1
|
Harrison SJ, Malkin SY, Joye SB. Dispersant addition, but not nutrients, stimulated blooms of multiple hydrocarbonoclastic genera in nutrient-replete coastal marine surface waters. MARINE POLLUTION BULLETIN 2024; 204:116490. [PMID: 38843703 DOI: 10.1016/j.marpolbul.2024.116490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/17/2024]
Abstract
The range of impacts of chemical dispersants on indigenous marine microbial communities and their activity remains poorly constrained. We tested the response of nearshore surface waters chronically exposed to oil leakage from a downed platform and supplied with nutrients by the Mississippi River to Corexit dispersant and nutrient additions. As assessed using 14C-labeled tracers, hexadecane mineralization potential was orders of magnitude higher in all unamended samples than in previously assessed bathypelagic communities. Nutrient additions stimulated microbial mortality but did not affect community composition and had no generalizable effect on hydrocarbon mineralization potential. By contrast, Corexit amendments caused a rapid shift in community composition and a drawdown of inorganic nitrogen and orthophosphate though no generalizable effect on hydrocarbon mineralization potential. The hydrocarbonoclastic community's response to dispersants is largely driven by the relative availability of organic substrates and nutrients, underscoring the role of environmental conditions and multiple interacting stressors on hydrocarbon degradation potential.
Collapse
Affiliation(s)
- Sarah J Harrison
- Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA
| | - Sairah Y Malkin
- Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA
| | - Samantha B Joye
- Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
2
|
Charalampous G, Fragkou E, Kalogerakis N, Antoniou E, Gontikaki E. Diversity links to functionality: Unraveling the impact of pressure disruption and culture medium on crude oil-enriched microbial communities from the deep Eastern Mediterranean Sea. MARINE POLLUTION BULLETIN 2024; 202:116275. [PMID: 38564821 DOI: 10.1016/j.marpolbul.2024.116275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/19/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
Mesopelagic water from the deep Eastern Mediterranean Sea (EMS) was collected under disrupted (REPRESS) or undisturbed (HP) pressure conditions and was acclimated to oil (OIL) or dispersed-oil (DISPOIL) under in situ pressure and temperature (10 MPa, 14 °C). Decompression resulted in oil-acclimatised microbial communities of lower diversity despite the restoration of in situ pressure conditions during the 1-week incubation. Further biodiversity loss was observed when oil-acclimatised communities were transferred to ONR7 medium to facilitate the isolation of oil-degrading bacteria. Microbial diversity loss impacted the degradation of recalcitrant oil compounds, especially PAHs, as low-abundance taxa, linked with PAH degradation, were outcompeted in the enrichment process. Thalassomonas, Pseudoalteromonas, Halomonas and Alcanivorax were enriched in ONR7 under all experimental conditions. No effect of dispersant application on the microbial community structure was identified. A. venustensis was isolated under all tested conditions suggesting a potential key role of this species in hydrocarbons removal in the deep EMS.
Collapse
Affiliation(s)
- Georgia Charalampous
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece; Institute of Geoenergy, Foundation for Research and Technology Hellas, Chania, Greece.
| | - Efsevia Fragkou
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece; Institute of Geoenergy, Foundation for Research and Technology Hellas, Chania, Greece
| | - Nicolas Kalogerakis
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece; Institute of Geoenergy, Foundation for Research and Technology Hellas, Chania, Greece
| | - Eleftheria Antoniou
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece; School of Mineral Resources Engineering, Technical University of Crete, Chania, Greece
| | - Evangelia Gontikaki
- Institute of Geoenergy, Foundation for Research and Technology Hellas, Chania, Greece.
| |
Collapse
|
3
|
Peña-Montenegro TD, Kleindienst S, Allen AE, Eren AM, McCrow JP, Sánchez-Calderón JD, Arnold J, Joye SB. Species-specific responses of marine bacteria to environmental perturbation. ISME COMMUNICATIONS 2023; 3:99. [PMID: 37736763 PMCID: PMC10516948 DOI: 10.1038/s43705-023-00310-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
Environmental perturbations shape the structure and function of microbial communities. Oil spills are a major perturbation and resolving spills often requires active measures like dispersant application that can exacerbate the initial disturbance. Species-specific responses of microorganisms to oil and dispersant exposure during such perturbations remain largely unknown. We merged metatranscriptomic libraries with pangenomes to generate Core-Accessory Metatranscriptomes (CA-Metatranscriptomes) for two microbial hydrocarbon degraders that played important roles in the aftermath of the Deepwater Horizon oil spill. The Colwellia CA-Metatranscriptome illustrated pronounced dispersant-driven acceleration of core (~41%) and accessory gene (~59%) transcription, suggesting an opportunistic strategy. Marinobacter responded to oil exposure by expressing mainly accessory genes (~93%), suggesting an effective hydrocarbon-degrading lifestyle. The CA-Metatranscriptome approach offers a robust way to identify the underlying mechanisms of key microbial functions and highlights differences of specialist-vs-opportunistic responses to environmental disturbance.
Collapse
Affiliation(s)
- Tito D Peña-Montenegro
- Department of Marine Sciences, University of Georgia, 325 Sanford Dr., Athens, GA, 30602-3636, USA
- Institute of Bioinformatics, University of Georgia, 120 Green St., Athens, GA, 30602-7229, USA
- Grupo de Investigación y Desarrollo en Ciencias, Tecnología e Innovación (BioGRID), Sociedad de Doctores e Investigadores de Colombia (SoPhIC), Bogotá, Colombia
| | - Sara Kleindienst
- Department of Marine Sciences, University of Georgia, 325 Sanford Dr., Athens, GA, 30602-3636, USA
- Department of Environmental Microbiology, Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA), University of Stuttgart, Bandtäle 2, 70569, Stuttgart, Germany
| | - Andrew E Allen
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, 92037, USA
- Integrative Oceanography Division, Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, 92037, USA
| | - A Murat Eren
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, University of Oldenburg, Oldenburg, 26129, Germany
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA
| | - John P McCrow
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, 92037, USA
| | - Juan D Sánchez-Calderón
- Grupo de Investigación en Gestión Ecológica y Agroindustrial (GEA), Programa de Microbiología, Facultad de Ciencias Exactas y Naturales, Universidad Libre, Seccional Barranquilla, Barranquilla, Colombia
| | - Jonathan Arnold
- Institute of Bioinformatics, University of Georgia, 120 Green St., Athens, GA, 30602-7229, USA
- Department of Genetics, University of Georgia, 120 Green St., Athens, GA, 30602-7223, USA
| | - Samantha B Joye
- Department of Marine Sciences, University of Georgia, 325 Sanford Dr., Athens, GA, 30602-3636, USA.
| |
Collapse
|
4
|
Byrne E, Schum S, Schaerer L, Techtmann SM. Impacts of Nutrients on Alkene Biodegradation Rates and Microbial Community Composition in Enriched Consortia from Natural Inocula. Microbiol Spectr 2023; 11:e0031622. [PMID: 37017561 PMCID: PMC10269803 DOI: 10.1128/spectrum.00316-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 01/25/2023] [Indexed: 04/06/2023] Open
Abstract
There is a growing need for biological and chemical methods for upcycling plastic waste streams. Pyrolysis processes can accelerate plastic depolymerization by breaking polyethylene into smaller alkene components which may be more biodegradable than the initial polymer. While the biodegradation of alkanes has been extensively studied, the role microorganisms play in alkene breakdown is not well understood. Alkene biodegradation holds the potential to contribute to the coupling of chemical and biological processing of polyethylene plastics. In addition, nutrient levels are known to impact rates of hydrocarbon degradation. Model alkenes were used (C6, C10, C16, and C20) to follow the breakdown capability of microbial communities from three environmental inocula in three nutrient levels over the course of 5 days. Higher-nutrient cultures were anticipated to exhibit enhanced biodegradation capabilities. Alkene mineralization was assessed by measuring CO2 production in the culture headspace using GC-FID (gas chromatography-flame ionization detection), and alkene breakdown was directly quantified by measuring extracted residual hydrocarbons using gas chromatography-mass spectrometry (GC/MS). Here, the efficacy of enriched consortia derived from the microbial communities of three inoculum sources (farm compost, Caspian Sea sediment, and an iron-rich sediment) at alkene breakdown was investigated over the course of 5 days across three nutrient treatments. No significant differences in CO2 production across nutrient levels or inoculum types were found. A high extent of biodegradation was observed in all sample types, with most samples achieving 60% to 95% biodegradation of all quantified compounds. Here, our findings indicate that alkene biodegradation is a common metabolic process in diverse environments and that nutrient levels common to culture media can support the growth of alkene-biodegrading consortia, primarily from the families Xanthamonadaceae, Nocardiaceae, and Beijerinkiaceae. IMPORTANCE Excess plastic waste poses a major environmental problem. Microorganisms can metabolize many of the breakdown products (alkenes) of plastics. While microbial degradation of plastics is typically slow, coupling chemical and biological processing of plastics has the potential to lead to novel methods for the upcycling of plastic wastes. Here, we explored how microbial consortia derived from diverse environments metabolize alkenes, which are produced by the pyrolysis of polyolefin plastics such as HDPE, and PP. We found that microbial consortia from diverse environments can rapidly metabolize alkenes of different chain lengths. We also explored how nutrients affect the rates of alkene breakdown and the microbial diversity of the consortia. Here, the findings indicate that alkene biodegradation is a common metabolism in diverse environments (farm compost, Caspian sediment, and iron-rich sediment) and that nutrient levels common to culture medium can support growth of alkene-biodegrading consortia, primarily from families Xanthamonadaceae, Nocardiaceae, and Beijerinkiaceae.
Collapse
Affiliation(s)
- Emily Byrne
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, USA
| | - Simeon Schum
- Great Lakes Research Center, Houghton, Michigan, USA
| | - Laura Schaerer
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, USA
| | - Stephen M. Techtmann
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, USA
| |
Collapse
|
5
|
Zhou Y, Wang Y, Yang L, Kong Q, Zhang H. Microbial degradation mechanisms of surface petroleum contaminated seawater in a typical oil trading port. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121420. [PMID: 36906058 DOI: 10.1016/j.envpol.2023.121420] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/14/2023] [Accepted: 03/04/2023] [Indexed: 05/25/2023]
Abstract
Petroleum hydrocarbons are significant new persistent organic pollutants for marine oil spill risk areas. Oil trading ports, in turn, have become major bearers of the risk of offshore oil pollution. However, studies on the molecular mechanisms of microbial degradation of petroleum pollutants by natural seawater are limited. Here, an in situ microcosm study was conducted. Combined with metagenomics, differences in metabolic pathways and in the gene abundances of total petroleum hydrocarbons (TPH) are revealed under different conditions. About 88% degradation of TPH was shown after 3 weeks of treatment. The positive responders to TPH were concentrated in the genera Cycloclasticus, Marivita and Sulfitobacter of the orders Rhodobacterales and Thiotrichales. The genera Marivita, Roseobacter, Lentibacter and Glaciecola were key degradation species when mixing dispersants with oil, and all of the above are from the Proteobacteria phylum. The analysis showed that the biodegradability of aromatic compounds, polycyclic aromatic hydrocarbon and dioxin were enhanced after the oil spill, and genes with higher abundances of bphAa, bsdC, nahB, doxE and mhpD were found, but the photosynthesis-related mechanism was inhibited. The dispersant treatment effectively stimulated the microbial degradation of TPH and then accelerated the succession of microbial communities. Meanwhile, functions such as bacterial chemotaxis and carbon metabolism (cheA, fadeJ and fadE) were better developed, but the degradation of persistent organic pollutants such as polycyclic aromatic hydrocarbons was weakened. Our study provides insights into the metabolic pathways and specific functional genes for oil degradation by marine microorganisms and will help improve the application and practice of bioremediation.
Collapse
Affiliation(s)
- Yumiao Zhou
- College of Geography and Environment, Shandong Normal University, Jinan, 250000, China
| | - Ying Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266100, China
| | - Likun Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266100, China
| | - Qiang Kong
- College of Geography and Environment, Shandong Normal University, Jinan, 250000, China
| | - Huanxin Zhang
- College of Geography and Environment, Shandong Normal University, Jinan, 250000, China.
| |
Collapse
|
6
|
Tonteri O, Reunamo A, Nousiainen A, Koskinen L, Nuutinen J, Truu J, Jørgensen KS. Effects of Dispersant on the Petroleum Hydrocarbon Biodegradation and Microbial Communities in Seawater from the Baltic Sea and Norwegian Sea. Microorganisms 2023; 11:microorganisms11040882. [PMID: 37110305 PMCID: PMC10142239 DOI: 10.3390/microorganisms11040882] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Dispersants have been used in several oil spill accidents, but little information is available on their effectiveness in Baltic Sea conditions with low salinity and cold seawater. This study investigated the effects of dispersant use on petroleum hydrocarbon biodegradation rates and bacterial community structures. Microcosm experiments were conducted at 5 °C for 12 days with North Sea crude oil and dispersant Finasol 51 with open sea Gulf of Bothnia and coastal Gulf of Finland and Norwegian Sea seawater. Petroleum hydrocarbon concentrations were analysed with GC-FID. Bacterial community structures were studied using 16S rDNA gene amplicon sequencing, and the abundance of genes involved in hydrocarbon degradation with quantitative PCR. The highest oil degradation gene abundances and oil removal were observed in microcosms with coastal seawater from the Gulf of Bothnia and Gulf of Finland, respectively, and the lowest in the seawater from the Norwegian Sea. Dispersant usage caused apparent effects on bacterial communities in all treatments; however, the dispersant’s effect on the biodegradation rate was unclear due to uncertainties with chemical analysis and variation in oil concentrations used in the experiments.
Collapse
Affiliation(s)
- Ossi Tonteri
- Marine Research Centre, Finnish Environmental Institute, Latokartanonkaari 11, FI-00790 Helsinki, Finland
- Correspondence:
| | - Anna Reunamo
- Marine Research Centre, Finnish Environmental Institute, Latokartanonkaari 11, FI-00790 Helsinki, Finland
| | - Aura Nousiainen
- Marine Research Centre, Finnish Environmental Institute, Latokartanonkaari 11, FI-00790 Helsinki, Finland
| | - Laura Koskinen
- Laboratory Centre, Finnish Environmental Institute, Latokartanonkaari 11, FI-00790 Helsinki, Finland
| | - Jari Nuutinen
- Laboratory Centre, Finnish Environmental Institute, Latokartanonkaari 11, FI-00790 Helsinki, Finland
| | - Jaak Truu
- Institute of Molecular and Cell Biology, Faculty of Science and Technology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Kirsten S. Jørgensen
- Marine Research Centre, Finnish Environmental Institute, Latokartanonkaari 11, FI-00790 Helsinki, Finland
| |
Collapse
|
7
|
Hafez T, Ortiz-Zarragoitia M, Cagnon C, Cravo-Laureau C, Duran R. Cold sediment microbial community shifts in response to crude oil water-accommodated fraction with or without dispersant: a microcosm study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44640-44656. [PMID: 36694068 DOI: 10.1007/s11356-023-25264-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
In cold environments, the low temperature slows down microbial metabolisms, such as the biodegradation processes of hydrocarbons, which are often stimulated by the addition of dispersants in oil spill disasters. In this study, we investigated the effects of hydrocarbon water-accommodated fraction (WAF) prepared with and without dispersant on benthic microbial communities in a microcosm experiment in which hydrocarbon removal was observed. Both WAFs contained similar polycyclic aromatic hydrocarbon (PAH) content. The microcosm experiment, set up with either pristine or contaminated sediments, was conducted for 21 days at 4 °C under WAF and WAF + dispersant conditions. The behavior of bacterial communities in response to WAF and WAF + dispersant was examined at both DNA and RNA levels, revealing the effect of WAF and WAF + dispersant on the resident and active communities respectively. The contaminated sediment showed less taxa responsive to the addition of both WAF and WAF + dispersant than the pristine sediment, indicating the legacy effect by the presence hydrocarbon-degrading and dispersant-resistant taxa inhabiting the contaminated sediment.
Collapse
Affiliation(s)
- Tamer Hafez
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS IPREM, Pau, France
- CBET Research Group, Department of Zoology and Cell Biology, Faculty of Science and Technology and Research Center for Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country, Areatza Z/G, 48620, Plentzia (Bizkaia), Basque Country, Spain
| | - Maren Ortiz-Zarragoitia
- CBET Research Group, Department of Zoology and Cell Biology, Faculty of Science and Technology and Research Center for Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country, Areatza Z/G, 48620, Plentzia (Bizkaia), Basque Country, Spain
| | - Christine Cagnon
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS IPREM, Pau, France
| | | | - Robert Duran
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS IPREM, Pau, France.
| |
Collapse
|
8
|
Gofstein TR, Leigh MB. Metatranscriptomic shifts suggest shared biodegradation pathways for Corexit 9500 components and crude oil in Arctic seawater. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:51-59. [PMID: 36177554 PMCID: PMC10103760 DOI: 10.1111/1758-2229.13127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 09/12/2022] [Indexed: 05/20/2023]
Abstract
While the genes and pathways responsible for petroleum biodegradation in marine environments have received substantial attention, considerably less is known about those active in the biodegradation of the commonly applied chemical dispersant Corexit 9500. Yet, their fate in the Arctic marine environment is an increasingly important unknown. To elucidate the genes and pathways active in the biodegradation of oil and dispersants, we performed metatranscriptomic sequencing on microbial communities in Arctic seawater exposed to oil, Corexit, or both for 0, 5, and 30 days in a mesocosm incubation experiment. While oil and Corexit stimulated significantly different metatranscriptomic profiles overall, both enriched a suite of fatty acid degradation gene transcripts. Based on the gene transcripts observed and the chemical structures of Corexit 9500 surfactant components, we propose a hypothetical pathway for Corexit surfactant biodegradation in which surfactant ester groups are transformed into fatty acids that are then funnelled into the β-oxidation fatty acid degradation pathway. Several microbial taxa within Oceanospirillales, Pseudomonadales, and Alteromonadales were associated with either oil-only or Corexit-only exposure, potentially implicating them in the degradation of these mixtures. Metabolic gene transcripts were associated with diverse gammaproteobacterial lineages, with many genera exhibiting functional redundancy. These findings offer new insight into the potential genes, pathways, and microbial consortia involved in the biodegradation of Corexit 9500 in the Arctic marine environment.
Collapse
Affiliation(s)
- Taylor R. Gofstein
- Institute of Arctic BiologyUniversity of Alaska FairbanksFairbanksAlaskaUSA
- Department of Chemistry & BiochemistryUniversity of Alaska FairbanksFairbanksAlaskaUSA
| | - Mary Beth Leigh
- Institute of Arctic BiologyUniversity of Alaska FairbanksFairbanksAlaskaUSA
- Department of Biology and WildlifeUniversity of Alaska FairbanksFairbanksAlaskaUSA
| |
Collapse
|
9
|
Techtmann SM, Santo Domingo J, Conmy R, Barron M. Impacts of dispersants on microbial communities and ecological systems. Appl Microbiol Biotechnol 2023; 107:1095-1106. [PMID: 36648524 PMCID: PMC10111227 DOI: 10.1007/s00253-022-12332-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 01/18/2023]
Abstract
Accidental oil spills can result in catastrophic ecological insults and therefore require rapid intervention to mitigate the potential impacts to aquatic ecosystems. One of the largest oil spills, known as the Deepwater Horizon oil spill, occurred in the Spring of 2010 near the coast of Louisiana (USA) due to an explosion during oil drilling activities. Millions of gallons of oil were released into the Gulf of Mexico, impacting thousands of ocean miles and coastal areas linked to the gulf. Among the actions taken during the remediation efforts was the unprecedented large use of Corexit dispersants, including at the subsurface to prevent oil from reaching the surface. While there is evidence that dispersants can accelerate the biodegradation of oil, reports on their potential toxicity to aquatic biota and to microbial functions have also been documented. In this review, we will examine the most recent literature on the impact of dispersants on microbial communities implicated in oil degradation and overall ecological networks. The primary focus will be on studies using Corexit but other dispersants will be discussed if data are available. We will share the literature gaps identified and discuss future work that is needed to reconcile some of the discrepancies found on the effectiveness of dispersants on oil degradation and their potential toxicity. KEY POINTS: • Chemical dispersants have been applied as a chemical response measure for oil spills. • The effects of chemical dispersants on microbial communities have been the subject of substantial research. • This work seeks to review recent work on the impact of chemical dispersants on oil biodegradation, microbial communities, and ecosystems.
Collapse
Affiliation(s)
- Stephen M Techtmann
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA.
| | - Jorge Santo Domingo
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, USA.
| | - Robyn Conmy
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, USA
| | - Mace Barron
- Office of Research and Development, U.S. Environmental Protection Agency, Gulf Breeze, FL, USA
| |
Collapse
|
10
|
Hassanshahi N, Hu G, Li J. Investigation of Dioctyl Sodium Sulfosuccinate in Demulsifying Crude Oil-in-Water Emulsions. ACS OMEGA 2022; 7:33397-33407. [PMID: 36157775 PMCID: PMC9494675 DOI: 10.1021/acsomega.2c04022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
This research investigated the performance of dioctyl sodium sulfosuccinate (DSS), a double-chain anionic surfactant, in breaking crude oil-in-water emulsions. The response surface methodology was used to consider the effect of the DSS concentration, oil concentration, and shaking time on demulsification efficiency and obtain optimum demulsification conditions. Further single-factor experiments were conducted to investigate the effects of salinity, crude oil conditions (fresh and weathered), and gravity separation settling time. The results showed that DSS efficiently demulsified stable emulsions under different oil concentrations (500-3000 mg/L) within 15 min shaking time. Increasing DSS concentration to 900 mg/L (critical micelle concentration) increased the demulsification efficiency to 99%. DSS not only improved the demulsification efficiency but also did not impede the demulsifier interfacial adsorption at the oil-water interface due to the presence of the double-chain structure. The low molecular weight enables the homogeneous distribution of DSS molecules in the emulsion, leading to a high demulsification efficiency within 15 min. Analysis of variance results indicated the importance of considering the interaction of oil concentration and shaking time in demulsification. DSS could reduce the total extractable petroleum hydrocarbons in the separated water to <10 mg/L without gravity separation and could achieve promising demulsification performance at high salinity (36 g/L) and various concentrations of fresh and weathered oil. The demulsification mechanism was explained by analyzing the microscopic images and the transmittance of the emulsion. DSS could be an efficient double-chain anionic surfactant in demulsifying stable oil-in-water emulsions.
Collapse
Affiliation(s)
- Nahid Hassanshahi
- Environmental
Engineering Program, University of Northern
British Columbia, Prince
George, British Columbia V2N4Z9, Canada
| | - Guangji Hu
- School
of Engineering, University of British Columbia,
Okanagan, Kelowna, British Columbia V1V 1V7, Canada
| | - Jianbing Li
- Environmental
Engineering Program, University of Northern
British Columbia, Prince
George, British Columbia V2N4Z9, Canada
| |
Collapse
|
11
|
Jayasinghe SA, Kennedy F, McMinn A, Martin A. Bacterial Utilisation of Aliphatic Organics: Is the Dwarf Planet Ceres Habitable? Life (Basel) 2022; 12:821. [PMID: 35743852 PMCID: PMC9224870 DOI: 10.3390/life12060821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/19/2022] [Accepted: 05/27/2022] [Indexed: 11/23/2022] Open
Abstract
The regolith environment and associated organic material on Ceres is analogous to environments that existed on Earth 3-4 billion years ago. This has implications not only for abiogenesis and the theory of transpermia, but it provides context for developing a framework to contrast the limits of Earth's biosphere with extraterrestrial environments of interest. In this study, substrate utilisation by the ice-associated bacterium Colwellia hornerae was examined with respect to three aliphatic organic hydrocarbons that may be present on Ceres: dodecane, isobutyronitrile, and dioctyl-sulphide. Following inoculation into a phyllosilicate regolith spiked with a hydrocarbon (1% or 20% organic concentration wt%), cell density, electron transport activity, oxygen consumption, and the production of ATP, NADPH, and protein in C. hornerae was monitored for a period of 32 days. Microbial growth kinetics were correlated with changes in bioavailable carbon, nitrogen, and sulphur. We provide compelling evidence that C. hornerae can survive and grow by utilising isobutyronitrile and, in particular, dodecane. Cellular growth, electron transport activity, and oxygen consumption increased significantly in dodecane at 20 wt% compared to only minor growth at 1 wt%. Importantly, the reduction in total carbon, nitrogen, and sulphur observed at 20 wt% is attributed to biotic, rather than abiotic, processes. This study illustrates that short-term bacterial incubation studies using exotic substrates provide a useful indicator of habitability. We suggest that replicating the regolith environment of Ceres warrants further study and that this dwarf planet could be a valid target for future exploratory missions.
Collapse
Affiliation(s)
- Sahan A. Jayasinghe
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7004, Australia; (S.A.J.); (F.K.)
| | - Fraser Kennedy
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7004, Australia; (S.A.J.); (F.K.)
| | - Andrew McMinn
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7004, Australia; (S.A.J.); (F.K.)
| | - Andrew Martin
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
12
|
Ibrar M, Khan S, Hasan F, Yang X. Biosurfactants and chemotaxis interplay in microbial consortium-based hydrocarbons degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:24391-24410. [PMID: 35061186 DOI: 10.1007/s11356-022-18492-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Hydrocarbons are routinely detected at low concentrations, despite the degrading metabolic potential of ubiquitous microorganisms. The potential drivers of hydrocarbons persistence are lower bioavailability and mass transfer limitation. Recently, bioremediation strategies have developed rapidly, but still, the solution is not resilient. Biosurfactants, known to increase bioavailability and augment biodegradation, are tightly linked to bacterial surface motility and chemotaxis, while chemotaxis help bacteria to locate aromatic compounds and increase the mass transfer. Harassing the biosurfactant production and chemotaxis properties of degrading microorganisms could be a possible approach for the complete degradation of hydrocarbons. This review provides an overview of interplay between biosurfactants and chemotaxis in bioremediation. Besides, we discuss the chemical surfactants and biosurfactant-mediated biodegradation by microbial consortium.
Collapse
Affiliation(s)
- Muhammad Ibrar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, 430074, Hubei, People's Republic of China
| | - Salman Khan
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Fariha Hasan
- Department of Microbiology, Applied, Environmental and Geomicrobiology Laboratory, Quaid-I-Azam University, Islamabad, Pakistan
| | - Xuewei Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China.
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
13
|
Aljandal S, Doyle SM, Bera G, Wade TL, Knap AH, Sylvan JB. Mesopelagic microbial community dynamics in response to increasing oil and Corexit 9500 concentrations. PLoS One 2022; 17:e0263420. [PMID: 35196352 PMCID: PMC8865645 DOI: 10.1371/journal.pone.0263420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/18/2022] [Indexed: 01/04/2023] Open
Abstract
Marine microbial communities play an important role in biodegradation of subsurface plumes of oil that form after oil is accidentally released from a seafloor wellhead. The response of these mesopelagic microbial communities to the application of chemical dispersants following oil spills remains a debated topic. While there is evidence that contrasting results in some previous work may be due to differences in dosage between studies, the impacts of these differences on mesopelagic microbial community composition remains unconstrained. To answer this open question, we exposed a mesopelagic microbial community from the Gulf of Mexico to oil alone, three concentrations of oil dispersed with Corexit 9500, and three concentrations of Corexit 9500 alone over long periods of time. We analyzed changes in hydrocarbon chemistry, cell abundance, and microbial community composition at zero, three and six weeks. The lowest concentration of dispersed oil yielded hydrocarbon concentrations lower than oil alone and microbial community composition more similar to control seawater than any other treatments with oil or dispersant. Higher concentrations of dispersed oil resulted in higher concentrations of microbe-oil microaggregates and similar microbial composition to the oil alone treatment. The genus Colwellia was more abundant when exposed to multiple concentrations of dispersed oil, but not when exposed to dispersant alone. Conversely, the most abundant Marinobacter amplicon sequence variant (ASV) was not influenced by dispersant when oil was present and showed an inverse relationship to the summed abundance of Alcanivorax ASVs. As a whole, the data presented here show that the concentration of oil strongly impacts microbial community response, more so than the presence of dispersant, confirming the importance of the concentrations of both oil and dispersant in considering the design and interpretation of results for oil spill simulation experiments.
Collapse
Affiliation(s)
- Shahd Aljandal
- Department of Oceanography, Texas A&M University, College Station, TX, United States of America
| | - Shawn M. Doyle
- Department of Oceanography, Texas A&M University, College Station, TX, United States of America
| | - Gopal Bera
- Geochemical and Environmental Research Group, Texas A&M University, College Station, TX, United States of America
| | - Terry L. Wade
- Department of Oceanography, Texas A&M University, College Station, TX, United States of America
- Geochemical and Environmental Research Group, Texas A&M University, College Station, TX, United States of America
| | - Anthony H. Knap
- Department of Oceanography, Texas A&M University, College Station, TX, United States of America
- Geochemical and Environmental Research Group, Texas A&M University, College Station, TX, United States of America
| | - Jason B. Sylvan
- Department of Oceanography, Texas A&M University, College Station, TX, United States of America
- * E-mail:
| |
Collapse
|
14
|
Péquin B, Cai Q, Lee K, Greer CW. Natural attenuation of oil in marine environments: A review. MARINE POLLUTION BULLETIN 2022; 176:113464. [PMID: 35231783 DOI: 10.1016/j.marpolbul.2022.113464] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/31/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Natural attenuation is an important process for oil spill management in marine environments. Natural attenuation affects the fate of oil by physical, chemical, and biological processes, which include evaporation, dispersion, dissolution, photo-oxidation, emulsification, oil particle aggregation, and biodegradation. This review examines the cumulative knowledge regarding these natural attenuation processes as well as their simulation and prediction using modelling approaches. An in-depth discussion is provided on how oil type, microbial community and environmental factors contribute to the biodegradation process. It describes how our understanding of the structure and function of indigenous oil degrading microbial communities in the marine environment has been advanced by the application of next generation sequencing tools. The synergetic and/or antagonist effects of oil spill countermeasures such as the application of chemical dispersants, in-situ burning and nutrient enrichment on natural attenuation were explored. Several knowledge gaps were identified regarding the synergetic and/or antagonistic effects of active response countermeasures on the natural attenuation/biodegradation process. This review highlighted the need for field data on both the effectiveness and potential detrimental effects of oil spill response options to support modelling and decision-making on their selection and application.
Collapse
Affiliation(s)
- Bérangère Péquin
- McGill University, Department of Natural Resource Sciences, Ste-Anne-de-Bellevue, Quebec, Canada.
| | - Qinhong Cai
- McGill University, Department of Natural Resource Sciences, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Kenneth Lee
- Ecosystem Science, Fisheries and Oceans Canada, Ottawa, Ontario, Canada
| | - Charles W Greer
- McGill University, Department of Natural Resource Sciences, Ste-Anne-de-Bellevue, Quebec, Canada; Energy, Mining and Environment Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| |
Collapse
|
15
|
Metagenomic and Metatranscriptomic Responses of Chemical Dispersant Application during a Marine Dilbit Spill. Appl Environ Microbiol 2022; 88:e0215121. [PMID: 35020455 DOI: 10.1128/aem.02151-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The global increase in marine transportation of dilbit (diluted bitumen) can increase the risk of spills, and the application of chemical dispersants remains a common response practice in spill events. To reliably evaluate dispersant effects on dilbit biodegradation over time, we set large-scale (1500 mL) microcosms without nutrients addition using low dilbit concentration (30 ppm). Shotgun metagenomics and metatranscriptomics were deployed to investigate microbial community responses to naturally and chemically dispersed dilbit. We found that the large-scale microcosms could produce more reproducible community trajectories than small-scale (250 mL) ones based on the 16S rRNA gene amplicon sequencing. In the early-stage large-scale microcosms, multiple genera were involved into the biodegradation of dilbit, while dispersant addition enriched primarily Alteromonas and competed for the utilization of dilbit, causing depressed degradation of aromatics. The metatranscriptomic based Metagenome Assembled Genomes (MAG) further elucidated early-stage microbial antioxidation mechanism, which showed dispersant addition triggered the increased expression of the antioxidation process genes of Alteromonas species. Differently, in the late stage, the microbial communities showed high diversity and richness and similar compositions and metabolic functions regardless of dispersant addition, indicating the biotransformation of remaining compounds can occur within the post-oil communities. These findings can guide future microcosm studies and the application of chemical dispersants for responding to a marine dilbit spill. Importance In this study, we employed microcosms to study the effects of marine dilbit spill and dispersant application on microbial community dynamics over time. We evaluated the impacts of microcosm scale and found that increasing the scale is beneficial for reducing community stochasticity, especially in the late stage of biodegradation. We observed that dispersant application suppressed aromatics biodegradation in the early stage (6 days) whereas exerting insignificant effects in the late stage (50 days), from both substances removal and metagenomic/metatranscriptomic perspectives. We further found that Alteromonas species are vital for the early-stage chemically dispersed oil biodegradation, and clarified their degradation and antioxidation mechanisms. The findings would help to better understand microcosm studies and microbial roles for biodegrading dilbit and chemically dispersed dilbit, and suggest that dispersant evaluation in large-scale systems and even through field trails would be more realistic after marine oil spill response.
Collapse
|
16
|
Cabral L, Giovanella P, Pellizzer EP, Teramoto EH, Kiang CH, Sette LD. Microbial communities in petroleum-contaminated sites: Structure and metabolisms. CHEMOSPHERE 2022; 286:131752. [PMID: 34426136 DOI: 10.1016/j.chemosphere.2021.131752] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/24/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Over recent decades, hydrocarbon concentrations have been augmented in soil and water, mainly derived from accidents or operations that input crude oil and petroleum into the environment. Different techniques for remediation have been proposed and used to mitigate oil contamination. Among the available environmental recovery approaches, bioremediation stands out since these hydrocarbon compounds can be used as growth substrates for microorganisms. In turn, microorganisms can play an important role with significant contributions to the stabilization of impacted areas. In this review, we present the current knowledge about responses from natural microbial communities (using DNA barcoding, multiomics, and functional gene markers) and bioremediation experiments (microcosm and mesocosm) conducted in the presence of petroleum and chemical dispersants in different samples, including soil, sediment, and water. Additionally, we present metabolic mechanisms for aerobic/anaerobic hydrocarbon degradation and alternative pathways, as well as a summary of studies showing functional genes and other mechanisms involved in petroleum biodegradation processes.
Collapse
Affiliation(s)
- Lucélia Cabral
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Patricia Giovanella
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Elisa Pais Pellizzer
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Elias Hideo Teramoto
- Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Laboratório de Estudos de Bacias (LEBAC), Departamento de Geologia Aplicada, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Chang Hung Kiang
- Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Laboratório de Estudos de Bacias (LEBAC), Departamento de Geologia Aplicada, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Lara Durães Sette
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil.
| |
Collapse
|
17
|
Fu X, Qiao Y, Xue J, Cheng D, Chen C, Bai Y, Jiang Q. Analyses of community structure and role of immobilized bacteria system in the bioremediation process of diesel pollution seawater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149439. [PMID: 34375874 DOI: 10.1016/j.scitotenv.2021.149439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Immobilized bacteria system plays an important role during degradation process in oil contaminated seawater. Although the immobilized bacteria system can be recycled to avoid pollution after remediation, it remains an open question on whether or not the secondary pollution occurs during the degradation process. Additionally, the research on the role of immobilized bacteria system in the process of oil removal is not clear enough. In this study, both the diesel degradation rate of diesel by immobilized bacteria system and changes in marine microbial community structure were determined to explore the role of immobilized bacteria system. The immobilized bacteria system was added to the diesel polluted seawater (1% diesel) for 30 days. The degradation performance was investigated during the process, and the microbial community structure was analyzed simultaneously. The results illustrated that the degradation rate of diesel by immobilized bacteria system reached 78.39% after 30 days, and Alcanivorax (59.09%), Achromobacter (24.34%) and Thalassospira (9.84%) were the dominant genera in the immobilized bacteria system. The addition of immobilized bacteria system increased the content of nitrogen and phosphorus, and then promoted the growth of oil-degrading bacteria. Thus, functional genes related to oil degradation increased. Additionally, there was little difference in the microbial composition between the treated seawater and the unpolluted seawater. Based on all results, it can be inferred that immobilized bacteria system triggered and stimulated diesel degradation process. This study provides a promising way to improve the removal of oil, and provides theoretical support for the wide application of immobilized microorganism technology.
Collapse
Affiliation(s)
- Xinge Fu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Yanlu Qiao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Jianliang Xue
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| | - Dongle Cheng
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Chuan Chen
- School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Yu Bai
- Chinaunicom System Integration Co., Ltd, No.131, Xidan North Road, Beijing 100085, China
| | - Qing Jiang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| |
Collapse
|
18
|
Hazaimeh MD, Ahmed ES. Bioremediation perspectives and progress in petroleum pollution in the marine environment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:54238-54259. [PMID: 34387817 DOI: 10.1007/s11356-021-15598-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The marine environment is often affected by petroleum hydrocarbon pollution due to industrial activities and petroleum accidents. This pollution has recalcitrant and persistent compounds that pose a high risk to the ecological system and human health. For this reason, the world claims to seek to clean up these pollutants. Bioremediation is an attractive approach for removing petroleum pollution. It is considered a low-cost and highly effective approach with fewer side effects compared to chemical and physical techniques. This depends on the metabolic capability of microorganisms involved in the degradation of hydrocarbons through enzymatic reactions. Bioremediation activities mostly depend on environmental conditions such as temperature, pH, salinity, pressure, and nutrition availability. Understanding the effects of environmental conditions on microbial hydrocarbon degraders and microbial interactions with hydrocarbon compounds could be assessed for the successful degradation of petroleum pollution. The current review provides a critical view of petroleum pollution in seawater, the bioavailability of petroleum compounds, the contribution of microorganisms in petroleum degradation, and the mechanisms of degradation under aerobic and anaerobic conditions. We consider different biodegradation approaches such as biostimulation, bioaugmentation, and phytoremediation.
Collapse
Affiliation(s)
- Mohammad Daher Hazaimeh
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah-11952, Saudi Arabia.
| | - Enas S Ahmed
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah-11952, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
19
|
Nikolova CN, Ijaz UZ, Magill C, Kleindienst S, Joye SB, Gutierrez T. Response and oil degradation activities of a northeast Atlantic bacterial community to biogenic and synthetic surfactants. MICROBIOME 2021; 9:191. [PMID: 34548108 PMCID: PMC8456599 DOI: 10.1186/s40168-021-01143-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/12/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Biosurfactants are naturally derived products that play a similar role to synthetic dispersants in oil spill response but are easily biodegradable and less toxic. Using a combination of analytical chemistry, 16S rRNA amplicon sequencing and simulation-based approaches, this study investigated the microbial community dynamics, ecological drivers, functional diversity and robustness, and oil biodegradation potential of a northeast Atlantic marine microbial community to crude oil when exposed to rhamnolipid or synthetic dispersant Finasol OSR52. RESULTS Psychrophilic Colwellia and Oleispira dominated the community in both the rhamnolipid and Finasol OSR52 treatments initially but later community structure across treatments diverged significantly: Rhodobacteraceae and Vibrio dominated the Finasol-amended treatment, whereas Colwellia, Oleispira, and later Cycloclasticus and Alcanivorax, dominated the rhamnolipid-amended treatment. Key aromatic hydrocarbon-degrading bacteria, like Cycloclasticus, was not observed in the Finasol treatment but it was abundant in the oil-only and rhamnolipid-amended treatments. Overall, Finasol had a significant negative impact on the community diversity, weakened the taxa-functional robustness of the community, and caused a stronger environmental filtering, more so than oil-only and rhamnolipid-amended oil treatments. Rhamnolipid-amended and oil-only treatments had the highest functional diversity, however, the overall oil biodegradation was greater in the Finasol treatment, but aromatic biodegradation was highest in the rhamnolipid treatment. CONCLUSION Overall, the natural marine microbial community in the northeast Atlantic responded differently to crude oil dispersed with either synthetic or biogenic surfactants over time, but oil degradation was more enhanced by the synthetic dispersant. Collectively, our results advance the understanding of how rhamnolipid biosurfactants and synthetic dispersant Finasol affect the natural marine microbial community in the FSC, supporting their potential application in oil spills. Video abstract.
Collapse
Affiliation(s)
- Christina N Nikolova
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | | | - Clayton Magill
- Institute for GeoEnergy Engineering, School of Energy, Geoscience, Infrastructure and Society, The Lyell Centre, Edinburgh, EH14 4AS, UK
| | - Sara Kleindienst
- Center for Applied Geosciences, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Samantha B Joye
- Department of Marine Sciences, The University of Georgia, Athens, GA, USA
| | - Tony Gutierrez
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| |
Collapse
|
20
|
Christian WC, Butler TM, Ghannam RB, Webb PN, Techtmann SM. Phylogeny and diversity of alkane-degrading enzyme gene variants in the laurentian great lakes and western atlantic. FEMS Microbiol Lett 2021; 367:5974522. [PMID: 33354724 DOI: 10.1093/femsle/fnaa182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/09/2020] [Indexed: 11/14/2022] Open
Abstract
Many aquatic environments are at risk for oil contamination and alkanes are one of the primary constituents of oil. The alkane hydroxylase (AlkB) is a common enzyme used by microorganisms to initiate the process of alkane-degradation. While many aspects of alkane bioremediation have been studied, the diversity and evolution of genes involved in hydrocarbon degradation from environmental settings is relatively understudied. The majority of work done to-date has focused on the marine environment. Here we sought to better understand the phylogenetic diversity of alkB genes across marine and freshwater settings using culture-independent methods. We hypothesized that there would be distinct phylogenetic diversity of alkB genes in freshwater relative to the marine environment. Our results confirm that alkB has distinct variants based on environment while our diversity analyses demonstrate that freshwater and marine alkB communities have unique responses to oil amendments. Our results also demonstrate that in the marine environment, depth is a key factor impacting diversity of alkB genes.
Collapse
Affiliation(s)
- William C Christian
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive Houghton MI 49931 USA
| | - Timothy M Butler
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive Houghton MI 49931 USA
| | - Ryan B Ghannam
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive Houghton MI 49931 USA
| | - Paige N Webb
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive Houghton MI 49931 USA
| | - Stephen M Techtmann
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive Houghton MI 49931 USA
| |
Collapse
|
21
|
Comparison of Hydrocarbon-Degrading Consortia from Surface and Deep Waters of the Eastern Mediterranean Sea: Characterization and Degradation Potential. ENERGIES 2021. [DOI: 10.3390/en14082246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The diversity and degradation capacity of hydrocarbon-degrading consortia from surface and deep waters of the Eastern Mediterranean Sea were studied in time-series experiments. Microcosms were set up in ONR7a medium at in situ temperatures of 25 °C and 14 °C for the Surface and Deep consortia, respectively, and crude oil as the sole source of carbon. The Deep consortium was additionally investigated at 25 °C to allow the direct comparison of the degradation rates to the Surface consortium. In total, ~50% of the alkanes and ~15% of the polycyclic aromatic hydrocarbons were degraded in all treatments by Day 24. Approximately ~95% of the total biodegradation by the Deep consortium took place within 6 days regardless of temperature, whereas comparable levels of degradation were reached on Day 12 by the Surface consortium. Both consortia were dominated by well-known hydrocarbon-degrading taxa. Temperature played a significant role in shaping the Deep consortia communities with Pseudomonas and Pseudoalteromonas dominating at 25 °C and Alcanivorax at 14 °C. Overall, the Deep consortium showed a higher efficiency for hydrocarbon degradation within the first week following contamination, which is critical in the case of oil spills, and thus merits further investigation for its exploitation in bioremediation technologies tailored to the Eastern Mediterranean Sea.
Collapse
|
22
|
Keller CB, Walley SE, Jarand CW, He J, Ejaz M, Savin DA, Grayson SM. Synthesis of poly(caprolactone)- block-poly[oligo(ethylene glycol)methyl methacrylate] amphiphilic grafted nanoparticles (AGNs) as improved oil dispersants. Polym Chem 2021. [DOI: 10.1039/d1py00418b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Amphiphilic polymers have been covalently grafted from a SiO2 core with room temperature polymerizations. These amphiphilic grafted nanoparticles have been found to uptake up to 30 times their mass in crude oil within a 24 hour window.
Collapse
Affiliation(s)
- Christopher B. Keller
- Department of Chemistry, Percival Stern Hall, Tulane University, New Orleans, Louisiana, 70118, USA
| | - Susan E. Walley
- Department of Chemistry, Leigh Hall, University of Florida, Gainesville, Florida 32611, USA
| | - Curtis W. Jarand
- Department of Physics and Engineering Physics, Percival Stern Hall, Tulane University, New Orleans, Louisiana, 70118, USA
| | - Jibao He
- Coordinated Instrument Facility, Percival Stern Hall, Tulane University, New Orleans, Louisiana, 70118, USA
| | - Muhammad Ejaz
- Department of Chemistry, Percival Stern Hall, Tulane University, New Orleans, Louisiana, 70118, USA
| | - Daniel A. Savin
- Department of Chemistry, Leigh Hall, University of Florida, Gainesville, Florida 32611, USA
| | - Scott M. Grayson
- Department of Chemistry, Percival Stern Hall, Tulane University, New Orleans, Louisiana, 70118, USA
| |
Collapse
|
23
|
Comparative Proteomics of Marinobacter sp. TT1 Reveals Corexit Impacts on Hydrocarbon Metabolism, Chemotactic Motility, and Biofilm Formation. Microorganisms 2020; 9:microorganisms9010003. [PMID: 33374976 PMCID: PMC7822026 DOI: 10.3390/microorganisms9010003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/19/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022] Open
Abstract
The application of chemical dispersants during marine oil spills can affect the community composition and activity of marine microorganisms. Several studies have indicated that certain marine hydrocarbon-degrading bacteria, such as Marinobacter spp., can be inhibited by chemical dispersants, resulting in lower abundances and/or reduced biodegradation rates. However, a major knowledge gap exists regarding the mechanisms underlying these physiological effects. Here, we performed comparative proteomics of the Deepwater Horizon isolate Marinobacter sp. TT1 grown under different conditions. Strain TT1 received different carbon sources (pyruvate vs. n-hexadecane) with and without added dispersant (Corexit EC9500A). Additional treatments contained crude oil in the form of a water-accommodated fraction (WAF) or chemically-enhanced WAF (CEWAF; with Corexit). For the first time, we identified the proteins associated with alkane metabolism and alginate biosynthesis in strain TT1, report on its potential for aromatic hydrocarbon biodegradation and present a protein-based proposed metabolism of Corexit components as carbon substrates. Our findings revealed that Corexit exposure affects hydrocarbon metabolism, chemotactic motility, biofilm formation, and induces solvent tolerance mechanisms, like efflux pumps, in strain TT1. This study provides novel insights into dispersant impacts on microbial hydrocarbon degraders that should be taken into consideration for future oil spill response actions.
Collapse
|
24
|
Starvation-Dependent Inhibition of the Hydrocarbon Degrader Marinobacter sp. TT1 by a Chemical Dispersant. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8110925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During marine oil spills, chemical dispersants are used routinely to disperse surface slicks, transferring the hydrocarbon constituents of oil into the aqueous phase. Nonetheless, a comprehensive understanding of how dispersants affect natural populations of hydrocarbon-degrading bacteria, particularly under environmentally relevant conditions, is lacking. We investigated the impacts of the dispersant Corexit EC9500A on the marine hydrocarbon degrader Marinobacter sp. TT1 when pre-adapted to either low n-hexadecane concentrations (starved culture) or high n-hexadecane concentrations (well-fed culture). The growth of previously starved cells was inhibited when exposed to the dispersant, as evidenced by 55% lower cell numbers and 30% lower n-hexadecane biodegradation efficiency compared to cells grown on n-hexadecane alone. Cultures that were well-fed did not exhibit dispersant-induced inhibition of growth or n-hexadecane degradation. In addition, fluorescence microscopy revealed amorphous cell aggregate structures when the starved culture was exposed to dispersants, suggesting that Corexit affected the biofilm formation behavior of starved cells. Our findings indicate that (previous) substrate limitation, resembling oligotrophic open ocean conditions, can impact the response and hydrocarbon-degrading activities of oil-degrading organisms when exposed to Corexit, and highlight the need for further work to better understand the implications of environmental stressors on oil biodegradation and microbial community dynamics.
Collapse
|
25
|
The Interactive Effects of Crude Oil and Corexit 9500 on Their Biodegradation in Arctic Seawater. Appl Environ Microbiol 2020; 86:AEM.01194-20. [PMID: 32826215 PMCID: PMC7580538 DOI: 10.1128/aem.01194-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/10/2020] [Indexed: 11/20/2022] Open
Abstract
Chemical dispersants such as Corexit 9500 are commonly used in oil spill response and are currently under consideration for use in the Arctic, where their fate and effects have not been well studied. This research was performed to determine the interactive effects of the copresence of crude oil and Corexit 9500 on the degradation of components from each mixture and the associated microbial community structure over time in Arctic seawater. These findings will help yield a better understanding of the biodegradability of dispersant components applied to an oil spill, the temporal microbial community response to dispersed oil, and the fundamental microbial ecology of organic contaminant biodegradation processes in the Arctic marine environment. The risk of petroleum spills coupled with the potential application of chemical dispersants as a spill response strategy necessitates further understanding of the fate of oil and dispersants and their interactive effects during biodegradation. Using Arctic seawater mesocosms amended with either crude oil, Corexit 9500, or both together, we quantified the chemical losses of crude oil and Corexit 9500 and identified microbial taxa implicated in their biodegradation based on shifts in the microbial community structure over a 30-day time course. Chemical analyses included total petroleum hydrocarbons (TPH), n-alkanes, branched alkanes, and polycyclic aromatic hydrocarbons (PAHs) for oil loss and the surfactant components dioctyl sodium sulfosuccinate (DOSS), Span 80, Tween 80, Tween 85, and the DOSS metabolite ethylhexyl sulfosuccinate (EHSS) for Corexit loss. Changes to the microbial communities and identification of key taxa were determined by 16S rRNA gene amplicon sequencing. The nonionic surfactants of Corexit 9500 (Span 80 and Tweens 80 and 85) biodegraded rapidly, dropping to below the limits of detection within 5 days and prior to any detectable initiation of oil biodegradation. This resulted in no observable suppression of petroleum biodegradation in the presence of Corexit compared to that of oil alone. In contrast, biodegradation of DOSS was delayed in the presence of oil, based on the prolonged presence of DOSS and accumulation of the degradation intermediate EHSS that did not occur in the absence of oil. Microbial analyses revealed that oil and Corexit enriched different overall microbial communities, with the presence of both resulting in a community composition that shifted from one more similar to that of Corexit only to one reflecting the oil-only community over time, in parallel with the degradation of predominantly Corexit and then oil components. Some microbial taxa (Oleispira, Pseudofulvibacter, and Roseobacter) responded to either oil or Corexit, suggesting that some organisms may be capable of utilizing both substrates. Together, these findings reveal interactive effects of crude oil and Corexit 9500 on chemical losses and microbial communities as they biodegrade, providing further insight into their fate when copresent in the environment. IMPORTANCE Chemical dispersants such as Corexit 9500 are commonly used in oil spill response and are currently under consideration for use in the Arctic, where their fate and effects have not been well studied. This research was performed to determine the interactive effects of the copresence of crude oil and Corexit 9500 on the degradation of components from each mixture and the associated microbial community structure over time in Arctic seawater. These findings will help yield a better understanding of the biodegradability of dispersant components applied to an oil spill, the temporal microbial community response to dispersed oil, and the fundamental microbial ecology of organic contaminant biodegradation processes in the Arctic marine environment.
Collapse
|
26
|
Henry IA, Netzer R, Davies EJ, Brakstad OG. Formation and fate of oil-related aggregates (ORAs) in seawater at different temperatures. MARINE POLLUTION BULLETIN 2020; 159:111483. [PMID: 32892918 DOI: 10.1016/j.marpolbul.2020.111483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/21/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
In this study, the formation and fate of oil-related aggregates (ORAs) from chemically dispersed oil in seawater (SW) were investigated at different temperatures (5 °C, 13 °C, 20 °C). Experiments in natural SW alone, and in SW amended with typical marine snow constituents (phytoplankton and mineral particles), showed that the presence of algae stimulated the formation of large ORAs, while high SW temperature resulted in faster aggregate formation. The ORAs formed at 5 °C and 13 °C required mineral particles for sinking, while the aggregates also sank in the absence of mineral particles at 20°. Early in the experimental periods, oil compound accumulation in ORAs was faster than biodegradation, particularly in aggregates with algae, followed by rapid biodegradation. High abundances of bacteria associated with hydrocarbon biodegradation were determined in the ORAs, together with algae-associated bacteria, while clustering analyses showed separation between bacterial communities in experiments with oil alone and oil with algae/mineral particles.
Collapse
Affiliation(s)
- Ingrid A Henry
- SINTEF Ocean AS, Environment and New Resources, Trondheim, Norway
| | - Roman Netzer
- SINTEF Ocean AS, Environment and New Resources, Trondheim, Norway
| | - Emlyn J Davies
- SINTEF Ocean AS, Environment and New Resources, Trondheim, Norway
| | | |
Collapse
|
27
|
Niche Partitioning between Coastal and Offshore Shelf Waters Results in Differential Expression of Alkane and Polycyclic Aromatic Hydrocarbon Catabolic Pathways. mSystems 2020; 5:5/4/e00668-20. [PMID: 32843540 PMCID: PMC7449609 DOI: 10.1128/msystems.00668-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In the wake of the Deepwater Horizon oil spill, the taxonomic response of marine microbial communities to oil and dispersants has been extensively studied. However, relatively few studies on the functional response of these microbial communities have been reported, especially in a longitudinal fashion. Moreover, despite the fact that marine oil spills typically impact thousands of square kilometers of both coastal and offshore marine environments, little information is available on how the microbial response to oil and dispersants might differ between these biomes. The results of this study help fill this critical knowledge gap and provide valuable insight into how oil spill response efforts, such as chemically dispersing oil, may have differing effects in neighboring coastal and offshore marine environments. Marine oil spills can impact both coastal and offshore marine environments, but little information is available on how the microbial response to oil and dispersants might differ between these biomes. Here, we describe the compositional and functional response of microbial communities to different concentrations of oil and chemically dispersed oil in coastal and offshore surface waters from the Texas-Louisiana continental shelf. Using a combination of analytical chemistry and 16S rRNA amplicon and metatranscriptomic sequencing, we provide a broad, comparative overview of the ecological response of hydrocarbon-degrading bacteria and their expression of hydrocarbon-degrading genes in marine surface waters over time between two oceanic biomes. We found evidence for the existence of different ecotypes of several commonly described hydrocarbon-degrading bacterial taxa which behaved differentially in coastal and offshore shelf waters despite being exposed to similar concentrations of oil, dispersants, and nutrients. This resulted in the differential expression of catabolic pathways for n-alkanes and polycyclic aromatic hydrocarbons (PAHs)—the two major categories of compounds found in crude oil—with preferential expression of n-alkane degradation genes in coastal waters while offshore microbial communities trended more toward the expression of PAH degradation genes. This was unexpected as it contrasts with the generally held view that n-alkanes, being more labile, are attacked before the more refractory PAHs. Collectively, our results provide new insights into the existence and potential consequences of niche partitioning of hydrocarbon-degrading taxa between neighboring marine environments. IMPORTANCE In the wake of the Deepwater Horizon oil spill, the taxonomic response of marine microbial communities to oil and dispersants has been extensively studied. However, relatively few studies on the functional response of these microbial communities have been reported, especially in a longitudinal fashion. Moreover, despite the fact that marine oil spills typically impact thousands of square kilometers of both coastal and offshore marine environments, little information is available on how the microbial response to oil and dispersants might differ between these biomes. The results of this study help fill this critical knowledge gap and provide valuable insight into how oil spill response efforts, such as chemically dispersing oil, may have differing effects in neighboring coastal and offshore marine environments.
Collapse
|
28
|
Biophysical methods to quantify bacterial behaviors at oil-water interfaces. J Ind Microbiol Biotechnol 2020; 47:725-738. [PMID: 32743734 DOI: 10.1007/s10295-020-02293-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/16/2020] [Indexed: 02/03/2023]
Abstract
Motivated by the need for improved understanding of physical processes involved in bacterial biodegradation of catastrophic oil spills, we review biophysical methods to probe bacterial motility and adhesion at oil-water interfaces. This review summarizes methods that probe bulk, average behaviors as well as local, microscopic behaviors, and highlights opportunities for future work to bridge the gap between biodegradation and biophysics.
Collapse
|
29
|
Raiyani NM, Singh SP. Taxonomic and functional profiling of the microbial communities of Arabian Sea: A metagenomics approach. Genomics 2020; 112:4361-4369. [PMID: 32712295 DOI: 10.1016/j.ygeno.2020.07.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 04/13/2020] [Accepted: 07/11/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Nirali M Raiyani
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India
| | - Satya P Singh
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India.
| |
Collapse
|
30
|
Changes in microbial community in the presence of oil and chemical dispersant and their effects on the corrosion of API 5L steel coupons in a marine-simulated microcosm. Appl Microbiol Biotechnol 2020; 104:6397-6411. [PMID: 32458139 DOI: 10.1007/s00253-020-10688-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/06/2020] [Accepted: 05/17/2020] [Indexed: 02/02/2023]
Abstract
The influence of crude oil and chemical dispersant was evaluated over planktonic bacteria and biofilms grown on API 5L steel surfaces in microcosm systems. Three conditions were simulated, an untreated marine environment and a marine environment with the presence of crude oil and a containing crude oil and chemical dispersant. The results of coupon corrosion rates indicated that in the oil microcosm, there was a high corrosion rate when compared with the other two systems. Analysis of bacterial communities by 16S rRNA gene sequencing described a clear difference between the different treatments. In plankton communities, the Bacilli and Gammaproteobacteria classes were the most present in numbers of operational taxonomic unit (OTUs). The Vibrionales, Oceanospirillales, and Alteromonadales orders were predominant in the treatment with crude oil, whereas in the microcosm containing oil and chemical dispersant, mainly members of Bacillales order were detected. In the communities analyzed from biofilms attached to the coupons, the most preponderant class was Alphaproteobacteria, followed by Gammaproteobacteria. In the control microcosm, there was a prevalence of the orders Rhodobacterales, Aeromonadales, and Alteromonadales, whereas in the dispersed oil and oil systems, the members of the order Rhodobacterales were present in a larger number of OTUs. These results demonstrate how the presence of a chemical dispersant and oil influence the corrosion rate and bacterial community structures present in the water column and biofilms grown on API 5L steel surfaces in a marine environment. KEY POINTS: • Evaluation of the effects of oil and chemical surfactants on the corrosion of API 5L. • Changes in microbial communities do not present corrosive biofilm on API 5L coupons.
Collapse
|
31
|
Noirungsee N, Hackbusch S, Viamonte J, Bubenheim P, Liese A, Müller R. Influence of oil, dispersant, and pressure on microbial communities from the Gulf of Mexico. Sci Rep 2020; 10:7079. [PMID: 32341378 PMCID: PMC7184722 DOI: 10.1038/s41598-020-63190-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 03/26/2020] [Indexed: 11/18/2022] Open
Abstract
The Deepwater Horizon incident in the Gulf of Mexico in 2010 released an unprecedented amount of petroleum hydrocarbons 1500 meters below the sea surface. Few studies have considered the influence of hydrostatic pressure on bacterial community development and activity during such spills. The goal of this study was to investigate the response of indigenous sediment microbial communities to the combination of increased pressure, hydrocarbons and dispersant. Deep-sea sediment samples collected from the northern Gulf of Mexico were incubated at atmospheric pressure (0.1 MPa) and at elevated pressure (10 MPa), with and without the addition of crude oil and dispersant. After incubations at 4 °C for 7 days, Colwellia and Psychrobium were highly abundant in all samples. Pressure differentially impacted members of the Alteromonadales. The influences of pressure on the composition of bacterial communities were most pronounced when dispersant was added to the incubations. Moritella and Thalassotalea were greatly stimulated by the addition of dispersant, suggesting their roles in dispersant biodegradation. However, Moritella was negatively impacted by increasing pressure. The presence of dispersant was shown to decrease the relative abundance of a known hydrocarbon degrader, Cycloclasticus, while increasing pressure increased its relative abundance. This study highlights the significant influence of pressure on the development of microbial communities in the presence of oil and dispersant during oil spills and related response strategies in the deep sea.
Collapse
Affiliation(s)
- Nuttapol Noirungsee
- Hamburg University of Technology, Institute of Technical Biocatalysis, Hamburg, 21073, Germany
| | - Steffen Hackbusch
- Hamburg University of Technology, Institute of Technical Biocatalysis, Hamburg, 21073, Germany
| | - Juan Viamonte
- Hamburg University of Technology, Institute of Technical Biocatalysis, Hamburg, 21073, Germany
| | - Paul Bubenheim
- Hamburg University of Technology, Institute of Technical Biocatalysis, Hamburg, 21073, Germany
| | - Andreas Liese
- Hamburg University of Technology, Institute of Technical Biocatalysis, Hamburg, 21073, Germany
| | - Rudolf Müller
- Hamburg University of Technology, Institute of Technical Biocatalysis, Hamburg, 21073, Germany.
| |
Collapse
|
32
|
Brunswick P, MacInnis CY, Yan J, Buday C, Fieldhouse B, Brown CE, van Aggelen G, Shang D. Enhanced marine monitoring and toxicity study of oil spill dispersants including Corexit EC9500A in the presence of diluted bitumen. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:788-799. [PMID: 32223371 DOI: 10.1080/10934529.2020.1744399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
Observations made for the analysis of the oil spill dispersant tracer dioctyl sulfosuccinate (DOSS) during LC50 toxicity testing, highlighted a stability issue for this tracer compound in seawater. A liquid chromatography high-resolution quadrupole time-of-flight mass spectrometry (LC/QToF) was used to confirm monooctyl sulfosuccinate (MOSS) as the only significant DOSS breakdown product, and not the related isomer, 4-(2-ethylhexyl) 2-sulfobutanedioate. Combined analysis of DOSS and MOSS was shown to be applicable to monitoring of spill dispersants Corexit® EC9500A, Finasol OSR52, Slickgone NS, and Slickgone EW. The unassisted conversion of DOSS to MOSS occurred in all four oil spill dispersants solubilized in seawater, although differences were noted in the rate of MOSS formation. A marine microcosm study of Corexit EC9500A, the formulation most rapid to form MOSS, provided further evidence of the stoichiometric conversion of DOSS to MOSS under conditions relevant to real world dilbit spill. Results supported combined DOSS and MOSS analysis for the monitoring of spill dispersant in a marine environment, with a significant extension of sample collection time by 10 days or longer in cooler conditions. Implications of the unassisted formation of MOSS and combined DOSS:MOSS analysis are discussed in relation to improving dispersant LC50 toxicity studies.
Collapse
Affiliation(s)
- Pamela Brunswick
- Science & Technology Branch, Pacific Environmental Science Centre, Environment & Climate Change Canada, Pacific & Yukon Laboratory for Environmental Testing, North Vancouver, British Columbia, Canada
| | - Ceara Y MacInnis
- Science & Technology Branch, Pacific Environmental Science Centre, Environment & Climate Change Canada, Pacific & Yukon Laboratory for Environmental Testing, North Vancouver, British Columbia, Canada
| | - Jeffrey Yan
- Science & Technology Branch, Pacific Environmental Science Centre, Environment & Climate Change Canada, Pacific & Yukon Laboratory for Environmental Testing, North Vancouver, British Columbia, Canada
| | - Craig Buday
- Science & Technology Branch, Pacific Environmental Science Centre, Environment & Climate Change Canada, Pacific & Yukon Laboratory for Environmental Testing, North Vancouver, British Columbia, Canada
| | - Ben Fieldhouse
- Emergencies Science & Technology Section, Environment & Climate Change Canada, Ottawa, Ontario, Canada
| | - Carl E Brown
- Emergencies Science & Technology Section, Environment & Climate Change Canada, Ottawa, Ontario, Canada
| | - Graham van Aggelen
- Science & Technology Branch, Pacific Environmental Science Centre, Environment & Climate Change Canada, Pacific & Yukon Laboratory for Environmental Testing, North Vancouver, British Columbia, Canada
| | - Dayue Shang
- Science & Technology Branch, Pacific Environmental Science Centre, Environment & Climate Change Canada, Pacific & Yukon Laboratory for Environmental Testing, North Vancouver, British Columbia, Canada
| |
Collapse
|
33
|
Gregson BH, Metodieva G, Metodiev MV, Golyshin PN, McKew BA. Protein expression in the obligate hydrocarbon-degrading psychrophile Oleispira antarctica RB-8 during alkane degradation and cold tolerance. Environ Microbiol 2020; 22:1870-1883. [PMID: 32090431 PMCID: PMC7318663 DOI: 10.1111/1462-2920.14956] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 12/15/2022]
Abstract
In cold marine environments, the obligate hydrocarbon‐degrading psychrophile Oleispira antarctica RB‐8, which utilizes aliphatic alkanes almost exclusively as substrates, dominates microbial communities following oil spills. In this study, LC–MS/MS shotgun proteomics was used to identify changes in the proteome induced during growth on n‐alkanes and in cold temperatures. Specifically, proteins with significantly higher relative abundance during growth on tetradecane (n‐C14) at 16°C and 4°C have been quantified. During growth on n‐C14, O. antarctica expressed a complete pathway for the terminal oxidation of n‐alkanes including two alkane monooxygenases, two alcohol dehydrogenases, two aldehyde dehydrogenases, a fatty‐acid‐CoA ligase, a fatty acid desaturase and associated oxidoreductases. Increased biosynthesis of these proteins ranged from 3‐ to 21‐fold compared with growth on a non‐hydrocarbon control. This study also highlights mechanisms O. antarctica may utilize to provide it with ecological competitiveness at low temperatures. This was evidenced by an increase in spectral counts for proteins involved in flagella structure/output to overcome higher viscosity, flagella rotation to accumulate cells and proline metabolism to counteract oxidative stress, during growth at 4°C compared with 16°C. Such species‐specific understanding of the physiology during hydrocarbon degradation can be important for parameterizing models that predict the fate of marine oil spills.
Collapse
Affiliation(s)
- Benjamin H Gregson
- School of Life Sciences, University of Essex, Colchester, Essex, CO4 3SQ, UK
| | - Gergana Metodieva
- School of Life Sciences, University of Essex, Colchester, Essex, CO4 3SQ, UK
| | - Metodi V Metodiev
- School of Life Sciences, University of Essex, Colchester, Essex, CO4 3SQ, UK
| | - Peter N Golyshin
- School of Natural Sciences, College of Environmental Sciences and Engineering, Bangor University, Bangor, UK.,Centre for Environmental Biotechnology, Bangor University, Deiniol Road, Bangor, LL57 2UW, UK
| | - Boyd A McKew
- School of Life Sciences, University of Essex, Colchester, Essex, CO4 3SQ, UK
| |
Collapse
|
34
|
Hackbusch S, Noirungsee N, Viamonte J, Sun X, Bubenheim P, Kostka JE, Müller R, Liese A. Influence of pressure and dispersant on oil biodegradation by a newly isolated Rhodococcus strain from deep-sea sediments of the gulf of Mexico. MARINE POLLUTION BULLETIN 2020; 150:110683. [PMID: 31753565 DOI: 10.1016/j.marpolbul.2019.110683] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 09/14/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
A new Rhodococcus strain, capable of degrading crude oil, was isolated from the Gulf of Mexico deep-sea sediment and was investigated for its biodegradation characteristics under atmospheric as well as under deep-sea pressure (1500 m = 15 MPa). Additionally, the effect of dispersant (Corexit EC9500A) addition was studied. Rhodococcus sp. PC20 was shown to degrade 60.5 ± 10.7% of the saturated and aromatic fraction of crude oil at atmospheric pressure and 74.2 ± 9.1% at deep-sea level pressure within 96 h. Degradation rates, especially for monoaromatic hydrocarbons, were significantly higher at elevated pressure compared to atmospheric pressure. This study found a growth inhibiting effect at a dispersant to oil ratio of 1:100 and higher. This effect of the dispersant was enhanced when elevated pressure was applied.
Collapse
Affiliation(s)
- Steffen Hackbusch
- Institute of Technical Biocatalysis, Hamburg University of Technology (TUHH), Hamburg, Germany.
| | - Nuttapol Noirungsee
- Institute of Technical Biocatalysis, Hamburg University of Technology (TUHH), Hamburg, Germany.
| | - Juan Viamonte
- Institute of Technical Biocatalysis, Hamburg University of Technology (TUHH), Hamburg, Germany.
| | - Xiaoxu Sun
- Georgia Institute of Technology School of Biology and Earth & Atmospheric Sciences, Atlanta, GA, USA.
| | - Paul Bubenheim
- Institute of Technical Biocatalysis, Hamburg University of Technology (TUHH), Hamburg, Germany.
| | - Joel E Kostka
- Georgia Institute of Technology School of Biology and Earth & Atmospheric Sciences, Atlanta, GA, USA.
| | - Rudolf Müller
- Institute of Technical Biocatalysis, Hamburg University of Technology (TUHH), Hamburg, Germany.
| | - Andreas Liese
- Institute of Technical Biocatalysis, Hamburg University of Technology (TUHH), Hamburg, Germany.
| |
Collapse
|
35
|
Krolicka A, Boccadoro C, Nilsen MM, Demir-Hilton E, Birch J, Preston C, Scholin C, Baussant T. Identification of microbial key-indicators of oil contamination at sea through tracking of oil biotransformation: An Arctic field and laboratory study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133715. [PMID: 31470316 DOI: 10.1016/j.scitotenv.2019.133715] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
In this paper, a molecular analytical approach for detecting hydrocarbonoclastic bacteria in water is suggested as a proxy measurement for tracking petroleum discharges in industrialized or pristine aquatic environments. This approach is tested for general application in cold marine regions (freezing to 5 °C). We used amplicon sequencing and qPCR to quantify 16S rRNA and GyrB genes from oleophilic bacteria in seawater samples from two different crude oil enrichments. The first experiment was conducted in a controlled environment using laboratory conditions and natural North Sea fjord seawater (NSC) at a constant temperature of 5 °C. The second was performed in the field with natural Arctic seawater (ARC) and outdoor temperature conditions from -7 °C to around 4 °C. Although the experimental conditions for NSC and ARC differed, the temporal changes in bacterial communities were comparable and reflected oil biotransformation processes. The common bacterial OTUs for NSC and ARC had the highest identity to Colwellia rossensis and Oleispira antarctica rRNA sequences and were enriched within a few days in both conditions. Other typical oil degrading bacteria such as Alcanivorax (n-alkane degrader) and Cycloclasticus (polycyclic aromatic hydrocarbons degrader) were rapidly enriched only in NSC conditions. Both the strong correlation between Oleispira SSU gene copies and oil concentration, and the specificity of the Oleispira assay suggest that this organism is a robust bioindicator for seawater contaminated by petroleum in cold water environments. Further optimization for automation of the Oleispira assay for in situ analysis with a genosensing device is underway. The assay for Colwellia quantification requires more specificity to fewer Colwellia OTUs and a well-established dose-response relationship before those taxa are used for oil tracking purposes.
Collapse
Affiliation(s)
- Adriana Krolicka
- NORCE - Norwegian Research Centre - Environment, Mekjarvik 12, 4070 Randaberg, Norway.
| | - Catherine Boccadoro
- NORCE - Norwegian Research Centre - Environment, Mekjarvik 12, 4070 Randaberg, Norway
| | - Mari Mæland Nilsen
- NORCE - Norwegian Research Centre - Environment, Mekjarvik 12, 4070 Randaberg, Norway
| | - Elif Demir-Hilton
- Monterey Bay Aquarium Research Institute, Sandholdt Road, Moss Landing, CA, USA
| | - Jim Birch
- Monterey Bay Aquarium Research Institute, Sandholdt Road, Moss Landing, CA, USA
| | - Christina Preston
- Monterey Bay Aquarium Research Institute, Sandholdt Road, Moss Landing, CA, USA
| | - Chris Scholin
- Monterey Bay Aquarium Research Institute, Sandholdt Road, Moss Landing, CA, USA
| | - Thierry Baussant
- NORCE - Norwegian Research Centre - Environment, Mekjarvik 12, 4070 Randaberg, Norway
| |
Collapse
|
36
|
Sun X, Chu L, Mercando E, Romero I, Hollander D, Kostka JE. Dispersant Enhances Hydrocarbon Degradation and Alters the Structure of Metabolically Active Microbial Communities in Shallow Seawater From the Northeastern Gulf of Mexico. Front Microbiol 2019; 10:2387. [PMID: 31749769 PMCID: PMC6842959 DOI: 10.3389/fmicb.2019.02387] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 10/01/2019] [Indexed: 01/23/2023] Open
Abstract
Dispersant application is a primary emergency oil spill response strategy and yet the efficacy and unintended consequences of this approach in marine ecosystems remain controversial. To address these uncertainties, ex situ incubations were conducted to quantify the impact of dispersant on petroleum hydrocarbon (PHC) biodegradation rates and microbial community structure at as close as realistically possible to approximated in situ conditions [2 ppm v/v oil with or without dispersant, at a dispersant to oil ratio (DOR) of 1:15] in surface seawater. Biodegradation rates were not substantially affected by dispersant application at low mixing conditions, while under completely dispersed conditions, biodegradation was substantially enhanced, decreasing the overall half-life of total PHC compounds from 15.4 to 8.8 days. While microbial respiration and growth were not substantially altered by dispersant treatment, RNA analysis revealed that dispersant application resulted in pronounced changes to the composition of metabolically active microbial communities, and the abundance of nitrogen-fixing prokaryotes, as determined by qPCR of nitrogenase (nifH) genes, showed a large increase. While the Gammaproteobacteria were enriched in all treatments, the Betaproteobacteria and different families of Alphaproteobacteria predominated in the oil and dispersant treatment, respectively. Results show that mixing conditions regulate the efficacy of dispersant application in an oil slick, and the quantitative increase in the nitrogen-fixing microbial community indicates a selection pressure for nitrogen fixation in response to a readily biodegradable, nitrogen-poor substrate.
Collapse
Affiliation(s)
- Xiaoxu Sun
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, United States.,Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental Science and Technology, Guangzhou, China
| | - Lena Chu
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Elisa Mercando
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Isabel Romero
- College of Marine Science, University of South Florida, St. Petersburg, St. Petersburg, FL, United States
| | - David Hollander
- College of Marine Science, University of South Florida, St. Petersburg, St. Petersburg, FL, United States
| | - Joel E Kostka
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, United States.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
37
|
Chemical and biological dispersants differently affect the bacterial communities of uncontaminated and oil-contaminated marine water. Braz J Microbiol 2019; 51:691-700. [PMID: 31612432 DOI: 10.1007/s42770-019-00153-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/04/2019] [Indexed: 12/16/2022] Open
Abstract
The use of dispersants in marine environments is a common practice worldwide for oil spill remediation. While the effects of chemical dispersants have been extensively studied, those of biosurfactants, mainly surfactin that is considered one of the most effective surfactants produced by bacteria, have been less considered. We constructed microcosms containing marine water collected from Grumari beach (W_GB, Brazil) and from Schiermonnikoog beach (W_SI, The Netherlands) with the addition of oil (WO), Ultrasperse II plus oil (WOS), surfactin plus oil (WOB), and both dispersants (WS or WB) individually. In these treatments, the composition of bacterial communities and their predictive biodegradation potential were determined over time. High-throughput sequencing of the rrs gene encoding bacterial 16S rRNA revealed that Bacteroidetes (Flavobacteria class) and Proteobacteria (mainly Gammaproteobacteria and Alphaproteobacteria classes) were the most abundant phyla found among the W_GB and W_SI microbiomes, and the relative abundance of the bacterial types in the different microcosms varied based on the treatment applied. Non-metrical multidimensional scaling (NMDS) revealed a clear clustering based on the addition of oil and on the dispersant type added to the GB or SI microcosms, i.e., WB and WOB were separated from WS and WOS in both marine ecosystems studied. The potential presence of diverse enzymes involved in oil degradation was indicated by predictive bacterial metagenome reconstruction. The abundance of predicted genes for degradation of petroleum hydrocarbons increased more in surfactin-treated microcosms than those treated with Ultrasperse II, mainly in the marine water samples from Grumari beach.
Collapse
|
38
|
Lamsal BP, Patra P, Sharma R, Green CC. Production of Non-Toxic Biosurfactant – Surfactin – Through Microbial Fermentation of Biomass Hydrolysates for Industrial and Environmental Applications. TENSIDE SURFACT DET 2019. [DOI: 10.3139/113.110644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The economically viable large-scale production of the pure isoforms of the surfactin biosurfactants, involving bacterial – Bacillus subtilis – fermentation of biomass hydrolysate feedstock, relies on the types of bacterial strains, optimization of the fermentation processing parameters, differences in the composition of the carbon and nitrogen in the bacterial media, and the chromatography techniques used for isolation of the isoforms. Here, we biosynthesized the surfactin isoforms in their mixture forms through fermentation of biomass hydrolysates at 2 wt.% carbohydrate content. The surfactin isoforms were assessed for their surface-active properties and toxicity. The enzyme hydrolysates considered were from switchgrass, soyhull (fiber), alfalfa, and bagasse. The isoform mixtures obtained after fermentation of the hydrolysates and, glucose as a control, were concentrated using chromatography columns, and characterized for molecular weights (MWs) and relative distribution using LCMS. The isoform mixtures, obtained in different fermenters (5- and 15-L) and, for different hydrolysates, invariably constituted 5 isoforms with MWs as 992.6, 1006.6, 1020.6, 1034.6, 1048.6, 1062.6 m/z amu, with their relative proportions as 6, 24, 35, 24, and 10 weight % respectively. The surface tension values of all these isoforms, in the absence of electrolytes and at 12 ppt salinity, were similar: 37 (pH 6.5) and 31 (pH 9.5) mN/m. Furthermore, the emulsification index values for the isoforms were also similar: Dispersant-to-Oil ratio as 1:20. The LC50 for Gulf killifish, Fundulus grandis for these surfactin isoforms ranged between 10 and 20 mg/L; a microbially-produced surfactin variant FA-Glu (Fatty acid Glutamate) was least toxic with LC50 at ∼100 mg/L. Thus, the surfactin synthesis approach adopted here suggested that pure (>95 wt.%) non-toxic isoforms of surfactin biosurfactants can be produced in the forms of their mixtures with surface-active properties similar to those of the pure forms of the surfactin isoforms.
Collapse
Affiliation(s)
- Buddhi P. Lamsal
- Iowa State University , Food Science and Human Nutrition, 536 Farm House Lane, Ames, IA , 50011
| | - Pathra Patra
- Columbia University , Earth and Environmental Engineering, 500 W. 120th St., 918 Mudd, New York , NY 10027
| | - Rajat Sharma
- Iowa State University , Food Science and Human Nutrition, 536 Farm House Lane, Ames, IA , 50011
| | - Christopher C. Green
- Louisiana State University Agriculture Center , School of Renewable Natural Resources, 227 Renewable Natural Resources Building, Baton Rouge, LA , 70803
| |
Collapse
|
39
|
Hydrocarbon-Degrading Microbial Communities Are Site Specific, and Their Activity Is Limited by Synergies in Temperature and Nutrient Availability in Surface Ocean Waters. Appl Environ Microbiol 2019; 85:AEM.00443-19. [PMID: 31126938 DOI: 10.1128/aem.00443-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/16/2019] [Indexed: 11/20/2022] Open
Abstract
The objective of this study was to quantify the potential for hydrocarbon biodegradation in surface waters of three sites, representing geographic regions of major oil exploration (Beaufort Sea in the Arctic, northern Gulf of Mexico [GOM], and southern GOM), in a systematic experimental design that incorporated gradients in temperature and the availability of major nutrients. Surface seawater was amended in microcosms with Macondo surrogate oil to simulate an oil slick, and microcosms were incubated, with or without nutrient amendment, at temperatures ranging from 4 to 38ºC. Using respiration rate as a proxy, distinct temperature responses were observed in surface seawater microcosms based on geographic origin; biodegradation was nearly always more rapid in the Arctic site samples than in the GOM samples. Nutrient amendment enhanced respiration rates by a factor of approximately 6, stimulated microbial growth, and generally elevated the taxonomic diversity of microbial communities within the optimal temperature range for activity at each site, while diversity remained the same or was lower at temperatures deviating from optimal conditions. Taken together, our results advance the understanding of how bacterioplankton communities from different geographic regions respond to oil perturbation. A pulsed disturbance of oil is proposed to favor copiotrophic r-strategists that are adapted to pointed seasonal inputs of phytoplankton carbon, displaying carbon and nutrient limitations, rather than oil exposure history. Further understanding of the ecological mechanisms underpinning the complex environmental controls of hydrocarbon degradation is required for improvement of predictive models of the fate and transport of spilled oil in marine environments.IMPORTANCE The risk of an oil spill accident in pristine regions of the world's oceans is increasing due to the development and transport of crude oil resources, especially in the Arctic region, as a result of the opening of ice-free transportation routes, and there is currently no consensus regarding the complex interplay among the environmental controls of petroleum hydrocarbon biodegradation for predictive modeling. We examined the hydrocarbon biodegradation potential of bacterioplankton from three representative geographic regions of oil exploration. Our results showed that rates of aerobic respiration coupled to hydrocarbon degradation in surface ocean waters are controlled to a large extent by effects of temperature and nutrient limitation; hydrocarbon exposure history did not appear to have a major impact. Further, the relationship between temperature and biodegradation rates is linked to microbial community structure, which is specific to the geographic origin.
Collapse
|
40
|
Potts LD, Perez Calderon LJ, Gontikaki E, Keith L, Gubry-Rangin C, Anderson JA, Witte U. Effect of spatial origin and hydrocarbon composition on bacterial consortia community structure and hydrocarbon biodegradation rates. FEMS Microbiol Ecol 2019; 94:5047303. [PMID: 29982504 PMCID: PMC6166136 DOI: 10.1093/femsec/fiy127] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/26/2018] [Indexed: 12/30/2022] Open
Abstract
Oil reserves in deep-sea sediments are currently subject to intense exploration, with associated risks of oil spills. Previous research suggests that microbial communities from deep-sea sediment (>1000m) can degrade hydrocarbons (HCs), but have a lower degradation ability than shallow (<200m) communities, probably due to in situ temperature. This study aimed to assess the effect of marine origin on microbial HC degradation potential while separating the influence of temperature, and to characterise associated HC-degrading bacterial communities. Microbial communities from 135 and 1000 m deep sediments were selectively enriched on crude oil at in situ temperatures and both consortia were subsequently incubated for 42 days at 20°C with two HC mixtures: diesel fuel or model oil. Significant HC biodegradation occurred rapidly in the presence of both consortia, especially of low molecular weight HCs and was concomitant with microbial community changes. Further, oil degradation was higher with the shallow consortium than with the deep one. Dominant HC-degrading bacteria differed based on both spatial origin of the consortia and supplemented HC types. This study provides evidence for influence of sediment spatial origin and HC composition on the selection and activity of marine HC-degrading bacterial communities and is relevant for future bioremediationdevelopments.
Collapse
Affiliation(s)
- Lloyd D Potts
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen, AB24 3UL, United Kingdom.,Materials and Chemical Engineering, School of Engineering, University of Aberdeen, Fraser Noble Building, Elphinstone Road, Aberdeen, AB24 3UE, United Kingdom
| | - Luis J Perez Calderon
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen, AB24 3UL, United Kingdom.,Materials and Chemical Engineering, School of Engineering, University of Aberdeen, Fraser Noble Building, Elphinstone Road, Aberdeen, AB24 3UE, United Kingdom
| | - Evangelia Gontikaki
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen, AB24 3UL, United Kingdom
| | - Lehanne Keith
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen, AB24 3UL, United Kingdom
| | - Cécile Gubry-Rangin
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen, AB24 3UL, United Kingdom
| | - James A Anderson
- Materials and Chemical Engineering, School of Engineering, University of Aberdeen, Fraser Noble Building, Elphinstone Road, Aberdeen, AB24 3UE, United Kingdom
| | - Ursula Witte
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen, AB24 3UL, United Kingdom
| |
Collapse
|
41
|
Socolofsky SA, Gros J, North E, Boufadel MC, Parkerton TF, Adams EE. The treatment of biodegradation in models of sub-surface oil spills: A review and sensitivity study. MARINE POLLUTION BULLETIN 2019; 143:204-219. [PMID: 31789156 DOI: 10.1016/j.marpolbul.2019.04.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/29/2019] [Accepted: 04/05/2019] [Indexed: 06/10/2023]
Abstract
Biodegradation is important for the fate of oil spilled in marine environments, yet parameterization of biodegradation varies across oil spill models, which usually apply constant first-order decay rates to multiple pseudo-components describing an oil. To understand the influence of model parameterization on the fate of subsurface oil droplets, we reviewed existing algorithms and rates and conducted a model sensitivity study. Droplets were simulated from a blowout at 2000 m depth and were either treated with sub-surface dispersant injection (2% dispersant to oil ratio) or untreated. The most important factor affecting oil fate was the size of the droplets, with biodegradation contributing substantially to the fate of droplets ≤0.5 mm. Oil types, which were similar, had limited influence on simulated oil fate. Model results suggest that knowledge of droplet sizes and improved estimation of pseudo-component biodegradation rates and lag times would enhance prediction of the fate and transport of subsurface oil.
Collapse
Affiliation(s)
- Scott A Socolofsky
- Texas A&M University, College Station, TX 77843, United States of America.
| | - Jonas Gros
- Texas A&M University, College Station, TX 77843, United States of America.
| | - Elizabeth North
- University of Maryland, Center for Environmental Science, Cambridge, MD 21613, United States of America.
| | | | - Thomas F Parkerton
- ExxonMobil Biomedical Sciences, Inc., Spring, TX 77339, United States of America.
| | - E Eric Adams
- Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America.
| |
Collapse
|
42
|
Potential for Microbially Mediated Natural Attenuation of Diluted Bitumen on the Coast of British Columbia (Canada). Appl Environ Microbiol 2019; 85:AEM.00086-19. [PMID: 30850431 DOI: 10.1128/aem.00086-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/01/2019] [Indexed: 11/20/2022] Open
Abstract
Western Canada produces large amounts of bitumen, a heavy, highly weathered crude oil. Douglas Channel and Hecate Strait on the coast of British Columbia are two water bodies that may be impacted by a proposed pipeline and marine shipping route for diluted bitumen (dilbit). This study investigated the potential of microbial communities from these waters to mitigate the impacts of a potential dilbit spill. Microcosm experiments were set up with water samples representing different seasons, years, sampling stations, and dilbit blends. While the alkane fraction of the tested dilbit blends was almost completely degraded after 28 days, the majority of the polycyclic aromatic hydrocarbons (PAHs) remained. The addition of the dispersant Corexit 9500A most often had either no effect or an enhancing effect on dilbit degradation. Dilbit-degrading microbial communities were highly variable between seasons, years, and stations, with dilbit type having little impact on community trajectories. Potential oil-degrading genera showed a clear succession pattern and were for the most part recruited from the "rare biosphere." At the community level, dispersant appeared to stimulate an accelerated enrichment of genera typically associated with hydrocarbon degradation, even in dilbit-free controls. This suggests that dispersant-induced growth of hydrocarbon degraders (and not only increased bioavailability of oil-associated hydrocarbons) contributes to the degradation-enhancing effect previously reported for Corexit 9500A.IMPORTANCE Western Canada hosts large petroleum deposits, which ultimately enter the market in the form of dilbit. Tanker-based shipping represents the primary means to transport dilbit to international markets. With anticipated increases in production to meet global energy needs, the risk of a dilbit spill is expected to increase. This study investigated the potential of microbial communities naturally present in the waters of a potential dilbit shipping lane to mitigate the effects of a spill. Here we show that microbial degradation of dilbit was mostly limited to n-alkanes, while the overall concentration of polycyclic aromatic hydrocarbons, which represent the most toxic fraction of dilbit, decreased only slightly within the time frame of our experiments. We further investigated the effect of the oil dispersant Corexit 9500A on microbial dilbit degradation. Our results highlight the fact that dispersant-associated growth stimulation, and not only increased bioavailability of hydrocarbons and inhibition of specific genera, contributes to the overall effect of dispersant addition.
Collapse
|
43
|
Improved oil spill dispersant monitoring in seawater using dual tracers: Dioctyl and monoctyl sulfosuccinates sourced from corexit EC9500A. J Chromatogr A 2019; 1598:113-121. [PMID: 30987784 DOI: 10.1016/j.chroma.2019.03.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/17/2022]
Abstract
A high resolution mass spectrometry method was developed for the environmental impact monitoring of oil spill dispersants. Previously reported instability of dioctyl sulfosuccinate (DOSS) dispersant tracer was addressed by the new procedure. The method monitors both DOSS and its degradation product, monooctyl sulfosuccinate (MOSS), by liquid chromatography time-of-flight mass spectrometry. The related isomer, 4-(2-ethylhexyl) 2-sulfobutanedioate, was chromatographically resolved from MOSS but was not a product of DOSS degradation. Using this direct injection method (10 μL), the practical lower limit of quantitation was 0.5 nM for each analyte, a concentration equivalent to 0.22 ng mL-1, or 0.30 ng mL-1 including initial dilution factor with acetonitrile. The method was shown applicable to analysis of the dispersants Corexit® EC9500 A, Finasol OSR 52, Slickgone NS, and Slickgone EW for which DOSS is an active ingredient. A marine microcosm study of Corexit EC9500A, together with diluted bitumen (dilbit), at 15 ± 1 °C, provided evidence of the stoichiometric conversion of DOSS to MOSS under conditions reflecting a western Canadian marine environment. The advantage of the developed method is in its ability to extend environmental seawater sample collection time from 4 days for DOSS alone, to 14 days when both DOSS and MOSS are simultaneously analysed and results combined. The collection time is likely extended beyond the 14 day period with cooler temperatures. Preservation of collected seawater samples using sodium hydroxide, converting DOSS into MOSS in situ, was rejected due to stability issues. Addition of disodium ethylenediaminetetraacetic acid did not improve hold times, thus eliminating the theory of cation induced micelle effects causing DOSS loss.
Collapse
|
44
|
Perez Calderon LJ, Gontikaki E, Potts LD, Shaw S, Gallego A, Anderson JA, Witte U. Pressure and temperature effects on deep-sea hydrocarbon-degrading microbial communities in subarctic sediments. Microbiologyopen 2018; 8:e00768. [PMID: 30444300 PMCID: PMC6562134 DOI: 10.1002/mbo3.768] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/20/2018] [Accepted: 10/22/2018] [Indexed: 12/24/2022] Open
Abstract
The Hatton-Rockall Basin (North-East Atlantic) is an area with potential for deep-sea (2,900 m) hydrocarbon exploration. Following the Deepwater Horizon oil spill, many investigations into the responses of sediment microbial communities to oil pollution have been undertaken. However, hydrostatic pressure is a parameter that is often omitted due to the technical difficulties associated with conducting experiments at high pressure (>10 MPa). In this study, sediments from 2,900 m in the Hatton-Rockall Basin, following a one-week decompression period in a temperature-controlled room at 5°C, were incubated in factorial combinations of 0.1 and 30 MPa, 5 and 20°C, and contamination with a hydrocarbon mixture or uncontaminated controls to evaluate the effect of these environmental variables on the bacterial community composition. Our results revealed varying effects of pressure, temperature, and oil contamination on the composition of the bacterial community within the sediment. Temperature was the strongest determinant of differences in the bacterial community structure between samples followed by pressure. Oil contamination did not exert a strong change in the sediment bacterial community structure when pressure and temperature conditions were held at in situ levels (30 MPa and 5°C). The γ-proteobacteria Pseudomonas and Colwellia, and several Bacteroidetes dominated communities at 30 MPa. In contrast, hydrocarbon degraders such as Halomonas, Alcanivorax, and Marinobacter decreased in relative abundance at the same pressure. This study highlights the importance of considering hydrostatic pressure in ex situ investigations into hydrocarbon-degrading deepwater microbial communities.
Collapse
Affiliation(s)
- Luis J Perez Calderon
- Institute of Biological and Environmental Science, University of Aberdeen, Aberdeen, UK.,Surface Chemistry and Catalysis Group, Materials and Chemical Engineering, School of Engineering, University of Aberdeen, Aberdeen, UK.,Marine Laboratory Aberdeen, Marine Scotland Science, Aberdeen, UK
| | - Evangelia Gontikaki
- Institute of Biological and Environmental Science, University of Aberdeen, Aberdeen, UK
| | - Lloyd D Potts
- Institute of Biological and Environmental Science, University of Aberdeen, Aberdeen, UK.,Surface Chemistry and Catalysis Group, Materials and Chemical Engineering, School of Engineering, University of Aberdeen, Aberdeen, UK
| | - Sophie Shaw
- Centre for Genome Enabled Biology and Medicine, University of Aberdeen, Aberdeen, UK
| | | | - James A Anderson
- Surface Chemistry and Catalysis Group, Materials and Chemical Engineering, School of Engineering, University of Aberdeen, Aberdeen, UK
| | - Ursula Witte
- Institute of Biological and Environmental Science, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
45
|
Boccadoro C, Krolicka A, Receveur J, Aeppli C, Le Floch S. Microbial community response and migration of petroleum compounds during a sea-ice oil spill experiment in Svalbard. MARINE ENVIRONMENTAL RESEARCH 2018; 142:214-233. [PMID: 30466605 DOI: 10.1016/j.marenvres.2018.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 08/02/2018] [Accepted: 09/04/2018] [Indexed: 06/09/2023]
Abstract
This paper concerns the migration of oil through sea-ice and the biodegradation of different hydrocarbons in sea-ice and seawater following in situ oil spills in megacosms exposed to winter and spring conditions in Svalbard (80°N). Hydrocarbon-degrading microbes were detected in ice cores and the analysis of metabolically active bacterial populations in the different layers of sea-ice indicate significant population shifts following oil exposure, whether dispersant addition or oil burning was carried out or not. The presence of dispersant in the system was associated with the most pronounced and fastest population shifts out of all exposures, as well as lower bacterial diversity as measured by the Shannon index. Microorganisms were metabolically most active in the bottom layer of the sea ice and our data confirmed the predominance of Oleispira and Colwellia aestuarii in sea-ice. Migration of polycyclic aromatics through the sea-ice layer was observed when dispersant was added to the oil, and the presence of oil degrading organisms below the ice-layer was consistent with biodegradation taking place. Given the thickness and concentration of the oil-layer frozen into the ice, the bioavailability of the hydrocarbons was nevertheless limited. Consequently, much of the bulk of the oil remained intact.
Collapse
Affiliation(s)
- Catherine Boccadoro
- International Research Institute of Stavanger (IRIS), Prof. Olav Hanssensvei 15, 4021, Stavanger, Norway.
| | - Adriana Krolicka
- International Research Institute of Stavanger (IRIS), Prof. Olav Hanssensvei 15, 4021, Stavanger, Norway
| | | | | | | |
Collapse
|
46
|
Lu L, Wang G, Yeung M, Xi J, Hu HY. Response of microbial community structure and metabolic profile to shifts of inlet VOCs in a gas-phase biofilter. AMB Express 2018; 8:160. [PMID: 30284060 PMCID: PMC6170518 DOI: 10.1186/s13568-018-0687-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 09/25/2018] [Indexed: 12/31/2022] Open
Abstract
The effects of inlet VOCs (Volatile Organic Compounds) shifts on microbial community structure in a biofiltration system were investigated. A lab-scale biofilter was set up to treat eight VOCs sequentially. Short declines in removal efficiency appeared after VOCs shifts and then later recovered. The number of OTUs in the biofilter declined from 690 to 312 over time. At the phylum level, Actinobacteria and Proteobacteria remained dominant throughout the operation for all VOCs, with their combined abundance ranging from 60 to 90%. The abundances of Planctomycetes and Thermi increased significantly to 20% and 5%, respectively, with the intake of non-aromatic hydrocarbons. At the genus level, Rhodococcus was present in the highest abundance (≥ 10%) throughout the experiment, indicating its wide degradability. Some potential degraders were also found; namely, Thauera and Pseudomonas, which increased in abundance to 19% and 12% during treatment with ethyl acetate and toluene, respectively. Moreover, the microbial metabolic activity declined gradually with time, and the metabolic profile of the toluene-treating community differed significantly from those of other communities.
Collapse
|
47
|
Gontikaki E, Potts L, Anderson J, Witte U. Hydrocarbon-degrading bacteria in deep-water subarctic sediments (Faroe-Shetland Channel). J Appl Microbiol 2018; 125:1040-1053. [PMID: 29928773 PMCID: PMC6849767 DOI: 10.1111/jam.14030] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 05/16/2018] [Accepted: 06/18/2018] [Indexed: 02/04/2023]
Abstract
AIMS The aim of this study was the baseline description of oil-degrading sediment bacteria along a depth transect in the Faroe-Shetland Channel (FSC) and the identification of biomarker taxa for the detection of oil contamination in FSC sediments. METHODS AND RESULTS Oil-degrading sediment bacteria from 135, 500 and 1000 m were enriched in cultures with crude oil as the sole carbon source (at 12, 5 and 0°C respectively). The enriched communities were studied using culture-dependent and culture-independent (clone libraries) techniques. Isolated bacterial strains were tested for hydrocarbon degradation capability. Bacterial isolates included well-known oil-degrading taxa and several that are reported in that capacity for the first time (Sulfitobacter, Ahrensia, Belliella, Chryseobacterium). The orders Oceanospirillales and Alteromonadales dominated clone libraries in all stations but significant differences occurred at genus level particularly between the shallow and the deep, cold-water stations. Alcanivorax constituted 64% of clones at FSC135 but was absent at deeper stations. Pseudoalteromonas and Oleispira dominated the bacterial community at 500 and 1000 m. CONCLUSIONS The genus Oleispira emerged as a major player in the early stages of crude oil degradation in deep-sea sediments of the FSC particularly at subzero temperatures. This finding is offering a direction for future research into biomonitoring tools for the detection of low levels of crude oil contamination in the deep FSC, and possibly high latitude cold waters in general. SIGNIFICANCE AND IMPACT OF THE STUDY Oil and gas exploration in the FSC occurs at depths >1000 m but baseline environmental data necessary for the assessment of ecosystem recovery to prespill conditions in the event of an oil spill are lacking. This study will contribute to our ability to assess the impact of oil release in the FSC and guide the direction of bioremediation strategies tailored to the area.
Collapse
Affiliation(s)
- E. Gontikaki
- School of Biological SciencesUniversity of AberdeenAberdeenUK
| | - L.D. Potts
- School of Biological SciencesUniversity of AberdeenAberdeenUK
| | - J.A. Anderson
- Surface Chemistry and Catalysis Group, Materials and Chemical Engineering, School of EngineeringUniversity of AberdeenAberdeenUK
| | - U. Witte
- School of Biological SciencesUniversity of AberdeenAberdeenUK
| |
Collapse
|
48
|
McFarlin KM, Perkins MJ, Field JA, Leigh MB. Biodegradation of Crude Oil and Corexit 9500 in Arctic Seawater. Front Microbiol 2018; 9:1788. [PMID: 30147678 PMCID: PMC6096335 DOI: 10.3389/fmicb.2018.01788] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/17/2018] [Indexed: 12/22/2022] Open
Abstract
The need to understand the biodegradation of oil and chemical dispersants in Arctic marine environments is increasing alongside growth in oil exploration and transport in the region. We chemically quantified biodegradation and abiotic losses of crude oil and Corexit 9500, when present separately, in incubations of Arctic seawater and identified microorganisms potentially involved in biodegradation of these substrates based on shifts in bacterial community structure (16S rRNA genes) and abundance of biodegradation genes (GeoChip 5.0 microarray). Incubations were performed over 28-day time courses using surface seawater collected from near-shore and offshore locations in the Chukchi Sea. Within 28 days, the indigenous microbial community biodegraded 36% (k = 0.010 day-1) and 41% (k = 0.014 day-1) of oil and biodegraded 77% and 33% (k = 0.015 day-1) of the Corexit 9500 component dioctyl sodium sulfosuccinate (DOSS) in respective near-shore and offshore incubations. Non-ionic surfactants (Span 80, Tween 80, and Tween 85) present in Corexit 9500 were non-detectable by 28 days due to a combination of abiotic losses and biodegradation. Microorganisms utilized oil and Corexit 9500 as growth substrates during the incubation, with the Corexit 9500 stimulating more extensive growth than oil within 28 days. Taxa known to include oil-degrading bacteria (e.g., Oleispira, Polaribacter, and Colwellia) and some oil biodegradation genes (e.g., alkB, nagG, and pchCF) increased in relative abundance in response to both oil and Corexit 9500. These results increase our understanding of oil and dispersant biodegradation in the Arctic and suggest that some bacteria may be capable of biodegrading both oil and Corexit 9500.
Collapse
Affiliation(s)
- Kelly M McFarlin
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Matt J Perkins
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Jennifer A Field
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Mary B Leigh
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| |
Collapse
|
49
|
Brakstad OG, Størseth TR, Brunsvik A, Bonaunet K, Faksness LG. Biodegradation of oil spill dispersant surfactants in cold seawater. CHEMOSPHERE 2018; 204:290-293. [PMID: 29665531 DOI: 10.1016/j.chemosphere.2018.04.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 05/23/2023]
Abstract
While biodegradation of chemically dispersed oil has been well documented, only a few studies have focused on the degradation of the dispersant compounds themselves. The objective of this study was to determine the biodegradation of dispersant surfactants in cold seawater, relevant for deep sea or Arctic conditions. Biotransformation of the surfactants dioctyl-sodium sulfosuccinate (DOSS), Tween 80, Tween 85, and α/β-ethylhexylsulfosuccinate (EHSS, expected DOSS hydrolysis product) in the commercial dispersants Corexit 9500, Dasic Slickgone NS and Finasol OSR52 were determined. The biotransformation studies of the surfactants were performed in natural seawater at 5 °C over a period of 54 days without oil present. The surfactants were tested at concentrations of 1, 5, and 50 mg/L, the lower concentration being as close as possible to expected field concentrations. Experiments with dispersants concentrations of 1 mg/L resulted in rapid biotransformation of Tween 80 and Tween 85, with depletion after 8 days, while DOSS showed rapid biotransformation after a lag period of 16 days. The degradation half-life of DOSS increased from 4.1 days to >500 days as Corexit 9500 concentrations went from 1 mg/L to 50 mg/L, emphasizing the importance of performing experiments at dispersant concentrations as close as possible to environmentally relevant concentrations. EHSS showed limited degradation compared to other surfactants. This study shows that the surfactants DOSS, Tween 80 and Tween 85 in the three chemical dispersants studied are biodegradable in cold seawater, particularly in environmentally relevant concentrations.
Collapse
Affiliation(s)
| | | | - Anders Brunsvik
- SINTEF Industry, Dept. Biotechnology and Nanomedicine, N-7465 Trondheim, Norway
| | | | | |
Collapse
|
50
|
Brakstad OG, Davies EJ, Ribicic D, Winkler A, Brönner U, Netzer R. Biodegradation of dispersed oil in natural seawaters from Western Greenland and a Norwegian fjord. Polar Biol 2018. [DOI: 10.1007/s00300-018-2380-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|