1
|
Ali A, Vishnivetskaya TA, Chauhan A. Comparative analysis of prokaryotic microbiomes in high-altitude active layer soils: insights from Ladakh and global analogues using In-Silico approaches. Braz J Microbiol 2024; 55:2437-2452. [PMID: 38758507 PMCID: PMC11405653 DOI: 10.1007/s42770-024-01365-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/08/2024] [Indexed: 05/18/2024] Open
Abstract
The active layer is the portion of soil overlaying the permafrost that freezes and thaws seasonally. It is a harsh habitat in which a varied and vigorous microbial population thrives. The high-altitude active layer soil in northern India is a unique and important cryo-ecosystem. However, its microbiology remains largely unexplored. It represents a unique reservoir for microbial communities with adaptability to harsh environmental conditions. In the Changthang region of Ladakh, the Tsokar area is a high-altitude permafrost-affected area situated in the southern part of Ladakh, at a height of 4530 m above sea level. Results of the comparison study with the QTP, Himalayan, Alaskan, Russian, Canadian and Polar active layers showed that the alpha diversity was significantly higher in the Ladakh and QTP active layers as the environmental condition of both the sites were similar. Moreover, the sampling site in the Ladakh region was in a thawing condition at the time of sampling which possibly provided nutrients and access to alternative nitrogen and carbon sources to the microorganisms thriving in it. Analysis of the samples suggested that the geochemical parameters and environmental conditions shape the microbial alpha diversity and community composition. Further analysis revealed that the cold-adapted methanogens were present in the Ladakh, Himalayan, Polar and Alaskan samples and absent in QTP, Russian and Canadian active layer samples. These methanogens could produce methane at slow rates in the active layer soils that could increase the atmospheric temperature owing to climate change.
Collapse
Affiliation(s)
- Ahmad Ali
- Department of Zoology, Panjab University, Sector 14, 160014, Chandigarh, India
| | | | - Archana Chauhan
- Department of Zoology, Panjab University, Sector 14, 160014, Chandigarh, India.
| |
Collapse
|
2
|
Sipes K, Buongiorno J, Steen AD, Abramov AA, Abuah C, Peters SL, Gianonne RJ, Hettich RL, Boike J, Garcia SL, Vishnivetskaya TA, Lloyd KG. Depth-specific distribution of bacterial MAGs in permafrost active layer in Ny Ålesund, Svalbard (79°N). Syst Appl Microbiol 2024; 47:126544. [PMID: 39303414 DOI: 10.1016/j.syapm.2024.126544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024]
Abstract
Arctic soil microbial communities may shift with increasing temperatures and water availability from climate change. We examined temperature and volumetric liquid water content (VWC) in the upper 80 cm of permafrost-affected soil over 2 years (2018-2019) at the Bayelva monitoring station, Ny Ålesund, Svalbard. We show VWC increases with depth, whereas in situ temperature is more stable vertically, ranging from -5°C to 5 °C seasonally. Prokaryotic metagenome-assembled genomes (MAGs) were obtained at 2-4 cm vertical resolution collected while frozen in April 2018 and at 10 cm vertical resolution collected while thawed in September 2019. The most abundant MAGs were Acidobacteriota, Actinomycetota, and Chloroflexota. Actinomycetota and Chloroflexota increase with depth, while Acidobacteriota classes Thermoanaerobaculia Gp7-AA8, Blastocatellia UBA7656, and Vicinamibacteria Vicinamibacterales are found above 6 cm, below 6 cm, and below 20 cm, respectively. All MAGs have diverse carbon-degrading genes, and Actinomycetota and Chloroflexota have autotrophic genes. Genes encoding β -glucosidase, N-acetyl-β-D-glucosaminidase, and xylosidase increase with depth, indicating a greater potential for organic matter degradation with higher VWC. Acidobacteriota dominate the top 6 cm with their classes segregating by depth, whereas Actinomycetota and Chloroflexota dominate below ∼6 cm. This suggests that Acidobacteriota classes adapt to lower VWC at the surface, while Actinomycetota and Chloroflexota persist below 6 cm with higher VWC. This indicates that VWC may be as important as temperature in microbial climate change responses in Arctic mineral soils. Here we describe MAG-based Seqcode type species in the Acidobacteriota, Onstottus arcticum, Onstottus frigus, and Gilichinskyi gelida and in the Actinobacteriota, Mayfieldus profundus.
Collapse
Affiliation(s)
- Katie Sipes
- Department of Microbiology, University of Tennessee, Knoxville, United States.
| | - Joy Buongiorno
- Department of Microbiology, University of Tennessee, Knoxville, United States
| | - Andrew D Steen
- Department of Microbiology, University of Tennessee, Knoxville, United States; Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, United States
| | - Andrey A Abramov
- Soil Cryology Laboratory, Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino, Russia
| | | | - Samantha L Peters
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Richard J Gianonne
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Robert L Hettich
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Julia Boike
- Alfred Wegener Institute for Polar and Marine Research, Potsdam, Germany; Department of Geography, Humboldt University, Berlin, Germany
| | - Sarahi L Garcia
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden; Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | | | - Karen G Lloyd
- Department of Microbiology, University of Tennessee, Knoxville, United States
| |
Collapse
|
3
|
Azuma T, Usui M, Hasei T, Hayashi T. On-Site Inactivation for Disinfection of Antibiotic-Resistant Bacteria in Hospital Effluent by UV and UV-LED. Antibiotics (Basel) 2024; 13:711. [PMID: 39200012 PMCID: PMC11350808 DOI: 10.3390/antibiotics13080711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 09/01/2024] Open
Abstract
The problem of antimicrobial resistance (AMR) is not limited to the medical field but is also becoming prevalent on a global scale in the environmental field. Environmental water pollution caused by the discharge of wastewater into aquatic environments has caused concern in the context of the sustainable development of modern society. However, there have been few studies focused on the treatment of hospital wastewater, and the potential consequences of this remain unknown. This study evaluated the efficacy of the inactivation of antimicrobial-resistant bacteria (AMRB) and antimicrobial resistance genes (AMRGs) in model wastewater treatment plant (WWTP) wastewater and hospital effluent based on direct ultraviolet (UV) light irradiation provided by a conventional mercury lamp with a peak wavelength of 254 nm and an ultraviolet light-emitting diode (UV-LED) with a peak emission of 280 nm under test conditions in which the irradiance of both was adjusted to the same intensity. The overall results indicated that both UV- and UV-LED-mediated disinfection effectively inactivated the AMRB in both wastewater types (>99.9% after 1-3 min of UV and 3 min of UV-LED treatment). Additionally, AMRGs were also removed (0.2-1.4 log10 for UV 254 nm and 0.1-1.3 log10 for UV 280 nm), and notably, there was no statistically significant decrease (p < 0.05) in the AMRGs between the UV and UV-LED treatments. The results of this study highlight the importance of utilizing a local inactivation treatment directly for wastewater generated by a hospital prior to its flow into a WWTP as sewage. Although additional disinfection treatment at the WWTP is likely necessary to remove the entire quantity of AMRB and AMRGs, the present study contributes to a significant reduction in the loads of WWTP and urgent prevention of the spread of infectious diseases, thus alleviating the potential threat to the environment and human health risks associated with AMR problems.
Collapse
Affiliation(s)
- Takashi Azuma
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Japan; (T.H.); (T.H.)
| | - Masaru Usui
- Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan;
| | - Tomohiro Hasei
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Japan; (T.H.); (T.H.)
| | - Tetsuya Hayashi
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Japan; (T.H.); (T.H.)
| |
Collapse
|
4
|
Kang L, Song Y, Mackelprang R, Zhang D, Qin S, Chen L, Wu L, Peng Y, Yang Y. Metagenomic insights into microbial community structure and metabolism in alpine permafrost on the Tibetan Plateau. Nat Commun 2024; 15:5920. [PMID: 39004662 PMCID: PMC11247091 DOI: 10.1038/s41467-024-50276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Permafrost, characterized by its frozen soil, serves as a unique habitat for diverse microorganisms. Understanding these microbial communities is crucial for predicting the response of permafrost ecosystems to climate change. However, large-scale evidence regarding stratigraphic variations in microbial profiles remains limited. Here, we analyze microbial community structure and functional potential based on 16S rRNA gene amplicon sequencing and metagenomic data obtained from an ∼1000 km permafrost transect on the Tibetan Plateau. We find that microbial alpha diversity declines but beta diversity increases down the soil profile. Microbial assemblages are primarily governed by dispersal limitation and drift, with the importance of drift decreasing but that of dispersal limitation increasing with soil depth. Moreover, genes related to reduction reactions (e.g., ferric iron reduction, dissimilatory nitrate reduction, and denitrification) are enriched in the subsurface and permafrost layers. In addition, microbial groups involved in alternative electron accepting processes are more diverse and contribute highly to community-level metabolic profiles in the subsurface and permafrost layers, likely reflecting the lower redox potential and more complicated trophic strategies for microorganisms in deeper soils. Overall, these findings provide comprehensive insights into large-scale stratigraphic profiles of microbial community structure and functional potentials in permafrost regions.
Collapse
Affiliation(s)
- Luyao Kang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yutong Song
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Dianye Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Shuqi Qin
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Leiyi Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Linwei Wu
- Institute of Ecology, Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yunfeng Peng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Yuanhe Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- China National Botanical Garden, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Walker RM, Sanabria VC, Youk H. Microbial life in slow and stopped lanes. Trends Microbiol 2024; 32:650-662. [PMID: 38123400 PMCID: PMC11187706 DOI: 10.1016/j.tim.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Microbes in nature often lack nutrients and face extreme or widely fluctuating temperatures, unlike microbes in growth-optimized settings in laboratories that much of the literature examines. Slowed or suspended lives are the norm for microbes. Studying them is important for understanding the consequences of climate change and for addressing fundamental questions about life: are there limits to how slowly a cell's life can progress, and how long cells can remain viable without self-replicating? Recent studies began addressing these questions with single-cell-level measurements and mathematical models. Emerging principles that govern slowed or suspended lives of cells - including lives of dormant spores and microbes at extreme temperatures - are re-defining discrete cellular states as continuums and revealing intracellular dynamics at new timescales. Nearly inactive, lifeless-appearing microbes are transforming our understanding of life.
Collapse
Affiliation(s)
- Rachel M Walker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Valeria C Sanabria
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Hyun Youk
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
6
|
Sun CL, Pratama AA, Gazitúa MC, Cronin D, McGivern BB, Wainaina JM, Vik DR, Zayed AA, Bolduc B, Wrighton KC, Rich VI, Sullivan MB. Virus ecology and 7-year temporal dynamics across a permafrost thaw gradient. Environ Microbiol 2024; 26:e16665. [PMID: 39101434 DOI: 10.1111/1462-2920.16665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/16/2024] [Indexed: 08/06/2024]
Abstract
Soil microorganisms are pivotal in the global carbon cycle, but the viruses that affect them and their impact on ecosystems are less understood. In this study, we explored the diversity, dynamics, and ecology of soil viruses through 379 metagenomes collected annually from 2010 to 2017. These samples spanned the seasonally thawed active layer of a permafrost thaw gradient, which included palsa, bog, and fen habitats. We identified 5051 virus operational taxonomic units (vOTUs), doubling the known viruses for this site. These vOTUs were largely ephemeral within habitats, suggesting a turnover at the vOTU level from year to year. While the diversity varied by thaw stage and depth-related patterns were specific to each habitat, the virus communities did not significantly change over time. The abundance ratios of virus to host at the phylum level did not show consistent trends across the thaw gradient, depth, or time. To assess potential ecosystem impacts, we predicted hosts in silico and found viruses linked to microbial lineages involved in the carbon cycle, such as methanotrophy and methanogenesis. This included the identification of viruses of Candidatus Methanoflorens, a significant global methane contributor. We also detected a variety of potential auxiliary metabolic genes, including 24 carbon-degrading glycoside hydrolases, six of which are uniquely terrestrial. In conclusion, these long-term observations enhance our understanding of soil viruses in the context of climate-relevant processes and provide opportunities to explore their role in terrestrial carbon cycling.
Collapse
Affiliation(s)
- Christine L Sun
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
| | - Akbar Adjie Pratama
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
| | | | - Dylan Cronin
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
| | - Bridget B McGivern
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
- Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - James M Wainaina
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
| | - Dean R Vik
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
| | - Ahmed A Zayed
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
| | - Benjamin Bolduc
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
| | - Kelly C Wrighton
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
- Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Virginia I Rich
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
- Byrd Polar and Climate Research Center, The Ohio State University, Columbus, Ohio, USA
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
- Byrd Polar and Climate Research Center, The Ohio State University, Columbus, Ohio, USA
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
7
|
Yadegar A, Bar-Yoseph H, Monaghan TM, Pakpour S, Severino A, Kuijper EJ, Smits WK, Terveer EM, Neupane S, Nabavi-Rad A, Sadeghi J, Cammarota G, Ianiro G, Nap-Hill E, Leung D, Wong K, Kao D. Fecal microbiota transplantation: current challenges and future landscapes. Clin Microbiol Rev 2024; 37:e0006022. [PMID: 38717124 PMCID: PMC11325845 DOI: 10.1128/cmr.00060-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
SUMMARYGiven the importance of gut microbial homeostasis in maintaining health, there has been considerable interest in developing innovative therapeutic strategies for restoring gut microbiota. One such approach, fecal microbiota transplantation (FMT), is the main "whole gut microbiome replacement" strategy and has been integrated into clinical practice guidelines for treating recurrent Clostridioides difficile infection (rCDI). Furthermore, the potential application of FMT in other indications such as inflammatory bowel disease (IBD), metabolic syndrome, and solid tumor malignancies is an area of intense interest and active research. However, the complex and variable nature of FMT makes it challenging to address its precise functionality and to assess clinical efficacy and safety in different disease contexts. In this review, we outline clinical applications, efficacy, durability, and safety of FMT and provide a comprehensive assessment of its procedural and administration aspects. The clinical applications of FMT in children and cancer immunotherapy are also described. We focus on data from human studies in IBD in contrast with rCDI to delineate the putative mechanisms of this treatment in IBD as a model, including colonization resistance and functional restoration through bacterial engraftment, modulating effects of virome/phageome, gut metabolome and host interactions, and immunoregulatory actions of FMT. Furthermore, we comprehensively review omics technologies, metagenomic approaches, and bioinformatics pipelines to characterize complex microbial communities and discuss their limitations. FMT regulatory challenges, ethical considerations, and pharmacomicrobiomics are also highlighted to shed light on future development of tailored microbiome-based therapeutics.
Collapse
Affiliation(s)
- Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Haggai Bar-Yoseph
- Department of Gastroenterology, Rambam Health Care Campus, Haifa, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tanya Marie Monaghan
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Sepideh Pakpour
- School of Engineering, Faculty of Applied Sciences, UBC, Okanagan Campus, Kelowna, British Columbia, Canada
| | - Andrea Severino
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Ed J Kuijper
- Center for Microbiota Analysis and Therapeutics (CMAT), Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Wiep Klaas Smits
- Center for Microbiota Analysis and Therapeutics (CMAT), Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Elisabeth M Terveer
- Center for Microbiota Analysis and Therapeutics (CMAT), Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Sukanya Neupane
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Sadeghi
- School of Engineering, Faculty of Applied Sciences, UBC, Okanagan Campus, Kelowna, British Columbia, Canada
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Estello Nap-Hill
- Department of Medicine, Division of Gastroenterology, St Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dickson Leung
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Karen Wong
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Dina Kao
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
8
|
Devoie É, Connon RF, Beddoe R, Goordial J, Quinton WL, Craig JR. Disconnected active layers and unfrozen permafrost: A discussion of permafrost-related terms and definitions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169017. [PMID: 38040371 DOI: 10.1016/j.scitotenv.2023.169017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/03/2023]
Abstract
Permafrost is ground that remains at or below 0 °C for two or more consecutive years. It is overlain by an active layer which thaws and freezes annually. The difference between these definitions - the active layer based on pore water phase and permafrost based on soil temperature - leads to challenges when monitoring and modelling permafrost environments. Contrary to its definition, the key properties of permafrost including hardness, bearing capacity, permeability, unfrozen water content, and energy content, depend primarily on the ice content of permafrost and not its temperature. Temperature-based measurements in permafrost systems often overlook key features, e.g. taliks and cryopegs, and comparisons between measured and modelled systems can differ energetically by up to 90 % while reporting the same temperature. Due to the shortcomings of the temperature-based definition, it is recommended that an estimate of ice content be reported alongside temperature in permafrost systems for both in-situ measurements and modelling applications. PLAIN LANGUAGE SUMMARY: Permafrost is ground that remains at or below 0 °C for two or more consecutive years. Above it sits an active layer which thaws and freezes annually (meaning that the water in the ground changes to ice each winter). The difference between these definitions - the active layer based on the state or water in the ground and permafrost based on ground temperature - leads to challenges when measuring (in the field) and modelling (using computers) permafrost environments. In addition to these challenges, the key properties of permafrost including its ability to support infrastructure, convey water, and absorb energy depend more on its ice content than its temperature. Due to the shortcomings of the temperature-based definition, it is recommended that an estimate of ice content be reported alongside temperature in permafrost systems for both field measurements and modelling applications.
Collapse
Affiliation(s)
- É Devoie
- Department of Civil Engineering, Queen's University, Canada.
| | - R F Connon
- Department of Environment and Climate Change, Government of the Northwest Territories, Canada
| | - R Beddoe
- Department of Civil Engineering, Royal Military College of Canada, Canada
| | - J Goordial
- School of Environmental Sciences, University of Guelph, Canada
| | - W L Quinton
- Cold Regions Research Centre, Wilfrid Laurier University, Canada
| | - J R Craig
- Department of Civil and Environmental Engineering, University of Waterloo, Canada
| |
Collapse
|
9
|
McDonald MD, Owusu-Ansah C, Ellenbogen JB, Malone ZD, Ricketts MP, Frolking SE, Ernakovich JG, Ibba M, Bagby SC, Weissman JL. What is microbial dormancy? Trends Microbiol 2024; 32:142-150. [PMID: 37689487 DOI: 10.1016/j.tim.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 09/11/2023]
Abstract
Life can be stressful. One way to deal with stress is to simply wait it out. Microbes do this by entering a state of reduced activity and increased resistance commonly called 'dormancy'. But what is dormancy? Different scientific disciplines emphasize distinct traits and phenotypic ranges in defining dormancy for their microbial species and system-specific questions of interest. Here, we propose a unified definition of microbial dormancy, using a broad framework to place earlier discipline-specific definitions in a new context. We then discuss how this new definition and framework may improve our ability to investigate dormancy using multi-omics tools. Finally, we leverage our framework to discuss the diversity of genomic mechanisms for dormancy in an extreme environment that challenges easy definitions - the permafrost.
Collapse
Affiliation(s)
- Mark D McDonald
- Argonne National Laboratory, Environmental Sciences Division, Lemont, IL 60439, USA
| | | | - Jared B Ellenbogen
- EMergent Ecosystem Response to ChanGE (EMERGE) Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA; Colorado State University, Department of Soil and Crop Sciences, Fort Collins, CO 80523, USA
| | - Zachary D Malone
- University of California, Merced Environmental Systems Graduate Group, Merced, CA 95343, USA
| | - Michael P Ricketts
- Argonne National Laboratory, Environmental Sciences Division, Lemont, IL 60439, USA
| | - Steve E Frolking
- EMergent Ecosystem Response to ChanGE (EMERGE) Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA; University of New Hampshire, Institute for the Study of Earth, Oceans, and Space, Durham, NH 03824, USA
| | - Jessica Gilman Ernakovich
- EMergent Ecosystem Response to ChanGE (EMERGE) Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA; University of New Hampshire, Natural Resources and the Environment, Durham, NH 03824, USA
| | - Michael Ibba
- EMergent Ecosystem Response to ChanGE (EMERGE) Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA; Chapman University, Schmid College of Science and Technology, Orange, CA 92866, USA
| | - Sarah C Bagby
- EMergent Ecosystem Response to ChanGE (EMERGE) Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA; Case Western Reserve University, Department of Biology, Cleveland, OH 44106, USA
| | - J L Weissman
- Chapman University, Schmid College of Science and Technology, Orange, CA 92866, USA; University of Southern California, Department of Biological Sciences, Los Angeles, CA 90007, USA.
| |
Collapse
|
10
|
Azuma T, Usui M, Hayashi T. Inactivation of antibiotic-resistant bacteria in hospital wastewater by ozone-based advanced water treatment processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167432. [PMID: 37777130 DOI: 10.1016/j.scitotenv.2023.167432] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023]
Abstract
The emergence and spread of antimicrobial resistance (AMR) continue on a global scale. The impacts of wastewater on the environment and human health have been identified, and understanding the environmental impacts of hospital wastewater and exploring appropriate forms of treatment are major societal challenges. In the present research, we evaluated the efficacy of ozone (O3)-based advanced wastewater treatment systems (O3, O3/H2O2, O3/UV, and O3/UV/H2O2) for the treatment of antimicrobials, antimicrobial-resistant bacteria (AMRB), and antimicrobial resistance genes (AMRGs) in wastewater from medical facilities. Our results indicated that the O3-based advanced wastewater treatment inactivated multiple antimicrobials (>99.9%) and AMRB after 10-30 min of treatment. Additionally, AMRGs were effectively removed (1.4-6.6 log10) during hospital wastewater treatment. The inactivation and/or removal performances of these pollutants through the O3/UV and O3/UV/H2O2 treatments were significantly (P < 0.05) better than those in the O3 and O3/H2O2 treatments. Altered taxonomic diversity of microorganisms based on 16S rRNA gene sequencing following the O3-based treatment showed that advanced wastewater treatments not only removed viable bacteria but also removed genes constituting microorganisms in the wastewater. Consequently, the objective of this study was to apply advanced wastewater treatments to treat wastewater, mitigate environmental pollution, and alleviate potential threats to environmental and human health associated with AMR. Our findings will contribute to enhancing the effectiveness of advanced wastewater treatment systems through on-site application, not only in wastewater treatment plants (WWTPs) but also in medical facilities. Moreover, our results will help reduce the discharge of AMRB and AMRGs into rivers and maintain the safety of aquatic environments.
Collapse
Affiliation(s)
- Takashi Azuma
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Masaru Usui
- Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan
| | - Tetsuya Hayashi
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan; Faculty of Human Development, Department of Food and Nutrition Management Studies, Soai University, 4-4-1 Nankonaka, Osaka Suminoeku, Osaka 559-0033, Japan
| |
Collapse
|
11
|
Nabbout AE, Ferguson LV, Miyashita A, Adamo SA. Female ticks (Ixodes scapularis) infected with Borrelia burgdorferi have increased overwintering survival, with implications for tick population growth. INSECT SCIENCE 2023; 30:1798-1809. [PMID: 37147777 DOI: 10.1111/1744-7917.13205] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 05/07/2023]
Abstract
The tick, Ixodes scapularis, vectors pathogens such as Borrelia burgdorferi, the bacterium that causes Lyme disease. Over the last few decades I. scapularis has expanded its range, introducing a novel health threat into these areas. Warming temperatures appear to be one cause of its range expansion to the north. However, other factors are also involved. We show that unfed adult female ticks infected with B. burgdorferi have greater overwintering survival than uninfected female ticks. Locally collected adult female ticks were placed in individual microcosms and allowed to overwinter in both forest and dune grass environments. In the spring we collected the ticks and tested both dead and living ticks for B. burgdorferi DNA. Infected ticks had greater overwintering survival compared with uninfected ticks every winter for three consecutive winters in both forest and dune grass environments. We discuss the most plausible explanations for this result. The increased winter survival of adult female ticks could enhance tick population growth. Our results suggest that, in addition to climate change, B. burgdorferi infection itself may be promoting the northern range expansion of I. scapularis. Our study highlights how pathogens could work synergistically with climate change to promote host range expansion.
Collapse
Affiliation(s)
- Amal El Nabbout
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Laura V Ferguson
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| | | | - Shelley A Adamo
- Department of Psychology and Neuroscience, Dalhousie University, Nova Scotia, Canada
| |
Collapse
|
12
|
Scheel M, Zervas A, Rijkers R, Tveit AT, Ekelund F, Campuzano Jiménez F, Christensen TR, Jacobsen CS. Abrupt permafrost thaw triggers activity of copiotrophs and microbiome predators. FEMS Microbiol Ecol 2023; 99:fiad123. [PMID: 37796894 PMCID: PMC10599396 DOI: 10.1093/femsec/fiad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/31/2023] [Accepted: 10/04/2023] [Indexed: 10/07/2023] Open
Abstract
Permafrost soils store a substantial part of the global soil carbon and nitrogen. However, global warming causes abrupt erosion and gradual thaw, which make these stocks vulnerable to microbial decomposition into greenhouse gases. Here, we investigated the microbial response to abrupt in situ permafrost thaw. We sequenced the total RNA of a 1 m deep soil core consisting of up to 26 500-year-old permafrost material from an active abrupt erosion site. We analysed the microbial community in the active layer soil, the recently thawed, and the intact permafrost, and found maximum RNA:DNA ratios in recently thawed permafrost indicating a high microbial activity. In thawed permafrost, potentially copiotrophic Burkholderiales and Sphingobacteriales, but also microbiome predators dominated the community. Overall, both thaw-dependent and long-term soil properties significantly correlated with changes in community composition, as did microbiome predator abundance. Bacterial predators were dominated in shallower depths by Myxococcota, while protozoa, especially Cercozoa and Ciliophora, almost tripled in relative abundance in thawed layers. Our findings highlight the ecological importance of a diverse interkingdom and active microbial community highly abundant in abruptly thawing permafrost, as well as predation as potential biological control mechanism.
Collapse
Affiliation(s)
- Maria Scheel
- Department of Environmental Science, Aarhus University, Roskilde 4000, Denmark
- Department of Ecoscience, Aarhus University, Roskilde 4000, Denmark
| | - Athanasios Zervas
- Department of Environmental Science, Aarhus University, Roskilde 4000, Denmark
| | - Ruud Rijkers
- Department of Ecological Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Alexander T Tveit
- Department of Arctic and Marine Biology, University of Tromsø, Tromsø 9019, Norway
| | - Flemming Ekelund
- Department of Environmental Science, Aarhus University, Roskilde 4000, Denmark
- Department of Biology, Copenhagen University, DK-2200 Copenhagen, Denmark
| | | | - Torben R Christensen
- Department of Ecoscience, Aarhus University, Roskilde 4000, Denmark
- Water, Energy and Environmental Engineering Research Unit, University of Oulu, FI-90014 Oulu, Finland
| | - Carsten S Jacobsen
- Department of Environmental Science, Aarhus University, Roskilde 4000, Denmark
| |
Collapse
|
13
|
Sannino C, Qi W, Rüthi J, Stierli B, Frey B. Distinct taxonomic and functional profiles of high Arctic and alpine permafrost-affected soil microbiomes. ENVIRONMENTAL MICROBIOME 2023; 18:54. [PMID: 37328770 PMCID: PMC10276392 DOI: 10.1186/s40793-023-00509-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Global warming is affecting all cold environments, including the European Alps and Arctic regions. Here, permafrost may be considered a unique ecosystem harboring a distinct microbiome. The frequent freeze-thaw cycles occurring in permafrost-affected soils, and mainly in the seasonally active top layers, modify microbial communities and consequently ecosystem processes. Although taxonomic responses of the microbiomes in permafrost-affected soils have been widely documented, studies about how the microbial genetic potential, especially pathways involved in C and N cycling, changes between active-layer soils and permafrost soils are rare. Here, we used shotgun metagenomics to analyze the microbial and functional diversity and the metabolic potential of permafrost-affected soil collected from an alpine site (Val Lavirun, Engadin area, Switzerland) and a High Arctic site (Station Nord, Villum Research Station, Greenland). The main goal was to discover the key genes abundant in the active-layer and permafrost soils, with the purpose to highlight the potential role of the functional genes found. RESULTS We observed differences between the alpine and High Arctic sites in alpha- and beta-diversity, and in EggNOG, CAZy, and NCyc datasets. In the High Arctic site, the metagenome in permafrost soil had an overrepresentation (relative to that in active-layer soil) of genes involved in lipid transport by fatty acid desaturate and ABC transporters, i.e. genes that are useful in preventing microorganisms from freezing by increasing membrane fluidity, and genes involved in cell defense mechanisms. The majority of CAZy and NCyc genes were overrepresented in permafrost soils relative to active-layer soils in both localities, with genes involved in the degradation of carbon substrates and in the degradation of N compounds indicating high microbial activity in permafrost in response to climate warming. CONCLUSIONS Our study on the functional characteristics of permafrost microbiomes underlines the remarkably high functional gene diversity of the High Arctic and temperate mountain permafrost, including a broad range of C- and N-cycling genes, and multiple survival and energetic metabolisms. Their metabolic versatility in using organic materials from ancient soils undergoing microbial degradation determine organic matter decomposition and greenhouse gas emissions upon permafrost thawing. Attention to their functional genes is therefore essential to predict potential soil-climate feedbacks to the future warmer climate.
Collapse
Affiliation(s)
- Ciro Sannino
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Weihong Qi
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics SIB, Geneva, Switzerland
| | - Joel Rüthi
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Beat Stierli
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Beat Frey
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland.
| |
Collapse
|
14
|
Wang Y, Thompson KN, Yan Y, Short MI, Zhang Y, Franzosa EA, Shen J, Hartmann EM, Huttenhower C. RNA-based amplicon sequencing is ineffective in measuring metabolic activity in environmental microbial communities. MICROBIOME 2023; 11:131. [PMID: 37312147 DOI: 10.1186/s40168-022-01449-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Characterization of microbial activity is essential to the understanding of the basic biology of microbial communities, as the function of a microbiome is defined by its biochemically active ("viable") community members. Current sequence-based technologies can rarely differentiate microbial activity, due to their inability to distinguish live and dead sourced DNA. As a result, our understanding of microbial community structures and the potential mechanisms of transmission between humans and our surrounding environments remains incomplete. As a potential solution, 16S rRNA transcript-based amplicon sequencing (16S-RNA-seq) has been proposed as a reliable methodology to characterize the active components of a microbiome, but its efficacy has not been evaluated systematically. Here, we present our work to benchmark RNA-based amplicon sequencing for activity assessment in synthetic and environmentally sourced microbial communities. RESULTS In synthetic mixtures of living and heat-killed Escherichia coli and Streptococcus sanguinis, 16S-RNA-seq successfully reconstructed the active compositions of the communities. However, in the realistic environmental samples, no significant compositional differences were observed in RNA ("actively transcribed - active") vs. DNA ("whole" communities) spiked with E. coli controls, suggesting that this methodology is not appropriate for activity assessment in complex communities. The results were slightly different when validated in environmental samples of similar origins (i.e., from Boston subway systems), where samples were differentiated both by environment type as well as by library type, though compositional dissimilarities between DNA and RNA samples remained low (Bray-Curtis distance median: 0.34-0.49). To improve the interpretation of 16S-RNA-seq results, we compared our results with previous studies and found that 16S-RNA-seq suggests taxon-wise viability trends (i.e., specific taxa are universally more or less likely to be viable compared to others) in samples of similar origins. CONCLUSIONS This study provides a comprehensive evaluation of 16S-RNA-seq for viability assessment in synthetic and complex microbial communities. The results found that while 16S-RNA-seq was able to semi-quantify microbial viability in relatively simple communities, it only suggests a taxon-dependent "relative" viability in realistic communities. Video Abstract.
Collapse
Affiliation(s)
- Ya Wang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
- Harvard T.H. Chan School of Public Health Microbiome Analysis Core, Building SPH1, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - Kelsey N Thompson
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
- Harvard T.H. Chan School of Public Health Microbiome Analysis Core, Building SPH1, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - Yan Yan
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
- Harvard T.H. Chan School of Public Health Microbiome Analysis Core, Building SPH1, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - Meghan I Short
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
- Harvard T.H. Chan School of Public Health Microbiome Analysis Core, Building SPH1, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - Yancong Zhang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
- Harvard T.H. Chan School of Public Health Microbiome Analysis Core, Building SPH1, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - Eric A Franzosa
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
- Harvard T.H. Chan School of Public Health Microbiome Analysis Core, Building SPH1, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - Jiaxian Shen
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Erica M Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA.
- Harvard T.H. Chan School of Public Health Microbiome Analysis Core, Building SPH1, 655 Huntington Avenue, Boston, MA, 02115, USA.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
15
|
Waldrop MP, Chabot CL, Liebner S, Holm S, Snyder MW, Dillon M, Dudgeon SR, Douglas TA, Leewis MC, Walter Anthony KM, McFarland JW, Arp CD, Bondurant AC, Taş N, Mackelprang R. Permafrost microbial communities and functional genes are structured by latitudinal and soil geochemical gradients. THE ISME JOURNAL 2023:10.1038/s41396-023-01429-6. [PMID: 37217592 DOI: 10.1038/s41396-023-01429-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/24/2023]
Abstract
Permafrost underlies approximately one quarter of Northern Hemisphere terrestrial surfaces and contains 25-50% of the global soil carbon (C) pool. Permafrost soils and the C stocks within are vulnerable to ongoing and future projected climate warming. The biogeography of microbial communities inhabiting permafrost has not been examined beyond a small number of sites focused on local-scale variation. Permafrost is different from other soils. Perennially frozen conditions in permafrost dictate that microbial communities do not turn over quickly, thus possibly providing strong linkages to past environments. Thus, the factors structuring the composition and function of microbial communities may differ from patterns observed in other terrestrial environments. Here, we analyzed 133 permafrost metagenomes from North America, Europe, and Asia. Permafrost biodiversity and taxonomic distribution varied in relation to pH, latitude and soil depth. The distribution of genes differed by latitude, soil depth, age, and pH. Genes that were the most highly variable across all sites were associated with energy metabolism and C-assimilation. Specifically, methanogenesis, fermentation, nitrate reduction, and replenishment of citric acid cycle intermediates. This suggests that adaptations to energy acquisition and substrate availability are among some of the strongest selective pressures shaping permafrost microbial communities. The spatial variation in metabolic potential has primed communities for specific biogeochemical processes as soils thaw due to climate change, which could cause regional- to global- scale variation in C and nitrogen processing and greenhouse gas emissions.
Collapse
Affiliation(s)
- Mark P Waldrop
- Geology, Minerals, Energy, and Geophysics Science Center, United States Geological Survey, Menlo Park, CA, 94025, USA.
| | - Christopher L Chabot
- California State University Northridge, 18111 Nordhoff St., Northridge, CA, 91330, USA
| | - Susanne Liebner
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473, Potsdam, Germany
- University of Potsdam, Institute of Biochemistry and Biology, 14476, Potsdam, Germany
| | - Stine Holm
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473, Potsdam, Germany
| | - Michael W Snyder
- California State University Northridge, 18111 Nordhoff St., Northridge, CA, 91330, USA
| | - Megan Dillon
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Steven R Dudgeon
- California State University Northridge, 18111 Nordhoff St., Northridge, CA, 91330, USA
| | - Thomas A Douglas
- U.S. Army Cold Regions Research and Engineering Laboratory 9th Avenue, Building 4070 Fort, Wainwright, AK, 99703, USA
| | - Mary-Cathrine Leewis
- Agriculture and Agri-Food Canada, 2560 Boulevard Hochelaga, Québec, QC, G1V 2J3, Canada
| | - Katey M Walter Anthony
- Water and Environmental Research Center, University Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Jack W McFarland
- Geology, Minerals, Energy, and Geophysics Science Center, United States Geological Survey, Menlo Park, CA, 94025, USA
| | - Christopher D Arp
- Water and Environmental Research Center, University Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Allen C Bondurant
- Water and Environmental Research Center, University Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Neslihan Taş
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Rachel Mackelprang
- California State University Northridge, 18111 Nordhoff St., Northridge, CA, 91330, USA.
| |
Collapse
|
16
|
Wu X, Almatari AL, Cyr WA, Williams DE, Pfiffner SM, Rivkina EM, Lloyd KG, Vishnivetskaya TA. Microbial life in 25-m-deep boreholes in ancient permafrost illuminated by metagenomics. ENVIRONMENTAL MICROBIOME 2023; 18:33. [PMID: 37055869 PMCID: PMC10103415 DOI: 10.1186/s40793-023-00487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
This study describes the composition and potential metabolic adaptation of microbial communities in northeastern Siberia, a repository of the oldest permafrost in the Northern Hemisphere. Samples of contrasting depth (1.75 to 25.1 m below surface), age (from ~ 10 kyr to 1.1 Myr) and salinity (from low 0.1-0.2 ppt and brackish 0.3-1.3 ppt to saline 6.1 ppt) were collected from freshwater permafrost (FP) of borehole AL1_15 on the Alazeya River, and coastal brackish permafrost (BP) overlying marine permafrost (MP) of borehole CH1_17 on the East Siberian Sea coast. To avoid the limited view provided with culturing work, we used 16S rRNA gene sequencing to show that the biodiversity decreased dramatically with permafrost age. Nonmetric multidimensional scaling (NMDS) analysis placed the samples into three groups: FP and BP together (10-100 kyr old), MP (105-120 kyr old), and FP (> 900 kyr old). Younger FP/BP deposits were distinguished by the presence of Acidobacteriota, Bacteroidota, Chloroflexota_A, and Gemmatimonadota, older FP deposits had a higher proportion of Gammaproteobacteria, and older MP deposits had much more uncultured groups within Asgardarchaeota, Crenarchaeota, Chloroflexota, Patescibacteria, and unassigned archaea. The 60 recovered metagenome-assembled genomes and un-binned metagenomic assemblies suggested that despite the large taxonomic differences between samples, they all had a wide range of taxa capable of fermentation coupled to nitrate utilization, with the exception of sulfur reduction present only in old MP deposits.
Collapse
Affiliation(s)
- Xiaofen Wu
- Center for Environmental Biotechnology, University of Tennessee, 1416 Circle Drive, Knoxville, TN, 37996-1605, USA
| | - Abraham L Almatari
- Center for Environmental Biotechnology, University of Tennessee, 1416 Circle Drive, Knoxville, TN, 37996-1605, USA
| | - Wyatt A Cyr
- Center for Environmental Biotechnology, University of Tennessee, 1416 Circle Drive, Knoxville, TN, 37996-1605, USA
| | - Daniel E Williams
- Center for Environmental Biotechnology, University of Tennessee, 1416 Circle Drive, Knoxville, TN, 37996-1605, USA
| | - Susan M Pfiffner
- Center for Environmental Biotechnology, University of Tennessee, 1416 Circle Drive, Knoxville, TN, 37996-1605, USA
| | - Elizaveta M Rivkina
- Soil Cryology Laboratory, Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino, Russia, 142290
| | - Karen G Lloyd
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Tatiana A Vishnivetskaya
- Center for Environmental Biotechnology, University of Tennessee, 1416 Circle Drive, Knoxville, TN, 37996-1605, USA.
- Soil Cryology Laboratory, Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino, Russia, 142290.
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
17
|
Lemke M, DeSalle R. The Next Generation of Microbial Ecology and Its Importance in Environmental Sustainability. MICROBIAL ECOLOGY 2023; 85:781-795. [PMID: 36826587 PMCID: PMC10156817 DOI: 10.1007/s00248-023-02185-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/24/2023] [Indexed: 05/04/2023]
Abstract
Collectively, we have been reviewers for microbial ecology, genetics and genomics studies that include environmental DNA (eDNA), microbiome studies, and whole bacterial genome biology for Microbial Ecology and other journals for about three decades. Here, we wish to point out trends and point to areas of study that readers, especially those moving into the next generation of microbial ecology research, might learn and consider. In this communication, we are not saying the work currently being accomplished in microbial ecology and restoration biology is inadequate. What we are saying is that a significant milestone in microbial ecology has been reached, and approaches that may have been overlooked or were unable to be completed before should be reconsidered in moving forward into a new more ecological era where restoration of the ecological trajectory of systems has become critical. It is our hope that this introduction, along with the papers that make up this special issue, will address the sense of immediacy and focus needed to move into the next generation of microbial ecology study.
Collapse
Affiliation(s)
- Michael Lemke
- Department of Biology, University of Illinois at Springfield, Springfield, IL, USA.
- Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA.
| | - Rob DeSalle
- Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
| |
Collapse
|
18
|
Alempic JM, Lartigue A, Goncharov AE, Grosse G, Strauss J, Tikhonov AN, Fedorov AN, Poirot O, Legendre M, Santini S, Abergel C, Claverie JM. An Update on Eukaryotic Viruses Revived from Ancient Permafrost. Viruses 2023; 15:564. [PMID: 36851778 PMCID: PMC9958942 DOI: 10.3390/v15020564] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
One quarter of the Northern hemisphere is underlain by permanently frozen ground, referred to as permafrost. Due to climate warming, irreversibly thawing permafrost is releasing organic matter frozen for up to a million years, most of which decomposes into carbon dioxide and methane, further enhancing the greenhouse effect. Part of this organic matter also consists of revived cellular microbes (prokaryotes, unicellular eukaryotes) as well as viruses that have remained dormant since prehistorical times. While the literature abounds on descriptions of the rich and diverse prokaryotic microbiomes found in permafrost, no additional report about "live" viruses have been published since the two original studies describing pithovirus (in 2014) and mollivirus (in 2015). This wrongly suggests that such occurrences are rare and that "zombie viruses" are not a public health threat. To restore an appreciation closer to reality, we report the preliminary characterizations of 13 new viruses isolated from seven different ancient Siberian permafrost samples, one from the Lena river and one from Kamchatka cryosol. As expected from the host specificity imposed by our protocol, these viruses belong to five different clades infecting Acanthamoeba spp. but not previously revived from permafrost: Pandoravirus, Cedratvirus, Megavirus, and Pacmanvirus, in addition to a new Pithovirus strain.
Collapse
Affiliation(s)
- Jean-Marie Alempic
- IGS, Information Génomique & Structurale (UMR7256), Institut de Microbiologie de la Méditerranée (FR 3489), Institut Microbiologie, Bioénergies et Biotechnologie, and Institut Origines, CNRS, Aix Marseille University, 13288 Marseille, France
| | - Audrey Lartigue
- IGS, Information Génomique & Structurale (UMR7256), Institut de Microbiologie de la Méditerranée (FR 3489), Institut Microbiologie, Bioénergies et Biotechnologie, and Institut Origines, CNRS, Aix Marseille University, 13288 Marseille, France
| | - Artemiy E. Goncharov
- Department of Molecular Microbiology, Institute of Experimental Medicine, Department of Epidemiology, Parasitology and Disinfectology, Northwestern State Medical Mechnikov University, Saint Petersburg 195067, Russia
| | - Guido Grosse
- Permafrost Research Section, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 14473 Potsdam, Germany
- Institute of Geosciences, University of Potsdam, 14478 Potsdam, Germany
| | - Jens Strauss
- Permafrost Research Section, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 14473 Potsdam, Germany
| | - Alexey N. Tikhonov
- Laboratory of Theriology, Zoological Institute of Russian Academy of Science, Saint Petersburg 199034, Russia
| | | | - Olivier Poirot
- IGS, Information Génomique & Structurale (UMR7256), Institut de Microbiologie de la Méditerranée (FR 3489), Institut Microbiologie, Bioénergies et Biotechnologie, and Institut Origines, CNRS, Aix Marseille University, 13288 Marseille, France
| | - Matthieu Legendre
- IGS, Information Génomique & Structurale (UMR7256), Institut de Microbiologie de la Méditerranée (FR 3489), Institut Microbiologie, Bioénergies et Biotechnologie, and Institut Origines, CNRS, Aix Marseille University, 13288 Marseille, France
| | - Sébastien Santini
- IGS, Information Génomique & Structurale (UMR7256), Institut de Microbiologie de la Méditerranée (FR 3489), Institut Microbiologie, Bioénergies et Biotechnologie, and Institut Origines, CNRS, Aix Marseille University, 13288 Marseille, France
| | - Chantal Abergel
- IGS, Information Génomique & Structurale (UMR7256), Institut de Microbiologie de la Méditerranée (FR 3489), Institut Microbiologie, Bioénergies et Biotechnologie, and Institut Origines, CNRS, Aix Marseille University, 13288 Marseille, France
| | - Jean-Michel Claverie
- IGS, Information Génomique & Structurale (UMR7256), Institut de Microbiologie de la Méditerranée (FR 3489), Institut Microbiologie, Bioénergies et Biotechnologie, and Institut Origines, CNRS, Aix Marseille University, 13288 Marseille, France
| |
Collapse
|
19
|
Lee RM, Griffin N, Jones E, Abbott BW, Frei RJ, Bratsman S, Proteau M, Errigo IM, Shogren A, Bowden WB, Zarnetske JP, Aanderud ZT. Bacterioplankton dispersal and biogeochemical function across Alaskan Arctic catchments. Environ Microbiol 2022; 24:5690-5706. [PMID: 36273269 DOI: 10.1111/1462-2920.16259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/21/2022] [Indexed: 01/12/2023]
Abstract
In Arctic catchments, bacterioplankton are dispersed through soils and streams, both of which freeze and thaw/flow in phase, seasonally. To characterize this dispersal and its potential impact on biogeochemistry, we collected bacterioplankton and measured stream physicochemistry during snowmelt and after vegetation senescence across multiple stream orders in alpine, tundra, and tundra-dominated-by-lakes catchments. In all catchments, differences in community composition were associated with seasonal thaw, then attachment status (i.e. free floating or sediment associated), and then stream order. Bacterioplankton taxonomic diversity and richness were elevated in sediment-associated fractions and in higher-order reaches during snowmelt. Families Chthonomonadaceae, Pyrinomonadaceae, and Xiphinematobacteraceae were abundantly different across seasons, while Flavobacteriaceae and Microscillaceae were abundantly different between free-floating and sediment-associated fractions. Physicochemical data suggested there was high iron (Fe+ ) production (alpine catchment); Fe+ production and chloride (Cl- ) removal (tundra catchment); and phosphorus (SRP) removal and ammonium (NH4 + ) production (lake catchment). In tundra landscapes, these 'hot spots' of Fe+ production and Cl- removal accompanied shifts in species richness, while SRP promoted the antecedent community. Our findings suggest that freshet increases bacterial dispersal from headwater catchments to receiving catchments, where bacterioplankton-mineral relations stabilized communities in free-flowing reaches, but bacterioplankton-nutrient relations stabilized those punctuated by lakes.
Collapse
Affiliation(s)
- Raymond M Lee
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, USA
| | - Natasha Griffin
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvalis, Oregon, USA
| | - Erin Jones
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, USA
| | - Benjamin W Abbott
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, USA
| | - Rebecca J Frei
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Samuel Bratsman
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, USA
| | - Mary Proteau
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, USA
| | - Isabella M Errigo
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, USA
| | - Arial Shogren
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - William B Bowden
- The Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, Vermont, USA
| | - Jay P Zarnetske
- Department of Earth and Environmental Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Zachary T Aanderud
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
20
|
Romanowicz KJ, Kling GW. Summer thaw duration is a strong predictor of the soil microbiome and its response to permafrost thaw in arctic tundra. Environ Microbiol 2022; 24:6220-6237. [PMID: 36135820 PMCID: PMC10092252 DOI: 10.1111/1462-2920.16218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/19/2022] [Indexed: 01/12/2023]
Abstract
Climate warming has increased permafrost thaw in arctic tundra and extended the duration of annual thaw (number of thaw days in summer) along soil profiles. Predicting the microbial response to permafrost thaw depends largely on knowing how increased thaw duration affects the composition of the soil microbiome. Here, we determined soil microbiome composition from the annually thawed surface active layer down through permafrost from two tundra types at each of three sites on the North Slope of Alaska, USA. Variations in soil microbial taxa were found between sites up to ~90 km apart, between tundra types, and between soil depths. Microbiome differences at a site were greatest across transitions from thawed to permafrost depths. Results from correlation analysis based on multi-decadal thaw surveys show that differences in thaw duration by depth were significantly, positively correlated with the abundance of dominant taxa in the active layer and negatively correlated with dominant taxa in the permafrost. Microbiome composition within the transition zone was statistically similar to that in the permafrost, indicating that recent decades of intermittent thaw have not yet induced a shift from permafrost to active-layer microbes. We suggest that thaw duration rather than thaw frequency has a greater impact on the composition of microbial taxa within arctic soils.
Collapse
Affiliation(s)
- Karl J Romanowicz
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - George W Kling
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
21
|
Rigou S, Santini S, Abergel C, Claverie JM, Legendre M. Past and present giant viruses diversity explored through permafrost metagenomics. Nat Commun 2022; 13:5853. [PMID: 36207343 PMCID: PMC9546926 DOI: 10.1038/s41467-022-33633-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Giant viruses are abundant in aquatic environments and ecologically important through the metabolic reprogramming of their hosts. Less is known about giant viruses from soil even though two of them, belonging to two different viral families, were reactivated from 30,000-y-old permafrost samples. This suggests an untapped diversity of Nucleocytoviricota in this environment. Through permafrost metagenomics we reveal a unique diversity pattern and a high heterogeneity in the abundance of giant viruses, representing up to 12% of the sum of sequence coverage in one sample. Pithoviridae and Orpheoviridae-like viruses were the most important contributors. A complete 1.6 Mb Pithoviridae-like circular genome was also assembled from a 42,000-y-old sample. The annotation of the permafrost viral sequences revealed a patchwork of predicted functions amidst a larger reservoir of genes of unknown functions. Finally, the phylogenetic reconstructions not only revealed gene transfers between cells and viruses, but also between viruses from different families.
Collapse
Affiliation(s)
- Sofia Rigou
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale (Unité Mixte de Recherche 7256), Institut de Microbiologie de la Méditerranée (FR3479), 13288, Marseille Cedex 9, France
| | - Sébastien Santini
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale (Unité Mixte de Recherche 7256), Institut de Microbiologie de la Méditerranée (FR3479), 13288, Marseille Cedex 9, France
| | - Chantal Abergel
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale (Unité Mixte de Recherche 7256), Institut de Microbiologie de la Méditerranée (FR3479), 13288, Marseille Cedex 9, France
| | - Jean-Michel Claverie
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale (Unité Mixte de Recherche 7256), Institut de Microbiologie de la Méditerranée (FR3479), 13288, Marseille Cedex 9, France
| | - Matthieu Legendre
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale (Unité Mixte de Recherche 7256), Institut de Microbiologie de la Méditerranée (FR3479), 13288, Marseille Cedex 9, France.
| |
Collapse
|
22
|
Azuma T, Uchiyama T, Zhang D, Usui M, Hayashi T. Distribution and characteristics of carbapenem-resistant and extended-spectrum β-lactamase (ESBL) producing Escherichia coli in hospital effluents, sewage treatment plants, and river water in an urban area of Japan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156232. [PMID: 35623520 DOI: 10.1016/j.scitotenv.2022.156232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/21/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Occurrence of profiles of the carbapenem-resistant Escherichia coli (CRE-E) and extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (ESBL-E) in an urban river in a sub-catchment of the Yodo River Basin, one of the representative water systems of Japan was investigated. We conducted seasonal and year-round surveys for the antimicrobial-resistant bacteria (AMRB) and antimicrobial-resistance genes (AMRGs) in hospital effluents, sewage treatment plant (STP) wastewater, and river water; subsequently, contributions to wastewater discharge into the rivers were estimated by analyses based on the mass flux. Furthermore, the characteristics of AMRB in the water samples were evaluated on the basis of antimicrobial susceptibility tests. CRE-E and ESBL-E were detected in all water samples with mean values 11 and 1900 CFU/mL in the hospital effluent, 58 and 4550 CFU/mL in the STP influent, not detected to 1 CFU/mL in the STP effluent, and 1 and 1 CFU/mL in the STP discharge into the river, respectively. Contributions of the pollution load derived from the STP effluent discharged into the river water were 1 to 21%. The resistome profiles for blaIMP, blaTEM, and blaCTX-M genes in each water sample showed that AMRGs were not completely removed in the wastewater treatment process in the STP, and the relative abundances of blaIMP, blaTEM, and blaCTX-M genes were almost similar (P<0.05). Susceptibility testing of antimicrobial-resistant E. coli isolates showed that CRE-E and ESBL-E detected in wastewaters and river water were linked to the prevalence of AMRB in clinical settings. These results suggest the importance of conducting environmental risk management of AMRB and AMRGs in the river environment. To our knowledge, this is the first detailed study that links the medical environment to CRE-E and ESBL-E for evaluating the AMRB and AMRGs in hospital effluents, STP wastewater, and river water at the basin scale on the basis of mass flux as well as the contributions of CRE-E and ESBL-E to wastewater discharge into the river.
Collapse
Affiliation(s)
- Takashi Azuma
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Tomoharu Uchiyama
- Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan
| | - Dongsheng Zhang
- Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan
| | - Masaru Usui
- Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan
| | - Tetsuya Hayashi
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan; Faculty of Human Development, Department of Food and Nutrition Management Studies, Soai University, 4-4-1 Nankonaka, Osaka Suminoeku, Osaka 559-0033, Japan
| |
Collapse
|
23
|
Ernakovich JG, Barbato RA, Rich VI, Schädel C, Hewitt RE, Doherty SJ, Whalen E, Abbott BW, Barta J, Biasi C, Chabot CL, Hultman J, Knoblauch C, Vetter M, Leewis M, Liebner S, Mackelprang R, Onstott TC, Richter A, Schütte U, Siljanen HMP, Taş N, Timling I, Vishnivetskaya TA, Waldrop MP, Winkel M. Microbiome assembly in thawing permafrost and its feedbacks to climate. GLOBAL CHANGE BIOLOGY 2022; 28:5007-5026. [PMID: 35722720 PMCID: PMC9541943 DOI: 10.1111/gcb.16231] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/24/2022] [Indexed: 05/15/2023]
Abstract
The physical and chemical changes that accompany permafrost thaw directly influence the microbial communities that mediate the decomposition of formerly frozen organic matter, leading to uncertainty in permafrost-climate feedbacks. Although changes to microbial metabolism and community structure are documented following thaw, the generality of post-thaw assembly patterns across permafrost soils of the world remains uncertain, limiting our ability to predict biogeochemistry and microbial community responses to climate change. Based on our review of the Arctic microbiome, permafrost microbiology, and community ecology, we propose that Assembly Theory provides a framework to better understand thaw-mediated microbiome changes and the implications for community function and climate feedbacks. This framework posits that the prevalence of deterministic or stochastic processes indicates whether the community is well-suited to thrive in changing environmental conditions. We predict that on a short timescale and following high-disturbance thaw (e.g., thermokarst), stochasticity dominates post-thaw microbiome assembly, suggesting that functional predictions will be aided by detailed information about the microbiome. At a longer timescale and lower-intensity disturbance (e.g., active layer deepening), deterministic processes likely dominate, making environmental parameters sufficient for predicting function. We propose that the contribution of stochastic and deterministic processes to post-thaw microbiome assembly depends on the characteristics of the thaw disturbance, as well as characteristics of the microbial community, such as the ecological and phylogenetic breadth of functional guilds, their functional redundancy, and biotic interactions. These propagate across space and time, potentially providing a means for predicting the microbial forcing of greenhouse gas feedbacks to global climate change.
Collapse
Affiliation(s)
- Jessica G. Ernakovich
- Natural Resources and the EnvironmentUniversity of New HampshireDurhamNew HampshireUSA
- Molecular, Cellular and Biomedical SciencesUniversity of New HampshireDurhamNew HampshireUSA
- EMergent Ecosystem Response to ChanGE (EMERGE) Biology Integration Institute
| | - Robyn A. Barbato
- U.S. Army Cold Regions Research and Engineering LaboratoryHanoverNew HampshireUSA
| | - Virginia I. Rich
- EMergent Ecosystem Response to ChanGE (EMERGE) Biology Integration Institute
- Microbiology DepartmentOhio State UniversityColumbusOhioUSA
- Byrd Polar and Climate Research CenterOhio State UniversityColombusOhioUSA
- Center of Microbiome ScienceOhio State UniversityColombusOhioUSA
| | - Christina Schädel
- Center for Ecosystem Science and SocietyNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Rebecca E. Hewitt
- Center for Ecosystem Science and SocietyNorthern Arizona UniversityFlagstaffArizonaUSA
- Department of Environmental StudiesAmherst CollegeAmherstMassachusettsUSA
| | - Stacey J. Doherty
- Molecular, Cellular and Biomedical SciencesUniversity of New HampshireDurhamNew HampshireUSA
- U.S. Army Cold Regions Research and Engineering LaboratoryHanoverNew HampshireUSA
| | - Emily D. Whalen
- Natural Resources and the EnvironmentUniversity of New HampshireDurhamNew HampshireUSA
| | - Benjamin W. Abbott
- Department of Plant and Wildlife SciencesBrigham Young UniversityProvoUtahUSA
| | - Jiri Barta
- Centre for Polar EcologyUniversity of South BohemiaCeske BudejoviceCzech Republic
| | - Christina Biasi
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandKuopioFinland
| | - Chris L. Chabot
- California State University NorthridgeNorthridgeCaliforniaUSA
| | | | - Christian Knoblauch
- Institute of Soil ScienceUniversität HamburgHamburgGermany
- Center for Earth System Research and SustainabilityUniversität HamburgHamburgGermany
| | - Maggie C. Y. Lau Vetter
- Department of GeosciencesPrinceton UniversityPrincetonNew JerseyUSA
- Laboratory of Extraterrestrial Ocean Systems (LEOS)Institute of Deep‐sea Science and EngineeringChinese Academy of SciencesSanyaChina
| | - Mary‐Cathrine Leewis
- U.S. Geological Survey, GeologyMinerals, Energy and Geophysics Science CenterMenlo ParkCaliforniaUSA
- Agriculture and Agri‐Food CanadaQuebec Research and Development CentreQuebecQuebecCanada
| | - Susanne Liebner
- GFZ German Research Centre for GeosciencesSection GeomicrobiologyPotsdamGermany
| | | | | | - Andreas Richter
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaAustria
- Austrian Polar Research InstituteViennaAustria
| | | | - Henri M. P. Siljanen
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandKuopioFinland
| | - Neslihan Taş
- Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | | | - Tatiana A. Vishnivetskaya
- University of TennesseeKnoxvilleTennesseeUSA
- Institute of Physicochemical and Biological Problems of Soil SciencePushchinoRussia
| | - Mark P. Waldrop
- U.S. Geological Survey, GeologyMinerals, Energy and Geophysics Science CenterMenlo ParkCaliforniaUSA
| | - Matthias Winkel
- GFZ German Research Centre for GeosciencesInterface GeochemistryPotsdamGermany
- BfR Federal Institute for Risk AssessmentBerlinGermany
| |
Collapse
|
24
|
Corona Ramírez A, Cailleau G, Fatton M, Dorador C, Junier P. Diversity of Lysis-Resistant Bacteria and Archaea in the Polyextreme Environment of Salar de Huasco. Front Microbiol 2022; 13:826117. [PMID: 36687602 PMCID: PMC9847572 DOI: 10.3389/fmicb.2022.826117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/07/2022] [Indexed: 01/25/2023] Open
Abstract
The production of specialized resting cells is a remarkable strategy developed by several organisms to survive unfavorable environmental conditions. Spores are specialized resting cells that are characterized by low to absent metabolic activity and higher resistance. Spore-like cells are known from multiple groups of bacteria, which can form spores under suboptimal growth conditions (e.g., starvation). In contrast, little is known about the production of specialized resting cells in archaea. In this study, we applied a culture-independent method that uses physical and chemical lysis, to assess the diversity of lysis-resistant bacteria and archaea and compare it to the overall prokaryotic diversity (direct DNA extraction). The diversity of lysis-resistant cells was studied in the polyextreme environment of the Salar de Huasco. The Salar de Huasco is a high-altitude athalassohaline wetland in the Chilean Altiplano. Previous studies have shown a high diversity of bacteria and archaea in the Salar de Huasco, but the diversity of lysis-resistant microorganisms has never been investigated. The underlying hypothesis was that the combination of extreme abiotic conditions might favor the production of specialized resting cells. Samples were collected from sediment cores along a saline gradient and microbial mats were collected in small surrounding ponds. A significantly different diversity and composition were found in the sediment cores or microbial mats. Furthermore, our results show a high diversity of lysis-resistant cells not only in bacteria but also in archaea. The bacterial lysis-resistant fraction was distinct in comparison to the overall community. Also, the ability to survive the lysis-resistant treatment was restricted to a few groups, including known spore-forming phyla such as Firmicutes and Actinobacteria. In contrast to bacteria, lysis resistance was widely spread in archaea, hinting at a generalized resistance to lysis, which is at least comparable to the resistance of dormant cells in bacteria. The enrichment of Natrinema and Halarchaeum in the lysis-resistant fraction could hint at the production of cyst-like cells or other resistant cells. These results can guide future studies aiming to isolate and broaden the characterization of lysis-resistant archaea.
Collapse
Affiliation(s)
- Andrea Corona Ramírez
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Guillaume Cailleau
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Mathilda Fatton
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Cristina Dorador
- Department of Biotechnology, University of Antofagasta, Antofagasta, Chile
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland,*Correspondence: Pilar Junier,
| |
Collapse
|
25
|
Scheel M, Zervas A, Jacobsen CS, Christensen TR. Microbial Community Changes in 26,500-Year-Old Thawing Permafrost. Front Microbiol 2022; 13:787146. [PMID: 35401488 PMCID: PMC8988141 DOI: 10.3389/fmicb.2022.787146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/09/2022] [Indexed: 12/02/2022] Open
Abstract
Northern permafrost soils store more than half of the global soil carbon. Frozen for at least two consecutive years, but often for millennia, permafrost temperatures have increased drastically in the last decades. The resulting thermal erosion leads not only to gradual thaw, resulting in an increase of seasonally thawing soil thickness, but also to abrupt thaw events, such as sudden collapses of the soil surface. These could affect 20% of the permafrost zone and half of its organic carbon, increasing accessibility for deeper rooting vegetation and microbial decomposition into greenhouse gases. Knowledge gaps include the impact of permafrost thaw on the soil microfauna as well as key taxa to change the microbial mineralization of ancient permafrost carbon stocks during erosion. Here, we present the first sequencing study of an abrupt permafrost erosion microbiome in Northeast Greenland, where a thermal erosion gully collapsed in the summer of 2018, leading to the thawing of 26,500-year-old permafrost material. We investigated which soil parameters (pH, soil carbon content, age and moisture, organic and mineral horizons, and permafrost layers) most significantly drove changes of taxonomic diversity and the abundance of soil microorganisms in two consecutive years of intense erosion. Sequencing of the prokaryotic 16S rRNA and fungal ITS2 gene regions at finely scaled depth increments revealed decreasing alpha diversity with depth, soil age, and pH. The most significant drivers of variation were found in the soil age, horizons, and permafrost layer for prokaryotic and fungal beta diversity. Permafrost was mainly dominated by Proteobacteria and Firmicutes, with Polaromonas identified as the most abundant taxon. Thawed permafrost samples indicated increased abundance of several copiotrophic phyla, such as Bacteroidia, suggesting alterations of carbon utilization pathways within eroding permafrost.
Collapse
Affiliation(s)
- Maria Scheel
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Roskilde, Denmark
| | - Athanasios Zervas
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | | | - Torben R. Christensen
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Roskilde, Denmark
- Oulanka Research Station, Oulu University, Oulu, Finland
| |
Collapse
|
26
|
Abstract
Studies from cryoenvironments on Earth have demonstrated that microbial life is widespread and have identified microorganisms that are metabolically active and can replicate at subzero temperatures if liquid water is present. However, cryophiles (subzero-growing organisms) often exist in low densities in the environment and their growth rate is low, making them difficult to study. Compounding this, a large number of dormant and dead cells are preserved in frozen settings. Using integrated genomic and activity-based approaches is essential to understanding the cold limits of life on Earth, as well as how cryophilic microorganisms are poised to adapt and metabolize in warming settings, such as in thawing permafrost. An increased understanding of cryophilic lifestyles on Earth will also help inform how (and where) we look for potential microbial life on cold planetary bodies in our solar system such as Mars, Europa, and Enceladus.
Collapse
|
27
|
Impact of river channel lateral migration on microbial communities across a discontinuous permafrost floodplain. Appl Environ Microbiol 2021; 87:e0133921. [PMID: 34347514 DOI: 10.1128/aem.01339-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Permafrost soils store approximately twice the amount of carbon currently present in Earth's atmosphere and are acutely impacted by climate change due to the polar amplification of increasing global temperature. Many organic-rich permafrost sediments are located on large river floodplains, where river channel migration periodically erodes and re-deposits the upper tens of meters of sediment. Channel migration exerts a first-order control on the geographic distribution of permafrost and floodplain stratigraphy and thus may affect microbial habitats. To examine how river channel migration in discontinuous permafrost environments affects microbial community composition, we used amplicon sequencing of the 16S rRNA gene on sediment samples from floodplain cores and exposed riverbanks along the Koyukuk River, a large tributary of the Yukon River in west-central Alaska. Microbial communities are sensitive to permafrost thaw: communities found in deep samples thawed by the river closely resembled near-surface active layer communities in non-metric multidimensional scaling analyses but did not resemble floodplain permafrost communities at the same depth. Microbial communities also displayed lower diversity and evenness in permafrost than in both the active layer and permafrost-free point bars recently deposited by river channel migration. Taxonomic assignments based on 16S and quantitative PCR for the methyl-coenzyme M reductase functional gene demonstrated that methanogens and methanotrophs are abundant in older permafrost-bearing deposits, but not in younger, non-permafrost point bar deposits. The results suggested that river migration, which regulates the distribution of permafrost, also modulates the distribution of microbes potentially capable of producing and consuming methane on the Koyukuk River floodplain. Importance Arctic lowlands contain large quantities of soil organic carbon that is currently sequestered in permafrost. With rising temperatures, permafrost thaw may allow this carbon to be consumed by microbial communities and released to the atmosphere as carbon dioxide or methane. We used gene sequencing to determine the microbial communities present in the floodplain of a river running through discontinuous permafrost. We found the river's lateral movement across its floodplain influences the occurrence of certain microbial communities-in particular, methane-cycling microbes were present on the older, permafrost-bearing eroding riverbank but absent on the newly deposited river bars. Riverbank sediment had microbial communities more similar to the floodplain active layer than permafrost samples from the same depth. Therefore, spatial patterns of river migration influence the distribution of microbial taxa relevant to the warming Arctic climate.
Collapse
|
28
|
Eight metagenome-assembled genomes provide evidence for microbial adaptation in 20,000 to 1,000,000-year-old Siberian permafrost. Appl Environ Microbiol 2021; 87:e0097221. [PMID: 34288700 DOI: 10.1128/aem.00972-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Permafrost microbes may be metabolically active in microscopic layers of liquid brines, even in ancient soil. Metagenomics can help discern whether permafrost microbes show adaptations to this environment. Thirty-three metagenome-assembled genomes (MAGs) were obtained from six depths (3.5 m to 20 m) of freshly-cored permafrost from the Siberia Kolyma-Indigirka Lowland region. These soils have been continuously frozen for ∼20,000 to 1,000,000 years. Eight of these MAGs were ≥80% complete with <10% contamination and were taxonomically identified as Aminicenantes, Atribacteria, Chloroflexi, and Actinobacteria within bacteria and Thermoprofundales within archaea. MAGs from these taxa have previously been obtained from non-permafrost environments and have been suggested to show adaptations to long-term energy-starvation, but they have never been explored in ancient permafrost. The permafrost MAGs had higher proportions of clusters of orthologous genes (COGs) from 'Energy production and conversion' and 'Carbohydrate transport and metabolism' than their non-permafrost counterparts. They also contained genes for trehalose synthesis, thymine metabolism, mevalonate biosynthesis and cellulose degradation that were less prevalent in non-permafrost genomes. Many of these genes are involved in membrane stabilization and osmotic stress responses, consistent with adaptation to the anoxic, high ionic strength, cold environments of permafrost brine films. Our results suggest that this ancient permafrost contains DNA in high enough quality to assemble MAGs from microorganisms with adaptations to subsist long-term freezing in this extreme environment. Importance Permafrost around the world is thawing rapidly. Many scientists from a variety of disciplines have shown the importance of understanding what will happen to our ecosystem, commerce, and climate when permafrost thaws. The fate of permafrost microorganisms is connected to these predicted rapid environmental changes. Studying ancient permafrost with culture independent techniques can give a glimpse into how these microorganisms function in these extreme low temperature and energy conditions. This will aid understanding of how they will change with the environment. This study presents genomic data from this unique environment aged ∼20,000 to 1,000,000-years-old.
Collapse
|
29
|
Chen Y, Liu F, Kang L, Zhang D, Kou D, Mao C, Qin S, Zhang Q, Yang Y. Large-scale evidence for microbial response and associated carbon release after permafrost thaw. GLOBAL CHANGE BIOLOGY 2021; 27:3218-3229. [PMID: 33336478 DOI: 10.1111/gcb.15487] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Permafrost thaw could trigger the release of greenhouse gases through microbial decomposition of the large quantities of carbon (C) stored within frozen soils. However, accurate evaluation of soil C emissions from thawing permafrost is still a big challenge, partly due to our inadequate understanding about the response of microbial communities and their linkage with soil C release upon permafrost thaw. Based on a large-scale permafrost sampling across 24 sites on the Tibetan Plateau, we employed meta-genomic technologies (GeoChip and Illumina MiSeq sequencing) to explore the impacts of permafrost thaw (permafrost samples were incubated for 11 days at 5°C) on microbial taxonomic and functional communities, and then conducted a laboratory incubation to investigate the linkage of microbial taxonomic and functional diversity with soil C release after permafrost thaw. We found that bacterial and fungal α diversity decreased, but functional gene diversity and the normalized relative abundance of C degradation genes increased after permafrost thaw, reflecting the rapid microbial response to permafrost thaw. Moreover, both the microbial taxonomic and functional community structures differed between the thawed permafrost and formerly frozen soils. Furthermore, soil C release rate over five month incubation was associated with microbial functional diversity and C degradation gene abundances. By contrast, neither microbial taxonomic diversity nor community structure exhibited any significant effects on soil C release over the incubation period. These findings demonstrate that permafrost thaw could accelerate C emissions by altering the function potentials of microbial communities rather than taxonomic diversity, highlighting the crucial role of microbial functional genes in mediating the responses of permafrost C cycle to climate warming.
Collapse
Affiliation(s)
- Yongliang Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Futing Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Luyao Kang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dianye Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Dan Kou
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Chao Mao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuqi Qin
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiwen Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yuanhe Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
30
|
Liang R, Li Z, Lau Vetter MCY, Vishnivetskaya TA, Zanina OG, Lloyd KG, Pfiffner SM, Rivkina EM, Wang W, Wiggins J, Miller J, Hettich RL, Onstott TC. Genomic reconstruction of fossil and living microorganisms in ancient Siberian permafrost. MICROBIOME 2021; 9:110. [PMID: 34001281 PMCID: PMC8130349 DOI: 10.1186/s40168-021-01057-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/22/2021] [Indexed: 05/20/2023]
Abstract
BACKGROUND Total DNA (intracellular, iDNA and extracellular, eDNA) from ancient permafrost records the mixed genetic repository of the past and present microbial populations through geological time. Given the exceptional preservation of eDNA under perennial frozen conditions, typical metagenomic sequencing of total DNA precludes the discrimination between fossil and living microorganisms in ancient cryogenic environments. DNA repair protocols were combined with high throughput sequencing (HTS) of separate iDNA and eDNA fraction to reconstruct metagenome-assembled genomes (MAGs) from ancient microbial DNA entrapped in Siberian coastal permafrost. RESULTS Despite the severe DNA damage in ancient permafrost, the coupling of DNA repair and HTS resulted in a total of 52 MAGs from sediments across a chronosequence (26-120 kyr). These MAGs were compared with those derived from the same samples but without utilizing DNA repair protocols. The MAGs from the youngest stratum showed minimal DNA damage and thus likely originated from viable, active microbial species. Many MAGs from the older and deeper sediment appear related to past aerobic microbial populations that had died upon freezing. MAGs from anaerobic lineages, including Asgard archaea, however exhibited minimal DNA damage and likely represent extant living microorganisms that have become adapted to the cryogenic and anoxic environments. The integration of aspartic acid racemization modeling and metaproteomics further constrained the metabolic status of the living microbial populations. Collectively, combining DNA repair protocols with HTS unveiled the adaptive strategies of microbes to long-term survivability in ancient permafrost. CONCLUSIONS Our results indicated that coupling of DNA repair protocols with simultaneous sequencing of iDNA and eDNA fractions enabled the assembly of MAGs from past and living microorganisms in ancient permafrost. The genomic reconstruction from the past and extant microbial populations expanded our understanding about the microbial successions and biogeochemical alterations from the past paleoenvironment to the present-day frozen state. Furthermore, we provided genomic insights into long-term survival mechanisms of microorganisms under cryogenic conditions through geological time. The combined strategies in this study can be extrapolated to examine other ancient non-permafrost environments and constrain the search for past and extant extraterrestrial life in permafrost and ice deposits on Mars. Video abstract.
Collapse
Affiliation(s)
- Renxing Liang
- Princeton University, B88, Guyot Hall, Princeton, NJ, 08544, USA.
| | - Zhou Li
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Maggie C Y Lau Vetter
- Princeton University, B88, Guyot Hall, Princeton, NJ, 08544, USA
- Present address: Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Tatiana A Vishnivetskaya
- University of Tennessee, Knoxville, TN, USA
- Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Oksana G Zanina
- Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | | | | | - Elizaveta M Rivkina
- Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Wei Wang
- Genomics Core Facility, Princeton University, Princeton, NJ, USA
| | - Jessica Wiggins
- Genomics Core Facility, Princeton University, Princeton, NJ, USA
| | - Jennifer Miller
- Genomics Core Facility, Princeton University, Princeton, NJ, USA
| | - Robert L Hettich
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Tullis C Onstott
- Princeton University, B88, Guyot Hall, Princeton, NJ, 08544, USA
| |
Collapse
|
31
|
Cheng X, Xu J, Smith G, Zhang Y. Metagenomic insights into dissemination of antibiotic resistance across bacterial genera in wastewater treatment. CHEMOSPHERE 2021; 271:129563. [PMID: 33453487 PMCID: PMC7969412 DOI: 10.1016/j.chemosphere.2021.129563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 05/29/2023]
Abstract
The aim of this study was to evaluate the impacts of conventional wastewater treatment processes including secondary treatment and chlorination on the removal of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB), and to assess the association of ARGs with their potential hosts in each treatment process. The results showed chlorination with subinhibitory concentration (<8 mg/L) resulted in an increased ARB number in the disinfection effluent. qPCR analysis indicated secondary treatment increased relative abundance of ARGs in remaining bacteria whereas disinfection reduced the relative abundance of those genes effectively. Metagenomic analysis revealed a significant shift of dominating bacterial genera harboring ARGs. Along the treatment train, 48, 95 and 80 genera were identified to be the ARG carriers in primary effluent, secondary effluent, and disinfection effluent, respectively. It was also found that secondary treatment increased the diversity of potential ARG hosts while both secondary treatment and chlorination broadened the host range of some ARGs at the genus level, which may be attributed to the spread of antibiotic resistance across bacterial genera through horizontal transfer. This study highlights the growing concerns that wastewater treatment plants (WWTPs) may disseminate ARGs by associating this effect to specific treatment stages and by correlating ARGs with their bacterial hosts.
Collapse
Affiliation(s)
- Xiaoxiao Cheng
- Civil Engineering Department, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Jiannong Xu
- Biology Department, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Geoffrey Smith
- Biology Department, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Yanyan Zhang
- Civil Engineering Department, New Mexico State University, Las Cruces, NM, 88003, USA.
| |
Collapse
|
32
|
Perez-Mon C, Qi W, Vikram S, Frossard A, Makhalanyane T, Cowan D, Frey B. Shotgun metagenomics reveals distinct functional diversity and metabolic capabilities between 12 000-year-old permafrost and active layers on Muot da Barba Peider (Swiss Alps). Microb Genom 2021; 7:000558. [PMID: 33848236 PMCID: PMC8208683 DOI: 10.1099/mgen.0.000558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The warming-induced thawing of permafrost promotes microbial activity, often resulting in enhanced greenhouse gas emissions. The ability of permafrost microorganisms to survive the in situ sub-zero temperatures, their energetic strategies and their metabolic versatility in using soil organic materials determine their growth and functionality upon thawing. Hence, functional characterization of the permafrost microbiome, particularly in the underexplored mid-latitudinal alpine regions, is a crucial first step in predicting its responses to the changing climate, and the consequences for soil-climate feedbacks. In this study, for the first time, the functional potential and metabolic capabilities of a temperate mountain permafrost microbiome from central Europe has been analysed using shotgun metagenomics. Permafrost and active layers from the summit of Muot da Barba Peider (MBP) [Swiss Alps, 2979 m above sea level (a.s.l.)] revealed a strikingly high functional diversity in the permafrost (north-facing soils at a depth of 160 cm). Permafrost metagenomes were enriched in stress-response genes (e.g. cold-shock genes, chaperones), as well as in genes involved in cell defence and competition (e.g. antiviral proteins, antibiotics, motility, nutrient-uptake ABC transporters), compared with active-layer metagenomes. Permafrost also showed a higher potential for the synthesis of carbohydrate-active enzymes, and an overrepresentation of genes involved in fermentation, carbon fixation, denitrification and nitrogen reduction reactions. Collectively, these findings demonstrate the potential capabilities of permafrost microorganisms to thrive in cold and oligotrophic conditions, and highlight their metabolic versatility in carbon and nitrogen cycling. Our study provides a first insight into the high functional gene diversity of the central European mountain permafrost microbiome. Our findings extend our understanding of the microbial ecology of permafrost and represent a baseline for future investigations comparing the functional profiles of permafrost microbial communities at different latitudes.
Collapse
Affiliation(s)
- Carla Perez-Mon
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- *Correspondence: Carla Perez-Mon,
| | - Weihong Qi
- Functional Genomics Center of the University of Zurich and the ETH Zurich, Zurich, Switzerland
| | - Surendra Vikram
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Aline Frossard
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Thulani Makhalanyane
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Don Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- *Correspondence: Beat Frey,
| |
Collapse
|
33
|
Seitz TJ, Schütte UME, Drown DM. Soil Disturbance Affects Plant Productivity via Soil Microbial Community Shifts. Front Microbiol 2021; 12:619711. [PMID: 33597939 PMCID: PMC7882522 DOI: 10.3389/fmicb.2021.619711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/08/2021] [Indexed: 11/13/2022] Open
Abstract
Recent advances in climate research have discovered that permafrost is particularly vulnerable to the changes occurring in the atmosphere and climate, especially in Alaska where 85% of the land is underlain by mostly discontinuous permafrost. As permafrost thaws, research has shown that natural and anthropogenic soil disturbance causes microbial communities to undergo shifts in membership composition and biomass, as well as in functional diversity. Boreal forests are home to many plants that are integral to the subsistence diets of many Alaska Native communities. Yet, it is unclear how the observed shifts in soil microbes can affect above ground plant communities that are relied on as a major source of food. In this study, we tested the hypothesis that microbial communities associated with permafrost thaw affect plant productivity by growing five plant species found in Boreal forests and Tundra ecosystems, including low-bush cranberry and bog blueberry, with microbial communities from the active layer soils of a permafrost thaw gradient. We found that plant productivity was significantly affected by the microbial soil inoculants. Plants inoculated with communities from above thawing permafrost showed decreased productivity compared to plants inoculated with microbes from undisturbed soils. We used metagenomic sequencing to determine that microbial communities from disturbed soils above thawing permafrost differ in taxonomy from microbial communities in undisturbed soils above intact permafrost. The combination of these results indicates that a decrease in plant productivity can be linked to soil disturbance driven changes in microbial community membership and abundance. These data contribute to an understanding of how microbial communities can be affected by soil disturbance and climate change, and how those community shifts can further influence plant productivity in Boreal forests and more broadly, ecosystem health.
Collapse
Affiliation(s)
- Taylor J. Seitz
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Ursel M. E. Schütte
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Devin M. Drown
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, United States
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| |
Collapse
|
34
|
Chabot M, Morales E, Cummings J, Rios N, Giatpaiboon S, Mogul R. Simple kinetics, assay, and trends for soil microbial catalases. Anal Biochem 2020; 610:113901. [PMID: 32841648 DOI: 10.1016/j.ab.2020.113901] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/03/2020] [Indexed: 12/17/2022]
Abstract
In this report, we expand upon the enzymology and ecology of soil catalases through development and application of a simple kinetic model and field-amenable assay based upon volume displacement. Through this approach, we (A) directly relate apparent Michaelis-Menten terms to the catalase reaction mechanism, (B) obtain upper estimates of the intrinsic rate constants for the catalase community (k3'), along with moles of catalase per 16S rRNA gene copy number, (C) utilize catalase specific activities (SAs) to obtain biomass estimates of soil and permafrost communities (LOD, ~104 copy number gdw-1), and (D) relate kinetic trends to changes in bacterial community structure. In addition, this novel kinetic approach simultaneously incorporates barometric adjustments to afford comparisons across field measurements. As per our model, and when compared to garden soils, biological soil crusts exhibited ~2-fold lower values for k3', ≥105-fold higher catalase moles per biomass (250-1200 zmol copy number-1), and ~104-fold higher SAs per biomass (74-230 fkat copy number-1); whereas the highest SAs were obtained from permafrost and high-elevation soil communities (5900-6700 fkat copy number-1). In sum, the total trends suggest that microbial communities which experience higher degrees of native oxidative stress possess higher basal intracellular catalase concentrations and SAs per biomass.
Collapse
Affiliation(s)
- Michael Chabot
- Cal Poly Pomona, Chemistry & Biochemistry Department, 3801 W. Temple Ave., Pomona, CA, 91768, USA
| | - Ernesto Morales
- Cal Poly Pomona, Chemistry & Biochemistry Department, 3801 W. Temple Ave., Pomona, CA, 91768, USA
| | - Jacob Cummings
- Cal Poly Pomona, Chemistry & Biochemistry Department, 3801 W. Temple Ave., Pomona, CA, 91768, USA
| | - Nicholas Rios
- Cal Poly Pomona, Chemistry & Biochemistry Department, 3801 W. Temple Ave., Pomona, CA, 91768, USA
| | - Scott Giatpaiboon
- Cal Poly Pomona, Chemistry & Biochemistry Department, 3801 W. Temple Ave., Pomona, CA, 91768, USA
| | - Rakesh Mogul
- Cal Poly Pomona, Chemistry & Biochemistry Department, 3801 W. Temple Ave., Pomona, CA, 91768, USA.
| |
Collapse
|
35
|
Steffan JJ, Derby JA, Brevik EC. Soil pathogens that may potentially cause pandemics, including severe acute respiratory syndrome (SARS) coronaviruses. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2020; 17:35-40. [PMID: 33521411 PMCID: PMC7836926 DOI: 10.1016/j.coesh.2020.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Soil ecosystems contain and support the greatest amount of biodiversity on the planet. A majority of this diversity is made up of microorganisms, most of which are beneficial for humans. However, some of these organisms are considered human pathogens. In light of the current severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) outbreak, one may ponder the origin of the next pandemic and if soil may represent a source of pathogens with pandemic potential. This review focuses on several bacterial, fungal, and viral pathogens that can result in human infection due to direct interaction with the soil. Moreover, the current status of knowledge regarding SARS-CoV-2 survival in and transmission from soil is reviewed.
Collapse
Affiliation(s)
- Joshua J Steffan
- Department of Natural Sciences, Dickinson State University, Dickinson, ND, USA
- Department of Agriculture and Technical Studies, Dickinson State University, Dickinson, ND, USA
| | - Jade A Derby
- Department of Natural Sciences, Dickinson State University, Dickinson, ND, USA
| | - Eric C Brevik
- Department of Natural Sciences, Dickinson State University, Dickinson, ND, USA
- Department of Agriculture and Technical Studies, Dickinson State University, Dickinson, ND, USA
| |
Collapse
|
36
|
Lalla SJ, Kaneshige KR, Miller DR, Mackelprang R, Mogul R. Quantification of endospores in ancient permafrost using time-resolved terbium luminescence. Anal Biochem 2020; 612:113957. [PMID: 32961249 DOI: 10.1016/j.ab.2020.113957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 11/28/2022]
Abstract
We describe herein a simple procedure for quantifying endospore abundances in ancient and organic-rich permafrost. We repeatedly (10x) extracted and fractionated permafrost using a tandem filter assembly composed of 3 and 0.2 μm filters. Then, the 0.2 μm filter was washed (7x), autoclaved, and the contents eluted, including dipicolinic acid (DPA). Time-resolved luminescence using Tb(EDTA) yielded a LOD of 1.46 nM DPA (6.55 × 103 endospores/mL). In review, DPA/endospore abundances were ~2.2-fold greater in older 33 ky permafrost (258 ± 36 pmol DPA gdw-1; 1.15 × 106 ± 0.16 × 106 spores gdw-1) versus younger 19 ky permafrost (p = 0.007297). This suggests that dormancy increases with permafrost age.
Collapse
Affiliation(s)
- S J Lalla
- Chemistry & Biochemistry Department, Cal Poly Pomona, Pomona, CA, 91768, USA
| | - K R Kaneshige
- Chemistry & Biochemistry Department, Cal Poly Pomona, Pomona, CA, 91768, USA
| | - D R Miller
- Chemistry & Biochemistry Department, Cal Poly Pomona, Pomona, CA, 91768, USA
| | - R Mackelprang
- Department of Biological Sciences, CSU Northridge, Northridge, CA, USA
| | - R Mogul
- Chemistry & Biochemistry Department, Cal Poly Pomona, Pomona, CA, 91768, USA.
| |
Collapse
|
37
|
Fu Y, Ye Z, Jia Y, Fan J, Hashmi MZ, Shen C. An Optimized Method to Assess Viable Escherichia coli O157:H7 in Agricultural Soil Using Combined Propidium Monoazide Staining and Quantitative PCR. Front Microbiol 2020; 11:1809. [PMID: 32849416 PMCID: PMC7411311 DOI: 10.3389/fmicb.2020.01809] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/09/2020] [Indexed: 11/29/2022] Open
Abstract
Agricultural soil contaminated by manure is becoming an important source for the transmission of foodborne pathogens. There is an urgent need for a rapid and accurate method for viable pathogen detection in agricultural soil samples. Propidium monoazide (PMA) is a DNA-binding dye that can inhibit the amplification of DNA from dead cells through subsequent quantitative polymerase chain reaction (qPCR), thus allowing for viable cells detection and quantification. The objective of this study was to detect viable Escherichia coli O157:H7 in the agricultural soils by PMA-qPCR. In this study, cell extraction and gradient density centrifugation were incorporated before PMA-qPCR to reduce the interference of soil particle including turbidity and a high ratio of dead cells. The optimized treatment conditions were determined as follows, the maximum removal of DNA from dead cells was achieved by 1.067 g/mL Percoll of centrifugation and 50 μM PMA treatment. Under these conditions, the turbidity of paddy soil suspensions decreased from 3500 to 28.4 nephelometric turbidity units (NTU), and the ratio of viable cells to dead cells increased from 0.001 to 1.025%. For typical agricultural soils collected in China, as low as 102colony-forming units (CFU)/g of viable cells could be accurately detected in the presence of a large number of dead cells (107 CFU/g) by the optimized PMA-qPCR. Significantly, with comparable accuracy, the optimized PMA-qPCR assay was more sensitive, accessible and rapid than conventional culture methods. In addition, the viable but non-culturable (VBNC) state of E. coli O157:H7 cells in paddy soils, which often escaped the detection by conventional culture methods, could be quantitatively characterized by the optimized PMA-qPCR method. Potentially, the optimized PMA-qPCR can be further applied for viable pathogens detection and give insight into the prevalence of VBNC E. coli O157:H7 in agricultural soil.
Collapse
Affiliation(s)
- Yulong Fu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Zhe Ye
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Yangyang Jia
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Jiahui Fan
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | | | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China
| |
Collapse
|
38
|
Leewis MC, Berlemont R, Podgorski DC, Srinivas A, Zito P, Spencer RGM, McFarland J, Douglas TA, Conaway CH, Waldrop M, Mackelprang R. Life at the Frozen Limit: Microbial Carbon Metabolism Across a Late Pleistocene Permafrost Chronosequence. Front Microbiol 2020; 11:1753. [PMID: 32849382 PMCID: PMC7403407 DOI: 10.3389/fmicb.2020.01753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/06/2020] [Indexed: 11/13/2022] Open
Abstract
Permafrost is an extreme habitat yet it hosts microbial populations that remain active over millennia. Using permafrost collected from a Pleistocene chronosequence (19 to 33 ka), we hypothesized that the functional genetic potential of microbial communities in permafrost would reflect microbial strategies to metabolize permafrost soluble organic matter (OM) in situ over geologic time. We also hypothesized that changes in the metagenome across the chronosequence would correlate with shifts in carbon chemistry, permafrost age, and paleoclimate at the time of permafrost formation. We combined high-resolution characterization of water-soluble OM by Fourier-transform ion-cyclotron-resonance mass spectrometry (FT-ICR MS), quantification of organic anions in permafrost water extracts, and metagenomic sequencing to better understand the relationships between the molecular-level composition of potentially bioavailable OM, the microbial community, and permafrost age. Both age and paleoclimate had marked effects on both the molecular composition of dissolved OM and the microbial community. The relative abundance of genes associated with hydrogenotrophic methanogenesis, carbohydrate active enzyme families, nominal oxidation state of carbon (NOSC), and number of identifiable molecular formulae significantly decreased with increasing age. In contrast, genes associated with fermentation of short chain fatty acids (SCFAs), the concentration of SCFAs and ammonium all significantly increased with age. We present a conceptual model of microbial metabolism in permafrost based on fermentation of OM and the buildup of organic acids that helps to explain the unique chemistry of ancient permafrost soils. These findings imply long-term in situ microbial turnover of ancient permafrost OM and that this pooled biolabile OM could prime ancient permafrost soils for a larger and more rapid microbial response to thaw compared to younger permafrost soils.
Collapse
Affiliation(s)
- Mary-Cathrine Leewis
- U.S. Geological Survey, Geology, Minerals, Energy, and Geophysics Science Center, Menlo Park, CA, United States
| | - Renaud Berlemont
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, United States
| | - David C Podgorski
- Pontchartrain Institute for Environmental Sciences, Department of Chemistry, University of New Orleans, New Orleans, LA, United States
| | - Archana Srinivas
- Department of Biology, California State University Northridge, Northridge, CA, United States
| | - Phoebe Zito
- Pontchartrain Institute for Environmental Sciences, Department of Chemistry, University of New Orleans, New Orleans, LA, United States
| | - Robert G M Spencer
- National High Magnetic Field Laboratory Geochemistry Group, Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL, United States
| | - Jack McFarland
- U.S. Geological Survey, Geology, Minerals, Energy, and Geophysics Science Center, Menlo Park, CA, United States
| | - Thomas A Douglas
- U.S. Army Cold Regions Research and Engineering Laboratory, Fort Wainwright, AK, United States
| | | | - Mark Waldrop
- U.S. Geological Survey, Geology, Minerals, Energy, and Geophysics Science Center, Menlo Park, CA, United States
| | - Rachel Mackelprang
- Department of Biology, California State University Northridge, Northridge, CA, United States
| |
Collapse
|
39
|
Afouda P, Dubourg G, Raoult D. Archeomicrobiology applied to environmental samples. Microb Pathog 2020; 143:104140. [DOI: 10.1016/j.micpath.2020.104140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 10/24/2022]
|
40
|
Edwards A, Cameron KA, Cook JM, Debbonaire AR, Furness E, Hay MC, Rassner SM. Microbial genomics amidst the Arctic crisis. Microb Genom 2020; 6:e000375. [PMID: 32392124 PMCID: PMC7371112 DOI: 10.1099/mgen.0.000375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/16/2020] [Indexed: 12/16/2022] Open
Abstract
The Arctic is warming - fast. Microbes in the Arctic play pivotal roles in feedbacks that magnify the impacts of Arctic change. Understanding the genome evolution, diversity and dynamics of Arctic microbes can provide insights relevant for both fundamental microbiology and interdisciplinary Arctic science. Within this synthesis, we highlight four key areas where genomic insights to the microbial dimensions of Arctic change are urgently required: the changing Arctic Ocean, greenhouse gas release from the thawing permafrost, 'biological darkening' of glacial surfaces, and human activities within the Arctic. Furthermore, we identify four principal challenges that provide opportunities for timely innovation in Arctic microbial genomics. These range from insufficient genomic data to develop unifying concepts or model organisms for Arctic microbiology to challenges in gaining authentic insights to the structure and function of low-biomass microbiota and integration of data on the causes and consequences of microbial feedbacks across scales. We contend that our insights to date on the genomics of Arctic microbes are limited in these key areas, and we identify priorities and new ways of working to help ensure microbial genomics is in the vanguard of the scientific response to the Arctic crisis.
Collapse
Affiliation(s)
- Arwyn Edwards
- Interdisciplinary Centre for Environmental Microbiology, Institute of Biological, Environmental and Rural Sciences, Cledwyn Building, Aberystwyth University, Cymru SY23 3DD, UK
| | - Karen A. Cameron
- Interdisciplinary Centre for Environmental Microbiology, Institute of Biological, Environmental and Rural Sciences, Cledwyn Building, Aberystwyth University, Cymru SY23 3DD, UK
| | - Joseph M. Cook
- Interdisciplinary Centre for Environmental Microbiology, Institute of Biological, Environmental and Rural Sciences, Cledwyn Building, Aberystwyth University, Cymru SY23 3DD, UK
| | - Aliyah R. Debbonaire
- Interdisciplinary Centre for Environmental Microbiology, Institute of Biological, Environmental and Rural Sciences, Cledwyn Building, Aberystwyth University, Cymru SY23 3DD, UK
| | - Eleanor Furness
- Interdisciplinary Centre for Environmental Microbiology, Institute of Biological, Environmental and Rural Sciences, Cledwyn Building, Aberystwyth University, Cymru SY23 3DD, UK
| | - Melanie C. Hay
- Interdisciplinary Centre for Environmental Microbiology, Institute of Biological, Environmental and Rural Sciences, Cledwyn Building, Aberystwyth University, Cymru SY23 3DD, UK
| | - Sara M.E. Rassner
- Interdisciplinary Centre for Environmental Microbiology, Institute of Biological, Environmental and Rural Sciences, Cledwyn Building, Aberystwyth University, Cymru SY23 3DD, UK
| |
Collapse
|
41
|
Messan KS, Jones RM, Doherty SJ, Foley K, Douglas TA, Barbato RA. The role of changing temperature in microbial metabolic processes during permafrost thaw. PLoS One 2020; 15:e0232169. [PMID: 32353013 PMCID: PMC7192436 DOI: 10.1371/journal.pone.0232169] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/09/2020] [Indexed: 12/17/2022] Open
Abstract
Approximately one fourth of the Earth's Northern Hemisphere is underlain by permafrost, earth materials (soil, organic matter, or bedrock), that has been continuously frozen for at least two consecutive years. Numerous studies point to evidence of accelerated climate warming in the Arctic and sub-Arctic where permafrost is located. Changes to permafrost biochemical processes may critically impact ecosystem processes at the landscape scale. Here, we sought to understand how the permafrost metabolome responds to thaw and how this response differs based on location (i.e. chronosequence of permafrost formation constituting diverse permafrost types). We analyzed metabolites from microbial cells originating from Alaskan permafrost. Overall, permafrost thaw induced a shift in microbial metabolic processes. Of note were the dissimilarities in biochemical structure between frozen and thawed samples. The thawed permafrost metabolomes from different locations were highly similar. In the intact permafrost, several metabolites with antagonist properties were identified, illustrating the competitive survival strategy required to survive a frozen state. Interestingly, the intensity of these antagonistic metabolites decreased with warmer temperature, indicating a shift in ecological strategies in thawed permafrost. These findings illustrate the impact of change in temperature and spatial variability as permafrost undergoes thaw, knowledge that will become crucial for predicting permafrost biogeochemical dynamics as the Arctic and Antarctic landscapes continue to warm.
Collapse
Affiliation(s)
- Komi S. Messan
- US Army Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, United States of America
| | - Robert M. Jones
- US Army Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, United States of America
| | - Stacey J. Doherty
- US Army Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, United States of America
| | - Karen Foley
- US Army Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, United States of America
| | - Thomas A. Douglas
- US Army Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Fairbanks, Alaska, United States of America
| | - Robyn A. Barbato
- US Army Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, United States of America
| |
Collapse
|
42
|
Affiliation(s)
- Donald L Sparks
- Delaware Environmental Institute, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
43
|
Sowers TD, Wani RP, Coward EK, Fischel MHH, Betts AR, Douglas TA, Duckworth OW, Sparks DL. Spatially Resolved Organomineral Interactions across a Permafrost Chronosequence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2951-2960. [PMID: 32023050 DOI: 10.1021/acs.est.9b06558] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Permafrost contains a large (1700 Pg C) terrestrial pool of organic matter (OM) that is susceptible to degradation as global temperatures increase. Of particular importance is syngenetic Yedoma permafrost containing high OM content. Reactive iron phases promote stabilizing interactions between OM and soil minerals and this stabilization may be of increasing importance in permafrost as the thawed surface region ("active layer") deepens. However, there is limited understanding of Fe and other soil mineral phase associations with OM carbon (C) moieties in permafrost soils. To elucidate the elemental associations involved in organomineral complexation within permafrost systems, soil cores spanning a Pleistocene permafrost chronosequence (19,000, 27,000, and 36,000 years old) were collected from an underground tunnel near Fairbanks, Alaska. Subsamples were analyzed via scanning transmission X-ray microscopy-near edge X-ray absorption fine structure spectroscopy at the nano- to microscale. Amino acid-rich moieties decreased in abundance across the chronosequence. Strong correlations between C and Fe with discrete Fe(III) or Fe(II) regions selectively associated with specific OM moieties were observed. Additionally, Ca coassociated with C through potential cation bridging mechanisms. Results indicate Fe(III), Fe(II), and mixed valence phases associated with OM throughout diverse permafrost environments, suggesting that organomineral complexation is crucial to predict C stability as permafrost systems warm.
Collapse
Affiliation(s)
- Tyler D Sowers
- Delaware Environmental Institute, Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19716-7310, United States
- Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, Durham, North Carolina 27711, United States
| | - Rucha P Wani
- Delaware Environmental Institute, Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19716-7310, United States
| | - Elizabeth K Coward
- Delaware Environmental Institute, Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19716-7310, United States
| | - Matthew H H Fischel
- Delaware Environmental Institute, Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19716-7310, United States
| | - Aaron R Betts
- Delaware Environmental Institute, Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19716-7310, United States
| | - Thomas A Douglas
- U.S. Army Cold Regions Research & Engineering Laboratory, 9th Avenue, Building 4070, Fort Wainwright, Fairbanks, 99703 Alaska, United States
| | - Owen W Duckworth
- Department of Crop and Soil Sciences, North Carolina State University, 101 Derieux Street, Campus Box 7620, Raleigh, North Carolina 26795, United States
| | - Donald L Sparks
- Delaware Environmental Institute, Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19716-7310, United States
| |
Collapse
|