1
|
Feng M, Robinson S, Qi W, Edwards A, Stierli B, van der Heijden M, Frey B, Varliero G. Microbial genetic potential differs among cryospheric habitats of the Damma glacier. Microb Genom 2024; 10. [PMID: 39351905 PMCID: PMC11443553 DOI: 10.1099/mgen.0.001301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
Climate warming has led to glacier retreat worldwide. Studies on the taxonomy and functions of glacier microbiomes help us better predict their response to glacier melting. Here, we used shotgun metagenomic sequencing to study the microbial functional potential in different cryospheric habitats, i.e. surface snow, supraglacial and subglacial sediments, subglacial ice, proglacial stream water and recently deglaciated soils. The functional gene structure varied greatly among habitats, especially for snow, which differed significantly from all other habitats. Differential abundance analysis revealed that genes related to stress responses (e.g. chaperones) were enriched in ice habitat, supporting the fact that glaciers are a harsh environment for microbes. The microbial metabolic capabilities related to carbon and nitrogen cycling vary among cryospheric habitats. Genes related to auxiliary activities were overrepresented in the subglacial sediment, suggesting a higher genetic potential for the degradation of recalcitrant carbon (e.g., lignin). As for nitrogen cycling, genes related to nitrogen fixation were more abundant in barren proglacial soils, possibly due to the presence of Cyanobacteriota in this habitat. Our results deepen our understanding of microbial processes in glacial ecosystems, which are vulnerable to ongoing global warming, and they have implications for downstream ecosystems.
Collapse
Affiliation(s)
- Maomao Feng
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Serina Robinson
- Department of Environmental Microbiology, Swiss Federal Research Institute of Aquatic Science and Technology (EAWAG), Dübendorf, Switzerland
| | - Weihong Qi
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics (SIB), Geneva, Switzerland
| | - Arwyn Edwards
- Department of Life Sciences (DLS), Aberystwyth University, Wales, UK
| | - Beat Stierli
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Marcel van der Heijden
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- Plant-Soil Interactions, Agroscope, Zurich, Switzerland
| | - Beat Frey
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Gilda Varliero
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| |
Collapse
|
2
|
Belykh E, Maystrenko T, Velegzhaninov I, Tavleeva M, Rasova E, Rybak A. Taxonomic Diversity and Functional Traits of Soil Bacterial Communities under Radioactive Contamination: A Review. Microorganisms 2024; 12:733. [PMID: 38674676 PMCID: PMC11051952 DOI: 10.3390/microorganisms12040733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Studies investigating the taxonomic diversity and structure of soil bacteria in areas with enhanced radioactive backgrounds have been ongoing for three decades. An analysis of data published from 1996 to 2024 reveals changes in the taxonomic structure of radioactively contaminated soils compared to the reference, showing that these changes are not exclusively dependent on contamination rates or pollutant compositions. High levels of radioactive exposure from external irradiation and a high radionuclide content lead to a decrease in the alpha diversity of soil bacterial communities, both in laboratory settings and environmental conditions. The effects of low or moderate exposure are not consistently pronounced or unidirectional. Functional differences among taxonomic groups that dominate in contaminated soil indicate a variety of adaptation strategies. Bacteria identified as multiple-stress tolerant; exhibiting tolerance to metals and antibiotics; producing antioxidant enzymes, low-molecular antioxidants, and radioprotectors; participating in redox reactions; and possessing thermophilic characteristics play a significant role. Changes in the taxonomic and functional structure, resulting from increased soil radionuclide content, are influenced by the combined effects of ionizing radiation, the chemical toxicity of radionuclides and co-contaminants, as well as the physical and chemical properties of the soil and the initial bacterial community composition. Currently, the quantification of the differential contributions of these factors based on the existing published studies presents a challenge.
Collapse
Affiliation(s)
- Elena Belykh
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| | - Tatiana Maystrenko
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| | - Ilya Velegzhaninov
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| | - Marina Tavleeva
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
- Department of Biology, Institute of Natural Sciences, Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prospekt, Syktyvkar 167001, Russia
| | - Elena Rasova
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| | - Anna Rybak
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| |
Collapse
|
3
|
Pold G, Bonilla-Rosso G, Saghaï A, Strous M, Jones CM, Hallin S. Phylogenetics and environmental distribution of nitric oxide-forming nitrite reductases reveal their distinct functional and ecological roles. ISME COMMUNICATIONS 2024; 4:ycae020. [PMID: 38584645 PMCID: PMC10999283 DOI: 10.1093/ismeco/ycae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 04/09/2024]
Abstract
The two evolutionarily unrelated nitric oxide-producing nitrite reductases, NirK and NirS, are best known for their redundant role in denitrification. They are also often found in organisms that do not perform denitrification. To assess the functional roles of the two enzymes and to address the sequence and structural variation within each, we reconstructed robust phylogenies of both proteins with sequences recovered from 6973 isolate and metagenome-assembled genomes and identified 32 well-supported clades of structurally distinct protein lineages. We then inferred the potential niche of each clade by considering other functional genes of the organisms carrying them as well as the relative abundances of each nir gene in 4082 environmental metagenomes across diverse aquatic, terrestrial, host-associated, and engineered biomes. We demonstrate that Nir phylogenies recapitulate ecology distinctly from the corresponding organismal phylogeny. While some clades of the nitrite reductase were equally prevalent across biomes, others had more restricted ranges. Nitrifiers make up a sizeable proportion of the nitrite-reducing community, especially for NirK in marine waters and dry soils. Furthermore, the two reductases showed distinct associations with genes involved in oxidizing and reducing other compounds, indicating that the NirS and NirK activities may be linked to different elemental cycles. Accordingly, the relative abundance and diversity of NirS versus NirK vary between biomes. Our results show the divergent ecological roles NirK and NirS-encoding organisms may play in the environment and provide a phylogenetic framework to distinguish the traits associated with organisms encoding the different lineages of nitrite reductases.
Collapse
Affiliation(s)
- Grace Pold
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Germán Bonilla-Rosso
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Aurélien Saghaï
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Marc Strous
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Christopher M Jones
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Sara Hallin
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| |
Collapse
|
4
|
Nosalova L, Piknova M, Kolesarova M, Pristas P. Cold Sulfur Springs-Neglected Niche for Autotrophic Sulfur-Oxidizing Bacteria. Microorganisms 2023; 11:1436. [PMID: 37374938 DOI: 10.3390/microorganisms11061436] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Since the beginning of unicellular life, dissimilation reactions of autotrophic sulfur bacteria have been a crucial part of the biogeochemical sulfur cycle on Earth. A wide range of sulfur oxidation states is reflected in the diversity of metabolic pathways used by sulfur-oxidizing bacteria. This metabolically and phylogenetically diverse group of microorganisms inhabits a variety of environments, including extreme environments. Although they have been of interest to microbiologists for more than 150 years, meso- and psychrophilic chemolithoautotrophic sulfur-oxidizing microbiota are less studied compared to the microbiota of hot springs. Several recent studies suggested that cold sulfur waters harbor unique, yet not described, bacterial taxa.
Collapse
Affiliation(s)
- Lea Nosalova
- Department of Microbiology, Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia
| | - Maria Piknova
- Department of Microbiology, Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia
| | - Mariana Kolesarova
- Department of Microbiology, Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia
| | - Peter Pristas
- Centre of Biosciences, Institute of Animal Physiology, Slovak Academy of Sciences, 040 01 Kosice, Slovakia
| |
Collapse
|
5
|
Dunham EC, Keller LM, Skidmore ML, Mitchell KR, Boyd ES. Iron Minerals Influence the Assembly of Microbial Communities in a Basaltic Glacial Catchment. FEMS Microbiol Ecol 2022; 99:6960670. [PMID: 36565717 DOI: 10.1093/femsec/fiac155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/18/2022] [Accepted: 12/23/2022] [Indexed: 12/26/2022] Open
Abstract
The influence of mineralogy on the assembly of microbial communities in glacial environments has been difficult to assess due to complications in isolating mineralogy from other variables. Here we assess the abundance and composition of microbial communities that colonized defined minerals incubated for 12 months in two meltwater streams (N and S) emanating from Kaldalónsjökull (Kal), a basalt-hosted glacier in Iceland. The two streams shared similar meltwater geochemistry as well as bedrock and proglacial sediment elemental compositions. Yet genomic DNA and PCR-amplifiable 16S rRNA genes were detected only in Kal S. The amount of recoverable DNA was highest for hematite incubated in Kal S and the composition of 16S rRNA genes recovered from Kal S sediments was most like those recovered from hematite and magnetite, an effect driven largely by similarities in the relative abundance of the putative hydrogenotrophic iron reducer Rhodoferax. We suggest this is attributable to comminution and weathering reactions involving exposed iron silicate minerals that generate and release hydrogen and Fe(III) that can be coupled to support microbial metabolism in Kaldalónsjökull, and possibly other basaltic habitats. The low abundance of cells in Kal N could be due to low availability of Fe(III) or another substrate.
Collapse
Affiliation(s)
- Eric C Dunham
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, United States
| | - Lisa M Keller
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, United States
| | - Mark L Skidmore
- Department of Earth Sciences, Montana State University, Bozeman, MT 59717, United States
| | - K Rebecca Mitchell
- Department of Earth Sciences, Montana State University, Bozeman, MT 59717, United States
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, United States
| |
Collapse
|
6
|
Brandani J, Peter H, Busi SB, Kohler TJ, Fodelianakis S, Ezzat L, Michoud G, Bourquin M, Pramateftaki P, Roncoroni M, Lane SN, Battin TJ. Spatial patterns of benthic biofilm diversity among streams draining proglacial floodplains. Front Microbiol 2022; 13:948165. [PMID: 36003939 PMCID: PMC9393633 DOI: 10.3389/fmicb.2022.948165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022] Open
Abstract
Glacier shrinkage opens new proglacial terrain with pronounced environmental gradients along longitudinal and lateral chronosequences. Despite the environmental harshness of the streams that drain glacier forelands, their benthic biofilms can harbor astonishing biodiversity spanning all domains of life. Here, we studied the spatial dynamics of prokaryotic and eukaryotic photoautotroph diversity within braided glacier-fed streams and tributaries draining lateral terraces predominantly fed by groundwater and snowmelt across three proglacial floodplains in the Swiss Alps. Along the lateral chronosequence, we found that benthic biofilms in tributaries develop higher biomass than those in glacier-fed streams, and that their respective diversity and community composition differed markedly. We also found spatial turnover of bacterial communities in the glacier-fed streams along the longitudinal chronosequence. These patterns along the two chronosequences seem unexpected given the close spatial proximity and connectivity of the various streams, suggesting environmental filtering as an underlying mechanism. Furthermore, our results suggest that photoautotrophic communities shape bacterial communities across the various streams, which is understandable given that algae are the major source of organic matter in proglacial streams. Overall, our findings shed new light on benthic biofilms in proglacial streams now changing at rapid pace owing to climate-induced glacier shrinkage.
Collapse
Affiliation(s)
- Jade Brandani
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Hannes Peter
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Susheel Bhanu Busi
- Systems Ecology Group, Luxembourg Center for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Tyler J. Kohler
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Stilianos Fodelianakis
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Leila Ezzat
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Grégoire Michoud
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Massimo Bourquin
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Paraskevi Pramateftaki
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Matteo Roncoroni
- Institute of Earth Surface Dynamics (IDYST), University of Lausanne, Lausanne, Switzerland
| | - Stuart N. Lane
- Institute of Earth Surface Dynamics (IDYST), University of Lausanne, Lausanne, Switzerland
| | - Tom J. Battin
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
7
|
Garcia-Lopez E, Ruiz-Blas F, Sanchez-Casanova S, Peña Perez S, Martin-Cerezo ML, Cid C. Microbial Communities in Volcanic Glacier Ecosystems. Front Microbiol 2022; 13:825632. [PMID: 35547132 PMCID: PMC9084427 DOI: 10.3389/fmicb.2022.825632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Glaciers constitute a polyextremophilic environment characterized by low temperatures, high solar radiation, a lack of nutrients, and low water availability. However, glaciers located in volcanic regions have special characteristics, since the volcanic foci provide them with heat and nutrients that allow the growth of microbial communities highly adapted to this environment. Most of the studies on these glacial ecosystems have been carried out in volcanic environments in the northern hemisphere, including Iceland and the Pacific Northwest. To better know, the microbial diversity of the underexplored glacial ecosystems and to check what their specific characteristics were, we studied the structure of bacterial communities living in volcanic glaciers in Deception Island, Antarctica, and in the Kamchatka peninsula. In addition to geographic coordinates, many other glacier environmental factors (like volcanic activity, altitude, temperature, pH, or ice chemical composition) that can influence the diversity and distribution of microbial communities were considered in this study. Finally, using their taxonomic assignments, an attempt was made to compare how different or similar are the biogeochemical cycles in which these microbiomes are involved.
Collapse
Affiliation(s)
- Eva Garcia-Lopez
- Department of Molecular Evolution, Centro de Astrobiologia (CSIC-INTA), Torrejón de Ardoz, Spain
| | - Fatima Ruiz-Blas
- Department of Molecular Evolution, Centro de Astrobiologia (CSIC-INTA), Torrejón de Ardoz, Spain
| | | | - Sonia Peña Perez
- Department of Molecular Evolution, Centro de Astrobiologia (CSIC-INTA), Torrejón de Ardoz, Spain
| | | | - Cristina Cid
- Department of Molecular Evolution, Centro de Astrobiologia (CSIC-INTA), Torrejón de Ardoz, Spain
| |
Collapse
|
8
|
Napieralski SA, Fang Y, Marcon V, Forsythe B, Brantley SL, Xu H, Roden EE. Microbial chemolithotrophic oxidation of pyrite in a subsurface shale weathering environment: Geologic considerations and potential mechanisms. GEOBIOLOGY 2022; 20:271-291. [PMID: 34633148 DOI: 10.1111/gbi.12474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/02/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Oxidative weathering of pyrite plays an important role in the biogeochemical cycling of Fe and S in terrestrial environments. While the mechanism and occurrence of biologically accelerated pyrite oxidation under acidic conditions are well established, much less is known about microbially mediated pyrite oxidation at circumneutral pH. Recent work (Percak-Dennett et al., 2017, Geobiology, 15, 690) has demonstrated the ability of aerobic chemolithotrophic microorganisms to accelerate pyrite oxidation at circumneutral pH and proposed two mechanistic models by which this phenomenon might occur. Here, we assess the potential relevance of aerobic microbially catalyzed circumneutral pH pyrite oxidation in relation to subsurface shale weathering at Susquehanna Shale Hills Critical Zone Observatory (SSHCZO) in Pennsylvania, USA. Specimen pyrite mixed with native shale was incubated in groundwater for 3 months at the inferred depth of in situ pyrite oxidation. The colonized materials were used as an inoculum for pyrite-oxidizing enrichment cultures. Microbial activity accelerated the release of sulfate across all conditions. 16S rRNA gene sequencing and metagenomic analysis revealed the dominance of a putative chemolithoautotrophic sulfur-oxidizing bacterium from the genus Thiobacillus in the enrichment cultures. Previously proposed models for aerobic microbial pyrite oxidation were assessed in terms of physical constraints, enrichment culture geochemistry, and metagenomic analysis. Although we conclude that subsurface pyrite oxidation at SSCHZO is largely abiotic, this work nonetheless yields new insight into the potential pathways by which aerobic microorganisms may accelerate pyrite oxidation at circumneutral pH. We propose a new "direct sulfur oxidation" pathway, whereby sulfhydryl-bearing outer membrane proteins mediate oxidation of pyrite surfaces through a persulfide intermediate, analogous to previously proposed mechanisms for direct microbial oxidation of elemental sulfur. The action of this and other direct microbial pyrite oxidation pathways have major implications for controls on pyrite weathering rates in circumneutral pH sedimentary environments where pore throat sizes permit widespread access of microorganisms to pyrite surfaces.
Collapse
Affiliation(s)
| | - Yihang Fang
- Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Virginia Marcon
- Earth and Environmental Systems Institute, University Park, Pennsylvania, USA
- The Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Brandon Forsythe
- Earth and Environmental Systems Institute, University Park, Pennsylvania, USA
| | - Susan L Brantley
- Earth and Environmental Systems Institute, University Park, Pennsylvania, USA
- The Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Huifang Xu
- Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eric E Roden
- Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
9
|
Millar JL, Bagshaw EA, Edwards A, Poniecka EA, Jungblut AD. Polar Cryoconite Associated Microbiota Is Dominated by Hemispheric Specialist Genera. Front Microbiol 2021; 12:738451. [PMID: 34899626 PMCID: PMC8660574 DOI: 10.3389/fmicb.2021.738451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/11/2021] [Indexed: 01/04/2023] Open
Abstract
Cryoconite holes, supraglacial depressions containing water and microbe-mineral aggregates, are known to be hotspots of microbial diversity on glacial surfaces. Cryoconite holes form in a variety of locations and conditions, which impacts both their structure and the community that inhabits them. Using high-throughput 16S and 18S rRNA gene sequencing, we have investigated the communities of a wide range of cryoconite holes from 15 locations across the Arctic and Antarctic. Around 24 bacterial and 11 eukaryotic first-rank phyla were observed in total. The various biotic niches (grazer, predator, photoautotroph, and chemotroph), are filled in every location. Significantly, there is a clear divide between the bacterial and microalgal communities of the Arctic and that of the Antarctic. We were able to determine the groups contributing to this difference and the family and genus level. Both polar regions contain a "core group" of bacteria that are present in the majority of cryoconite holes and each contribute >1% of total amplicon sequence variant (ASV) abundance. Whilst both groups contain Microbacteriaceae, the remaining members are specific to the core group of each polar region. Additionally, the microalgal communities of Arctic cryoconite holes are dominated by Chlamydomonas whereas the Antarctic cryoconite holes are dominated by Pleurastrum. Therefore cryoconite holes may be a global feature of glacier landscapes, but they are inhabited by regionally distinct microbial communities. Our results are consistent with the notion that cryoconite microbiomes are adapted to differing conditions within the cryosphere.
Collapse
Affiliation(s)
- Jasmin L Millar
- School of Earth and Environmental Sciences, Cardiff University, Cardiff, United Kingdom.,Department of Life Sciences, The Natural History Museum, London, United Kingdom
| | - Elizabeth A Bagshaw
- School of Earth and Environmental Sciences, Cardiff University, Cardiff, United Kingdom
| | - Arwyn Edwards
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Ceredigion, United Kingdom
| | - Ewa A Poniecka
- School of Earth and Environmental Sciences, Cardiff University, Cardiff, United Kingdom
| | - Anne D Jungblut
- Department of Life Sciences, The Natural History Museum, London, United Kingdom
| |
Collapse
|
10
|
Fodelianakis S, Washburne AD, Bourquin M, Pramateftaki P, Kohler TJ, Styllas M, Tolosano M, De Staercke V, Schön M, Busi SB, Brandani J, Wilmes P, Peter H, Battin TJ. Microdiversity characterizes prevalent phylogenetic clades in the glacier-fed stream microbiome. ISME JOURNAL 2021; 16:666-675. [PMID: 34522009 PMCID: PMC8857233 DOI: 10.1038/s41396-021-01106-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 08/14/2021] [Accepted: 09/02/2021] [Indexed: 02/01/2023]
Abstract
Glacier-fed streams (GFSs) are extreme and rapidly vanishing ecosystems, and yet they harbor diverse microbial communities. Although our understanding of the GFS microbiome has recently increased, we do not know which microbial clades are ecologically successful in these ecosystems, nor do we understand potentially underlying mechanisms. Ecologically successful clades should be more prevalent across GFSs compared to other clades, which should be reflected as clade-wise distinctly low phylogenetic turnover. However, methods to assess such patterns are currently missing. Here we developed and applied a novel analytical framework, “phyloscore analysis”, to identify clades with lower spatial phylogenetic turnover than other clades in the sediment microbiome across twenty GFSs in New Zealand. These clades constituted up to 44% and 64% of community α-diversity and abundance, respectively. Furthermore, both their α-diversity and abundance increased as sediment chlorophyll a decreased, corroborating their ecological success in GFS habitats largely devoid of primary production. These clades also contained elevated levels of putative microdiversity than others, which could potentially explain their high prevalence in GFSs. This hitherto unknown microdiversity may be threatened as glaciers shrink, urging towards further genomic and functional exploration of the GFS microbiome.
Collapse
Affiliation(s)
- Stilianos Fodelianakis
- Stream Biofilm & Ecosystem Research Lab, ENAC Division, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland.
| | | | - Massimo Bourquin
- Stream Biofilm & Ecosystem Research Lab, ENAC Division, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Paraskevi Pramateftaki
- Stream Biofilm & Ecosystem Research Lab, ENAC Division, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Tyler J Kohler
- Stream Biofilm & Ecosystem Research Lab, ENAC Division, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Michail Styllas
- Stream Biofilm & Ecosystem Research Lab, ENAC Division, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Matteo Tolosano
- Stream Biofilm & Ecosystem Research Lab, ENAC Division, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Vincent De Staercke
- Stream Biofilm & Ecosystem Research Lab, ENAC Division, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Martina Schön
- Stream Biofilm & Ecosystem Research Lab, ENAC Division, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Susheel Bhanu Busi
- Systems Ecology Research Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jade Brandani
- Stream Biofilm & Ecosystem Research Lab, ENAC Division, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Paul Wilmes
- Systems Ecology Research Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Hannes Peter
- Stream Biofilm & Ecosystem Research Lab, ENAC Division, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Tom J Battin
- Stream Biofilm & Ecosystem Research Lab, ENAC Division, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland.
| |
Collapse
|
11
|
Ham B, Kwon JS, Boyanov MI, O'Loughlin EJ, Kemner KM, Kwon MJ. Geochemical and microbial characteristics of seepage water and mineral precipitates in a radwaste disposal facility impacted by seawater intrusion and high alkalinity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 285:112087. [PMID: 33582476 DOI: 10.1016/j.jenvman.2021.112087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
The construction of an underground facility can dramatically change the quality, flow direction, and level of groundwater. It may also impact subsurface microbial composition and activity. Groundwater quality was monitored over eight years in two observational wells near an underground disposal facility on the east coast of South Korea. The results showed dramatic increases in dissolved ions such as O2, Na, Ca, Mg, and SO4 during facility construction. Seepage water samples downgradient from the silos and tunnels, and precipitates deposited along the seepage water flow path were collected to determine the impact inside the disposal facility. X-ray analysis (powder X-ray diffraction (pXRD) and X-ray absorption fine structure (XAFS)) were used to characterize the mineral precipitates. Microbial community composition was determined by 16S rRNA gene sequencing. The seepage water composition was of two types: Ca-Cl and Ca-Na-HCO3. The ratio of Cl and δ18O showed that the Ca-Cl type seepage water was influenced by groundwater mixed with seawater ranging from 2.7% to 15.1%. Various sulfate-reducing bacteria were identified in the Ca-Cl type seepage water, exhibiting relatively high sulfate content from seawater intrusion. Samples from the Ca-Na-HCO3 type seepage water had an extremely high pH (>10) and abundance of Hydrogenophaga. The precipitates observed along the flow path of the seepage water included calcite, ferrihydrite, green rust, and siderite, depending on seepage water chemistry and microbial activity. This study suggests that the construction of underground structures creates distinct, localized geochemical conditions (e.g., high alkalinity, high salinity, and oxic conditions), which may impact microbial communities. These biogeochemical changes may have undesirable large-scale impacts such as water pump clogging. An understanding of the process and long-term monitoring are essential to assess the safety of underground facilities.
Collapse
Affiliation(s)
- Baknoon Ham
- KU-KIST Green School, Korea University, Seoul, 02841, South Korea
| | - Jang-Soon Kwon
- Korea Atomic Energy Research Institute, Daejeon, 34057, South Korea
| | - Maxim I Boyanov
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, Sofia, 1113, Bulgaria; Biosciences Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | | | - Kenneth M Kemner
- Biosciences Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Man Jae Kwon
- Department of Earth and Environmental Sciences, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
12
|
Lithogenic hydrogen supports microbial primary production in subglacial and proglacial environments. Proc Natl Acad Sci U S A 2020; 118:2007051117. [PMID: 33419920 PMCID: PMC7812807 DOI: 10.1073/pnas.2007051117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Life in environments devoid of photosynthesis, such as on early Earth or in contemporary dark subsurface ecosystems, is supported by chemical energy. How, when, and where chemical nutrients released from the geosphere fuel chemosynthetic biospheres is fundamental to understanding the distribution and diversity of life, both today and in the geologic past. Hydrogen (H2) is a potent reductant that can be generated when water interacts with reactive components of mineral surfaces such as silicate radicals and ferrous iron. Such reactive mineral surfaces are continually generated by physical comminution of bedrock by glaciers. Here, we show that dissolved H2 concentrations in meltwaters from an iron and silicate mineral-rich basaltic glacial catchment were an order of magnitude higher than those from a carbonate-dominated catchment. Consistent with higher H2 abundance, sediment microbial communities from the basaltic catchment exhibited significantly shorter lag times and faster rates of net H2 oxidation and dark carbon dioxide (CO2) fixation than those from the carbonate catchment, indicating adaptation to use H2 as a reductant in basaltic catchments. An enrichment culture of basaltic sediments provided with H2, CO2, and ferric iron produced a chemolithoautotrophic population related to Rhodoferax ferrireducens with a metabolism previously thought to be restricted to (hyper)thermophiles and acidophiles. These findings point to the importance of physical and chemical weathering processes in generating nutrients that support chemosynthetic primary production. Furthermore, they show that differences in bedrock mineral composition can influence the supplies of nutrients like H2 and, in turn, the diversity, abundance, and activity of microbial inhabitants.
Collapse
|
13
|
Han GC, Li H, Ferranco A, Tao Zhan, Cheng Y, Chen Z, Xue M, Feng XZ, Kraatz HB. The construction of a simple sensor for the simultaneous detection of nitrite and thiosulfate by heme catalysis. RSC Adv 2020; 10:35007-35016. [PMID: 35515684 PMCID: PMC9056839 DOI: 10.1039/d0ra06942f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/10/2020] [Indexed: 11/21/2022] Open
Abstract
Several simple sensors were fabricated through a one-step method. By depositing electro-active compounds, such as β-cyclodextrins (β-CD), heme, dopamine (DA), or Fc-ECG, onto a screen-printed electrode (SPE), the successful simultaneous detection of nitrite (NO2 -) and thiosulfate (S2O3 2-) ions was observed. Under optimal operating conditions, the notable electrocatalytic abilities of a Heme/SPE sensor were detected for the oxidation of NO2 - and S2O3 2-, with remarkable peak potential differences, after characterization via SEM, CV, and DPV. Linear relationships were obtained in the ranges of 5.0-200.0 μmol L-1 and 1.0-100.0 μmol L-1 for the current response versus concentration of NO2 - and S2O3 2-, respectively. The limits of detection were determined to be 1.67 and 0.33 μmol L-1 while the sensitivities of detection were noted to be 0.43 and 1.43 μA μM-1 cm-2, respectively. During the detection of NO2 - and S2O3 2-, no interfering common ions were observed. Furthermore, average recoveries from 96.0 to 104.3% and a total R.S.D. of less than 3.1% were found for the detection of NO2 - and S2O3 2- in pickled juice and tap water using the simple sensor. These results showed that rapid and precise measurements for actual application in NO2 - and S2O3 2- detection could be conducted in food samples, indicating a potential use in food safety.
Collapse
Affiliation(s)
- Guo-Cheng Han
- School of Life and Environmental Sciences, Guilin University of Electronic Technology Guilin 541004 P. R. China
| | - Huifang Li
- School of Life and Environmental Sciences, Guilin University of Electronic Technology Guilin 541004 P. R. China
| | - Annaleizle Ferranco
- Department of Physical and Environmental Sciences, University of Toronto Scarborough Campus Toronto Ontario M1C 1A4 Canada
| | - Tao Zhan
- School of Life and Environmental Sciences, Guilin University of Electronic Technology Guilin 541004 P. R. China
| | - Yunyun Cheng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology Guilin 541004 P. R. China
| | - Zhencheng Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology Guilin 541004 P. R. China
| | - Mingyue Xue
- School of Life and Environmental Sciences, Guilin University of Electronic Technology Guilin 541004 P. R. China
| | - Xiao-Zhen Feng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology Guilin 541004 P. R. China
| | - Heinz-Bernhard Kraatz
- Department of Physical and Environmental Sciences, University of Toronto Scarborough Campus Toronto Ontario M1C 1A4 Canada
| |
Collapse
|
14
|
Abstract
A unique environment at Borup Fiord Pass is characterized by a sulfur-enriched glacial ecosystem in the low-temperature Canadian High Arctic. BFP represents one of the best terrestrial analog sites for studying icy, sulfur-rich worlds outside our own, such as Europa and Mars. The site also allows investigation of sulfur-based microbial metabolisms in cold environments here on Earth. Here, we report whole-genome sequencing data that suggest that sulfur cycling metabolisms at BFP are more widely used across bacterial taxa than predicted. From our analyses, the metabolic capability of sulfur oxidation among multiple community members appears likely due to functional redundancy present in their genomes. Functional redundancy, with respect to sulfur-oxidation at the BFP sulfur-ice environment, may indicate that this dynamic ecosystem hosts microorganisms that are able to use multiple sulfur electron donors alongside other metabolic pathways, including those for carbon and nitrogen. Biological sulfur cycling in polar, low-temperature ecosystems is an understudied phenomenon in part due to difficulty of access and the dynamic nature of glacial environments. One such environment where sulfur cycling is known to play an important role in microbial metabolisms is located at Borup Fiord Pass (BFP) in the Canadian High Arctic. Here, transient springs emerge from ice near the terminus of a glacier, creating a large area of proglacial aufeis (spring-derived ice) that is often covered in bright yellow/white sulfur, sulfate, and carbonate mineral precipitates accompanied by a strong odor of hydrogen sulfide. Metagenomic sequencing of samples from multiple sites and of various sample types across the BFP glacial system produced 31 metagenome-assembled genomes (MAGs) that were queried for sulfur, nitrogen, and carbon cycling/metabolism genes. An abundance of sulfur cycling genes was widespread across the isolated MAGs and sample metagenomes taxonomically associated with the bacterial classes Alphaproteobacteria and Gammaproteobacteria and Campylobacteria (formerly the Epsilonproteobacteria). This corroborates previous research from BFP implicating Campylobacteria as the primary class responsible for sulfur oxidation; however, data reported here suggested putative sulfur oxidation by organisms in both the alphaproteobacterial and gammaproteobacterial classes that was not predicted by previous work. These findings indicate that in low-temperature, sulfur-based environments, functional redundancy may be a key mechanism that microorganisms use to enable coexistence whenever energy is limited and/or focused by redox chemistry. IMPORTANCE A unique environment at Borup Fiord Pass is characterized by a sulfur-enriched glacial ecosystem in the low-temperature Canadian High Arctic. BFP represents one of the best terrestrial analog sites for studying icy, sulfur-rich worlds outside our own, such as Europa and Mars. The site also allows investigation of sulfur-based microbial metabolisms in cold environments here on Earth. Here, we report whole-genome sequencing data that suggest that sulfur cycling metabolisms at BFP are more widely used across bacterial taxa than predicted. From our analyses, the metabolic capability of sulfur oxidation among multiple community members appears likely due to functional redundancy present in their genomes. Functional redundancy, with respect to sulfur-oxidation at the BFP sulfur-ice environment, may indicate that this dynamic ecosystem hosts microorganisms that are able to use multiple sulfur electron donors alongside other metabolic pathways, including those for carbon and nitrogen.
Collapse
|
15
|
Colombo N, Salerno F, Martin M, Malandrino M, Giardino M, Serra E, Godone D, Said-Pullicino D, Fratianni S, Paro L, Tartari G, Freppaz M. Influence of permafrost, rock and ice glaciers on chemistry of high-elevation ponds (NW Italian Alps). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 685:886-901. [PMID: 31247436 DOI: 10.1016/j.scitotenv.2019.06.233] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/14/2019] [Accepted: 06/15/2019] [Indexed: 06/09/2023]
Abstract
Permafrost degradation, rock-glacier thawing, and glacier retreat are influencing surface water quality at high elevations. However, there is a lack of knowledge on the dominant geochemical reactions occurring in different cryospheric conditions and how these reactions change during the ice-free season. In the Col d'Olen area (LTER site, NW Italian Alps), four ponds with similar sizes, located in basins with different cryospheric features (glacier, permafrost, rock glacier, none of these), are present in a geographically limited area. All ponds were sampled weekly in 2015 and partially in 2014. Major ions, selected trace elements, and biotic parameters (dissolved organic carbon-DOC, fluorescence index-FI, and nitrate) are examined to evidence the effect of different cryospheric features on water characteristics. Where cryospheric conditions occur chemical weathering is more intensive, with strong seasonal increase of major ions. Sulphide oxidation dominates in glacier and permafrost lying on acid rocks, probably driven by enhanced weathering of freshly exposed rocks in subglacial environment and recently deglaciated areas, and active layer thickness increase. Differently, carbonation dominates for the rock glacier lying on ultramafic rocks. There, high Ni concentrations originate from dissolution of Mg-bearing rocks in the landform. In all settings, pH neutralisation occurs because of the presence of secondary carbonate lithology and ultramafic rocks. Nitrate highest concentrations and changes occur in cryospheric settings while DOC and FI do not show strong differences and seasonal variations. The establishment of more frequent monitoring for water quality in high-elevated surface waters is necessary to provide greater statistical power to detect changes on longer time scales.
Collapse
Affiliation(s)
- N Colombo
- University of Turin, Department of Agricultural, Forest and Food Sciences, Grugliasco, Italy
| | - F Salerno
- CNR-IRSA (National Research Council - Water Research Institute), Brugherio, Italy.
| | - M Martin
- University of Turin, Department of Agricultural, Forest and Food Sciences, Grugliasco, Italy
| | - M Malandrino
- University of Turin, Department of Chemistry, Turin, Italy
| | - M Giardino
- University of Turin, Department of Earth Sciences, Turin, Italy
| | - E Serra
- University of Bern, Institute of Geological Sciences, Bern, Switzerland
| | - D Godone
- CNR-IRPI (National Research Council - Research Institute for Geo-Hydrological Protection), Turin, Italy
| | - D Said-Pullicino
- University of Turin, Department of Agricultural, Forest and Food Sciences, Grugliasco, Italy
| | - S Fratianni
- University of Turin, Department of Earth Sciences, Turin, Italy
| | - L Paro
- Arpa Piemonte, Department of "Natural and Environmental Risks", Turin, Italy
| | - G Tartari
- CNR-IRSA (National Research Council - Water Research Institute), Brugherio, Italy
| | - M Freppaz
- University of Turin, Department of Agricultural, Forest and Food Sciences, Grugliasco, Italy
| |
Collapse
|
16
|
Taxonomic and functional characterization of a microbial community from a volcanic englacial ecosystem in Deception Island, Antarctica. Sci Rep 2019; 9:12158. [PMID: 31434915 PMCID: PMC6704131 DOI: 10.1038/s41598-019-47994-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/24/2019] [Indexed: 12/22/2022] Open
Abstract
Glaciers are populated by a large number of microorganisms including bacteria, archaea and microeukaryotes. Several factors such as solar radiation, nutrient availability and water content greatly determine the diversity and abundance of these microbial populations, the type of metabolism and the biogeochemical cycles. Three ecosystems can be differentiated in glaciers: supraglacial, subglacial and englacial ecosystems. Firstly, the supraglacial ecosystem, sunlit and oxygenated, is predominantly populated by photoautotrophic microorganisms. Secondly, the subglacial ecosystem contains a majority of chemoautotrophs that are fed on the mineral salts of the rocks and basal soil. Lastly, the englacial ecosystem is the least studied and the one that contains the smallest number of microorganisms. However, these unknown englacial microorganisms establish a food web and appear to have an active metabolism. In order to study their metabolic potentials, samples of englacial ice were taken from an Antarctic glacier. Microorganisms were analyzed by a polyphasic approach that combines a set of -omic techniques: 16S rRNA sequencing, culturomics and metaproteomics. This combination provides key information about diversity and functions of microbial populations, especially in rare habitats. Several whole essential proteins and enzymes related to metabolism and energy production, recombination and translation were found that demonstrate the existence of cellular activity at subzero temperatures. In this way it is shown that the englacial microorganisms are not quiescent, but that they maintain an active metabolism and play an important role in the glacial microbial community.
Collapse
|
17
|
Wadham JL, Hawkings JR, Tarasov L, Gregoire LJ, Spencer RGM, Gutjahr M, Ridgwell A, Kohfeld KE. Ice sheets matter for the global carbon cycle. Nat Commun 2019; 10:3567. [PMID: 31417076 PMCID: PMC6695407 DOI: 10.1038/s41467-019-11394-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/09/2019] [Indexed: 11/09/2022] Open
Abstract
The cycling of carbon on Earth exerts a fundamental influence upon the greenhouse gas content of the atmosphere, and hence global climate over millennia. Until recently, ice sheets were viewed as inert components of this cycle and largely disregarded in global models. Research in the past decade has transformed this view, demonstrating the existence of uniquely adapted microbial communities, high rates of biogeochemical/physical weathering in ice sheets and storage and cycling of organic carbon (>104 Pg C) and nutrients. Here we assess the active role of ice sheets in the global carbon cycle and potential ramifications of enhanced melt and ice discharge in a warming world.
Collapse
Affiliation(s)
- J L Wadham
- University of Bristol, Bristol, BS8 1TH, UK.
| | - J R Hawkings
- National High Magnetic Field Lab and Earth, Ocean and Atmospheric Sciences, Florida State University, Tallahassee, FL, 32306, USA
- German Research Centre for Geosciences GFZ, 14473, Potsdam, Germany
| | - L Tarasov
- Memorial University, St. John's, NF, A1B 3X9, Canada
| | | | - R G M Spencer
- National High Magnetic Field Lab and Earth, Ocean and Atmospheric Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | | | - A Ridgwell
- University of California, Riverside, CA, 94720, USA
| | - K E Kohfeld
- Simon Fraser University, Burnaby, BC, 8888, Canada
| |
Collapse
|
18
|
Margesin R, Collins T. Microbial ecology of the cryosphere (glacial and permafrost habitats): current knowledge. Appl Microbiol Biotechnol 2019; 103:2537-2549. [PMID: 30719551 PMCID: PMC6443599 DOI: 10.1007/s00253-019-09631-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 11/28/2022]
Abstract
Microorganisms in cold ecosystems play a key ecological role in their natural habitats. Since these ecosystems are especially sensitive to climate changes, as indicated by the worldwide retreat of glaciers and ice sheets as well as permafrost thawing, an understanding of the role and potential of microbial life in these habitats has become crucial. Emerging technologies have added significantly to our knowledge of abundance, functional activity, and lifestyles of microbial communities in cold environments. The current knowledge of microbial ecology in glacial habitats and permafrost, the most studied habitats of the cryosphere, is reported in this review.
Collapse
Affiliation(s)
- Rosa Margesin
- Institute of Microbiology, University of Innsbruck, 6020, Innsbruck, Austria.
| | - Tony Collins
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057, Braga, Portugal
| |
Collapse
|
19
|
Kumar S, Herrmann M, Blohm A, Hilke I, Frosch T, Trumbore SE, Küsel K. Thiosulfate- and hydrogen-driven autotrophic denitrification by a microbial consortium enriched from groundwater of an oligotrophic limestone aquifer. FEMS Microbiol Ecol 2018; 94:5056153. [DOI: 10.1093/femsec/fiy141] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/18/2018] [Indexed: 01/17/2023] Open
Affiliation(s)
- Swatantar Kumar
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Strasse 159, D-07743 Jena, Germany
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Strasse 10, D-07745 Jena, Germany
| | - Martina Herrmann
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Strasse 159, D-07743 Jena, Germany
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103 Leipzig, Germany
| | - Annika Blohm
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Strasse 10, D-07745 Jena, Germany
- Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, D-07745 Jena, Germany
| | - Ines Hilke
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Strasse 10, D-07745 Jena, Germany
| | - Torsten Frosch
- Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, D-07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Albert-Einstein-Strasse 6, D-07745, Jena, Germany
| | - Susan E Trumbore
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Strasse 10, D-07745 Jena, Germany
| | - Kirsten Küsel
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Strasse 159, D-07743 Jena, Germany
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103 Leipzig, Germany
| |
Collapse
|
20
|
Percak-Dennett E, He S, Converse B, Konishi H, Xu H, Corcoran A, Noguera D, Chan C, Bhattacharyya A, Borch T, Boyd E, Roden EE. Microbial acceleration of aerobic pyrite oxidation at circumneutral pH. GEOBIOLOGY 2017; 15:690-703. [PMID: 28452176 DOI: 10.1111/gbi.12241] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 03/22/2017] [Indexed: 06/07/2023]
Abstract
Pyrite (FeS2 ) is the most abundant sulfide mineral on Earth and represents a significant reservoir of reduced iron and sulfur both today and in the geologic past. In modern environments, oxidative transformations of pyrite and other metal sulfides play a key role in terrestrial element partitioning with broad impacts to contaminant mobility and the formation of acid mine drainage systems. Although the role of aerobic micro-organisms in pyrite oxidation under acidic-pH conditions is well known, to date there is very little known about the capacity for aerobic micro-organisms to oxidize pyrite at circumneutral pH. Here, we describe two enrichment cultures, obtained from pyrite-bearing subsurface sediments, that were capable of sustained cell growth linked to pyrite oxidation and sulfate generation at neutral pH. The cultures were dominated by two Rhizobiales species (Bradyrhizobium sp. and Mesorhizobium sp.) and a Ralstonia species. Shotgun metagenomic sequencing and genome reconstruction indicated the presence of Fe and S oxidation pathways in these organisms, and the presence of a complete Calvin-Benson-Bassham CO2 fixation system in the Bradyrhizobium sp. Oxidation of pyrite resulted in thin (30-50 nm) coatings of amorphous Fe(III) oxide on the pyrite surface, with no other secondary Fe or S phases detected by electron microscopy or X-ray absorption spectroscopy. Rates of microbial pyrite oxidation were approximately one order of magnitude higher than abiotic rates. These results demonstrate the ability of aerobic microbial activity to accelerate pyrite oxidation and expand the potential contribution of micro-organisms to continental sulfide mineral weathering around the time of the Great Oxidation Event to include neutral-pH environments. In addition, our findings have direct implications for the geochemistry of modern sedimentary environments, including stimulation of the early stages of acid mine drainage formation and mobilization of pyrite-associated metals.
Collapse
Affiliation(s)
- E Percak-Dennett
- Department of Geoscience, NASA Astrobiology Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - S He
- Department of Geoscience, NASA Astrobiology Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - B Converse
- Department of Geoscience, NASA Astrobiology Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - H Konishi
- Department of Geoscience, NASA Astrobiology Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - H Xu
- Department of Geoscience, NASA Astrobiology Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - A Corcoran
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - D Noguera
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - C Chan
- Department of Geological Sciences, University of Delaware, Newark, DE, USA
| | - A Bhattacharyya
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - T Borch
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - E Boyd
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT, USA
| | - E E Roden
- Department of Geoscience, NASA Astrobiology Institute, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
21
|
Garcia-Lopez E, Cid C. Glaciers and Ice Sheets As Analog Environments of Potentially Habitable Icy Worlds. Front Microbiol 2017; 8:1407. [PMID: 28804477 PMCID: PMC5532398 DOI: 10.3389/fmicb.2017.01407] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/11/2017] [Indexed: 01/09/2023] Open
Abstract
Icy worlds in the solar system and beyond have attracted a remarkable attention as possible habitats for life. The current consideration about whether life exists beyond Earth is based on our knowledge of life in terrestrial cold environments. On Earth, glaciers and ice sheets have been considered uninhabited for a long time as they seemed too hostile to harbor life. However, these environments are unique biomes dominated by microbial communities which maintain active biochemical routes. Thanks to techniques such as microscopy and more recently DNA sequencing methods, a great biodiversity of prokaryote and eukaryote microorganisms have been discovered. These microorganisms are adapted to a harsh environment, in which the most extreme features are the lack of liquid water, extremely cold temperatures, high solar radiation and nutrient shortage. Here we compare the environmental characteristics of icy worlds, and the environmental characteristics of terrestrial glaciers and ice sheets in order to address some interesting questions: (i) which are the characteristics of habitability known for the frozen worlds, and which could be compatible with life, (ii) what are the environmental characteristics of terrestrial glaciers and ice sheets that can be life-limiting, (iii) What are the microbial communities of prokaryotic and eukaryotic microorganisms that can live in them, and (iv) taking into account these observations, could any of these planets or satellites meet the conditions of habitability? In this review, the icy worlds are considered from the point of view of astrobiological exploration. With the aim of determining whether icy worlds could be potentially habitable, they have been compared with the environmental features of glaciers and ice sheets on Earth. We also reviewed some field and laboratory investigations about microorganisms that live in analog environments of icy worlds, where they are not only viable but also metabolically active.
Collapse
Affiliation(s)
| | - Cristina Cid
- Microbial Evolution Laboratory, Centro de Astrobiología (Consejo Superior de Investigaciones Cientificas-Instituto Nacional de Técnica Aeroespacial)Madrid, Spain
| |
Collapse
|
22
|
Hotaling S, Hood E, Hamilton TL. Microbial ecology of mountain glacier ecosystems: biodiversity, ecological connections and implications of a warming climate. Environ Microbiol 2017; 19:2935-2948. [PMID: 28419666 DOI: 10.1111/1462-2920.13766] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/08/2017] [Accepted: 04/11/2017] [Indexed: 11/29/2022]
Abstract
Glacier ecosystems are teeming with life on, beneath, and to a lesser degree, within their icy masses. This conclusion largely stems from polar research, with less attention paid to mountain glaciers that overlap environmentally and ecologically with their polar counterparts in some ways, but diverge in others. One difference lies in the susceptibility of mountain glaciers to the near-term threat of climate change, as they tend to be much smaller in both area and volume. Moreover, mountain glaciers are typically steeper, more dependent upon basal sliding for movement, and experience higher seasonal precipitation. Here, we provide a modern synthesis of the microbial ecology of mountain glacier ecosystems, and particularly those at low- to mid-latitudes. We focus on five ecological zones: the supraglacial surface, englacial interior, subglacial bedrock-ice interface, proglacial streams and glacier forefields. For each, we discuss the role of microbiota in biogeochemical cycling and outline ecological and hydrological connections among zones, underscoring the interconnected nature of these ecosystems. Collectively, we highlight the need to: better document the biodiversity and functional roles of mountain glacier microbiota; describe the ecological implications of rapid glacial retreat under climate change and resolve the relative contributions of ecological zones to broader ecosystem function.
Collapse
Affiliation(s)
- Scott Hotaling
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - Eran Hood
- Department of Natural Science, University of Alaska Southeast, Juneau, AK, 99801, USA
| | - Trinity L Hamilton
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| |
Collapse
|
23
|
Anesio AM, Lutz S, Chrismas NAM, Benning LG. The microbiome of glaciers and ice sheets. NPJ Biofilms Microbiomes 2017; 3:10. [PMID: 28649411 PMCID: PMC5460203 DOI: 10.1038/s41522-017-0019-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/17/2017] [Accepted: 03/23/2017] [Indexed: 01/09/2023] Open
Abstract
Glaciers and ice sheets, like other biomes, occupy a significant area of the planet and harbour biological communities with distinct interactions and feedbacks with their physical and chemical environment. In the case of the glacial biome, the biological processes are dominated almost exclusively by microbial communities. Habitats on glaciers and ice sheets with enough liquid water to sustain microbial activity include snow, surface ice, cryoconite holes, englacial systems and the interface between ice and overridden rock/soil. There is a remarkable similarity between the different specific glacial habitats across glaciers and ice sheets worldwide, particularly regarding their main primary producers and ecosystem engineers. At the surface, cyanobacteria dominate the carbon production in aquatic/sediment systems such as cryoconite holes, while eukaryotic Zygnematales and Chlamydomonadales dominate ice surfaces and snow dynamics, respectively. Microbially driven chemolithotrophic processes associated with sulphur and iron cycle and C transformations in subglacial ecosystems provide the basis for chemical transformations at the rock interface under the ice that underpin an important mechanism for the delivery of nutrients to downstream ecosystems. In this review, we focus on the main ecosystem engineers of glaciers and ice sheets and how they interact with their chemical and physical environment. We then discuss the implications of this microbial activity on the icy microbiome to the biogeochemistry of downstream ecosystems.
Collapse
Affiliation(s)
- Alexandre M. Anesio
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, BS8 1SS UK
| | - Stefanie Lutz
- GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
| | - Nathan A. M. Chrismas
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, BS8 1SS UK
| | - Liane G. Benning
- GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
- Department of Earth Sciences, Free University of Berlin, 12249 Berlin, Germany
| |
Collapse
|
24
|
Diversity and abundance of microbial eukaryotes in stream sediments from Svalbard. Polar Biol 2017; 40:1835-1843. [PMID: 32009726 PMCID: PMC6961512 DOI: 10.1007/s00300-017-2106-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 10/25/2022]
Abstract
Microbial eukaryotes are increasingly being recognised for their role in global biogeochemical cycles, yet very few studies have focussed on their distribution in high-latitude stream sediments, an important habitat which influences stream water nutrient chemistry. In this study, we present the first comparison of microbial eukaryotes from two different polar habitats by determining the abundance and taxonomic affiliation of 18S rRNA gene fragments recovered from four sediment samples in Svalbard: two from a glaciated catchment and two from an unglaciated permafrost-dominated catchment. Whilst there was no difference between the two catchments in terms of Rao's phylogenetic diversity (0.18±0.04, 1SD), the glaciated catchment samples had slightly higher richness (138-139) than the unglaciated catchment samples (67-106). At the phylum level, Ciliophora had the highest relative abundance in the samples from the glaciated catchment (32-63%), but only comprised 0-17% of the unglaciated catchment samples. Bacillariophyta was the most abundant phylum in one of the samples from the unglaciated catchment (43%) but phototrophic microbial eukaryotes only formed a minor component of the glaciated catchment samples (<2%), suggesting that in these environments the microbial eukaryotes are predominantly heterotrophic (chemotrophic). This is in contrast to previously published data from Robertson Glacier, Canada where the relative abundance of chlorophyta (phototrophs) in three samples was 48-57%. The contrast may be due to differences in glacial hydrology and/or geology, highlighting the variation in microbial eukaryote communities between nominally similar environments.
Collapse
|
25
|
Achberger AM, Christner BC, Michaud AB, Priscu JC, Skidmore ML, Vick-Majors TJ. Microbial Community Structure of Subglacial Lake Whillans, West Antarctica. Front Microbiol 2016; 7:1457. [PMID: 27713727 PMCID: PMC5032586 DOI: 10.3389/fmicb.2016.01457] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/31/2016] [Indexed: 11/13/2022] Open
Abstract
Subglacial Lake Whillans (SLW) is located beneath ∼800 m of ice on the Whillans Ice Stream in West Antarctica and was sampled in January of 2013, providing the first opportunity to directly examine water and sediments from an Antarctic subglacial lake. To minimize the introduction of surface contaminants to SLW during its exploration, an access borehole was created using a microbiologically clean hot water drill designed to reduce the number and viability of microorganisms in the drilling water. Analysis of 16S rRNA genes (rDNA) amplified from samples of the drilling and borehole water allowed an evaluation of the efficacy of this approach and enabled a confident assessment of the SLW ecosystem inhabitants. Based on an analysis of 16S rDNA and rRNA (i.e., reverse-transcribed rRNA molecules) data, the SLW community was found to be bacterially dominated and compositionally distinct from the assemblages identified in the drill system. The abundance of bacteria (e.g., Candidatus Nitrotoga, Sideroxydans, Thiobacillus, and Albidiferax) and archaea (Candidatus Nitrosoarchaeum) related to chemolithoautotrophs was consistent with the oxidation of reduced iron, sulfur, and nitrogen compounds having important roles as pathways for primary production in this permanently dark ecosystem. Further, the prevalence of Methylobacter in surficial lake sediments combined with the detection of methanogenic taxa in the deepest sediment horizons analyzed (34–36 cm) supported the hypothesis that methane cycling occurs beneath the West Antarctic Ice Sheet. Large ratios of rRNA to rDNA were observed for several operational taxonomic units abundant in the water column and sediments (e.g., Albidiferax, Methylobacter, Candidatus Nitrotoga, Sideroxydans, and Smithella), suggesting a potentially active role for these taxa in the SLW ecosystem. Our findings are consistent with chemosynthetic microorganisms serving as the ecological foundation in this dark subsurface environment, providing new organic matter that sustains a microbial ecosystem beneath the West Antarctic Ice Sheet.
Collapse
Affiliation(s)
- Amanda M Achberger
- Department of Biological Sciences, Louisiana State University, Baton Rouge LA, USA
| | - Brent C Christner
- Department of Biological Sciences, Louisiana State University, Baton RougeLA, USA; Department of Microbiology and Cell Science, University of Florida, GainesvilleFL, USA; Biodiversity Institute, University of Florida, GainesvilleFL, USA
| | - Alexander B Michaud
- Department of Land Resources and Environmental Science, Montana State University, Bozeman MT, USA
| | - John C Priscu
- Department of Land Resources and Environmental Science, Montana State University, Bozeman MT, USA
| | - Mark L Skidmore
- Department of Earth Sciences, Montana State University, Bozeman MT, USA
| | - Trista J Vick-Majors
- Department of Land Resources and Environmental Science, Montana State University, Bozeman MT, USA
| | | |
Collapse
|
26
|
Urschel MR, Hamilton TL, Roden EE, Boyd ES. Substrate preference, uptake kinetics and bioenergetics in a facultatively autotrophic, thermoacidophilic crenarchaeote. FEMS Microbiol Ecol 2016; 92:fiw069. [PMID: 27037359 DOI: 10.1093/femsec/fiw069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2016] [Indexed: 11/12/2022] Open
Abstract
Facultative autotrophs are abundant components of communities inhabiting geothermal springs. However, the influence of uptake kinetics and energetics on preference for substrates is not well understood in this group of organisms. Here, we report the isolation of a facultatively autotrophic crenarchaeote, strain CP80, from Cinder Pool (CP, 88.7°C, pH 4.0), Yellowstone National Park. The 16S rRNA gene sequence from CP80 is 98.8% identical to that from Thermoproteus uzonensis and is identical to the most abundant sequence identified in CP sediments. Strain CP80 reduces elemental sulfur (S8°) and demonstrates hydrogen (H2)-dependent autotrophic growth. H2-dependent autotrophic activity is suppressed by amendment with formate at a concentration in the range of 20-40 μM, similar to the affinity constant determined for formate utilization. Synthesis of a cell during growth with low concentrations of formate required 0.5 μJ compared to 2.5 μJ during autotrophic growth with H2 These results, coupled to data indicating greater C assimilation efficiency when grown with formate as compared to carbon dioxide, are consistent with preferential use of formate for energetic reasons. Collectively, these results provide new insights into the kinetic and energetic factors that influence the physiology and ecology of facultative autotrophs in high-temperature acidic environments.
Collapse
Affiliation(s)
- Matthew R Urschel
- Department of Microbiology and Immunology and the Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA
| | - Trinity L Hamilton
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Eric E Roden
- Department of Geosciences, University of Wisconsin, Madison, WI 53706, USA NASA Astrobiology Institute, Ames Research Center, Moffett Field, CA 94035, USA
| | - Eric S Boyd
- Department of Microbiology and Immunology and the Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA NASA Astrobiology Institute, Ames Research Center, Moffett Field, CA 94035, USA
| |
Collapse
|