1
|
Xu PX, Ren HY, Zhao N, Jin XJ, Wen BH, Qin T. Distribution characteristics of the Legionella CRISPR-Cas system and its regulatory mechanism underpinning phenotypic function. Infect Immun 2024; 92:e0022923. [PMID: 38099659 PMCID: PMC10790817 DOI: 10.1128/iai.00229-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/10/2023] [Indexed: 01/17/2024] Open
Abstract
Legionella is a common intracellular parasitic bacterium that infects humans via the respiratory tract, causing Legionnaires' disease, with fever and pneumonia as the main symptoms. The emergence of highly virulent and azithromycin-resistant Legionella pneumophila is a major challenge in clinical anti-infective therapy. The CRISPR-Cas acquired immune system provides immune defense against foreign nucleic acids and regulates strain biological functions. However, the distribution of the CRISPR-Cas system in Legionella and how it regulates gene expression in L. pneumophila remain unclear. Herein, we assessed 915 Legionella whole-genome sequences to determine the distribution characteristics of the CRISPR-Cas system and constructed gene deletion mutants to explore the regulation of the system based on growth ability in vitro, antibiotic sensitivity, and intracellular proliferation of L. pneumophila. The CRISPR-Cas system in Legionella was predominantly Type II-B and was mainly concentrated in the genome of L. pneumophila ST1 strains. The Type II-B CRISPR-Cas system showed no effect on the strain's growth ability in vitro but significantly reduced resistance to azithromycin and decreased proliferation ability due to regulation of the lpeAB efflux pump and the Dot/Icm type IV secretion system. Thus, the Type II-B CRISPR-Cas system plays a crucial role in regulating the virulence of L. pneumophila. This expands our understanding of drug resistance and pathogenicity in Legionella, provides a scientific basis for the prevention of Legionnaires' disease outbreaks and the rational use of clinical drugs, and facilitates effective treatment of Legionnaires' disease.
Collapse
Affiliation(s)
- Pei-Xing Xu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hong-Yu Ren
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Na Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiao-Jing Jin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bo-Hai Wen
- Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tian Qin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
2
|
Zhan XY, Yang JL, Sun H, Zhou X, Qian YC, Huang K, Leng Y, Huang B, He Y. Presence of Viable, Clinically Relevant Legionella Bacteria in Environmental Water and Soil Sources of China. Microbiol Spectr 2022; 10:e0114021. [PMID: 35438512 PMCID: PMC9241679 DOI: 10.1128/spectrum.01140-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
The distribution of pathogenic Legionella in the environmental soil and water of China has not been documented yet. In this study, Legionella was detected in 129 of 575 water (22.43%) and 41 of 442 soil samples (9.28%) by culture. Twelve Legionella species were identified, of which 11 were disease-associated. Of the Legionella-positive samples, 109 of 129 (84.50%) water and 29 of 41 (70.73%) soil were positive for L. pneumophila, which accounted for about 75% of Legionella isolates in both water and soil, suggesting L. pneumophila was the most frequent species. Soil showed a higher diversity of Legionella spp. as compared with water (0.6279 versus 0.4493). In contrast, serogroup (sg) 1 was more prevalent among L. pneumophila isolates from water than from soil (26.66% versus 12.21%). Moreover, many disease-associated sequence types (STs) of L. pneumophila were found in China. Intragenic recombination was acting on L. pneumophila from both water and soil. Phylogeny, population structure, and molecular evolution analyses revealed a probable existence of L. pneumophila isolates with a special genetic background that is more adaptable to soil or water sources and a small proportion of genetic difference between water and soil isolates. The detection of viable, clinically relevant Legionella demonstrates soil as another source for harboring and dissemination of pathogenic Legionella bacteria in China. Future research should assess the implication in public health with the presence of Legionella in the soil and illustrate the genetic and pathogenicity difference of Legionella between water and soil, particularly the most prevalent L. pneumophila. IMPORTANCE Pathogenic Legionella spp. is the causative agent of Legionnaires' disease (LD), and L. pneumophila is the most common one. Most studies have focused on L. pneumophila from water and clinical samples. However, the soil is another important reservoir for this bacterium, and the distribution of Legionella spp. in water and soil sources has not been compared and documented in China yet. Discovering the distribution of Legionella spp. and L. pneumophila in the two environments may help a deep understanding of the pathogenesis and molecular evolution of the bacterium. Our research systematically uncovered the distributions of Legionella spp. in different regions and sources (e.g., water and soil) of China. Moreover, phylogeny, population structure, and molecular evolution study revealed the possible existence of L. pneumophila with a special genetic background that is more adaptable to soil or water sources, and genetic difference may exist.
Collapse
Affiliation(s)
- Xiao-Yong Zhan
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jin-Lei Yang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Honghua Sun
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xuefu Zhou
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yi-Chao Qian
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Ke Huang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yang Leng
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Bihui Huang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yulong He
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
3
|
Knežević M, Rončević D, Vukić Lušić D, Mihelčić M, Kogoj R, Keše D, Glad M, Cenov A, Ožanič M, Glažar Ivče D, Šantić M. Decreasing Pasteurization Treatment Efficiency against Amoeba-Grown Legionella pneumophila—Recognized Public Health Risk Factor. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031099. [PMID: 35162120 PMCID: PMC8834526 DOI: 10.3390/ijerph19031099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 11/16/2022]
Abstract
Legionellae are gram-negative bacteria most commonly found in freshwater ecosystems and purpose-built water systems. In humans, the bacterium causes Legionnaires’ disease (LD) or a Pontiac fever. In this study, the different waters (drinking water, pool water, cooling towers) in which Legionella pneumophila has been isolated were studied to assess the possible risk of bacterial spreading in the population. The influence of physical and chemical parameters, and interactions with Acanthamoeba castellanii on L. pneumophila, were analyzed by Heterotrophic Plate Count, the Colony-forming units (CFU) methods, transmission electron microscopy (TEM), and Sequence-Based Typing (SBT) analysis. During the study period (2013–2019), a total of 1932 water samples were analyzed, with the average annual rate of Legionella-positive water samples of 8.9%, showing an increasing trend. The largest proportion of Legionella-positive samples was found in cooling towers and rehabilitation centers (33.9% and 33.3%, respectively). Among the isolates, L. pneumophila SGs 2–14 was the most commonly identified strain (76%). The survival of Legionella was enhanced in the samples with higher pH values, while higher electrical conductivity, nitrate, and free residual chlorine concentration significantly reduced the survival of Legionella. Our results show that growth in amoeba does not affect the allelic profile, phenotype, and morphology of the bacterium but environmental L. pneumophila becomes more resistant to pasteurization treatment.
Collapse
Affiliation(s)
- Maša Knežević
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (M.K.); (M.M.); (M.O.); (M.Š.)
| | - Dobrica Rončević
- Department of Epidemiology, Teaching Institute of Public Health of Primorje-Gorski Kotar County, Krešimirova 52a, 51000 Rijeka, Croatia;
- Department of Public Health, Faculty of Health Studies, Viktora Cara Emina 5, 51000 Rijeka, Croatia
| | - Darija Vukić Lušić
- Department of Environmental Health, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
- Department of Environmental Health, Teaching Institute of Public Health of Primorje-Gorski Kotar County, Krešimirova 52a, 51000 Rijeka, Croatia; (M.G.); (A.C.)
- Center for Advanced Computing and Modeling, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia
- Correspondence: ; Tel.: +385-(0)51-358-755
| | - Mirna Mihelčić
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (M.K.); (M.M.); (M.O.); (M.Š.)
| | - Rok Kogoj
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana, Slovenia; (R.K.); (D.K.)
| | - Darja Keše
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana, Slovenia; (R.K.); (D.K.)
| | - Marin Glad
- Department of Environmental Health, Teaching Institute of Public Health of Primorje-Gorski Kotar County, Krešimirova 52a, 51000 Rijeka, Croatia; (M.G.); (A.C.)
| | - Arijana Cenov
- Department of Environmental Health, Teaching Institute of Public Health of Primorje-Gorski Kotar County, Krešimirova 52a, 51000 Rijeka, Croatia; (M.G.); (A.C.)
| | - Mateja Ožanič
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (M.K.); (M.M.); (M.O.); (M.Š.)
| | - Daniela Glažar Ivče
- Branch Office Rab, Teaching Institute of Public Health of Primorje-Gorski Kotar County, Palit 143a, 51280 Rab, Croatia;
| | - Marina Šantić
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (M.K.); (M.M.); (M.O.); (M.Š.)
| |
Collapse
|
4
|
Trousil J, Frgelecová L, Kubíčková P, Řeháková K, Drašar V, Matějková J, Štěpánek P, Pavliš O. Acute Pneumonia Caused by Clinically Isolated Legionella pneumophila Sg 1, ST 62: Host Responses and Pathologies in Mice. Microorganisms 2022; 10:179. [PMID: 35056629 PMCID: PMC8781576 DOI: 10.3390/microorganisms10010179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/16/2022] Open
Abstract
Legionnaires' disease is a severe form of lung infection caused by bacteria belonging to the genus Legionella. The disease severity depends on both host immunity and L. pneumophila virulence. The objective of this study was to describe the pathological spectrum of acute pneumonia caused by a virulent clinical isolate of L. pneumophila serogroup 1, sequence type 62. In A/JOlaHsd mice, we compared two infectious doses, namely, 104 and 106 CFU, and their impact on the mouse status, bacterial clearance, lung pathology, and blood count parameters was studied. Acute pneumonia resembling Legionnaires' disease has been described in detail.
Collapse
Affiliation(s)
- Jiří Trousil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00 Prague, Czech Republic;
| | - Lucia Frgelecová
- Department of Pathological Morphology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic;
| | - Pavla Kubíčková
- Military Health Institute, Military Medical Agency, Tychonova 1, 160 00 Prague, Czech Republic; (P.K.); (O.P.)
| | - Kristína Řeháková
- Small Animal Clinical Laboratory, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic;
| | - Vladimír Drašar
- National Legionella Reference Laboratory, Public Health Institute Ostrava, Masarykovo náměstí 16, 682 01 Vyškov, Czech Republic;
| | - Jana Matějková
- Department of Medical Microbiology, Second Faculty of Medicine, Charles University, Motol University Hospital, V Úvalu 84, 150 06 Prague, Czech Republic;
| | - Petr Štěpánek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00 Prague, Czech Republic;
| | - Oto Pavliš
- Military Health Institute, Military Medical Agency, Tychonova 1, 160 00 Prague, Czech Republic; (P.K.); (O.P.)
| |
Collapse
|
5
|
Sequence-based typing of clinical and environmental Legionella pneumophila isolates in Shenyang, China. ACTA ACUST UNITED AC 2021; 39:383-389. [PMID: 34620473 DOI: 10.1016/j.eimce.2020.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/04/2020] [Indexed: 11/23/2022]
Abstract
INTRODUCTION We performed SBT (sequence-based typing) on clinical and environmental Legionellapneumophila isolates in Shenyang (China). We analyzed and compared the results with those obtained by PFGE (pulsed field gel electrophoresis). METHODS Twenty-two L. pneumophila isolates were collected from two patients with L. pneumophila infection, two hospitals, and 13 office buildings. There were two clinical isolates, one strain isolated from domestic tap water, another from shower water and 18 strains from cooling tower water. All these isolates were analyzed by SBT and PFGE methods. RESULTS The 22 isolates were divided into 7 types by SBT. Five isolates belonged to novel sequence types (ST2345, ST2344, ST2406, ST2407, and ST2408) and one isolate belonged to ST328. The STs were not obtained for two of the isolates. The remaining 14 isolates belonged to ST1. PFGE typing divided the 22 isolates into 14 pulsotypes. The main pulsotype was SYC, which included seven isolates. CONCLUSION Both typing methods showed that predominant clonal lines exist in the Shenyang region, with high levels of genetic polymorphisms. Five novel STs were identified, indicating a unique genetic composition of L. pneumophila strains in this region, which are significantly different from those found in other environmental water systems in the world.
Collapse
|
6
|
Sreenath K, Chaudhry R, Vinayaraj EV, Dey AB, Kabra SK, Thakur B, Guleria R. Distribution of Virulence Genes and Sequence-Based Types Among Legionella pneumophila Isolated From the Water Systems of a Tertiary Care Hospital in India. Front Public Health 2020; 8:596463. [PMID: 33330340 PMCID: PMC7719716 DOI: 10.3389/fpubh.2020.596463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/12/2020] [Indexed: 01/06/2023] Open
Abstract
Background: Legionnaires' disease (LD) is a potentially fatal pneumonia predominantly caused by infection due to Legionella pneumophila although more than 50 other Legionella species are described. Water systems contaminated with Legionella spp. are the implicated sources of Legionnaires' disease. In this study, we aimed to assess Legionella contamination in the water sources of a tertiary care hospital and to determine the virulence properties and molecular characteristics of L. pneumophila environmental isolates. Methods: During May 2015 through August 2018, a total of 201 hospital water samples were tested for L. pneumophila by standardized culture procedures; environmental isolates were examined for the presence of two virulence genes: Legionella vir homolog (lvh) and repeats in structural toxin (rtxA) by PCR. The genotyping of isolates was performed by sequence-based typing (SBT) according to the protocol of the European Study Group for Legionella Infections (ESGLI). Results:L. pneumophila was isolated from 38/201 (18.9%) water samples; among the 46 isolates, the lvh locus was present in 45 (97.8%), the rtxA locus was found in 45 (97.8%), and both loci were found in 44 (95.7%) isolates. A total of 23 sequence types (STs) were identified among the 44 isolates (index of discrimination [IOD] of 0.929), and 11/23 (47.8%) STs were new to the ESGLI database. Conclusions: The study results showed genetic diversity in L. pneumophila isolates from the hospital environment along with a high percentage of pathogenicity loci. Besides, certain STs may have an increased ability to cause legionellosis, thus requires specific infection control and prevention strategies whenever identified.
Collapse
Affiliation(s)
- K Sreenath
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Rama Chaudhry
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - E V Vinayaraj
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - A B Dey
- Geriatric Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - S K Kabra
- Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Bhaskar Thakur
- Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Randeep Guleria
- Pulmonary, Critical Care, and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
7
|
Jiang L, Zhao S, Cai X, Mu D, Zhang X, Kang J, Zhao L, Chen Y. Sequence-based typing of clinical and environmental Legionella pneumophila isolates in Shenyang, China. Enferm Infecc Microbiol Clin 2020; 39:S0213-005X(20)30243-3. [PMID: 32718496 DOI: 10.1016/j.eimc.2020.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 11/20/2022]
Abstract
INTRODUCTION We performed SBT (sequence-based typing) on clinical and environmental Legionellapneumophila isolates in Shenyang (China). We analyzed and compared the results with those obtained by PFGE (pulsed field gel electrophoresis). METHODS Twenty-two L. pneumophila isolates were collected from two patients with L. pneumophila infection, two hospitals, and 13 office buildings. There were two clinical isolates, one strain isolated from domestic tap water, another from shower water and 18 strains from cooling tower water. All these isolates were analyzed by SBT and PFGE methods. RESULTS The 22 isolates were divided into 7 types by SBT. Five isolates belonged to novel sequence types (ST2345, ST2344, ST2406, ST2407, and ST2408) and one isolate belonged to ST328. The STs were not obtained for two of the isolates. The remaining 14 isolates belonged to ST1. PFGE typing divided the 22 isolates into 14 pulsotypes. The main pulsotype was SYC, which included seven isolates. CONCLUSION Both typing methods showed that predominant clonal lines exist in the Shenyang region, with high levels of genetic polymorphisms. Five novel STs were identified, indicating a unique genetic composition of L. pneumophila strains in this region, which are significantly different from those found in other environmental water systems in the world.
Collapse
Affiliation(s)
- Luxi Jiang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Sihong Zhao
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Department of Respiratory Medicine, the First Hospital of Shijiazhuang, Hebei, China
| | - Xu Cai
- Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, China
| | - Deguang Mu
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xianghua Zhang
- Department of Respiratory Medicine, the First Hospital of Shijiazhuang, Hebei, China
| | - Jian Kang
- Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, China
| | - Li Zhao
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yu Chen
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
8
|
Yakunin E, Kostyal E, Agmon V, Grotto I, Valinsky L, Moran-Gilad J. A Snapshot of the Prevalence and Molecular Diversity of Legionella pneumophila in the Water Systems of Israeli Hotels. Pathogens 2020; 9:pathogens9060414. [PMID: 32471136 PMCID: PMC7350324 DOI: 10.3390/pathogens9060414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/19/2020] [Accepted: 05/23/2020] [Indexed: 11/16/2022] Open
Abstract
Exposure to Legionella spp. contaminated aerosols in hotel settings confers risk for travel-associated Legionnaire’s disease (TALD). In this study, we investigated the prevalence of Legionella contamination and its molecular diversity in hotels and resorts across Israel. The study was comprised of a convenience sample of water systems from 168 hotels and resorts countrywide, routinely inspected between March 2015 and February 2017. Isolation and quantitation of Legionella were performed in a water laboratory using the ISO 11731 method. The distribution of Legionella isolates was analyzed according to geography and source. The genetic diversity of a subset of isolates was analyzed by sequence-based typing (SBT) at the National Reference Laboratory for Legionella and compared to the national database. Out of 2830 samples tested, 470 (17%) obtained from 102 different premises (60% of hotels) were positive for Legionella spp. In 230 samples (49% of all positive, 8% of total samples), accounting for 37% of hotels, Legionella spp. counts exceeded the regulatory threshold of 1000 CFU/L. The most frequently contaminated water sources were cooling towers (38%), followed by faucets, hot tubs, water lines, and storage tanks (14–17% each). Furthermore, 32% and 17% of samples obtained from cooling towers and hot tubs, respectively, exceeded the regulatory thresholds. SBT was performed on 78 strains and revealed 27 different sequence types (STs), including two novel STs. The most prevalent STs found were ST1 (26%), ST87 (10%), ST93 (6%), and ST461 and ST1516 (5% each). Several L. pneumophila STs were found to be limited to certain geographical regions. This is the first study to investigate the prevalence and diversity of Legionella in hotels and resorts in Israel during non-outbreak environmental inspections. These findings will inform risk assessment, surveillance, and control measures of TALD.
Collapse
Affiliation(s)
- Eugenia Yakunin
- Central Laboratories and Public Health Services, Ministry of Health, Jerusalem 9134302, Israel; (E.Y.); (V.A.); (I.G.); (L.V.)
| | - Eszter Kostyal
- Department of Water Microbiology, Biolab Ltd., Jerusalem 9134001, Israel;
| | - Vered Agmon
- Central Laboratories and Public Health Services, Ministry of Health, Jerusalem 9134302, Israel; (E.Y.); (V.A.); (I.G.); (L.V.)
| | - Itamar Grotto
- Central Laboratories and Public Health Services, Ministry of Health, Jerusalem 9134302, Israel; (E.Y.); (V.A.); (I.G.); (L.V.)
- Department of Health Systems Management, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Lea Valinsky
- Central Laboratories and Public Health Services, Ministry of Health, Jerusalem 9134302, Israel; (E.Y.); (V.A.); (I.G.); (L.V.)
| | - Jacob Moran-Gilad
- Central Laboratories and Public Health Services, Ministry of Health, Jerusalem 9134302, Israel; (E.Y.); (V.A.); (I.G.); (L.V.)
- Department of Health Systems Management, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Correspondence:
| |
Collapse
|
9
|
Christensen LM, Sule P, Cirillo SLG, Strain M, Plumlee Q, Adams LG, Cirillo JD. Legionnaires' Disease Mortality in Guinea Pigs Involves the p45 Mobile Genomic Element. J Infect Dis 2020; 220:1700-1710. [PMID: 31268152 PMCID: PMC6782102 DOI: 10.1093/infdis/jiz340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/01/2019] [Indexed: 12/21/2022] Open
Abstract
Background Legionella can cause Legionnaires’ disease, a potentially fatal form of pneumonia that occurs as sporadic epidemics. Not all strains display the same propensity to cause disease in humans. Because Legionella pneumophila serogroup 1 is responsible for >85% of infections, the majority of studies have examined this serogroup, but there are 3 commonly used laboratory strains: L pneumophila serogroup 1 Philadelphia (Phil-1)-derived strains JR32 and Lp01 and 130b-derived strain AA100. Methods We evaluated the ability of Phil-1, JR32, Lp01, and AA100 to cause disease in guinea pigs. Results We found that, although Phil-1, JR32, and AA100 cause an acute pneumonia and death by 4 days postinfection (100%), strain Lp01 does not cause mortality (0%). We also noted that Lp01 lacks a mobile element, designated p45, whose presence correlates with virulence. Transfer of p45 into Lp01 results in recovery of the ability of this strain to cause mortality, leads to more pronounced disease, and correlates with increased interferon-γ levels in the lungs and spleens before death. Conclusions These observations suggest a mechanism of Legionnaires’ disease pathogenesis due to the presence of type IVA secretion systems that cause higher mortality due to overinduction of a proinflammatory response in the host.
Collapse
Affiliation(s)
- Lanette M Christensen
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan
| | - Preeti Sule
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan
| | - Suat L G Cirillo
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan
| | - Madison Strain
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan
| | - Quinci Plumlee
- Department of Veterinary Pathobiology, Texas A&M University, College Station
| | - L Garry Adams
- Department of Veterinary Pathobiology, Texas A&M University, College Station
| | - Jeffrey D Cirillo
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan
| |
Collapse
|
10
|
Antibiotic Resistance and Azithromycin Resistance Mechanism of Legionella pneumophila Serogroup 1 in China. Antimicrob Agents Chemother 2019; 63:AAC.00768-19. [PMID: 31405864 DOI: 10.1128/aac.00768-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/04/2019] [Indexed: 12/14/2022] Open
Abstract
Legionnaires' disease, caused by Legionella pneumophila, has been treated primarily with antibiotics. However, few reports have been published on antibiotic-resistant Legionella in China. Our aim was to determine the azithromycin resistance mechanism of L. pneumophila serogroup 1 in China. The sensitivities of 149 L. pneumophila serogroup 1 strains, isolated from clinical cases or environmental water in China from 2002 to 2016, to five antibiotics, including erythromycin, azithromycin, levofloxacin, moxifloxacin, and rifampin, were evaluated. The mechanisms of the resistance of L. pneumophila serogroup 1 to azithromycin were studied. The expression levels of efflux pump gene lpeAB and the MIC of azithromycin-resistant strains in the presence and absence of the efflux pump inhibitor carbonyl cyanide-chlorophenylhydrazone (CCCP) were determined. All 149 strains were sensitive to erythromycin, levofloxacin, moxifloxacin, and rifampin, among which 25 of the strains exhibited azithromycin resistance. These 25 strains, including strains of sequence type 1 (ST1), ST144, ST150, ST154, and ST629, were screened. Expression of lpeAB was responsible for the reduced azithromycin susceptibility in all 25 of these strains. The phenotypes of 25 strains with virulence were linked by evaluating the intracellular growth ability in mouse macrophage J774 cells. Among the 25 strains, 60% were more virulent than the ATCC 33152 reference strain. The results determined in our study represent data supporting the further study of the antibiotic sensitivity of L. pneumophila strains in China.
Collapse
|
11
|
Ginevra C, Chastang J, David S, Mentasti M, Yakunin E, Chalker VJ, Chalifa-Caspi V, Valinsky L, Jarraud S, Moran-Gilad J. A real-time PCR for specific detection of the Legionella pneumophila serogroup 1 ST1 complex. Clin Microbiol Infect 2019; 26:514.e1-514.e6. [PMID: 31525518 DOI: 10.1016/j.cmi.2019.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/28/2019] [Accepted: 09/01/2019] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Legionella pneumophila serogroup 1 (Lp1) sequence type (ST) 1 is globally widespread in the environment and accounts for a significant proportion of Legionella infections, including nosocomial Legionnaires' disease (LD). This study aimed to design a sensitive and specific detection method for Lp ST1 that will underpin epidemiological investigations and risk assessment. METHODS A total of 628 Lp genomes (126 ST1s) were analyzed by comparative genomics. Interrogation of more than 900 accessory genes revealed seven candidate targets for specific ST1 detection and specific primers and hydrolysis probes were designed and evaluated. The analytical sensitivity and specificity of the seven primer and probe sets were evaluated on serially diluted DNA extracted from the reference strain CIP107629 and via qPCR applied on 200 characterized isolates. The diagnostic performance of the assay was evaluated on 142 culture-proven clinical samples from LD cases and a real-life investigation of a case cluster. RESULTS Of seven qPCR assays that underwent analytical validation, one PCR target (lpp1868) showed higher sensitivity and specificity for ST1 and ST1-like strains. The diagnostic performance of the assay using respiratory samples corresponded to a sensitivity of 95% (19/20) (95% CI (75.1-99.9)) and specificity of 100% (122/122) (95% CI (97-100)). The ST1 PCR assay could link two out of three culture-negative hospitalized LD cases to ST1 during a real-time investigation. CONCLUSION Using whole genome sequencing (WGS) data, we developed and validated a sensitive and specific qPCR assay for the detection of Lp1 belonging to the ST1 clonal complex by amplification of the lpp1868 gene. The ST1 qPCR is expected to deliver an added value for Lp control and prevention, in conjunction with other recently developed molecular assays.
Collapse
Affiliation(s)
- C Ginevra
- CIRI, Centre International de Recherche en Infectiologie, Legionella Pathogenesis Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France; National Reference Centre of Legionella, Institute of Infectious Agents, Hospices Civils de Lyon, Lyon, France; ESCMID Study Group for Legionella Infections (ESGLI), Basel, Switzerland
| | - J Chastang
- National Reference Centre of Legionella, Institute of Infectious Agents, Hospices Civils de Lyon, Lyon, France
| | - S David
- ESCMID Study Group for Legionella Infections (ESGLI), Basel, Switzerland; Pathogen Genomics, Welcome Trust Sanger Institute, Cambridge, UK; Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England, London, UK
| | - M Mentasti
- ESCMID Study Group for Legionella Infections (ESGLI), Basel, Switzerland; Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England, London, UK
| | - E Yakunin
- ESCMID Study Group for Legionella Infections (ESGLI), Basel, Switzerland; Central Laboratories, Public Health Services, Ministry of Health, Jerusalem, Israel
| | - V J Chalker
- ESCMID Study Group for Legionella Infections (ESGLI), Basel, Switzerland; Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England, London, UK
| | - V Chalifa-Caspi
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - L Valinsky
- Central Laboratories, Public Health Services, Ministry of Health, Jerusalem, Israel
| | - S Jarraud
- CIRI, Centre International de Recherche en Infectiologie, Legionella Pathogenesis Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France; National Reference Centre of Legionella, Institute of Infectious Agents, Hospices Civils de Lyon, Lyon, France; ESCMID Study Group for Legionella Infections (ESGLI), Basel, Switzerland
| | - J Moran-Gilad
- ESCMID Study Group for Legionella Infections (ESGLI), Basel, Switzerland; School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev. Beer-Sheva, Israel; Public Health Services, Ministry of Health, Jerusalem, Israel.
| | | |
Collapse
|
12
|
Jiang L, Amemura-Maekawa J, Ren H, Li Y, Sakata M, Zhou H, Murai M, Chang B, Ohnishi M, Qin T. Distribution of lag-1 Alleles, ORF7, and ORF8 Genes of Lipopolysaccharide and Sequence-Based Types Among Legionella pneumophila Serogroup 1 Isolates in Japan and China. Front Cell Infect Microbiol 2019; 9:274. [PMID: 31448241 PMCID: PMC6691400 DOI: 10.3389/fcimb.2019.00274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/17/2019] [Indexed: 01/08/2023] Open
Abstract
Approximately 85% of cases of Legionnaires' disease are caused by Legionella pneumophila serogroup 1. In this study, we analyzed the distribution of lag-1 alleles, ORF 7 and ORF 8 genes of lipopolysaccharide (LPS) and sequence-based types of 616 L. pneumophila serogroup 1 strains isolated in Japan (206 clinical, 225 environmental) and China (13 clinical and 172 environmental). The lag-1 gene was harbored by significantly more of the clinical isolates compared with the environmental isolates (90.3 vs. 19.1% and 61.6 vs. 3.0%, respectively; both P < 0.001). ORF 7 genes were detected in 51.0% of Japanese clinical and 36.0% of Japanese environmental (P = 0.001) isolates, as well as 15.3% of Chinese clinical and 9.9% of Chinese environmental isolates (P = 0.544). ORF 8 genes were detected in 12.1% of Japanese clinical and 5.8% of Japanese environmental (P = 0.017) isolates, as well as 7.7% of Chinese clinical and 3.4% of Chinese environmental isolates (P = 0.388). The Japanese and Chinese isolates were assigned to 203 and 36 different sequence-types (ST), respectively. ST1 was predominant. Most isolates with the same ST also had the same lag-1, ORF 7, and ORF 8 gene subgroups. In conclusion, the lag-1 was present in most of the clinical isolates, but was absent from most of the environmental isolates from both China and Japan, regardless of the water source and SBT type. PCR-based serotyping and subgrouping methods can be used to define a hierarchy of virulence genotypes that require stringent surveillance to prevent human disease.
Collapse
Affiliation(s)
- Luxi Jiang
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Centre for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China.,Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Junko Amemura-Maekawa
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hongyu Ren
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Centre for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Yinan Li
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Centre for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Miho Sakata
- Department of Health Sciences, Saitama Prefectural University, Saitama, Japan
| | - Haijian Zhou
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Centre for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Miyo Murai
- Department of Health Sciences, Saitama Prefectural University, Saitama, Japan
| | - Bin Chang
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tian Qin
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Centre for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
13
|
Viewing Legionella pneumophila Pathogenesis through an Immunological Lens. J Mol Biol 2019; 431:4321-4344. [PMID: 31351897 DOI: 10.1016/j.jmb.2019.07.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/25/2019] [Accepted: 07/13/2019] [Indexed: 12/14/2022]
Abstract
Legionella pneumophila is the causative agent of the severe pneumonia Legionnaires' disease. L. pneumophila is ubiquitously found in freshwater environments, where it replicates within free-living protozoa. Aerosolization of contaminated water supplies allows the bacteria to be inhaled into the human lung, where L. pneumophila can be phagocytosed by alveolar macrophages and replicate intracellularly. The Dot/Icm type IV secretion system (T4SS) is one of the key virulence factors required for intracellular bacterial replication and subsequent disease. The Dot/Icm apparatus translocates more than 300 effector proteins into the host cell cytosol. These effectors interfere with a variety of cellular processes, thus enabling the bacterium to evade phagosome-lysosome fusion and establish an endoplasmic reticulum-derived Legionella-containing vacuole, which facilitates bacterial replication. In turn, the immune system has evolved numerous strategies to recognize intracellular bacteria such as L. pneumophila, leading to potent inflammatory responses that aid in eliminating infection. This review aims to provide an overview of L. pneumophila pathogenesis in the context of the host immune response.
Collapse
|
14
|
Christensen LM, Sule P, Strain M, Cirillo JD. Legionella pneumophila p45 element influences host cell entry and sensitivity to sodium. PLoS One 2019; 14:e0218941. [PMID: 31246988 PMCID: PMC6597080 DOI: 10.1371/journal.pone.0218941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/12/2019] [Indexed: 11/19/2022] Open
Abstract
Legionella pneumophila are environmental bacteria found ubiquitously in both natural and man-made water reservoirs, sometimes as constituents of biofilm communities, but mostly intracellularly within protozoal hosts. In the event that Legionella become aerosolized in water droplets and inhaled by humans, they can cause a potentially fatal form of pneumonia called Legionnaires' disease. Strains of L. pneumophila have highly plastic genomes that harbor numerous inter- and intra-genomic elements, enhancing their ability to live under diverse environmental conditions. One such mobile genomic element, p45 carries ~45 kbp of genes, including the Lvh (Legionella Vir homolog) type IVa secretion system. This element was evaluated for its contribution to L. pneumophila environmental resilience and virulence-related characteristics by comparing clinically isolated strain Philadelphia-1 that carries p45, Lp01 that lacks p45, and Lp01 with p45 reintroduced, Lp01+p45. We found that the p45 element impacts host cell entry and resistance to sodium, both virulence-related characteristics in Legionella species.
Collapse
Affiliation(s)
- Lanette M. Christensen
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, United States of America
| | - Preeti Sule
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, United States of America
| | - Madison Strain
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, United States of America
| | - Jeffrey D. Cirillo
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, United States of America
| |
Collapse
|
15
|
Bédard E, Paranjape K, Lalancette C, Villion M, Quach C, Laferrière C, Faucher SP, Prévost M. Legionella pneumophila levels and sequence-type distribution in hospital hot water samples from faucets to connecting pipes. WATER RESEARCH 2019; 156:277-286. [PMID: 30925374 DOI: 10.1016/j.watres.2019.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/08/2019] [Accepted: 03/14/2019] [Indexed: 05/07/2023]
Abstract
Recent studies have reported increased levels of Legionella pneumophila (Lp) at points of use compared to levels in primary and secondary components of hot water systems, suggesting possible selection by environmental conditions. In this study, concentrations of Lp in a hospital hot water system were evaluated by profile sampling, collecting successive water samples to determine the prevalence at the faucet (distal) and upstream piping before and after a system intervention to increase temperature. Lp strain diversity was compared between different points of use and different areas of the hot water system (i.e., tap, intermediate piping and main upflow piping). In total, 47 isolates were recovered from 32 positive hot water samples collected from designated taps, showers and recirculation loops; these isolates were subsequently analyzed by sequence-based typing (SBT). Lp levels were comparable between first draw (500 mL) and flushed (2 and 5 min) samples, whereas a decrease was observed in the amount of culturable cells (1 log). Two sequence types (STs) were identified throughout the system. ST378 (sg4/10) was present in 91% of samples, while ST154-like (sg1) was present in 41%; both STs were simultaneously recovered in 34% of samples. Isolated STs displayed comparable tolerance to copper (0.8-5 mg/L) and temperature (55 °C, 1 h) exposure. The ability to replicate within THP1 cells and Acanthamoeba castellanii was similar between the two STs and a comparative environmental outbreak strain. The low Lp diversity and the detection of both Lp sequence types in repeated subsequent samples collected from positive faucets in a hospital wing suggest a minimal impact of the distal conditions on strain selection for the sampled points, as well as a possible adaptation to stressors present in the system, leading to the predominance of a few strains.
Collapse
Affiliation(s)
- Emilie Bédard
- Department of Civil Engineering, Polytechnique Montréal, Montréal, QC, Canada; Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada.
| | - Kiran Paranjape
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Cindy Lalancette
- Laboratoire de santé publique du Québec, Sainte-Anne-de-Bellevue, QC, Canada
| | - Manuela Villion
- Centre d'expertise en analyse environnementale du Québec, Ministère de l'Environnement et de la Lutte contre les changements climatiques, Québec, Canada
| | - Caroline Quach
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC, Canada
| | - Céline Laferrière
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC, Canada
| | - Sebastien P Faucher
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Michèle Prévost
- Department of Civil Engineering, Polytechnique Montréal, Montréal, QC, Canada
| |
Collapse
|
16
|
Nakanishi N, Nomoto R, Tanaka S, Arikawa K, Iwamoto T. Analysis of Genetic Characterization and Clonality of Legionella pneumophila Isolated from Cooling Towers in Japan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16091664. [PMID: 31086119 PMCID: PMC6540132 DOI: 10.3390/ijerph16091664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 01/01/2023]
Abstract
We investigated the genetic characteristics of 161 Legionella pneumophila strains isolated over a period of 10 years from cooling towers in Japan. Minimum spanning tree analysis based on the sequence-based typing (SBT) of them identified three clonal complexes (CCs); CC1 (105/161, 65.2%), CC2 (22 /161, 13.7%), and CC3 (20/161, 12.4%). CC1 was formed by serogroup (SG) 1 and SG7, whereas CC2 was mainly formed by SG1. All of the CC3 isolates except two strains were SG13. The major sequence types (STs) in CC1 and CC2 were ST1 (88/105, 83.8%) and ST154 (15/22, 68.2%), respectively. These STs are known as typical types of L. pneumophila SG1 in Japanese cooling tower. Additionally, we identified 15 strains of ST2603 as the major type in CC3. This ST has not been reported in Japanese cooling tower. Whole genome sequencing (WGS) analysis of the representative strains in the three CCs, which were isolated from various cooling towers over the 10 years, elucidated high clonal population of L. pneumophila in Japanese cooling tower. Moreover, it revealed that the strains of CC2 are phylogenetically distant compared to those of CC1 and CC3, and belonged to L. pneumophila subsp. fraseri.
Collapse
Affiliation(s)
- Noriko Nakanishi
- Department of Infectious Diseases, Kobe Institute of Health, 4-6-5 Minatojima-nakamichi, Chuo-ku, Kobe 650-0046, Japan.
| | - Ryohei Nomoto
- Department of Infectious Diseases, Kobe Institute of Health, 4-6-5 Minatojima-nakamichi, Chuo-ku, Kobe 650-0046, Japan.
| | - Shinobu Tanaka
- Department of Infectious Diseases, Kobe Institute of Health, 4-6-5 Minatojima-nakamichi, Chuo-ku, Kobe 650-0046, Japan.
| | - Kentaro Arikawa
- Department of Infectious Diseases, Kobe Institute of Health, 4-6-5 Minatojima-nakamichi, Chuo-ku, Kobe 650-0046, Japan.
| | - Tomotada Iwamoto
- Department of Infectious Diseases, Kobe Institute of Health, 4-6-5 Minatojima-nakamichi, Chuo-ku, Kobe 650-0046, Japan.
| |
Collapse
|
17
|
Antimicrobial agent susceptibilities of Legionella pneumophila MLVA-8 genotypes. Sci Rep 2019; 9:6138. [PMID: 30992549 PMCID: PMC6468011 DOI: 10.1038/s41598-019-42425-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 04/01/2019] [Indexed: 11/08/2022] Open
Abstract
Legionella pneumophila causes human lung infections resulting in severe pneumonia. High-resolution genotyping of L. pneumophila isolates can be achieved by multiple-locus variable-number tandem-repeat analysis (MLVA-8). Legionella infections in humans occur as a result of inhalation of bacteria-containing aerosols, thus, our aim was to study the antimicrobial susceptibilities of different MLVA-8 genotypes to ten commonly used antimicrobial agents in legionellosis therapy. Epidemiological cut-off values were determined for all antibiotics. Significant differences were found between the antimicrobial agents' susceptibilities of the three studied environmental genotypes (Gt4, Gt6, and Gt15). Each genotype exhibited a significantly different susceptibility profile, with Gt4 strains (Sequence Type 1) significantly more resistant towards most studied antimicrobial agents. In contrast, Gt6 strains (also Sequence Type 1) were more susceptible to six of the ten studied antimicrobial agents compared to the other genotypes. Our findings show that environmental strains isolated from adjacent points of the same water system, exhibit distinct antimicrobial resistance profiles. These differences highlight the importance of susceptibility testing of Legionella strains. In Israel, the most extensively used macrolide for pneumonia is azithromycin. Our results point at the fact that clarithromycin (another macrolide) and trimethoprim with sulfamethoxazole (SXT) were the most effective antimicrobial agents towards L. pneumophila strains. Moreover, legionellosis can be caused by multiple L. pneumophila genotypes, thus, the treatment approach should be the use of combined antibiotic therapy. Further studies are needed to evaluate specific antimicrobial combinations for legionellosis therapy.
Collapse
|
18
|
Prevalence of Infection-Competent Serogroup 6 Legionella pneumophila within Premise Plumbing in Southeast Michigan. mBio 2018; 9:mBio.00016-18. [PMID: 29437918 PMCID: PMC5801461 DOI: 10.1128/mbio.00016-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Coinciding with major changes to its municipal water system, Flint, MI, endured Legionnaires’ disease outbreaks in 2014 and 2015. By sampling premise plumbing in Flint in the fall of 2016, we found that 12% of homes harbored legionellae, a frequency similar to that in residences in neighboring areas. To evaluate the genetic diversity of Legionella pneumophila in Southeast Michigan, we determined the sequence type (ST) and serogroup (SG) of the 18 residential isolates from Flint and Detroit, MI, and the 33 clinical isolates submitted by hospitals in three area counties in 2013 to 2016. Common to one environmental and four clinical samples were strains of L. pneumophila SG1 and ST1, the most prevalent ST worldwide. Among the Flint premise plumbing isolates, 14 of 16 strains were of ST367 and ST461, two closely related SG6 strain types isolated previously from patients and corresponding environmental samples. Each of the representative SG1 clinical strains and SG6 environmental isolates from Southeast Michigan infected and survived within macrophage cultures at least as well as a virulent laboratory strain, as judged by microscopy and by enumerating CFU. Likewise, 72 h after infection, the yield of viable-cell counts increased >100-fold for each of the representative SG1 clinical isolates, Flint premise plumbing SG6 ST367 and -461 isolates, and two Detroit residential isolates. We verified by immunostaining that SG1-specific antibody does not cross-react with the SG6 L. pneumophila environmental strains. Because the widely used urinary antigen diagnostic test does not readily detect non-SG1 L. pneumophila, Legionnaires’ disease caused by SG6 L. pneumophila is likely underreported worldwide. L. pneumophila is the leading cause of disease outbreaks associated with drinking water in the United States. Compared to what is known of the established risks of colonization within hospitals and hotels, relatively little is known about residential exposure to L. pneumophila. One year after two outbreaks of Legionnaires’ disease in Genesee County, MI, that coincided with damage to the Flint municipal water system, our multidisciplinary team launched an environmental surveillance and laboratory research campaign aimed at informing risk management strategies to provide safe public water supplies. The most prevalent L. pneumophila strains isolated from residential plumbing were closely related strains of SG6. In laboratory tests of virulence, the SG6 environmental isolates resembled SG1 clinical strains, yet they are not readily detected by the common diagnostic urinary antigen test, which is specific for SG1. Therefore, our study complements the existing epidemiological literature indicating that Legionnaires’ disease due to non-SG1 strains is underreported around the globe.
Collapse
|
19
|
Whiley H. Legionella Risk Management and Control in Potable Water Systems: Argument for the Abolishment of Routine Testing. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 14:E12. [PMID: 28029126 PMCID: PMC5295263 DOI: 10.3390/ijerph14010012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 01/05/2023]
Abstract
Legionella is an opportunistic pathogen of public health significance. One of the main sources of Legionella is potable water systems. As a consequence of aging populations there is an increasing demographic considered at high risk for Legionellosis and, as such, a review of the guidelines is required. Worldwide, Legionella has been detected from many potable water sources, suggesting it is ubiquitous in this environment. Previous studies have identified the limitations of the current standard method for Legionella detection and the high possibility of it returning both false negative and false positive results. There is also huge variability in Legionella test results for the same water sample when conducted at different laboratories. However, many guidelines still recommend the testing of water systems. This commentary argues for the removal of routine Legionella monitoring from all water distribution guidelines. This procedure is financially consuming and false negatives may result in managers being over-confident with a system or a control mechanism. Instead, the presence of the pathogen should be assumed and focus spent on managing appropriate control measures and protecting high-risk population groups.
Collapse
Affiliation(s)
- Harriet Whiley
- Health and the Environment, School of the Environment, Flinders University, GPO Box 2100, Adelaide 5001, Australia.
| |
Collapse
|
20
|
Multiplication of Legionella pneumophila Sequence Types 1, 47, and 62 in Buffered Yeast Extract Broth and Biofilms Exposed to Flowing Tap Water at Temperatures of 38°C to 42°C. Appl Environ Microbiol 2016; 82:6691-6700. [PMID: 27613680 DOI: 10.1128/aem.01107-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/01/2016] [Indexed: 12/11/2022] Open
Abstract
Legionella pneumophila proliferates in freshwater environments at temperatures ranging from 25 to 45°C. To investigate the preference of different sequence types (ST) for a specific temperature range, growth of L. pneumophila serogroup 1 (SG1) ST1 (environmental strains), ST47, and ST62 (disease-associated strains) was measured in buffered yeast extract broth (BYEB) and biofilms grown on plasticized polyvinyl chloride in flowing heated drinking water originating from a groundwater supply. The optimum growth temperatures in BYEB were approximately 37°C (ST1), 39°C (ST47), and 41°C (ST62), with maximum growth temperatures of 42°C (ST1) and 43°C (ST47 and ST62). In the biofilm at 38°C, the ST47 and ST62 strains multiplied equally well compared to growth of the environmental ST1 strain and an indigenous L. pneumophila non-SG1 strain, all attaining a concentration of approximately 107 CFU/cm-2 Raising the temperature to 41°C did not impact these levels within 4 weeks, but the colony counts of all strains tested declined (at a specific decline rate of 0.14 to 0.41 day-1) when the temperature was raised to 42°C. At this temperature, the concentration of Vermamoeba vermiformis in the biofilm, determined with quantitative PCR (qPCR), was about 2 log units lower than the concentration at 38°C. In columns operated at a constant temperature, ranging from 38 to 41°C, none of the tested strains multiplied in the biofilm at 41°C, in which also V. vermiformis was not detected. These observations suggest that strains of ST47 and ST62 did not multiply in the biofilm at a temperature of ≥41°C because of the absence of a thermotolerant host. IMPORTANCE Growth of Legionella pneumophila in tap water installations is a serious public health concern. The organism includes more than 2,100 varieties (sequence types). More than 50% of the reported cases of Legionnaires' disease are caused by a few sequence types which are very rarely detected in the environment. Strains of selected virulent sequence types proliferated in biofilms on surfaces exposed to warm (38°C) tap water to the same level as environmental varieties and multiplied well as pure culture in a nutrient-rich medium at temperatures of 42 and 43°C. However, these organisms did not grow in the biofilms at temperatures of ≥41°C. Typical host amoebae also did not multiply at these temperatures. Apparently, proliferation of thermotolerant host amoebae is needed to enable multiplication of the virulent L. pneumophila strains in the environment at elevated temperatures. The detection of these amoebae in water installations therefore is a scientific challenge with practical implications.
Collapse
|
21
|
Population structure and minimum core genome typing of Legionella pneumophila. Sci Rep 2016; 6:21356. [PMID: 26888563 PMCID: PMC4766850 DOI: 10.1038/srep21356] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/12/2016] [Indexed: 01/28/2023] Open
Abstract
Legionella pneumophila is an important human pathogen causing Legionnaires’ disease. In this study, whole genome sequencing (WGS) was used to study the characteristics and population structure of L. pneumophila strains. We sequenced and compared 53 isolates of L. pneumophila covering different serogroups and sequence-based typing (SBT) types (STs). We found that 1,896 single-copy orthologous genes were shared by all isolates and were defined as the minimum core genome (MCG) of L. pneumophila. A total of 323,224 single-nucleotide polymorphisms (SNPs) were identified among the 53 strains. After excluding 314,059 SNPs which were likely to be results of recombination, the remaining 9,165 SNPs were referred to as MCG SNPs. Population Structure analysis based on MCG divided the 53 L. pneumophila into nine MCG groups. The within-group distances were much smaller than the between-group distances, indicating considerable divergence between MCG groups. MCG groups were also supplied by phylogenetic analysis and may be considered as robust taxonomic units within L. pneumophila. Among the nine MCG groups, eight showed high intracellular growth ability while one showed low intracellular growth ability. Furthermore, MCG typing also showed high resolution in subtyping ST1 strains. The results obtained in this study provided significant insights into the evolution, population structure and pathogenicity of L. pneumophila.
Collapse
|
22
|
Combined use of real-time PCR and nested sequence-based typing in survey of human Legionella infection. Epidemiol Infect 2016; 144:2006-10. [PMID: 26790498 DOI: 10.1017/s0950268815003301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Legionnaires' disease (LD) is a globally distributed systemic infectious disease. The burden of LD in many regions is still unclear, especially in Asian countries including China. A survey of Legionella infection using real-time PCR and nested sequence-based typing (SBT) was performed in two hospitals in Shanghai, China. A total of 265 bronchoalveolar lavage fluid (BALF) specimens were collected from hospital A between January 2012 and December 2013, and 359 sputum specimens were collected from hospital B throughout 2012. A total of 71 specimens were positive for Legionella according to real-time PCR focusing on the 5S rRNA gene. Seventy of these specimens were identified as Legionella pneumophila as a result of real-time PCR amplification of the dotA gene. Results of nested SBT revealed high genetic polymorphism in these L. pneumophila and ST1 was the predominant sequence type. These data revealed that the burden of LD in China is much greater than that recognized previously, and real-time PCR may be a suitable monitoring technology for LD in large sample surveys in regions lacking the economic and technical resources to perform other methods, such as urinary antigen tests and culture methods.
Collapse
|
23
|
Zhan XY, Hu CH, Zhu QY. Different distribution patterns of ten virulence genes in Legionella reference strains and strains isolated from environmental water and patients. Arch Microbiol 2016; 198:241-50. [PMID: 26757724 DOI: 10.1007/s00203-015-1186-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/30/2015] [Accepted: 12/30/2015] [Indexed: 12/31/2022]
Abstract
Virulence genes are distinct regions of DNA which are present in the genome of pathogenic bacteria and absent in nonpathogenic strains of the same or related species. Virulence genes are frequently associated with bacterial pathogenicity in genus Legionella. In the present study, an assay was performed to detect ten virulence genes, including iraA, iraB, lvrA, lvrB, lvhD, cpxR, cpxA, dotA, icmC and icmD in different pathogenicity islands of 47 Legionella reference strains, 235 environmental strains isolated from water, and 4 clinical strains isolated from the lung tissue of pneumonia patients. The distribution frequencies of these genes in reference or/and environmental L. pneumophila strains were much higher than those in reference non-L. pneumophila or/and environmental non-L. pneumophila strains, respectively. L. pneumophila clinical strains also maintained higher frequencies of these genes compared to four other types of Legionella strains. Distribution frequencies of these genes in reference L. pneumophila strains were similar to those in environmental L. pneumophila strains. In contrast, environmental non-L. pneumophila maintained higher frequencies of these genes compared to those found in reference non-L. pneumophila strains. This study illustrates the association of virulence genes with Legionella pathogenicity and reveals the possible virulence evolution of non-L. pneumophia strains isolated from environmental water.
Collapse
Affiliation(s)
- Xiao-Yong Zhan
- Guangzhou KingMed Center for Clinical Laboratory, No.10, Luoxuan 3 Road, Guangzhou International Bio-island, Guangzhou, 510300, China.,KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510330, China
| | - Chao-Hui Hu
- Guangzhou KingMed Center for Clinical Laboratory, No.10, Luoxuan 3 Road, Guangzhou International Bio-island, Guangzhou, 510300, China.,KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510330, China
| | - Qing-Yi Zhu
- Guangzhou KingMed Center for Clinical Laboratory, No.10, Luoxuan 3 Road, Guangzhou International Bio-island, Guangzhou, 510300, China. .,KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510330, China.
| |
Collapse
|
24
|
Prevalence and Molecular Characteristics of Waterborne Pathogen Legionella in Industrial Cooling Tower Environments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:12605-17. [PMID: 26473896 PMCID: PMC4626988 DOI: 10.3390/ijerph121012605] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/25/2015] [Accepted: 09/30/2015] [Indexed: 11/17/2022]
Abstract
Cooling towers are a source of Legionnaires' disease. It is important from a public health perspective to survey industrial cooling towers for the presence of Legionella. Prospective surveillance of the extent of Legionella pollution was conducted at factories in Shijiazhuang, China between March 2011 and September 2012. Overall, 35.7% of 255 industrial cooling tower water samples showed Legionella-positive, and their concentrations ranged from 100 Colony-Forming Units (CFU)/liter to 88,000 CFU/liter, with an average concentration of 9100 CFU/liter. A total of 121 isolates were obtained. All isolates were L. pneumophila, and the isolated serogroups included serogroups 1 (68 isolates, 56.2%), 6 (25, 20.7%), 5 (12, 9.9%), 8 (8, 6.6%), 3 (6, 5.0%) and 9 (2, 1.6%). All 121 isolates were analyzed by pulsed-field gel electrophoresis (PFGE) and 64 different patterns were obtained. All 121 isolates were analyzed sequence-based typing (SBT), a full 7-allele profile was obtained from 117 isolates. One hundred and seventeen isolates were divided into 49 sequence types. Two virulence genes, lvh and rtxA, are analyzed by polymerase chain reaction (PCR). 92.6% (112/121) and 98.3% (119/121) isolates carried lvh and rtxA respectively and 90.9% (110/121) of tested isolates carried both genes. Our results demonstrated high prevalence and genetic polymorphism of L. pneumophila in industrial cooling tower environments in Shijiazhang, China, and the SBT and virulence gene PCR results suggested that the isolates were pathogenic. Improved control and prevention strategies are urgently needed.
Collapse
|
25
|
Xiong L, Zhao H, Mo Z, Shi L. Prevalence of 7 virulence genes of Legionella strains isolated from environmental water sources of public facilities and sequence types diversity of L. pneumopila strains in Macau. Biosci Trends 2015; 9:214-20. [PMID: 26355222 DOI: 10.5582/bst.2015.01075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In this study, we analyzed 7 virulence genes in 55 Legionella species (including 29 L. pneumophila and 26 non-L. pneumophila strains) which isolated from environmental water sources of the public facilities in Macau by using PCR and real-time PCR. In addition, 29 Legionella pneumophila isolates were subjected to genotyping by sequence-based typing scheme and compared with the data reported. The detection rate of flaA, pilE, asd, mip, mompS, proA and neuA genes in the L. pneumophila were 100.0%, respectively. The neuA gene was not detected in the non-L. pneumophila strains, but flaA, pilE, asd, mip, mompS, and proA genes could be amplified with a positive rate of 15.4%, 15.4%, 53.8%, 38.5%, 15.4%, and 38.5%, respectively. The results from real-time PCR were generally consistent with that of PCR. Those L. pneumophila strains were assigned into 10 sequence types (STs) and ST1 (9/29) was the dominant STs. Four new STs were found to be unique in Macau. The analysis of population structure of L. pneumophila strains which isolated from Macau, Guangzhou and Shenzhen indicated that the similar clones were existed and ST1 was the most prevalent STs. However, the distribution of the subtypes isolated from Macau was not the same extensive as those from Guangzhou and Shenzhen. The different detection rates of the 7 virulence genes in different species of Legionella might reflect their own potential for environmental adaptability and pathogenesis. And the data analyzed from STs diversity indicated the Macau L. pneumophila possessed obvious regional specificity and high genetic diversity.
Collapse
Affiliation(s)
- Lina Xiong
- School of Light Industry and Food Sciences, South China University of Technology
| | | | | | | |
Collapse
|
26
|
Martín M, Salazar P, Jiménez C, Lecuona M, Ramos MJ, Ode J, Alcoba J, Roche R, Villalonga R, Campuzano S, Pingarrón JM, González-Mora JL. Rapid Legionella pneumophila determination based on a disposable core-shell Fe₃O₄@poly(dopamine) magnetic nanoparticles immunoplatform. Anal Chim Acta 2015; 887:51-58. [PMID: 26320785 DOI: 10.1016/j.aca.2015.05.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 10/23/2022]
Abstract
A novel amperometric magnetoimmunoassay, based on the use of core-shell magnetic nanoparticles and screen-printed carbon electrodes, was developed for the selective determination of Legionella pneumophila SG1. A specific capture antibody (Ab) was linked to the poly(dopamine)-modified magnetic nanoparticles (MNPs@pDA-Ab) and incubated with bacteria. The captured bacteria were sandwiched using the antibody labeled with horseradish peroxidase (Ab-HRP), and the resulting MNPs@pDA-Ab-Legionella neumophila-Ab-HRP were captured by a magnetic field on the electrode surface. The amperometric response measured at -0.15 V vs. Ag pseudo-reference electrode of the SPCE after the addition of H2O2 in the presence of hydroquinone (HQ) was used as transduction signal. The achieved limit of detection, without pre-concentration or pre-enrichment steps, was 10(4) Colony Forming Units (CFUs) mL(-1). The method showed a good selectivity and the MNPs@pDA-Ab exhibited a good stability during 30 days. The possibility of detecting L. pneumophila at 10 CFU mL(-1) level in less than 3 h, after performing a membrane-based preconcentration step, was also demonstrated.
Collapse
Affiliation(s)
- Miriam Martín
- Neurochemistry and Neuroimaging Group, Laboratory of Sensors, Biosensors and Materials, Faculty of Medical Sciences, University of La Laguna, Campus de Ofra s/n, 38071, La Laguna, Tenerife, Spain; Atlántica Biomédica S.L., Tenerife, Spain
| | - Pedro Salazar
- Neurochemistry and Neuroimaging Group, Laboratory of Sensors, Biosensors and Materials, Faculty of Medical Sciences, University of La Laguna, Campus de Ofra s/n, 38071, La Laguna, Tenerife, Spain; Informática y Equipamiento Médico de Canarias S.A., Tenerife, Spain; Laboratory of Nanotechnology on Surfaces, Institute of Materials Science of Seville (CSIC-Univ. Sevilla), Calle Américo Vespucio 49, 41092, Sevilla, Spain.
| | - Carmen Jiménez
- Neurochemistry and Neuroimaging Group, Laboratory of Sensors, Biosensors and Materials, Faculty of Medical Sciences, University of La Laguna, Campus de Ofra s/n, 38071, La Laguna, Tenerife, Spain; Atlántica Biomédica S.L., Tenerife, Spain
| | - María Lecuona
- Department of Microbiology and Infection Control, Hospital Universitario de Canarias, Tenerife, Spain
| | - Mª José Ramos
- Department of Microbiology and Infection Control, Hospital Universitario de Canarias, Tenerife, Spain
| | - Jesús Ode
- Unit Service of Microbiology, Hospital Universitario Nuestra Señora de La Candelaria, Tenerife, Spain
| | - Julia Alcoba
- Unit Service of Microbiology, Hospital Universitario Nuestra Señora de La Candelaria, Tenerife, Spain
| | - Rossany Roche
- Informática y Equipamiento Médico de Canarias S.A., Tenerife, Spain
| | - Reynaldo Villalonga
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040, Madrid, Spain
| | - Susana Campuzano
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040, Madrid, Spain
| | - José Manuel Pingarrón
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040, Madrid, Spain
| | - José Luis González-Mora
- Neurochemistry and Neuroimaging Group, Laboratory of Sensors, Biosensors and Materials, Faculty of Medical Sciences, University of La Laguna, Campus de Ofra s/n, 38071, La Laguna, Tenerife, Spain
| |
Collapse
|
27
|
Abbott ZD, Yakhnin H, Babitzke P, Swanson MS. csrR, a Paralog and Direct Target of CsrA, Promotes Legionella pneumophila Resilience in Water. mBio 2015; 6:e00595. [PMID: 26060275 PMCID: PMC4471563 DOI: 10.1128/mbio.00595-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/08/2015] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED Critical to microbial versatility is the capacity to express the cohort of genes that increase fitness in different environments. Legionella pneumophila occupies extensive ecological space that includes diverse protists, pond water, engineered water systems, and mammalian lung macrophages. One mechanism that equips this opportunistic pathogen to adapt to fluctuating conditions is a switch between replicative and transmissive cell types that is controlled by the broadly conserved regulatory protein CsrA. A striking feature of the legionellae surveyed is that each of 14 strains encodes 4 to 7 csrA-like genes, candidate regulators of distinct fitness traits. Here we focus on the one csrA paralog (lpg1593) that, like the canonical csrA, is conserved in all 14 strains surveyed. Phenotypic analysis revealed that long-term survival in tap water is promoted by the lpg1593 locus, which we name csrR (for "CsrA-similar protein for resilience"). As predicted by its GGA motif, csrR mRNA was bound directly by the canonical CsrA protein, as judged by electromobility shift and RNA-footprinting assays. Furthermore, CsrA repressed translation of csrR mRNA in vivo, as determined by analysis of csrR-gfp reporters, csrR mRNA stability in the presence and absence of csrA expression, and mutation of the CsrA binding site identified on the csrR mRNA. Thus, CsrA not only governs the transition from replication to transmission but also represses translation of its paralog csrR when nutrients are available. We propose that, during prolonged starvation, relief of CsrA repression permits CsrR protein to coordinate L. pneumophila's switch to a cell type that is resilient in water supplies. IMPORTANCE Persistence of L. pneumophila in water systems is a public health risk, and yet there is little understanding of the genetic determinants that equip this opportunistic pathogen to adapt to and survive in natural or engineered water systems. A potent regulator of this pathogen's intracellular life cycle is CsrA, a protein widely distributed among bacterial species that is understood quite well. Our finding that every sequenced L. pneumophila strain carries several csrA paralogs-including two common to all isolates--indicates that the legionellae exploit CsrA regulatory switches for multiple purposes. Our discovery that one paralog, CsrR, is a target of CsrA that enhances survival in water is an important step toward understanding colonization of the engineered environment by pathogenic L. pneumophila.
Collapse
Affiliation(s)
- Zachary D Abbott
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Helen Yakhnin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, State College, Pennsylvania, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, State College, Pennsylvania, USA
| | - Michele S Swanson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
28
|
Sequence types diversity of Legionella pneumophila isolates from environmental water sources in Guangzhou and Jiangmen, China. INFECTION GENETICS AND EVOLUTION 2015; 29:35-41. [DOI: 10.1016/j.meegid.2014.10.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/17/2014] [Accepted: 10/25/2014] [Indexed: 11/18/2022]
|
29
|
Cassier P, Campese C, Le Strat Y, Che D, Ginevra C, Etienne J, Jarraud S. Epidemiologic characteristics associated with ST23 clones compared to ST1 and ST47 clones of Legionnaires disease cases in France. New Microbes New Infect 2014; 3:29-33. [PMID: 25755889 PMCID: PMC4337934 DOI: 10.1016/j.nmni.2014.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/30/2014] [Indexed: 11/19/2022] Open
Abstract
In France, approximately 1200 cases of Legionnaires disease (LD) are reported annually, and isolates are available for approximately 20% of cases identified since 2000. All Legionella pneumophila serogroup 1 (sg1) isolates are characterized by sequence-based typing at the National Reference Centre. LD cases caused by L. pneumophila sg1 reported from 2008 through 2012 were considered for the study. Our study objective was to describe cases according to their sequence type (ST). We also constructed multivariable modified Poisson regression models to estimate the incidence rate ratio (IRR) and to identify characteristics potentially associated with ST23 clones compared to ST1 and ST47 clones. We studied 1192 patients infected by ST1 (n = 109), ST23 (n = 236), ST47 (n = 123) or other STs (n = 724). The geographic distribution of the ST23 cases across the country was significantly different compared to other ST groups. This genotype was significantly associated with the absence of corticosteroid therapy compared to ST1 (IRR = 0.56; p 0.016). Concerning exposure, the ST23 genotype was significantly less associated with hospital-acquired infections compared to ST1 (IRR = 0.32; p 0.001), but it was more associated with infections acquired in hospitals and elderly settings compared with ST47. Finally, the ST23 genotype was less frequently associated with travel than other STs. Despite the large number of cases of ST23 infection, we did not identify any characteristics specific to this ST. However, we identified independent associations between ST1 and nosocomial transmission and steroid therapy. These findings should encourage further exploration, especially in terms of environmental diffusion, strain virulence and host factors.
Collapse
Affiliation(s)
- P. Cassier
- Hospices Civils de Lyon, National Reference Centre of Legionella, Centre de Biologie Est, France
- CIRI, International Center for Infectiology Research, Legionella Pathogenosis Team, Université de Lyon, France
- Inserm, U1111, France
- Ecole Normale Supérieure de Lyon, France
- Université Lyon 1, Centre International de Recherche en Infectiologie, France
- CNRS, UMR5308, Lyon, France
- Corresponding author: P. Cassier, Hospices Civils de Lyon, National Reference Centre of Legionella, Centre de Biologie Est, 59 Bd Pinel 69500 Bron, France.
| | - C. Campese
- French Institute for Public Health Surveillance, Saint Maurice, France
| | - Y. Le Strat
- French Institute for Public Health Surveillance, Saint Maurice, France
| | - D. Che
- French Institute for Public Health Surveillance, Saint Maurice, France
| | - C. Ginevra
- Hospices Civils de Lyon, National Reference Centre of Legionella, Centre de Biologie Est, France
- CIRI, International Center for Infectiology Research, Legionella Pathogenosis Team, Université de Lyon, France
- Inserm, U1111, France
- Ecole Normale Supérieure de Lyon, France
- Université Lyon 1, Centre International de Recherche en Infectiologie, France
- CNRS, UMR5308, Lyon, France
| | - J. Etienne
- Hospices Civils de Lyon, National Reference Centre of Legionella, Centre de Biologie Est, France
| | - S. Jarraud
- Hospices Civils de Lyon, National Reference Centre of Legionella, Centre de Biologie Est, France
- CIRI, International Center for Infectiology Research, Legionella Pathogenosis Team, Université de Lyon, France
- Inserm, U1111, France
- Ecole Normale Supérieure de Lyon, France
- Université Lyon 1, Centre International de Recherche en Infectiologie, France
- CNRS, UMR5308, Lyon, France
| |
Collapse
|
30
|
Ditommaso S, Giacomuzzi M, Arauco Rivera SR, Zotti CM. Does better identification of the Legionella pneumophila serogroup 1 strains by Sequence-Based Typing (SBT) allow for the implementation of more effective contamination control strategies and more targeted intervention measures? Microchem J 2014. [DOI: 10.1016/j.microc.2014.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|