song
- School of Life Sciences, Tsinghua University, Beijing 100084, China; (X.S.); (J.S.); (Q.Y.)
- Shenzhen Public Platform of Screening and Application of Marine Microbial Resources, The Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
| | - Qi Yan
- School of Life Sciences, Tsinghua University, Beijing 100084, China; (X.S.); (J.S.); (Q.Y.)
- Shenzhen Public Platform of Screening and Application of Marine Microbial Resources, The Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
| | - Jin Zhou
- Shenzhen Public Platform of Screening and Application of Marine Microbial Resources, The Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
| | - Zhonghua Cai
- Shenzhen Public Platform of Screening and Application of Marine Microbial Resources, The Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
- Correspondence:
| |
Collapse
|
28
|
García Hernández E, Berg MP, Van Oosten AR, Smit C, Falcão Salles J. Linking Bacterial Communities Associated with the Environment and the Ecosystem Engineer Orchestia gammarellus at Contrasting Salt Marsh Elevations. MICROBIAL ECOLOGY 2021; 82:537-548. [PMID: 33420910 PMCID: PMC8384807 DOI: 10.1007/s00248-020-01656-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
The digestive tract of animals harbors microbiota important for the host's fitness and performance. The interaction between digestive tract bacteria and soil animal hosts is still poorly explored despite the importance of soil fauna for ecosystem processes. In this study, we investigated the interactions between the bacterial communities from the digestive tract of the litter-feeding, semi-terrestrial crustacean Orchestia gammarellus and those obtained from the environment; these organisms thrive in, i.e., soil and plant litter from salt marshes. We hypothesized that elevation is an important driver of soil and litter bacterial communities, which indirectly (via ingested soil and litter bacteria) influences the bacterial communities in the digestive tract of O. gammarellus. Indeed, our results revealed that elevation modulated soil and litter bacterial community composition along with soil organic matter content and the C:N ratio. Soil and plant litter differed in alpha diversity indexes (richness and diversity), and in the case of plant litter, both indexes increased with elevation. In contrast, elevation did not affect the composition of bacterial communities associated with O. gammarellus' digestive tract, suggesting selection by the host, despite the fact that a large component of the bacterial community was also detected in external sources. Importantly, Ca. Bacilloplasma and Vibrio were highly prevalent and abundant in the host. The taxonomic comparison of Ca. Bacilloplasma amplicon sequence variants across the host at different elevations suggested a phylogenetic divergence due to host habitat (i.e., marine or semi-terrestrial), thus supporting their potential functional role in the animal physiology. Our study sheds light on the influence of the environment on soil animal-bacteria interactions and provides insights into the resilience of the O. gammarellus-associated bacteria to increased flooding frequency.
Collapse
Affiliation(s)
- Edisa García Hernández
- Microbial Community Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands.
| | - Matty P Berg
- Department of Ecological Sciences, Section Animal Ecology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - A Raoul Van Oosten
- Department of Ecological Sciences, Section Animal Ecology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Christian Smit
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Joana Falcão Salles
- Microbial Community Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands.
| |
Collapse
|
29
|
Zhang N, Liang C, Liu X, Yao Z, Zhu DZ, Du S, Zhang H. Divergent Temporal Response of Abundant and Rare Bacterial Communities to Transient Escherichia coli O157:H7 Invasion. Front Microbiol 2021; 12:665380. [PMID: 34163444 PMCID: PMC8215281 DOI: 10.3389/fmicb.2021.665380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/22/2021] [Indexed: 11/24/2022] Open
Abstract
The release of Escherichia coli (E. coli) O157:H7 has been widely found in various environments, but little is known about the probable influence of the transient E. coli O157:H7 invasion on the native microbial community. Here, we investigated the temporal response of two bacterial biospheres (abundant and rare) of two marsh sediments against E. coli O157:H7 during a 60-day incubation. The diversity of both biospheres showed no evident response to O157:H7 invasion. Temporal factor exhibited greater effects on bacterial variation than O157:H7 invasion. We found that O157:H7 invasion led to an increase in the niche breadth of the bacterial community while decreasing the efficiency of bacterial interaction of the abundant taxa. Moreover, the rare biosphere exhibited enhanced stability against O157:H7 invasion compared with the abundant biosphere, acting as the backbone in resisting external disturbance. Furthermore, each subcommunity assembly showed different randomness levels. The stochastic events were relatively more important in constraining the abundant taxa assembly after invasion. Collectively, E. coli O157:H7 exhibited diverse tangible impact on both biospheres, which unearthed differential responses of abundant and rare biosphere against transient microbial invasion.
Collapse
Affiliation(s)
- Nan Zhang
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, China.,Institute of Ocean Engineering, Ningbo University, Ningbo, China
| | - Chunling Liang
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, China
| | - Xiangjun Liu
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, China
| | - Zhiyuan Yao
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, China.,Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, China
| | - David Z Zhu
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, China.,Institute of Ocean Engineering, Ningbo University, Ningbo, China
| | - Shicong Du
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Huajun Zhang
- School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
30
|
Boey JS, Mortimer R, Couturier A, Worrallo K, Handley KM. Estuarine microbial diversity and nitrogen cycling increase along sand-mud gradients independent of salinity and distance. Environ Microbiol 2021; 24:50-65. [PMID: 33973326 DOI: 10.1111/1462-2920.15550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 01/22/2023]
Abstract
Estuaries are depositional environments prone to terrigenous mud sedimentation. While macrofaunal diversity and nitrogen retention are greatly affected by changes in sedimentary mud content, its impact on prokaryotic diversity and nitrogen cycling activity remains understudied. We characterized the composition of estuarine tidal flat prokaryotic communities spanning a habitat range from sandy to muddy sediments, while controlling for salinity and distance. We also determined the diversity, abundance and expression of ammonia oxidizers and N2 O-reducers within these communities by amoA and clade I nosZ gene and transcript analysis. Results show that prokaryotic communities and nitrogen cycling fractions were sensitive to changes in sedimentary mud content, and that changes in the overall community were driven by a small number of phyla. Significant changes occurred in prokaryotic communities and N2 O-reducing fractions with only a 3% increase in mud, while thresholds for ammonia oxidizers were less distinct, suggesting other factors are also important for structuring these guilds. Expression of nitrogen cycling genes was substantially higher in muddier sediments, and results indicate that the potential for coupled nitrification-denitrification became increasingly prevalent as mud content increased. Altogether, results demonstrate that mud content is a strong environmental driver of diversity and N-cycling dynamics in estuarine microbial communities.
Collapse
Affiliation(s)
- Jian Sheng Boey
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Redmond Mortimer
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Agathe Couturier
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand.,Ecole Supérieure de Biologie Biochimie Biotechnologies, Faculté des Sciences, Université Catholique de Lyon, Lyon, France
| | - Katie Worrallo
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Kim M Handley
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
31
|
Wang J, Wang L, Hu W, Pan Z, Zhang P, Wang C, Wang J, Wu S, Li YZ. Assembly processes and source tracking of planktonic and benthic bacterial communities in the Yellow River estuary. Environ Microbiol 2021; 23:2578-2591. [PMID: 33754415 DOI: 10.1111/1462-2920.15480] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/15/2021] [Accepted: 03/20/2021] [Indexed: 01/04/2023]
Abstract
Estuaries connect rivers with the ocean and are considered transition regions due to the continuous inputs from rivers. Microbiota from different sources converge and undergo succession in these transition regions, but their assembly mechanisms along environmental gradients remain unclear. Here, we found that salinity had a stronger effect on planktonic than on benthic microbial communities, and the dominant planktonic bacteria changed more distinctly than the dominant benthic bacteria with changes in salinity. The planktonic bacteria in the brackish water came mainly from seawater, which was confirmed in the laboratory, whereas the benthic bacteria were weakly affected by salinity, which appeared to be a mixture of the bacteria from riverine and oceanic sediments. Benthic bacterial community assembly in the sediments was mainly controlled by homogeneous selection and almost unaffected by changes in salinity, the dominant assemblage processes for planktonic bacteria changed dramatically along the salinity gradient, from homogeneous selection in freshwater to drift in seawater. Our results highlight that salinity is the key driver of estuarine microbial succession and that salinity is more important in shaping planktonic than benthic bacterial communities in the Yellow River estuary.
Collapse
Affiliation(s)
- Jianing Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Lidong Wang
- National Nature Reserve Administration of Yellow River Delta, Dongying, 257091, China
| | - Weifeng Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Zhuo Pan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Peng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Chuandong Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Jingjing Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Shuge Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
32
|
Shen R, Lan Z, Rinklebe J, Nie M, Hu Q, Yan Z, Fang C, Jin B, Chen J. Flooding variations affect soil bacterial communities at the spatial and inter-annual scales. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143471. [PMID: 33213905 DOI: 10.1016/j.scitotenv.2020.143471] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Hydrological variations have substantial effects on the diversity and composition of soil bacterial communities in wetlands. At the spatial scale, the responses of soil bacterial diversity and composition to hydrological variations in wetlands have been extensively investigated. However, at the temporal scale, especially at the inter-annual scale, the corresponding bacterial responses are rarely reported. Therefore, we explored the effects of flooding variations on the diversity and composition of soil bacterial communities at a lakeshore wetland in two hydrological contrasting years. Three flooding variables, i.e. flooding duration (FD), total duration of the growing season (TGD), and exposure duration of the growing season (EGD), were used to characterize flooding regime. Soil bacterial communities were determined using 16S rRNA gene sequencing method. We found a very high soil bacterial diversity at the lakeshore wetland. The Shannon's indexes of soil bacterial communities varied from 5.61 to 7.11 in two years. Soil bacterial α-diversity followed a unimodal curve along the elevation gradient, and was significantly lower in the flooding year than in the drought year. Principal coordinate analysis demonstrated that the compositions of soil bacterial communities were separated in order of elevation and year along the first and second axes, respectively. The apparent habitat preferences of soil bacterial families were closely connected with their respiratory traits, and this trend was stronger at the inter-annual scale than at the spatial scale. Soil bacterial compositions were predominantly determined by the direct (by changing respiratory traits) and indirect (by changing soil pH) effects of TGD at the spatial scale, while they were simultaneously regulated by the direct effects of three flooding variables at the inter-annual scale. Our results enhance the understanding of soil microbial communities in wetlands and have large implications for developing general theories to predicting soil microbial functions.
Collapse
Affiliation(s)
- Ruichang Shen
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecosystem, Institute of Life Science and School of Life Science, Nanchang University, Nanchang 330031, China; Institute of Biodiversity Science, Fudan University, Shanghai 200433, China; Jiangxi Poyang Lake Wetland Conservation and Restoration National Permanent Scientific Research Base, National Ecosystem Research Station of Jiangxi Poyang Lake Wetland, Nanchang 330031, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China; Jiangxi Institute of Ecological Civilization, Nanchang University, Nanchang 330031, China.
| | - Zhichun Lan
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecosystem, Institute of Life Science and School of Life Science, Nanchang University, Nanchang 330031, China; Institute of Biodiversity Science, Fudan University, Shanghai 200433, China; Jiangxi Poyang Lake Wetland Conservation and Restoration National Permanent Scientific Research Base, National Ecosystem Research Station of Jiangxi Poyang Lake Wetland, Nanchang 330031, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China; Jiangxi Institute of Ecological Civilization, Nanchang University, Nanchang 330031, China
| | - Jörg Rinklebe
- School of Architecture and Civil Engineering, Laboratory of Soil- and Groundwater-Management, University of Wuppertal, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy, and Geoinformatics, Sejong University, Seoul 05006, Republic of Korea
| | - Ming Nie
- Institute of Biodiversity Science, Fudan University, Shanghai 200433, China
| | - Qiwu Hu
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Zhifeng Yan
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Changming Fang
- Institute of Biodiversity Science, Fudan University, Shanghai 200433, China
| | - Bingsong Jin
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecosystem, Institute of Life Science and School of Life Science, Nanchang University, Nanchang 330031, China; Jiangxi Poyang Lake Wetland Conservation and Restoration National Permanent Scientific Research Base, National Ecosystem Research Station of Jiangxi Poyang Lake Wetland, Nanchang 330031, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China; Jiangxi Institute of Ecological Civilization, Nanchang University, Nanchang 330031, China
| | - Jiakuan Chen
- Institute of Biodiversity Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
33
|
Lin J, He F, Owens G, Chen Z. How do phytogenic iron oxide nanoparticles drive redox reactions to reduce cadmium availability in a flooded paddy soil? JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123736. [PMID: 32846263 DOI: 10.1016/j.jhazmat.2020.123736] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/02/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
While soil redox reactions are known to determine heavy metal soil availability, specific information on how iron (Fe) nanomaterials reduce heavy metal availability in bulk soil and in the rice rhizosphere is limited. Here a pot experiment was performed to examine the effect of phytogenic iron oxide nanoparticles (PION) on the availability of cadmium (Cd) in flooded soil. PION significantly reduced soil Cd availability, with Cd in rice shoot being 2.72, 1.21 and 0.40 mg kg-1 for the control, 1 and 5% PION treatments, respectively. In addition, following PION application, Illumina MiSeq sequencing indicated that the abundance of Lentimicrobium and Anaeromyxobacter increased, while the abundance of Geobacter and Thiobacillus decreased. Structural equation model analysis revealed that redox reactions, driven by carbon, nitrogen, iron and sulfur cycling related functional groups, played an important role in the immobilization of Cd in flooded soil. Co-occurrence network analysis showed that the rhizosphere soil was far more complex than the bulk soil. Overall, PION addition enhanced the inherent soil microbe's activity and the involved in reducing Cd availability to rice by converting mobile Cd into stabler forms. This initial result paves the way for establishing a practical low-cost remediation strategy for Cd contaminated paddy soils.
Collapse
Affiliation(s)
- Jiajiang Lin
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China
| | - Fengxin He
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China.
| |
Collapse
|
34
|
Guo C, Zhang X, Luan S, Zhou H, Liu L, Qu Y. Diversity and structure of soil bacterial community in intertidal zone of Daliao River estuary, Northeast China. MARINE POLLUTION BULLETIN 2021; 163:111965. [PMID: 33450443 DOI: 10.1016/j.marpolbul.2020.111965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Soil samples from the intertidal zone of Daliao River, Northeast China, were collected in three seasons (autumn, L1; winter, L2; and spring, L3) to evaluate the diversity and structure of bacterial community using high-throughput sequencing. Soil physicochemical characteristics varied greatly with seasons, and the potential nitrification rates were detected in the range of 1.04-2.71 μg NO3--N·g-1 dry soil·h-1 with the highest rate in spring (L3). Soil bacterial communities also differed seasonally, and nitrogen nutrients were the important variables affecting the bacterial communities as demonstrated by distance-based redundancy analysis and Mantel tests. Proteobacteria was the predominant phylum in soils showing a descending trend from L1 to L3. Woeseia and Ignatzschineria, both affiliating with Gammaproteobacteria, were the two most dominant genera, but they exerted different seasonal variations. The predicted functional profiles revealed 6 major nitrogen cycling processes, and the functional genes in relation to denitrification process were dominant in intertidal soils.
Collapse
Affiliation(s)
- Chaochen Guo
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Xuwang Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China.
| | - Shimeng Luan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Hao Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Lifen Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China; Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
35
|
Jiao C, Zhao D, Zeng J, Guo L, Yu Z. Disentangling the seasonal co-occurrence patterns and ecological stochasticity of planktonic and benthic bacterial communities within multiple lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140010. [PMID: 32563874 DOI: 10.1016/j.scitotenv.2020.140010] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Both the planktonic bacterial community (PBC) and benthic bacterial community (BBC) are important for biogeochemical processes in freshwater lakes. Despite their ecological significance, little is known about their seasonal co-occurrence patterns and the ecological processes that drive them. In this study, we aimed to investigate the ecological associations among bacterial taxa and assembly processes of PBC and BBC in different seasons. We used 16S rRNA gene high-throughput sequencing of a total of 150 water and sediment samples collected from multiple lakes distributed in an urban region of China during winter and summer. Our results revealed that PBC showed stronger seasonal variations in co-occurrence patterns than BBC, suggesting that BBC had greater temporal stability than PBC. Winter PBC network was characterized by higher connectivity and complexity, and thereby the formation of a highly stable community structure; whereas lower connectivity arising from the presence of fewer predicted keystone taxa (hubs and connectors in a network) was destabilizing to summer PBC network. In addition, the phylum Firmicutes identified as a putative keystone taxon of PBC in both seasons played a non-negligible role in maintaining network structure which may result from strong functional associations with other bacterioplankton. Temperature and pH were the best explanatory factors predicting the seasonal co-occurrence patterns of PBC and BBC, respectively. Normalized stochasticity ratio based on null-model analysis indicated that deterministic processes overwhelmed stochastic processes in governing the assembly of PBC and BBC in both seasons. However, we observed a greater influence of ecological stochasticity on BBC assembly than PBC assembly in both seasons. Taken together, these findings provide insights into understanding the impacts of habitat heterogeneity and seasonal variability on microbial assemblage patterns in lake ecosystems.
Collapse
Affiliation(s)
- Congcong Jiao
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Dayong Zhao
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
| | - Jin Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Lin Guo
- Department of Biological and Environmental Sciences, Texas A&M University, Commerce, TX 76129, USA
| | - Zhongbo Yu
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
| |
Collapse
|
36
|
Divergent Co-occurrence Patterns and Assembly Processes Structure the Abundant and Rare Bacterial Communities in a Salt Marsh Ecosystem. Appl Environ Microbiol 2020; 86:AEM.00322-20. [PMID: 32358000 DOI: 10.1128/aem.00322-20] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
Understanding how species interaction and assembly processes structure the abundant and rare bacterial biospheres in soils is crucial for predicting how biodiversity influences ecosystem functioning. Here, we profiled the bacterial communities across a salt marsh ecosystem gradient to investigate the co-occurrence patterns across taxa and the relative influence of ecological processes mediating the assembly of the abundant and rare biospheres in soil. Our results revealed abundant taxa to be ubiquitous across all sites, whereas the distributions of the rare taxa were relatively more site specific. The α-diversity indices and β-diversity of rare subcommunities were significantly higher than those of the abundant subcommunities. Besides, both the taxonomic and functional composition of soil bacterial communities differed significantly between the two biospheres. Furthermore, the influence of stochasticity differed in each subcommunity. In particular, stochastic processes were relatively more important in constraining the assembly of rare taxa. Co-occurrence network analysis revealed that a few abundant taxa occupy central nodes within the networks, possibly indicating crucial roles as keystone taxa. Collectively, these findings suggest that abundant and rare bacterial biospheres have distinct distributions underpinned by a dynamic interplay of ecological processes and taxon co-occurrence patterns.IMPORTANCE Estuarine salt marshes are highly productive ecosystems subjected to regular disturbances by hydrodynamic exchange. However, little is known about how distinct assembly processes and co-occurrence of taxa influence the structure of the abundant and rare bacterial biospheres in these soil systems. This study aims at unravelling these intricacies by studying a typical estuarine salt marsh located in Hangzhou Bay, China. Our study provides important pieces of evidence on the diverse distribution of rare and abundant bacterial biospheres. We show that a few abundant taxa are central nodes in species co-occurrence, potentially playing important roles as keystone species in the system. In addition, we highlight a dynamic interplay of assembly processes structuring these two subcommunities.
Collapse
|
37
|
Hou F, Zhang H, Xie W, Zhou X, Zhu X, Zhang D. Co-occurrence patterns and assembly processes of microeukaryotic communities in an early-spring diatom bloom. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134624. [PMID: 31818596 DOI: 10.1016/j.scitotenv.2019.134624] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/21/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
The interaction and assembly processes of microeukaryotic community compositions (MECs) are rarely elucidated in environment with strong disturbance such as harmful algal blooms. To fill this gap, we analyzed changes of MECs induced by a diatom bloom using 18S rRNA gene amplicon sequencing. The MECs were mainly dominated by Cercozoa (average relative abundance, 49.2%), Diatom (25.5%) and Dinoflagellata (15.6%). MECs changed significantly (ANOSIM P < 0.01) in four-bloom stages. Environmental factors including pH, DO, nitrate and phosphate, together with bacterial communities could significantly influence the variation of MECs. Co-occurrence network analysis revealed a complex interaction between microeukaryotic and bacterial communities. Most OTUs in modules of the co-occurrence network were specific to one particular bloom stage. Phylogenetic based β-nearest taxon distance analyses revealed that stochastic processes mainly dominated microeukaryotic community assembly in the initial and after-bloom stage. However, microeukaryotic community assembly in middle and late stage of the bloom were driven by deterministic processes. In conclusion, both stochastic and deterministic processes play important roles in distinct bloom stages. These findings may expand current understandings of assembly mechanisms and microbial interactions underlying microeukaryotic dynamics in eutrophic aquatic ecosystems where harmful algal blooms occurred frequently.
Collapse
Affiliation(s)
- Fanrong Hou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Huajun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| | - Weijuan Xie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Xiaoyan Zhou
- Environmental Monitoring Center of Ningbo, Ningbo, 315010, China
| | - Xiangyu Zhu
- Environmental Monitoring Center of Ningbo, Ningbo, 315010, China
| | - Demin Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, 315211, China.
| |
Collapse
|
38
|
Ding X, Liu K, Gong G, Tian L, Ma J. Volatile organic compounds in the salt-lake sediments of the Tibet Plateau influence prokaryotic diversity and community assembly. Extremophiles 2020; 24:307-318. [PMID: 32025854 DOI: 10.1007/s00792-020-01155-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/06/2020] [Indexed: 11/30/2022]
Abstract
Volatile organic compounds (VOCs) are important environmental factors because they supply nutrients for microbial cells and mediate intercellular interactions. However, few studies have focused on the effects of VOCs on prokaryotic diversity and community composition. In this study, we examined the relationship between prokaryotic diversity and community composition and the content of VOCs in salt-lake sediments from the Tibet Plateau using amplicon sequencing of the 16S rRNA gene. Results showed that the alpha-diversity indices (Chao1, Shannon, and Simpson) were generally negatively correlated with the content of 36 VOCs (P < 0.05). The prokaryotic communities were significantly driven by multiple VOCs at the lineage-dependent pattern (P < 0.05). Further analysis indicated that VOCs, including 3-methylpyruvate, biuret, isocitric acid, and stearic acid, jointly explained 37.3% of the variations in prokaryotic communities. Supplemental VOCs-pyruvate, biuret, alanine, and aspartic acid-notably decreased the Chao1 and Shannon indices and significantly assembled co-occurrence networks for the bacterial communities in the saline sediments. Together, these results demonstrated that VOCs play a critical role in the regulation of the diversity, compositions, and network structures of prokaryotic communities in saline sediments.
Collapse
Affiliation(s)
- Xiaowei Ding
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Kaihui Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Guoli Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Lu Tian
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jun Ma
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| |
Collapse
|
39
|
Hu A, Wang H, Cao M, Rashid A, Li M, Yu CP. Environmental Filtering Drives the Assembly of Habitat Generalists and Specialists in the Coastal Sand Microbial Communities of Southern China. Microorganisms 2019; 7:microorganisms7120598. [PMID: 31766562 PMCID: PMC6955893 DOI: 10.3390/microorganisms7120598] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 11/16/2022] Open
Abstract
Coastal sands harbor diverse microbial assemblages that play a critical role in the biogeochemical cycling of beach ecosystems. However, little is known about the relative importance of the different ecological processes underlying the assembly of communities of sand microbiota. Here, we employed 16S rDNA amplicon sequencing to investigate the sand microbiota of two coastal beaches, in southern China. The results showed that sand microbial assemblages at intertidal and supratidal zones exhibited contrasting compositions that can be attributed to environmental filtering by electric conductivity. A consistent pattern of habitat generalists and specialists of sand microbiota was observed among different beach zones. Null and neutral model analyses indicated that the environmental filtering was mainly responsible for supratidal microbial communities, while the neutral processes could partially influence the assembly of intertidal communities. Moreover, environmental filtering was found to shape the habitat specialists, while random dispersal played a major role in shaping generalists. The neutral model analysis revealed that the habitat generalists exceeding the neutral prediction harbored a relatively higher proportion of microbial taxa than the specialist counterparts. An opposite pattern was observed for taxa falling below the neutral prediction. Collectively, these findings offer a novel insight into the assembly mechanisms of coastal sand microbiota.
Collapse
Affiliation(s)
- Anyi Hu
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; (H.W.); (M.C.); (A.R.); (C.-P.Y.)
- Correspondence: (A.H.); (M.L.); Tel.: +86-592-6190582 (A.H.); +86-596-2591356 (M.L.)
| | - Hongjie Wang
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; (H.W.); (M.C.); (A.R.); (C.-P.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meixian Cao
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; (H.W.); (M.C.); (A.R.); (C.-P.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Azhar Rashid
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; (H.W.); (M.C.); (A.R.); (C.-P.Y.)
- Nuclear Institute for Food and Agriculture, Tarnab, Peshawar 446, Pakistan
| | - Mingfeng Li
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
- Correspondence: (A.H.); (M.L.); Tel.: +86-592-6190582 (A.H.); +86-596-2591356 (M.L.)
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; (H.W.); (M.C.); (A.R.); (C.-P.Y.)
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
40
|
Liang C, Yao Z, Du S, Hong M, Wang K, Zhang D. Sediment pH, not the bacterial diversity, determines Escherichia coli O157:H7 survival in estuarine sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1078-1086. [PMID: 31252105 DOI: 10.1016/j.envpol.2019.06.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/11/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
Shiga toxin-producing Escherichia coli (E. coli) O157:H7 is recognized as a hazardous microorganism in the environment. Its longer survival might contribute to higher contamination risk. In this study, E. coli O157:H7 survival in estuarine sediments collected from south Hangzhou Bay was investigated. The survival time of E. coli O157:H7 in estuarine sediments increased with the distance to the water-land junction. Sediment pH was the most important factor in regulating E. coli O157:H7 survival in estuarine sediments. In addition, sediment nutrients and texture also played significant roles in the survival of E. coli O157:H7 in the sediments. On the other hand, bacterial diversity as determined by the alpha-diversity index had no significant effect on E. coli O157:H7 survival. However, specific families of bacteria were closely associated with E. coli O157:H7 survival in the sediments. Remarkably, some potential bacterial groups, e.g., the Desulfobacteraceae, Desulfobulbaceae and Desulfarculaceae families, which are mainly involved in the sulfur cycle, showed significant negative correlation with the E. coli O157:H7 survival in the sediments. On the whole, abiotic factors showed greater effects on E. coli O157:H7 survival in the test sediments than the bacterial community. Our findings provide a comprehensive understanding of E. coli O157:H7 survival and regulatory factors in estuarine sediments, establishing foundation for the prevention of pathogen contamination.
Collapse
Affiliation(s)
- Chunling Liang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Zhiyuan Yao
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China; School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, China.
| | - Shicong Du
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Man Hong
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Kai Wang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, China
| | - Demin Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|